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Preface

This book documents the Compaq Extended Math Library (CXML), a collection
of high performance subprograms that perform different types of mathematical
operations. CXML is primarily used with Fortran programs, but it can be used
with any other language. This book provides descriptions of the subprograms in
the CXML library. It does not describe specific applications of the subprograms.

Intended Audience

Platforms

Scientists, mathematicians, engineers, computer scientists, programmers, or
anyone who wants to write applications that call CXML subprograms should refer
to this book.

To use this book, you need an understanding of computer concepts, knowledge
and experience in computer programming, and knowledge of mathematics in the
areas of CXML computations.

This book discussses the behavior of CXML on various platforms. In general,
most of the information in this book is common to all platforms. However,

in some cases, the information about a topic may differ between platforms.
Minor differences in the way CXML behaves between platforms are noted in
the relevant text. For other differences in behavior, each platform has its own
appendix.

Book Layout

This document is divided as follows:
= Preface - facilitates the use of this book.
= Introduction - introduces the CXML product.
e Part1 - Programming Considerations
= Chapter 1 - explains how to prepare and store data.
= Chapter 2 - explains how to code an application program.
= Chapter 3 - explains how to compile and link programs.
e Part 2 - Using CXML Subprograms

e Chapter 4 - describes how to use the Level 1 BLAS subprograms and
extensions.

= Chapter 5 - describes how to use the Sparse Level 1 BLAS subprograms.
= Chapter 6 - describes how to use the Level 2 BLAS subprograms.
e Chapter 7 - describes how to use the Level 3 BLAS subprograms.
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e Chapter 8 provides an overview of the LAPACK library of subroutines.
= Chapter 9 - describes how to use the signal processing subprograms.

= Chapter 10 - describes how to use the Iterative Solvers for Sparse Linear
Systems.

e Chapter 11 - describes how to use Direct Solvers for Sparse Linear
Systems.

= Chapter 12 - describes how to use the VLIB subprograms.

= Chapter 13 - describes how to use the random number generator
subprograms.

= Chapter 14 - describes how to use the sort subprograms.
= Part 3 - CXML Reference Section

= Provides reference material and descriptions of all CXML subprograms.
e Part 4 - Appendices

= Appendix A - discusses special considerations for the Compaqg Tru64
UNIX platform.

e Appendix B - discusses special considerations for the Windows NT
platform.

= Appendix C - discusses special considerations for the Compaq OpenVMS
platform.

= Appendix D - provides a bibliography of resource information about the
mathematical operations covered by CXML.

Code Examples

The CXML product contains several working code examples which are installed
along with the product. These examples can be executed, and are included to
illustrate various parts of CXML. Many of these examples are also reproduced as
text in this manual to supplement explanatory material.

When an example printed in this book is also present in the examples directory,
its file name is specified in the text so that you can correlate it with the working
example.

Associated Documentation

xviii

In addition to the hardcopy version of this manual, the following CXML
documentation is available:

For the Tru64 UNIX platform:
e Online version of this manual - .PDF file

< Installation information - located in the Compaq Fortran Installation Guide
for Tru64 UNIX Systems

= Online release notes - ASCII text file accessible by means of a web browser
e Online help - Tru64UNIX manpages for CXML



For the Windows NT platform:
e Online version of this manual - .PDF file

= Installation information - located in online Compaq Visual Fortran Getting
Started

= Online Readme - ASCII text file

= Online Release Notes - ASCII text file accessible by means of a web browser
For the OpenVMS platform:

= Online version of this manual - .PDF file

e Compaq Extended Math Library Installation Guide

= Online help - OpenVMS HELP information

Other Related Documentation:

Additionally, depending upon your operating system, the following related
documentation is recommended:

e Compagq Fortran 90 User Manual for Tru64 UNIX Systems
= Compaq Fortran Language Reference Manual
e LAPACK Users’ Guide (available from SIAM)
= Compaq Visual Fortran online and printed documentation:
e Getting Started
= Programmer’s Guide
= Language Reference
= Error Messages

About LAPACK

To make use of the LAPACK library, Compaq recommends the purchase of the
major documentation of LAPACK, in book form, published by the Society for
Industrial and Applied Math (SIAM) in 1995:

LAPACK Users' Guide, 2nd Edition, by E. Anderson et al,
SIAM

3600 University City Science Center

Philadelphia PA 19104-2688

ISBN: 0-89871-345-5

Tel: 1-800-447-SIAM

email: service@siam.org

The LAPACK Users’ Guide is also available on the internet in a format viewable
by a web browser. To view it on the internet, use the following URL:

http://www.netlib.org/lapack/lug/lapack_lug.html

About CXML Manpages

For the Tru64 UNIX platform, CXML contains the following hierarchy of
manpages:

= A top-level manpage consisting of a product overview and a list of the
manpages that describe CXML subcomponents

= A manpage for each CXML subcomponent that describes its functionality and
lists the manpages that describe its subprograms
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< A manpage for each subprogram that provides details of its use and the
operations it implements

Refer to the section of this Preface titled "Using Manpages" if you need
information about accessing or using these manpages.

About the Online .PDF Format

For some platforms, CXML is available in online form only in the Adobe

PDF format. This online format is identical to the printed version of the
documentation. It is especially suitable for depicting the complex mathematical
figures and equations in this book.

PDF format can be displayed by your web browser, using the Adobe Acrobat
Reader. This requires that you have the Adobe Acrobat Reader installed on your
system. The Acrobat Reader is provided free on the CD with this documentation
and can be installed the first time you access this book, if it is not already
installed.

Conventions Used in this Book

XX

In this book, unless otherwise stated, the following conventions are used:

= All references to OpenVMS mean the Compag OpenVMS Alpha operating
system.

= All references to UNIX mean Compaq’s Tru64 UNIX operating system.

e All references to Windows NT mean both Windows NT for Intel and Windows
NT for Alpha.

= All references to Fortran include both Compaq Fortran and Compaq Visual
Fortran.

= The term subprogram is used to generically refer to both subroutines and
functions. When a discussion is specific to either a subroutine or a function,
the more specific term is used.

This book also uses the conventions summarized in the following tables and
sections. Please take note of these conventions to facilitate your use of this book.

Table 1 General Conventions Used in this Documentation

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x or A sequence such as PF1 x or GOLD x indicates that you

GOLD x must first press and release the key labeled PF1 or GOLD
and then press and release another key or a pointing device
button.

GOLD key sequences can also have a slash (/), dash (-), or
underscore (_) as a delimiter in EVE commands.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is
not enclosed in a box.)

(continued on next page)



Table 1 (Cont.) General Conventions Used in this Documentation

Convention

Meaning

0

[]

{}

bold

italic text

UPPERCASE TEXT

Monospace type

MONOSPACE TYPE

numbers

A horizontal ellipsis in examples indicates one of the
following possibilities:

= Additional optional arguments in a statement have
been omitted.

= The preceding item or items can be repeated one or
more times.

= Additional parameters, values, or other information can
be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that,
if you choose more than one option, you must enclose the
choices in parentheses.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional in the syntax of a substring
specification in an assignment statement.)

In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

Bold type is used to emphasize a word or phrase or

to indicate math variables. In text, it represents the
introduction of a new term or the name of an argument,
an attribute, or a reason. In examples, it shows user input.

Italic text indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where device-name contains up to five
alphanumeric characters).

Uppercase text indicates a command, the name of a
routine, the name of a file, or the abbreviation for a system
privilege.

Monospace type indicates code examples and interactive
screen displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

Monospaced uppercase characters are used for lines of code,
commands, and command qualifiers.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

(continued on next page)
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Table 1 (Cont.) General Conventions Used in this Documentation

Convention

Meaning

*

An asterisk means that no value is stored at that location

in the array.

Table 2 How Progamming and Math Items are Represented in Text

Item Example Description Usage
Vector z Lowercase italic The vector z has six
elements.
Vector element z2 Lowercase italic with one The second element of
subscript indicating position the vector z is z,.
Matrix A Uppercase italic The matrix A has three
rows and four columns.
Matrix element a3 Lowercase italic with two Element a3 is in the
subscripts indicating position second row and third
column of A.
Scalar quantity m by n Lowercase italic Aisan mbyn
specifying length or band matrix with Kkl
count subdiagonals and ku
superdiagonals.
Array Aor X Uppercase The matrix A is stored

Array element

Arguments mentioned in
text

A(1,2) or X(3)

norA

Uppercase with numbers in
parentheses indicating position

Bold

in the array A, and the
vector gz is stored in the
array X.

A(1,2) is the element in
the first row and second
column of the array A.
X(3) is the third element
in the array X.

The data length is
specified by the n
argument.
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Table 3 How Math Symbols and Expressions are Represented in Text

Symbol

or Expression Description

a, B, a Greek and English letters denoting scalar values

|tnez| Absolute value of incz

A< B Matrix A is replaced by matrix B

BT 4T Transpose of the matrix B; transpose of the vector y

B! Inverse of the matrix B

BT Inverse of the transpose of matrix B

B™ Product of matrix B, m times

By Complex conjugate of the matrix B; complex conjugate of the vector
y

BHEyH Complex conjugate transpose of the matrix B; complex conjugate
transpose of the vector y

bi; U, Complex conjugate of the matrix element b,;; complex conjugate of
the vector element y;

Sz Sum of the elements z; to z,

=1

min {z,} Minimum element in the vector z

max {z,} Maximum element in the vector z

Using the Reference Sections

The following information may be helpful when using the reference sections
contained in this book.

The CXML Subprogram Reference area of this book is divided into several
sections - one for each of CXML's subprogram libraries. For example, all of the
BLAS1 subprograms are described in the BLAS1 Reference section.

Each reference section consists of reference material that describes the
functionality, calling sequences, and parameters of each subprogram.

Many CXML subprograms have variations to accomodate different data types.
These subprograms are differentiated from each other by a letter prefixed to the
name, indicating the data type that the subroutine uses. This naming convention
is discussed in more detail in the next section.

The description of each subroutine in the reference section combines the purpose
and attributes of all its variations. The letter prefix is used with the routine’s
name when a specific variation is discussed. When the discussion applies to all
versions, a leading underscore character () is used instead of the letter prefix.

CXML Subprogram Naming Conventions

There is a relationship between CXML subroutine names and Fortran datatypes.
This relationship is explained in this section.

Each CXML subroutine deals principally with data from one real or one complex
data type. CXML uses the symbol of the data type (i.e. I, S, D, C, Z) as the first
letter of the subroutine’s name to identify the data type upon which it operates
(or returns).
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XXV

If the CXML subroutine name The CXML subroutine uses this
begins with this letter: data type:

Integer

Single precision
Double precision
Complex

N O O »n =

Double Complex

For example, consider the CXML subroutines called SAXPY, DAXPY, CAXPY,
ZAXPY. It is easy to determine what data type each subroutine uses by reading
its name. The SAXPY subroutine is used for single precision data. The DAXPY
subroutine is used for double precision data. The CAXPY subroutine is used for
complex data. The ZAXPY subroutine is used for double complex data.

When a subroutine is generically referenced in text, a leading underscore () is
used in place of the first letter to indicate that all versions of the subroutine are
being discussed.

In the case of SAXPY, DAXPY, CAXPY, ZAXPY, _AXPY would be used to
generically refer to this group of subroutines.

Use of REAL and COMPLEX

In this book, references to REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16
refer to single precision, double precision, complex, and double complex, as
follows:

e REAL*4 = single precision

e REAL*8 = double precision

e COMPLEX*8 = complex

e COMPLEX*16 = double complex

Other Reference Section Conventions
The following conventions indicate any differences among the four variations:

= Data types
If a parameter’s data type is the same for all variations of the subroutine, the
data type is listed once:

integer*4

If a parameter has a different data type when used with each of the
variations, the parameter’s data type is documented in the following way:

real*4 | real*8 | complex*8 | complex*16

This indicates that the parameter must be single-precision when calling
subroutines with the prefix S, double-precision when calling subroutines with
the prefix D, complex when calling subroutines with the prefix C, and double
complex when calling subroutines with the prefix Z.

e Parameters

For some subroutines, a variation requires additional parameters. This is
indicated in the calling sequence in the following way:

{S,DIXXXX(..ey wery -.2)
{C,Z}xxxx(..., rwork, ...)



= Ordering of subroutines

In general, the BLAS subroutines are sorted alphabetically, However, some
subroutines that have the same logical function are documented together even
though they have different names. This occurs when the real version of the
subroutine deals with a symmetric matrix (and so has SY in its name) and the
complex version deals with a Hermitian matrix (HE). The signal processing,
iterative solver, and direct solver subroutines are grouped according to the
type of mathematical task.

Using Manpages

Online reference information for CXML on the Tru64 UNIX platform is available
in the form of manpages. Symbolic links to the manpages are installed in the
/usr/share/man/mang3 directory at installation time.

Use the man command, with the manpage name, to display a CXML manpage.
For example, to display the product overview - which gives a brief summary of the
contents of CXML, a list of subcomponents, and pointers to related information -
enter the following command:

man dxml

To display the manpage that describes a subcomponent, such as BLAS 3, and its
list of associated subprograms, use the name of the subcomponent, as follows:

man blas3

To display the manpage that provides a description of a subprogram, such as
SAXPY, use the name of the subprogram, as follows:

man saxpy

Note About LAPACK Manpages

To display the manpage that gives an overview of LAPACK, and lists LAPACK
subroutines and the operations they perform, use the following command:

man lapack

LAPACK subroutines have a separate manpage for each data type. When you
use the man command for an LAPACK subroutine, the subroutine name should
have the correct data type. For example, to display the manpage for the DGETRF
subroutine, use the command:

man dgetrf
To display the CGETRF subroutine, use the command:

man cgetrf

Sending Compaq Your Comments

Compaq welcomes your comments on this product and on its documentation. You
can send comments to us in the following ways:

= Internet electronic mail: DXML@DIGITAL.COM
e FAX: 603-884-0120, Attention: CXML Team, ZK02-3/Q18
= A letter sent to the following address:

Compaq Computer Corporation
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High Performance Computing Group (CXML), ZK02-3/Q18
110 Spit Brook Road

Nashua, N.H. 03062-2698

USA

If you have suggestions for improving particular sections, or find errors, please
indicate the title, order number, and section number.

Getting Help from Compaq

If you have a customer support contract and have comments or questions
about CXML software, you contact Compaq’'s Customer Support Center (CSC),
preferably using electronic means such as DSNIink. In the United States,
customers can call the CSC at 1-800-354-9000.
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Introduction to CXML

The Compag Extended Math Library (CXML) is a collection of high-performance,
computationally-intensive mathematical subprograms designed for use in many
different types of scientific and engineering applications. CXML subprograms are
callable from any programming language.

CXML's subprograms cover the areas of Basic Linear Algebra, Linear System and
Eigenproblem Solvers, Sparse Linear System Solvers, Sorting, Random Number
Generation, and Signal Processing.

Basic Linear Algebra Subprograms - The Basic Linear Algebra
Subprograms (BLAS) library includes the industry-standard Basic Linear
Algebra Subprograms for Level 1 (vector-vector (BLAS1)), Level 2 (matrix-
vector (BLAS?2)), and Level 3 (matrix-matrix (BLAS3)). Also included are
subprograms for BLAS Level 1 Extensions, Sparse BLAS Level 1, and Array
Math Functions (VLIB).

Signal Processing Subprograms - The Signal Processing library provides
a basic set of signal processing functions. Included are one-, two-, and
three-dimensional Fast Fourier Transforms (FFT), group FFTs, Cosine/Sine
Transforms (FCT/FST), Convolution, Correlation, and Digital Filters.

Sparse Linear System Subprograms - The Sparse Linear System library
provides both direct and iterative sparse linear system solvers. The direct
solver package supports both symmetric and nonsymmetric sparse matrices
stored using the skyline storage scheme. The iterative solver package
contains a basic set of storage schemes, preconditioners, and iterative solvers.
The design of this package is modular and matrix-free, allowing future
expansion and easy modification by users.

LAPACK subprograms - The Linear System and Eigenproblem Solver
library provides the complete LAPACK package developed by a consortium

of university and government laboratories. LAPACK is an industry-
standard subprogram package offering an extensive set of linear system and
eigenproblem solvers. LAPACK uses blocked algorithms that are better suited
to most modern architectures, particularly ones with memory hierarchies.
LAPACK will supersede LINPACK and EISPACK for most users.

Where appropriate, each subprogram has a version to support each combination
of real or complex arithmetic and single or double precision. The supported
floating point format is IEEE, and additionally VAX float on the OpenVMS
platform.



1 Parallel Library Support for Symmetric Multiprocessing

CXML supports symmetric multiprocessing (SMP) for improved performance
on the Tru64 UNIX platform. Key BLAS Level 2 and 3 routines, the LAPACK
GETRF and POTRF routines, the sparse iterative solvers, the skyline solvers,
and the FFT routines have been modified to execute in parallel if run on SMP
hardware. These parallel routines along with the other serial routines are
supplied in an alternative library.

The user may choose to link with either the parallel (" -lcxmlp ") library, or the
serial (" -lexml ) library, depending on whether SMP support is required, since
each library contains the complete set of routines. The parallel CXML library
achieves its parallelization using OpenMP.

2 Cray SciLib Support (SCIPORT)

SCIPORT is Compaq Computer Corporation’s implementation of the Cray
Reasearch scientific numerical library, SciLib. SCIPORT provides 64-bit single-
precision and 64-bit integer interfaces to underlying CXML routines for Cray
users porting programs to Alpha systems running the Compaq Tru64 UNIX
operating system. SCIPORT also provides an equivalent version of almost all
Cray Math Library and CF77 (Cray Fortran 77) Math intrinsic routines.

In order to be completely source code compatible with SciLib, the SCIPORT
library calling sequence supports 64-bit integers passed by reference. However,
internally, SCIPORT used 32 bit integers. Consequently, some run-time uses of
SciLib are not supported by SCIPORT.

SCIPORT provides the following:

e 64-bit versions of all Cray SciLib single-precision BLAS Level 1, Level 2, and
Level 3 routines

= All Cray SciLib LAPACK routines

= All Cray SciLib Special Linear System Solver routines
< All Cray SciLib Signal Processing routines

= All Cray SciLib Sorting and Searching routines

These routines are completely interchangeable with their Cray SciLib
counterparts, up to the runtime limit on integer size - and with the exception of
the ORDERS routine, require no program changes to function correctly. Due to
endian differences of machine architecture, special considerations must be given
when the ORDERS routine is used to sort multi-byte character strings.

3 Calling CXML from Programming Languages

CXML subprograms are callable from any programming language. However,
CXML subprograms follow Fortran conventions and assume a Fortran standard
for the passing of arguments and for the storing of data. Unless specifically
noted, all non-character arguments are passed by reference. Data in arrays is
stored column by column.

If you are programming in a language other than Fortran, consult the specific
language’s user guide and reference manual for information about how that
language stores and passes data. You may be required to set up your data
differently from the way you normally would when using that language.
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4 How CXML Achieves High Performance
CXML relies on the following design techniques to achieve high performance:

= Computational constructs maximize the use of available instructions and
promote pipelined use of functional units.

= Where appropriate, selected routines are available in parallel and serial, to
offer additional performance on multiprocessor (SMP) systems.

= The hierarchical memory system is efficiently managed by enhancing the data
locality of reference:

— Data in registers is often reused to minimize load and store operations.

— The cache is managed efficiently to maximize the locality of reference
and data reuse. For example, the algorithms are structured to operate
on sub-blocks of arrays that are sized to remain in the cache until all
operations involving the data in the sub-block are complete.

— The algorithms minimize Translation Buffer misses and page faults.

= Unity increment (or stride) is used wherever possible.

5 CXML’s Accuracy

To obtain the highest performance from processors, the operations in CXML
subprograms have been reordered to take advantage of processor-level
parallelism.

As a result of this reordering, some subprograms may have an arithmetic
evaluation order different from the conventional evaluation order. This difference
in the order of floating point operations introduces round-off errors that imply
the subprograms can return results that are not bit-for-bit identical to the
results obtained when the computation is in the conventional order. However, for
well-conditioned problems, these round-off errors should be insignificant.

Significant round-off errors in application code that is otherwise correct indicates
that the problem is most likely not correctly conditioned. The errors could be
the result of inappropriate scaling during the mathematical formulation of

the problem or an unstable solution algorithm. Re-examine the mathematical
analysis of the problem and the stability characteristics of the solution algorithm.






Part 1—Programming Considerations

This section discusses what you need to know when preparing application
programs that utilize CXML.

The following major topics are addressed:
= Preparing and storing data - Chapter 1
e Coding your program - Chapter 2

= Compiling and linking - Chapter 3






1

Preparing and Storing Program Data

This chapter discusses some of the things you need to know about handling
program data in relation to using CXML.

1.1 Data and Data Types

The data your program uses can be broadly classified as one of two kinds: scalar
or array data.

A single data item, having one value, is known as scalar data. A scalar can be
passed to a subprogram as input, or returned as output. Several scalars grouped
together into a single unit is referred to as an array. Each piece of data in an
array is an element of that array. All elements of an array are of the same data

type.

CXML Data Types in Relation to Programming Languages

Programming languages such as Fortran and C, among others, have several data
types that are used to pass data to CXML subprograms. Fortran is used for most
of the examples and explanations in this book, and is used here in explaining
data types.

Data can be one of several different data types, such as character, integer,
single-precision real, double-precision real, single-precision complex, and double-
precision complex.

Data types have language-specific equivalents. For example, some of the relevant
Fortran equivalents to the above data types are:

= Integer data - called INTEGER (or INTEGER*4, or sometimes INTEGER*8)

= Real data - called SINGLE PRECISION (or REAL*4), DOUBLE PRECISION
(or REAL*8), COMPLEX (or COMPLEX*8), DOUBLE COMPLEX (or
COMPLEX*16)

e Characters - called CHAR (or CHAR*1)
The following section outlines the Fortran data types that CXML uses.

Fortran Data Types Used in CXML

The following table (Table 1-1) defines the Fortran data types that can be passed
to CXML subprograms.
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Table 1-1 Fortran Data Types

Fortran
Data Type Equivalent Definition
Character CHARACTER*1 A single character such as “n”, “t”, or “C".
Character string CHARACTER*(*) A sequence of one or more characters.
Logical LOGICAL*4 A logical value: TRUE or FALSE.
Integer INTEGER*4 A number such as +8 or —136.
Single-precision real REAL*4 A single-precision floating-point number.
Double-precision real REAL*8 A double-precision floating-point number.
Single-precision complex COMPLEX*8 Two floating-point numbers that together
represent a complex number. Each number
is REAL*4.
Double-precision COMPLEX*16 Two floating-point numbers that together
complex represent a complex number. Each number
is REAL*8.

1.2 Platforms and Number Formats

CXML can be used on a variety of platforms, such as Tru64 UNIX Alpha,
Windows NT Alpha, Windows NT Intel, and OpenVMS Alpha. For each platform,
it is required that data (i.e. numbers) be in the correct format for that platform.

Integers
CXML routines accept integer data in 4 byte (32 bit) format.

Floating Point Numbers

Floating point numbers are in IEEE format for Tru64 UNIX Alpha, Windows

NT Alpha, Windows NT Intel, and OpenVMS Alpha platforms. However, the
OpenVMS Alpha platform also supports a second format called VAX floating point
format.

< |IEEE Format - Uses single precision (S) and double precision (T) floating
point numbers.

Single precision (S) - The range of single precision numbers is
approximately 1.18 « 10738 to 3.4« 1038. The precision is approximately one
part in 223 or seven decimal digits.

Double precision (T) - The range of double precision numbers is
approximately 2.23 « 107398 to 1.8 « 10398, The precision is approximately
one part in 2°2 or 15 decimal digits.

e VAX Format - Uses single precision (F) and double precision (G) floating
point numbers.

Single precision (F) - The range of single precision numbers is
approximately .29 * 10738 to 1.7 * 1038, The precision is approximately
one part in 223 or seven decimal digits.

Double precision (G) - The range of double precision numbers is
approximately .56 107398 to .9x 10398, The precision is approximately one
part in 2°2 or 15 decimal digits.
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1.3 Storing Data

CXML handles data in data structures called arrays, vectors, and matrices. This
document uses the term "array" to refer to the mathematical concept, and the
terms "vector" and "matrix" to refer to the data structures upon which CXML
subprograms perform operations.

The following sections descibe these data structures in relation to CXML.

1.3.1 Arrays

An array can be thought of as many pieces of data grouped together into one unit.
Each piece of data is called an element of the array. Each element is a scalar and
all elements are of the same data type.

In CXML, an array can be either one-dimensional or two-dimensional.

1.3.1.1 One-dimensional arrays

A single column or row of numbers is a one-dimensional array. A one-dimensional
array is usually represented as a column or row of elements within parentheses.
For example:

(3.1, 2.2, 1.3, 2.2, 3.1)

To locate a value in this array, you specify its position within the column or row.

1.3.1.2 Two-dimensional Arrays
A table with two or more rows and columns of figures is a two-dimensional array.

A two-dimensional array is usually represented as rows and columns enclosed in
square brackets:

3.1 43 9.0
1.1 4.0 11.7

To locate a value in this array, you specify its position within the brackets by
specifying its row number and then its column number.

1.3.1.3 Storing Values in an Array
From the user’s perspective, an array is a group of contiguous storage locations
associated with a single symbolic name, such as A, the array name. The
individual storage locations (the array elements) are referred to by a number
or a series of numbers in parentheses after the array name. A(1) is the first
element of a one-dimensional array A. A(3,2) is the element in the third row and
second column of a two-dimensional array A.

An array can contain data structures such as vectors and matrices. The way
vector or matrix elements are separated in array storage is defined by stride and
leading dimension arguments passed to CXML subprograms. See Section 1.3.2
for detailed information on array storage techniques.

An array can be passed to a CXML subprogram as input, it can be returned as

output to your application program, or it can be used by the subprogram as both
input and output. In the latter case, some input data would be overwritten and
therefore lost.
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1.3.1.4 Array Storage Requirements

Not all programming languages use the same storage techniques to store arrays.
Some programming languages, such as Fortran, store arrays in memory in
column-major order, storing the first column, then the second column, and so on.
Other languages, such as C, store arrays in row-major order, storing the first row,
then the second row, and so on.

CXML assumes that array elements are stored in column-major order when
processing data. Use Fortran conventions as described in Section 1.3.2 for arrays
passed to a CXML subprogram.

If you are calling CXML subprograms from languages other than Fortran, you
must set up your data so that Fortran conventions for array storage can be
applied. For information about calling subprograms from other languages, see
Chapter 2.

1.3.2 Fortran Arrays

A Fortran array can have from one to seven dimensions. An array is specified by
the name of the array, the number of dimensions in the array, and the number of
elements in each dimension. CXML can operate on either one- or two-dimensional
arrays.

You must state the size of each array explicitly in your Fortran program. Use a
DIMENSION statement, or preferably, a specific data type statement (such as
REAL*4 or COMPLEX*8) for each array. Fortran arrays are always stored in
memory as a linear sequence of values.

1.3.2.1 One-Dimensional Fortran Array Storage

A one-dimensional Fortran array is stored with its first element in the first
storage location, the second element in the second storage location, and so on
until the last element is in the last storage location.

For example, consider the one-dimensional array A with 4 elements shown in
(1-1):
A =(A(1),A(2),A(3), A(4)) (1-1)

The array A has its elements stored as shown in Table 1-2.

Table 1-2 One-Dimensional Fortran Array Storage

Storage Location Array Element
1 A1)
2 A(2)
3 A(3)
4 A(4)

1.3.2.2 Two-Dimensional Fortran Array Storage

The elements of a two-dimensional array are stored column by column, so that
the left subscripts vary most rapidly and the right subscripts vary least rapidly.
The elements of the first column are stored, then the elements of suceeding
columns are stored, until the elements in the last column are stored. This mode
of storage is called column-major order.
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For example, consider the two-dimensional array A with 12 elements shown in

Table 1-3:
A(1,1) A(1,2) A(1,3)
A A(2,1) A(2,2) A(2,3)
T [ A(3,1) A(3,2) A(3,3)
A(4,1) A(4,2) A(4,3)

The array A has its elements stored as shown in Table 1-3.

Table 1-3 Two-Dimensional Fortran Array Storage

Storage Location Array Element
1 A(1,1) (column 1 starts)
2 A(2,1)
3 A(3,1)
4 A(4,1)
5 A(1,2) (column 2 starts)
6 A(2,2)
7 A(3,2)
8 A(4,2)
9 A(1,3) (column 3 starts)
10 A(2,3)
11 A(3,3)
12 A(4,3)

1.3.2.3 Array Elements

All the elements of an array have the same data type: real or complex, single- or
double-precision. The size of the storage locations for the elements depends on the
data type of the array. Single-precision real (REAL*4, S_floating) data requires 4
bytes of storage; double-precision real (REAL*8, T_floating) data requires 8 bytes
of storage.

Because a complex number is an ordered pair of two real numbers, (a,b) or

a + 1b, where ¢ = +/—1, storing a complex number requires two storage locations,
one location for each part of the complex number. Single-precision complex
(COMPLEX*8, S_floating complex) data requires 8 bytes of storage; double-
precision complex (COMPLEX*16, T_floating complex) data requires 16 bytes of
storage.

1.3.3 Vectors

CXML subprograms perform operations on two particular kinds of data
structures: vectors and matrices. This section defines and describes vectors,
and discusses the various ways of storing vectors in arrays.

A vector is a one-dimensional ordered collection of nhumbers, either real or
complex. A real vector contains real numbers, and a complex vector contains
complex numbers.

A complex number has the form a + b2 where a is a real number called the real
part, b is a real number called the imaginary part, and z = /—1.

A vector can be represented symbolically as a column of numbers, or as a row of
numbers.
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For a column of numbers, use the following vector notation for a vector z with »

elements:
z]

2
2

In

For a row of numbers, use the following vector notation for a vector y with
n elements:
y=1[y1 2 ¥3 --- Ynl

1.3.3.1 Transpose and Conjugate Transpose of a Vector

The transpose of a vector changes a column vector to a row vector or a row vector
to a column vector. Use the following notation for a vector z and its transpose z! :

z1
2
z=|%2 z- =[z1 T TI ... Tp

In

A complex number ¢ is defined as ¢ = a + bz, where a and b are real and z = v/—1.
The complex conjugate ¢ is obtained by replacing z by —::
c=a—Mh

If a vector z has elements that are complex numbers, the conjugate transpose (or
Hermite) of the vector z, denoted by =z, is the vector that changes each element
of z; = a; + bjs to its complex conjugate z; = a; — b;2 and then transposes it:

IH:[EJ_ Ty T3 ... En]

1.3.3.2 Defining a Vector in an Array
A vector is a set of numbers that is given in order (i.e. aq,ay,...,an. A vector is
usually stored in a one- or two-dimensional array. When a CXML subroutine
is called, the array is passed as an argument to the subroutine, with the vector
inside of it. The elements of the vector are stored in order inside the array, but
are not necessarily contiguous. The separation between the vector elements is
called the stride.

In a vector of complex type, each vector element has the form a + b:. Two
storage locations are needed to store a and b. Therefore, storing a complex
vector requires twice the number of storage locations as storing a real vector of
the same precision.

An array can be much larger than the vector that it contains. The storage of a
vector is defined using three arguments in a CXML subprogram argument list:

< Vector length: Number of elements in the vector
= Vector location: Base address of the vector in the array
= Stride: Space, or increment, between consecutive elements in the array

These three arguments together specify which elements of an array are selected
to become the vector.
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1.3.3.2.1 Vector Length  To specify the length n of a vector, you specify an
integer value for a length argument, such as the argument n. The length of a
vector can be less than the length of the array that contains the vector.

Vector length can also be thought of as the number of elements of the associated
array that a subroutine will process. Processing continues until n elements have
been processed.

1.3.3.2.2 Vector Location The location of the first element of a vector inside
an array is specified by the argument in the call to the CXML subprogram. The
program that calls the CXML subroutine usually declares the array. For example,
an array such as X is declared, X(1:20) or X(20).

In this case, if you want to specify vector z as starting at the first element of an
array X, the argument is specified as X(1) or X. If you want to specify vector z as
starting at the fifth element of X, the argument is specified as X(5).

However, in an array X that is declared as X(3:20), with a lower bound and an
upper bound given for the dimension, specifying vector z as starting at the fifth
element of X means that the argument is specified as X(7).

For a two-dimensional array X that is declared as X(1:10,1:20) or X(10,20),
specifying the vector z as starting at the seventh row and eleventh column of X
means that the argument is specified as X(7,11).

Most of the examples shown in this manual assume that the lower bound in each
dimension of an array is 1. Therefore, the lower bound is not specified, and the
value of the upper bound is the number of elements in that dimension. So, a
declaration of X(50) means X has 50 elements.

When vector elements are selected by the CXML subprogram, the starting point
for the selection of vector elements is not always the location of the vector as
specified by the argument passed to the CXML subroutine. Which element is
the starting point for processing depends on whether the spacing parameter is
positive, negative, or zero.

1.3.3.2.3 Stride of a Vector  The spacing parameter, called the increment or
stride, indicates how to move from the starting point through the array to select
the vector elements from the array. The increment is specified by an argument in
the CXML subprogram argument list, such as the argument incx. Because one
vector element does not necessarily immediately follow another, the increment
specifies the size of the step (or stride) between elements.

The sign (+ or —) of the stride indicates the direction in which the vector elements
are selected:

= Forward indexing

The stride is positive. Vector elements are stored forward in the array in the
order z1,zo,...,zn. AS the vector element index increases, the array element
index increases.

e Backward indexing

The stride is negative. Vector elements are stored backward in the array, in
the reverse order z,,z,,_1,...,z1. As the vector element index increases, the
array element index decreases.

The absolute value of the stride is the spacing between each element. An
increment of 1 indicates that the vector elements are contiguous. An increment
of 0 indicates that all the elements of a vector are selected from the same location
in the array.
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1.3.3.2.4 Selecting Vector Elements from an Array CXML uses the stride
to select elements from the array to construct the vector composed of these
elements. The stride associates consecutive elements of the vector with equally
spaced elements of the array.

When the stride is positive:

= The location specified by the argument for the vector is the location of the
first element in the vector, z;.

= The starting point for the selection of elements is at the first vector element.
= The indexing is forward, with the vector elements stored forward in the array.

For example, consider the array X declared as X(10) with X defined as shown in
(1-2):
X = (10.0, 9.1, 8.2, 7.3, 6.4, 5.5, 4.6, 3.7, 2.8, 1.9) (1-2)

If you specify X, which means X(1), for the vector z, the first element processed is
the first element of X, which is 10.0. If you specify X(3) for the vector z, the first
element processed is the third element of X, which is 8.2.

To select the vector from the array, CXML adds the stride to the starting point
and processes the number of elements you specify. For example, if the location of
the vector is X(2), the stride is 2, and the vector length is 4, the vector is

z=(9.1, 7.3, 5.5, 3.7)

Processing begins at array element X(2), which is 9.1, and processing ends at
array element X(8), which is 3.7.

If you are using a two-dimensional array for vector storage, remember that array
elements are selected as they are stored, column by column. See Section 1.3.2.2,
for this storage information.

For example, consider the array X declared as X(4,4) with X defined as shown in
(1-3):
1.1 1.2 1.3 14
2.1 22 23 24
X=151 32 33 34 (1-3)
4.1 42 43 44

If the location of the vector z is X(4,1), the stride is 3, and the vector length is 5,
the vector is
z= (4.1, 3.2, 2.3, 1.4, 4.4)

When the increment is negative, vector elements are selected as follows:

= The location specified by the argument for the vector is the location of the last
element in the vector, z,.

e CXML calculates the starting point for the selection of elements by
considering the location of the vector, the increment, and the number of
elements to process.

= The indexing is backward. Vector elements are stored backwards in the array.

For example, consider the array X declared as X(12) with X defined as shown in
(1-4):
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0) (1-4)
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If the location of the vector is X(3), the increment is —2, and the vector length is
5, the vector is
z = (11.0, 9.0, 7.0, 5.0, 3.0)

In this case, processing begins at array element X(11), which is 11.0, and
processing ends at array element X(3), which is 3.0.

When the increment is 0, the location specified by the argument such as the x
argument, is the only array element used in the selection of the vector. Each
element of the vector has the same value.

For example, consider the array X declared as X(6) with X defined as shown in
(1-5):
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0) (1-5)

If the location of the vector is X(3), the increment is 0, and the number of
elements to process is 5, the vector is

z = (3.0, 3.0, 3.0, 3.0, 3.0)

1.3.3.3 Storing a Vector in an Array

CXML provides various storage schemes to store vectors in arrays. The general
storage scheme which applies to all CXML subprograms is described in this
section. You can find further information about vector storage schemes that
relate to specific types of vectors in the following sections:

e Storing a sparse vector (See Section 5.2.1 and Section 5.2.2).
= Storing vectors for signal processing subprograms (See Section 9.1.2).

Suppose X is a real one-dimensional array of k elements. Let vector z have length
n and let zncz be the increment used to access the elements of vector z whose
components z;, 1 = 1,...,n, are stored in X.

If incz > 0, and if the location of the vector is specified at the first element of the
array, then z; is stored in the array location as shown in (1-6):

X(1+ (1 — 1) *2ncx) (1-6)

If incz = 0, and if the location of the vector is specified at the first element of the
array, all the elements of the vector z are at the same array location, X(1).

If incz < 0, and if the location of the vector is specified at the first element of the
array, then z; is stored in the array location as shown in (1-7):

X(1+ (n —1) * |incz|) 1-7)

Therefore, k, the number of elements in the array, must be as shown in (1-8):

ndim > 1+ (n — 1) * [incz| (1-8)

For the general case where the location of the vector in the array is at the point
X(BP) rather than at the first element of the array, (1-9) or (1-10) can be used to
find the position of each vector element z; in a one-dimensional array.

For zncz > 0,
X(BP + (¢ — 1) *encz) (1-9)
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For sncz < 0,
X(BP + (n — 1) * |incz|) (1-10)

For example, suppose that BP = 3, &k = 20, and » = 5. Then a value of incz = 2
implies that z1, zo, z3, z4, and zg are stored in array elements X(3), X(5), X(7),
X(9), and X(11). However, if incz = —2, then z4, z,, z3, z4, and zg are stored in
array elements X(11), X(9), X(7), X(5), and X(3).

With a suitable choice for the location of a vector, you can operate on vectors
that are embedded in other vectors or matrices. For example, consider an m by n
matrix A, stored in an md by nd array.

The jth column of the matrix is a vector represented by:

base address: A(L1))
increment: 1
length: m

The ith row of the matrix is a vector represented by:

base address: A(i,1)
increment: md
length: n

The main diagonal of the matrix is a vector represented by:

base address: A(1,2)
increment: md + 1
length: min(m,n)

1.3.4 Matrices
CXML subprograms perform operations on two particular kinds of data
structures: vectors and matrices. This section defines and describes matrices,
and discusses the various ways of storing matrices in arrays.

A matrix is a two-dimensional ordered collection of numbers, either real or
complex. For example, the matrix 4 with m rows and n columns, an m by n
matrix, is represented in the following way:

The elements of the matrix are represented as ¢;; where s = 1,...,m and
7 =1,...,n. Asquare matrix with n rows and n columns is called a matrix
of order n.
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1.3.4.1 Transpose and Conjugate Transpose of a Matrix
The transpose of a matrix A, denoted by AT, is formed by taking the sth row of 4
and making it the sth column of AT. The columns of A become the rows of AT, If
A is an m by n matrix, AT is an n by m matrix. Use the following notation for a
matrix A and its transpose:

a11 e A1n
A= . . .
Am1 Omn
a1l Aml
AT — .
Aln Amn

The effect of transposing a matrix is to flip the matrix across its main diagonal.
The element in row 7, column 5 of AT comes from row 5, column 5 of A:

Al = Ay

Taking the conjugate transpose of a matrix A that contains complex numbers is
an operation on the matrix that changes each element of the matrix to its complex
conjugate and then transposes the matrix:

a11 ... Gpl

AH — . . .
a1y .- Omn

The effect of finding the complex conjugate of a matrix is to get the complex

conjugate of each element of the matrix and then flip the matrix across its main

diagonal. The element in row z, column 5 of AH is the complex conjugate of the
element in row 7, column 2 of A:

Al =4

1.3.4.2 Storing a Matrix in an Array

CXML provides various storage schemes to store matrices in arrays. The general
storage scheme which applies to most CXML subprograms is described in the
following sections:

= Defining and storing a matrix in an array (see Section 1.3.4.3)

= Symmetric and Hermitian matrices (see Section 1.3.4.4 and Section 1.3.4.5)
= Triangular matrix (see Section 1.3.4.6 and Section 1.3.4.7)

= General band matrices (see Section 1.3.4.8 and Section 1.3.4.9)

= Real symmetric band matrices and complex hermitian band matrices (see
Section 1.3.4.10 and Section 1.3.4.11)

= Upper and lower triangular band matrices (see Section 1.3.4.12 and
Section 1.3.4.13)

Further information about matrix storage schemes that relate to specific types of
matrices is located in the following sections:

= Sparse matrices for iterative solvers (see Section 10.3 and Section 10.3.1)

e Sparse matrices stored using skyline storage scheme (see Section 11.5)
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1.3.4.3 Defining a Matrix in an Array
A matrix is usually stored in a two-dimensional array. When every element of a
matrix is stored, the storage scheme is called full matrix storage. If the matrix
itself is a special kind of matrix such as a triangular matrix or a band matrix, a
large number of storage locations are wasted using full matrix storage, and other
storage methods can be used.

If a matrix is complex, each matrix element has the form a + b:. For each complex
element, two storage locations in succession are needed to store a and b. Storing

a complex matrix requires twice the number of storage locations as storing a real
matrix of the same precision.

The columns of the matrix are stored one after the other in the array. The array
can be much larger than the matrix that is stored in the array.

The storage of a matrix is defined using four arguments in a CXML subprogram
argument list:

= Matrix location: Base address of the matrix in the array. It also tells where
processing begins.

e The first, or leading, dimension of the array: Space, or increment, between
consecutive elements of a row in an array.

e The number of rows m of the matrix.
e The number of columns »n of the matrix.

These four quantities together specify which elements of an array are selected to
become the matrix.

1.3.4.3.1 Matrix Location The location given by the matrix argument in
a CXML subroutine argument list is the starting point for selecting matrix
elements. For example, consider the array A declared as A(5,7).

1.0 6.0 11.0 16.0 21.0 26.0 31.0
20 7.0 12.0 17.0 22.0 27.0 32.0
A=(30 80 13.0 180 23.0 28.0 33.0 (1-11)
40 9.0 14.0 190 24.0 29.0 34.0
5.0 10.0 15.0 20.0 25.0 30.0 35.0

If you specify A(2,3) as the starting point for the selection of matrix elements,
then processing begins at the element in row 2 and column 3, which is the
element 12.0.

1.3.4.3.2 First Dimension of the Array The first (or leading) dimension of an
array, which is specified by an argument such as Ida in the CXML subprogram
argument list, is the number of rows in the array from which the matrix elements
are being selected. The first dimension of the array is used as an increment to
select matrix elements from successive columns of the array.

The first dimension must be greater than or equal to m, the number of rows of the
matrix. If the first dimension were less than m, then elements from one column
of a matrix would be stored in more than one column of the array. This storage
mechanism would lead to access of incorrect elements.

For the array A shown in (1-11), the first dimension is 5. More generally, for
an array A declared as A(FL:FU,SL:SU), the first dimension of the array is as
follows:

FU—-FL+1
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1.3.4.3.3 Number of Rows and Columns of the Matrix You specify the number
of rows m of the matrix and the number of columns » of the matrix by specifying
an integer value for the row and column arguments, such as m and n.

You can think about the matrix as the number of rows and columns of the array
that you want to process. After processing the first element, the subprogram
continues until m elements in each of » columns have been processed.

1.3.4.3.4 Selecting Matrix Elements from an Array Again, consider the array
A declared as A(5,7), with A(2,3) specified as the location of the matrix, which is
also the starting point for the selection of matrix elements.

1.0 6.0 11.0 16.0 21.0 26.0 31.0
20 7.0 12.0 17.0 22.0 27.0 32.0
A= (30 80 13.0 180 23.0 28.0 33.0 (1-12)
40 9.0 14.0 190 24.0 29.0 34.0
5.0 100 15.0 20.0 25.0 30.0 35.0

Processing begins at element 12.0. If the number of rows m to be processed

is 3, and the number of columns » to be processed is 4, CXML adds the value
of the first dimension of the array, which is 5, to find the starting point in the
next column, which is element 17.0. CXML continues this until the number of
columns processed is 4. The starting points of the columns are elements 12.0,
17.0, 22.0, and 27.0. Then, to find the matrix elements in each column of A,
CXML repeatedly adds the value 1 to the starting point in a column until 3
elements in each column have been processed. The matrix elements selected in
this example specify the matrix A shown in (1-13):

12.0 17.0 22.0 27.0
A= [13.0 18.0 23.0 28.0 (1-13)
140 19.0 24.0 29.0

The matrix does not have elements from all the rows and columns of the array.
No elements are selected from rows 1 or 5 or from columns 1, 2, or 7. However,
the matrix formed is a rectangular block in the array.

1.3.4.4 Symmetric and Hermitian Matrices
A matrix is symmetric if it is equal to its transpose:

A=AT
A symmetric matrix A has the following properties:

e A has the same number of rows as columns; symmetric matrices are square.

a;; = ay; for all < and 5. Each element of A on one side of the diagonal equals
its mirror on the other side of the diagonal.

A complex matrix is Hermitian if it is equal to its conjugate transpose:

A= AH

Preparing and Storing Program Data 1-13



Preparing and Storing Program Data
1.3 Storing Data

A Hermitian matrix has the same number of rows as columns; Hermitian
matrices are square. However, in general, a Hermitian matrix is not symmetric,
as shown by looking at a complex Hermitian matrix B of order 3, its transpose

BT and its conjugate transpose BY: B = BH, but B # BT

BH = 58,9; (12,0) (1,-7)

In a Hermitian matrix, the imaginary part of each of the diagonal elements must

be 0.

The symmetry properties of symmetric matrices and Hermitian matrices enable
storage of only the upper-triangular part of the matrix (the diagonal and above)

or the lower-triangular part of the matrix (the diagonal and below).

1.3.4.5 Storage of Symmetric and Hermitian Matrices

All n by n symmetric or Hermitian matrices are stored in one of two ways:

« In either the upper or lower triangle of a two-dimensional array
< Packed in a one-dimensional array

1.3.4.5.1 Two-Dimensional Upper- or Lower-Triangular Storage

upper-triangular part of the matrix is stored in the upper triangle of the array,
the strictly lower-triangular part of the array is not referenced. Conversely, when
the lower-triangular part of the matrix is stored in the lower triangle of the array,

the strictly upper-triangular part of the array is not referenced.

As an example, consider a 4 by 4 real symmetric matrix A:

@11 @12 @13 @14
A= a1 a2 a3 0G24
a3l a3z2 a33 a34
41 @42 Q@43 Q44

Upper-triangular storage in a two-dimensional array A is shown in (1-14):

@11 @12 @13 QG14

A= * a2 G23 ap4
* * 433 a34
k k k a44

Lower-triangular storage in a two-dimensional array A is shown in (1-15):

a11 * * *

a a * *
A= 21 22

a3l a32 as3 *

A41 @42 Q43 Q44
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1.3.4.5.2 One-Dimensional Packed Storage The total number of elements in
any n by n matrix is n2. The total number of elements in the upper or lower
triangle is as follows:

n(n+1)

1424+ ... +n= 5

Therefore, when an n by n symmetric or complex Hermitian matrix is stored in
a one-dimensional array, n(n + 1)/2 memory locations are used. The amount of
memory saved is as follows:

> n(n+1l) nlr-1)

2 2

Such an arrangement is called packed storage. Either the upper triangle of the
matrix can be packed sequentially, column by column, or the lower triangle of the
matrix can be packed sequentially, column by column.

As an example, consider a 4 by 4 real symmetric matrix A:
a1 a1z a13 14
A= |91 @22 a23 a4

az1 agz2 @33 a3q
aq1 Q@42 @43 Q44

Upper triangle packing for A in a one-dimensional array AP is shown in (1-16):

@11 ] [ @11
a2 a1
a2 a2
@13 azy
a3 a32

AP = = (1-16)
a33 a33
a4 a41
a4 a42
azq @43
Laga L agq

For symmetric matrices, packing the upper triangle by columns is equivalent to
packing the lower triangle by rows. For Hermitian matrices, the only difference
is that the off-diagonal elements are conjugated.

In this packed storage scheme, the z5th element in the upper triangle of the real
symmetric matrix is stored in position k of the array, where:

k=i+(j(7—1)/2), for 1<7<j and 1 <5< n
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For example, element a,3 is in position 1+ (3(3 — 1)/2) = 4 of the array, and
element ayy is in position 2 + (4(4 — 1)/2) = 8 of the array.

The following Fortran program segment transfers the upper triangle of a
symmetric matrix from conventional full matrix storage in a two-dimensional
array A to upper-triangle packed storage in a one-dimensional array AP:

K=0
DO 20 J=1IN
DO 10 I=1,J
K=K+1
AP(K)=A(1,J)
10 CONTINUE
20 CONTINUE

Lower triangle packing for A in a one-dimensional array AP is shown in (1-17):

[@11 ] [ @11 ]
a1 a12
azy a13
a1 a14
az | | az

AP = = (1-17)
az2 a3
a42 a4
azs| | az
@43 azq
Laga)  Lags

For symmetric matrices, packing the lower triangle by columns is equivalent to
packing the upper triangle by rows. For Hermitian matrices, the only difference
is that the off-diagonal elements are conjugated.

In this packed storage scheme, the 25th element in the lower triangle of the real
symmetric matrix is stored in position k of the array where:

k=1—(j(1-1)/2)+n(j—1), for 7<i<n and 1<j5<n

For example, element ag; is in position 3 — 1(1 —1)/2 + 4(1 — 1) = 3 of the array,
and element ay3 is in position 4 — 3(3 — 1)/2 + 4(3 — 1) = 9 of the array.

The following Fortran program segment transfers the lower triangle of a
symmetric matrix from conventional full matrix storage in a two-dimensional
array A to lower-triangle packed storage in a one-dimensional array AP:

K=0
DO 20 J=1N
DO 10 I=J,N
K=K+1
AP(K)=A(1,J)
10 CONTINUE
20 CONTINUE
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1.3.4.6 Triangular Matrices

A triangular matrix is a square matrix whose nonzero elements are all either
in the upper-triangular part of the matrix or in the lower-triangular part of the
matrix.

In an n by n upper-triangular matrix, u;; = 0 for all s > 5.

The matrix U shown in (1-18) is a 4 by 4 upper-triangular matrix:

U1 ¥12  U13  v14

0 upp wup3z wu2

1-1

0 0 ‘uzgz wuzs (1-18)
0 0 0 uy

In an n by n lower-triangular matrix, [;; = 0 for all 7 < 5.

The matrix L shown in (1-19) is a 4 by 4 lower-triangular matrix:

l11 O 0 0
b1 Ix 0 0

L= 1-19
la1 l3p Iz O ( )

A unit upper triangular matrix has 1's on the diagonal for ;; =1 and {;; = 1.

1.3.4.7 Storage of Triangular Matrices

When an n by n upper- or lower-triangular matrix is stored conventionally in a
two-dimensional array, the (n — 1) by (n — 1) strictly lower- or upper-triangular
part of the array is not referenced by the subroutine. In the case of a unit upper-
or lower-triangular matrix, the main diagonal elements of the array are also not
referenced, because these elements are assumed to be unity.

As in the case of symmetric and Hermitian matrices, upper- and lower-triangular
matrices can be packed in a one-dimensional array. The upper or lower triangle
is packed sequentially, column by column. For packed triangular matrices, the
same storage layout is used whether or not the diagonal elements are assumed
to have the value 1. That is, space is left for the diagonal elements even if those
array elements are not referenced.

1.3.4.8 General Band Matrices

A general band matrix, or band matrix, is a matrix whose nonzero elements are
all near the main diagonal such that:

ag; =0 for (¢ —3) >k or (5 —12)>ky

The lower bandwidth is kI, the upper bandwidth is ku, and the total bandwidth
is kt = (kl + ku + 1). The matrix is said to have k! subdiagonals and ku
superdiagonals.
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The m by n matrix B shown in (1-20) is a general band matrix where the lower
bandwidth is k! = (g — 1) and the upper bandwidth is ku = (p — 1):

-bll b12 b13 . blp 0 .o 0 T

bor boo bp3

b31 b3 b33 .
. 0
. bn—p+l,n

B= b ' (1-20)

0

L 0 . . . 0 bm’m_g+1 . . bmn E

In matrix B, the number ku is the number (p — 1) of diagonals above the main
diagonal. The number k! is the number (g — 1) of diagonals below the main
diagonal. Including the main diagonal, the total bandwidth (or the total number
of diagonals) is (ki + ku + 1).

The matrix B shown in (1-21) is a 7 by 8 band matrix with bandwidths &l = 2
and ku = 1 and total bandwidth of 4:

1 2 0 0 0 0 0 07
3 4 5 0 0 0 0 O
6 7 8 9 0 0 0 0

L=|0o 10 11 12 13 0 0 © (1-21)
0 0 14 15 16 17 0 O
0 0 0 18 19 20 21 O
o 0 0 o0 22 23 24 25]

1.3.4.9 Storage of General Band Matrices
When stored in band storage mode, an m by n band matrix with ki subdiagonals
and ku superdiagonals is stored in a two-dimensional (kI + ku+ 1) by n array. The
matrix is stored columnwise so that the nonzero elements of the sth column of
the matrix are stored in the jth column of the Fortran array. Consequently, the
zero elements of the matrix are not stored in the array.

The main diagonal of the matrix is stored in row ku + 1 of the array. The first
superdiagonal is stored in row ku starting at column 2. The first subdiagonal is
stored in row ku + 2 starting at column 1, and so on. Elements of the array that
do not correspond to elements in the band matrix, specifically those in the top
left ku by ku triangle and those in the bottom right (n — m + ki) by (n — m + kl)
triangle, are not referenced by the subroutine.

For example, consider the 5 by 6 band matrix A shown in (1-22) with 1
subdiagonal and 2 superdiagonals. Here, kIl =1, ku =2, m=5,and n = T:

a1 @12 a13 0 0 0

apyp a2 azz axq O 0O

A=| 0 a3z agz azgs azgs O
0 0 a43 agqa ag5 age
0 0 0 oasq as5 ase

(1-22)
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The band matrix A is stored in array ABD as shown in (1-23). Array ABD is 4 by
6. The main diagonal of A is stored in row 3 of ABD. The first superdiagonal is
stored in row 3 starting at column 2. The top left 2 by 2 triangle and the bottom
right 2 by 2 triangle is not referenced.

* * @13 @24 a35 Q46
* a a a a a
ABD = 12 23 34 45 56 (1_23)
@11 a2 @33 44 a55  *
a1 G32 @43 asq4 ¥ *

In this storage scheme, the z5th element of the band matrix is stored in position
(k, 7) of the array, where k= (s — j + ku + 1).

The following Fortran program segment transfers a band matrix from
conventional Fortran full matrix storage in A to band storage in array ABD:

DO 20 J=IN
K=KU+1-J
DO 10 I=MAX(1,J-KU),MIN(M,J+KL)
ABD(K+,9)=A(1,J)
10 CONTINUE
20 CONTINUE

1.3.4.10 Real Symmetric Band Matrices and Complex Hermitian Band Matrices
A real symmetric band matrix is a real band matrix that is equal to its transpose.

B=pBT

A real symmetric band matrix is square. It has all its nonzero elements near the
main diagonal.

In an n by »n real symmetric band matrix B,

b;j = bj; for allz and j

and
bijj =0 for (t—g)>k or (j—1)>k

where k is the lower or upper bandwidth. For example, matrix B, shown in
(1-24), is a real symmetric band matrix:

(2.0 3.0 0.0 0.0 0.0 0.0 0.0 T
3.0 30 —40 0.0 0.0 0.0 0.0
00 —4.0 4.0 5.0 0.0 0.0 0.0
B=100 0.0 5.0 50 —-6.0 0.0 0.0 (1-24)
0.0 0.0 00 —-6.0 6.0 7.0 0.0
0.0 0.0 0.0 0.0 7.0 7.0 —8.0
L0.0 0.0 0.0 0.0 0.0 -80 8.0

A complex Hermitian band matrix is a square complex band matrix that is equal
to its conjugate transpose. It has all its nonzero elements near the main diagonal,
but, in general, it is not symmetric. The imaginary part of each of the diagonal
elements is 0.

For example, matrix H shown in (1-25) is a complex Hermitian band matrix:
20 (31 (0,0 (0,0  (0,0)
(3: _1) (3:0) (_4: 1) (0:0) (0:0)
H= (0’ O) (_4’ _1) (4’ 0) (5’ _1) (0’ 0) (1_25)
(O’O) (O’O) (5’ 1) (5’0) (_6’ 1)
(0’ O) (0’ O) (0’ 0) (_6’ _1) (6’ 0)
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1.3.4.11 Storage of Real Symmetric Band Matrices or Complex Hermitian Band Matrices

When stored in band storage mode, an n by » real symmetric or complex
Hermitian band matrix with k£ subdiagonals and & superdiagonals is stored in
a two-dimensional (k + 1) by » array. Either the upper-triangular band part or
the lower-triangular band part of the matrix can be stored.

When the upper-triangle storage mode is used, the nonzero elements of the upper-
triangular part of the sth column of the matrix are stored in the jth column of the
array. The main diagonal of the matrix is stored in row (k + 1) of the array. The
first superdiagonal is stored in row k, starting at column 2, and so on. Elements
of the array that do not correspond to elements in the band matrix, specifically
those in the top left k by k triangle, are not referenced.

As an example, a 6 by 6 real symmetric band matrix A is shown in (1-26). The
matrix A has two superdiagonals and two subdiagonals.

a1 a2 @13 0 O

a1 app azz az4 O

A— |1 @32 a3 azs ags (1-26)
0 a42 a43 aaq as45 ase
0 0 as3 as4 ass as
0 0 0 9aps a5 ap6

o O O

The matrix A would be stored in upper-triangle storage mode in array ABD as
shown in (1-27):

¥ % @13 ap4 a35 G4p
ABD= [ * ajp ap3 a3z4 ags5 asg (1-27)

@11 @22 @33 Q@44 G455 Ggp

In this storage scheme, the nonzero element in the z5th position of the upper
triangular part of the symmetric band matrix is stored in position (m, j) of the
array, where:

m=0GE—7+k+1), max(l, 7—k) <i<j and 1 <757<n

The following Fortran program segment transfers the upper-triangular part of
a symmetric band matrix from conventional Fortran full matrix storage in A to
band storage in array ABD:

DO 20 J=1N
M=K+1-J
DO 10 I=MAX(1,J-K),J
ABD(M+1,J)=A(1,J)
10 CONTINUE
20 CONTINUE

When the lower-triangle storage mode is used, the nonzero elements of the lower-
triangular part of the sth column of the matrix are stored in the sth column of
the array. The main diagonal of the matrix is stored in row 1 of the array. The
first subdiagonal is stored in row 2 starting at column 1, and so on. Elements

of the array that do not correspond to elements in the band matrix, specifically
those in the bottom right & by k triangle, are not referenced.
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As an example, consider the 7 by 7 real symmetric band matrix A, with two
superdiagonals and two subdiagonals shown in (1-28):

(@11 a12 a3 0 0 O
a1 ap2 a3 aza O O
az1 a3z2 a3z a34 ags O
A= 0 as2 ag3 agq as5 ase
0 0 as3 asq4 as5 ase as7
0 0 O aps a5 age @67
0 0 0 0 a7p5 a7 a77d

o O OO

(1-28)

The matrix A would be stored in array ABD in lower-triangle storage mode as
shown in (1-29):

a1 @2 G33 @44 G55 4 G77
ABD = |ap1 a3 a43 asq aes aze  * (1-29)

a31 @42 as53 a4 ars * *

In this storage scheme, the nonzero element in the z5th position of the lower-
triangular part of the symmetric band matrix is stored in position (m, 7) of the
array, where:

m=(t—7+1), 7<¢<min(n, j+%k) and 1 <7< n

The following Fortran program segment transfers the lower-triangular part of a
symmetric band matrix A from conventional Fortran full matrix storage to band
storage in array ABD:

DO 20 J=IN
M=1-J
DO 10 1= MIN(N,J+K)
ABD(M+1,J)=A(1,J)
10 CONTINUE
20 CONTINUE

For a complex Hermitian band matrix, the imaginary parts of the main diagonal
are by definition, 0. Therefore, the imaginary parts of the corresponding array
elements need not be set, and are assumed to be 0.

1.3.4.12 Upper- and Lower-Triangular Band Matrices

A triangular band matrix is a square matrix whose nonzero elements are all near
the main diagonal and are in either the upper-triangular part of the matrix or
the lower-triangular part of the matrix.

In an » by n upper-triangular band matrix U,

uj; =0 for ¢> 4

and
u;; =0 for (7 —1) > ku
where ku is the upper bandwidth.
The matrix U shown in (1-30) is a 4 by 4 upper-triangular band matrix:
1.0 2.0 0.0 0.0
00 3.0 4.0 0.0

U= 100 00 50 6.0 (1-30)

0.0 0.0 0.0 7.0
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In an n by n lower-triangular band matrix L,

Lij=0 for 1<y

and
lij =0 for (¢—j) >kl

where &l is the lower bandwidth.

The matrix L shown in (1-31) is a 4 by 4 lower-triangular band matrix:

1.0 0.0 0.0 0.0
2.0 3.0 00 0.0
L=100 40 50 00 (1-31)

0.0 0.0 6.0 7.0

1.3.4.13 Storage of Upper- and Lower-Triangular Band Matrices
Similar to the case of real symmetric band matrices and complex Hermitian band
matrices, upper- and lower-triangular band matrices can also be stored in band
storage mode.

Upper-triangle storage mode is used for an upper-triangular band matrix. An
n by n upper-triangular band matrix with &k superdiagonals is stored in a two-
dimensional (k+ 1) by » array.

When upper-triangle storage mode is used, the nonzero elements of the upper-
triangular part of the jth column of the matrix are stored in the jth column of the
array. The main diagonal of the matrix is stored in row (k + 1) of the array. The
first superdiagonal is stored in row k starting at column 2; and so on. Elements
of the array that do not correspond to elements in the band matrix, specifically
those in the top left k by k triangle, are not referenced.

As an example, a 6 by 6 upper-triangular band matrix A is shown in (1-32). The
matrix A has two superdiagonals.

a1 a2 a13 0 O
a2 a3 azq O
0 a3z azs oa3s (1-32)
0 ag4 a45 age
0 0 as5 a5
0 0 0 a6

o o O

0
0
0
0
0

o O O

The matrix A would be stored in upper-triangle storage mode in array ABD as
shown in (1-33):

* ¥ a13 a24 a35 346
ABD = * Q12 G23 G34 Q45 O45p (1-33)
a11 @22 433 (44 455 466
In this storage scheme, the nonzero element in the z5th position of the upper
triangular part of the upper-triangular band matrix is stored in position (m, j) of

the array, where:

m=0GE—-j+k+1), max(l, j—k) <¢<j7 and 1 <j<n
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The following Fortran program segment transfers the upper-triangular part of an
upper-triangular band matrix from conventional Fortran full matrix storage in A
to band storage in array ABD:

DO 20 J=IN
M=K+1-J
DO 10 I=MAX(1,-K),J
ABD(M+1,J)=A(,J)
10 CONTINUE
20 CONTINUE

Lower-triangle storage mode is used for a lower-triangular band matrix. An
n by n lower-triangular band matrix with &£ subdiagonals is stored in a two-
dimensional (k£ + 1) by n array.

When lower-triangle storage mode is used, the nonzero elements of the lower-
triangular part of the sth column of the matrix are stored in the sth column of
the array. The main diagonal of the matrix is stored in row 1 of the array; the
first subdiagonal in row 2 starting at column 1; and so on. Elements of the array
that do not correspond to elements in the band matrix, specifically those in the
bottom right k£ by k triangle, are not referenced.

As an example, consider the 7 by 7 lower-triangular band matrix A, with two
subdiagonals, shown in (1-34):

[ a11 0 0
a1 a2 O
a3zl @32 433

A= 0 ag2 a43 ag

0 0 was3 asq ass

0 0 0 ag4 ags age 0

0

o O O
o O OO

(1-34)

o OO oo
o O O OO

0 0 0 arsg a7e a77 d

The matrix A would be stored in array ABD in lower-triangle storage mode as
shown in (1-35):

@11 G2 433 G44 G55 Gpe G477
ABD = | a1 a32 a4z asqa ags aze  * (1-35)

a31 a42 453 G4 A75 * *

In this storage scheme, the nonzero element in the z5th position of the lower-
triangular part of the lower-triangular band matrix is stored in position {m, 5) of
the array, where:

m=(t—7+1), 7<¢<min(n, j+k) and 1 <7< n

The following Fortran program segment transfers the lower-triangular part of a
lower-triangular band matrix A from conventional Fortran full matrix storage to
band storage in array ABD:

DO 20 J=IN
M=1-J
DO 10 1= MIN(N,J+K)
ABD(M+1,J)=A(1,J)
10 CONTINUE
20 CONTINUE
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Coding an Application Program

This chapter provides information that you need to know as you code your
application program.

2.1 Selecting the Appropriate Data Type

CXML supports integer data, single-precision real, double-precision real, single-
precision complex, and double-precision complex data. For each datatype, CXML
provides a corresponding version of each of its subprograms. The type of data
your program uses determines which version of a subprogram that you should
use. When coding your program, you must use the CXML subprogram that
operates on the type of data your program is using.

CXML uses a naming convention for subprograms that identifies the type of data
that it can use. This is discussed in detail in the Preface, in Using the Reference
Sections.

2.2 Data Structure and Storage Methods

CXML subprograms operate on vectors and matrices. For the subprograms that
operate on matrices, different kinds of matrices use different storage schemes.
When you use a CXML subprogram, consider the type of matrix used in your
application and the data structure used to store it.

General information about data structure and storage methods for CXML is
provided in Chapter 1. Vectors are discussed in Section 1.3.3. Matrices are
discussed in Section 1.3.4. Information about data structure and storage methods
that pertains to a specific group of subprograms is included with the discussion of
that group.

The storage methods described in Chapter 1 apply to Fortran and other languages
that store arrays in column-major order. See Section 2.6 for techniques to use for
languages that store arrays in row-major order.

2.3 Improving Performance
You have several options for improving the performance of your application:

= Use higher level BLAS subprograms where applicable. For example, use a
Level 3 BLAS subprogram rather than a sequence of calls to Level 2 BLAS
subprograms.

e Use subprograms that perform more than one computation rather than
subprograms that perform a single computation.

e Use an increment or stride of 1. Performance is better if the elements of a
vector are stored close to each other.
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< In a few cases, the difference between two subprograms is that one performs
scaling. Since performance is better when no scaling is done, use the
subprogram without scaling whenever possible.

2.4 Calling Sequences

Each of the CXML subprograms has a specific calling sequence. The calling
sequences for each subprogram are described in this manual.

These descriptions specify the correct syntax for the argument list; whether

an argument is an input argument, an output argument, or both; required
numerical values for arguments; and specific actions that might be taken by the
subprogram.

Each subprogram is described using a structured format:

Name

Overview

Format

Function Value (if applicable)
Arguments

Description

Example

The Arguments section provides detailed information about each subprogram
argument, such as the argument name, the Fortran data type, the information
the argument passes to or returns from the subprogram, and the acceptable
values of the argument. All arguments in the calling sequences are required
arguments.

The terms On entry and On exit are used in each argument description to show
whether the argument is an input argument, an output argument, or both:

= An input argument has a value on entry and is unchanged on exit.
An input argument passes information from the application program to the
subprogram.

= An output argument has no value on entry and is overwritten on exit.
An output argument passes information from the subprogram back to the
application program.

< An argument that is used for both input and output has a value on entry
that is overwritten on exit by the output value. An argument used for both
input and output passes information both to the subprogram and back to the
application program. If you want to keep the input data, save it before calling
the subprogram.

To avoid errors and the possible termination of a program’s execution, be sure
input data is of the correct type. Do not mix single-precision data and double-
precision data. Also, character values must be one of the allowed characters and
numeric values have to be within the specified range.
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2.4.1 Passing of Arguments

In Fortran, a character argument can be longer than its corresponding dummy
argument. For example, some BLAS subroutines have the arguments with the
data type CHARACTER*1. One such argument is the trans argument, which
is used to select the form of the input matrix. The value ' T' can be passed as
" TRANSPOSE' .

Some signal processing subroutines have arguments with the data type
CHARACTER*(*). For example, the value ' F' for the argument direction
can be passed as ' FORWARD' .

2.4.2 Implicit and Explicit Arguments

Arguments can be coded either implicitly or explicitly. For example, consider the
Level 3 subprogram SSYMM. The following programs are equivalent.

REAL*4 A(20,20), B(30,40), C(30,50), ALPHA, BETA

SIDE = 'L
UPLO ='U
M =10

N =20
ALPHA = 2.0
BETA = 3.0
LDA = 20
LDB = 30
LDC = 30

CALL SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

REAL*4 A(20,20), B(30,40), C(30,50)
CALL SSYMM(L','U’,10,20,2.0,A,20,B,30,3.0,C,30)
2.4.3 Expanding Argument Lists

CXML provides the ability to expand the argument lists of each CXML
subprogram from within some text editors. This capability is convenient when
creating or modifying code that frequently calls CXML subprograms.

EMACS Editor

If your system has an EMACS editor available, you can access this capability to
expand the parameter list of a subroutine. Do this as follows:

1. At the EMACS command line, load one of the following files:

OpenVMS Alpha - SYS$LIBRARY:DXML$EMACS.ML
Tru64 UNIX - /usr/share/dxml.ml
Windows NT - directory-spec/dxml.ml

2. Enter ABBREV mode.
3. Enter the subroutine name and then press the SPACE bar.

Note that on Windows NT systems, the directory-spec will vary according to the
directory specified at installation time.
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TPU Editors: EVE and LSE

If you are using an OpenVMS system, you can also use a TPU editor to expand
the parameter list of a subroutine. Do this as follows:

1. Invoke the TPU editor at the DCL command line with either of the following
commands, depending upon whether you are using EVE or LSE:

$ EDIT/TPU/ICOMMAND=SYS$LIBRARY:DXMLSEVE.TPU filename
$ LSEDIT/COMMAND=SYS$LIBRARY:DXML$EVE.TPU filename
You will still be able to expand the components of the language you are using.
2. In the editor, type the subroutine name and then press Ctrl/E.
If you prefer, you can edit the TPU file to change the key that expands the
argument list.
2.5 Calling Subroutines and Functions in Fortran

A few CXML subprograms return a scalar. These subprograms are functions, and
they are called as functions by coding a function reference. First, declare the data
type of the returned value and the subprogram name, and then code the function
reference, as shown in the following generic example:

INTEGER*4 function_value, subprogram_name
function_value = subprogram_name (argument_1,argument_2, ... ,argument_n)

For example, the Level 1 BLAS subprogram ISAMAX returns the index of the
element of vector z having the largest absolute value:

INTEGER*4 IAMAX, ISAMAX

IAMAX=ISAMAX(N,X,INCX)

For the signal processing routines, the declaration of function type is done by
including either "dxmldef.h" or "DXMLDEF.FOR" in your code. All arguments of
function subprograms are input arguments, which are unchanged on exit. The
value is returned to the function value.

Most subprograms return a vector or a matrix. These subprograms are
subroutines and they are called as subroutines with a CALL statement.

CALL subroutine_name (argument_1,argument 2, ... ,argument n)
For example, the call statement for the subroutine SSET looks like the following:
CALL SSET(N,AX,INCX)

Each subroutine has an output argument that is overwritten on exit and contains
the output information.
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2.5.1 Fortran Program Example
The following is an example of a Fortran program that makes a call to SAXPY:
integer n,incx,incy
real x(5),y(5),alpha

DATA X /2.0,4.0,6.0,8.0,10.0/
DATA y /5*1.0/

incx = 1

incy = 1

alpha = 2.0

n=>5

call saxpy (n,alpha,x,incx,y,incy)
write (6,%) y

stop

end

2.6 Using CXML from Non-Fortran Programming Languages

If your application involves only one-dimensional arrays (for example, one-
dimensional FFTs), call CXML routines as described in the calling standard.
However, two-dimensional (and higher) arrays are not covered by most calling
standards. High-level languages have different ways of storing the elements of a
two-dimensional matrix in a two-dimensional array.

CXML requires that arrays be stored in column-major order the way Fortran
does. If you are writing applications in languages such as ADA or C, and you
want to call CXML routines, you must consider how to ensure that array data is
passed and processed correctly to obtain the highest performance.

The most direct and least error-prone method of calling CXML routines from
another language, is to write a matrix transpose routine in that language, and
to use transposed (column-stored) matrices in calls to CXML routines. The
application program can subsequently transpose the results of calls to CXML
when appropriate, to return to the row-major format of the calling language.

In some cases, using matrix identities is a shortcut, at a small cost in program
complexity, as shown in the following two cases of the same operation (to compute
the row-stored product of two matrices):

A and B are n by n matrices, stored in row-major order. To compute their
product, C = AB:

1. Transpose A. Store it in the array AT.

2. Transpose B. Store it in the array BT.

3. Invoke the matrix-multiply routine to compute D = AB, column-stored.
CALL SGEMM(N'/N',N,N,N,1.0,AT,N,BT,N,0.0,D,N)

4. Transpose D to get C, the row-stored version of the result.

The shortcut uses the matrix identity, as in (2-1):

(BTAT)T = 4B (2-1)
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From a Fortran point of view, row-major storage of the matrices A and B is
simply the matrices AT and BT. Therefore, the same row-major product can be
computed using the following procedure:

1. Invoke the matrix-multiply routine.
SGEMM('N';N',N,N,N,1.0,B,N,A,N,0.0,C,N)

This routine computes BT AT, column-stored, that is ¢ = (BT AT)T = AB, the
row-stored result.

A third way to achieve the same product is somewhat slower because of the way
memory is accessed:

1. Invoke the matrix-multiply routine to compute (AT)T(BT)T, column-stored,
that is D = CT.
SGEMM('T';T",N,N,N,1.0,A,N,B,N,0.0,D,N)

2. Transpose D to get C, the row-stored version of the result.

2.6.1 Calling CXML from C Programs

In addition to the differences in storage of multi-dimensional arrays between
Fortran and C, the following changes may also be required for a C program that
calls CXML subroutines.

e In Fortran, a two-dimensional array declared as:
DOUBLE PRECISION A(LDAN)

is a contiguous piece of LDA x N double precision words in memory stored in a
column major order. However, a similar declaration in C:

double A[LDA][N]);

is LDA pointers to rows of length N. As these pointers can be anywhere, there
is no guarantee that the rows of the array are contiguous. To interface a

C program with a CXML routine that expects the memory locations to be
contiguous, the array A should be declared as

double A[LDA*N];
or allocated as contiguous memory locations using malloc .

= On Tru64 UNIX, you must append an underscore at the end of each
subroutine or function subprogram name.

2.6.2 C Program Example

The following example works on the Compaqg Tru64 UNIX platform, but can be
modified for other platforms. It illustrates the calculation of a matrix-vector
product using the CXML routine DGEMV. The matrix is stored using the row-
major storage of C. The column-major storage of the CXML Fortran routine is
implicitly taken into account by calculating AT « z, instead of A * z.

#include <stdio.h>
#include <stdlib.h>

#define dgemv dgemv_
#define max_size 10

extern void dgemv(char *, int * int*, double *,
double [], int *, double[], int * double *,
doublef], int *);
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int main()

double *a, *b, *x;
double alpha, beta;

int length, Ida, incx, i, j;
length = 3;

Ida = max_size;

incx = 1;

alpha = 1.0;

beta = 0.0;

a = (double *)malloc(max_size*max_size*sizeof(double));
b = (double *)malloc(max_size*sizeof(double));
X = (double *)malloc(max_size*sizeof(double));
f

for (j=0; j<length; j++)
a[max_size*i+j] = (double)(2*i+);
X = 10;

printf("  matrix:\n");
for (i=0; i<length; i++)

for (j=0; j<length; j++)
printf(" ~%6.2f ", a[i*max_size+]);
printf("\n");

printf("\n  vector:\n");
for (j=0; j<length; j++)
printf("  %6.2f \n", X[j]);
dgemv('T", &length, &length, &alpha, a, &lda, x, &incx,
&beta, b, &incx);
printf("\n  matrix times vector: \n");
for (i = 0; i < length; i++)
printf (" %.2f\n",b[i]);
free (a);
free (b);
free (x);

} ¥ end of main() */

Additional examples illustrating the use of CXML routines from a C program can
be found online in the examples directory that is created when CXML is installed.
The location of this directory depends upon your operating system. For instance,
on a True4 UNIX system, the online examples are located in /usr/examples

fdxml .

2.7 Error Handling

Some errors are common to all portions of the CXML library. Other errors are
unique to a particular library within CXML. This section describes general
information about how errors are handled. See the appropriate chapters for more
details about error handling for specific subprograms.
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2.7.1 Internal Exceptions

Under certain extreme conditions, such as passing numbers on the verge of
underflow or overflow, you can receive an internal exception error message. If
this happens, you should check arguments for valid range.

When underflow occurs, the number is replaced by a zero, and execution
continues. No error message is provided.

When overflow occurs, execution terminates and you receive a message directed
to the devices or files that are defined as: stdout and stderr on Tru64 UNIX or
Windows NT, and SYSSOUTPUT and SYS$SERROR on OpenVMS. Check the
subprogram arguments for valid range.

Internal exceptions also occur if you have a shorter array than that specified by a
data length argument. In this case, you receive an error message, since you are
trying to address a location outside the bounds of the array. Check the length of
the arrays used, or the value denoting the length of the arrays.
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This chapter discusses compiling and linking an application program with CXML.
This process is somewhat different for each platform, so each is discussed in a
separate section. Please refer to the section appropriate for your platform.

3.1 Tru64 UNIX Platform

Compiling and linking your application program with CXML on the Tru64 UNIX
platform is usually performed by a single command:

e the f77 command for Fortran 77
e the f90 command for Fortran 90
e the cc command for C

You can take advantage of the DEC C compilation environment by using the
-migrate  compilation flag, as shown in the examples in this chapter.

3.1.1 CXML Libraries
The CXML kit for Tru64 UNIX contains three libraries:

= Serial shared - called libdxml.so - normally installed at /usr/shlib/
= Parallel shared - called libdxmlp.so - normally installed at /usr/shlib/
= Serial archive - called libdxml.a - normally installed at /usr/lib/

The serial and the parallel shared libraries each contain a complete set of CXML
routines; routine names are identical in these libraries. In the parallel library
some of the core routines are parallelized to take advantage of additional CPUs
in shared memory configurations (SMP). See Section A.1.2 for a complete list of
CXML routines that have been parallelized.

The following sections show how to compile and link an application program to
each of the CXML libraries. For more details about compiling and linking your
application, see the reference pages of f77 , f90 , and cc.

3.1.2 Compiling and Linking to the Serial Library

The following examples show how to compile and link to the serial shared library.
Fortran examples:

f77 program.f -ldxml
f90 program.fo0 -ldxml

C example:

cc -migrate program.c -ldxml
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3.1.3 Compiling and Linking to the Parallel Library

The following examples show how to compile and link to the parallel shared
library.

Fortran examples:

f77 program.f -ldxmlp
f90 program.fo0 -ldxmlip

C example:

cc -migrate program.c -ldxmlp

3.1.4 Compiling and Linking to the Archive Library
The following examples show how to compile and link to the archive library.
Fortran examples:
f77 program.f /usr/lib/libdxml.a
f90 program.fo0 /usr/lib/libdxml.a
C example:

cc -migrate program.c fust/lib/libdxml.a -lfor -Im

3.2 Windows NT Platform

Compiling and linking your program on the Windows NT platform can be
performed either by using the Developer Studio, or by using the command
console. This section discusses both methods.

3.2.1 CXML Libraries

The CXML kit for Windows NT contains a shared library and an object serial
library:

= the serial shared library name ends with dil.dll

= the serial object library name ends with .lib

3.2.2 Using the Libraries from the Command Console

This section discusses discuss how to compile and link your program using the
command console. Please note that it is assumed that the environment variables
required by the CXML have already been set. Refer to Section B.1 "Setting
Environment Variables" for information about doing this.

To compile/link and run your Fortran 77 application from the command console
(MS/DOS prompt), use the following commands:

DF MAIN.FOR %LINK_F90%
MAIN

To compile and link your Fortran 90 application from the command console (MS
/DOS prompt), use the following commands:

DF MAIN.F90 %LINK_F90%
MAIN

Fortran 77 programs have the .FOR filename extension and Fortran 90 programs
have the .F90 filename extension.
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3.2.3 Using the Libraries from Developer Studio

This section discusses discuss how to compile and link your program using the
Developer Studio.

During the installation, the paths to the location of the object libraries and
include files are automatically defined. However, before attempting to build
an application that accesses the libraries, the names of the libraries must be
specified for the linker. You can do this by performing the following steps:

1. Start the Developer Studio.

2. If you have not already defined a Project Workspace for your application, you
must do so before proceeding. If you have defined a Project Workspace, open
it by selecting "Open Workspace..." from the File pull-down menu.

3. Bring up the Project Settings dialog box by selecting "Settings..." from the
Project pull-down menu.

4. Click on the "Link" tab.
5. From the Category pull-down menu, select "Input".

Add the names of the CXML libraries. under "Object/Library Modules"
(separated by spaces).

7. Click on "OK" to exit the dialog and save the settings.

The Microsoft Developer Studio is now set up to use the CXML libraries. For
further information about compiling and linking with Developer Studio, refer
to the "Building Programs and Libraries" section of the Compaq Visual Fortran
online documentation.

3.3 OpenVMS Alpha Platform

This section discusses compiling and linking on the OpenVMS Alpha platform.

3.3.1 Compiling

The OpenVMS Alpha platform provides 2 formats: IEEE Standard floating point
format and VAX floating point format. The IEEE format has single precision

(S) and double precision (T) floating point numbers. The VAX format has single
precision (F) and double precision (G) floating point numbers.

When you compile your program, you must specify that floating point numbers
are in either IEEE float or VAX float.

VAX float is the default. If you want to compile for IEEE, you must specify
/float=IEEE _floating . Be sure to compile your program for the format that is
appropriate for your application.

After you compile your application program, you need to link it to the
corresponding CXML image library. The next section discusses this topic.

3.3.2 CXML Image Libraries

As mentioned in the previous section, CXML supports two different families of
floating point data formats for the OpenVMS Alpha platform, IEEE and VAX.

An image library is provided for each format - one compiled for IEEE, and one for
VAX. These two libraries come as "shared", rather than "object", libraries.
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These libraries are:

SYS$SHARE:DXML$IMAGELIB_GS for G_floating format
SYS$SHARE:DXMLS$IMAGELIB_TS for IEEE format

Each of these libraries contain the shareable images for all of the CXML
components. Only one of these libraries is the default library. You can specify the
default library at installation time.

Before linking, you should find out which library has been identified as the
default - you will need to know this when you link.

Use the following command to display the name of the default library:
$ SHOW LOGICAL LNK$LIBRARY*

3.3.3 Linking to a CXML Library

As discussed in the previous section, a CXML shared library is provided for both
IEEE and VAX floating point formats. Entrynames are independent of format, so
when you link your program it can be linked with either the IEEE or VAX version
of the CXML library. However, you must link your compiled program with the
CXML image library that matches the format you used when you compiled the
program. If the default library is not the correct one, you need to link to the
correct one by explicitly naming the image library, or by invoking a command
procedure that changes the default to the correct library. This is discussed in the
following sections.

Using the default library

If you are linking your program with the default library, you do not have to
specify an image library. For example, if the image library for G_floating data
is the default and you want to link to it, you would issue the LINK command as
follows:

$ LINK MY_FILE

Using another library

If you want to use a library other than the default, you can specify it in the LINK
command. In OpenVMS Alpha, for example, if the default is the G_floating data
type, and you want to use the IEEE floating point library, you would issue the
following command:

$ LINK MY_FILE, SYS$SHARE:DXML$IMAGELIB_TS/LIB

Changing the default library

You can identify another library as the default for the current process by invoking
the DXML$SET_LIB command procedure, which is provided by CXML.

The following example changes the current default library to the one for IEEE
data format:

$ @SYS$SHARE:DXML$SET_LIB TS

If you usually link to a library other than the system’s default, it is recommended
that you invoke the command procedure within your login command procedure.
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3.3.4 Linking Errors

If you compile your program for one type of data (IEEE, for example), and you do
not link the compiled program to the corresponding image library (IEEE, in this
case), you will not get an error message - however, your results will be incorrect.
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Part 2—Using CXML Subprograms

This section discusses what you need to know to use CXML subroutines and
functions.

The following groups of subprograms are discussed:

= Chapter 4 describes how to use the Level 1 BLAS subprograms and
extensions.

= Chapter 5 describes how to use the Sparse Level 1 BLAS subprograms.
= Chapter 6 describes how to use the Level 2 BLAS subprograms.

= Chapter 7 describes how to use the Level 3 BLAS subprograms.

= Chapter 8 provides an overview of the LAPACK library of subroutines.
= Chapter 9 describes how to use the signal processing subprograms.

= Chapter 10 describes how to use the lterative Solvers for Sparse Linear
Systems.

e Chapter 11 describes how to use Direct Solvers for Sparse Linear Systems.
= Chapter 12 describes how to use the VLIB subprograms.
= Chapter 13 describes how to use the random number generator subprograms.

e Chapter 14 describes how to use the sort subprograms.
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Using the Level 1 BLAS Subprograms and

Extensions

The Level 1 BLAS (Basic Linear Algebra Subprograms) Subprograms and
Extensions to the Level 1 BLAS subprograms perform vector-vector operations
commonly occurring in many computational problems in linear algebra. This
chapter provides information about the following topics:

= Operations performed by the Level 1 BLAS subprograms and their Extensions
(Section 4.1)

= Vector storage (Section 4.2)

= Subprogram naming conventions (Section 4.3)

= Subprogram summaries (Section 4.4 )

e Calling Level 1 BLAS subprograms (Section 4.5)

= Arguments and definitions used in the subprograms (Sections 4.6 and 4.8)
= Error handling (Section 4.7)

e Alook at a Level 1 Extensions subprogram and its use (Section 4.9)

4.1 Level 1 BLAS Operations

4.2 Vector

BLAS Level 1 operations work with vectors. The Level 1 BLAS subprograms and
the Extensions usually operate on only one vector, but a few of the subprograms
involve operations on two vectors. The subprograms can be classified into two
types:

= \Vector output is returned from a vector input.
The results of these operations are independent of the order in which the
elements of the vector are processed.

e Scalar output is returned from a vector input.
The results of these reduction operations usually depend on the order in
which the elements of the vector are processed.

Storage

For the Level 1 BLAS and the Extensions subprograms, a vector is stored in a
one-dimensional array.

For general information about how CXML stores data, refer to Section 1.3.
Arrays are discussed in Section 1.3.1. For specific information about vector
storage, refer to Section 1.3.3.
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4.3 Naming Conventions

Table 4-1 shows the characters used in the names of the Level 1 BLAS and the
Extensions and what the characters mean.

Table 4-1 Naming Conventions: Level 1 BLAS Subprograms

Character Group Mnemonic Length Meaning

First group I 1 Computes the index of a
particular vector element.

No mnemonic 0 Computes the value of a
particular vector element or
performs an operation on one or
more vectors.

Second group S 1 Single-precision real data.
D 1 Double-precision real data.
C 1 Single-precision complex data.
Z 1 Double-precision complex data.
Third group A combination of Type of computation such as
letters at the end Absolute (A) Minimum (MIN)
such as AMIN or or Scalar (A) Times a Vector (X)
AXPY Plus (P) a Vector (Y).

For example, the name ICAMIN is the subprogram for computing the index of the
element of a single-precision complex vector having the minimum absolute value.

4.4 Summary of Level 1 BLAS Subprograms

Tables 4-2 and 4-3 summarize the BLAS Level 1 subprograms and the extension
subprograms.

Table 4-2 Summary of Level 1 BLAS Subprograms

Subprogram

Name Operation

ISAMAX Calculates, in single-precision arithmetic, the index of the element of a
real vector with maximum absolute value.

IDAMAX Calculates, in double-precision arithmetic, the index of the element of a
real vector with maximum absolute value.

ICAMAX Calculates, in single-precision arithmetic, the index of the element of a
complex vector with maximum absolute value.

IZAMAX Calculates, in double-precision arithmetic, the index of the element of a
complex vector with maximum absolute value.

SASUM Calculates, in single-precision arithmetic, the sum of the absolute

values of the elements of a real vector.

(continued on next page)
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Table 4-2 (Cont.) Summary of Level 1 BLAS Subprograms

Subprogram

Name Operation

DASUM Calculates, in double-precision arithmetic, the sum of the absolute
values of the elements of a real vector.

SCASUM Calculates, in single-precision arithmetic, the sum of the absolute
values of the elements of a complex vector.

DZASUM Calculates, in double-precision arithmetic, the sum of the absolute
values of the elements of a complex vector.

SAXPY Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

DAXPY Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

CAXPY Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.

ZAXPY Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.

SCOPY Copies a real, single-precision vector.

DCOPY Copies a real, double-precision vector.

CCOPY Copies a complex, single-precision vector.

ZCOPY Copies a complex, double-precision vector.

SDOT Calculates the inner product of two real, single-precision vectors.

DDOT Calculates the inner product of two real, double-precision vectors.

DSDOT Calculates the inner product of two real, single-precision vectors using
double precision arithmetic operations and returns a double-precision
result.

CDOTC Calculates the conjugated inner product of two complex, single-
precision vectors.

ZDOTC Calculates the conjugated inner product of two complex, double-
precision vectors.

CDOTU Calculates the unconjugated inner product of two complex, single-
precision vectors.

ZDOTU Calculates the unconjugated inner product of two complex, double-
precision vectors.

SDSDOT Calculates the inner product of two real, single-precision vectors using
double-precision arithmetic operations, adds the inner product result to
a real single-precision scalar, and returns a single-precision value.

SNRM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the elements of a real vector.

DNRM2 Calculates, in double-precision arithmetic, the square root of the sum

of the squares of the elements of a real vector.
(continued on next page)
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Table 4-2 (Cont.) Summary of Level 1 BLAS Subprograms

Subprogram
Name

Operation

SCNRM2

DZNRM2

SROT

DROT

CROT

ZROT

CSROT

ZDROT

SROTM

DROTM

SROTG

DROTG

CROTG

ZROTG

SROTMG

DROTMG

SSCAL

DSCAL

CSCAL

Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the elements of a complex vector.

Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the elements of a complex vector.

Applies a real Givens plane rotation to two real, single-precision
vectors.

Applies a real Givens plane rotation to two real, double-precision
vectors.

Applies a complex Givens plane rotation to two single-precision complex
vectors.

Applies a complex Givens plane rotation to two double-precision
complex vectors.

Applies a real Givens plane rotation to two complex, single-precision
vectors.

Applies a real Givens plane rotation to two complex, double-precision
vectors.

Applies a modified Givens transformation to two real, single-precision
vectors.

Applies a modified Givens transformation to two real, double-precision
vectors.

Generates the real elements for a real, single-precision Givens plane
rotation.

Generates the elements for a real, double-precision Givens plane
rotation.

Generates the elements for a complex, single-precision Givens plane
rotation.

Generates the real elements for a complex, double-precision Givens
plane rotation.

Generates the real elements for a real, single-precision Givens
transform.

Generates the real elements for a real, double-precision Givens
transform.

Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector.

Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector.

Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector.

(continued on next page)
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Table 4-2 (Cont.) Summary of Level 1 BLAS Subprograms

Subprogram

Name Operation

ZSCAL Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector.

CSSCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a complex vector.

ZDSCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a complex vector.

SSWAP Swaps the elements of two real, single-precision vectors.

DSWAP Swaps the elements of two real, double-precision vectors.

CSWAP Swaps the elements of two complex, single-precision vectors.

ZSWAP Swaps the elements of two complex, double-precision vectors.

Table 4-3 Summary of Extensions to Level 1 BLAS Subprograms

Subprogram

Name Operation

ISAMIN Calculates, in single-precision arithmetic, the index of the element of a
real vector with minimum absolute value.

IDAMIN Calculates, in double-precision arithmetic, the index of the element of a
real vector with minimum absolute value.

ICAMIN Calculates, in single-precision arithmetic, the index of the element of a
complex vector with minimum absolute value.

IZAMIN Calculates, in double-precision arithmetic, the index of the element of a
complex vector with minimum absolute value.

ISMAX Calculates, in single-precision arithmetic, the index of the real vector
element with maximum value.

IDMAX Calculates, in double-precision arithmetic, the index of the real vector
element with maximum value.

ISMIN Calculates, in single-precision arithmetic, the index of the real vector
element with minimum value.

IDMIN Calculates, in double-precision arithmetic, the index of the real vector
element with minimum value.

SAMAX Calculates, in single-precision arithmetic, the largest absolute value of
the elements of a real vector.

DAMAX Calculates, in double-precision arithmetic, the largest absolute value of
the elements of a real vector.

SCAMAX Calculates, in single-precision arithmetic, the largest absolute value of
the elements of a complex vector.

DZAMAX Calculates, in double-precision arithmetic, the largest absolute value of

the elements of a complex vector.
(continued on next page)
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Table 4-3 (Cont.) Summary of Extensions to Level 1 BLAS Subprograms

Subprogram

Name Operation

SAMIN Calculates, in single-precision arithmetic, the smallest absolute value
of the elements of a real vector.

DAMIN Calculates, in double-precision arithmetic, the smallest absolute value
of the elements of a real vector.

SCAMIN Calculates, in single-precision arithmetic, the smallest absolute value
of the elements of a complex vector.

DZAMIN Calculates, in double-precision arithmetic, the smallest absolute value
of the elements of a complex vector.

SMAX Calculates, in single-precision arithmetic, the largest value of the
elements of a real vector.

DMAX Calculates, in double-precision arithmetic, the largest value of the
elements of a real vector.

SMIN Calculates, in single-precision arithmetic, the smallest value of the
elements of a real vector.

DMIN Calculates, in double-precision arithmetic, the smallest value of the
elements of a real vector.

SNORM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the elements of a real vector.

DNORM?2 Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the elements of a real vector.

SCNORM2 Calculates, in single-precision arithmetic, the square root of the sum of
the squares of the absolute value of the elements of a complex vector.

DZNORM2 Calculates, in double-precision arithmetic, the square root of the sum
of the squares of the absolute value of the elements of a complex vector.

SNRSQ Calculates, in single-precision arithmetic, the sum of the squares of the
elements of a real vector.

DNRSQ Calculates, in double-precision arithmetic, the sum of the squares of
the elements of a real vector.

SCNRSQ Calculates, in single-precision arithmetic, the sum of the squares of the
absolute value of the elements of a complex vector.

DZNRSQ Calculates, in double-precision arithmetic, the sum of the squares of
the absolute value of the elements of a complex vector.

SSET For single-precision data, sets all the elements of a real vector equal to
a real scalar.

DSET For double-precision data, sets all the elements of a real vector equal to

a real scalar.
(continued on next page)
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Table 4-3 (Cont.) Summary of Extensions to Level 1 BLAS Subprograms

Subprogram

Name Operation

CSET For single-precision data, sets all the elements of a complex vector
equal to a complex scalar.

ZSET For double-precision data, sets all the elements of a complex vector
equal to a complex scalar.

SSUM Calculates, in single-precision arithmetic, the sum of the values of the
elements of a real vector.

DSUM Calculates, in double-precision arithmetic, the sum of the values of the
elements of a real vector.

CSUM Calculates, in single-precision arithmetic, the sum of the values of the
elements of a complex vector.

ZSUM Calculates, in double-precision arithmetic, the sum of the values of the
elements of a complex vector.

SVCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector.

DVCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector.

CVCAL Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector.

ZVCAL Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex vector.

CSVCAL Calculates, in single-precision arithmetic, the product of a real scalar
and a complex vector.

ZDVCAL Calculates, in double-precision arithmetic, the product of a real scalar
and a complex vector.

SZAXPY Calculates, in single-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

DZAXPY Calculates, in double-precision arithmetic, the product of a real scalar
and a real vector and adds the result to a real vector.

CZAXPY Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex vector and adds the result to a complex vector.

ZZAXPY Calculates, in double-precision arithmetic, the product of a complex

scalar and a complex vector and adds the result to a complex vector.
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4.5 Calling Subprograms

The BLAS Level 1 and Extensions subprograms consist of both functions and
subroutines:

e Functions

Return a scalar

Require a function reference from a program
Processing does not change arguments
Documented with a Function Value section

e Subroutines

Return a vector

Require a CALL statement from a program

Processing overwrites an output argument with the output vector
No Function Value section

4.6 Argument Conventions

Subprograms use a list of arguments to specify requirements and control results.
All arguments are required. The argument list is specified in the same order for
each subprogram. The following are typical arguments for the BLAS Level 1 and
Extensions subprograms.

= Arguments that define the length of the input vectors
The argument n specifies the length of the input vectors. The values n < 0,
n = 0, and n > 0 are all allowed. However, for n < 0, either the output
vector is unchanged or the function value is immediately set equal to a value
specified previously.

= Arguments that specify the input scalar
The argument alpha defines the input scalar.

< Arguments that describe the input and output vectors
In addition to the argument n, the following arguments describe a vector:

— The arguments X, y, and z define the location of the vectors z, y, and z in
the array. In the usual case, the argument x specifies the location in the
array as X(1), but the location can be specified at any other element of the
array. An array can be much larger than the vector that it contains.

— The arguments incx, incy, and incz provide the increment between
the elements of the vector z, vector y, and vector z, respectively. The
increment can be positive, negative, or zero. The vector can be stored
forward or backward in the array.

Not every type of argument is used by every subprogram.

4.7 Error Handling

The Level 1 BLAS subprograms assume that input parameters are correct and
provide no feedback when problems occur. You must ensure that all input data
for these subprograms is correct.
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4.8 Definition of Absolute Value

Real subprograms that calculate an absolute value define the absolute value in
the following way:
|zj| = z; if z; is non — negative

|z;| = —z; if z; is negative
Complex subprograms define the absolute value in a way that depends on the

subprogram and its operations. The definitions are consistent with the definitions
used in the BLAS Level 1 subprograms.

In some cases, the definition is the strict definition of the absolute value of a
complex number, that is, the square root of the sum of the squares of the real
part and the imaginary part:

|z;] = 4 /ajz, 4 bjz, = \/real2 + imaginary?

In other cases, the definition for the absolute value of a complex number is the
absolute value of the real part plus the absolute value of the imaginary part:

|z;| = |aj| + |b;| = |real| + |imaginary|

The subprogram name does not specify the definition used. Check the
Description section of the subprogram reference description for the definition
used for that subprogram.

4.9 A Look at a Level 1 Extensions Subprogram

To understand the meaning of the arguments, consider the subroutine SVCAL.
SVCAL computes the product of a real scalar « and a real (n-element) vector z,
and the result is returned in the vector y. SVCAL has the arguments n, alpha,
X, incx, y, and incy as shown in the following code:

REAL*4 X(100), Y(200), ALPHA

INCX = 1

INCY = 2

ALPHA = 3.2

N = 100

CALL SVCAL(N,ALPHA X,INCX,Y,INCY)

The argument x specifies the array X with 100 elements and specifies X(1) as the
location of the vector z whose elements are embedded in X. Since n = 100, the
vector also has 100 elements. The length of the array X is the same as the length
of the vector z. The incx is positive, indicating the vector starts at the first array
element. Because incx = 1, the vector elements are contiguous in the array. Each
element of the array X is multiplied by 3.2 and stored in array Y, beginning at

Y (1), in the locations Y(1), Y(3), Y(5), and so on, since incy is 2.

As another example, if vector z has 20 elements, the starting point of the vector
is X(1), and the elements are selected from the array X with an increment of 3,
then the array X must have at least (1 + (n — 1)[sncz|) or 58 elements to store the
vector. The following code shows this case:

REAL*4 X(58), Y(200), ALPHA

INCX = 3

INCY = 2

ALPHA = 3.2

N = 20

CALL SVCAL(N,ALPHAX,INCX,Y,INCY)

Using the Level 1 BLAS Subprograms and Extensions 4-9



Using the Level 1 BLAS Subprograms and Extensions
4.9 A Look at a Level 1 Extensions Subprogram

In this case, elements X(1), X(4), X(7), ..., X(58) of the array are multiplied
by 3.2 and are stored in array Y, beginning at Y(1), in the locations Y(1), Y(3),
Y(5), ..., Y(39).

When the increment is negative, the starting point for the vector selection is at
the last element of the vector. Consider the following code where the increment is
—2 and the starting point is specified as X(20):

REAL*4 X(100), Y(200), ALPHA

INCX = -2

INCY = 2

ALPHA = 3.2

N=6

CALL SVCAL(N,ALPHA X(20),INCX,Y,INCY)

The vector z has 6 elements. The elements selected to form the vector are X(30),
X(28), X(26), X(24), X(22), and X(20). Each of these elements is multiplied by 3.2
and the results are stored in Y(1), Y(3), Y(5), Y(7), Y(9), and Y(11), respectively.
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Using the Sparse Level 1 BLAS Subprograms

The Sparse Level 1 BLAS subprograms perform vector-vector operations
commonly occuring in many computational problems in sparse linear algebra. In
contrast to the subprograms in Level 1 BLAS Subprograms and Level | BLAS
Extensions, these subprograms operate on sparse vectors. This chapter provides
information on the following topics:

= Operations performed by the Sparse Level 1 BLAS subprograms (Section 5.1)
= Sparse Level 1 vector storage (Section 5.2)

< Naming conventions (Section 5.3)

e Subprogram summary (Section 5.4)

= Calling Sparse Level 1 BLAS subprograms (Section 5.5)

= Argument conventions (Section 5.6)

e Error handling (Section 5.7)

= Alook at a Sparse Level 1 BLAS subprogram (Section 5.8)

5.1 Sparse Level 1 BLAS Operations

The Sparse Level 1 BLAS subprograms are sparse extensions of the Level 1 BLAS
subprograms. While similar in functionality to the Level 1 BLAS subprograms,
the sparse subprograms operate on sparse vectors stored in a compressed form.

CXML enhances the functionality of the Sparse Level 1 BLAS outlined in
[Dodson, Grimes, and Lewis 1991], by the addition of three subprograms that also
operate on sparse vectors.

The sparse extensions of Level 1 BLAS subprograms that are of interest involve
two vectors. The standard approach in sparse vector computation is to expand
one vector into its full form and perform the numerical operations between that
uncompressed vector and the remaining compressed vector. The Sparse Level 1
BLAS subprograms can be classified into two types:

= A vector in uncompressed form is returned as output.
In order for these operations to give correct and consistent results on a vector
or parallel machine, the values in the index vector, associated with the vector
stored in compressed form, must be distinct.

= A scalar or a vector in compressed form is returned as output.
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5.2 Sparse Vector Storage
For the Sparse Level 1 BLAS subprograms, a vector is stored in one of two ways:
= In a one-dimensional array in full form

< In two one-dimensional arrays in compressed form

5.2.1 Sparse Vectors

A sparse vector is a vector that has a large number of zeros. In such cases,
substantial savings in computation and memory requirements can be achieved by
storing and operating on only the nonzero elements. For example, consider the
vector z, of length 9, as shown in the following example:

[2.07
0.0
0.0
3.5
X=1]00
9.8
0.0
0.0
L 0.0

Only three of the nine elements in this vector are nonzero and by storing just
these elements, the memory requirements for storing z can be reduced by a
factor of three. This transformation converts the original vector from its full
form to a vector in compressed form. Additional storage is, however, required
for storing information that enables the original vector to be reconstructed from
the vector stored in the compressed form. This implies that in addition to the
vector of nonzero elements and the number of nonzero elements, there should
be a companion array of indices that map the stored elements into their proper
places in the original vector. Thus, the vector z is stored in compressed form as
two separate arrays, XC and INDXC:

2.0

XC= |35
9.8

1

INDXC = (4
6

where XC is the array of nonzero elements and INDXC is an array of indices
that is used to reconstruct the original vector. For example, since the second
element in INDXC is 4, it implies that the second element in XC, 3.5, is the
fourth element in the original array X. Both XC and INDXC are of lengthn = 3,
where nz is the number of nonzero elements in X.

Operations on sparse vectors are performed only on the nonzero elements of the
vector. As a result, it is the number of nonzero elements that is important, not
the length of the original vector z. Moreover, as the elements of the vector stored
in compressed form are contiguous, there is no need for an increment parameter;
it is always 1.
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5.2.2 Storing a Sparse Vector

Suppose X is a sparse one-dimensional array of length n, with nz nonzero
elements. As z is a sparse vector, nz is much smaller than n, that is, a large
number of elements of the vector z are zero.

Let XC be the vector z stored in compressed form, that is, XC contains only the
nonzero elements of z. Let INDXC be the array of indices that map each element
of XC into its proper position in the array X. Then X(INDXC(i)) = XC(i). It follows
that:

max(INDXC(:), e =1,nz) < n

That is, if the original vector has length n, then the values of the elements in
array INDXC can be at most n.

A sparse vector, stored in a compressed form, is thus defined by three quantities:
= Number of nonzero elements: nz
e Array of length at least nz, containing the nonzero elements of array X: XC

= Array of length at least nz containing the indices of the nonzero elements in
the original uncompressed form: INDXC

5.3 Naming Conventions

Table 5-1 shows the characters used in the names of the Sparse Level 1 BLAS,
and their meaning.

Table 5-1 Naming Conventions: Sparse Level 1 BLAS Subprogram

Character
Group Mnemonic Meaning
First group S Single-precision real
D Double-precision real
C Single-precision complex
z Double-precision complex
Second group A combination of letters  Type of computation such as dot product or
such as DOT or SCTR a vector scatter
Third group | Refers to indexed computation used in

sparse vectors
SorZ Scale or zero

No mnemonic -

For example, the name SSCTRS refers to the single precision real subprogram for
scaling and then scattering the elements of a sparse vector stored in compressed
form.
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5.4 Summary of Sparse Level 1 BLAS Subprograms

Table 5-2 summarizes the Sparse Level 1 BLAS subprograms provided by
CXML.

Table 5-2 Summary of Sparse Level 1 BLAS Subprograms

Subprogram
Name Operation

SAXPYI Calculates, in single-precision arithmetic, the product of a real scalar
and a real sparse vector in compressed form and adds the result to a
real vector in full form.

DAXPYI Calculates, in double-precision arithmetic, the product of a real scalar
and a real sparse vector in compressed form and adds the result to a
real vector in full form.

CAXPYI Calculates, in single-precision arithmetic, the product of a complex
scalar and a complex sparse vector in compressed form and adds the
result to a complex vector in full form.

ZAXPYI Calculates, in double-precision arithmetic, the product of a complex
scalar and a complex sparse vector in compressed form and adds the
result to a complex vector in full form.

SSUMI Calculates, in single-precision arithmetic, the sum of a real sparse
vector stored in compressed form and a real vector stored in full form.

DSUMI Calculates, in double-precision arithmetic, the sum of a real sparse
vector stored in compressed form and a real vector stored in full form.

CSUMI Calculates, in single-precision arithmetic, the sum of a complex sparse
vector stored in compressed form and a complex vector stored in full
form.

ZSUMI Calculates, in double-precision arithmetic, the sum of a complex sparse
vector stored in compressed form and a complex vector stored in full
form.

SDOTI Calculates, in single-precision arithmetic, the product of a real vector
and a real sparse vector stored in compressed form.

DDOTI Calculates, in double-precision arithmetic, the product of a real vector
and a real sparse vector stored in compressed form.

CDOTUI Calculates, in single-precision arithmetic, the product of a complex
vector and an unconjugated complex sparse vector stored in compressed
form.

ZDOTUI Calculates, in double-precision arithmetic, the product of a complex
vector and an unconjugated complex sparse vector stored in compressed
form.

CDOTCI Calculates, in single-precision arithmetic, the product of a complex
vector and a conjugated complex sparse vector stored in compressed
form.

ZDOTCI Calculates, in double-precision arithmetic, the product of a complex
vector and a conjugated complex sparse vector stored in compressed
form.

(continued on next page)
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Table 5-2 (Cont.) Summary of Sparse Level 1 BLAS Subprograms

Subprogram
Name Operation

SGTHR Constructs, in single-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form.

DGTHR Constructs, in double-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form.

CGTHR Constructs, in single-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form.

ZGTHR Constructs, in double-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form.

SGTHRS Constructs, in single-precision arithmetic, a real sparse vector in
compressed form from the specified scaled elements of a real vector in
full form.

DGTHRS Constructs, in double-precision arithmetic, a real sparse vector in
compressed form from the specified scaled elements of a real vector in
full form.

CGTHRS Constructs, in single-precision arithmetic, a complex sparse vector in
compressed form from the specified scaled elements of a complex vector
in full form.

ZGTHRS Constructs, in double-precision arithmetic, a complex sparse vector in
compressed form from the specified scaled elements of a complex vector
in full form.

SGTHRZ Constructs, in single-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form and sets the elements to zero.

DGTHRZ Constructs, in double-precision arithmetic, a real sparse vector in
compressed form from the specified elements of a real vector in full
form and sets the elements to zero.

CGTHRZ Constructs, in single-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form and sets the elements to zero.

ZGTHRZ Constructs, in double-precision arithmetic, a complex sparse vector in
compressed form from the specified elements of a complex vector in full
form and sets the elements to zero.

SROTI Applies, in single-precision arithmetic, a Givens rotation for a real
sparse vector stored in compressed form and another vector stored in
full form.

DROTI Applies, in double-precision arithmetic, a Givens rotation for a real
sparse vector stored in compressed form and another vector stored in
full form.

(continued on next page)
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Table 5-2 (Cont.) Summary of Sparse Level 1 BLAS Subprograms

Subprogram
Name Operation

SSCTR Scatters, in single-precision arithmetic, the components of a sparse real
vector in compressed form into the specified components of a real vector
in full form.

DSCTR Scatters, in double-precision arithmetic, the components of a sparse
real vector in compressed form into the specified elements a real vector
in full form.

CSCTR Scatters, in single-precision arithmetic, the components of a sparse
complex vector in compressed form into the specified elements of a
complex vector in full form.

ZSCTR Scatters, in double-precision arithmetic, the components of a sparse
complex vector in compressed form into the specified elements of a
complex vector in full form.

SSCTRS Scales and then scatters, in single-precision arithmetic, the components
of a sparse real vector in compressed form into the specified
components of a real vector in full form.

DSCTRS Scales and then scatters, in double-precision arithmetic, the
components of a sparse real vector in compressed form into the
specified elements a real vector in full form.

CSCTRS Scales and then scatters, in single-precision arithmetic, the components
of a sparse complex vector in compressed form into the specified
elements of a complex vector in full form.

ZSCTRS Scales and then scatters, in double-precision arithmetic, the
components of a sparse complex vector in compressed form into the
specified elements of a complex vector in full form.

5.5 Calling Subprograms

Some of the subprograms return a scalar. These subprograms are functions and
are called as functions by coding a function reference.

In the reference section at the end of this chapter, a reference description for a
function includes a Function Value section. For all the subprograms that are
functions, all of the arguments are input arguments, which are unchanged on
exit. The example at the end of each function reference description shows the
function call.

Some of the subprograms return a vector. These subprograms are subroutines
and are called as subroutines with a CALL statement.

A reference description for a subroutine does not have a Function Value section.
Each subroutine has an output argument that is overwritten on exit and contains
the output vector information. The example at the end of each subroutine
reference description shows the subroutine call.
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5.6 Argument Conventions

Each Sparse Level 1 BLAS subprogram has arguments that specify the nature
and requirements of the subprogram. There are no optional arguments.

The arguments are ordered by category, but not every argument category is
needed in each of the subprograms:

= Argument defining the number of nonzero elements
= Argument defining the input scalar

= Arguments describing the input and output vectors

5.6.1 Defining the Number of Nonzero Elements

The Sparse Level 1 BLAS subprograms operate only on the nonzero elements of
the sparse vector. Thus in contrast to the Level 1 BLAS subprograms, it is the
number of nonzero elements that is input to the subprogram, not the length of
the vector. The number of nonzero elements is defined by the argument nz.

The values nz< 0, nz = 0 and nz > 0 are all allowed. For nz< 0, the routines
return zero function values (if applicable) and make no references to their vector
arguments.

5.6.2 Defining the Input Scalar
The input scalar « is always defined by the argument alpha.

5.6.3 Describing the Input/Output Vectors

Sparse Level 1 BLAS subprograms operate on two types of vectors: compressed
and uncompressed. The elements of the full uncompressed vector y, specified by
the argument y are stored contiguously, that is, with increment equal to 1. As
a result, there is no input parameter for the increment of the vector y as it is
always assumed to be 1.

The sparse vector z is stored in compressed form as array X, containing nz
elements. The companion array of indices, array INDX, also of length nz,
replaces the increment argument of the Level 1 BLAS subprograms.

5.7 Error Handling

The Sparse Level 1 BLAS subprograms assume that input parameters are correct
and provide no feedback when problems occur. You must ensure that all input
data for these subprograms is correct.

5.8 A Look at a Sparse Level 1 BLAS Subprogram

To understand the differences between a Level 1 BLAS subprogram and its sparse
counterpart, consider the routines SAXPY and SAXPYI. They perform essentially
the same operation, but SAXPY operates on full vectors and SAXPYI operates on
sparse vectors.
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Consider two arrays: array Y of length n = 9, stored in full uncompressed form
and the sparse array X, also of length » = 9 and also stored in full form.

(1.0 (2.0
2.0 0.0
3.0 1.0
4.0 0.0
Y=1]50 X=10.0
6.0 3.0
7.0 0.0
8.0 0.0
9.0 L 0.0

As the array X is sparse, it can be stored in the compressed form as an array XC
of length 3 and a companion integer array INDXC, also of length 3.

2.0 1
XC= |10 INDXC = |3
3.0 6

The routine SAXPY, from Level 1 BLAS, operates on the arrays X and Y as shown
in the following code:

REAL*4  X(9), Y(9), ALPHA
INTEGER INCX, INCY, N

ALPHA = 2.0

INCX = 1

INCY = 1

N =9

CALL SAXPY(N,ALPHA X,INCX,Y,INCY)

The routine SAXPYI, from Sparse Level 1 BLAS, operates on the arrays XC and
Y as shown in the following code:

REAL*  XC(3), Y(9), ALPHA
INTEGER INDXC(3), NZ

ALPHA = 2.0

NZ = 3

CALL SAXPYI(NZ,ALPHAXC,INDXC,Y)

With o = 2.0, both calls result in the updated vector y:

[ 5.0 ]
2.0
5.0
4.0

Y=|50
12.0
7.0
8.0

L 9.0 J
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In SAXPY, all the elements of the array X and Y are operated on, resulting in
18 arithmetic operations (additions and multiplications). In contrast, SAXPYI
operates only on the nonzero elements, resulting in 6 arithmetic operations.
Storing both the vectors in uncompressed form requires 18 memory locations
for real operands. Storing array X in a compressed form and array Y in an
uncompressed form requires 12 memory locations for real operands and 3 for
integer operands.

The savings in compute time and memory requirements can be substantial, when
the array X is very sparse.
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Using the Level 2 BLAS Subprograms

The Level 2 BLAS subprograms perform matrix-vector operations commonly
occurring in many computational problems in linear algebra. This chapter
provides information about the following topics:

e Operations performed by the Level 2 BLAS subprograms (Section 6.1)
= Vector and matrix storage (Section 6.2)

= Subprogram naming conventions (Section 6.3)

= Subprogram summary (Section 6.4)

e Calling Level 2 BLAS subprograms (Section 6.5)

= Arguments used in the subprograms and invalid arguments
(Sections 6.6 and 6.6.6)

= Performing rank-one and rank-two updates to band matrices (Section 6.7)
e Error handling (Section 6.8)
= Alook at a Level 2 subprogram and its use (Section 6.9)

A key Level 2 BLAS subprogram, {C,D,S,Z}GEMYV, has been parallelized for
improved peformance on multiprocessor systems. For information about using
the parallel library, see Section A.1.

6.1 Level 2 BLAS Operations

Level 2 BLAS subprograms perform operations that involve only one matrix.
Some Level 2 BLAS subprograms combine several possible operations, such as
matrix times, vector, or transpose times vector.

Level 2 BLAS subprograms perform three types of basic matrix-vector operations:
matrix-vector products, rank-one and rank-two updates, and triangular system
solvers.

= Matrix-vector products
y «— aAz + Py

y<—aAT93+,3y
y<—aAH93+,3y
z+— Tz

2 TTg
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< Rank-one and rank-two updates
A+— A+ ow:yT

A — A+a9:yH
A — A—f—amyT—i—aymT
A — A—f—ow:yH—I—aya:H

= Triangular system solvers

Tz =15
T 2 = b
THz =

a and B are scalars, z, y, and b are vectors, A is a matrix, and T is an upper-
or lower-triangular matrix. For the triangular system solvers, T must also be
non-singular; that is, det(T) is not equal to zero. Where appropriate, these
operations are applied to different types of matrices:

e General matrix

= General band matrix

e Symmetric matrix

= Symmetric band matrix
e Hermitian matrix

e Hermitian band matrix
= Triangular matrix

= Triangular band matrix

6.2 Vector and Matrix Storage

Level 2 BLAS subprograms manipulate a single matrix and one or two vectors.
Each vector is stored in a one-dimensional array.

The matrix A is stored in one of two ways:
e A is stored in a two-dimensional array.
e A is stored in packed form in a one-dimensional array.

For information about how Level 2 BLAS subprograms store vectors and matrices,
refer to Chapter 1.
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6.3 Naming Conventions for Level 2 BLAS Subprograms

Each Level 2 BLAS subprogram has a name consisting of four or five characters.
The first character of the name denotes the Fortran data type of the matrix.
The second and third characters denote the type of matrix operated on by the
subprogram. The fourth and fifth characters denote the type of operation.

Table 6-1 shows the characters used in the Level 2 BLAS subprogram names and

what the characters mean.

Table 6-1 Naming Conventions: Level 2 BLAS Subprograms

Character Mnemonic Meaning
First character S Single-precision real data
D Double-precision real data
C Single-precision complex data
z Double-precision complex data
Second and third characters GE General matrix
GB General band matrix
HE Hermitian matrix
SY Symmetric matrix
HP Hermitian matrix stored in
packed form
SP Symmetric matrix stored in
packed form
HB Hermitian band matrix
SB Symmetric band matrix
TR Triangular matrix
TP Triangular matrix stored in
packed form
B Triangular band matrix
Fourth and fifth characters MV Matrix-vector product
R Rank-one update
RU Rank-one unconjugated update
RC Rank-one conjugated update
R2 Rank-two update
SV Solution of a system of linear

equations

For example, the name SGEMV is the subprogram for performing matrix-vector
multiplication, where the matrix is a general matrix with single-precision real
elements, and the matrix is stored using full matrix storage.
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6.4 Summary of Level 2 BLAS Subprograms

Table 6—2 summarizes the Level 2 BLAS subprograms. For the general rank-one
update (_GER) operations, two complex subprograms are provided, CGERC and
CGERU. This is the only exception to the one-to-one correspondence between real
and complex subprograms.

Subprograms for rank-one and rank-two updates applied to band matrices are
not provided because these can be obtained by calls to the rank-one and rank-two
full matrix subprogram. See Section 6.7 for information about how to make these
calls.

Table 6-2 Summary of Level 2 BLAS Subprograms

Subprogram

Name Operation

SGBMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real general band matrix or its transpose.

DGBMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real general band matrix or its transpose.

CGBMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a complex general band matrix, its transpose, or its conjugate
transpose.

ZGBMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a complex general band matrix, its transpose, or its conjugate
transpose.

SGEMV Calculates, in single-precision arithmetic, a matrix-vector product for
either a real general matrix or its transpose.

DGEMV Calculates, in double-precision arithmetic, a matrix-vector product for
either a real general matrix or its transpose.

CGEMV Calculates, in single-precision arithmetic, a matrix-vector product
for either a complex general matrix, its transpose, or its conjugate
transpose.

ZGEMV Calculates, in double-precision arithmetic, a matrix-vector product
for either a complex general matrix, its transpose, or its conjugate
transpose.

SGER Calculates, in single-precision arithmetic, a rank-one update of a real
general matrix.

DGER Calculates, in double-precision arithmetic, a rank-one update of a real
general matrix.

CGERC Calculates, in single-precision arithmetic, a rank-one conjugated update
of a complex general matrix.

ZGERC Calculates, in double-precision arithmetic, a rank-one conjugated
update of a complex general matrix.

CGERU Calculates, in single-precision arithmetic, a rank-one unconjugated
update of a complex general matrix.

ZGERU Calculates, in double-precision arithmetic, a rank-one unconjugated

update of a complex general matrix.

(continued on next page)
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Table 6-2 (Cont.) Summary of Level 2 BLAS Subprograms

Subprogram

Name Operation

SSBMV Calculates, in single-precision arithmetic, a matrix-vector product for a
real symmetric band matrix.

DSBMV Calculates, in double-precision arithmetic, a matrix-vector product for
a real symmetric band matrix.

CHBMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex Hermitian band matrix.

ZHBMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex Hermitian band matrix.

SSPMV Calculates, in single-precision arithmetic, a matrix-vector product for a
real symmetric matrix stored in packed form.

DSPMV Calculates, in double-precision arithmetic, a matrix-vector product for
a real symmetric matrix stored in packed form.

CHPMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex Hermitian matrix stored in packed form.

ZHPMV Calculates, in double-precision arithmetic, a matrix-vector product for
a complex Hermitian matrix stored in packed form.

SSPR Calculates, in single-precision arithmetic, a rank-one update of a real
symmetric matrix stored in packed form.

DSPR Calculates, in double-precision arithmetic, a rank-one update of a real
symmetric matrix stored in packed form.

CHPR Calculates, in single-precision arithmetic, a rank-one update of a
complex Hermitian matrix stored in packed form.

ZHPR Calculates, in double-precision arithmetic, a rank-one update of a
complex Hermitian matrix stored in packed form.

SSPR2 Calculates, in single-precision arithmetic, a rank-two update of a real
symmetric matrix stored in packed form.

DSPR2 Calculates, in double-precision arithmetic, a rank-two update of a real
symmetric matrix stored in packed form.

CHPR2 Calculates, in single-precision arithmetic, a rank-two update of a
complex Hermitian matrix stored in packed form.

ZHPR2 Calculates, in double-precision arithmetic, a rank-two update of a
complex Hermitian matrix stored in packed form.

SSYMV Calculates, in single-precision arithmetic, a matrix-vector product for a
real symmetric matrix.

DSYMV Calculates, in double-precision arithmetic, a matrix-vector product for
a real symmetric matrix.

CHEMV Calculates, in single-precision arithmetic, a matrix-vector product for a
complex Hermitian matrix.

ZHEMV Calculates, in double-precision arithmetic, a matrix-vector product for

a complex Hermitian matrix.

(continued on next page)
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Table 6-2 (Cont.) Summary of Level 2 BLAS Subprograms

Subprogram
Name

Operation

SSYR

DSYR

CHER

ZHER

SSYR2

DSYR2

CHER2

ZHER2

STBMV

DTBMV

CTBMV

ZTBMV

STBSV

DTBSV

CTBSV

ZTBSV

STPMV

DTPMV

CTPMV

Calculates, in single-precision arithmetic, a rank-one update of a real
symmetric matrix.

Calculates, in double-precision arithmetic, a rank-one update of a real
symmetric matrix.

Calculates, in single-precision arithmetic, a rank-one update of a
complex Hermitian matrix.

Calculates, in double-precision arithmetic, a rank-one update of a
complex Hermitian matrix.

Calculates, in single-precision arithmetic, a rank-two update of a real
symmetric matrix.

Calculates, in double-precision arithmetic, a rank-two update of a real
symmetric matrix.

Calculates, in single-precision arithmetic, a rank-two update of a
complex Hermitian matrix.

Calculates, in double-precision arithmetic, a rank-two update of a
complex Hermitian matrix.

Calculates, in single-precision arithmetic, a matrix-vector product for
either a real triangular band matrix or its transpose.

Calculates, in double-precision arithmetic, a matrix-vector product for
either a real triangular band matrix or its transpose.

Calculates, in single-precision arithmetic, a matrix-vector product
for a complex triangular band matrix, its transpose, or its conjugate
transpose.

Calculates, in double-precision arithmetic, a matrix-vector product
for a complex triangular band matrix, its transpose, or its conjugate
transpose.

Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular band matrix.

Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular band matrix.

Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular band matrix.

Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular band matrix.

Calculates, in single-precision arithmetic, a matrix-vector product for
either a real triangular matrix stored in packed form or its transpose.

Calculates, in double-precision arithmetic, a matrix-vector product for
either a real triangular matrix stored in packed form or its transpose.

Calculates, in single-precision arithmetic, a matrix-vector product for a
complex triangular matrix stored in packed form, its transpose, or its
conjugate transpose.

(continued on next page)
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Table 6-2 (Cont.) Summary of Level 2 BLAS Subprograms

Subprogram
Name

Operation

ZTPMV

STPSV

DTPSV

CTPSV

ZTPSV

STRMV

DTRMV

CTRMV

ZTRMV

STRSV

DTRSV

CTRSV

ZTRSV

Calculates, in double-precision arithmetic, a matrix-vector product for
a complex triangular matrix stored in packed form, its transpose, or its
conjugate transpose.

Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix stored in
packed form.

Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix stored in
packed form.

Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix stored in
packed form.

Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix stored in
packed form.

Calculates, in single-precision arithmetic, a matrix-vector product for
either a real triangular matrix or its transpose.

Calculates, in double-precision arithmetic, a matrix-vector product for
either a real triangular matrix or its transpose.

Calculates, in single-precision arithmetic, a matrix-vector product for a
complex triangular matrix, its transpose, or its conjugate transpose.

Calculates, in double-precision arithmetic, a matrix-vector product for
a complex triangular matrix, its transpose, or its conjugate transpose.

Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix.

Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a real triangular matrix.

Solves, in single-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix.

Solves, in double-precision arithmetic, a system of linear equations
where the coefficient matrix is a complex triangular matrix.

6.5 Calling Subprograms

All of the Level 2 subprograms are subroutines, and have the following

characteristics:

Return a vector or a matrix

Require a CALL statement from a program

Processing overwrites an output argument with the output vector
No Function Value section
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6.6 Argument Conventions

The subroutines use a list of arguments to specify the requirements and control
the result of the subroutine. All arguments are required. The argument list is in
the same order for each subprogram:

< Arguments specifying matrix options
= Arguments defining the size of the matrix
= Arguments specifying the input scalar
= Arguments describing the input matrix
< Arguments describing the input vector or vectors
= Arguments specifying the input scalar associated with the input-output vector
= Arguments describing the input-output vector
< Arguments describing the input-output matrix
Not every type of argument is needed by every subprogram.
6.6.1 Specifying Matrix Options
The arguments that specify matrix options are character arguments:

e trans
e uplo
< diag

In Fortran, a character argument can be longer than its corresponding dummy
argument. For example, the value ' T' for the argument trans can be passed as
" TRANSPOSE' .

trans

In some subroutines, the argument trans is used to select the form of the input
matrix to use in an operation. You do not change the form of the input matrix in
your application program. CXML selects the proper elements, depending on the
value of the trans argument.

For example, if A is the input matrix, and you want to use it in the operation,
set the trans argument to ' N’ . If you want to use AT in the operation, set the
trans argument to ' T' . The subroutine makes the changes and selects the proper
elements from the matrix, so that AT is used. Table 6-3 shows the meaning of
the values for the argument trans.

Table 6-3 Values for the Argument TRANS

Value of trans Meaning

"N or’'n’ Operate with the matrix

T or’t Operate with the transpose of the matrix

"C or’'c Operate with the conjugate transpose of the matrix

When the operation is performed on a real matrix, the values’ T and’'t or’' C
and’ ¢ all have the same meaning.
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uplo

The Hermitian, symmetric, and triangular matrix subroutines (HE, SY, and TR
subroutines) use the argument uplo to specify either the upper or lower triangle.
Because of the structure of these matrices, the subroutines do not refer to all of
the matrix values. Table 6—4 shows the meaning of the values for the argument
uplo.

Table 6-4 Values for the Argument UPLO

Value of uplo Meaning

U or’u Refers to the upper triangle
"L or’'l’ Refers to the lower triangle
diag

The triangular matrix (TR) subroutines use the argument diag to specify whether
or not the triangular matrix is unit-triangular. Table 6-5 shows the meaning of
the values for the argument diag.

Table 6-5 Values for the Argument DIAG

Value of diag Meaning
U or’u Unit-triangular
"N or’'n’ Not unit-triangular

When diag is specified as’ U’ or ' u’, the diagonal elements are not referenced
by the subroutine. These elements are assumed to be unity.

6.6.2 Defining the Size of the Matrix

The following arguments define the size of the input-output matrix:
e For a rectangular matrix, m rows by n columns: arguments m and n
= For a symmetric, Hermitian, or triangular matrix: argument n

= For a rectangular band matrix: arguments m and n for the rows and
columns, Kkl for the subdiagonals, and ku for the superdiagonals

e For a symmetric, Hermitian, or triangular band matrix: arguments n for the
dimensions and k for the diagonal

You can call a subroutine with arguments m or n equal to 0 but the subroutine
exits immediately without referencing its other arguments.

6.6.3 Describing the Matrix

The description of the matrix depends on how the matrix is stored. The matrix
can be stored in one of the following ways:

= Two-dimensional array

= Packed form of a one-dimensional array
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Two-Dimensional Array

When the matrix is stored in a two-dimensional array, the subroutine requires
the following arguments in addition to the size arguments:

= Argument a specifies the array A in which the matrix is stored
= Argument lda specifies the leading dimension of the array A

To store the matrix, the array must contain at least the number of elements as
described:
(n—1)d+1

n is the number of columns of the matrix

d is the leading dimension of the array with 4 > 1; and
I = m for the GE subroutines,

I = n for the SY, HE, and TR subroutines,

I = (ki + ku + 1) for the GB subroutines, and

I = (k + 1) for the SB, HB, and TB subroutines.

One-Dimensional Array

When the matrix is stored packed in a one-dimensional array, the matrix is
described by only one argument, ap, which specifies the one-dimensional array in
which the matrix is stored.

To store the packed matrix, the array AP must contain at least n(n + 1)/2
elements.

6.6.4 Describing the Input Scalars

The input scalars, « and 8, are always described by the dummy argument names
alpha and beta.

6.6.5 Describing the Vectors
A vector is described by three arguments:

e The length of the vector: n

When the vector z consists of n elements, the corresponding array X must be
of length at least (1 + (n — 1)[incz]).

e The location of the vector in the array: x for the vector X, y for the vector y

The location is the base address of the vector. If the argument is the name
of the array, such as X, the location of the vector is specified at X(1), but the
location can be specified at any other element of the array. The array can be
much larger than the vector that it contains.

= The spacing increment for selecting the vector elements from the array: incx
for vector z, argument incy for vector y

The increment can be positive or negative, but, unlike the Level 1 Extensions,
it cannot be equal to zero.

If you supply an input scalar beta of zero, you do not need to set the array Y.
This means that an operation such as y «+ aAz can be performed without having
to set y to zero in the calling program.
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6.6.6 Invalid Arguments
The following values of the arguments are invalid:

Any value of the arguments trans, uplo, or diag that is not defined
m < 0 for GE and GB subroutines

n < 0 for all subroutines

kl < 0 for the GB subroutines

ku < O for the GB subroutines

k < 0 for the HB, SB, and TB subroutines

Ida < m for the GE subroutines

Ida < kl + ku + 1 for the GB subroutines

Ida < n for the HE, SY, and TR subroutines
Ida < k + 1 for the HB, SB, and TB subroutines
incx =0

incy =0

6.7 Rank-One and Rank-Two Updates to Band Matrices

The BLAS 2 subroutines for full matrix updates can be used to perform rank-one
and rank-two updates to band matrices. The following operation is the rank-one
update to the band matrix A:

A<—A—|—93yT

Vectors z and y are such that no fill-in occurs outside the band. In this case, the
update affects only a full (kI + 1) by (ku + 1)) rectangle within the band matrix A.

The operation is shown in (6-1) for the case where m =n =9, ki = 2, and ku = 3.
The update begins in row [ and column [ where | = 3 and affects only the 12
elements within A that are in the full 3 by 4 rectangle starting at aj; = a33.

[a11 a12 a13 ayg 0 0 0 0 0 T
ap; ap2 a3 apq as O 0O 0O O
agy a3z azz az4 ags azg O 0O O
0 asp a3 asa as5 age ag7 0 O
0 0 as3 asq4 as5 ase as7 asg O
0 0 0 aps a5 ass @67 @68 @69
0 0 0 0 wa75 a7e ay7 a7g a7g
0 0 0 0 0 agg ag7 agg agg

L O 0 0 0 0 0 ag7 agg aggd

+
- 01
0
3
T4
zs| [0 O y3 ys ys yo¢ O O O] (6-1)
0
0
0
L 0
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For real data, SGER with « = 1 provides this operation, as shown in the following
code fragment:

KM=MIN(KL+1,M-L+1)

KN=MIN(KU+1,N-L+1)

CALL SGER (KM, KN, 1., X, 1, Y, 1, A(KU+L.L), MAX(KM,LDA-1))

L denotes the starting row and column for the update. The elements z; and y; of
the vectors z and y are in elements X(I) and Y(l) of the arrays X and Y.

For the case where A is a symmetric band matrix of » by » with k subdiagonals
and k superdiagonals, the operation can be achieved by a call to the subroutine
SSYR, referring to either the upper or lower triangle of A. To refer to the
upper-triangular part of A, use the following call to SSYR:

KN=MIN(K+1,N-L+1)
CALL SSYR (U, KN, L., X, 1, A(K+LL), MAX(L,LDA-1))

To refer to the lower-triangular part of A, use the following call to SSYR:

KN=MIN(K+1,N-L+1)

CALL SSYR (L, KN, 1., X, 1, A(1.L), MAX(1,LDA-1))

If the data is complex, the same operations can be achieved by calls to the
subroutines CGER and CHER.

Rank-two updates for real symmetric band matrices and complex Hermitian band
matrices can be achieved by calls to the subroutines SSYR2 and CHER2.

6.8 Error Handling

The BLAS Level 2 subroutines provide a check of the input arguments. If you
call a Level 2 subroutine with an invalid value for any of its arguments, CXML
reports the message and terminates execution of the program.

The code for BLAS Level 2 subroutines has calls to an input argument error
handler, the XERBLA routine. When a subroutine detects an error, it passes the
name of the subroutine and the number of the first argument that is in error to
the XERBLA routine. CXML directs this information to a device or file:

e For OpenVMS, the device or file is defined as SYSSOUTPUT.
e For Tru64 UNIX or Windows NT, the device or file is defined as stdout.

6.9 A Look at a Level 2 BLAS Subroutine

SGEMV computes a matrix-vector product for either a real general matrix or its
transpose:
y «— aAz+ Py

or
Y — aAT ¢ + By

where « and 8 are scalars, z and y are vectors, and A is an m by » matrix.

Let A be the following 6 by 6 matrix:

10 20 3.0 40 50 6.0
70 80 9.0 10.0 11.0 12.0
13.0 14.0 15.0 16.0 17.0 18.0
19.0 20.0 21.0 22.0 23.0 24.0
25.0 26.0 27.0 28.0 29.0 30.0
31.0 32.0 33.0 34.0 35.0 36.0
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Let z be the vector:
= [2.0 4.0 6.0 80 10.0 12.0 14.0 16.O]T
Let y be the vector:

y=[10 3.0 5.0 7.0 90 11.0 13.0 15.0 17.O]T

The subroutine SGEMV has the following format:
CALL SGEMV(trans,m,n,alpha,a,lda,x,incx,beta,y,incy)

The following code calls SGEMV:

REAL A(6,6), ALPHA, BETA, X(8), Y(9)

INTEGER LDA,INCY,INCX,M,N
CHARACTER TRANS

CALL SGEMV(n, 2, 3, 1.0, a(2.2), 6, x(1), 2, 0.0, y(1), 1)

This code multiplies the submatrix

8.0 9.0 10.0
14.0 15.0 16.0

by the vector [2.0 6.0 10.0] to give the new vector y:

[170.0 278.0 5.0 7.0 9.0 11.0 13.0 15.0 17.O]T

The vector z and the matrix A are unchanged.
The following code uses the transpose:
SGEMV(Y, 2, 2, 2.0, a, 6, x(3), 1, 1.0, y(1), 1)

This code multiplies the transpose of the submatrix
1.0 2.0
7.0 8.0
o 6.0
8.0

where « is 2.0, and then adds the result to 8 where £ is equal to 1.0 times the
first two elements of the vector y to produce the new vector y:

by the vector

[125.0 155.0 5.0 7.0 9.0 11.0 13.0 15.0 17.O]T

The vector z and the matrix A remain unchanged.
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Using the Level 3 BLAS Subprograms

The Level 3 BLAS subprograms perform matrix-matrix operations commonly
occurring in many computational problems in linear algebra. This chapter
provides information about the following topics:

e Operations performed by the Level 3 BLAS subprograms (Section 7.1)

7 types of basic operations (Section 7.1.1)
How Level 3 matrices are stored (Section 7.1.2)
Subprogram naming conventions (Section 7.1.3)

e Subprogram summary (Section 7.2)
e Calling Level 3 BLAS subprograms (Section 7.3)

= Arguments used in the subprograms and invalid arguments
(Sections 7.4 and 7.4.5)

e Error handling (Section 7.5)
e A look at some Level 3 subprograms and their use (Section 7.6)
= Some examples (Section 7.7 and Section 7.8)

A key Level 3 BLAS subprogram, {C,D,S,Z}JGEMM, has been parallelized for
improved peformance on Tru64 UNIX multiprocessor systems. For information
about using the parallel library, see Section A.1.

7.1 Level 3 BLAS Operations

The BLAS Level 3 subprograms perform operations that involve one, two, or
three matrices. Operations performed by BLAS Level 3 subprograms do not
involve vectors.

7.1.1 Types of Operations

BLAS Level 3 subprograms perform seven types of basic matrix-matrix
operations, which are described in this section. In these descriptions, « and
B are scalars, A, B and C are rectangular matrices (sometimes symmetric or
Hermitian), and T is an upper- or lower-triangular matrix.

< Matrix addition operations
C «— aop(A) + Bop(B)

where op(X) = X, XT, X, or X

= Matrix multiply-and-add operations

C «— aop(A)op(B) + BC
where op(X) = X, XT, X, orXH
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Matrix subtraction operations
C — aop(4) — fop(B)
where op(X) = X, XT, X, orXH
= Miscellaneous matrix operations
C «— aop(4)

where op(X) = X, XT, X, or X
= Rank-k and rank-2k updates of a symmetric matrix
C — aAAT + pC
C — aATA+pBC

C — aABT + aBAT + C
C —aATB+aBTA+5C

= Full matrix-triangular matrix multiply operations
B—TB
B—T'B
B — BT
B — BTT

= Solution of triangular systems of equations

TX = aB
TTX = aB
XT = aB
x7T = 4B

Many Level 3 subprograms apply to special types of matrices with the following
characteristics:

= Only one of the matrices is symmetric.
= Only one of the matrices is Hermitian.
< Only one of the matrices is triangular.

All Level 3 subprograms have corresponding versions that apply to general
rectangular matrices.

7.1.2 Matrix Storage

For the Level 3 BLAS subroutines, all matrices are stored in a two-dimensional
array.

There is no provision for packed storage of symmetric, Hermitian, or triangular
matrices. For these matrices, only the upper triangle or the lower triangle is
stored. Since the imaginary parts of the diagonal elements of a Hermitian matrix
are zero, you do not have to set the imaginary parts of the corresponding Fortran
array. They are assumed to be zero.
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7.1.3 Naming Conventions

Each Level 3 BLAS subroutine has a name consisting of five or six characters.
The first character of the name denotes the Fortran data type of the elements
of the matrix. The second and third characters denote the type of matrices
involved in the operation. The fourth, fifth, and sixth characters denote types of
operations.

Table 7—1 shows the characters used in the Level 3 BLAS subroutine names and
what the characters mean.

Table 7-1 Naming Conventions: Level 3 BLAS Subprograms

Character Mnemonic Meaning

First character S Single-precision real data
D Double-precision real data
C Single-precision complex data
z Double-precision complex data

Second and third characters GE General matrices
HE One Hermitian matrix
SY One symmetric matrix
TR One triangular matrix
Fourth, fifth, and sixth MM Matrix-matrix product
characters
MA Matrix addition
MS Matrix subtraction
MT Matrix transposition
RK Rank-k update
R2K Rank-2k update
SM Soluti_on of a system of linear
equations

For example, the name SGEMM is the subroutine for performing matrix-matrix
multiplication (and addition if desired), where the matrices are general matrices
with single-precision real elements.

7.2 Summary of Level 3 BLAS Subprograms

Table 7—2 summarizes the Level 3 BLAS subroutines provided by CXML. The
rank-k updates of general matrices are provided by the _GEMM subroutines.

Table 7-2 Summary of Level 3 BLAS Subprograms

Routine Name Operation

SGEMA Calculates, in single-precision arithmetic, the sum of two real general
matrices or their transposes.

(continued on next page)
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Table 7-2 (Cont.) Summary of Level 3 BLAS Subprograms

Routine Name

Operation

DGEMA

CGEMA

ZGEMA

SGEMM

DGEMM

CGEMM

ZGEMM

SGEMS

DGEMS

CGEMS

ZGEMS

SGEMT
DGEMT
CGEMT

ZGEMT

SSYMM

DSYMM

CSYMM

Calculates, in double-precision arithmetic, the sum of two real general
matrices or their transposes.

Calculates, in single-precision arithmetic, the sum of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

Calculates, in double-precision arithmetic, the sum of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

Calculates, in single-precision arithmetic, a matrix-matrix product and
addition for real general matrices or their transposes.

Calculates, in double-precision arithmetic, a matrix-matrix product and
addition for real general matrices or their transposes.

Calculates, in single-precision arithmetic, a matrix-matrix product
and addition for complex general matrices, their transposes, their
conjugates, or their conjugate transposes.

Calculates, in double-precision arithmetic, a matrix-matrix product
and addition for complex general matrices, their transposes, their
conjugates, or their conjugate transposes.

Calculates, in single-precision arithmetic, the difference of two real
general matrices or their transposes.

Calculates, in double-precision arithmetic, the difference of two real
general matrices or their transposes.

Calculates, in single-precision arithmetic, the difference of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

Calculates, in double-precision arithmetic, the difference of two complex
general matrices, their transposes, their conjugates, or their conjugate
transposes.

Copies a single-precision, real general matrix or its transpose.
Copies a double-precision, real general matrix or its transpose.

Copies a single-precision, complex general matrix, its transpose, its
conjugate, or its conjugate transpose.

Copies a double-precision, complex general matrix, its transpose, its
conjugate, or its conjugate transpose.

Calculates, in single-precision arithmetic, a matrix-matrix product and
addition where one matrix multiplier is a real symmetric matrix.

Calculates, in double-precision arithmetic, a matrix-matrix product and
addition where one matrix multiplier is a real symmetric matrix.

Calculates, in single-precision arithmetic, a matrix-matrix product and
addition where one matrix multiplier is a complex symmetric matrix.

(continued on next page)
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Table 7-2 (Cont.) Summary of Level 3 BLAS Subprograms

Routine Name

Operation

ZSYMM

CHEMM

ZHEMM

SSYRK

DSYRK

CSYRK

ZSYRK

CHERK

ZHERK

SSYR2K

DSYR2K

CSYR2K

ZSYR2K

CHER2K

ZHER2K

STRMM

DTRMM

CTRMM

ZTRMM

Calculates, in double-precision arithmetic, a matrix-matrix product and
addition where one matrix multiplier is a complex symmetric matrix.

Calculates, in single-precision arithmetic, a matrix-matrix product and
addition where one matrix multiplier is a complex Hermitian matrix.

Calculates, in double-precision arithmetic, a matrix-matrix product and
addition where one matrix multiplier is a complex Hermitian matrix.

Calculates, in single-precision arithmetic, the rank-k update of a real
symmetric matrix.

Calculates, in double-precision arithmetic, the rank-k update of a real
symmetric matrix.

Calculates, in single-precision arithmetic, the rank-k update of a
complex symmetric matrix.

Calculates, in double-precision arithmetic, the rank-k update of a
complex symmetric matrix.

Calculates, in single-precision arithmetic, the rank-k update of a
complex Hermitian matrix.

Calculates, in double-precision arithmetic, the rank-k update of a
complex Hermitian matrix.

Calculates, in single-precision arithmetic, the rank-2k update of a real
symmetric matrix.

Calculates, in double-precision arithmetic, the rank-2k update of a real
symmetric matrix.

Calculates, in single-precision arithmetic, the rank-2k update of a
complex symmetric matrix.

Calculates, in double-precision arithmetic, the rank-2k update of a
complex symmetric matrix.

Calculates, in single-precision arithmetic, the rank-2k update of a
complex Hermitian matrix.

Calculates, in double-precision arithmetic, the rank-2k update of a
complex Hermitian matrix.

Calculates, in single-precision arithmetic, a matrix-matrix product for
a real triangular matrix or its transpose.

Calculates, in double-precision arithmetic, a matrix-matrix product for
a real triangular matrix or its transpose.

Calculates, in single-precision arithmetic, a matrix-matrix product for
a complex triangular matrix, its transpose, or its conjugate transpose.

Calculates, in double-precision arithmetic, a matrix-matrix product for
a complex triangular matrix, its transpose, or its conjugate transpose.

(continued on next page)
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Table 7-2 (Cont.) Summary of Level 3 BLAS Subprograms

Routine Name Operation

STRSM Solves, in single-precision arithmetic, a triangular system of equations
where the coefficient matrix is a real triangular matrix.

DTRSM Solves, in double-precision arithmetic, a triangular system of equations
where the coefficient matrix is a real triangular matrix.

CTRSM Solves, in single-precision arithmetic, a triangular system of equations
where the coefficient matrix is a complex triangular matrix.

ZTRSM Solves, in double-precision arithmetic, a triangular system of equations
where the coefficient matrix is a complex triangular matrix.

7.3 Calling the Subprograms

Each of the BLAS Level 3 subprograms returns a matrix. All the subprograms
are subroutines. They are called as subroutines with a CALL statement. The
example at the end of each subroutine reference description shows the subroutine
call.

7.4 Argument Conventions

Each Level 3 BLAS subroutine has arguments that specify the nature and
requirements of the subroutine. There are no optional arguments.

The arguments are ordered. Not every argument category is used in all cases
in each of the subroutines. In some cases, the user must specify "dummy"
(placeholder) arguments.

< Arguments specifying matrix options
= Arguments defining the size of the matrices
= Argument specifying the input scalar
= Arguments describing the input matrices
< Argument specifying the input scalar associated with the input-output matrix
= Arguments describing the input-output matrix
7.4.1 Specifying Matrix Options

The arguments that specify matrix options are character arguments:

e side

e trans
e transa
e transb
e uplo

- diag

Note that the subroutine requires a single character, but the user can supply a
longer character string. For example, the value ' T' for trans can be passed as
" TRANSPOSE' .
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side

The argument side is used in some subroutines to specify whether the matrix
multiplier is on the left or the right. Table 7-3 shows the meaning of the values
for the argument side.

Table 7-3 Values for the Argument SIDE

Value of side Meaning

"L or’l’ Multiply the general matrix by the symmetric or triangular
matrix on the left

"R or’'r Multiply the general matrix by the symmetric or triangular
matrix on the right

trans, transa, transb

Arguments transa and transb define the form of the input matrices to use in
an operation. You do not change the form of an input matrix in your application
program. CXML selects the proper elements, depending on the value of the
transa and transb arguments.

For example, if A is the input matrix, and you want to use A in the operation,
set the transa argument to ' N’ . If you want to use AT in the operation, pass
in argument A and set the trans argument to ' T' . The subroutine makes the
changes and selects the proper elements from the matrix, so that AT is used.
Table 7-4 shows the meaning of the values for the arguments transa and
transb.

Table 7-4 Values for the Arguments transa and transb

Value of
transa and
transb Meaning for transa Meaning for transb

"N’ or’n’ Operate with the matrix A.  Operate with the matrix B.
"T or't Operate with the transpose  Operate with the transpose of matrix B.

of matrix A.

"R or’'r Operate with the conjugate  Operate with the conjugate of matrix B.
of matrix A.

"C or’'c Operate with the conjugate  Operate with the conjugate transpose of
transpose of matrix A. matrix B.

When an operation is performed with real matrices, the values ' C and’ ¢ have
the same meaning as ' T' or 't . And, the values’' R’ and’ r' have the same
meaning as’ N’ or’n’.

uplo

The Hermitian, symmetric, and triangular matrix subroutines (HE, SY, and TR
subroutines) use the argument uplo to specify either the upper or lower triangle.
Because of the structure of these matrices, the subroutines do not refer to all of

the matrix values. Table 7-5 shows the meaning of the values for the argument
uplo.
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Table 7-5 Values for the Argument uplo

Value of uplo Meaning

U or’u Refers to the upper triangle
"L or’l’ Refers to the lower triangle
diag

The triangular matrix (TR) subroutines use the argument diag to specify whether
or not the triangular matrix is unit-triangular. Table 7-6 shows the meaning of
the values for the argument diag.

Table 7-6 Values for the Argument diag

Value of diag Meaning
U or’u Unit-triangular
"N or’'n’ Not unit-triangular

When diag is specified as* U’ or ' u', the diagonal elements are not referenced
by the subroutine. These elements are assumed to be unity (value 1).

7.4.2 Defining the Size of the Matrices

The sizes of the matrices are defined by the arguments m, n, and k. These
arguments specify the number of rows or columns, m, n, or k of particular
matrices.

You can call a subroutine with arguments m or n equal to 0 but the subroutine

exits immediately without referencing its other arguments. For the _GEMM,

_SYRK, and _HERK subroutines, if k = 0, the operations are reduced to C « SC.
7.4.3 Describing the Matrices

In addition to their size, the description of each matrix is given by two arguments:

< Arguments that specify the array that stores the matrix: a, b, and c¢ specify
the arrays A, B, and C that store the matrices A, B, and C.

= Arguments that specify the leading dimension of each array: Ida, Idb, and
Idc specify the leading dimension of the arrays A, B, and C.

7.4.4 Specifying the Input Scalar

The input scalars o and g are always specified by the dummy argument names
alpha and beta.

The input scalar associated with the input-output matrix is normally g and is
specified by the dummy argument name beta.

If you supply an input scalar beta of zero, you do not need to initialize the
array C. This means that an operation such as ¢ «+ «AB can be performed
without having to set C to zero in the calling program.
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7.4.5 Invalid Arguments
The following values of Level 3 subroutine arguments are invalid:

= Any value of the arguments side, trans, transa, transb, uplo, or diag that
is not specified for the routine

e m<0
e nNn<O0
e k<0

e |da < the number of rows in the matrix A
e |db < the number of rows in the matrix B

e |dc < the number of rows in the matrix C

7.5 Error Handling

The BLAS Level 3 subroutines do provide a check of the input arguments. If you
call a Level 3 subroutine with an invalid value for any of its arguments, CXML
reports the message and terminates execution of the program.

The code for BLAS Level 3 subroutines has calls to an input argument error
handler, the XERBLA routine. When a subroutine detects an error, it passes the
name of the subroutine and the number of the first argument that is in error to
the XERBLA routine. CXML directs this information to a device or file:

e For OpenVMS, the device or file is defined as SYSSOUTPUT.
e For Tru64 UNIX or Windows NT, the device or file is defined as stdout.

7.6 A Look at a Level 3 BLAS Subroutine

The _TRMM subroutines compute a matrix-matrix product for either a triangular
matrix, its transpose, or its conjugate transpose:

B «— aAB B — oATB B« aA®B

B «— aBA B «— aBAT B « oBAH

The triangular matrix multiply subroutines DTRMM (REAL*8 matrices) and
ZTRMM (COMPLEX*16 matrices) have the following call format:

CALL DTRMM(side, uplo, transa, diag, m, n, alpha, a, Ida, b, ldb)
CALL ZTRMM(side, uplo, transa, diag, m, n, alpha, a, Ida, b, ldb)

The matrix B is an arbitrary rectangular matrix of size m by n, embedded in a
possibly larger Idb by ¢ matrix. The matrix A is a triangular matrix embedded
in a larger matrix of size lda by p. The triangular part of A is n by n or m by
m, depending on whether A multiplies B on the left side or the right. The user
determines this by setting the argument side.

The lower or upper triangle of A is accessed by setting the argument uplo.
The other triangle of A is ignored. The diagonal of A can be used, or it can be
assumed to be unity by setting the argument diag to ' u’ . Either 4, AT, or AH#
can be used by setting the argument transa. The scalar o has the same data
type as the matrices A and B.
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7.7 Examples of REAL*8 Matrices

For the following REAL*8 examples, assume A is a 7 by 7 matrix and B is a 6 by
5 matrix: lda =17, p =17, ldb = 6, and g = 5, as shown below.

[—10.00 —-7.00 —6.00 3.00 6.00 —9.00  8.00 T
—4.00 5.00 -—-6.00 2.00 3.00 5.00 1.00
—-1.00 -5.00 —4.00 —-5.00 -800 —9.00 8.00
A= —5.00 1.00 -7.00 —1.00 3.00 1.00 —8.00
6.00 —2.00 —6.00 —4.00 9.00 2.00 3.00
10.00 0.00 —-7.00 —4.00 —-1.00 -—10.00 3.00
L 1.00 10.00 6.00 2.00 —-4.00 -—-3.00 2.00

For matrix B, only the leading 4 by 3 rectangle of B will be used: m = 4 and
n=d 4.00 9.00 2.00 5.00 0.00
—8.00 3.00 9.00 3.00 4.00
4.00 —8.00 0.00 4.00 —9.00
7.00 4.00 8.00 —2.00 0.00
2.00 10.00 —7.00 4.00 5.00
2.00 4.00 —-7.00 5.00 —-3.00

B:

Example 1: Compute B «+— acAB with a = 1.0

For this example, we will use the upper 4 by 4 triangle of A and the original
diagonal. The matrix A essentially becomes:

—10.00 -7.00 —-6.00 3.00
0.00 5.00 —-6.00 2.00
0.00 0.00 —4.00 -5.00
0.00 0.00 0.00 -—1.00

The call is shown in the following code:

SIDE = "I
UPLO ="'U
TRANSA = "N’
DIAG = 'N’

CALL DTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, 1.0D0, A, LDA, B, LDB)
The product matrix B is as follows:

13.00 —51.00 —59.00
—50.00 71.00 61.00
—51.00 12.00 —40.00
—7.00 —4.00 —8.00

Example 2: Compute B «— o ATB with o = —2.0

For this example, we will use the lower 4 by 4 triangle of A, the original diagonal,
and take the transpose. On entry, the matrix A looks like the following:

—10.00 0.00 0.00 0.00
—4.00 5.00 0.00 0.00
—-1.00 —-5.00 —4.00 0.00
—5.00 1.00 —-7.00 -—-1.00
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But after the transpose, A becomes:

—10.00 —4.00 —-1.00 -5.00
0.00 5.00 —5.00 1.00
0.00 0.00 —4.00 -7.00
0.00 0.00 0.00 -—-1.00

The call is shown in the following code:

SIDE = U
UPLO = I
TRANSA = T
DIAG = 'N’

CALL DTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, -2.0D0, A, LDA, B, LDB)

The product matrix B is as follows:

94.00  228.00 192.00
106.00 —118.00 —106.00
130.00 —8.00 112.00
14.00 8.00 16.00

Example 3: Compute B — aBA with o = 3.0

In this example, matrix A multiplies matrix B on the right, so that A must be 3
by 3. We take the lower triangle of A, and we also assume A has unit diagonal.
On entry, A is treated as the following:

1.00 0.00 0.00

—4.00 1.00 0.00
—1.00 —-5.00 1.00

The call is shown in the following code:

SIDE = 'R’
UPLO =L
TRANSA = 'N'
DIAG = 'U’

CALL DTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, 3.0D0, A, LDA, B, LDB)

The product matrix B is as follows:
—102.00 —3.00 6.00
—87.00 —126.00 27.00

108.00 —24.00 0.00
—51.00 —108.00 24.00
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7.8 Example of COMPLEX*16 Matrices

In the following COMPLEX*16 example, assume that on entry, A is the following
3 by 3 complex matrix:

(=7.0,-6.0)  (2.0,6.0) (—4.0,9.0)
(—5.0,4.0) (—6.0,—4.0) (—10.0,—6.0)
(6.0,80)  (-3.0,8.0)  (1.0,-8.0)

B is the following 4 by 3 complex matrix:

(8.0,—2.0)  (8.0,—9.0) (10.0,-8.0)

(—3.0,8.0)  (3.0,—5.0)  (3.0,4.0)
(—2.0,-6.0) (—6.0,—2.0)  (6.0,2.0)

(0.0,10.0)  (10.0,0.0)  (—6.0,—5.0)

Example 1: Compute B + aBAH with o = (1.0, -2.0)
Where A and B are COMPLEX*16 matrices.

We will use the upper triangle of A and the original diagonal. The triangular A
effectively looks like the following:

(=7.0,-6.0)  (2.0,6.0) (—4.0,9.0)
(0.0,0.0)  (—6.0,—4.0) (—10.0,—6.0)
[ (0.0,0.0) (0.0,0.0) (1.0,—8.0) ]

After the conjugate transpose, A becomes the following:

(2.0,—6.0) (—6.0,—4.0) (0.0,0.0)
—4.0,-9.0) (—10.0,6.0) (1.0,8.0)

[ (~7.0,6.0) (0.0,0.0) (0.0, 0.0)]
(

The call is shown in the following code:

SIDE = 'R’
UPLO ='U
TRANSA = 'C
DIAG =N’

ALPHA = (1.0D0, -2.0D0)
CALL ZTRMM(SIDE, UPLO, TRANSA, DIAG, 4, 3, ALPHA, A, LDA, B, LDB)

The product matrix B is as follows:
(—318.0,326.0) (388.0,354.0)  (218.0,—76.0)
(—317.0,-91.0) (—12.0,124.0) (27.0, 86.0)

(20.0,—40.0)  (—20.0,60.0)  (90.0,70.0)
(—173.0,66.0)  (138.0,—6.0) (—72.0,—121.0)
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Using LAPACK Subprograms

LAPACK is a collection of Fortran 77 routines written to solve a wide array of
problems in applied linear algebra. These routines provide CXML users with
state of the art tools for linear equation solutions, eigenvalue problems, and
linear least squares problems.

LAPACK subprograms are the result of a large, publicly-funded project at major
government labs and research universities. These subprograms are intended by
their developers to replace and expand the functionality of the famous LINPACK
and EISPACK routines.

LAPACK provides enhancements in speed, primarily by utilizing blocked
algorithms and the highly optimized CXML BLAS Level 3 and other BLAS
routines. The collection also provides better accuracy and robustness than the
LINPACK and EISPACK packages. Additionally, two LAPACK computational
routines, {C,D,S,Z}GETRF and {C,D,S,Z}POTRF, have been parallelized for
improved performance on Tru64 UNIX multiprocessor systems. See Section A.1
for information about using the CXML parallel library. The first public release
of LAPACK, Version 1.0, was on February 29, 1992. LAPACK Version 2.0 was
released on September 30, 1994 and is part of CXML.

This chapter provides information about the following topics:

e Overview of LAPACK (Section 8.1)

= Naming conventions and mnemonics (Section 8.2)

= A summary of LAPACK driver routines (Section 8.3)

= An example of how LAPACK is used (Section 8.4)

= How to experiment with performance parameters (Section 8.5)

To use LAPACK, you must purchase the LAPACK documentation, published in
book form, by the Society for Industrial and Applied Math (SIAM) in 1995:

LAPACK Users’ Guide, 2nd Edition, by E. Anderson et al
SIAM

3600 University City Science Center

Philadelphia PA 19104-2688

ISBN 0-89871-345-5

Tel: 1-800-447-SIAM

FAX: 1-215-386-7999

email: service@siam.org

Information on ordering SIAM books, including the LAPACK Users’ Guide, is
available on the internet at “http://www.siam.org.”
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You can also display the html version of the LAPACK Users’ Guide at the
following url:

http:/mww.netlib.org/lapack/lug/lapack_lug.html

A quick reference card for all the driver routines is included with SIAM'’s
LAPACK Users’ Guide.

The LAPACK project is currently based at the University of Tennessee.
Information on software releases, corrections to the user guide, and other
information can be obtained by sending the following one-line message to
netlib@ornl.gov

send release_notes from lapack

The CXML release notes indicate the version of LAPACK included in the CXML
product.

8.1 Overview

The computational tasks carried out by the LAPACK routines play an essential
role in solving problems arising in virtually every area of scientific computation,
simulation, or mathematical modeling. Optimal performance of the LAPACK
routines is assured by the inclusion of high performance BLAS (particularly
BLAS Level 3) as part of the CXML library, and the automatic choice of suitable
blocking parameters.

The major capabilities provided by LAPACK include:

= Solution of linear systems of equations, that is, solving:
Ax =b

where A is a square matrix, and z and b are vectors.
= Solution of eigenvalue/eigenvector problems, that is, solving:

Az = A xx

or
Az =A*B=x*z

for either A and/or z. Routines for more general eigenproblems and matrix
factorizations involving eigenproblems are also provided.

e Solution of overdetermined systems by means of modern least squares
methods including singular value decomposition. These problems involve
linear systems of equations where A typically has many more rows than
columns (so there are many more equations than unknowns).

Most of the capabilities in LAPACK are provided for several storage formats (full
matrix, banded, packed symmetric, and so on). Consult SIAM’s LAPACK Users’
Guide for a complete description of LAPACK capabilities, including algorithm
descriptions and further references.
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8.2 Naming Conventions

LAPACK routine names have single letter prefixes indicating the precision (data
type) of the input and/or output data:

Mnemonic Meaning

S real*4, single-precision

D real*8, double-precision

C complex*8, single-precision
z complex*16, double-precision

The LAPACK driver and computational (top level) routines always have names of
the form:

_MMFF
“MMFFX

The underscore character ( _) is one of the prefixes {S,D,C,Z}. MMis a two-letter
code indicating the matrix type, that is, its storage and/or mathematical property.
FF is a code of two or three letters indicating the type of mathematical task being
performed. The letter X as the last letter on a routine name, indicates an expert
driver routine, that is, a more sophisticated version of an existing routine which
either uses or computes additional information about the problem, for example,
condition numbers or error estimates.

Table 8-1 lists the mnemonics and their meaning used for the mmcode.

Table 8-1 Naming Conventions: Mnemonics for MM

Mnemonic Meaning

GB General band matrix

GE General matrix

GG General matrices, generalized problems (i.e. a pair of general matrices)
GT General tridiagonal

HB (Complex) Hermitian band

HE Hermitian indefinite (C, Z prefixes only)

HP Hermitian indefinite, packed storage (C,Z prefixes only)

PB Positive definite, either symmetric or Hermitian, banded storage

PO Positive definite, either symmetric or Hermitian

PP Positive definite, either symmetric or Hermitian, packed storage

PT Positive definite, either symmetric or Hermitian, tridiagonal

SB (Real) symmetric band

SP Symmetric indefinite, packed storage (S, D prefixes only)

ST Symmetric tridiagonal

SY Symmetric indefinite (S, D prefixes), or complex symmetric (C, Z prefixes)

Table 8-2 lists the mnemonics for the driver routines and their meaning.
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Table 8-2 Naming Conventions: Mnemonics for FF

Mnemonic Meaning

ES Eigenvalues and Schur decomposition

EV Eigenvalues and/or vectors

GLM Generalized linear regression model

GS Generalized eigenvalues, Schur form, and/or Schur vectors

GV Generalized eigenvalues, and/or generalized eigenvectors

LS Least squares solution, orthogonal factorization (general matrix only)
LSS Least squares solution, singular value decomposition (general matrix only)
LSE Least squares solution, Eigenvalues

SV Linear system solutions

SVvD Singular value decomposition

Subprograms that provide linear system solutions use SV in the ff portion of
their names. Thus, the simple driver routines for this task all have names of the
form:

{S,D,C,.ZImmSV.

For example, to solve a general linear system with complex input data, you need
to call CGESV.

To find the eigenvalues and (optionally) eigenvectors of a general complex
Hermitian matrix stored in single precision, you need to call CHEEV.

The generalized eigenvalue routines involve problems of the form:
Axz=A*B*zx

The mnemonics for the mathematical task are GV (generalized eigenvalue/vector),
or GS (generalized Schur factorization).

8.3 Summary of LAPACK Driver Subroutines

Table 8-3 lists simple driver routines for eigenvalue and singular value problems,
linear equation solvers and linear least square problems.

Table 8-3 Simple Driver Routines

Routine Function

Eigenvalue and Singular Value Problems

SSYEV Computes all eigenvalues and eigenvectors of a symmetric/Hermitian
DSYEV matrix.

CHEEV

ZHEEV

SSPEV Computes all eigenvalues and eigenvectors of a symmetric/Hermitian
DSPEV matrix in packed storage.

CHPEV

ZHPEV

(continued on next page)
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Table 8-3 (Cont.) Simple Driver Routines

Routine

Function

Eigenvalue and Singular Value Problems

SSBEV

DSBEV
CHBEV
ZHBEV

SSTEV
DSTEV

SGEES
DGEES
CGEES
ZGEES

SGEEV
DGEEV
CGEEV
ZGEEV

SGESVD
DGESVD
CGESVD
ZGESVD

SSYGV

DSYGV
CHEGV
ZHEGV

SSPGV

DSPGV
CHPGV
ZHPGV

SSBGV
CHBGV

SGEGS
DGEGS
CGEGV
ZGEGV

SGGSVD
DGGSVD
CGGSVD
ZGGSVD

Computes all eigenvalues and eigenvectors of a symmeric/Hermitian band
matrix.

Computes all eigenvalues and eigenvectors of a real symmetric tridiagonal
matrix.

Computes the eigenvalues and Schur factorization of a general matrix, and
orders the factorization so that selected eigenvalues are at the top left of
the Schur form.

Computes the eigenvalues and left and right eigenvectors of a general
matrix.

Computes the singular value decomposition (SVD) of a general rectangular
matrix.

Computes all eigenvalues and the eigenvectors of a generalized symmetric
/Hermitian-definite generalized eigenproblem, Az = ABz, or BAz = Az.

Computes all eigenvalues and eigenvectors of a generalized symmetric
/Hermitian-definite generalized eigenproblem, Az = ABz, or BAz = )z,
where A and B are in packed storage.

Computes all eigenvalues and eigenvectors of a generalized symmetric
/Hermitian-definite and banded eigenproblem, Az = ABz, or BAz = Az.

Computes the generalized eigenvalues, Schur form, and left and/or right
Schur vectors for a pair of nonsymmetric matrices.

Computes the generalized singular value decomposition.

(continued on next page)
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Table 8-3 (Cont.) Simple Driver Routines

Routine

Function

Linear Equation Problems

SGESV
DGESV
CGESV
ZGESV

SGBSV
DGBSV
CGBSV
ZGBSV

SGTSV
DGTSV
CGTSV
ZGTSV

SPOSV
DPOSV
CPOSV
ZPOSV

SPPSV
DPPSV
CPPSV
ZPPSV

SPBSV
DPBSV
CPBSV
ZPBSV

SPTSV
DPTSV
CPTSV
ZPTSV

SSYSV
DSYSV
CSYsv
ZSYSV
CHESV
ZHESV

SSPSV
DSPSV
CSPSV
ZSPSV
CHPSV
ZHPSV

Solves a general system of linear equations AX=B.

Solves a general banded system of linear equations AX=B.

Solves a general tridiagonal system of linear equations AX=B.

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B.

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B, where A is held in packed storage.

Solves a symmetric/Hermitian positive definite banded system of linear
equations AX=B.

Solves a symmetric/Hermitian positive definite tridiagonal system of linear
equations AX=B.

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B.

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B, where A is held in packed storage.

(continued on next page)
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Table 8-3 (Cont.) Simple Driver Routines

Routine

Function

Linear Least Squares Problems

SGELS
DGELS
CGELS
ZGELS

SGELSS
DGELSS
CGELSS
ZGELSS

SGGGLM
DGGGLM
CGGGLM
ZGGGLM

SGGLSE
DGGLSE
CGGLSE
ZGGLSE

Computes the least squares solution to an over-determined system of
linear equations, AX=B or A**H X=B, or the minimum norm solution of an
under-determined system, where A is a general rectangular matrix of full
rank, using a QR or LQ factorization of A.

Computes the minimum norm least squares solution to an over-determined
or under-determined system of linear equations AX=B, using the singular
value decomposition of A.

Solves the GLM (Generalized Linear Regression Model) using the GQR
(Generalized QR) factorization.

Solves the LSE (Constrained Linear Least Squares Problem) using the
GRQ (Generalized RQ) factorization.

Table 8-4 lists the following expert driver routines: linear equation, least square,
and eigenvalue.

Table 8-4 Expert Driver Routines

Routine

Function

Linear Equation Problems

SGESVX
DGESVX
CGESVX
ZGESVX

SGBSVX
DGBSVX
CGBSVX
ZGBSVX

SGTSVX
DGTSVX
CGTSVX
ZGTSVX

SPOSVX
DPOSVX
CPOSVX
ZGOSVX

SPPSVX
DPPSVX
CPPSVX
ZPPSVX

SPBSVX
DPBSVX
CPBSVX
ZPBSVX

Solves a general system of linear equations AX=B, A**T X=B or A**H
X=B, and provides an estimate of the condition number and error bounds
on the solution.

Solves a general banded system of linear equations AX=B, A**T X=B or
A**H X=B, and provides an estimate of the condition number and the
error bounds on the solution.

Solves a general tridiagonal system of linear equations AX=B, A**T X=B
or A**H X=B, and provides an estimate of the condition humber and the
error bounds on the solution.

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B, and provides an estimate of the condition number and error bounds
on the solution.

Solves a symmetric/Hermitian positive definite system of linear equations
AX=B, where A is held in packed storage, and provides an estimate of the
condition number and error bounds on the solution.

Solves a symmetric/Hermitian positive definite banded system of linear
equations AX=B, and provides an estimate of the condition number and
error bounds on the solution.

(continued on next page)
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Table 8-4 (Cont.) Expert Driver Routines

Routine

Function

Linear Equation Problems

SPTSVX
DPTSVX
CPTSVX
ZPTSVX

SSYSVX
DSYSVX
CSYSVX
ZSYSVX
CHESVX
ZHESVX

SSPSVX
DSPSVX
CSPSVX
ZSPSVX
CHPSVX
ZHPSVX

Solves a symmetric/Hermitian positive tridiagonal system of linear
equations AX=B, and provides an estimate of the condition number and
error bounds on the solution.

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B, and provides an estimate of the condition
number and error bounds on the solution.

Solves a real/complex/complex symmetric/symmetric/Hermitian indefinite
system of linear equations AX=B, where A is held in packed storage, and
provides an estimate of the condition number and error bounds on the
solution.

Least Squares Problems

SGELSX
DGELSX
CGELSX
ZGELSX

Computes the minimum norm least squares solution to an over-determined
or under-determined system of linear equations AX=B, using a complete
orthogonal factorization of A.

Eigenvalue Problems

SSYEVX

DSYEVX
CHEEVX
ZHEEVX

SSPEVX

DSPEVX
CHPEVX
ZHPEVX

SSBEVX

DSBEVX
CHBEVX
ZHBEVX

SSTEVX
DSTEVX

SGEESX
DGEESX
CGEESX
ZGEESX

SGEEVX
DGEEVX
CGEEVX
ZGEEVX

Computes selected eigenvalues and eigenvectors of a symmetric/Hermitian
matrix.

Computes selected eigenvalues and eigenvectors of a symmetric/Hermitian
matrix in packed storage.

Computes selected eigenvalues and eigenvectors of a symmetric/Hermitian
band matrix.

Computes selected eigenvalues and eigenvectors of a real symmetric
tridiagonal matrix.

Computes the eigenvalues and Schur factorization of a general matrix,
orders the factorization so that selected eigenvalues are at the top left

of the Schur form, and computes reciprocal condition numbers for the
average of the selected eigenvalues, and for the associated right invariant
subspace.

Computes the eigenvalues and left and right eigenvectors of a general
matrix, with preliminary balancing of the matrix, and computes reciprocal
condition numbers for the eigenvalues and right eigenvectors.

The remaining routines are either computational or auxiliary. The computational
routines solve a lower level of problem than the driver routines and the auxiliary
routines solve an even lower level problem.
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8.4 Example of LAPACK Use and Design

One of the most common uses for LAPACK is solving linear systems. If you are
using the old LINPACK routines to solve Az = b, you first call the subroutine
dgefa to factor A, and then call dgesl to solve the system using the factored A.

In the above case, you can replace the two LINPACK calls with one call to
LAPACK. The corresponding LAPACK call is as follows:

CALL DGESV(N,NRHS,A,LDA,IPIV,B,LDB,INFO)

The routine DGESV calls DGETRF to factor and overwrite A, and DGETRS to
solve (overwriting B) using the LU factors computed by DGETRF.

Blocked BLAS Level 3 algorithms come into the picture because DGETRF calls
the LAPACK routine ILAENYV to obtain an optimal blocksize, and then DGETRF
uses blocked algorithms (for example, DTRSM) to complete its task. All of this is
invisible to normal top-level use because only the above call to the driver routine
DGESV need be made.

8.5 Performance Tuning

In the public release of LAPACK, the routine ILAENYV provides default values
for blocksizes, crossover points, and other performance-tuning parameters for
use with specified routines. These values are generally sufficient for routine

use of LAPACK, and are invisible to the top-level user of the package. Certain
lower-level LAPACK routines call ILAENV to obtain the value of a parameters of
interest.

In this CXML release, LAPACK includes the routine XLAENYV which enables
experimentation with blocksizes, crossover points, and other performance-tuning
parameters. Use of XLAENYV is of interest to expert users familiar with LAPACK
source code.

Thus, you can either use the default values or experiment with the parameters
to tune the performance. The descriptions of ILAENV and XLAENYV specify
how to switch between these modes, and how to set custom parameter values.
The following sample code segment sets a custom blocksize (in this case, 32) for
DGESV:

CALL XLAENV(100,1)
IBLK=32
CALL XLAENV(Z,IBLK)

CALL DGESV( ... )
CALL XLAENV(100,0)

The final call to XLAENYV reverts subsequent code back to the normal mode

of using the hard-coded parameters in ILAENV. The other calls are equally
straightforward, and are explained in the header and comments for the ILAENV
routine, and the entire source for the XLAENYV routine, as displayed in Examples
8-1 and 8-2.
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Example 8-1 ILAENV

A

O T T T I

ok kS Sk Sk k% % Sk Sk k% Sk Sk k% % % %

INTEGER FUNCTION ILAENV( ISPEC, NAME, OPTS, N1, N2, N3,
$ N4 )

-- LAPACK auxiliary routine --

Modified to allow expert user modifications of

blocksize and other parameters using the XLAENV routine,
via a common block shared by ILAENV and XLAENV.

Purpose

ILAENV returns problem-dependent parameters for the local
environment. See ISPEC for a description of the parameters.

In this version, the problem-dependent parameters are either;

(a.) contained in the integer array IPARMS in the common block CLAENV
and the value with index ISPEC is copied to ILAENV.

(b.) hard coded in the code below. ( normal use ).

Common block initializaton forces IPARMS(100)=0 and thus

option (b.) is the default.

Option a.) is used if IPARMS(100)=1. (set by calling XLAENV)
This option is provided for parameter-tuning and testing purposes.
In this case values in IPARMS must be set to the desired values
by calling XLAENV.

Option b.) is used if IPARMS(100)=0:

This version provides a set of parameters which should give good,
but not optimal, performance on many of the currently available
computers.

Arguments

ISPEC  (input) INTEGER
Specifies the parameter to be returned as the value of
ILAENV.
= 1: the optimal blocksize; if this value is 1, an unblocked
algorithm will give the best performance.
2: the minimum block size for which the block routine
should be used; if the usable block size is less than
this value, an unblocked routine should be used.
= 3: the crossover point (in a block routine, for N less
than this value, an unblocked routine should be used)
= 4: the number of shifts, used in the nonsymmetric
eigenvalue routines
= 5: the minimum column dimension for blocking to be used;
rectangular blocks must have dimension at least k by m,
where k is given by ILAENV(2,...) and m by ILAENV(5,...)
= 6: the crossover point for the SVD (when reducing an m by n
matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
this value, a QR factorization is used first to reduce
the matrix to a triangular form.)
= 7. the number of processors

(continued on next page)
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Example 8-1 (Cont.) ILAENV

R I S I I N I T N I i I I N R N )

*

= 8: the crossover point for the multishit QR and QZ methods
for nonsymmetric eigenvalue problems.

NAME (input) CHARACTER*(*)
The name of the calling subroutine, in either upper case or
lower case.

OPTS (input) CHARACTER*(¥)
The character options to the subroutine NAME, concatenated
into a single character string. For example, UPLO = 'U’,
TRANS = 'T", and DIAG = 'N' for a triangular routine would
be specified as OPTS = "UTN'".

N1 (input) INTEGER

N2 (input) INTEGER

N3 (input) INTEGER

N4 (input) INTEGER
Problem dimensions for the subroutine NAME; these may not all
be required.

(ILAENV) (output) INTEGER
>= (. the value of the parameter specified by ISPEC
< 0: if ILAENV = -k, the k-th argument had an illegal value.

Further Details

The following conventions have been used when calling ILAENV from the

LAPACK routines:

1) OPTS is a concatenation of all of the character options to
subroutine NAME, in the same order that they appear in the
argument list for NAME, even if they are not used in determining
the value of the parameter specified by ISPEC.

2) The problem dimensions N1, N2, N3, N4 are specified in the order
that they appear in the argument list for NAME. N1 is used
first, N2 second, and so on, and unused problem dimensions are
passed a value of -1.

3) The parameter value returned by ILAENV is checked for validity in
the calling subroutine. For example, ILAENV is used to retrieve
the optimal blocksize for STRTRI as follows:

NB = ILAENV( 1, 'STRTRI, UPLO // DIAG, N, -1, -1, -1))
IF( NB.LEL ) NB = MAX( 1, N )

Arrays in Common ..
INTEGER IPARMS( 100 ) /100*0/

Common blocks ..
COMMON | CLAENV / IPARMS
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Example 8-2 XLAENV
SUBROUTINE XLAENV( ISPEC, NVALUE )

*
* - LAPACK auxiliary routine --
* (shared common block with ILAENV)
* .. Scalar Arguments ..
INTEGER ISPEC, NVALUE
*
: .
* Purpose
*  =======
*
* XLAENV sets certain machine- and problem-dependent quantities
*which will later be retrieved by ILAENV.
*
*

Arguments

*

ISPEC  (input) INTEGER
Specifies the parameter to be set in the COMMON array IPARMS.
= 1: the optimal blocksize; if this value is 1, an unblocked
algorithm will give the best performance.
2: the minimum block size for which the block routine
should be used; if the usable block size is less than
this value, an unblocked routine should be used.
3: the crossover point (in a block routine, for N less
than this value, an unblocked routine should be used)
4. the number of shifts, used in the nonsymmetric
eigenvalue routines
5: the minimum column dimension for blocking to be used;
rectangular blocks must have dimension at least k by m,
where k is given by ILAENV(2,..) and m by ILAENV(5,...)
6: the crossover point for the SVD (when reducing an m by n
matrix to bidiagonal form, if max(m,n)/min(m,n) exceeds
this value, a QR factorization is used first to reduce
the matrix to a triangular form)
7: the number of processors
8: another crossover point, for the multishift QR and QZ
methods for nonsymmetric eigenvalue problems.
100: with NVALUE=1, subsequent calls to ILAENV will fetch
a requested value directly from the common block (rather
than use the hard-coded values in ILAENV). With NVALUE=0,
subsequent calls to ILAENV will use the hard-coded values.

NVALUE (input) INTEGER
The value of the parameter specified by ISPEC.

R I R T I
1

.. Arrays in Common ..

INTEGER IPARMS( 100 )
*
* .. Common blocks ..
COMMON | CLAENV / IPARMS
*
* .. Save statement ..
SAVE | CLAENV /

(continued on next page)
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Example 8-2 (Cont.) XLAENV

*

* Executable Statements ..
*

IF( ISPEC.GE.1 .AND. ISPEC.LE.100 ) THEN
IPARMS( ISPEC ) = NVALUE
END IF

RETURN
* End of XLAENV
END

8.6 Equivalence Between LAPACK and LINPACK/EISPACK
Routines

The LAPACK equivalence utility provides the names and parameter lists of
LAPACK routines that are equivalent to the LINPACK and EISPACK routines
you specify. The utility command is as follows:

directory-spec equivalence_lapack routine_name [routine_name...]

where you replace directory-spec with the proper directory information, and
routine_name  with the LINPACK and/or EISPACK routine names.

For example, on a UNIX system you would enter:
lusr/sharelequivalence_lapack dgesl imtgll
This returns:

DGESL:
SUBROUTINE SGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
SUBROUTINE DGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
IMTQLL:
SUBROUTINE SSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )

The LINPACK or EISPACK routine names are to the left of the colons. The
equivalent LAPACK routines and calling sequences are to the right of the colons.

This utility helps you to convert LINPACK and EISPACK routine calls to
equivalent LAPACK routine calls. The utility has limitations in that the
argument lists of the LAPACK routines are generally different from those
of the corresponding LINPACK and EISPACK routines, and the workspace
requirements are often different as well.

On Tru64 UNIX systems, the LAPACK equivalence utility is installed in the
following location:

lusrlopt/XMDLOA  nnni/dxml/equivalence_lapack.c (source code)
lusrlopt/XMDLOA  nnn/dxml/equivalence_lapack (executable)

where nnn refers to the version number for the release.
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On Windows NT systems, the LAPACK equivalence utility is installed in a
subdirectory located with the CXML software. This location can vary, depending
upon what is specified at installation time. The LAPACK equivalence utility can
easily be located by searching for the following files:

equivalence_lapack.c  (source code)
equivalence_lapack (executable)

On OpenVMS systems, only the source code for the LAPACK equivalence utility
is provided.
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Using the Signal Processing Subprograms

CXML provides functions that perform signal processing operations for Fast
Fourier transforms (FFT), Cosine (DCT) and Sine (DST) transforms, Convolutions
and Correlations, and Digital Filters.

This chapter provides information about these functions in the following sections:
= Fast Fourier transforms (FFT) Section 9.1

Mathematical definitions of FFT (Section 9.1.1)
Storing the Fourier coefficients (Section 9.1.2)
Fourier transform functions (Section 9.1.3)

e Cosine (DCT) and Sine (DST) transforms Section 9.2

Mathematical definitions of DCT and DST (Section 9.2.1)
Cosine and Sine transform functions (Section 9.2.2.4)

e Convolutions and correlations Section 9.3

Mathematical description of convolution and correlation (Section 9.3.1)
Convolution and correlation functions (Section 9.3.2)

= Digital filters Section 9.4

Mathematical description of a digital filter (Section 9.4.1)
Controlling a digital filter (Sections 9.4.2 and 9.4.3)
Filtering routines (Section 9.4.4)

= Error handling (Section 9.5)

For information about using CXML subprograms with non-Fortran programming
languages, see Section 2.6 and Section 2.6.2.

Examples are included online in the following locations:
= For True4 UNIX: /usr/examples/dxml . See *.c and *.cxx .
e For OpenVMS: SYS$COMMON:[SYSHLP.EXAMPLES.DXMLBee *.c .

= For Windows NT: Look in the /examples subdirectory, located in the directory
where CXML is installed. See *.c and *.Cxx .

Key Fast Fourier subprograms have been parallelized for improved peformance
on Tru64 UNIX multiprocessor systems. For a list of these subprograms and
information about using the parallel library, see Section A.1.
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9.1 Fourier Transform

A finite or discrete Fourier transform converts (i.e. transforms) a collection

of data into component sine and cosine representation. A continuous Fourier
transform of a function converts the function into a generalized sum of sinusoids
of different frequencies. A continuous Fourier transform is represented
graphically by a diagram that shows the amplitude and frequency of each of
the sinusoids.

9.1.1 Mathematical Definition of FFT

The forward Fourier transform is a mathematical operation that converts
numbers typically in the time domain to numbers typically in the frequency
domain. The inverse Fourier transform performs the reverse operation,
converting numbers in the frequency domain to numbers in the time domain.

This section reviews the mathematical definition of the various Fourier
transforms.

9.1.1.1 One-Dimensional Continuous Fourier Transform

The analytical expression for the one-dimensional forward Fourier transform for
continuous functions is commonly given as:

H(f) = / h(t)e 2Tty (9-1)

where H(f), a function in the frequency domain, is the Fourier transform of h(z);
h(t), a function in the time domain, is the waveform to be converted into a sum of
sinusoids; and 7 = y/—1.

The one-dimensional inverse operation is given as:

o0

we) = [ H( g (9-2)

— 00

Variations on the definitions given in Equations (9-1) and (9-2) do exist.
Sometimes a weighting function of 1/2x is found in front of the integral sign, and
27 is removed from the exponential term. See the references given in Appendix D
for information on the various definitions of the continuous forward and inverse
Fourier transforms.

9.1.1.2 One-Dimensional Discrete Fourier Transform

A digital computer cannot perform the integration indicated by the mathematical
expressions for the continuous Fourier transform. Since a digital computer can
only deal with discrete data points, the integration can only be approximated.

The Fourier transform functions must use a method known as the discrete
Fourier transform (DFT) to approximate the continuous Fourier transform

at discrete frequencies. The discrete Fourier transform does not process a
continuous function. Instead, it processes discrete points or samples that give
only an approximation of the continuous function. The continuous function might
not be known analytically.

The simplest interpretation of the one-dimensional discrete Fourier transform
results from interpreting a finite sequence as one period of a periodic sequence.
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The mathematical expression for the one-dimensional discrete Fourier transform
is given as:

n—1
_ Z h(m)e—iZka/n (9_3)

where m and k are indices, ¥ = 0,1,2,...,n — 1; H(k) and h(m) represent
discrete functions of uniformly spaced data in the time and frequency domains
respectively; » is the data length, and : = v/—1.

The one-dimensional inverse operation is given as:
1 n—1 )
_ = Z H(k)eﬁrmk/n (9-4)

where m=0,1,2,...,n— 1

9.1.1.3 Two-Dimensional Discrete Fourier Transform
The simplest interpretation of the two-dimensional discrete Fourier transform
results from interpreting a two-dimensional sequence as one period of a doubly
periodic sequence.

Thus, with H(y7, k) denoting the discrete Fourier transform of A(mz, my), the
mathematical expression for the discrete Fourier transform in two dimensions is

given as:
ny—1 ny_l
Z Z h mz’ ( 127r]m1)/n1 (—i27kmy)/ny (9-5)
mz=0 my=0
where:
]:0;1;2;' ;n:l:_]-
k=0,1,2,. , Ny — 1
1 =+/—1

The inverse transform operation in two dimensions is given as:

n,—1 ny—l
Z Z H(j, k‘)e(i27rjm1)/nxe(inkmy)/ny (9—6)
=0 k=0

1

h(mil:; my) = ngny

The two-dimensional discrete Fourier transform given by Equation (9-5) can be
rewritten as:

ny—1 ny_l

Z { Z mz, ( ZZﬂ-kmM)/ny}e( 127r.7ma:)/nz (9_7)

mz=0 my=

The quantity in braces, which we now call G(m., k), is a two-dimensional
sequence which allows H (7, k) to be rewritten as:

ny—1

mz, Z h mz, (—zZrkmy)/ny (9—8)

my=0

ne—1

Z G mz ( 2rmgg)/ne (9_9)

m4=0
Each row of @G is the one-dimensional discrete Fourier transform of the

corresponding row of A. Each column of H is the one-dimensional discrete Fourier
transform of the corresponding column of G.
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9.1.1.4 Three-Dimensional Discrete Fourier Transform
For three dimensions, the definition of the forward transform can be written as:

H(j,k,1) =
n,—1ny— 1 ny—1

Z Z Z h mz’ My, m )e(—i27rjm1)/n1e(—i27rkmy)/ny e(—i27rlmz)/nz (9-10)

m;=0my=0m.=0

where:
7=0,1,2,...,ny— 1
k=0,1,2,...,ny — 1
1=0,1,2,...,ny — 1
1=+—1

The three-dimensional inverse operation can be written as:

h(mg, my,m;) =

ng—1ny—1ln,—1

1 Z Z Z H(, k’l)e(izwjmz)/nze(i27rkmy)/nye(i27rlmz)/nz (9-11)

RefyNz 520 k=0 120
where:
:=0,1,2,... . ng—1
:0,1,2,...,ny—1
my=0,1,2,...,ny — 1

9.1.1.5 Size of Fourier Transform
Table 9-1 shows the restrictions on the size of FFT.

Table 9-1 FFT Size

Complex FFT 1D n>0
2D Ny >0
ny >0
3D Ny >0
ny >0
ny >0
Real FFT 1D n > 0, n is even
2D n, > 0, n, IS even
ny >0
3D n, > 0, n, IS even
ny >0
n, >0

9.1.2 Data Storage

The output of Fourier transforms can be stored in several ways, depending on the
format of the data, and its symmetry. This section describes the efficiencies of the
data storage method.
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9.1.2.1 Storing the Fourier Coefficients of a 1D-FFT
When the Fourier transform of a real data sequence is performed, the
transformed data is complex, and the identity shown in Equation (9-12) results
from symmetry considerations:

H(n— k) = H*(k) (9-12)

where H*(k) is the complex conjugate of H(k), and k£ =0,1,2,..., 7.

Note that H(0) = H*(n) = H*(0) and H(%) = H*(%). Therefore, H(0) and
H(%) are real. So, to specify the Fourier transform of a real sequence, only

(3 — 1) complex values and 2 real values are needed. The storage of the Fourier
coefficient takes advantage of this.

When the Fourier transform of a complex data sequence is performed, the
transformed data does not usually exhibit symmetry properties. The elements of
the resulting output array are usually unique. As a result, all of the output data
needs to be stored. CXML stores all the output data, and the length of the output
array is the same as the length of the input array.

In the following, let X be the Fourier transform of z.
Storing the 1D-FFT in Real Data Format (R,R)

X,(0)
X, (1)
) :
O X (%)
: Xi(3-1)
Tpe1 Xi(z -2)
Xi:(l)

In each type of transform, the resulting array has the size described in
Table 9-2.

Table 9-2 Size of Output Array for SFFT and DFFT

Input Output
Direction Format Format Input Values Output Values
Complex Real Complex Real
F R C 0 n 7 +1 0
B C R 7+1 0 0 n
F R R 0 n 7 -1 2
B R R 5-1 2 0 n

Storing the 1D-FFT in Complex Data Format (R,C)

] X,(0)
93(1) o Xi:(o)
X, (2

n-t X; ((é))

Using the Signal Processing Subprograms 9-5



Using the Signal Processing Subprograms
9.1 Fourier Transform

In each type of transform, the resulting array has the size described in
Table 9-3.

Table 9-3 Size of Output Array from CFFT and ZFFT

Input Output
Direction  Format Format Input Values Output Values
Complex Real Complex Real
F/B R R n 0 n 0
F/B C C n 0 n 0

Storing the 1D-FFT in Complex Data Format (C,C)

(z+(0),%:(0) (X+(0), X;(0))

(zr(N — 1), 2;(N — 1)) (Xr (N — 1), X;(N — 1))
Storing the Transform of a Complex Sequence in Real Data Format (C,R)

zr(0) zi(0) X-(0) X;(0)

o:r(N:—l) m,.(N:—1) X, (N - 1) Xi(J\;—l)

9.1.2.2 Storing the Fourier Coefficients of 2D-FFT

When the 2D FFT of a real data sequence is performed, the transformed data is
complex with the following symmetry:

H(j,k) = H"(ng — j,ny — k) (9-13)

for:

0<j<ngl

0<k<ny1
where H;(3, k) = 0 for (0,0), (%,0)(0, ), and(%, %3*). The storage of FFT takes
advantage of this.

When the Fourier transform of a complex data sequence is performed, the
transformed data does not usually exhibit symmetry properties. As a result,
all of the output data needs to be stored. CXML stores all the output data, and
the length of the output array is the same as the length of the input array.

Storing a Real Sequence and its Transform in Real Data Format

The following cases show how the value of X is stored in a location in array A.
The index of array A starts at zero. When ny is odd, cases 2 and 4 do not apply.

1. X,(0,0)—A(0,0)
2
3
4.
5 7,k)—A(7,k), X; (5, k)= A(s,ny — k) for 7 =0,2,0 < k < %
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6. X,(3,k)—A(5, k), X;(7,k)—A(ng — 7,k) for 1<5<% —1,0<k<ny — 1

e N Nt N N N e N’

e N M e i

R N

P P

P N I e R e

T P

P N I e R e

P P

B N i

P

P N I e R e

Storing a Real Sequence and its Transform in Complex Data Format

y — 1

, 0<k<n

ng
2

0<s<

XT (j’ k)_>A(2j’ k)

et N N e e N e et Nt e

PP P P

B e N

P P P

B e N

P S

Pt e e e e

P

B e N

Storing a Complex Sequence and its Transform in Complex Data Format
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Storing Complex Sequence in Real Data Format

z;(0,0) z;(0,1) ... z;(0,ny — 1)
2,(0,1) ...  z,(0,my —1) 2;(1,0)  =z(1,1) ... =z(lny —1)
z,(1,1) ... z,(1,ny — 1) :
z;(n, — 1,0) coo zi(ng —1,my — 1)
zr(ne —1,ny — 1)
X;(0,0) X;(0,1) ... X:(0,ny — 1)
X,(0,1) ...  X,(0,ny — 1) X;(1,0)  Xi(1,1) ...  Xi(l,ny—1)
X, (1,1) ... X, (1,ny — 1) :
X:(nz —1,0) v Xilng —1,ny — 1)

. Xi(ng —1,ny —1)

9.1.2.3 Storing the Fourier Coefficients of 3D-FFT

When the Fourier transform of a real data sequence is performed, the
transformed data is complex, and the identity shown in Equation (9-14) results
from symmetry considerations:

H(7,k,l) = H"(ng — j,ny — kynz — 1) (9-14)
for:
0<y<n, — 1
0<k<ny — 1
0<i<ny —1

where H* is the complex conjugate of H.

When the Fourier transform of a complex data sequence is performed, the
transformed data does not usually exhibit symmetry properties. The elements of
the resulting output array are usually unique. As a result, all of the output data
needs to be stored. CXML stores all the output data, and the length of the output
array is the same as the length of the input array.

Storing Real Sequence in Real Data Format

X(7,k, 1) =X(nz —7,ny — k,nz—1)

For | =0, z(g, k,0) is stored in 2D format.
For [ = %%, and n, is even, z(j, k, %) is stored in 2D format.
For 1<I<%# — 1 is stored in 2D format.

This example is (8,4, 1).
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,1,1) z(0,2,1) =z(0,3,1) z(0,0,n: — 1) z(0,1,n.—1) =z(0,2,n.—1) =z(0,3,n.—1)
L1 =(1,2,1) =(1,3,1) z(1,0,n: — 1) =z(1,1,n.—1) =z(1,2,n.—1) =z(1,3,n.—1)
L) z(2,2,1) =2(2,3,1) z(2,0,n: — 1) z(2,1,n.—1) =z(2,2,n.—1) =z(2,3,n.—1)
L1 z(8,2,1) =z(3,3,1) z(3,0,n. — 1) z(3,1,n.—1) =z(3,2,n.—1) =z(3,3,n.—1)
1,1 z(4,2,1) =z(4,3,1) z(4,0,n. — 1) z(4,1,n.—1) z(4,2,n.—1) z(4,3,n.—1)
1,1 z(5,2,1) =(5,3,1) z(5,0,n. — 1) z(5,1,n.—1) =z(5,2,n.—1) z(5,3,n.—1)
,1,1) z(6,2,1) =z(6,3,1) z(6,0,n; — 1) z(6,1,n.—1) =z(6,2,n.—1) =z(6,3,n.—1)
L) 2(7,2,1) =2(7,3,1) z(7,0,n, — 1) z(7,1,n.—1) =z(7,2,n.—1) =z(7,3,n.—1)
!

LD X.(0,2,1) X.(0,3,1) X;(0,0,1) X;(0,3,1) X;(0,2,1) X:(0,1,1)
LD X-(1,2,0) X.(1,3,0) X, (1,0,n,—1) X:(1,,n.—-1) X,;(1,2,n.-1) X.(1,3,n,—1)
LD X0(2,2,0) X.(2,3,1) Xr(2,0,n;—1) X:(2,,n:—1) X,(2,2,n.-1) X.(2,3,n.—1)
LD X-(3,2,) X.(8,3,1) X,(3,0,n;—1) X:(3,1,n:—1) X,(3,2,n.-1) X.(3,3,n.—1)
LD X-(4,2,0) X.(4,3,1) X:(4,0,1) X:(4,3,1) X:(4,2,1) X:(4,1,1)
LD X:(8,2,0)  X.(8,3,1) X:(3,0,n:—1) X;3,1,n.—-1) X;(3,2,n.-1) X3,3,n.—1)
LD X(2,2,0) X.(2,3,1) X:(2,0,n:—1) X;(2,1,n.—-1) X;(2,2,n.-1) X.:(2,3,n.-1)
L0 X:(1,2,0) X.(1,3,1) X:(1,0,n; —-1) X;(1,1,n.—-1) X;(1,2,n.-1) X;1,3,n.—1)

The following cases show how the value of X is stored in a location in array A.
The index of array A starts at zero. When ny, is odd, cases 3 and 5 do not apply.

1 1<5<% — 1
X (7,k,1)—A(5, K, 1)

X’i(j) k; l)_’A(nI - .7.; k; l)

X,(0,0,1)—A(0,0,1)
X;(0,0,1)—A(0,0,n, — )

X, (0, % 1)— A(0, ”2—" 1)

n_y;nz - l)

n
X; (o, 7",1)—»A(o, >

n n
XT(?Z,O, l)—»A(?Z,O, )
XZ(E,O,Z)HA(E,O,TLZ—Z)
2 2
5. j=Sk="1
X, (52, 2L, - A(%E, 2L, )
Xz(%’nz_y’l)_)A(n_:ﬂ:nz_l)
6. j=0,1<k<Z¥ —1or % +1<k<n, -1
X,(0,k,1)— A (0, k,1)

X;(0,k,1) = A (0,ny — k,ny — 1)
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7. §="2,1<k<% —1or % 4+ 1<k<n, —1

ng

X, (%2 k, l)—»A(%, k, 1)

Total memory required = nznyn,

Storing Real Sequence in Complex Format
X, (5, k, 1) —A(2], &, 1) OSjS%,OSkSny —1,0<i<n, — 1

X;(7,k, ) —A(27 + 1,k,1) OSJ'S%,OSkSny —1,0<i<n, — 1

O OO0 OO0 OO0 O 0o
o T e T ey T e T o

DN NN N DNDNNDNDND
e e I e e T e T

LW W W w wWwwwwww
e e I e e T e T

B
B
s

5
5
5

e I e T e S N S R S
i ot i Gy i G T O S O

oW wWwN NN =R OO

B W WD H = OO

B W WD H = OO

PR WL NN OO

ARl R Al stk iaky

VA BN -, . .

VA BN -, . .

e N N e N N N N N
VA BN -, . .

Total memory required = 2(%* + 1)(nynz) = nznyny + 2nyn,

Storing Complex Sequence in Complex Data Format

(2.(0,0,1), 2(0,0,1)) (z.(0,1,1),2;(0,1,)) ... (z+(ny — 1,0,1), z:(ny — 1,0,1))
(2, (ns — 1,0,l)i:c,-(n1—1,0,l)) o (@e(na = 1,y — 1,0),34(ng — 1,ny — 1,1))
!
(X.(0,0,1), X;(0,0,1)) (X.(0,1,1), X:(0,1,)) ... (X, (ny — 1,0,1), X;(ny — 1,0,1))
(X, (na - 1,0,l),EX,-(nI - 1,0,1)) v (Xe(ne = 1,my — 1,1), Xi(ng — 1,n, — 1,1))
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Storing Complex Sequence in Real Data Format

z,(0,0,1) z.(0,1,1) ... z,(0,ny — 1,1) z;(0,0,1) z;(0,1,1) z;(0,ny — 1,1)
z,(1,0,1 zr(1,1,1) ... z,(1,ny — 1,1) z;(1,0,1) z;(1,1,1) z;(1,ny — 1,1)
z.(n, — 1,0,1) coo Ze(ng —1,my — 1,1) z;(n, — 1,0,1) coo zi(ne — 1,ny — 1,1)
X.(0,0,1) X.(0,1,1) ... X:(0,ny — 1,1) X;(0,0,1) X.(0,1,1) ... X:(0,ny —1,1)
X-(1,0,1) X-(1,1,1) X-(1,ny — 1,1) X:(1,0,1) X:(1,1,1) ... X:(1,ny —1,1)
Xr(n: — 1,0,1) coo Xi(ne —1,ny — 1,1) X:(nz —1,0,1) e Xi(ne —1,nyg — 1,1)

9.1.2.4 Storing the Fourier Coefficient of Group FFT

Storing the output of a group FFT operation is similar to the methods used for
one-dimensional FFT data storage.

Storing Real Sequence in Real Data Format

2021 ... 1 X (0)Xr (1) .. X () %:(3 — 1) ... X(1)
Yoy Yn-1 | Y (0)Y:(1)... Y (3)Y:(3 — 1) ... Y:(1)
207121 2(0)Z:(1) ... Z,(2) (5 — 1)... Z(1)

Storing Real Sequence in Complex Data Format

TOTL .- Tp1 (Xr(0)X;(0)) ... (X (5) Xi(5))
e (Y-(0)Y;(0)) ... (Yo (3)Y:(3))
071+ 21 (Z:(0)Z:(0)) ... (Z:(3) Z:(2))

Storing Complex Sequence in Complex Data Format

(27(0),2i(0)) ... (zr(n — 1), zi(n — 1)))

(¥r(0),:(0)) ... (yr(n— 1), yi(n — 1)

(20(0), 26(0)) .- (20 (n — 1), 23(n — 1))
1

(X, (0), X:(0)) - .. (X (n — 1), X;(n — 1))
Y;(0))... (Ye(n - 1), ¥;(n — 1))

(,(0), Z(0)) ... (Ze(n — 1), Zs(n — 1))
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Storing Complex Sequence in Real Data Format

zr(0)zr (1) ... zr(n — 1) z;(0)z;(1) ... z;(n — 1)
vr(0)yr(1)...ur(n—1) | [ %i(0)ws(1) ... vi(n—1)

2 (0)2r(1) oz (n—1) )\ 2(0)z(1) ... z4(n — 1)

!
X (0)Xr(1) ... Xp(n— 1)\ /X:(0)X:(1) ... Xi(n— 1)
Y (0)¥;(1)... ¥y (n — 1) Y;(0)Y(1)... Yi(n — 1)
Z,(0) Z(1) .:..z,(n— 1) 7;(0)Z: (1) .:..z,-(n— 1)

9.1.3 CXML's FFT Functions

The CXML provides a comprehensive set of Fourier transform functions covering
the following options:

< Dimensions: one, two, or three
e Direction: forward or inverse
< Data type: real or complex

e Data format: real or complex
= Precision: single or double

This section describes the effects of these options.

9.1.3.1 Choosing Data Lengths

The data length is the number of elements being transformed. This length

determines the duration and method of computation for FFT operations. To save
computation time, choose a nonprime value for the data length to make use of the
fast algorithm. A prime value is slower because it cannot use the FFT algorithm.

Choose a value according to the following hierarchy, arranged from best
performance to worst performance:

1. The data length is a power of 2.

2. The data length is the product of the small primes 2, 3, and 5.

3. The data length is a product of primes which may be greater than 7.
4. The data length is prime.

Although the performance is best when the data length is a power of 2, none of
the functions limit the data length to a power of 2 as is commonly found in other
FFT libraries.
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9.1.3.2 Input and Output Data Format

The permitted format of input and output data is specified by the arguments
input_format and output_format. Table 9-4 shows the values you specify for
these arguments for real and complex, forward and inverse transforms.

Table 9-4 Input and Output Format Argument Values

Direction Input Format Output Format

Real Transforms

Forward 'R’ T C
Backward "C’ ' R
Either 'R’ " R

Complex Transforms

Either "R’ "R
e, ey

If you use an unsupported combination of input and output format, you receive
one of the status values listed in Table 9-5.

Table 9-5 Status Values for Unsupported Input and Output Combinations

Value Function Meaning

16 DXML_BAD_FORMAT_STRING() The specified combination of
formats is not supported.

18 DXML_BAD_FORMAT_FOR_DIRECTION() The specified combination of

formats is not supported for
the specified direction.

Use the supported combinations as shown in Table 9-4.

9.1.3.3 Using the Internal Data Structures

Every time you perform an FFT operation, the software builds an internal data
structure. The data structure provides a convenient way of storing attributes of
the FFT such as the data length and type of stride allowed, as well as pointers to
virtual memory.

If a program performs repeated FFTs, the process is more efficient if the internal
data structure is saved and reused. This saves the recalculation of the same
internal data structure over and over again. For this reason, CXML provides two
ways of performing fast Fourier transforms, each with its own advantage:

e One-step FFT
If your program performs only one or a few FFT operations, use one
subroutine to initialize, apply, and remove the internal data structure.

e Three-step FFT
If your program repeats the same FFT operation, use the set of three
subroutines:

— The _INIT subroutine builds the internal data structures.
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— The _APPLY subroutine uses the internal data structures to compute the
FFT.

— The _EXIT subroutine deallocates the virtual memory that was allocated
by the _INIT subroutine.

The internal data structures are constant for a specified length of data, the data
type, and for one-, two-, or three-dimensional transforms. When you change one
of these characteristics, you must reinitialize the data structure. So, after you
call the _INIT routine, you can call the _APPLY routine many times, as long as
your data length and data type remains the same.

The three-step subroutines each use an fft_struct argument to manipulate the
internal data structure. You declare the fft_struct using the appropriate call for
the data format:

RECORD /DXML_S_FFT_STRUCTURE/
RECORD /DXML_D_FFT_STRUCTURE/
RECORD /DXML_C_FFT_STRUCTURE/
RECORD /DXML_Z_FFT_STRUCTURE/

These are defined in DXMLDEF.FOR.

You must not do anything else with the fft_struct argument. For example, to
perform a three-step, one-dimensional, single-precision complex FFT, declare the
variable fft_struct of type RECORD /DXML_C_FFT_STRUCTURE/, as shown
in the following code example:

INCLUDE 'DXMLDEF.FOR’
REAL*4 IN_R(N,100),IN_I(N,100),0UT_R(N,100),0UT_I(N,100)
COMPLEX*8 IN(N,100),0UT(N,100)

INTEGER*4 STATUS

CHARACTER*L DIRECTION

RECORD /DXML_C_FFT_STRUCTURE/ FFT_STRUCT

DIRECTION = 'F’
STATUS = CFFT_INIT(N,FFT_STRUCT,.TRUE.)
DO 1=1,100

STATUS = CFFT_APPLY('C’,C',DIRECTION,IN(L,l),0UT(L,),
1 FFT_STRUCT,1)
ENDDO
DO 1=1,100

STATUS = CFFT_APPLY(R’,R’,DIRECTION,IN_R(L),IN_I(L,)),
1 OUT R(1,),0UT_I(L,1),FFT_STRUCT,1)
ENDDO

STATUS = CFFT_EXIT(FFT_STRUCT)

9.1.3.4 Naming Conventions

A Fourier transform subroutine has a name composed of character groups that
tell you about the subroutine’s operation. Table 9-6 shows the character groups
used in the subroutine names and what they mean.

Table 9-6 Naming Conventions: Fourier Transform Functions

Character Group Mnemonic Meaning

First group S Single-precision real data
(continued on next page)
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Table 9-6 (Cont.) Naming Conventions: Fourier Transform Functions

Character Group Mnemonic Meaning
D Double-precision real data
C Single-precision complex data
z Double-precision complex data
Second group FFT Fast Fourier Transform
Third group No mnemonic One-step operation
_INIT Three-step operation: building of internal
data structures
_APPLY Three-step operation: perform FFT
_EXIT Three-step operation: deallocation of virtual

Fourth group

memory in internal data structure

No mnemonic One-dimensional FFT
_2D Two-dimensional FFT
3D Three-dimensional FFT
_GRP FFT of grouped data

For example, DFFT_APPLY is the CXML function for calculating in double-
precision arithmetic the one-dimensional FFT of real data by applying the
internal data structures that were calculated in the first step, DFFT_INIT, of
this three-step operation.

9.1.3.5 Summary of Fourier Transform Functions

Table 9—-7 summarizes the Fourier transform functions that perform the entire
transform, either forward or reverse, in one step.

Table 9-7 Summary of One-Step Fourier Transform Functions

Name

Operation

SFFT

DFFT

CFFT

ZFFT

SFFT 2D

DFFT_2D

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, real data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, real data.

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, complex data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of one-dimensional, complex data.

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, real data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, real data.

(continued on next page)
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Table 9-7 (Cont.) Summary of One-Step Fourier Transform Functions

Name

Operation

CFFT 2D

ZFFT 2D

SFFT 3D

DFFT_3D

CFFT_3D

ZFFT 3D

SFFT_GRP

DFFT_GRP

CFFT_GRP

ZFFT_GRP

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, complex data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of two-dimensional, complex data.

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, real data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, real data.

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, complex data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of three-dimensional, complex data.

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of a group of real data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of a group of real data.

Calculates, in single-precision arithmetic, the fast forward or inverse
Fourier transform of a group of complex data.

Calculates, in double-precision arithmetic, the fast forward or inverse
Fourier transform of a group of complex data.

Table 9—-8 summarizes the three-step Fourier transform functions. Each function

is either an initialization step, an application step, or an exit step.

Table 9-8 Summary of Three-Step Fourier Transform Functions

Name

Operation

SFFT_INIT
SFFT_APPLY

SFFT_EXIT

DFFT_INIT
DFFT_APPLY

DFFT_EXIT

CFFT_INIT

Calculates internal data structures.

Applies SFFT_INIT's internal data structure to calculate, in single-
precision arithmetic, the fast forward or inverse Fourier transform

of one-dimensional, real data.
Deallocates the virtual memory allocated by SFFT_INIT.

Calculates internal data structures.

Applies DFFT_INIT’s internal data structure to calculate, in double-
precision arithmetic, the fast forward or inverse Fourier transform

of one-dimensional, real data.
Deallocates the virtual memory allocated by DFFT_INIT.

Calculates internal data structures.

(continued on next page)
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Table 9-8 (Cont.) Summary of Three-Step Fourier Transform Functions

Name Operation

CFFT_APPLY Applies CFFT_INIT's internal data structure to calculate, in single-
precision arithmetic, the fast forward or inverse Fourier transform
of one-dimensional, complex data.

CFFT_EXIT Deallocates the virtual memory allocated by CFFT_INIT.

ZFFT_INIT Calculates internal data structures.

ZFFT_APPLY Applies ZFFT_INIT’s internal data structure to calculate, in double-
precision arithmetic, the fast forward or inverse Fourier transform
of one-dimensional, complex data.

ZFFT_EXIT Deallocates the virtual memory allocated by ZFFT_INIT.

SFFT_INIT_2D Calculates internal data structures.

SFFT_APPLY 2D

SFFT_EXIT_2D

DFFT_INIT_2D
DFFT_APPLY_2D

DFFT_EXIT 2D

CFFT_INIT_2D
CFFT_APPLY_2D

CFFT_EXIT 2D

ZFFT_INIT_2D
ZFFT_APPLY 2D

ZFFT EXIT 2D

SFFT_INIT_3D
SFFT_APPLY_3D

SFFT_EXIT 3D

DFFT_INIT_3D

Applies SFFT_INIT_2D’s internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, real data.

Deallocates the virtual memory allocated by SFFT_INIT_2D.

Calculates internal data structures.

Applies DFFT_INIT_2D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, real data.

Deallocates the virtual memory allocated by DFFT_INIT_2D.

Calculates internal data structures.

Applies CFFT_INIT_2D's internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, complex data.

Deallocates the virtual memory allocated by CFFT_INIT_2D.

Calculates internal data structures.

Applies ZFFT_INIT_2D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of two-dimensional, complex data.

Deallocates the virtual memory allocated by ZFFT_INIT_2D.

Calculates internal data structures.

Applies SFFT_INIT_3D's internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, real data.

Deallocates the virtual memory allocated by SFFT_INIT_3D.

Calculates internal data structures.
(continued on next page)
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Table 9-8 (Cont.) Summary of Three-Step Fourier Transform Functions

Name

Operation

DFFT_APPLY 3D

DFFT_EXIT_3D

CFFT_INIT 3D
CFFT_APPLY_3D

CFFT_EXIT_3D

ZFFT_INIT_3D
ZFFT_APPLY_3D

ZFFT_EXIT_3D

SFFT_INIT_GRP
SFFT_APPLY_GRP

SFFT_EXIT_GRP

DFFT_INIT_GRP
DFFT_APPLY_GRP

DFFT_EXIT_GRP

CFFT_INIT_GRP
CFFT_APPLY_GRP

CFFT_EXIT_GRP

ZFFT_INIT_GRP
ZFFT_APPLY_GRP

ZFFT_EXIT_GRP

Applies DFFT_INIT_3D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, real data.

Deallocates the virtual memory allocated by DFFT_INIT_3D.

Calculates internal data structures.

Applies CFFT_INIT_3D’s internal data structure to calculate, in
single-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, complex data.

Deallocates the virtual memory allocated by CFFT_INIT_3D.

Calculates internal data structures.

Applies ZFFT_INIT_3D’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of three-dimensional, complex data.

Deallocates the virtual memory allocated by ZFFT_INIT_3D.

Calculates internal data structures.

Applies SFFT_INIT_GRP’s internal data structure to calculate,
in single-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, real data.

Deallocates the virtual memory allocated by SFFT_INIT_GRP.

Calculates internal data structures.

Applies DFFT_INIT_GRP’s internal data structure to calculate,
in double-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, real data.

Deallocates the virtual memory allocated by DFFT_INIT_GRP.

Calculates internal data structures.

Applies CFFT_INIT_GRP’s internal data structure to calculate,
in single-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, complex data.

Deallocates the virtual memory allocated by CFFT_INIT_GRP.

Calculates internal data structures.

Applies SFFT_INIT_GRP’s internal data structure to calculate, in
double-precision arithmetic, the fast forward or inverse Fourier
transform of grouped, complex data.

Deallocates the virtual memory allocated by ZFFT_INIT_GRP.
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9.2 Cosine and Sine Transforms

Similar to the discrete Fourier transform, the Cosine and the Sine transforms
decompose a collection of data into a finite sum of sinusoids of different
frequencies. The differences among the three transforms are in the assumptions
about the data to be transformed. For example, the Fourier transform makes no
assumptions about the data as long as the existence conditions for the Fourier
integral are satisfied. The Sine transform assumes that the functions to be
transformed are odd. The Cosine transform assumes that the functions to be
transformed are even.

9.2.1 Mathematical Definitions of DCT and DST
This section reviews the mathematical definitions of the Sine and the Cosine
transforms.

9.2.1.1 One-Dimensional Continuous Cosine and Sine Transforms

The analytical expressions for the one-dimensional forward Cosine transform
and the one-dimensional forward Sine transform for continuous functions are

commonly given as:
(e o)
\/7/ h(t) cos{wt) dt (9-15)
™
0

= \/g/oo h(t) sin(wt) dt (9-16)
0

respectively. C(w) and S(w), functions in the frequency domain, are the Cosine
and the Sine transforms of A(¢). A(t), a function in the time domain, is the
waveform to be decomposed into a sum of sinusoids.

Equations for reversing the Cosine and the Sine transforms are as follows:

\/7 / cos(wt) dw (9-17)
\/7 / sin(wt) duw (9-18)

9.2.1.2 One-Dimensional Discrete Cosine and Sine Transforms

Similar to continuous Fourier transforms, continuous Cosine and Sine
transforms can be discretized. Unlike the Fourier transforms, there are multiple
discretization schemes that lead to multiple definitions of the discrete Cosine and
Sine transforms. The simplest discretization uses the following transforms:

and:

and:

respectively.

Type | Cosine Transform

) (9-19)

where k£ =0,...,, N.
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Type | Sine Transform

N-1 7rm/c
h(m - _
szn N ) (9-20)
m=1
wherek=1,...,.N—1
and where 1
— k=0,N
oy = { V2 ! } (9-21)
1 1<k<N -1

The inverse formulas for the Type | transforms are the following:

Inverse Type | Cosine Transform

k
(k) cos(Z 9-22
Zak cos( N ) ( )
where m =0,...,N.
Inverse Type | Sine Transform
N-1
2 I(g 7rm/c
SH( —_— 9-23
2 sin(~—) (9-23)

where m = 1,..., N — 1 and with ¢ defined in (9-21).
Additionally, CXML implements the following Type Il transforms:

Type Il Cosine Transform

N-1
2m + V)km
ol = ( —
(k) = o Z h(m) cos| 5N ] (9-24)
m=0
where kK =0,...,N — 1.
Type 1l Sine Transform
II — 1)]67('
= —_ —2
S = ay Z h(m szn[ 2N ] (9-25)
where k=1,...,N.
Inverse Type Il Cosine Transform
2 (2m + 1)kn
I7
—— —2
N Z_:ak CH (k) cos| 5N ] (9-26)
where m =0,...,N — 1.
Inverse Type Il Sine Transform
N
o 2 II . (2m - 1)](:7('
~ > ay, 8 (k) sinf— 1 (9-27)

where m = 1, ..., N with o defined in (9-21). Although there are two other forms
of Cosine and Sine transforms, they are not implemented in CXML. See the
references given in Appendix D for information on the other forms of Cosine and
Sine transforms.

9-20 Using the Signal Processing Subprograms



Using the Signal Processing Subprograms
9.2 Cosine and Sine Transforms

9.2.1.3 Size of Cosine and Sine Transforms
N, the size of the Cosine and Sine transforms, must be greater than 0 and even.

9.2.1.4 Data Storage

The minimum size and the starting index for the input and output array for each
type of Cosine and Sine transform is listed in Table 9-9.

Table 9-9 Size and Starting Index for FCT and _FST

Minimum
Transform Type Size Starting Index
Cosine | N+1 0
Sine | N-1 1
Cosine 1 N 0
Sine 1 N 1

9.2.2 CXML's FCT and FST Functions

CXML provides the following set of Cosine and Sine transform functions covering
the following options:

e Direction: forward or inverse
e Precision: single or double

e Type: lorll

9.2.2.1 Choosing Data Lengths
Since the Cosine and Sine transform functions are built on the FFT functions,
the same considerations for choosing the data length for the Fourier transforms
should be applied to the Cosine and Sine transforms. See Section 9.1.3.1 for
information on choosing the data lengths for FFT.

9.2.2.2 Using the Internal Data Structures
Each time you perform an FCT or an FST operation, the software builds an
internal data structure. The data structure provides a convenient way of storing
attributes of the FCT or FST operation such as the data length, type of stride
allowed, and pointers to virtual memory. If a program performs repeated FCTs
or FSTs, the process is more efficient if the internal data structure is saved and
re-used. For this reason, CXML provides two ways of performing FCT and FST
transforms:

e One-step FCT or FST
If your program performs only one or a few FCT or FST operations, use one
subroutine to initialize, apply, and remove the internal data structure.

e Three-step FCT or FST
If your program repeats the same FCT or FST operations, use the set of three
subroutines:

— The _INIT subroutine builds the internal data structures.

— The _APPLY subroutine uses the internal data structures to compute the
FCT or FST.

— The _EXIT subroutine deallocates the virtual memory that was allocated
by the _INIT subroutine.
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The internal data structures are constant for a specified length of data. When
you change the length of data, you must reinitialize the data structure. After you
call the _INIT routine, you can call the _APPLY routine repeatedly as long as the
data length and transform type remain the same.

Each three-step subroutine uses a structure argument to manipulate the internal
data structure. You declare the data structure using the appropriate structure
argument for the data format.

For FCT:

RECORD /DXML_S_FCT_STRUCTURE/
RECORD /DXML_D_FCT_STRUCTURE/

For FST:

RECORD /DXML_S_FST_STRUCTURE/
RECORD /DXML_D_FST_STRUCTURE/

You do not have to do anything else with this argument. For example, to perform
a three-step, one-dimensional, single-precision Type | FST, declare the variable
FST_STRUCT of type RECORD /DXML_S_FST_STRUCTURE/, as shown in
the following code example:

REAL*4 IN(N,100),0UT(N,100)

INTEGER*4 SFST INIT, SFST_APPLY, SFST EXIT
INTEGER*4 STATUS

RECORD /DXML_S_FST STRUCTURE/ FST STRUCT
CHARACTER*1 DIRECTION

DIRECTION = 'F'
STATUS = SFST_INIT(N,FST_STRUCT,1,.TRUE.)
DO 1=1,100
STATUS = SFST_APPLY(DIRECTION,IN(L,1),0UT(L,l),
1 FFT_STRUCT,1)
ENDDO
STATUS = SFST_EXIT(FFT_STRUCT)

9.2.2.3 Naming Conventions

A Cosine or a Sine transform subroutine has a name composed of character
groups that tell you about the subroutine’s operation. Table 9-10 shows the
character groups used in the subroutine names and what they mean.

Table 9-10 Naming Conventions: Cosine and Sine Transform Functions

Character Group Mnemonic Meaning
First group S Single-precision real data
D Double-precision real data
Second group FCT Fast Cosine Transform
FST Fast Sine Transform
Third group No mnemonic One-step operation
_INIT Three-step operation: building of internal

data structures
(continued on next page)
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Table 9-10 (Cont.) Naming Conventions: Cosine and Sine Transform Functions

Character Group Mnemonic Meaning
_APPLY Three-step operation: perform FCT or FST
_EXIT Three-step operation: deallocation of virtual

memory in internal data structure

For example, SFST_APPLY is the CXML function for calculating in single-
precision arithmetic the one-dimensional FST of real data by applying the
internal data structures that were calculated in the first step, SFST_INIT, of
this three-step operation.

9.2.2.4 Summary of Cosine and Sine Transform Functions

Table 9-11 summarizes the Cosine and Sine transform functions that perform the
entire transform in one step.

Table 9-11 Summary of One-Step Cosine and Sine Transform Functions

Name Operation

SFCT Calculates, in single-precision arithmetic, the fast Cosine transform of
one-dimensional, real data.

DFCT Calculates, in double-precision arithmetic, the fast Cosine transform of
one-dimensional, real data.

SFST Calculates, in single-precision arithmetic, the fast Sine transform of
one-dimensional, real data.

DFST Calculates, in double-precision arithmetic, the fast Sine transform of
one-dimensional, real data.

Table 9-12 summarizes the three-step Cosine and Sine transform functions. Each
function is either an initialization step, an application step, or an exit step.

Table 9-12 Summary of Three-Step Cosine and Sine Transform Functions

Name Operation

SFCT_INIT Sets up internal data structures.

SFCT_APPLY Applies SFCT_INIT's internal data structure to calculate, in single-
precision arithmetic, the fast Cosine transform of one-dimensional,
real data.

SFCT_EXIT Releases internal data structures set up by SFCT_INIT.

DFST_INIT Sets up internal data structures.

DFST_APPLY Applies DFST_INIT’s internal data structure to calculate, in double-
precision arithmetic, the fast Sine transform of one-dimensional,
real data.

DFST_EXIT Releases internal data structures set up by DFST_INIT.
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9.3 Convolution and Correlation

Convolution and correlation are operations that complement the signal processing
abilities of the Fourier transform. All number transforms (including the FFT)
and most digital filters are convolution operations.

Convolution modifies a signal sequence by weighting the sequence with a
function or an additional sequence of numbers. The convolution is used to obtain
properties from a signal source (such as the nth derivative), to selectively enhance
the signal source (in the case of a filter), or to domain transform the signal source
(as in the case of a Fourier transform). Some type of convolution is the basis for
most signal processing.

Correlation analyzes the similarity between two signals (as in the case of

cross-correlation) or of a signal with itself (as in the case of auto-correlation).
9.3.1 Mathematical Definitions of Correlation and Convolution

Many definitions exist for convolution and correlation. CXML uses very specific

definitions given in Sections 9.3.1.1, 9.3.1.2, and 9.3.1.3.

9.3.1.1 Definition of the Discrete Nonperiodic Convolution
The most common definition of a discrete nonperiodic convolution is given by:

np—1
hi= D o(-pYk (9-28)
k=0
foryj=0,1,2,...,np—1and ny =ng +ny — 1.

Here, n; is the total number of points to be output from the convolution
subroutine, n; is the number of points in the =z array, and n, is the number
of points in the y array.

The y array is often called the filter array because nonrecursive digital filters
are commonly made by using convolution of the z data array with special filter
coefficients in the y array. For more information, consult the references given in
Appendix D.

The definition of convolution given in Equation (9—-28) is operational for infinitely
long data sets in z and y, but because the data lengths are finite, in practice, the
subscript (57 — k) will be out of range for the z array for certain values of 7 and &,
and the subscript & will be out of range for the y array for certain values of k.

zp =0 when k<0 or k>nz—1 (9-29)
Yy =0 when k<0 or k>ny—1 (9-30)

For the general case used in CXML, the definition of nonperiodic convolution can

be rewritten as:
min{ny_l:j}

hj = > (- k) Yk (9-31)
k=max{0,j —n,+1}
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9.3.1.2 Definition of the Discrete Nonperiodic Correlation

For correlation, a similar situation exists. For the idealized case of infinitely long
data lengths, the definition of discrete nonperiodic correlation of two data sets, z
and y, is given as:

np—1

hi= > T(jsk)Vk (9-32)
k=0

for 1 —ny<j<ng —1

Here, ny, is the total number of points to be output from the correlation
subroutine, n; is the number of points in the = array, and n, is the number
of points in the y array.

Because of the finite lengths of the arrays, the relationships given by Equations
(9-29) and (9-30) are used:

Zp =0 when k<0 or k>ng—1
Y =0 when £ <0 or k>ny—1

For this case, the definition of nonperiodic correlation can be rewritten as:

min{n,—jny}—-1

hj = Z T(j+k) Yk (9-33)
k=max{0,—5}

Many variations on the definitions of convolution and correlation given in
Equations (9-28) and (9-32) exist, but CXML uses the definitions given by
these equations. Some definitions of convolution and correlation contain a
normalization factor such as a 1/N term in front of the summation symbol
where N is usually nj as given in the CXML definitions. CXML subroutines do
not use a normalization factor.

9.3.1.3 Periodic Convolution and Correlation

For periodic convolution, CXML uses the nonperiodic definition with a few

differences. For 0<5;<n — 1:
n—1

hj = Z Z(j—k)Yk (9-34)
k=0
For periodic correlation, CXML uses the following definition. Again, for 0<;<n—1:

n—1
h; = Z T(5+k)Yk (9-35)
k=0
z and y are periodic with period n, that is, (;+,) = 2j, y(j+n) = y;. The data length
of the output A array is equal to that of the =z and y array.
If the subscript on either z or y is out of range, the value is that of the folded
array. Folding is simply a modulus operation which implies periodicity.

As with nonperiodic convolution and correlation, no normalization factor is used
in front of the summation symbol in the definition of periodic convolution and
correlation.

For more information on periodic convolution and correlation, refer to the
references given in Appendix D.
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9.3.2 CXML’s Convolution and Correlation Subroutines

CXML includes a wide variety of discrete convolution and correlation subroutines
that support both periodic (circular) and nonperiodic (linear) convolution and
correlation. Each subroutine is available for both real and complex data and for
single-precision and double-precision arithmetic.

9.3.2.1 Using FFT Methods for Convolution and Correlation

CXML provides subroutines for calculating discrete convolutions and correlations
by using a discrete summing technique. Other techniques that use fast Fourier
transforms for calculating convolutions and correlations also exist, but they are
not part of CXML.

When data lengths are large and there is a time-critical need for computing
convolution and correlation functions, these FFT methods should be used. The
data lengths must be large because the FFT methods introduce distortion near
the edges of the data, unless there is true periodicity in the data, the data is well
behaved near the ends, and many periods are sampled.

For more information on performing convolution and correlation with FFTs, refer
to the references given in Appendix D.

9.3.2.2 Naming Conventions

A convolution or correlation subroutine has a name composed of character groups
that tell you about the subroutine’s operation. Table 9-13 shows the character
groups used in the subroutine names and what they mean.

Table 9-13 Naming Conventions: Convolution and Correlation Subroutines

Character Group Mnemonic Meaning
First group S Single-precision real data
D Double-precision real data
C Single-precision complex data
Z Double-precision complex data
Second group CONV Convolution subroutine
CORR Correlation subroutine
Third group _NONPERIODIC Nonperiodic operation
_PERIODIC Periodic operation
_NONPERIODIC_EXT Nonperiodic operation with
extension®
_PERIODIC_EXT Periodic operation with
extension®

1The subroutines with extensions provide many additional arguments to control the result.

For example, SCORR_PERIODIC is the CXML subroutine for calculating in
single-precision arithmetic the periodic correlation of two real arrays.
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9.3.2.3 Summary of Convolution and Correlation Subroutines
Tables 9-14 and 9-15 summarize the convolution and correlation subroutines.

Table 9-14 Summary of Convolution Subroutines

Subroutine Name

Operation

SCONV_NONPERIODIC
DCONV_NONPERIODIC
CCONV_NONPERIODIC
ZCONV_NONPERIODIC
SCONV_PERIODIC
DCONV_PERIODIC
CCONV_PERIODIC
ZCONV_PERIODIC
SCONV_NONPERIODIC_EXT
DCONV_NONPERIODIC_EXT
CCONV_NONPERIODIC_EXT
ZCONV_NONPERIODIC_EXT
SCONV_PERIODIC_EXT
DCONV_PERIODIC_EXT
CCONV_PERIODIC_EXT

ZCONV_PERIODIC_EXT

Calculates, in single-precision arithmetic, the
nonperiodic convolution of two real arrays.

Calculates, in double-precision arithmetic, the
nonperiodic convolution of two real arrays.

Calculates, in single-precision arithmetic, the
nonperiodic convolution of two complex arrays.

Calculates, in double-precision arithmetic, the
nonperiodic convolution of two complex arrays.

Calculates, in single-precision arithmetic, the
periodic convolution of two real arrays.

Calculates, in double-precision arithmetic, the
periodic convolution of two real arrays.

Calculates, in single-precision arithmetic, the
periodic convolution of two complex arrays.

Calculates, in double-precision arithmetic, the
periodic convolution of two complex arrays.

Calculates, in single-precision arithmetic, the
nonperiodic convolution of two real arrays.

Calculates, in double-precision arithmetic, the
nonperiodic convolution of two real arrays.

Calculates, in single-precision arithmetic, the
nonperiodic convolution of two complex arrays.

Calculates, in double-precision arithmetic, the
nonperiodic convolution of two complex arrays.

Calculates, in single-precision arithmetic, the
periodic convolution of two real arrays.

Calculates, in double-precision arithmetic, the
periodic convolution of two real arrays.

Calculates, in single-precision arithmetic, the
periodic convolution of two complex arrays.

Calculates, in double-precision arithmetic, the
periodic convolution of two complex arrays.

Table 9-15 Summary of Correlation Subroutines

Subroutine Name

Operation

SCORR_NONPERIODIC
DCORR_NONPERIODIC

CCORR_NONPERIODIC

Calculates, in single-precision arithmetic, the
nonperiodic correlation of two real arrays.

Calculates, in double-precision arithmetic, the
nonperiodic correlation of two real arrays.

Calculates, in single-precision arithmetic, the
nonperiodic correlation of two complex arrays.

(continued on next page)

Using the Signal Processing Subprograms 9-27



Using the Signal Processing Subprograms

9.3 Convolution and Correlation

Table 9-15 (Cont.) Summary of Correlation Subroutines

Subroutine Name

Operation

ZCORR_NONPERIODIC
SCORR_PERIODIC
DCORR_PERIODIC
CCORR_PERIODIC
ZCORR_PERIODIC
SCORR_NONPERIODIC_EXT
DCORR_NONPERIODIC_EXT
CCORR_NONPERIODIC_EXT
ZCORR_NONPERIODIC_EXT
SCORR_PERIODIC_EXT
DCORR_PERIODIC_EXT
CCORR_PERIODIC_EXT

ZCORR_PERIODIC_EXT

Calculates, in double-precision arithmetic, the
nonperiodic correlation of two complex arrays.

Calculates, in single-precision arithmetic, the
periodic correlation of two real arrays.

Calculates, in double-precision arithmetic, the
periodic correlation of two real arrays.

Calculates, in single-precision arithmetic, the
periodic correlation of two complex arrays.

Calculates, in double-precision arithmetic, the
periodic correlation of two complex arrays.

Calculates, in single-precision arithmetic, the
nonperiodic correlation of two real arrays.

Calculates, in double-precision arithmetic, the
nonperiodic correlation of two real arrays.

Calculates, in single-precision arithmetic, the
nonperiodic correlation of two complex arrays.

Calculates, in double-precision arithmetic, the
nonperiodic correlation of two complex arrays.

Calculates, in single-precision arithmetic, the
periodic correlation of two real arrays.

Calculates, in double-precision arithmetic, the
periodic correlation of two real arrays.

Calculates, in single-precision arithmetic, the
periodic correlation of two complex arrays.

Calculates, in double-precision arithmetic, the
periodic correlation of two complex arrays.

9.4 Digital Filtering

Digital filters are subroutines that eliminate certain frequency components from
a signal which has been corrupted with unwanted noise. CXML provides a
nonrecursive filter (also known as a finite impulse response filter) which can be

used in four ways:

< Lowpass filter

Eliminates frequency components above one value.

= Highpass filter

Eliminates frequency components below one value.

= Bandpass filter

Eliminates frequency components except those within a certain range.

= Bandstop (notch) filter

Eliminates frequency components within a certain range.

The CXML nonrecursive filter is an adaptation of the Iy — sinh filter originally

proposed by Kaiser.
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9.4.1 Mathematical Definition of the Nonrecursive Filter

The transfer function of a nonrecursive digital filter, denoted as H(f), determines
the range of frequencies that are eliminated by a filter. Putting a sinusoidal
function of frequency f into the filter results in the output being the same as the
sinusoid, except that its amplitude is multiplied by H(f). The transfer function
H(f) can take on any of the forms shown in Figure 9-1.

Figure 9-1 Digital Filter Transfer Function Forms

Ideal lowpass filter Ideal highpass filter
1 1
H(f) H(f)
0 0
0 f1 fc 0 f1 fc
frequency frequency
Ideal bandpass filter Ideal bandstop filter
1 1
H(f) H(f)
0 0
0 fl f2 fc 0 f1 f2 fc
frequency frequency

MR-4183-RA

In Figure 9-1 fc refers to the Nyquist frequency 1/(24¢), At is the time between
data samples, and f1 and f2 refer to the frequency values where filtering is to be
applied.

These ideal filters represent an infinitely sharp band; in practice, as shown in
Figure 9-2, the vertical lines are skewed.

The filtering discussed here pertains only to nonrecursive filters of the form:

niterms

Yn = AgZn + Z Ak(m(n+k) + m(n_k)) (9-36)
k=1

where y, is the dependent variable synthesized by the use of previous dependent
values z, A are the filter-dependent coefficients, and nterms is the number of
filter coefficients with Ay not included.

9.4.2 Controlling Filter Type

In the filter subroutines SFILTER_NONREC and SFILTER_INIT_NONREC, you
use the flow and fhigh arguments to control the type of filtering. Table 9-16
shows the flow and fhigh argument values associated with particular filtering

types.
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Table 9-16 Controlling Filtering Type

For a filter type of: Set flow to: Set fhigh to:

No filtering 0 1
Lowpass filter 0 0 <fhigh<1
Highpass filter 0<flow<1 1
Bandpass filter 0 < flow < fhigh flow < fhigh < 1
Bandstop filter fhigh < flow < 1 0 < fhigh < flow

9.4.3 Controlling Filter Sharpness and Smoothness

In the filter subroutines SFILTER_NONREC and SFILTER_INIT_NONREC, you
use the nterms and wiggles arguments to control the sharpness and smoothness
of the filter.

Figure 9-2 shows the transfer function of a lowpass nonrecursive filter where
wiggles = 50.0, flow = 0.0, and fhigh = 0.5, for nterms = 5, 10, 20, and 50.

Figure 9-2 Lowpass Nonrecursive Filter for Varying Nterms
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The nterms argument determines the sharpness of the filter. When nterms is
increased, the filter cutoff is sharper. Though it seems that using the largest
possible value for nterms results in a sharper filter, 2(nterms) number of data
points from the original set are not filtered. If the data set is large, the loss

of data caused by the filtering process is inconsequential. However, the loss of
data can be detrimental to smaller data sets. In addition, the computational
time increases proportionally to the value of nterms. Try to make the value of
nterms as large as possible without losing too many end points or making the
computational time too long.

Figure 9-3 shows the transfer function of a lowpass nonrecursive filter where
flow = 0.0, fhigh = 0.5, and nterms = 10, for wiggles = 0, 30, 50, and 70.
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Figure 9-3 Lowpass Nonrecursive Filter for Varying Wiggles
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The wiggles argument controls the smoothness of the filter. The wiggles, which
are related to the size of Gibbs Phenomenon oscillations, are most prominent
when the value of the wiggles argument is 0.0. As the value of wiggles is
increased, the oscillations become less noticeable; however, the sharpness of the
filter decreases. A good compromise is to set wiggles = 50.0.

The size of the oscillations (in -dB units) is related to the value of the wiggles
argument: '
[Magnitude of Oscillations| = 10(~Wiggles/20.0) (9-37)

9.4.4 CXML'’s Digital Filter Subroutines
CXML includes three subroutines for nonrecursive filtering. These subroutines
are of two types, each of which does the filter operation in a different way:
= Completes the filter operation in one step.

= Completes the filter operation in two steps.

One subroutine initializes a working array; a second subroutine uses that
working array for repeated operations so that the working array need only be
calculated once.

The CXML filtering subroutines have single-precision capability; they do not have
double-precision capability.

9.4.4.1 Naming Conventions

A filter subroutine has a name composed of character groups that tell you about
the subroutine’s operation. Table 9-17 shows the character groups used in the
subroutine names and what they mean.
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Table 9-17 Naming Conventions: Digital Filter Subroutines

Character Group Mnemonic Meaning
First group S Single-precision real data
Second group FILTER Filtering subroutine
Third group No mnemonic One-step filter
_INIT Two-step filter initialization
_APPLY Two-step filter application
Fourth group _NONREC Nonrecursive filter

9.4.4.2 Summary of Digital Filter Subroutines
Table 9-18 summarizes the filter subroutines.

Table 9-18 Summary of Digital Filter Subroutines

Subroutine Name Operation

SFILTER_NONREC Performs the filter operation in one step
SFILTER_INIT_NONREC Initializes a working array
SFILTER_APPLY_NONREC Uses the initialized working array for repeated

filtering operations

9.5 Error Handling

The signal processing functions report success or error, using a status function
value. To include the error code and data structure definitions in a signal
processing application program, you must put the following information at the
beginning of your program:

e OpenVMS:

Fortran - INCLUDE 'SYS$LIBRARY:DXMLDEF.FOR’
C - #include "sys$library:dxmldef.h"

e Tru64 UNIX and Windows NT:

Fortran - INCLUDE 'DXMLDEF.FOR’
C - #include "dxmldef.h"

A callable error routine is provided for the signal processing routines. On Tru64
UNIX and Windows NT systems, this routine is called dxml_sig_error . On
OpenVMS systems, this routine is called dxmi$sig_error . The following example,
Example 9-1 shows how this routine is used.
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Example 9-1 Example of Error Routine for Signal Processing

PROGRAM EXAMPLE
INCLUDE 'DXMLDEF.FOR’

COMPLEX*8 A(8),0UTA(8),B(8),0UTB(8)
COMPLEX*8 DIFF(8),W,G0,G1,AA
REAL*4 TWOPI,TO

INTEGER*4 T,K,|,NT,STATUSN

RECORD /DXML_D_FFT_STRUCTURE/ FFT_STRUCT

N =8
TWOPI=6.283185307
TO=TWOPI/FLOAT(8)
W=CMPLX(COS(T0),(-L.0)*SIN(T0))
AA=(0.9,0.3)

C Compute the raw data for the transform
B(1)=(1.0,0.0)
DO 1 T=28

1 B(T)=AA*(T-1)

C Calculate the analytical transform of the function
NT=8
G0=(1.0,0.0)-AA**NT

DO 5 I=LNT
G1=(1.0,0.0)-AA*(W*(-1))
5 OUTA()=G0/G1

TYPE 100
100 FORMAT(//,3X,FOR REAL FORWARD FFT WITH 8 POINTS ’,
1 /I,3X;POINT’, T11 ANALYTICAL RESULT',T37,COMPUTED RESULT,
2 T65/DIFF.))

C Compute the transform of the function using CXML routines
ISTAT = CFFT_INIT (0,FFT_STRUCT,.TRUE.)
IF (ISTAT.NE.DXML_SUCCESS()) CALL DXML_SIG_ERROR (ISTAT)

ISTAT = CFFT_APPLY (C'/C',F,B,OUTB,FFT_STRUCT,1)
IF (ISTAT.NE.DXML_SUCCESS()) CALL DXML_SIG_ERROR (ISTAT)

ISTAT = CFFT_EXIT (FFT_STRUCT)
IF (ISTAT.NE.DXML_SUCCESS()) CALL DXML_SIG_ERROR (ISTAT)

C Calculate the difference between the computed and analytical solution
C to the transform

DO 10 I=1,NT
10 DIFF(I)=OUTB(I)-OUTA(l)

C Print out the results

DO 20 I=1,NT

TYPE 130,1,0UTA(I),0UTB(I),DIFF(I)
130 FORMAT(2X,12,2X,3(2(1X,1PE11.4)))
20 CONTINUE

STOP
END
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Table 9-19 shows the status functions, the value returned, an explanation of the
error associated with each value, and the appropriate user action suggested to
recover from each error condition.

Table 9-19 CXML Status Functions

Function

Value Description

User Action

DXML_SUCCESS

DXML_MAND_ARG

DXML_ILL_TEMP_ARRAY

DXML_IN_VERSION_SKEW

DXML_ILL_N_IS_ODD
DXML_ILL_WIGGLES

DXML_ILL_FLOW

DXML_ILL_F_RANGE

DXML_ILL_N_RANGE

DXML_ILL_N_NONREC

DXML_ILL_NTERMS

DXML_ILL_LDA

DXML_INS_RES

DXML_BAD_STRIDE

DXML_DIRECTION_NOT _
MATCH

DXML_BAD_DIRECTION_
STRING

0

10

11

12

13

14

15

Successful
execution of SIG
routines

Mandatory
argument is
missing
temp_array is
corrupted

temp_array is from
old version

A value is odd

Value is out of
range
flow is equal to
fhigh

flow or fhigh is out
of range

n is out of range

n is less than
(2*nterms+1)

nterms is out of
range

Ida cannot be less
than n

Virtual memory or
pagefile quota is
not set high enough
for data length

Stride is incorrect

APPLY/INIT
directions different

Direction string is
incorrect
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No action required.

Check the argument list.

Check code and correct the error.

Use the same version of CXML to create
and use the temporary array.

Change n, n1, or n2 to an even value.

Change wiggles to a value that is in
range.

Provide different values for the flow and
fhigh arguments.

Check values of flow and fhigh
arguments and replace with a value
between 0.0 and 1.0, inclusive.

Check description of n for the allowed
length.

Either replace the current value of n
with a value greater than the value
of (2*nterms)+1 or make the value of
nterms smaller.

Replace the current value of the nterms
argument with a value between 2 and
500, inclusive.

Change Ida to a value greater than or
equal to the number of data points in the
row direction.

Either change the data length to a
number that is not prime or increase the
allocated values of the pagefile quota and
virtual memory.

Change the value of stride to an integer
greater than or equal to 1.

Change the value of direction in either
APPLY or INIT to match.

Change the first letter in value for
direction to ‘F’ or ‘B.
(continued on next page)
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Table 9-19 (Cont.) CXML Status Functions

Function Value Description User Action
DXML_BAD_FORMAT_STRING 16 Format string is Change the first letter in format string to
incorrect ‘R or ‘C'.
DXML_OPTION_NOT_ 17 1/0 combination not Refer to description of subprogram for
SUPPORTED supported supported combinations.
DXML_BAD_FORMAT_ 18 Format/direction Refer to description of subprogram for
DIRECTION combination not supported combinations.
supported
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Using the Iterative Solvers for Sparse Linear
Systems

CXML provides subprograms for the iterative solution of sparse linear systems of
equations by means of preconditioned conjugate-gradient-like methods.

This chapter covers the following topics:
= Introduction to iterative solvers (Section 10.1)

= Interface to the iterative solver, including the concepts of matrix-free
formulation of an iterative method and preconditioning (Section 10.2)

= Matrix operations, including storage schemes for sparse matrices and types of
preconditioners Section 10.3

e Iterative methods (Section 10.4)

= Naming conventions (Section 10.5)

= |terative solver subroutine summary (Section 10.6)

= Error handling (Section 10.7)

= Hints on using the iterative solvers (Section 10.8)

= Examples of the use of iterative solvers (Section 10.9)

Many iterative solver subprograms are parallelized for improved peformance on
Tru64 UNIX multiprocessor systems. Section A.1 lists these subprograms,
discusses the use of the parallel library, and addresses performance
considerations.

10.1 Introduction

Many applications in science and engineering require the solution of linear
systems of equations:
Az =1b (10-1)

where A is an n by » matrix and z and b are n vectors. Often, these systems occur
in the innermost loop of the application, and for good overall performance of the
application, it is essential that the linear system solver be efficient. Depending
on the application, the system may be solved either once, or many times with
different right-hand sides.

The linear systems of equations that arise from science and engineering
applications are usually sparse, that is, the coefficient matrix A has a large
number of zero elements. Substantial savings in compute time and memory
requirements can be realized by storing and operating on only the nonzero
elements of A. Solution techniques that exploit this sparsity of the matrix A are
referred to as sparse solvers.
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10.1.1 Methods for Solutions

Methods for the solution of linear systems of equations can be broadly classified
into two categories:

= Direct Methods
These methods first factor the coefficient matrix A into its triangular factors
and then perform a forward and backward solve with the triangular factors
to get the required solution. The solution is obtained in a finite number of
operations, usually known apriori, and is guaranteed to be as accurate as the
problem definition.

See Chapter 11 for details about direct methods.

e Iterative Methods
These methods start with an initial guess to the solution, and proceed
to calculate solution vectors that approach the exact solution with each
iteration. The process is stopped when a given convergence criterion is
satisfied. The number of iteration steps required for convergence varies with
the coefficient matrix, the initial guess and the convergence criterion—thus
an apriori estimate of the number of operations is not possible.

The convergence of iterative techniques is often accelerated by means of a
preconditioner. Instead of solving (10-1), the iterative technique is applied
to a system derived from the original system (10-1), with better convergence
properties. As a result of preconditioning, the number of operations per
iteration is increased, but the corresponding reduction in the number of
iterations required for convergence usually leads to an overall reduction in
the total time required for solution.

Currently, CXML provides iterative methods only for real double-precision data.

10.1.2 Describing the Iterative Method

While direct methods for the solution of sparse linear systems are relatively well
understood and their algorithms are for general purpose, iterative methods are
not so well established and their algorithms tend to be more special purpose.

It is well known that there is no general effective iterative algorithm for the
solution of an arbitrary sparse linear system, only collections of algorithms

each suitable for a particular class of problem. Additionally, there are no strict
convergence theorems for some of the iterative methods, and choosing a good
iterative technique and preconditioner, both in terms of its convergence properties
and its performance on a given architecture, is more of an art than a science.
This choice depends on various factors such as the problem being solved, the
data structures used, the architecture of the machine, and the amount of memory
available.

Despite these drawbacks, for certain classes of problems, an appropriate iterative
technique can yield an approximation to the solution significantly faster than a
direct method. Also, iterative methods typically require less memory than direct
methods and hence can be the only means of solution for some large problems. In
an attempt to compensate for the lack of robustness of any single iterative method
and preconditioner, CXML provides a variety of methods and preconditioners.

All these methods belong to the class of preconditioned conjugate-gradient-type
methods. A good introduction to these iterative methods and preconditioners is
given in the bibliography in Appendix D.
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10.2 Interface to the lterative Solver

The interface to the iterative solver requires as input, the matrix 4, the right
hand side b and an initial guess to the solution. However, due to the large
number of storage schemes in use for the storage of sparse matrices, it is not
possible to provide an interface that allows all possible storage schemes. CXML
resolves this issue by using the matrix-free formulation of the iterative method,
as suggested in the proposed iterative standard [Ashby and Seager 1990].

All the iterative techniques provided in CXML refer to the coefficient matrix A,
or matrices derived from it such as the preconditioner, only in the following three
operations:

= Creation of the preconditioner
= Multiplication of the coefficient matrix by a vector
= Application of the preconditioner

The preconditioner is created from the coefficient matrix prior to a call to the
iterative solver routine.

The matrix-free formulation of an iterative method separates the operations of
matrix-vector product and the application of the preconditioner from the rest of
the iterative solver by considering them as subroutines that are called by the
iterative algorithm. These subroutines have a standard interface independent of
the storage scheme used for the coefficient matrix. By writing the subroutines
to provide the required functionality for the storage scheme under consideration,
the same iterative solver can be used for matrices stored using different storage
schemes.

While the matrix-free formulation has the advantage of making the iterative
solver independent of the matrix storage format and the problem being solved,

it has the disadvantage that you have to write the subroutines that perform the
operations on the matrix and the preconditioner. To alleviate this disadvantage
somewhat, CXML provides subroutines for the matrix-vector product, the creation
of the preconditioners and the application of the preconditioners for a select set
of storage schemes and preconditioners. Additionally, driver routine DITSOL_
DRIVER is provided that simplifies these tasks.

Thus, you have the option of either storing the coefficient matrix in one of the
storage schemes provided by CXML and using the subroutines provided, or using
your own storage scheme for the matrix and writing the routines for the matrix
operations. You also have the option of not storing either the coefficient matrix
or the preconditioner, but instead providing the required functionality by some
indirect means.

The examples in Section 10.9 illustrate the various ways in which the iterative
solvers can be used. These examples, along with the hints in Section 10.8 on the
use of the iterative solvers, explain the variety of options provided by CXML.

If you are unfamiliar either with the issues involved in iterative methods or
with the concept of matrix-free formulation of an iterative method, then the
information in these sections should prove helpful.

The next sections further explain the implications of the use of a matrix-free
formulation of an iterative method and describe the interface for the iterative
solver and the routines that provide the matrix operations. To keep the discussion
general, the iterative solver routine is referred to as SOLVER — this is a generic
name and in practice you would call the iterative solver routine by a name
reflective of the iterative method.
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10.2.1 Matrix-Vector Product

The iterative solvers provided in CXML require the evaluation of matrix-vector
products of the form:
v=Ax*u

or:
v=AT xy

where u and » are vectors of length n. This functionality is provided to the
routine SOLVER by the subroutine MATVEC, which has the following standard
parameter list:

MATVEC (JOB, IPARAM, RPARAM, A, 1A, W, U, V, N)

Table 10-1 describes each parameter and its data type.

Table 10-1 Parameters for the MATVEC Subroutine

Argument
Data Type Description
job On entry, defines the operation to be performed:
integer*4 .
job=0:v=Axu
job=1:v=A4T4u
job=2:v=w—-Axu
job=3:v=w— AT xu
On exit, job is unchanged.
iparam On entry, a one-dimensional array of length at least 50, containing the
integer*4 parameters passed to the routine SOLVER. See Table 104 for details.
On exit, the first 50 elements of IPARAM are unchanged.
rparam On entry, a one-dimensional array of length at least 50, containing the
real*8 parameters passed to the routine SOLVER. See Table 10-5 for details.
On exit, the first 50 elements of RPARAM are unchanged.
a On entry, a one-dimensional array for the nonzero elements of the matrix
real*8 A. If MATVEC does not require this matrix to be explicitly stored, a is a
dummy argument. Array A can be used to provide workspace.
On exit, any information related to matrix A is unchanged.
ia On entry, a one-dimensional array for auxiliary information about the
integer*4 matrix A or the array A. If this information is not needed, ia is a dummy
argument. Array IA can be used to provide workspace.
On exit, <a is unchanged.
w On entry, a one-dimensional array of length at least » that contains the
real*8 vector w when job = 2 or 3. The elements of array W are accessed with
unit increment.
On exit, w is unchanged.
u On entry, a one-dimensional array of length at least n that contains the
real*8 vector . The elements of array U are accessed with unit increment.
On exit, u must be unchanged.
\% On entry, a one dimensional array of length at least n.
real*8 On exit, array V contains the vector defined by job. The elements of array
V are accessed with unit increment.
n On entry, the order of the matrix A.
integer*4 On exit, n is unchanged.

The routine MATVEC is an input parameter to the routine SOLVER and should
be declared external in your calling program. It could either provide the required
functionality itself, or act as an interface to a routine that provides the required
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functionality. Suppose the iterative solver requires MATVEC to provide the
functionality for job = 0. Then you would write the routine MATVEC as follows:

SUBROUTINE MATVEC(JOB,IPARAM,RPARAM,A,IA,W,U,V,N)

: (any initializations here)
if necessary

IF (JOB.EQ.0) CALL USER_MATVEC(..)
RETURN
END

where USER_MATVEC is your routine for evaluating the vector A * » and
returning the result in vector ». This enables you to have a routine USER_
MATVEC, which has a parameter list different from the parameter list of
MATVEC. It also allows you to call one of the matrix-vector product routines
included in CXML instead of USER_MATVEC, provided you have stored the
coefficient matrix using one of CXML’s sparse matrix storage schemes. In either
case, you have to provide the routine MATVEC, with the required standard
parameter list. If you use a storage scheme for the coefficient matrix different
from those provided by CXML, or choose not to store the matrix at all, then it is
your responsibility to provide the functionality required by MATVEC. If, however,
you use a storage scheme provided by CXML for the coefficient matrix, then you
provide a routine MATVEC that essentially calls the appropriate CXML routine.

The examples in Section 10.9 illustrate the different ways in which the
interface provided by the routine MATVEC can be used to provide the required
functionality. The reference descriptions at the end of this chapter describe the
matrix-vector product routines for the various storage schemes supported by
CXML.

10.2.2 Preconditioning

Preconditioning is a technique used for improving the convergence of an iterative
method by applying the method to a system derived from the original with better
convergence properties. The convergence of the iterative methods provided in
CXML depends on the condition number and the distribution of the eigenvalues
of the coefficient matrix A. A distribution where the eigenvalues are clustered is
favorable for fast convergence of the iterative method.

A preconditioned iterative method applies the iterative method to an equivalent
system derived from (10-2) as follows:

Qpt*AxQpt+ Qrrao=Ql+b

that is:
Alsg = (10-2)
where:
A,:Qil*A*Ql_al
= Qr*zx
and:
b= Qil b

Qr and Qg are n by n matrices. The matrix Q = Qp, * Qg is called the
preconditioning matrix or the preconditioner. The matrices Q7 and Qg are
derived from the coefficient matrix A such that the matrix A’ is close to the
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identity matrix and thus has eigenvalues clustered around unity. As a result

of preconditioning, the iterative method applied to (10-2), with the coefficient
matrix A, right hand side ¢’ and solution =/, usually converges faster than when
it is applied to (10-1).

The implementation of the iterative method for solving (10-2) does not involve the
explicit formation of A’. Instead, the matrices Qz,, Qr and A appear in operations

of the form:
v = Ql_al * U
v=Axu
and:
v = Qil * U

The computation per iteration, in the preconditioned case, is more expensive than
in the unpreconditioned case. This increase in the computation per iteration is
usually offset by a reduction in the number of iterations required for convergence,
leading to a reduction in the total computation.

The matrices @7, and Qg form a good preconditioner if they satisfy the following
properties:

= @ is a good approximation to A so that A’ is close to the identity matrix.

e Qg and Qy, are easily obtainable.

e Solving systems of the form Q; * u = v or Qr * u = v is easy as the
preconditioner is applied via the solution of these systems.

= The storage costs of @, and Qg are not excessive.

Preconditioners can be divided into three broad classes depending on the manner
in which they are applied:

= Left preconditioning:
(@p' *4)xo=(Qp 1)

< Right preconditioning:
(A* Q") * (Qr*a) =1

= Split preconditioning:

Q1+ A+ QpY) * (Qr*2) = (Q;' *b)

Left and right preconditioning can be considered as special cases of split
preconditioning with Qg and @, being the identity matrices, respectively.

In the case of left preconditioning, the residual of the system (10-2), evaluated by
the iterative method is not the same as the residual of the original system (10-1).
The unpreconditioned residual, r, and the preconditioned residual, ', are related
as follows:

P=Qrle(b—Axz)=Qp *r

Similarly, the solution z' evaluated using right preconditioning is related to the
true solution, z, as follows:

o' =Qp+z
It follows that in the case of split preconditioning, neither the true solution nor
the true residual are obtained directly from the application of the iterative

technique to (10-2). Thus, the use of preconditioning implies that extra
computation has to be done to recover the true residual and solution from
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the residual and solution of the equivalent system (10-2). However, there is a
special case of split preconditioning that allows the iterative method to obtain the
true residual and the true solution directly, when applied to a symmetric positive
definite (SPD) matrix A. This is the case where the preconditioner is symmetric
positive definite as well and hence can be written as:

Q=Bx*BT
for some matrix B, that is:
QL =Q% =B.

The interface to the preconditioning operations is provided by the routines
PCONDL and PCONDR for left and right preconditioning, respectively. The two
routines have similar parameter lists, differing only in the matrices Q7 and Qg:

SUBROUTINE PCONDR (JOB, IPARAM, RPARAM, QR, IQR, A, 1A, W, U, V, N)
SUBROUTINE PCONDL (JOB, IPARAM, RPARAM, QL, IQL, A, IA, W, U, V, N)

Table 10-2 describes each parameter and its data type.

Table 10-2 Parameters for the PCONDR and PCONDL Subroutines

Argument
Data Type Description
job On entry, defines the operation to be performed:
integer*4 ] .
job=0:v=Q *u
job=1:v=Q;T+u
job=2: 'uzw—Q;l*u
job =3: vzw—QET*u
On exit, job is unchanged.
iparam On entry, a one-dimensional integer array of length at least 50, containing
integer*4 the parameters passed to the routine SOLVER. See Table 10-4 for details.
On exit, the first 50 elements of IPARAM are unchanged.
rparam On entry, a one-dimensional real array of length at least 50, containing
real*8 the parameters passed to the routine SOLVER. See Table 10-5 for details.
On exit, the first 50 elements of RPARAM are unchanged.
qr On entry, a one-dimensional array for the nonzero elements of the matrix
real*8 Qr. If PCONDR does not require this matrix to be explicitly stored, qr
is a dummy argument. qr can also be used to provide workspace for the
routine PCONDR.
On exit, any information related to the matrix Qr is unchanged.
iqr On entry, a one-dimensional array for auxiliary information about the
integer*4 matrix Qg or the array QR. If no information is required, iqr is a dummy
argument. igr can also be used to provide workspace.
On exit, information related to the matrix Qg or the array QR is
unchanged.
a On entry, a one-dimensional array for the nonzero elements of the matrix
real*8 A. If PCONDR does not require the matrix A to be explicitly stored, a is a

dummy argument. Array A can also be used to provide workspace.
On exit, any information related to the matrix A is unchanged.

(continued on next page)
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Table 10-2 (Cont.) Parameters for the PCONDR and PCONDL Subroutines

Argument

Data Type Description

ia On entry, a one-dimensional array for auxiliary information about the

integer*4 matrix A or the array A. If no information is needed, ia is a dummy
argument. Array IA can also be used to provide workspace.
On exit, any information related to the matrix A or the array A is
unchanged.

w On entry, a one-dimensional array of length at least » that contains the

real*8 vector w when job = 2 or 3. The elements of array W are accessed with
unit increment.
On exit, w is unchanged.

u On entry, a one-dimensional array of length at least » that contains the

real*8 vector . The elements of array U are accessed with unit increment.
On exit, u must be unchanged.

\% On entry, a one-dimensional array of length at least n.

real*8 On exit, array V contains the vector defined by job. The elements of array
V are accessed with unit increment.

n On entry, the order of the matrix A.

integer*4 On exit, n is unchanged.

PCONDL and PCONDR are input parameters to SOLVER and, if used, must be
declared external in your program. If only one of these preconditioning options is
used, then the argument for the other is a dummy input parameter to SOLVER. If
no preconditioning is used, both PCONDL and PCONDR are dummy parameters.
The routines PCONDL and PCONDR are called by the iterative solver only if
you request their use by setting an appropriate parameter for preconditioning, as
explained in Section 10.2.4. This implies that you do not have to provide dummy
routines for either PCONDL or PCONDR if they are not being used by SOLVER.

The preconditioning routines, PCONDL and PCONDR, only apply the
preconditioner; you are responsible for setting up the preconditioner before

the call to the routine SOLVER. The pointers to the matrix A, that is, arrays

A and IA are passed to the preconditioner for use by those routines that are
dependent on A, such as polynomial preconditioners. If the preconditioning
routine does not use A, both A and IA may be dummy arguments. Any workspace
for use by the preconditioner can be passed through the arrays QL, QR, IQL, and
IQR.

In the case of split SPD preconditioning, the iterative technique requires the
solution of a system of the form @ * v = v. An explicit split of the preconditioning
matrix Q into @, and Qg is not required. As a result, only one of the routines
PCONDL or PCONDR is needed. CXML provides the required functionality
through the routine PCONDL, that is, PCONDL provides the solution of the
system @ = v = v when the job argument is set to zero and PCONDR is not used.

If the iterative solver is called with preconditioning, then you must provide the
appropriate routines PCONDL and PCONDR with the standard parameter list.
As in the case of MATVEC, the required functionality could be provided either
by your own routines or by calls to the appropriate CXML routines from within
PCONDL and PCONDR. The examples in Section 10.9 illustrate the different
ways in which the interface provided by the routines PCONDL and PCONDR can
be used to provide the required functionality. Section 10.3.2 and the reference
descriptions at the end of this chapter describe the routines for creating and
applying the preconditioners for the various storage schemes supported by CXML.

10-8 Using the Iterative Solvers for Sparse Linear Systems



Using the Iterative Solvers for Sparse Linear Systems
10.2 Interface to the Iterative Solver

10.2.3 Stopping Criterion

An important aspect of any iterative solver is the stopping criterion, that is, the
conditions that determine when the iterations are stopped. The stopping criterion
usually has two parts: a quantity that is measured and a positive constant ¢
that the quantity is measured against to determine convergence. The choice of
each is crucial as the stopping criterion should accurately reflect when a suitable
approximation to the solution has been obtained.

In order for the evaluation of the stopping criterion to form a small fraction of the
total computation, it should be easy to obtain the quantity that is measured from
the iterative technique. Additionally, the constant ¢ must be chosen appropriately.
A large value might result in a solution that does not have the required accuracy,
while a small value might imply extra computation to achieve unneeded extra
accuracy. Setting epsilon too small might also prevent the stopping criterion from
ever being satisfied.

CXML provides you with the option of either writing your own stopping criterion
or using one of the stopping criteria provided. The latter are based on the
residual, r;, of the system (10-1) at the :-th step of the iteration:

T‘Z':b—A*Ii

and the preconditioned residual, r;., of the system (10-2) at the :-th step of the
iteration:
ri=Qr x(b— Axg)
The four stopping criteria provided by CXML are as follows:
e Stopping Criterion 1:

llrsll2 < e (10-3)
e Stopping Criterion 2:
|I7s ]2 <e (10-4)
1612
= Stopping Criterion 3:
Irill2 < e (10-5)
= Stopping Criterion 4:
lIrill2
<e (10-6)
18]l
where:
and:
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You can choose one of these stopping criteria by setting the value of an
appropriate input parameter as explained in Section 10.2.3. In the case of

an unpreconditioned iterative technique, the choice of stopping criterion (10-5)
or (10-6) defaults to (10-3) or (10-4), respectively. Stopping criteria (10-4) and
(10-6) require that the denominator should be nonzero to avoid a division by
zero error. Some stopping criteria might require more computation than others
depending on what can be easily obtained from the iterative technique. For
example, the left hand side of (10-3) is calculated during the unpreconditioned
conjugate gradient technique and hence very little extra computation is needed
for the evaluation of (10-3) or (10-4).

CXML also provides you with the option of implementing your own stopping
criterion via the routine MSTOP, which has the following standard parameter
list:

SUBROUTINE MSTOP (IPARAM, RPARAM, X, R, Z, B, N)

Table 10-3 describes each parameter and its data type.

Table 10-3 Parameters for the MSTOP Subroutine

Argument

Data Type Description

iparam On entry, a one-dimensional array of length at least 50, containing the

integer*4 parameters passed to the routine SOLVER. See Table 10-4 for details.
On exit, the first 50 elements of IPARAM are unchanged.

rparam On entry, a one-dimensional array of length at least 50, containing the

real*8 parameters passed to the routine SOLVER. See Table 10-5 for details.
On exit, the first 50 elements of RPARAM are unchanged, with the
exception of RPARAM(2) that contains the left side of the stopping
criterion as evaluated by MSTOP.

X On entry, a one-dimensional array of length at least » that contains the

real*8 approximation to the solution obtained at the iteration number, sters in
IPARAM(10).
On exit, x is unchanged.

r On entry, a one-dimensional array of length at least n that contains the

real*8 true residual of the system (10-1) obtained at the iteration number, iters
in IPARAM(10). See the reference descriptions of the iterative solvers for
conditions under which r is defined.
On exit, r must be unchanged.

z On entry, a one-dimensional array of length at least n that contains the

real*8 preconditioned residual of the system (10-2) obtained at the iteration
number, ¢ters in IPARAM(10). See the reference descriptions of the
iterative solvers for conditions under which z is defined.
On exit, z is unchanged.

b On entry, a one-dimensional real array of length at least n that contains

real*8 the right-hand side of the system (10-1).
On exit, b must be unchanged.

n On entry, the order of the matrix A.

integer*4 On exit, n is unchanged.

By providing an interface to the routine MSTOP, CXML allows you to use a
stopping criterion derived from the vectors z, r, z and b, which is different

from the standard stopping criteria provided by CXML. Based on the input
parameters, the routine MSTOP should evaluate the left side of the convergence
test and return the value in RPARAM(2) as explained in Section 10.2.4. The
iteration count parameter, iters (IPARAM(10)), allows you to evaluate quantities
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depending upon the iteration, such as the initial residual norm, or print out
information on each iteration. MSTOP is an input parameter to the routine
SOLVER and, if used, should be declared external in your calling program.

10.2.4 Parameters for the Iterative Solver

The interface to the iterative solver provided by CXML allows you to pass
information to the solver such as the maximum number of iterations allowed
and the 1/0O unit number for output, as well as to obtain information back from
the solver such as the number of iterations required for convergence and error
messages. This information is passed via two arrays — IPARAM for integer
parameters and RPARAM for real parameters. These arrays are of length at
least 50, with the first 30 elements reserved for use by the proposed standard
and next 20 for use by CXML. Tables 10-4 and 10-5 describe the elements of the
parameter arrays.

Table 10-4 Integer Parameters for the Iterative Solver

Parameter Variable  Description

IPARAM(1) nipar Length of the array IPARAM, > 50.

IPARAM(2) nrpar Length of the array RPARAM, > 50.

IPARAM(3) niwk Length of the array IWORK, size varies with iterative solvers.
IPARAM(4) nrwk Length of the array RWORK, size varies with iterative solvers.
IPARAM(5) tounit 1/0 unit for providing information generated by SOLVER. If

tounit > 0, output is written to UNIT = iounit, which must
be opened in the calling program. If tounit < 0, no output is
generated by the routine SOLVER.

IPARAM(6) tolevel Determines the kind of information output when zounit > 0:

iolevel = 0 : Fatal error messages only

iolevel = 1 : Warning messages and minimum output
iolevel = 2 . Reasonable summary

tolevel >3 : More detailed information

IPARAM(7) ipcond Determines the form of preconditioning:

ipcond = 0 : no preconditioning; IQR, IQL, QR, QL,
PCONDL, PCONDR are dummy arguments

ipcond = 1 : left preconditioning; IQR, QR, PCONDR are
dummy arguments

ipcond = 2 : right preconditioning; IQL, QL, PCONDL are
dummy arguments

ipcond = 3 : split preconditioning

ipcond = 4 : SPD split preconditioning; IQR, QR, PCONDR
are dummy arguments

(continued on next page)
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Table 10—4 (Cont.) Integer Parameters for the Iterative Solver

Parameter Variable

Description

IPARAM(8)  istop

IPARAM(9) itmas

IPARAM(10)  iters

IPARAM(31)  nz

IPARAM(32)  ndim
IPARAM(33)  ndeg
IPARAM(34)  kprev

IPARAM(35)  istore

IPARAM(36)  iprec

IPARAM(37)  isolve

Determines the stopping criterion:

1stop = 0 : user-supplied routine MSTOP

1stop = 1 : stopping criterion (10-3) (default)

istop = 2 : stopping criterion (10-4)

1stop = 3 : stopping criterion (10-5); if no preconditioning
used, defaults to sstop =1

istop = 4 : stopping criterion (10-6); if no preconditioning
used, defaults to sstop = 2

Maximum number of iterations allowed for convergence. If
convergence is not achieved in stmaz iterations the solver
returns with error flag set. Default = 100

Number of iterations required to satisfy the convergence
criterion.

Parameter related to the number of nonzeros stored for the
matrix. See the storage schemes in Section 10.3.1 for more
details.

Leading dimension of 2 dimensional arrays. See the storage
schemes in Section 10.3.1 for more details.

Degree of the polynomial used for polynomial preconditioning.
Default = 1

Number of previous residual vectors used in the iterative solver
DITSOL_PGMRES. See the reference descriptions for details.

Storage scheme used in the driver routine:

istore = 1 : SDIA storage scheme, lower triangular part is
stored (Section 10.3.1.1)

istore = 2 : SDIA storage scheme, upper triangular part is
stored (Section 10.3.1.1)

1store = 3 : UDIA storage scheme (Section 10.3.1.2)

1store = 4 . GENR storage scheme (Section 10.3.1.3)

Preconditioner used in the driver routine:

tprec = 1 : diagonal preconditioner (Section 10.3.2.1)
iprec = 2 : polynomial preconditioner (Section 10.3.2.2)
tprec = 3 : ILU preconditioner (Section 10.3.2.3)

Iterative solver used in the driver routine:

1solve = 1 : Conjugate gradient method

1solve = 2 . Least squares conjugate gradient method
1solve = 3 . Bi-conjugate gradient method

1solve = 4 : Conjugate gradient squared method

1solve = 5 : Generalized minimum residual method

1solve = 6 . Transpose-free quasiminimal residual method
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Table 10-5 Real Parameters for the Iterative Solver

Parameter Variable  Description

RPARAM(1) errtol(e)  User-supplied tolerance for convergence.

RPARAM(2) stptst Quantity that determines the convergence of the iterative
technique. (lefthand side of stopping criterion)

The elements of the arrays IPARAM and RPARAM not defined in Table 10-4 and
Table 10-5 have no variable assigned to them at present, but are reserved for
future use by CXML. The arrays IPARAM and RPARAM are passed to the routine
SOLVER and all the routines called by it (MATVEC, PCONDL, PCONDR and
MSTOP). If necessary, you can use these arrays to pass additional information to
these routines. For example, if you declare these arrays to be of dimension 100,
then the elements from 51 to 100 can be used to pass information to the routines
MATVEC, PCONDL, PCONDR and MSTOP. However, the first 50 elements are
for the exclusive use of the proposed standard and CXML.

CXML allows you to set the variables in the IPARAM and RPARAM arrays
to their default values by a call to the routines DITSOL_DEFAULTS with the
following interface:

SUBROUTINE DITSOL_DEFAULTS (IPARAM, RPARAM)

Table 10-6 defines the default values set by the routine DITSOL_DEFAULTS.
After a call to DITSOL_DEFAULTS, you can change any of the parameters as
required. It is your responsibility to ensure that the variables in the arrays
IPARAM and RPARAM have been assigned appropriate values before a call to
the iterative solver routine. The examples in Section 10.9 illustrate the use of the
routine DITSOL_DEFAULTS further.

Table 10-6 Default Values for Parameters

Parameter Variable Default Value
iparam(1) nipar 50
iparam(2) nrpar 50
iparam(5) tounit

iparam(6) tolevel

iparam(7) ipcond

iparam(8) istop

iparam(9) itmasz 100
iparam(33) ndeg 1

rparam(1) errtol 1.0e-6

10.2.5 Argument List for the Iterative Solver

The matrix-free formulation of the iterative method adopted by CXML implies
that the routine SOLVER has, as input parameters, the routines MATVEC,
PCONDL, PCONDR, and MSTOP. Additionally, the parameter list also contains
the arrays A, 1A, QL, IQL, QR, and IQR for use by the routines for the matrix
operations (MATVEC, PCONDL, PCONDR) as well as input parameters such
as the size of the system, the right side, and the initial approximation. The
approximation to the solution obtained by the solver is returned in the vector
z. Real and integer workspace is provided via arrays RWORK and IWORK,
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respectively and real and integer parameters via arrays RPARAM and IPARAM,
respectively. This results in the following interface for the routine SOLVER:

SUBROUTINE SOLVER (MATVEC, PCONDL, PCONDR, MSTOP, A, IA, X, B, N, QL, 1QL,

QR, IQR, IPARAM, RPARAM, IWORK, RWORK, IERROR)

Table 10-7 describes each parameter and its data type.

Table 10-7 Parameters for the SOLVER Subroutine

Argument
Data Type

Description

matvec
procedure

pcondl
procedure

pcondr
procedure

mstop
procedure

real*8

ia

integer*4

real*8

real*8

On entry, a user-supplied name for the routine that evaluates the matrix-
vector product. matvec uses the standard interface and must be declared
external in your calling program. See Table 10-1.

On exit, matvec is unchanged.

On entry, a user-supplied name for the routine that applies left
preconditioning. pcondl uses the standard interface. See Table 10-2.

If left preconditioning is not used, pcondl is a dummy parameter. If used,
pcondl must be declared external in your calling program. The variable
ipcond in IPARAM(7), must be set appropriately for access to the PCONDL
routine.

On exit, pcondl is unchanged.

On entry, a user-supplied name for the routine that applies right
preconditioning. pcondr uses the standard interface. See Table 10-2.
If right preconditioning is not used, pcondr is a dummy parameter. If
used, pcondr must be declared external in your calling program. The
variable ipcond, IPARAM(7), must be set appropriately for access to the
PCONDR routine.

On exit, pcondr is unchanged.

On entry, a user-supplied name for the routine that evaluates a stopping
criterion defined by you. mstop has the standard interface. See

Table 10-3. If used, it must be declared external in your calling program.
The variable istop, IPARAM(8), must be set appropriately for access to the
MSTOP routine. If not used, that is, you use one of the CXML stopping
criteria, mstop is a dummy parameter.

On exit, mstop is unchanged.

On entry, a one-dimensional array for the nonzero elements of matrix A. If
the MATVEC, PCONDL and PCONDR routines do not require this matrix
to be explicitly stored, array A may be a dummy array. Array A may also

be used to provide workspace.

On exit, any information related to the matrix A is unchanged.

On entry, a one-dimensional array for auxiliary information about the
matrix A, or the array A. If the information is not needed, array 1A may
be a dummy array. Array IA may also be used to provide workspace.

On exit, any information related to the matrix A or the array A is
unchanged.

On entry, a one-dimensional array of length at least » that contains the
initial approximation to the solution. The elements of array X are accessed
with unit increment.

On exit, x is the approximation to the solution obtained by the routine
SOLVER.

On entry, a one-dimensional array of length at least n that contains the
right side of the system (10-1). The elements of array B are accessed with
unit increment.

On exit, b is unchanged.

(continued on next page)
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Table 10-7 (Cont.) Parameters for the SOLVER Subroutine

Argument
Data Type Description
n On entry, the order of the matrix A.
integer*4 On exit, n is unchanged.
ql On entry, a one-dimensional array for the nonzero elements of the matrix
real*8 Q. If PCONDL does not require this matrix to be explicitly stored, gl is a
dummy array. Array QL may also be used to provide workspace.
On exit, any information related to the matrix @ is unchanged.
iql On entry, a one-dimensional array for auxiliary information about the
integer*4 matrix @ or the array QL. If no information is needed, IQL is a dummy
array. Array IQL can also be used to provide workspace.
On exit, any information related to the matrix @ or the array QL is
unchanged.
qr On entry, a one-dimensional array for the nonzero elements of the matrix
real*8 Qr. If PCONDR does not require this matrix to be explicitly stored, QR is
a dummy array. QR can also be used to provide workspace.
On exit, any information related to matrix Qr is unchanged.
iqr On entry, a one-dimensional array for auxiliary information about the
integer*4 matrix Qg or the array QR. If no information is needed, IQR is a dummy
array. Array IQR can also be used to provide workspace.
On exit, any information related to the matrix Qg or the array QR is
unchanged.
iparam On entry, a one-dimensional array of length at least 50, containing the
integer*4 parameters passed to the routine SOLVER.
On exit, the first 50 elements of IPARAM are unchanged, with the
exception of iters (IPARAM(10)), which is then equal to the number of
iterations required for convergence.
rparam On entry, a one-dimensional array of length at least 50, containing the
real*8 parameters passed to the routine SOLVER.
On exit, the first 50 elements of rparam are unchanged, with the exception
of RPARAM(2) that is equal to the left side of the stopping criterion.
iwork On entry, a one-dimensional array of length niwk, IPARAM(3), used as an
integer*4 integer workspace.
On exit, the data in IWORK is overwritten.
rwork On entry, a one-dimensional array of length nrwk, IPARAM(4), used as a
real*8 real workspace.
On exit, the data in RWORK is overwritten.
ierror On entry, a scalar value that receives the value of the error flag.
integer*4 On exit, the error flag returned by the routine SOLVER.

In addition to the error messages output by the iterative solver, based on the
variable, iolevel (IPARAM(6)), the routine SOLVER also returns an error flag,
ierror. It is your responsibility to check the error flag on exit from SOLVER
and ensure that the solution procedure ended normally. This is especially true
if you have disabled all error messages by setting a negative value for iounit
(IPARAM(5)).
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10.3 Matrix Operations

The matrix-free formulation of the iterative method adopted by CXML isolates
the operations involving the coefficient matrix, A, and the preconditioning
matrices, Q@ and Qp, by separating them into subroutines that form the matrix-
vector product, create the preconditioner and apply the preconditioner. This
formulation allows you to use any storage scheme for storing the coefficient
matrix and the preconditioner, but has the drawback that the routines MATVEC,
PCONDL, PCONDR, and the routine for the creation of the preconditioner have
to be written by you.

As an alternative, CXML provides you with the option of using routines written
to implement the matrix operations for three matrix storage schemes. In addition
to the matrix-vector product operations, CXML provides routines for the creation
and application of three preconditioners for each of the three storage schemes.
Calls to these CXML routines can be used in the routines MATVEC, PCONDL,
and PCONDR to implement the desired operation. The only restriction is that
the coefficient matrix be stored in one of the storage schemes provided by CXML.

10.3.1 Storage Schemes for Sparse Matrices

A sparse matrix is a matrix that has very few nonzero elements. By storing
and operating on only the nonzero elements, it is possible to achieve substantial
savings in memory requirements and computation. In addition to the nonzero
elements, storage is also required for information that determines the position of
each nonzero element in the matrix.

Sparse matrices can be broadly classified as either structured or unstructured
matrices. A structured sparse matrix is one where the distribution of nonzero
elements in the matrix has a specific structure. For example, the matrix A shown
in (10-7) has its nonzero elements along the diagonals of the matrix:

(10-7)

This structure can be exploited to reduce the amount of additional information
that is necessary for the determination of the position of the nonzero elements
within the matrix. For example, consider the elements in the superdiagonal of
the matrix A:

(a12 a3 azs ass ase)

As the elements all lie on a diagonal, the position of each element relative to the
previous element is known (that is, the row and column indices of an element on
the diagonal are one higher than the row and column indices of the preceding
element in the diagonal). If the row and column indices of the first element aq»
are known, the positions of the other elements in the diagonal are also known.
Thus, substantial savings in the storage requirements can be achieved by storing
only the position of the first element in each diagonal.
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Unstructured sparse matrices, such as the matrix A in (10-8), do not have a
structure to the distribution of the nonzero elements:

a1 0 a3 O 0
0 Az az3 0 0
A= 0 a33 0 0 (10—8)
agg 0 0 agqa ags
0 0 as3 0 a5

In such cases, each nonzero element is stored along with its row and column
indices. Some savings in storage is possible if the elements in a row (or column)
are stored contiguously. In such cases, only the row (or column) index for the first
nonzero element of the row (or column) is stored.

CXML subprograms that operate on sparse matrices store them in one of three
ways:

= Symmetric diagonal storage
e Unsymmetric diagonal storage

= General storage by rows

Symmetric Diagonal Storage Scheme

Symmetric matrices whose nonzero elements lie along a few diagonals can be
stored using a scheme that stores only the diagonals and the distance of each
diagonal from the main diagonal. Each diagonal is stored in its entirety, along
with any zeros. The distance of a diagonal from the main diagonal is positive if
the diagonal is above the main diagonal and negative if the diagonal is below the
main diagonal. The main diagonal itself has a distance of zero.

An n by » matrix is stored in a two dimensional array with at least n rows and as
many columns as the number of nonzero diagonals in the strict upper (or lower)
triangular part plus 1 (for the main diagonal). As the matrix is symmetric, either
the upper or lower triangular part can be stored. Both the elements above the
main diagonal and those below the main diagonal retain the row corresponding to
the row in the original matrix. Thus, the matrix A in (10-9) can be stored in the
upper triangular form as shown in (10-10):

a;z 0 0 ag a5 O
0 ap 0 0 ars @26
0 0 a3z O 0 azp
= 10—
4 ag O 0 agq O 0 (10-9)
al5 ass 0 0 ass 0
0 a6 a3p 0 0 age
allr @14 ais
az2 a5 aze
AD= |93 96 ¥ (10-10)
aq4 * *
a55 * *
a66 * *

INDEX = (0,3, 4)
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The first element of INDEX corresponds to the main diagonal of A, which is
stored in AD(*,1). The second element of INDEX implies that the superdiagonal
that is 3 away from the main diagonal is stored in AD(*,2) and so on. The positive
elements in INDEX indicate that the upper triangular part is being stored.

The matrix A can also be stored in the lower triangular form as shown in (10-11):

a’ll k k
a22 k k

AD=|%3 * (10-11)
Qa4 a14 %

G55 @25 @15
66 @36 @26

INDEX = (0, -3, —4)

The asterisk (*) indicates that the element does not belong to the matrix A. These
elements should be set to zero in the array AD. The negative elements in INDEX
indicate that the lower triangular part is being stored.

The array AD is dimensioned as ndzm by nz, where nz is the number of diagonals
stored and ndim is the declared leading dimension of AD as given in the calling
program. The INDEX array has dimension nz. Note that nz can be at most » for
an n by n system.

The characteristics of this storage scheme are as follows:
e The diagonals can be stored in any order.

= Either the upper or the lower triangular part is stored. Thus the elements in
INDEX after the first element, are all positive or all negative.

= Elements which are part of AD, but not part of A, should be set equal to zero.
These are the elements denoted by the asterisk (*).

10.3.1.2 UDIA: Unsymmetric Diagonal Storage Scheme

10-18

This storage scheme follows the same principle as the symmetric diagonal storage
scheme, but both the upper and the lower triangular halves of the matrix are
stored. Thus, the matrix A in (10-12) is stored as shown in (10-13):

a;1 0 0 a4 a5 O
0 ano 0 0 ars  ang
_|@1 O a3z 0 0 oag -
A - 0 aq2 0 aq4 0 0 (10 12)
asq 0 as3 0 asg 0
0 a2 0 aesa O ape

a11 @14 a5 * *
a2 az5  aze  * *
AD = |93 96 % a3 ¥ (10-13)
G44 % ¥ a4p ¥
as5 % * 453 451
agg  * *  Gp4  G62

INDEX = (0,3,4,—2,—4)
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The array AD is dimensioned ndim by nz, where nz is the number of diagonals

stored and ndzm is the leading dimension of the matrix, as given in the calling

program. The array INDEX has dimension nz. For an n by n system, nz can be
at most 2n — 1.

The characteristics of this storage scheme are as follows:
= The diagonals can be stored in any order.

= Elements which are part of AD, but not part of A, should be set equal to zero.
These are the elements denoted by the asterisk (*).

10.3.1.3 GENR: General Storage Scheme by Rows
This storage scheme can be used for storing general unstructured matrices. Each
nonzero element is stored along with its row and column indices. Thus there is a
single array of matrix elements, AR, along with an array of row indices, IA, and
an array of the corresponding column indices, JA.

As the matrix is stored by rows, the row index for all the nonzero elements in a
row is stored only once. The i-th element of array IA points to the start of the i-th
row in arrays JA and AR. For example if 1A(3) = 6, then the third row is stored
starting from the 6-th element in AR and JA. As IA(4) points to the start of the
fourth row, the number of elements in the third row is given by 1A(4)-1A(3). Thus
the matrix A in (10-14) is stored using three vectors as shown in (10-15):

a;z 0 0 ag a5 O

0 app a3 0 0 ay
_|@1 0 azgz 0 azs aze 10-14
A= 0 ag2 0 agq O 0 (10 )

as; O 0 0 a5 O

0 0 a3 aa O aep

AR = (all; a14,a15,a22, @23, @26, @31, @33, ¢35, @36, 342, @44, @51, 55, 463, 464, a’66)
(10-15)
JA =(1,4,5,2,3,6,1,3,5,6,2,4,1,5,3,4,6)
1A = (1,4,7,11,13,15, 18)

The dimension of AR and JA is at least nz, where nz is the number of nonzero
elements in the matrix. 1A is of length n+ 1 (for an n by » matrix), and the last
element is nz + 1. This helps in determining the end of the last row of the matrix
and the number of nonzero elements in the last row. To store all the indices in
one array, both 1A and JA are stored in an array INDEX, with the first n + 1
location used for IA and the rest of the vector used for JA. The length of INDEX

is at least nz + n + 1. Thus, for the previous example, the array INDEX is as
follows:

INDEX = (1,4,7,11,13,15,18,1,4,5,2,3,6,1,3,5,6,2,4, 1,5, 3, 4, 6)

where the first 7 elements form 1A and the rest form JA.

10.3.2 Types of Preconditioners

For each of the three storage schemes for sparse matrices, CXML provides the
routines to create and apply the following three preconditioners:

= Diagonal preconditioner
= Neumann polynomial preconditioner

e Incomplete LU preconditioner
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10.3.2.1 DIAG: Diagonal Preconditioner
This is the simplest of the three preconditioners, with the preconditioning matrix
Q@ chosen as the diagonal of the coefficient matrix A. There is no explicit split of
Q into @7, and Qg. As the diagonal preconditioner approximates the matrix A
by just its diagonal, it is usually not a good preconditioner for a general system
(10-1).

10.3.2.2 POLY: Polynomial Preconditioner

The polynomial preconditioner is derived from the matrix A by first splitting it
into its diagonal and off-diagonal parts and then considering the inverse of A as
a truncated version of a polynomial series expansion. Let the coefficient matrix A
be written as:

A=D-C
—(I-Cc+«DY)«D
—(I-B)*D

where D is the diagonal of 4, —C is the matrix of off-diagonal elements, and
B = C x D~1. By a polynomial series expansion, the inverse of A can be written
as:

A=D1 «(I-B) =D 1«(I+B+B>+B%+..).

A polynomial preconditioner of degree m essentially considers Q1 to be a
truncated version of the series expansion, that is:

Ql=D1«(I+B+B*+B%+..+B™).
This polynomial expansion of the inverse of A is called the Neumann polynomial.

The preconditioner is obtained in the form @1, not Q, and there is no explicit
split into the matrices Q@ and Qg.

The effectiveness of polynomial preconditioners depends on how closely Q1
approximates A~1. This is determined by the matrix A itself as well as the
degree of the polynomial. While a higher degree polynomial usually indicates

a better approximation, it also involves extra computation per iteration. For
preconditioning with a higher degree polynomial to be effective, the reduction in
iterations must be sufficient to offset the extra computation per iteration.

10.3.2.3 ILU: Incomplete LU Preconditioner

The incomplete LU preconditioner obtains a factorization of A into lower and
upper triangular factors, the matrices L and U, respectively, such that the
following conditions are satisfied:

e Matrices L and U have the same nonzero structure as the matrix A.

< Nonzero elements of matrix A are equal to the corresponding element of the
product L = U.

Thus AxL+U=Qand Q-1 =vU"1«11

The factorization is referred to as 'incomplete’ as the product LU has nonzeros in
locations where the matrix A has zeros, that is, the product L = U is not identical
to the matrix A as in the case of a 'complete’ LU factorization.

If A is a symmetric matrix, as in the SDIA storage scheme, an incomplete
Cholesky decomposition is computed with:

v=1LT

Incomplete factorizations usually form good preconditioners especially if the extra
nonzero elements in the product L = U are relatively small.
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10.4 Iterative Solvers

CXML provides six iterative solvers based on the conjugate-gradient and
conjugate-gradient-like techniques:

= DITSOL_PCG: Conjugate gradient method

e DITSOL_PLSCG: Least squares conjugate gradient method

= DITSOL_PBCG: Biconjugate gradient method

= DITSOL_PCGS: Conjugate gradient squared method

e DITSOL_PGMRES: Generalized minimum residual method

e DITSOL_PTFQMR: Transpose-free quasiminimal residual method

Each solver is applicable to a class of problems determined by the properties
of the coefficient matrix A in (10-1) or the preconditioned matrix A' in (10-2)
if preconditioning is used. The reference descriptions of the iterative solver
subprograms at the end of this chapter outline the conditions under which each
method can be applied.

CXML provides you with the option of using each iterative method without
preconditioning as well as with right, left and split preconditioning. Table 10-8
indicates which forms of preconditioning are available for each method.

Table 10—-8 Preconditioners for the lterative Methods

Method None Left Right Split SPD Split
DITSOL_PCG X X
DITSOL_PLSCG X X X X

DITSOL_PBCG X X X X

DITSOL_PCGS X X X X
DITSOL_PGMRES X X X X
DITSOL_PTFQMR X X X X

10.4.1 Driver Routine

CXML includes a driver routine, DITSOL_DRIVER, that incorporates the calls
to the MATVEC, PCONDL, and PCONDR routines so that you do not have to
write these routines. The parameter list of the driver routine is identical to the
parameter list of SOLVER, with the exception of the external routines MATVEC,
PCONDL and PCONDR, which now refer to routines provided by CXML.

By setting values of appropriate parameters in the array IPARAM, you can
choose a solver, a storage scheme and a preconditioner. The preconditioner must
be created prior to the call to the driver routine. The driver routine does not
allow the use of the matrix-free formulation of the iterative solver. The reference
description of the driver routine at the end of this chapter provides further
details.
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10.5 Naming Conventions

The CXML routines can be broadly classified into two: routines related to the
iterative solver and independent of the matrix, and routines that perform the
matrix operations and are thus identified with a storage scheme.

Each routine name starts with the character D to indicate double-precision real
routines. The next character group determines the operation being performed,
namely, iterative solver, matrix-vector product, creation of the preconditioner and
application of the preconditioner. Depending on the operation, the third, fourth
and fifth character groups are chosen to reflect the iterative method, the storage
scheme or the preconditioner.

Table 10-9 shows the naming conventions used for the iterative solver
subroutines. Each routine name is obtained by concatenating the appropriate
options from a character group, each character group separated by an underscore
character.

Table 10-9 Naming Conventions: Iterative Solver Routines

Character
Group Mnemonic Meaning
first D double precision
second ITSOL function of the routine - iterative solver, matrix
MATVEC vector product, creation of preconditioner, or
CREATE application
APPLY of preconditioner.
third DEFAULTS options for the iterative solver
DRIVER
PCG
PLSCG
PBCG
PCGS
PGMRES
PTFQMR
SDIA storage scheme options for matrix vector product
UDIA
GENR
DIAG preconditioner options for creation and application of
POLY preconditioners
ILU
fourth ALL? storage scheme options for creation and application of
SDIA preconditioners
UDIA
GENR
fifth L application of ILU preconditioner for UDIA and GENR
U storage schemes

1This option is for the application of the diagonal preconditioner only.

For example, DMATVEC_UDIA is the routine that obtains the matrix-vector
product for the matrix stored using the unsymmetric diagonal (UDIA) storage
scheme. Similarly, DAPPLY_ILU_GENR_L applies the incomplete LU (ILU)
preconditioner for a matrix stored using the general storage by rows (GENR)
scheme. The L indicates that the lower triangular part of the LU preconditioner
is being considered.
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10.6 Summary of Iterative Solver Subroutines

Tables 10-10, 10-11, 10-12, and 10-13 summarize the subroutines for the
iterative solvers and the matrix operations.

Table 10-10 Summary of Iterative Solver Routines

Routine

Operation

DITSOL_DEFAULTS
DITSOL_DRIVER
DITSOL_PCG
DITSOL_PLSCG

DITSOL_PBCG
DITSOL_PCGS
DITSOL_PGMRES

DITSOL_PTFQMR

Set the default values in the arrays IPARAM and RPARAM
Driver routine for the iterative solvers
Apply the preconditioned conjugate gradient method

Apply the preconditioned least squares conjugate gradient
method

Apply the preconditioned biconjugate gradient method
Apply the preconditioned conjugate gradient squared method

Apply the preconditioned generalized minimum residual
method

Apply the preconditioned transpose-free quasiminimal residual
method

Table 10-11 Summary of Matrix-Vector Product Routines

Routine

Operation

DMATVEC_SDIA

DMATVEC_UDIA

DMATVEC_GENR

Matrix vector product for the symmetric diagonal storage
scheme

Matrix vector product for the unsymmetric diagonal storage
scheme

Matrix vector product for the general storage by rows scheme

Table 10-12 Summary of Preconditioner Creation Routines

Routine

Operation

DCREATE_DIAG_SDIA
DCREATE_DIAG_UDIA
DCREATE_DIAG_GENR
DCREATE_POLY_SDIA
DCREATE_POLY_UDIA
DCREATE_POLY_GENR

DCREATE_ILU_SDIA

Create the diagonal preconditioner for the symmetric
diagonal storage scheme

Create the diagonal preconditioner for the
unsymmetric diagonal storage scheme

Create the diagonal preconditioner for the general
storage by rows scheme

Create the polynomial preconditioner for the
symmetric diagonal storage scheme

Create the polynomial preconditioner for the
unsymmetric diagonal storage scheme

Create the polynomial preconditioner for the general
storage by rows scheme

Create the incomplete LU preconditioner for the
symmetric diagonal storage scheme

(continued on next page)
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Table 10-12 (Cont.) Summary of Preconditioner Creation Routines

Routine Operation

DCREATE_ILU_UDIA Create the incomplete LU preconditioner for the
unsymmetric diagonal storage scheme

DCREATE_ILU_GENR Create the incomplete LU preconditioner for the

general storage by rows scheme

Table 10-13 Summary of Preconditioner Application Routines

Routine Operation

DAPPLY_DIAG_ALL Apply the diagonal preconditioner for all storage
schemes

DAPPLY_POLY_SDIA Apply the polynomial preconditioner for the symmetric
diagonal storage scheme

DAPPLY_POLY_UDIA Apply the polynomial preconditioner for the
unsymmetric diagonal storage scheme

DAPPLY_POLY_GENR Apply the polynomial preconditioner for the general
storage by rows scheme

DAPPLY_ILU_SDIA Apply the incomplete LU preconditioner for the
symmetric diagonal storage scheme

DAPPLY_ILU_UDIA_L Apply the incomplete LU preconditioner for the
unsymmetric diagonal storage scheme (operates on
the L part)

DAPPLY_ILU_UDIA_ U Apply the incomplete LU preconditioner for the
unsymmetric diagonal storage scheme (operates on
the U part)

DAPPLY_ILU_GENR_L Apply the incomplete LU preconditioner for the
general storage by rows scheme (operates on the L
part)

DAPPLY_ILU_GENR_U Apply the incomplete LU preconditioner for the
general storage by rows scheme (operates on the U
part)

10.7 Error Handling

The six iterative solver subroutines include an error flag in the argument list.
This is not an optional argument. On exit from the iterative solver routine, check
its value to ensure that the solver converged normally.

The error flag can have various values. A return value of 0 indicates a normal
return from the solver, with the iterations converging under the specified
conditions. A negative return value implies a fatal error such as incorrect input,
insufficient workspace, or use of a method inapplicable to the problem being
solved. In such cases, a fatal error message is printed out describing the problem
and control is returned to the calling routine. A positive return value of the
error flag indicates a warning, such as a method terminating after reaching

the maximum number of iterations. This is a correctable error if the maximum
number of iterations is set to a low value. However, it could also signal a more
fatal error such as the stagnation of the quantity being measured for convergence.
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Fatal error messages are always printed out. The only exception to this is when
the value of the unit number for output (iounit) is negative. In such cases, no
output is produced by the solver and therefore it is important to check the error
flag on exit.

In addition to the solvers, CXML provides routines for the creation and
application of various preconditioners for matrices stored using various storage
schemes. The preconditioner is created by a call to the appropriate routine prior
to calling the iterative solver. You must ensure that the preconditioner used does
indeed exist. For example, in the case of diagonal preconditioning, the elements
along the diagonal of the matrix must be nonzero. The routines that generate
the preconditioners do not explicitly check for the existence of the preconditioner.
Therefore, you could get an internal exception error, such as division by zero or
square-root of a negative number, that terminates the execution of the program.

In contrast, an error in the iterative solver does not terminate the execution.
Instead, the error flag is set and control returned to the calling program.

Table 10-14 shows the values of the error flags, an explanation of each value and
the action needed to recover from each error. The values —2100 through —2104
indicate a breakdown in the iterative process caused by either an inappropriate
input parameter or the use of an inappropriate method for the problem. The
remaining values, all negative, indicate that input data to the solver is invalid.

Table 10-14 Error Flags for Sparse lterative Solver Subprograms

Error

Flag Description User Action

0 Normal exit No action required.

2001 Method did not converge Increase value of itmax; check that
rparam(2) is not stagnating.

—2001 Invalid ipcond Refer to subprogram description
for valid values and rerun with
acceptable value.

—2002 Invalid iolevel "

—2003 Invalid nipar

-2004 Invalid nrwrk

—2005 Invalid istop

—2006 Invalid errtol "

—2007 Invalid n

—2008 Invalid nrpar

—2009 Zero denominator in the stopping Rerun with a different stopping

criterion criterion.

-2010 Invalid isolve Refer to Table 10-4 for valid values
and rerun with acceptable value.

-2011 Invalid iprec Refer to Table 10—4 for valid values
and rerun with acceptable value.

-2012 Invalid istore Refer to Table 10-4 for valid values

and rerun with acceptable value.
(continued on next page)
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Table 10-14 (Cont.) Error Flags for Sparse Iterative Solver Subprograms

Error
Flag Description User Action
-2100 Preconditioner is not positive-definite Rerun with a different
preconditioner or solver.
-2101 Matrix is not positive-definite Rerun with a different solver.
—-2102 Breakdown in generation of direction Rerun with a different solver,
vector preconditioner, or starting guess.
-2103 Breakdown in update to solution vector Rerun with a different solver,
preconditioner, or starting guess.
-2104 Breakdown in gmres iteration Rerun with a different solver,
preconditioner, starting guess, or
kprev.
—2200 Tru64 UNIX only Memory allocation Increase allocated values of
routine in the parallel version failed pagefile quota and virtual memory,

or reduce the number of processors,
or use serial version of the solver.

10.8 Hints on the Use of the Iterative Solver

The iterative solvers included in CXML provide you with a wide choice of iterative
methods and preconditioners. Additional flexibility is provided via the adoption
of a matrix-free formulation of the iterative method. This allows you to use any
storage scheme for the matrix, but implies that you have to write the routines
for the matrix operations. You also have the option of using routines included in
CXML for the matrix operations, but this restricts you to the storage schemes and
preconditioners provided by CXML. It is also possible to mix the two approaches
and use a storage scheme included in CXML, but provide your own routines to
create and apply the preconditioner of your choice.

CXML provides further flexibility by allowing you to set various parameters such
as the form of preconditioner, the stopping criterion, the maximum number of
iterations allowed, the degree of the polynomial for polynomial preconditioning
and so on. These enable you to control the iterative procedure and fine tune it to
suit the needs of your application.

The steps in using the iterative solver can be summarized as follows:

= Choose the storage scheme for the coefficient matrix A.

You can either choose one of the schemes provided by CXML (SDIA, UDIA, or
GENR) or choose your own storage scheme.

e Select an iterative method (DITSOL_PCG, DITSOL_PLSCG, DITSOL _
PBCG, DITSOL_PCGS, DITSOL_PGMRES, or DITSOL_PTFQMR), a form
of preconditioner (none, left, right, split, or SPD split), and if necessary, a
preconditioner (DIAG, POLY, or ILU).

The preconditioner and the form of preconditioning should match. For
example, DIAG and POLY preconditioners cannot be used in the split form as
they do not explicitly generate the matrices Qr, and Q. However, they can
be used in SPD split preconditioning as it requires only the matrix Q. The
form of preconditioning is chosen via the parameter ipcond (IPARAM(7)). You
also have the option of providing your own preconditioner.
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Write the routines MATVEC (required) and, if necessary, the routines
PCONDL and PCONDR.

The reference descriptions for each iterative method at the end of this chapter
describe the functionality that must be provided by these routines. If you
have chosen your own storage scheme for the coefficient matrix or chosen
your own preconditioner, then you must provide the functionality required

by the routines MATVEC, PCONDL, and PCONDR. If, however, you have
chosen one of the preconditioners and storage schemes included in CXML,
the functionality required by these routines is provided via a call to the
appropriate CXML routines. In this case, you should be consistent in the use
of storage schemes, that is, the same storage schemes should be used in all
operations.

Whether you use the routines for the matrix operations provided by CXML
or not, it is your responsibility to provide the routine MATVEC and, if
applicable, the routines PCONDL and PCONDR, with the standard interface.

You also have the option of using the driver routine, DITSOL_DRIVER, in
which case, you do not have to provide the routines MATVEC, PCONDL and
PCONDR; instead you use the versions of these routines provided by CXML.

Assign values to the variables in array IPARAM and RPARAM.

This could be done via a call to the routine DITSOL_DEFAULTS. The
routine DITSOL_DEFAULTS does not set the values of all parameters in

the arrays IPARAM and RPARAM and it is your responsibility to ensure
that all appropriate variables have been assigned valid values before a call
to the iterative solver. Information such as the size of the work arrays is
provided in the routine descriptions at the end of this chapter. In addition

to the assignment of values to the variables, any associated setup should
also be done at this time such as the opening of files for 1/0. If you choose to
implement your own stopping criterion, you must provide the routine MSTOP,
with the standard interface given in Table 10-3.

Generate the preconditioner.

This is done either by a call to one of CXML's routines, if you are using a
storage scheme and preconditioner provided by CXML, or by writing your own
routine. Unlike the routines for the application of the preconditioner, there

is no standard interface for the routine to generate the preconditioner as it

is formed before the call to the iterative solver. However, the preconditioner
must be generated in a manner that would be consistent with the use of the
standard interface for the routines PCONDL and PCONDR.

If you use a CXML routine to generate the preconditioner, it is your
responsibility to ensure that the preconditioner does exist. For example,

in the case of diagonal preconditioning, the diagonal elements of the
coefficient matrix A must be nonzero. If a CXML routine is called to create
a preconditioner and it does not exist, the routine terminates with an
appropriate system message such as a division by zero error or a square-root
of a negative number error.

If you are using the driver routine, DITSOL_DRIVER, you must create the
appropriate preconditioner using the appropriate storage scheme, prior to the
call to the driver routine.

Call the appropriate iterative solver routine with the standard interface given
in Table 10-7.
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On exit from the solver, the error flag, ierror, should be checked to ensure that
the iterations converged normally. A return value of 0 indicates a normal exit
from the routine SOLVER, with the iterations converging under the specified
conditions. A negative return value implies a fatal error such as incorrect
input or insufficient workspace, while a positive return value indicates

a warning such as the solver terminating after the maximum number of
iterations.

The best solver and preconditioner for a given problem is very dependent on the
problem itself. Often, a choice is made based on prior experience. In the absence
of this, the following factors may influence the selection of a particular solver or
preconditioner:

= Applicability of a solver

Each solver is applicable under certain conditions. Some solvers can be
applied to symmetric matrices only; others require the evaluation of both A * z
and AT « z. The reference description for each solver includes the conditions
under which it is applicable. These must be considered in the choice of a
solver for a problem.

= Effectiveness of a preconditioner

Based on the properties of the problem, some preconditioners may be more

effective than others in improving the convergence of a solver. However, the
increase in time per iteration due to the use of the preconditioner must also
be taken into account. For example, increasing the degree of the polynomial
in polynomial preconditioning will increase the time per iteration, but may

not always reduce the number of iterations sufficiently to lead to an overall
reduction in the execution time.

< Amount of memory available

Different solvers and preconditioners require different amounts of memory.
For example, the generalized minimum residual method (DITSOL_PGMRES)
allows you to use a variable number of previous residual vectors. As this
number increases, the work done per iteration, and the memory required,
also increase. Often, but not always, there is a corresponding increase in the
convergence rate. A limited amount of memory may preclude the choice of a
sufficiently large number of previous residual vectors to ensure convergence.

In addition to choosing a solver and a preconditioner, you also have the choice

of a stopping criterion. It is important to select carefully the condition that
determines when the iterative process will be terminated. CXML includes four
stopping criteria. It also allows you the option of writing your own version.

In some cases, a stopping criterion may be obtained at a low cost from the
iterative process. But, this may not be the most effective criterion for judging the
convergence of your particular problem. In the initial stages of experimenting
with different stopping criteria, it may help to calculate the residual of the system
explicitly at the end of the iterative process in order to determine if the choice of
stopping criteria was an appropriate one.

The preceding guidelines should be taken into consideration in your choice of a
solver, preconditioner and stopping criterion. As this choice is very dependent
on the problem, some experimentation may be necessary to determine the most
efficient method. CXML provides you a flexible interface that allows different
solvers, preconditioners and stopping criterion to be tested easily. In addition,
the input parameters allow you to generate extensive information on the solution
process. These can be used to gain a better insight into the behavior of various
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solvers and preconditioners for your problem, helping you to choose a combination
that will provide a solution efficiently.

10.9 A Look at Some lterative Solvers

To illustrate the use of the sparse iterative solvers and the concepts of matrix-free
formulation and preconditioning, consider the linear system of equations derived
from the discretization of the Laplace’s equation on the unit square with Dirichlet
boundary conditions, using the standard five point central differencing scheme:

—Ugg — Uyy = 0
0<z<1

0<y<1

Assuming nz grid points in z direction and ny grid points in the y direction, the
coefficient matrix A has the following form for nz = ny = 4:

4-1 | -1 | |
141 | | |
141 S |
14 1] |
I I I
1 | 41 1 |
-1 |1 41 | - |
1| 14 S
1] 14 1]
| | |
| | |
-1 | 41 1
1 141 | 4
1 | 1 4-1] 1
1] 14 1
| | |
| | |
-1 | 4-1
| -1 1 4-1
| 1] 144
| 1| 14

The elements not defined in the matrix are zero. The exact solution is assumed
to be all 1.0 and the starting guess is the zero vector.

Examples 10-1, 10-2, 10-3, and 10-4 illustrate the use of the CXML iterative
solver routines from Fortran, C, and C++ codes. Each example is self-contained,
and includes comments indicating the operations being performed. The output
created by each example program is also included, to illustrate the information
that can be obtained from the iterative solvers by setting the appropriate
parameters.

The examples in this section, along with additional examples, are included online
in the CXML Examples directory.
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Example 10-1 Iterative Solver with User-Defined Routines (Fortran Code) -
Example filename: example_itsol_1.f

PROGRAM EXAMPLE_ITSOL
#% THIS PROGRAM ILLUSTRATES THE FOLLOWING:

(1) USE OF THE SOLVER TO SOLVE THE TEST PROBLEM VIA
PRECONDITIONED CONJUGATE GRADIENT METHOD, USING A
USER-DEFINED STORAGE SCHEME.

(2) USE OF A USER-DEFINED ROUTINE MATVEC

(3) USE OF A USER DEFINED ROUTINE MSTOP

(4) USE OF USER DEFINED ROUTINE PCONDL

(5) USE OF THE ROUTINE DITSOL_DEFAULTS

(6) INFORMATION PRINTED OUT FOR IOLEVEL = 3

IMPLICIT REAL*8 (A-H, O-Z)
PARAMETER (NMAX = 100)

O O O0O000000O00O0O0O0O0

REAL*8 X(NMAX), XO(NMAX), RHS(NMAX), QL(NMAX)
REAL*8 RPARAM(50), RWORK(4*NMAX), DUM, TEMP

(@)

INTEGER IPARAM(50), IA(2), IDUM
INTEGER I,NX, NY, NXNY

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
EXTERNAL MATVEC, PCONDL, USER_MSTOP
weo SET UP PROBLEM SIZE

oo O O

NX = 10
NY = 10
NXNY = NX*NY

#rek SET THE PARAMETERS (INTEGER AND REAL)
CALL DITSOL_DEFAULTS (IPARAM, RPARAM)

#ek CHANGE ANY VALUES THAT ARE DIFFERENT FROM THE DEFAULT
ASSIGN VALUES TO PARAMETERS NOT SET BY ROUTINE DITSOL_DEFAULTS
CHANGE IOUNIT TO 7
CHANGE IPCOND TO 4 (FOR SPD SPLIT PRECONDITIONING)
CHANGE IOLEVEL TO 3
CHANGE ISTOP TO 0 (FOR USER DEFINED MSTOP)
A NONZERO VALUE OF ISTOP WILL SELECT ONE OF THE STANDARD
STOPPING CRITERIA

OOOO0OOO0O0O0O OO0

(continued on next page)
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Example 10-1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code) - Example filename: example_itsol_1.f

C

C ¥ SETUP OUTPUT FILE

C
IOUNIT = IPARAM(5)
OPEN (UNIT=IOUNIT,FILE="OUTPUT.DATA’,STATUS="UNKNOWN)
REWIND [OUNIT

C

WRITE (IOUNIT,101)
101 FORMAT (/,2X,;SOLVING EXAMPLE PROBLEM WITH SPD SPLIT
$ PRECONDITIONED CG'/,2X,DIAGONAL PRECONDITIONING USED ',/)

C
C *++ GENERATE THE MATRIX (USE IA TO PASS NX AND NY TO SOLVER)
C

CALL GENMAT(NX, NY, NXNY)

IA(L) = NX

IA@2) = NY
C
C *++ GENERATE XO, THE TRUE SOLUTION
C

DO | = 1, NXNY

XO(l) = 1.0D0

END DO
C
C *+ OBTAIN THE RIGHT HAND SIDE
C

CALL MATVEC (0, IPARAM, RPARAM, A, IA, DUM, XO, RHS, NXNY)
C
C *+ OBTAIN INITIAL GUESS (ALL ZEROS)
C

DO | = 1, NXNY

X(l) = 0.0D0

END DO
C
C #++ GENERATE THE DIAGONAL PRECONDITIONER
C

CALL GEN_PCOND (NXNY, QL)
C
C #+ CALL THE SOLVER
C

CALL DITSOL_PCG ( MATVEC, PCONDL, DUM, USER_MSTOP, A, IA,
$ X, RHS, NXNY, QL, IDUM, DUM, IDUM,
$ IPARAM, RPARAM, IDUM, RWORK, IERROR)

¥k PRINT OUT THE SOLUTION

OO0

WRITE (IOUNIT,102)
102 FORMAT (/5X, TRUE SOLUTION’5X, SOLUTION FROM SOLVER),
$5X,ABS. DIFFERENCE’/)
WRITE (IOUNIT,103) (XO(1),X()),ABS(XO(I)-X(1)),I=1,NXNY)
103 FORMAT (/3(5X,E15.8))
C
C ** FIND MAX ERROR IN SOLUTION
C
TEMP = ABS(XO(L) - X(1)

(continued on next page)
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Example 10-1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code) - Example filename: example_itsol_1.f

DO | = 2, NXNY
TEMP = MAX( TEMP, ABS(XO() - X(1)) )
END DO
WRITE (IOUNIT,104) TEMP
104  FORMAT (/,2X,MAX ERROR IN SOLUTION= ’, E15.8,)

C
STOP
END
C
C
C
SUBROUTINE MATVEC(JOB, IPARAM, RPARAM, A, IA, W, X, Y, N)
C
C *#** MULTIPLY THE VECTOR X BY THE MATRIX TO OBTAIN VECTOR Y
C ONLY JOB = 0 NEEDED FOR THIS EXAMPLE
C
IMPLICIT REAL*8 (A-H,0-2)
C

REAL*8 X(*), Y(*), A()
INTEGER IA(*)

C
CALL MULA (A1), 1A), N, X, Y)
C
RETURN
END
C
C
C
SUBROUTINE PCONDL(JOB, IPARAM, RPARAM, QL, IQL, A, IA,
$ W, X, Y, N)
C
C = CALL THE LEFT PRECONDITIONER
C ONLY JOB = 0 NEEDED FOR THIS EXAMPLE
C

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 X(*), Y(*), QL(*
INTEGER N

#k DIAGONAL PRECONDITIONING

CALL APPLY_PCOND_DIA (N, X, Y, QL)

O OO0

RETURN
END

SUBROUTINE GEN_PCOND (N, QL)
wt GENERATE THE LEFT PRECONDITIONER

OO0 OO0

IMPLICIT REAL*8 (A-H,0-2)

(continued on next page)
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Example 10-1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code) - Example filename: example_itsol_1.f
PARAMETER (NMAX = 100)
REAL*8 QL(*)
COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)
INTEGER N

DO1=1 N
QL(l) = 1.0D0 / A3())
END DO

RETURN
END

SUBROUTINE APPLY_PCOND DIA (N, X, Y, QL)
sk APPLY THE DIAGONAL PRECONDITIONER

OO0 OO0

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 X(*), Y(*), QL(*)

C

DO1=1N

v(l) = X(1) * QL()

END DO
C

RETURN

END
C
C
C

SUBROUTINE GENMAT (NX, NY, NXNY)
C
C * GENERATE THE MATRIX FOR THE EXAMPLE
C

IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (NMAX = 100)
COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

DO | = 1, NXNY

DO | = 2, NX
K = (J-1)*NX+
A2(K) = -1.0D0

END DO

DO | = 1, NX-1
K = (J-1)*NX+
A4(K) = -1.0D0

END DO

END DO

DO J

=2, NY
DO I =1

. NX
K = (-1yNX+

(continued on next page)
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Example 10-1 (Cont.)

(@)

OO0 OO0

[eXeXe]

Iterative Solver with User-Defined Routines (Fortran

Code) - Example filename: example_itsol_1.f

AL(K) = -1.0D0
END DO
END DO
DO J = 1, NY-1
DO | = 1, NX
K = (J-1)*NX+l
A5(K) = -1.0D0
END DO
END DO
RETURN

END

SUBROUTINE MULA (NX, NY, NXNY, TMP1, TMP2)
# TO OBTAIN THE MATRIX VECTOR MULTIPLY

IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (NMAX = 100)
REAL*8 TMP1(*), TMP2(¥)
INTEGER NX,NY,NXNY

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

DO | = 1, NXNY
TMP2()) = A3(I)*TMPL()
END DO

DO | = 1, NXNY-1
TMP2(l) = TMP2(l) +

$ A4()F TMPL(1+1)

END DO

DO | = 2, NXNY
TMP2(l) = TMP2(l) +
A2()FTMP1(1-1)
END DO

DO | = 1, NXNY-NX

TMP2(l) = TMP2(l) +
$ AS(I* TMP1(I+NX)
END DO

DO | = NX+1, NXNY
TMP2(l) = TMP2(l) +
AL()*TMPL(I-NX)
END DO

RETURN
END
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Example 10-1 (Cont.) Iterative Solver with User-Defined Routines (Fortran
Code) - Example filename: example_itsol_1.f

SUBROUTINE USER_MSTOP (IPARAM, RPARAM, X, R, Z, B, N)

C
C *+ ROUTINE FOR THE USER PROVIDED STOPPING CRITERION
C
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 X(¥), B(*), R(*), Z(*), RPARAM(*), STPTST
INTEGER ITERS, IPARAM(¥)
C

IOUNIT = IPARAM(5)
ITERS = IPARAM(10)
IF (ITERS.EQ.0) THEN
WRITE(IOUNIT, 100)
100 FORMAT(/2X,USING USER DEFINED STOPPING CRITERION',)

END IF
C
C *+ USER DEFINED STOPPING CRITERION USES MAX NORM OF RESIDUAL FOR
C STPTST
C
STPTST = ABS (R(1))
DO | =2 N
STPTST = MAX ( STPTST,ABS(R()) )
END DO
C
RPARAM(2) = STPTST
C
RETURN
END
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Output from Example 1

SOLVING EXAMPLE PROBLEM WITH SPD SPLIT PRECONDITIONED CG
DIAGONAL PRECONDITIONING USED

METHOD USED : CG WITH SPD SPLIT PRECONDITIONING

ORDER OF SYSTEM = 100

STOPPING CRITERION USED : 0

MAXIMUM ITERATIONS ALLOWED: 100

TOLERANCE FOR CONVERGENCE :  0.10000000e-05

USING USER DEFINED STOPPING CRITERION

ITERATION = 0 STOPPING TEST = 0.20000000e+01
ITERATION = 1 STOPPING TEST = 0.92307692e+00
ITERATION = 2 STOPPING TEST = 0.58793970e+00
ITERATION = 3 STOPPING TEST = 0.63509006e+00
ITERATION = 4 STOPPING TEST = 0.42973063e+00
ITERATION = 5 STOPPING TEST = 0.48724587e+00
ITERATION = 6 STOPPING TEST = 0.41781094e+00
ITERATION = 7 STOPPING TEST = 0.50288290e+00
ITERATION = 8 STOPPING TEST = 0.17070529e+00
ITERATION = 9 STOPPING TEST = 0.38502953e-01
ITERATION = 10 STOPPING TEST = 0.16076790e-01
ITERATION = 11 STOPPING TEST = 0.75548469e-02
ITERATION = 12 STOPPING TEST = 0.15431168e-02
ITERATION = 13 STOPPING TEST = 0.14025362e-03
ITERATION = 14 STOPPING TEST = 0.42745516e-05
ITERATION = 15 STOPPING TEST = 0.63333204e-15

SOLUTION OBTAINED AFTER 15 ITERATIONS
NORMAL EXIT FROM SOLVER
FINAL VALUE OF STOPPING TEST = 0.63333204e-15
TRUE SOLUTION SOLUTION FROM SOLVER ABS. DIFFERENCE

0.10000000e+01 0.10000000e+01 0.33306691e-15
0.10000000e+01 0.10000000e+01 0.44408921e-15
. (EDITED FOR BREVITY)
0.10000000e+01 0.10000000+01 0.33306691e-15
0.10000000e+01 0.10000000e+01 0.33306691e-15

MAX ERROR IN SOLUTION= 0.23314684e-14
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Example 10-2 Iterative Solver with CXML Routines (Fortran Code) - Example

O 0000000000000

OO0 O

OOOO00O0O0O0O OO0

(@]

PARAMETER
$

filename: example_itsol_4.f

PROGRAM EXAMPLE_ITSOL

% THIS PROGRAM ILLUSTRATES THE FOLLOWING:

(1) USE OF THE SOLVER TO SOLVE THE TEST PROBLEM VIA
PRECONDITIONED GMRES METHOD METHOD, WITH SPLIT INCOMPLETE
CHOLESKY PRECONDITIONING. THE MATRIX IS STORED USING
THE UNSYMMETRIC DIAGONAL FORMAT

(2) USE OF ROUTINE MATVEC (DMATVEC_UDIA)

(3) USE OF ROUTINES PCONDL AND PCONDR TO CALL ROUTINES FOR
APPLYING THE PRECONDITIONER (DAPPLY ILU_UDIA_L AND
DAPPLY_ILU_UDIA_U)

(5) USE OF THE ROUTINE DITSOL_DEFAULTS

IMPLICIT REAL*8 (A-H, 0-2)
PARAMETER

PARAMETER
PARAMETER

NMAX = 100)

NDIM = 100)

KPREV_MAX = 5)

NWK = NMAX*(KPREV_MAX+2) +
KPREV_MAX*(KPREV_MAX+5)+1 )

P

REAL*8 X(NMAX), XO(NMAX), RHS(NMAX)
REAL*8 RPARAM(50), RWORK(NWK), DUM
REAL*8 A_UDIA(NDIM,5), P_ILU(NDIM,5), TEMP
INTEGER TP_ILU(5), INDEX_UDIA(5)

INTEGER IPARAM(50), IDUM
INTEGER [, NX, NY, NXNY

EXTERNAL MATVEC, PCONDL, PCONDR

#xek SET UP PROBLEM SIZE

NX = 10

NY = 10

NXNY = NX*NY
NZEROS = 5

¥k SET THE PARAMETERS (INTEGER AND REAL)

CALL DITSOL_DEFAULTS (IPARAM, RPARAM)

#akk CHANGE ANY VALUES THAT ARE DIFFERENT FROM THE DEFAULT

ASSIGN VALUES TO PARAMETERS NOT SET BY DITSOL_DEFAULTS
CHANGE IOUNIT TO 7
CHANGE IPCOND TO 3 (FOR SPLIT PRECONDITIONING)
CHANGE IOLEVEL TO 3
CHANGE ISTOP TO 3 (ONLY ISTOP=3 AND 4 ALLOWED)

IPARAM

0
IPARAM NWK

IPARAM

(3)
&
IPARAM(5)
(6)
IPARAM(7)

8)

[ |
wWww~

(continued on next page)

Using the lterative Solvers for Sparse Linear Systems 10-37



Using the Iterative Solvers for Sparse Linear Systems
10.9 A Look at Some Iterative Solvers

Example 10-2 (Cont.) Iterative Solver with CXML Routines (Fortran Code) -
Example filename: example_itsol_4.f

s ASSIGN VALUE TO KPREV (NUMBER OF PREVIOUS RESIDUALS STORED)
NOTE THAT THE SIZE OF RWORK ALLOWS A MAXIMUM VALUE OF
KPREV = 5

IPARAM(34) = 3

wak SETUP OUTPUT FILE

OO0 OO0

IOUNIT = IPARAM(5)
OPEN (UNIT=IOUNIT,FILE='OUTPUT.DATA’, STATUS="UNKNOWN)
REWIND IOUNIT
C
WRITE (IOUNIT,101)
101 FORMAT (/,2X,'SOLVING EXAMPLE PROBLEM WITH SPLIT
$ PRECONDITIONED GMRES'/,2X,ILU PRECONDITIONING USED '/
$ 2X,MATRIX STORED IN UNSYMMETRIC DIAGONAL FORMAT',)
C
C ** GENERATE THE MATRIX
C
CALL GENMAT(NX, NY, NXNY, A_UDIA, INDEX_UDIA, NDIM, NZEROS)
IPARAM(31) = NZEROS
IPARAM(32) = NDIM

C
C #** GENERATE XO, THE TRUE SOLUTION

C
DO | = 1, NXNY
XO(l) = 1.0D0
END DO
C
C *+ OBTAIN THE RIGHT HAND SIDE
C
CALL MATVEC (0, IPARAM, RPARAM, A_UDIA, INDEX_UDIA,
$ DUM, XO, RHS, NXNY)
C
C *+ OBTAIN INITIAL GUESS (ALL ZEROS)
C
DO | = 1, NXNY
X(l) = 0.0D0
END DO
C
C *++ GENERATE THE ILU PRECONDITIONER
C
CALL DCREATE_ILU_UDIA (A_UDIA, INDEX_UDIA, NDIM, NZEROS,
P ILU, IP_ILU, NXNY)
C
C *+ CALL THE SOLVER
C
CALL DITSOL_PGMRES ( MATVEC, PCONDL, PCONDR, DUM,
$ A_UDIA, INDEX_UDIA,
$ X, RHS, NXNY,
$ P ILU, IP_ILU, P_ILU, IP_ILU,
$ IPARAM, RPARAM, IDUM, RWORK, IERROR)
C
C *++ PRINT OUT THE SOLUTION
C

(continued on next page)
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Example 10-2 (Cont.) Iterative Solver with CXML Routines (Fortran Code) -
Example filename: example_itsol_4.f

WRITE (IOUNIT,102)

102 FORMAT (/5X, TRUE SOLUTION’ 55X, SOLUTION FROM SOLVER,,
$5X,’ABS. DIFFERENCEY)
WRITE (IOUNIT,103) (XO(1),X(1),ABS(XO(I)-X(1)),I=1,NXNY)

103 FORMAT (/3(5X,E15.8))

C
C ** FIND MAX ERROR IN SOLUTION
C
TEMP = ABS(XO(L) - X(1))
DO | =2,NXNY
TEMP = MAX( TEMP, ABS(XO(l) - X()) )
END DO

WRITE(IOUNIT,104) TEMP
104  FORMAT(/,2X,MAX ERROR IN SOLUTION =", E15.8,)

C
STOP
END
C
C
C
SUBROUTINE MATVEC(JOB, IPARAM, RPARAM, A, IA, DUM, X, Y, N)
C
C MULTIPLY N VECTOR X BY MATRIX TO OBTAIN Y
C
IMPLICIT REAL*8 (A-H,0-2)
C
REAL*8 X(), Y(), A(*), RPARAM(*)
INTEGER IA(¥), JOB, IPARAM(*)
C
NZEROS = IPARAM(31)
NDIM = IPARAM(32)
C
CALL DMATVEC_UDIA (JOB, A, IA, NDIM, NZEROS, DUM,
$ X, Y, N)
C
RETURN
END
C
C
C
SUBROUTINE PCONDL(JOB, IPARAM, RPARAM, QL, IQL, A, IA,
$ W, X, Y, N)
C
C #+ CALL THE LEFT PRECONDITIONER
C
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (NMAX = 100)
REAL*8 X(), Y(*), RPARAM(*), QL(*), A(*), TMP(NMAX)
INTEGER JOB, IPARAM(¥), IQL(*), IA(*)
C
C #= |LU PRECONDITIONING
C

IPCOND = IPARAM(7)
NZEROS = IPARAM(31)
NDIM = IPARAM(32)

(continued on next page)

Using the lterative Solvers for Sparse Linear Systems 10-39



Using the Iterative Solvers for Sparse Linear Systems
10.9 A Look at Some Iterative Solvers

Example 10-2 (Cont.) Iterative Solver with CXML Routines (Fortran Code) -
Example filename: example_itsol_4.f

C
CALL DAPPLY ILU_UDIA L (JOB, QL, IQL, NDIM, NZEROS,
$ X, Y, N)

C
RETURN
END

C

C

C
SUBROUTINE PCONDR(JOB, IPARAM, RPARAM, QR, IQR, A, IA,
$ W, X, Y, N)

C

C # CALL THE RIGHT PRECONDITIONER

C

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 X(*), Y(*), RPARAM(), QR(*), A()
INTEGER JOB, IPARAM(*), IQR(Y), IA(*)

#x ILU PRECONDITIONING

OO0

IPCOND = IPARAM(7)
NZEROS = IPARAM(31)
NDIM = IPARAM(32)

CALL DAPPLY_ILU_UDIA_U (JOB, QR, IQR, NDIM, NZEROS,
$ X, Y, N)

RETURN
END

SUBROUTINE GENMAT (NX, NY, NXNY, A, IA, NDIM, NZEROS)

#ok GENERATE THE MATRIX FOR THE EXAMPLE IN THE UNSYMMETRIC
DIAGONAL FORM

OO0 OO0

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 A(NDIM,*)
INTEGER IA(*)

DO J = 2, NZEROS
DO | = 1, NXNY
A(l,J) = 0.0D0
END DO
END DO

DO | = 1, NXNY
A(l,1) = 4.0D0
END DO

DO J = 1, NY-1
DO I = 1, NX
K = (J-1)*NX+l
A(K,2) = -1.0D0
END DO
END DO

(continued on next page)
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Example 10-2 (Cont.) Iterative Solver with CXML Routines (Fortran Code) -
Example filename: example_itsol_4.f

DO J = 1, NY
DO | = 2, NX
K = (J-1)*NX+
A(K,3) = -1.0D0
END DO
END DO

DO J = 1, NY
DO | = 1, NX-1
K = (J-1)*NX+l
A(K4) = -1.0D0
END DO
END DO

DO J = 2, NY
DO | = 1, NX

K = (J-1)*NX+

A(K,5) = -1.0D0

RETURN
END
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Output from Example 2

SOLVING EXAMPLE PROBLEM WITH SPLIT PRECONDITIONED GMRES
ILU PRECONDITIONING USED
MATRIX STORED IN UNSYMMETRIC DIAGONAL FORMAT
METHOD USED : GMRES WITH SPLIT PRECONDITIONING

3 PREVIOUS RESIDUAL VECTORS ARE STORED
ORDER OF SYSTEM = 100
STOPPING CRITERION USED : 3
MAXIMUM ITERATIONS ALLOWED:
TOLERANCE FOR CONVERGENCE :

100
0.10000000e-0

ITERATION = 0 STOPPING TEST = 0.27403910e+01
ITERATION = 1 STOPPING TEST = 0.83454209e+00
ITERATION = 2 STOPPING TEST = 0.44870733e+00
ITERATION = 3 STOPPING TEST = 0.17433646e+00
ITERATION = 4 STOPPING TEST = 0.72856695e-01
ITERATION = 5 STOPPING TEST = 0.38408003e-01
ITERATION = 6 STOPPING TEST = 0.14164437e-01
ITERATION = 7 STOPPING TEST = 0.56991076e-02
ITERATION = 8 STOPPING TEST = 0.28790502e-02
ITERATION = 9 STOPPING TEST = 0.13411353e-02
ITERATION = 10 STOPPING TEST = 0.63725219e-03
ITERATION = 11 STOPPING TEST = 0.32213502e-03
ITERATION = 12 STOPPING TEST = 0.13084728e-03
ITERATION = 13 STOPPING TEST = 0.54223092e-04
ITERATION = 14 STOPPING TEST = 0.27502204e-04
ITERATION = 15 STOPPING TEST = 0.13133042e-04
ITERATION = 16 STOPPING TEST = 0.63404914e-05
ITERATION = 17 STOPPING TEST = 0.32280646e-05
ITERATION = 18 STOPPING TEST = 0.13311315e-05
ITERATION = 19 STOPPING TEST = 0.55695871e-06
SOLUTION OBTAINED AFTER 19 ITERATIONS

NORMAL EXIT FROM SOLVER
FINAL VALUE OF STOPPING TEST = 0.55695871e-06

TRUE SOLUTION SOLUTION FROM SOLVER ABS. DIFFERENCE

0.10000000e-+01 0.99999997e+00 0.32325871e-07
0.10000000e+01 0.99999987¢-+00 0.13396025¢-06
- (edited for brevity)
0.10000000e+01 0.99999983e+00 0.16690401¢-06
0.10000000e-+01 0.99999995¢+00 0.487977536-07

MAX ERROR IN SOLUTION =
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Example 10-3 lterative Solver with CXML Routines (C Code) - Example
filename: example_itsol_1.c

/*
This is an example program to illustrate the use of the iterative
solver ditsol_pcg from a C application program. The program generates
the matrix and the preconditioner, calls the solver and prints the
maximum error in the solution. The right hand side of the problem is
generated assuming a known solution. The problem used is identical to
the one in the example section of the chapter on iterative solvers
in the CXML Reference Guide.

This program illustrates the following:
- routine naming convention for Tru64 UNIX and VMS
- differences in array limits between Fortran and C:
C default: x[n] -> 0 to (n-1)
Fortran default:  x(n) -> 1 to n
- how to store two dimensional arrays in C for use in a
Fortran library routine
- how to use the matrix-free formulation from a C program

For more detailed explanation of the routines used, please
check the Reference Manual or manpage or the Fortran example
programs in this directory.

Note: the code used in this example works on both Tru64 UNIX and
VMS. Conditional compilation is used to select the statements appropriate
to each operating system.

All output from this program is sent to the screen.
*
#include <stdio.h>

#include <stdlib.h>

#define ABS(X) (((x) <
#define MAX(x,y) (((X)

/*

0) 209 - ()
<) 20 ()

Add trailing underscores to Fortran routines on Tru64 UNIX.
*

#if ldefined(vms) && !defined(__vms)
#define ditsol_defaults ditsol_defaults
#define dcreate_ilu_sdia dcreate ilu_sdia_
#define ditsol_pcg ditsol_pcg_

#define dmatvec_sdia dmatvec sdia_
#define dapply_ilu_sdia dapply_ilu_sdia_
#endif

extern void pcondI1();
extern void matvecl();
extern void genmatl();
extern void ditsol_defaults();
extern void dcreate_ilu_sdia();
extern void ditsol_pcg();
extern void dmatvec_sdia();
extern void dapply_ilu_sdia();

(continued on next page)
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Example 10-3 (Cont.) Iterative Solver with CXML Routines (C Code) - Example
filename: example_itsol_1.c

/*
illustrating the use of the iterative solver:
preconditioned conjugate gradient method, with incomplete
cholesky preconditioning. the matrix is stored using the
symmetric diagonal format

*

/

int main()

double *a_sdia;
double *a_ilu;
double *rworkl;
double *rhs;
double *x;
double *xo;

double rparam[50];
double dum, maxl, tmpl;
int *index_sdia;
int *index_ilu;
int iparam[50];
int nx, ny, nxny, length, ndim, nzeros;
int i, j, idum, ierror;
int job;
/*
define the size of the problem
¥/
nx = 10;
ny = 10;
nzeros = 3;
nxny = nx * ny;
ndim = nxny;
/*
get the memory for the 2-dimensional arrays a_sdia and a_ilu

a_sdia = (double *)malloc (nzeros*ndim*sizeof(double));
if (a_sdia == 0) perror("malloc");

a_ilu = (double *)malloc (nzeros*ndim*sizeof(double));
if (@_ilu == 0) perror("malloc”);
/*
get the memory for the 1-dimensional arrays
¥
rworkl = (double *)malloc(4*nxny*sizeof(double));

if (rworkl == 0) perror("malloc");

rhs = (double *)malloc(nxny*sizeof(double));
if (ths == 0) perror("malloc");

x = (double *)malloc(nxny*sizeof(double));
if (x == 0) perror("malloc");

X0 = (double *)malloc(nxny*sizeof(double));
if (xo == 0) perror("malloc");

(continued on next page)
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Example 10-3 (Cont.) Iterative Solver with CXML Routines (C Code) - Example

[*
*

[*
*

[*
*

[*
*

[*
*

[*
*

[*
*

[*
*

filename: example_itsol_1.c

index_sdia = (int *)malloc(nzeros*sizeof(int));
if (index_sdia == 0) perror("malloc");

index_ilu = (int *)malloc(nzeros*sizeof(int));
if (index_ilu == 0) perror("malloc");

set the parameters (integer and real)
ditsol_defaults(iparam, rparam);

iparam[2] = 0;

iparam[3] = 4 * nxny;

direct all output to the screen

iparam[4] = 6;

iparam[5] = 3;

iparam(6] = 4;

generate the matrix

genmatl(nx, ny, nxny, a_sdia, index_sdia, ndim, nzeros);
iparam[30] = nzeros;

iparam[31] = ndim;

generate xo, the true solution

for (i=0; i<nxny; i++)
xo[i] = 1.0;

obtain the right hand side

job = 0;
matvecl(&job, iparam, rparam, a_sdia, index_sdia,
&dum, xo, rhs, &nxny);

obtain initial guess (all zeros)

for (i=0; i<nxny; i++)
X[i] = 0.0;

generate the preconditioner

dcreate_ilu_sdia(a_sdia, index_sdia, &ndim, &nzeros,
a_ilu, index_ilu, &nxny);

call the solver

(continued on next page)
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Example 10-3 (Cont.) Iterative Solver with CXML Routines (C Code) - Example
filename: example_itsol_1.c

ditsol_pcg(matvecl, pcondll, &dum, &dum,
a_sdia, index_sdia,
X, rhs, &nxny,
a_ilu, index_ilu, &dum, &idum,
iparam, rparam, &idum, rworkl, &ierror);

if (ierror 1= Q)
printf("ditsol_pcg returned with error flag: %d\n" ierror);

/*

find the maximum absolute error in the solution
¥

max1 = ABS((x[0]-xo[Q]));

for (i=1; i<nxny; i++)

tmpl = ABS((x[i]-xofi]));
maxl = MAX((max1),(tmpl));
}

/*

print the maximum absolute error
i

printf("maximum error in the solution: %.10e\n",max1);
/*

release the memory
¥

free(a_sdia);

free(a_ilu);

free(rworkl);

free(rhs);

free(x);

free(xo);

free(index_sdia);

free(index_ilu);
} ¥ end of main() */

/*
generate the matrix for the problem described in the chapter on
iterative solvers in the CXML Reference Guide
*
void genmatl(int nx, int ny, int nxny, double af],
int index[], int ndim, int nzeros)
{
int i, j, k
for (j=0; j<nxny; j++)
for (i=1; I<nzeros; i++)
afi*ndim+j] = 0.0;

for (j=0; j<nxny; j++)
a[0*ndim+j] = 4.0;

(continued on next page)
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Example 10-3 (Cont.) Iterative Solver with CXML Routines (C Code) - Example
filename: example_itsol_1.c

for (=0; j<ny; j++)
for (i=1; i<nx; i++)

k=j*nx+i
a[2*ndim+k] = -1.0;

for (=1; j<ny; j++)
for (i=0; i<nx; i++)

k=j*nx+i
a[l*ndim+k] = -1.0;
}
index[0] = O;
index[2] = -1;
index[1] = -nx;

} ¥ end of genmatl() */

/*
provide the matrix-vector routine using the standard parameter list
as described in the CXML Reference Guide
*
void matvecl(int *job, int *iparam, double *rparam, double *a, int *ia,
double *w, double *x, double *y, int *n)
{

int  nzeros, ndim;
double dum;

nzeros = iparam[30];

ndim = iparam[31];

dmatvec_sdia(job, a, ia, &ndim, &nzeros, &dum, X, y, n);
} ¥ end of matvecl() *

/*
provide the left preconditioning routine using the standard parameter
list as described in the CXML Reference Guide

*

/

void pcondll(int *job, int *iparam, double *rparam, double *gl, int *ig|,
double *a, int *ia, double *w, double *x, double *y, int *n)

{
int jobl;
int  nzeros, ndim;
double *mp;
/*
ilu preconditioning
*
nzeros = iparam[30];
ndim = iparam[31];
/*
get memory for temporary vector
*

tmp = (double *)malloc((*n)*sizeof(double));

(continued on next page)
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Example 10-3 (Cont.) Iterative Solver with CXML Routines (C Code) - Example
filename: example_itsol_1.c

jobl = 0;
dapply_ilu_sdia(&jobl, ql, igl, &ndim, &nzeros, X, tmp, n);
jobl = 1;
dapply_ilu_sdia(&jobl, ql, igl, &ndim, &nzeros, tmp, y, n);
/*
release memory for temporary vector
¥

free(tmp);
} ¥ end of pcondll() */

Output from Example 3

method used : cg with spd split preconditioning
order of system = 100

stopping criterion used = 1

maximum iterations allowed = 100
tolerance for convergence =  0.10000000E-05

iteration = 0 stopping test = 0.69282032E+01
iteration = 1 stopping test = 0.19194193E+01
iteration = 2 stopping test = 0.12100937E+01
iteration = 3 stopping test = 0.52439623E+00
iteration = 4 stopping test = 0.84029860E-01
iteration = 5 stopping test = 0.20539881E-01
iteration = 6 stopping test = 0.34309306E-02
iteration = 7 stopping test = 0.47063334E-03
iteration = 8 stopping test = 0.16605002E-03
iteration = 9 stopping test = 0.45072557E-04
iteration = 10 stopping test = 0.72087304E-05
iteration = 11 stopping test = 0.88047573E-06

solution obtained after 11 iterations
normal exit from solver
final value of stopping test = 0.88047573E-06

maximum error in the solution: 5.6260082260e-08
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Example 10-4 lterative Solver with CXML Routines (C++ Code) - Example
filename: example_itsol_1.cxx

Il This is an example program to illustrate the use of the iterative

Il solver ditsol_pcg from a C application program. The program generates
Il the matrix and the preconditioner, calls the solver and prints the

/I maximum error in the solution. The right hand side of the problem is
Il generated assuming a known solution. The problem used is identical to
Il the one in the example section of the chapter on iterative solvers

/I in the CXML Reference Guide.

/I This program illustrates the following:

1 - routine naming conventions

1l - Differences in endexing arrays:

) C default: x[n] -> 0 to (n-1)

Il Fortran default; x(n) -> 1 to n

1l - how to use two dimensional arrays in C to interface with a
Il Fortran library routine

1l - how to use the matrix-free formulation from a C program

Il For more detailed explanation of the routines used, please
Il check the CXML Reference Manual.

Il Note: the code used in this example works on both Tru64 UNIX and
1 VMS. Conditional compilation is used to select the statements
Il appropriate to each operating system.

Il All output from this program is sent to the screen.

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <new.h>

)
/I Add trailing underscores to Fortran routines on Tru64 UNIX.
i

#if ldefined(vms) && !defined(__vms)
#define ditsol_defaults ditsol_defaults
#define dcreate_ilu_sdia dcreate_ilu_sdia_
#define ditsol_pcg ditsol_pcg_

#define dmatvec_sdia dmatvec_sdia_
#define dapply_ilu_sdia dapply_ilu_sdia_
#endif

inline double ABS(double x)
{

\ return(((x) < 0) ? -(x) : (X));
inline double MAX(double x, double y)

} return(((x) < (v)) ? (y) : ();

extern void (*set_new_handler(void (*memory_err)()))();
void memory_err()

cout << "memory allocation error\n”;
exit(1); /I quit program

(continued on next page)
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Example 10-4 (Cont.) Iterative Solver with CXML Routines (C++ Code) -
Example filename: example_itsol_1.cxx

extern void pcondll(int &, int [], double ],

double ], int ],

double [], int [],

double [], double [], double [], int &);
extern void matvecl(int &, int [], double [],

double ], int ],

double [], double [], double [], int &);
extern void genmatl(int, int, int,

S | e e |

double ], int ],
int, int);

Il

/I Declare the Fortran routines

Il

extern "C"

{
void ditsol_defaults(int [], double []);
void dcreate_ilu_sdia(double [], int [],
int & int &,
double ], int ],
int &);
void ditsol_pcg(void (*)(int &, int [], double ],
double ], int ],
double [], double [], double ],

int &),
void (*)(int &, int [], double ],
double [], int ],

double [], int [],
double [], double [], double [], int &),
double &, double &,
double ], int ],
double [], double [], int &,
double [], int ],
double &, int &,
int [], double ],
int &, double [],
int &);
void dmatvec_sdia(int &, double [], int [],
int & int & double [], double [], double [],

int &);

void dapply_ilu_sdia(int &,

double ], int ],

int [], int [,

double [], double [], int &);
}
Il
I illustrating the use of the iterative solver:
Il preconditioned conjugate gradient method, with incomplete
Il cholesky preconditioning. the matrix is stored using the
Il symmetric diagonal format
Il

(continued on next page)
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Example 10-4 (Cont.) Iterative Solver with CXML Routines (C++ Code) -
Example filename: example_itsol_1.cxx

void main()

{
double *a_sdia;
double *a_ilu;
double *rworkl;
double *rhs;
double *x;
double *xo;

double rparam[50];
double dum, maxl, tmpl;

int *index_sdia;
int *index_ilu;

=3

int iparam[50];

int nxny, length, ndim, nzeros;
int i, j, idum, ierror;
int job;
Il set up exception handler
set_new_handler(memory_err);
Il define the problem size

const int nx = 10;
const int ny = 10;

nxny = nx * ny,
ndim = nxny;
nzeros = 3;

Il allocate memory for the 2-dimensional arrays

a_sdia = new double [nzeros*ndim];
a_ilu = new double [nzeros*ndim];

Il allocate memory for the 1-dimensional arrays

rworkl = new double [4*nxny];
rhs = new double [nxny];

X = new double [nxny];

X0 = new double [nxny];

index_sdia = new int [nzeros];
index_ilu = new int [nzeros];

Il set the parameters (integer and real)
ditsol_defaults(iparam, rparam);

iparam[2] = 0;
iparam[3] = 4 * nxny;

/I direct all output to the screen

iparam[4] = 6;
iparam[5] = 3;
iparam[6] = 4;

Il generate the matrix

genmatl(nx, ny, nxny,
a_sdia, index_sdia,
ndim, nzeros);

(continued on next page)
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Example 10-4 (Cont.) Iterative Solver with CXML Routines (C++ Code) -
Example filename: example_itsol_1.cxx

iparam[30] = nzeros;
iparam[31] = ndim;

Il generate xo, the true solution
for (i=0; i<nxny; i++)

xoi] = 1.0;
/I obtain the right hand side
job = 0;

matvecl(job, iparam, rparam,
a_sdia, index_sdia,
&dum, xo, rhs, nxny);

/I obtain initial guess (all zeros)

for (i=0; i<nxny; i++)
X[i] = 0.0;

Il generate the preconditioner

dcreate_ilu_sdia(a_sdia, index_sdia,
ndim, nzeros,
a_ilu, index _ilu,
nxny);

/I call the solver

ditsol_pcg(matvecl, pcondil, dum, dum,
a_sdia, index_sdia,
X, rhs, nxny,
a_ilu, index ilu,
dum, idum,
iparam, rparam,
idum, rworkl,
ierror);

if (ierror 1= 0)
cout << "ditsol_pcg returned with error flag: " << ierror
<< endl;
/I find the maximum absolute error in the solution
max1 = ABS((x[0]-xo[0]));
for (i=1; i<nxny; i++)

tmpl = ABS((X[i]-xo[i]));
maxl = MAX((max1),(tmpl));

Il print the maximum absolute error

cout << "maximum error in the solution: " << maxl << endl;

Il deallocate the memory

delete a_sdia;
delete a_ilu;
delete rworkl;
delete xo;
delete x;
delete rhs;

delete index_sdia;
delete index_ilu;
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Example 10-4 (Cont.) Iterative Solver with CXML Routines (C++ Code) -
Example filename: example_itsol_1.cxx

} Il end of main()

Il generate the matrix for the problem described in the chapter on
Il iterative solvers in the CXML Reference Guide

void genmatl(int nx, int ny, int nxny,
double af], int index(],
int ndim, int nzeros)

int i, j, k
for (j=0; j<nxny; j++)
for (i=1; I<nzeros; i++)
afi*ndim+j] = 0.0;
for (j=0; j<nxny; j++)
a[0*ndim+j] = 4.0;
for (=0; j<ny; j++)
for (i=1; i<nx; i++)
k=j*nx+i
a[2*ndim+k] = -1.0;

for (j=1; j<ny; j++)
for (i=0; i<nx; i++)

{
k=j*nx+i
a[l*ndim+k] = -1.0;
index[0] = O;
index[2] = -1;
index[1] = -nx;

} Il end of genmatl()

Il provide the matrix-vector routine using the standard parameter list
I as described in the CXML Reference Guide

void matvecl(int &job, int iparam[], double rparam[],
double af], int ia[l,
double w{], double x[], double y[], int &n)

int nzeros, ndim;
double dum;

nzeros = iparam[30];
ndim = iparam[31];

dmatvec_sdia(job, a, ia, ndim, nzeros, &dum, X, y, n);
} Il end of matvecl()

(continued on next page)
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Example 10-4 (Cont.) Iterative Solver with CXML Routines (C++ Code) -
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il

I provide the left preconditioning routine using the standard parameter
Il list as described in the CXML Reference Guide

il

void pcondll(int &job, int iparam[], double rparamf],
double ql[], int iql[],
double a], int ia]],
double wi[], double x[], double y[], int &n)

int nzeros, ndim, jobl;
double *tmp;
Il ilu preconditioning

nzeros = iparam[30];
ndim = iparam[31];

/I allocate temporary storage
tmp = new double [n];

jobl = 0;
dapply_ilu_sdia(jobl, ql, igl, &ndim, &nzeros, x, tmp, n);
jobl = 1;

dapply_illj_sdia(jobl, ql, igl, &ndim, &nzeros, tmp, y, n);
/I deallocate temporary storage

delete tmp;
} 1l end of pcondll()

Output from Example 4

method used : cg with spd split preconditioning
order of system = 100

stopping criterion used = 1

maximum iterations allowed = 100
tolerance for convergence =  0.10000000E-05

iteration = 0 stopping test = 0.69282032E+01
iteration = 1 stopping test = 0.19194193E+01
iteration = 2 stopping test = 0.12100937E+01
iteration = 3 stopping test = 0.52439623E+00
iteration = 4 stopping test = 0.84029860E-01
iteration = 5 stopping test = 0.20539881E-01
iteration = 6 stopping test = 0.34309306E-02
iteration = 7 stopping test = 0.47063334E-03
iteration = 8 stopping test = 0.16605002E-03
iteration = 9 stopping test = 0.45072557E-04
iteration = 10 stopping test = 0.72087304E-05
iteration = 11 stopping test = 0.88047573E-06

solution obtained after 11 iterations
normal exit from solver
final value of stopping test = 0.88047573E-06

maximum error in the solution: 5.6260082260e-08
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Using the Direct Solvers for Sparse Linear
Systems

CXML provides subprograms for the direct solution of sparse linear systems of
equations. At present, the direct solvers are provided only for matrices stored
using the skyline storage scheme.

This chapter provides information on the following topics:
e Introduction to linear system solvers (Section 11.1)

= Introduction to direct solvers (Section 11.3)

= Introduction to the skyline solver (Section 11.4)

= Storage schemes for sparse matrices stored in the skyline storage format —
symmetric matrices and unsymmetric matrices (Section 11.5)

= Functionality provided by the skyline solvers (Section 11.6)
= Naming conventions (Section 11.7)

= Summary of the skyline solver subprograms (Section 11.8)
e Error handling for the skyline solvers (Section 11.9)

= Suggestions on the use of the skyline solvers (Section 11.10)
= A look at some skyline solvers (Section 11.11)

Two key skyline solver subprograms, DSSKYF and DUSKYF, have been
parallelized for improved peformance on Tru64 UNIX multiprocessor systems.
For information about using the parallel library, see Section A.1.

11.1 Introduction

Many applications in science and engineering require the solution of linear
systems of equations such as:
Az =1b (11-1)

In this equation, A is an n by n matrix and z and b are vectors of length n.

Often, these systems occur in the innermost loop of the application, and for good

overall performance of the application, it is essential that the linear system solver
be efficient. Depending on the application, the system may be solved either once,

or many times with different right sides.

The linear systems of equations that arise from science and engineering
applications are usually sparse; that is, the coefficient matrix A has a large
number of zero elements. You can realize substantial savings in compute time
and memory requirements by storing and operating on only the nonzero elements
of A. Solution techniques that exploit this sparsity of the matrix A are referred
to as sparse solvers.
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11.2 Methods for Solutions

Methods for the solution of linear systems of equations can be classified into two
categories:

e |terative Methods

These methods start with an initial guess to the solution, and proceed

to calculate solution vectors that approach the exact solution with each
iteration. The process is stopped when a given convergence criterion is
satisfied. The number of iteration steps required for convergence varies with
the coefficient matrix, the initial guess and the convergence criterion — thus,
an apriori estimate of the number of operations is not possible.

See Chapter 10 for details about iterative methods.
= Direct Methods

These methods first factor the coefficient matrix A into its triangular factors
and then perform a forward and backward solve with the triangular factors
to get the required solution. The solution is obtained in a finite number of
operations, usually known apriori, and is guaranteed to be as accurate as the
problem definition.

11.3 Describing the Direct Method
In a direct method, the matrix A is factored as follows:
A=LDU (11-2)

In this equation, L is a unit lower triangular matrix, D is a diagonal matrix, and
U is a unit upper triangular matrix. The system (11-1) is then solved for z by
solving the following systems in order:

Lz=1b

Dv=2z
and:

Ur=w

In the previous equations, z and v are vectors of length ». In the case of a
symmetric matrix A, the triangular factorization (11-2) has the following form:

A=UTpU (11-3)

The solution is obtained by solving for z, v and z as follows:

UTz =14

Dv=2z
and:

Uz=w
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The process of triangular factorization of the matrix A introduces numerical
errors due to roundoff or truncation. This can result in the growth of errors as
the algorithm progresses. Unless excessive growth in these errors is checked, the
accuracy of the solution may be seriously impaired, even resulting in a complete
loss of significance. It is possible to minimize this growth by suitably scaling
the original matrix A and by choosing large pivot elements in the course of the
factorization. An appropriate choice of the pivot may require the interchange of
the rows and columns of the matrix. This is acheived via the use of permutation
matrices P and @ such that instead of solving the system (11-2), the following
equivalent system is solved:

(PAQ)(QTz) = Pb

If A is a symmetric matrix, the equivalent system solved is as follows:
(PAPT)(Pz) = Pb

The matrices P and @ are obtained during the factorization process and are
dependent on the numerical values of the elements of the matrix A.

In the case of a sparse matrix A, the triangular factorization (11-2) or (11-3) can
give rise to L and U factors that are not sparse. The additional nonzero entries
in the matrices L and U, in positions where the corresponding entry of the matrix
A is zero, are referred to as fill-in.

As fill-in increases both the memory requirements as well as the compute
time, it should be minimized. This can be achieved again by the use of
permutation matrices that reorder the variables such that the factors L and
U are appropriately sparse.

It is sometimes possible to perform this reordering based on the nonzero
structure of the matrix, without explicit knowledge of the values of the nonzero
elements. Therefore, ordering for preservation of sparsity can be done prior to
the factorization of the matrix. Depending on the data structures used for storing
the matrix, the reordering of the variables can be chosen to minimize specific
attributes such as the fill-in, the profile of the matrix, the bandwidth of the
matrix and so forth.

Thus, the permutation matrices P and @ are chosen to achieve either one,
preferably both, of the following goals:

= Numerical stability and accuracy of the solution procedure
= Preservation of the sparsity of the original matrix A

Orderings that preserve the sparsity also provide an improvement in the accuracy
of the solution by minimizing the number of operations performed on each
element.

There are different versions of direct methods depending on the way the sparse
matrix is stored and sparsity is exploited. These storage schemes are often
reflective of the applications that give rise to the matrices. CXML currently
provides solvers for matrices stored using the envelope or skyline data structure.

Further details about direct solvers can be found in George and Liu 1981,
Pissanetzky 1984, and Duff, Erisman, and Reid, 1986.
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11.4 Skyline Solvers

Skyline solvers are also referred to as variable band, profile, or envelope solvers.
They exploit the sparsity of the matrix by making use of the property that zero
elements situated before the first nonzero element in any row or column always
remain zero during the factorization, assuming no row or column interchanges
are included for numerical stability.

Thus, only the elements to the right of the first nonzero element in a row and
below the first nonzero element in a column need to be stored. Zero elements
within this variable band are also stored explicitly as this part of the matrix
usually fills in totally during factorization. As a result, it is possible to use

a static data structure during the factorization and the solution of the linear
system.

Skyline, or profile matrices, are a special case of banded matrices where the
nonzero structure is exploited further by considering each row or column to have
a variable bandwidth. For example, consider the symmetric matrix A with a
lower triangular part:

a11
az1 @22
0 0 a33 (11_4)

0 az2 0 agy
0 asp 0 0 asg

Let f;(A) denote the column number of the first nonzero element in row«, as in
the following:

fi(A) = man{jla;;#0}
The bandwidth of the row : is then defined as follows:
Bi(A) = — fi(4)
Thus, the following exists:
fa(A) =2 and B4(A) =2

Skyline solvers take advantage of the variation in g;(A) across the rows and store
only the profile or the envelope of A, Env(A), as follows:

Env(A) = {(s,7)|fi(A) <5<}

Thus, in addition to the diagonal elements, the lower triangular part of A
requires the storage of elements in locations (2,1), (4,2), (4,3), (5,2), (5,3) and (5,4).

These are essentially the elements in each row, starting with the first nonzero
element and moving right to the diagonal element. Any zero elements in a row,
between the first nonzero element and the diagonal, are stored explicitly. These
elements (including the diagonal) define the width of the row.

In the case of a nonsymmetric matrix, the elements from the first nonzero
entry in a column to the diagonal entry are also stored. This includes any zero
elements in the column, between the first nonzero element and the diagonal.
These elements (including the diagonal) define the height of the column. The
number of elements within the envelope of A is called the profile or the envelope
size.
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11.5 Storage of Skyline Matrices

CXML provides skyline solvers for both symmetric and nonsymmetric matrices.
In each case, the matrix can be stored in one of the following two storage modes:

= Profile-in storage mode
< Diagonal-out storage mode

Both modes have identical storage requirements and in addition to the elements
in the envelope, also store pointers to the diagonal elements. Additionally, CXML
provides a profile-in storage mode for matrices that are structurally symmetric,
but numerically unsymmetric.

11.5.1 Symmetric Matrices

Symmetric matrices are stored in a skyline storage scheme using either the
profile-in or the diagonal-out mode. The elements in a row (or column) of the
lower (or upper) triangular part of the matrix are stored contiguously, starting
either from the profile and moving towards the diagonal (profile-in mode) or
starting from the diagonal and moving outward to the profile (diagonal-out mode).

11.5.1.1 Profile-in Storage Mode

The profile-in storage scheme stores the symmetric matrix A in two arrays, as
follows:
a1l 412
a2 a2 az4 a5
A= azz O 0 (11-5)
aq 0 agqg O
ags 0 0 ass

The two arrays are a real array AU that contains the variable banded columns of
the upper triangular part of A and an integer array IAUDIAG that contains the
pointers to the diagonal elements in the array AU.

As the scheme is a profile-in scheme, the elements in a column of the upper
triangular part are stored starting from the first nonzero element in the column
and moving down to the diagonal element. The data for each column are stored
in consecutive locations, the columns are stored in order and there is no space
between the columns.

As A is a symmetric matrix, this can also be interpreted as storing the elements
of the lower triangular part starting with the first nonzero element in a row and
moving across to the diagonal element. Thus, the matrix in (11-5) is stored in the
following arrays:

AU = (a11, @12, a22, 433,024, 0, a44, a5, 0,0, ass)
and:
IAUDIAG = (1,3,4,7,11)

IAUDIAG is of length at least n, where » is the order of the matrix A and AU is
of length at least nau, where nau is the envelope size of the symmetric part of A.
Thus, for a;;€Env(A), the following exists:

a;; = AU(IAUDIAG(y)) for 1 < j <n
a;; = AU(TIAUDIAG(j) — 7 +1) fori < 5
and:
nau = 11

If all the elements in the column to be stored are zero, then the diagonal element
having a value of zero is stored for that column.
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11.5.1.2 Diagonal-out Storage Mode
The elements of the upper triangular part of the symmetric matrix 4 in (11-5)
can also be stored by columns in order, starting with the diagonal element and
moving up the column to the first nonzero element in the column.

Alternatively, the lower triangular part of the matrix can be considered as being
stored by rows in order, with each row stored starting from the diagonal element
and moving left to the first nonzero element in the row. The data for each column
are stored in consecutive locations, the columns are stored in order and there is
no space between columns. Thus, the matrix in (11-5) is stored as:

AU = (a11’ a22,@12,a33, @44, 0, a24, @55, 0,0, a’25)

and:
IAUDIAG = (1,2,4,5,8,12)

Array AU is of length at least nau, where nau is the envelope size of the
symmetric part of A. Array IAUDIAG is of length at least » + 1, where the

(n + 1)-st element is the pointer to the location, in AU, of the diagonal entry of
row n + 1, if there had been such a row. This allows the determination of the
location of the first nonzero entry in the n-th column of A. Thus, for ¢;;€Env(A),
the following exists:

a

ij = AU(IAUDIAG(y)) for 1 < 7 <n

a;; = AU(IAUDIAG(j) + 7 —1) for 1 < j

and:
nau = 11

If all the elements in the column to be stored are zero, then the diagonal element
having a value of zero is stored for that column.

11.5.2 Unsymmetric Matrices

Unsymmetric matrices are stored in a skyline storage scheme using either the
profile-in or the diagonal-out mode. The elements in a row (and column) of the
lower (and upper) triangular part of the matrix are stored contiguously, starting
either from the profile and moving towards the diagonal (profile-in mode) or
starting from the diagonal and moving outward to the profile (diagonal-out mode).
The lower and upper triangular parts are stored in separate arrays, with the
diagonal stored in the upper triangular part.

CXML also provides a special storage scheme for matrices that are structurally
symmetric, but numerically unsymmetric. Such matrices can also be stored using
the general scheme, but at a cost of higher memory requirements.
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11.5.2.1 Profile-in Storage Mode
The profile-in storage scheme stores the unsymmetric matrix A in four arrays, as
follows:
a1
az1 a2 a3 a25
A= a3z azgq O (11-6)
ag2 0 agq O
asp 0 0 ass

The two real arrays AU and AL contain the columns of the upper triangular part
and rows of the lower triangular part of A, respectively. The two integer arrays
IAUDIAG and IALDIAG contain the pointers to the diagonal elements in the
arrays AU and AL, respectively.

As the scheme is a profile-in scheme, the elements in a column of the upper
triangular part are stored starting from the first nonzero element in the column
and moving down to the diagonal element. Similarly, the elements in a row of the
lower triangular part are stored starting with the first nonzero element in a row
and moving across to the diagonal element. The data for each row and column
are stored consecutively, the rows and columns are stored in order, and there is
no space between successive rows or columns.

The diagonal of A is stored along with the upper triangular part in the array AU.
The array AL also has storage for the diagonal elements, but these locations are
not accessed and they can be used to store other information. Thus, the matrix A
is stored as follows:

AU = (a11, a2, a23, 433, a34, a44, a5, 0,0, ass)
AL = (*’ Qa21,%*,%,042, 0, %, as2, 0,0, *)
TAUDIAG = (1,2, 4,6, 10)
and:

TALDIAG = (1,3,4,7,11)

The diagonal elements in AL are indicated by * — the elements in the array
IALDIAG are pointers to these locations. IAUDIAG and IALDIAG are of length
at least »n, where » is the order of the matrix A and AU and AL are of lengths
at least nau and nal, respectively, where nau is the envelope size of the upper
triangular part of A (including the diagonal) and nal is the envelope size of the
lower triangular part of A (including the diagonal). Thus, for g;;€Env(A), the
following exists:

aj; = AU(TIAUDIAG(j)) for 1<5<n

a;j = AU(TAUDIAG(j) — j +1) for s < j
= AL(TALDIAG(:) — i + 5) for i > §

nau = 10 and nal = 11

Note

The envelope size of the matrix A is (nal + nau — n) as the diagonal
elements are counted both in nal and nau. If all the elements in the row
or column to be stored are zero, then the diagonal element having a value
of zero is stored for that row or column.
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11.5.2.2 Diagonal-out Storage Mode
The diagonal-out storage scheme stores the unsymmetric matrix A in (11-6) in
four arrays — two real arrays AU and AL containing the columns of the upper
triangular part and the rows of the lower triangular part of A respectively, and
two integer arrays IAUDIAG and IALDIAG ontaining the pointers to the diagonal
elements in the arrays AU and AL, respectively.

As the scheme is a diagonal-out scheme, the elements in a column of the upper
triangular part are stored starting with the diagonal element and moving up the
column to the first nonzero element in the column.

Similarly, the elements in a row of the lower triangular part are stored starting
from the diagonal element and moving outward to the first nonzero element in
the row. The data for each row and column are stored consecutively, the rows and
columns are stored in order, and there is no space between successive rows and
columns.

The diagonal of A is stored along with the upper triangular part in the array AU.
The array AL also has storage for the diagonal elements, but these locations are
not accessed and they can be used to store other information. Thus, the matrix A,
in (11-6), is stored as follows:

AU = (all’ a22, @33, @23, @44, @34, @55, 0,0, a25)
AL = (*’ *, 821, %, %, 0, aq2, %, 0,0, a52))
TAUDIAG = (1,2,3,5,7, 11)
and:

IALDIAG = (1,2,4,5,8,12)

The diagonal elements in AL are indicated by x and the elements in the array
IALDIAG are pointers to these locations. IAUDIAG and IALDIAG are of length
at least n + 1, where n is the order of the matrix A.

The n + 1-st element is the pointer to the location, in AU and AL, of the diagonal
entry of row n + 1, if there had been such a row. This allows the determination of
the location of the first nonzero entry in the n-th row and column of A. AU and
AL are of lengths at least nau and nal, respectively, where nau is the envelope
size of the upper triangular part of A (including the diagonal) and nal is the
envelope size of the lower triangular part of A (including the diagonal). Thus, for
a;;€Env(A), the following exists:

aj; = AU(IAUDIAG(j)) for 1<5<n

a;j = AU(TAUDIAG(5) +j — 1) for i < j
a;j = AL(IALDIAG(s) +1 — j) for s > 5

nau = 10 and nal = 11

Note

The envelope size of the matrix A is nal+nau—n as the diagonal elements
are counted both in nal and nau. If all the elements in the row or column
to be stored are zero, then the diagonal element having a value of zero is
stored for that row or column.
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11.5.2.3 Structurally Symmetric Profile-In Storage Mode
Unsymmetric matrices with structural symmetry can be stored using only
one array for both the upper and lower triangular parts. The elements of the
strict lower triangular part are stored first in a profile-in mode, followed by the
elements of the strict upper triangular part, also in profile-in mode and finally
the diagonal element.

As the matrix is structurally symmetric, it is possible to determine the start of
each column, given a pointer to the diagonal entries. Thus the matrix A:

a11 @12
a1 @22 24 G25
A= azz O 0 (11-7)

ag2 0 agq O
agp 0 0 asg

is stored using the real array AU and the integer array: IAUDIAG as
AU = (a11, a1, @12, a22, 433, 442, 0, a24, 0, a4, as2, 0,0, azs, 0,0, ass)

and:
TAUDIAG = (1,4,5,10,17)

IAUDIAG is of length at least » and AU is of length at least nau, where nau is
the profile of the matrix A. The arrays AL and IALDIAG are not used. Thus, for
a;;€Env(A), the following exists:

aj; = AU(IAUDIAG(7)) for 1<5<n

a;j = AU(TAUDIAG(y) — j +4) fori < 5

TIAUDIAG(: JIAUDIAG(z — 1 1
aij:AU( (2) + 5 =1+ —i—i—j) fori> 7
and:
nau = 17

If all the elements in the row or column to be stored are zero, then the diagonal
element having a value of zero is stored for that row or column.

11.6 CXML Skyline Solvers

CXML includes routines to solve systems of equations:

AX=B
or:

ATx=nB
where the matrix A is stored using the skyline storage scheme. A can be either
a symmetric or an unsymmetric matrix. If A is a symmetric matrix, then it can
be stored using either the profile-in or the diagonal-out storage mode. If A is

unsymmetric, then it can be stored using either the profile-in storage mode, the
diagonal-out storage mode, or the structurally symmetric, profile-in storage mode.
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The skyline solvers in CXML include routines for both the LDU (or the UT DU)
factorization as well as the forward and back solves. As the routines for these two
operations are separate, it allows the factorization to be evaluated once, followed
by repeated use of the solve routine to obtain the solution for different right sides.
The solve routines can also be called with multiple right sides. The factorize and
solve routines must be called with the same storage scheme.

In addition to the LDU (or UT DU) factorization and the triangular solve routines
for the symmetric and unsymmetric matrices stored using the skyline storage
scheme, CXML also provides the following functionality:

e Evaluation of the determinant

The factorization routines include an option for the evaluation of the
determinant of the matrix A. In order to prevent overflow or underflow, the
determinant is returned in two parts, det_base and det_pwr, with the value of
the determinant given as:

det_base  10detpwr
where:
1.0< det_base < 10.0

e Evaluation of the inertia

The inertia of the symmetric matrix A is the triplet of integers
ipetgen, inetgen,izeigen, consisting of the number of positive, negative
and zero eigenvalues, respectively.

The factorization routines allow the option of evaluating the inertia of the
symmetric matrix A. In addition to the number of positive and negative
eigenvalues, the routine returns an indication of the existence, or otherwise,
of at least one zero eigenvalue.

e Partial factorization

The factorization routines also allow a partial factorization of A, starting from
row and column zbeg+ 1 where zbeg > 0. The factorization of rows and columns
1 through zbeg is assumed to have been already obtained by a previous call to
the routine.

< Pivoting

No pivoting is done during the factorization process to ensure numerical
stability. However, if a small pivot (in absolute value) is encountered, an
option is provided to either stop the factorization, continue the factorization,
or continue after setting the pivot equal to a predetermined value. The
location of the first occurrence of a small pivot and its value are returned on
exit from the factorization routine.

Due to the lack of pivoting for numerical stability, caution is urged when
using the skyline solvers for the solution of systems that are not positive (or
negative) definite or diagonally dominant.

e Statistics on the matrix

CXML provides the option to collect and print the statistics on the skyline
matrix. By appropriately selecting the input parameters, the following
information can be obtained from the factorization routines:

— The envelope size of the matrix

— The number of zeros in the envelope at the start of the factorization
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— The percentage of the envelope that was sparse at the start of the
factorization

— The maximum height of a column

— The average height of a column

— The root-mean-square height of a column

— The maximum width of a row (unsymmetric matrices only)
— The average width of a row (unsymmetric matrices only)

— The root-mean-square width of a row (unsymmetric matrices only)

These statistics also include the determinant of the matrix A, if evaluated,
and in the case of symmetric matrices, the inertia of the matrix, if evaluated.

Evaluation of matrix norms

CXML provides routines for the evaluation of the various norms of the matrix
A as well as an estimate of the reciprocal of the condition number of A. By
appropriately setting an input parameter, the following quantities can be
evaluated:

— 1-norm of (A):

||All = m]@txz |as]
z

— oco-norm of (A):
[14]]oo =mgXZ|az'j|
i

14llr =, /ZZ |ag;[?

— Largest absolute value of (A):

— Frobenius-norm of (A):

H;@XIaijl

)

Note

The 1-norm of A is the co-norm of AT and the last quantity above is not a
matrix norm.

Condition number estimator

The condition number estimator included in CXML for matrices stored in the
skyline storage format is based on the LAPACK routine DLACON [Anderson
et.al. 1992], which estimates the 1-norm of a square, real matrix. The CXML
routine returns the reciprocal of the condition number of A as:

_ 1
Al A2
where either the 1-norm or the co-norm is used. The norm of A is evaluated

by an appropriate call to the routine that evaluates the various norms, and
the estimate of the norm of A~1 is evaluated using the routine DLACON.

rcond(A)
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e |terative refinement, error bounds, and backward error estimates

CXML provides routines to improve the computed solution via iterative
refinement. This is done by obtaining the residual, r, corresponding to the
calculated solution %, and updating it to get a better solution vector z,., as
follows:

r==bt— A%

bz =A"1r

and:
Tpew = T+ 6z

In the case of an unsymmetric matrix, if the system being solved is:
ATz =0

the updated solution vector is obtained as:
r=>b— ATz
sz=A"Tyr

and:
Tpew = T+ 6z

Therefore, both the original matrix A as well as the LDU (or UT DU)
factorization are required, in addition to the right hand side, b, and the
calculated solution z. The iterative refinement routines evaluate all
quantities in the same precision as the rest of the computation, that is,
no extended precision is used [Skeel 1980].

Additionally, the iterative refinement routines provide the component-wise
relative backward error and the estimated forward error bound for each
solution vector [Demmel et. al. 1988, Arioli, Demmel and Duff 1989,
Anderson et. al. 1992]. These quantities can be used to provide an indication
of the quality of the solution. The component-wise relative backward error,
berr, of each solution vector is the smallest relative change in any entry

of A or b that makes z an exact solution. The estimated forward error,

ferr, bounds the magnitude of the largest entry in £ — x4, divided by the
magnitude of the largest entry in %, where x4, is the true solution and %, the
calculated solution.

The criterion for stopping iterative refinement is based on the discussion in
[Arioli, Demmel, Duff 1989]. Iterations are continued as long as all of the
following conditions are satisfied:

— The number of iterations of the iterative refinement process is less than
the maximum allowed.

— berr reduces by at least a factor of 2 during the previous iteration.

— berr is larger than the machine precision, ¢ (the greatest positive number
such that the floating point representation of 1 + ¢ equals 1).
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CXML provides two types of driver routines for the solution of linear systems
with the matrix stored in the skyline storage scheme:

— A simple driver, which factorizes the matrix A and solves the system:

or:

AX =B

ATX=1nB

with the solution z overwriting the right hand side and the factorization

overwriting the matrix A.

— An expert driver that can also perform condition number estimation, a
check for singularity, iterative refinement of the solution and computation
of the component-wise relative backward error and the estimated forward
error bound for the solution vector.

Both drivers are provided for symmetric and unsymmetric matrices and allow
a choice of storage modes for the skyline matrix. The expert driver has higher
memory requirements than the simple driver. It also allows the matrix to be

input in either the factored or the unfactored form and provides more options

in the factorization phase.

11.7 Naming Conventions for Direct Solver Subprograms

Table 11-1 shows the character groups and the character mnemonics and their
meaning for each skyline solver routine name.

Table 11-1 Naming Conventions for Direct Solver Subprograms

Character Group Mnemonic Meaning
First group D Double-precision real data
Second group S Symmetric matrix
U Unsymmetric matrix
Third group SKY Matrix stored in skyline storage scheme
Fourth Group N Evaluate matrix norms
F Factorize
S Solve
C Estimate condition number
R Perform iterative refinement
D Simple driver
X Expert driver

Thus, the routine DUSKYF obtains the LDU factorization for an unsymmetric
matrix consisting of real double-precision data stored in the skyline storage mode.
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11.8 Summary of Skyline Solver Subprograms

Table 11-2 summarizes the skyline solver subprograms.

Table 11-2 Summary of Direct Solver Subprograms

Subprogram
Name Meaning
DSSKYN Obtains, in double-precision arithmetic, the 1-norm, the co-norm,

the Frobenius norm, or the maximum absolute value of a symmetric
matrix stored in either the profile-in or the diagonal-out skyline
storage mode.

DSSKYF Obtains, in double-precision arithmetic, the UT DU factorization of a
symmetric matrix stored in either the profile-in or the diagonal-out
skyline storage mode.

DSSKYS Obtains, in double-precision arithmetic, the solution to the system
AX = B, where A has been factored using the routine DSSKYF.
DSSKYC Obtains, in double-precision arithmetic, the reciprocal of the estimate

of the condition number of a symmetric matrix stored in either the
profile-in or the diagonal-out skyline storage mode.

DSSKYR Obtains, in double-precision arithmetic, an improvement to the
solution via iterative refinement, the component-wise relative
backward error and the estimated forward error bounds for the
solution vector. The symmetric matrix is stored in either the profile-in
or the diagonal-out skyline storage mode.

DSSKYD Obtains, in double-precision arithmetic, the UT DU factorization
of the matrix A, followed by the solution of the system AX = B,
where the symmetric matrix A is stored in either the profile-in or the
diagonal-out skyline storage mode.

DSSKYX Obtains, in double-precision arithmetic, the UT DU factorization and
the condition number estimate of the matrix A. If the matrix is non-
singular, the solution of the system AX = B is obtained, followed
by iterative refinement and the calculation of the component-wise
relative backward error and the estimated forward error bounds for
the solution vector. The symmetric matrix A is stored in either the
profile-in or the diagonal-out skyline storage mode.

DUSKYN Obtains, in double-precision arithmetic, the 1-norm, the co-norm, the
Frobenius norm or the maximum absolute value of an unsymmetric
matrix stored in either the profile-in, the diagonal-out or the
structurally symmetric profile-in skyline storage mode.

DUSKYF Obtains, in double-precision arithmetic, the LDU factorization of an
unsymmetric matrix stored in either the profile-in, the diagonal-out
or the structurally symmetric profile-in skyline storage mode.

DUSKYS Obtains, in double-precision arithmetic, the solution to the system
AX = Bor ATX = B, where A has been factored using the routine
DUSKYF.

DUSKYC Obtains, in double-precision arithmetic, the reciprocal of the estimate

of the condition number of an unsymmetric matrix stored in either
the profile-in, the diagonal-out or the structurally symmetric profile-
in skyline storage mode. Either the 1-norm or the co-norm can be
used.

(continued on next page)
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Table 11-2 (Cont.) Summary of Direct Solver Subprograms

Subprogram
Name Meaning
DUSKYR Obtains, in double-precision arithmetic, an improvement to the

solution via iterative refinement, the component-wise relative
backward error and the estimated forward error bounds for the
solution vector. The unsymmetric matrix is stored in either the
profile-in, the diagonal-out or the structurally symmetric profile-in
skyline storage mode.

DUSKYD Obtains, in double-precision arithmetic, the LDU factorization of
the matrix A, followed by the solution of the system AX = B or
AT X = B, where the unsymmetric matrix A is stored in either the
profile-in, the diagonal-out or the structurally symmetric profile-in
skyline storage mode.

DUSKYX Obtains, in double-precision arithmetic, the LDU factorization and
the condition number estimate of the matrix A. If the matrix is
non-singular, the solution of the system AX = B or ATX = B is
obtained, followed by iterative refinement and the calculation of the
component-wise relative backward error and the estimated forward
error bounds for the solution vector. The unsymmetric matrix A is
stored in either the profile-in, the diagonal-out or the structurally
symmetric profile-in skyline storage mode.

11.9 Error Handling

Errors during the execution of one of the skyline solver routines are indicated
by an appropriate value of the error flag, ierror. The routine sets the error
flag, prints out any error message and returns control to the calling program.
It is your responsibility to ensure that the routines completed successfully, as
indicated by ierror = 0.

Table 11-3 provides a list of the error flags and their meaning.

Negative values indicate a fatal error such as invalid input data, while positive
values indicate a warning, such as a small pivot during factorization.

The error flags in the -2000 range are the result of invalid input data and those
in the -3000 range are caused by an error during computation such as a small
pivot causing the factorization process to stop.

Table 11-3 Error Flags for Direct Solver Subprograms

Error Flag Meaning

-2001 Value of n is invalid

-2002 Value of naw is invalid
-2003 Value of nal is invalid
-2004 Value of niparam is invalid
-2005 Value of nrparam is invalid
-2006 Value of niwrk is invalid
-2007 Value of nrwrk is invalid

(continued on next page)
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Table 11-3 (Cont.) Error Flags for Direct Solver Subprograms

Error Flag Meaning

-2008 Value of folevel is invalid

-2009 Value of ide fault is invalid

-2010 Value of istore is invalid

-2011 Value of inorm is invalid

-2012 Value of dbeg is invalid

-2013 Value of idet is invalid

-2014 Value of ¢pvt is invalid

-2015 Value of inertia is invalid

-2016 Value of pvt_sml is invalid

-2017 Value of pvt_new is invalid

-2018 Value of Idb or Idbz is invalid

-2019 Value of nbz is invalid

-2020 Value of strans is invalid

-2021 Value of anorm is invalid

-2022 Value of itmaz is invalid

-2023 Value of ldz is invalid

-2024 Value of ifactor is invalid

-3001 Small pivot encountered; factorization stopped
-3002 Matrix singular to working precision

3001 Small pivot encountered; factorization continued
3002 Small pivot encountered; factorization continued after pivot

replacement
-4001 Memory allocation routine in the parallel version failed

To recover from errors in the -2000 range, the invalid argument should be set
to an appropriate value and the routine called again. Errors in the -3000 range
indicate that the solution procedure used might not be applicable to the problem
under consideration. An alternative solution procedure is recommended.

The parallel version of the factorization routines require a small amount of
additional memory for temporary variables. This memory allocation is not
expected to fail under normal conditions. However, if an error flag with value
-4001 is returned, you can either increase allocated values of pagefile quota and
virtual memory, or reduce the number of processors used, or use the serial version
of the routine.

The amount of information printed as a result of an error can be controlled by
setting the variable zolevel to an appropriate value. By a suitable choice of zounst,
all information printed can be suppressed.
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11.10 Suggestions on the Use of the Skyline Solvers

The skyline solvers included in CXML provide routines for the factorization
and the solution of matrices stored in the skyline storage format. Additional
functionality includes the evaluation of matrix norms, condition number
estimation, iterative refinement, component-wise backward error, and estimated
forward error bounds.

These routines are provided for both symmetric and unsymmetric matrices.

The symmetric matrix can be stored in either the profile-in or the diagonal-out
storage mode. The unsymmetric matrix can be stored in either the profile-in, the
diagonal-out, or the structurally symmetric profile-in storage modes.

The following steps are suggested in the use of the skyline solvers. Further
details are provided in the description of each routine.

Select a storage scheme for the matrix.

Once the matrix is stored using a particular storage scheme, the same storage
scheme must be used in all the skyline routines that operate on the matrix.

Select the order in which the routines are called.

The simple and expert driver routines provide most of the functionality that
is included in the CXML's skyline solvers via a simple call to a single routine.
If the functionality provided by one of these routines is what is required by
your application, then the driver routines are recommended. If not, then you
need to call the required routines in the appropriate order. It is also possible
to mix the two approaches and follow a driver routine by one of the other
skyline routines or vice-versa. For example, the expert driver routines do
not allow partial factorization. If this functionality is required, then a call to
the factorization routine can be followed by a call to the expert driver, with
the fully factored matrix as input. Care must be taken to ensure that data
that must not change between calls to successive skyline routines, remains
unchanged.

The factorization routine for the skyline matrices overwrites the original
matrix A with the LDU (or UT DU) factors. As a result, routines that require
the original matrix as an input must be called prior to the factorization
routine, or a copy of the matrix made before the call to the factorization
routine. For example, the evaluation of the norms requires the original
matrix A. Also the condition number estimator requires both the 1-norm or
the co-norm of A as well as its LDU (or UT DU) factors. In this case, the
norm evaluation routine must be called first, followed by the factorization
routine and finally the routine for the condition number estimation. This
order of routines will allow the use of only one copy of the matrix.

The iterative refinement routines require both the original matrix and the
original right sides, as well as the factored matrix and the solution vectors.
Since the solve routines overwrite the right hand sides, a copy of both the
original matrix and the right sides must be saved before a call to the factor
and solve routines, respectively.

Set up the integer and the real parameter arrays.

The arrays IPARAM and RPARAM are used to pass integer and real
parameters, respectively, to the skyline routines. These arrays must be set up
with the appropriate values prior to a call to each routine. There is an option
to select default values for some of the parameters. If this option is chosen,
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the remaining parameters must be assigned values before the call to a skyline
routine.

Some parameters are presently unused, but included for future use. These
can be dummy parameters.

= Set up arrays for integer and real workspace.

Each skyline routine requires integer and real workspace for the computation.
The workspace arrays, IWRK and RWRK must be of sufficient length as
indicated in the description of each routine. The size of this workspace is
provided via the variables niwrk and nrwrk in the array IPARAM. Some
parts of the workspace contain information generated during the factorization
process and used in other routines. This information must remain unchanged
between the call to the factorization routine and any subsequent routines.

= Select the options in factorization.

The factorization process allows additional functionality such as the
calculation of the determinant, statistics on the matrix and so forth. These
can be useful in getting a better understanding of the properties of the matrix
under consideration. However, their use is also expensive, and hence these
options should not be used unless the information generated is important for
the problem being solved.

The factorization routines allow partial factorization, with the factorization

starting at row and column (zbeg + 1) instead of 1. In this case, the first ¢beg
rows and columns are assumed to have already been factored by a previous
call to the factor routine.

No pivoting is done during the factorization process. Hence care must be
taken in cases where the matrix is not symmetric positive (negative) definite
or diagonally dominant and therefore might require pivoting to ensure a
stable factorization. Options are provided to stop the factorization process
when a small pivot is encountered, or to continue the factorization process. In
the latter case, there is an option to either use the same pivot element or use
a replacement pivot element.

e Check the value of the PARALLEL environment variable.

If you are using the parallelized version of the factorization routines, you
must set the value of the PARALLEL environment variable, even if you are
using a single processor. See Section A.1.1.

e Check the accuracy of the solution.

An estimate of the quality of the solution can be obtained from the iterative
refinement routine which calculates the component-wise backward error and
the estimated forward error bounds.

= Check the error flags.

The error flag ierror must be checked on exit from each call to a skyline
routine, especially if all messages from the routine have been suppressed.
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11.11 A Look at Some Skyline Solvers

To illustrate the use of the sparse skyline solvers, consider the linear system of
equations derived from the discretization of the Laplace’s equation:

—Ugg — Uyy = 0

on the unit square:
0<z<1

and:
0<y<1

with Dirichlet boundary conditions, using the standard five point central
differencing scheme. Assuming nz grid points in the z direction and ny grid
points in the y direction, the coefficient matrix has the following form for
nr=ny =4:

4-1 | -1 | |
141 | | |
141 1 |
14 1] |
I I I
1 | 41 1 |
-1 |1 41 | - |
1 | 14 S
1] 14 1]
| | |
| | |
-1 | 41 1
1 141 | 4
1] 14 -1
‘1] 14 1
| | |
| | |
-1 | 4 -1
| -1 1 4-1
| 1] 144
| -1 14

The elements not defined in the matrix are zero. The exact solution is assumed
to be all 1.0.

The following example programs illustrate the use of the CXML skyline solver
routines from Fortran, C, and C++ languages. Each example is self-contained,
and has comments indicating the operation being performed. The output created
by each example program is also included, to illustrate the output that can

be obtained from the skyline solvers by setting parameters appropriately. The
examples in this section, along with additional examples, are included online in
the CXML Examples directory. The following example programs are included in
this section:

Skyline Solver with the Simple Driver Routine (Fortran Code) —
Example 11-1

Skyline Solver with Iterative Refinement (Fortran Code) — Example 11-2

Skyline Solver Using Factorize and Solve Routines (C Code) — Example 11-3
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Skyline Solver Using Factorize and Solve Routines (C++ Code) —
Example 11-4
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Example 11-1 Skyline Solver with the Simple Driver Routine (Fortran Code) -
Example filename: example_skysol_2.f

PROGRAM EXAMPLE_SKYSOL

C
C *+ TO DEMONSTRATE THE USE OF THE SPARSE SKYLINE SOLVER.
C
C * THIS PROGRAM ILLUSTRATES THE FOLLOWING:
C
C (1) USE OF THE SIMPLE DRIVER ROUTINE TO SOLVE THE TEST
C PROBLEM STORED AS A SYMMETRIC MATRIX IN THE PROFILE-IN
C STORAGE MODE.
C
IMPLICIT REAL*8 (A-H, 0-2)
C
PARAMETER (NMAX = 100)
PARAMETER (NMAX_SKY = 1100)
C
REAL*8 AU(NMAX_SKY), XO(NMAX), BX(NMAX), RPARAM(100),
$ DUM, TEMP
C
INTEGER IAUDIAG(NMAX), IPARAM(100), IWRK(2*NMAX),
$ LNX, NY, NXNY, IDUM
C
C *+ SETUP OUTPUT FILE
C
IOUNIT = 7
OPEN (UNIT=IOUNIT, FILEZOUTPUT.DATA!, STATUS="UNKNOWN))
REWIND IOUNIT
C
WRITE (IOUNIT, 101)
C
C * SET UP THE PROBLEM SIZE
C
NX = 10
NY = 10
NXNY = NX*NY
WRITE (IOUNIT, 102) NXNY
C
C *+* GENERATE THE MATRIX IN THE FIVE DIAGONAL FORM.
C
CALL GENMAT(NX, NY, NXNY)
C
C *++* GENERATE XO, THE TRUE SOLUTION
C
DO | = 1, NXNY
XO(l) = 1.0D0
END DO

#xck OBTAIN THE CORRESPONDING RIGHT HAND SIDE (IN BX). THIS IS
OVERWRITTEN BY THE SOLUTION.

CALL MATVEC (NX, NY, NXNY, XO, BX)

#ak CONVERT THE MATRIX INTO SYMMETRIC PROFILE-IN SKYLINE STORAGE
MODE

CALL CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)

O OO0 OO0

(continued on next page)
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Example 11-1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code) - Example filename: example_skysol_2.f

C = SET THE PARAMETERS (INTEGER AND REAL) FOR THE SIMPLE DRIVER
C
C IWRK = IPARAM(3) = 2*NXNY (INTEGER WORKSPACE)
C RWRK = IPARAM(4) = 0 (NO REAL WORKSPACE NEEDED)
C IOLEVEL = IPARAM(6) = 2 (FOR DETAILED INFORMATION AND
C STATISTICS)
C IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
C ISTORE = IPARAM(8) = 1 (FOR PROFILE-IN STORAGE MODE)
C IPVT = IPARAM(9) = 0 (STOP IF ABS(PIVOT) IS SMALLER THAN
C PVT_SML)
C PVT_SML = RPARAM(1) = 1.0D-12 (STOP IF ABS(PIVOT) IS SMALLER
C THAN PVT_SML)
C

IPARAM(1) = 100

IPARAM(2) = 100

IPARAM(3) = 2*NXNY

IPARAM(4) = 0

IPARAM(5) = IOUNIT

IPARAM(6) = 2

IPARAM(7) = 1

IPARAM(8) = 1

IPARAM(9) = 0
C

RPARAM(1) = 1.0D-12
C
C #+ CALL THE SIMPLE DRIVER ROUTINE FOR FACTORIZATION AND SOLUTION,
C WITH A SINGLE RIGHT HAND SIDE. RWRK IS A DUMMY ARGUMENT.
C

LDBX = NMAX

NBX = 1

CALL DSSKYD ( NXNY, AU, IAUDIAG, NAU, BX, LDBX, NBX,

IPARAM, RPARAM, IWRK, DUM, IERROR )

C
C #+ CHECK THAT THE SOLUTION COMPLETED WITHOUT ERROR
C

IF (IERROR.NE.O) THEN
WRITE (IOUNIT, 103) IERROR
GO TO 999

END IF

¥k FIND MAX ERROR IN SOLUTION

OO0

TEMP = ABS(XO(1) - BX(1))
DO | = 2, NXNY
TEMP = MAX( TEMP, ABS(XO() - BX()) )
END DO
WRITE (IOUNIT, 104) TEMP

C
999 CONTINUE
C

101 FORMAT (/,2X, 'SOLVING EXAMPLE PROBLEM WITH SYMMETRIC ',
$

'PROFILE-IN SKYLINE STORAGE MODE',)
102 FORMAT (/,2X, 'ORDER OF THE MATRIX:'I5)

103 FORMAT (/,2X, 'ERROR IN THE SIMPLE DRIVER ROUTINE:'110)

104 FORMAT (/,2X, 'MAXIMUM ERROR IN SOLUTION: ’, E15.8,))
C
STOP
END
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Example 11-1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code) - Example filename: example_skysol_2.f

O O O 00000 000

OO0O0O0O OO0

SUBROUTINE GENMAT (NX, NY, NXNY)

#xek ROUTINE TO GENERATE THE MATRIX FOR THE EXAMPLE (IN THE FIVE

DIAGONAL FORM). A1 AND A2 ARE THE SUBDIAGONALS, A3 IS THE MAIN

DIAGONAL AND A4 AND A5 ARE THE SUPERDIAGONALS.
IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (NMAX = 100)

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

DO I = 1, NXNY

DO | = 1, NX-1
K = (J-1)*NX+l
A4K) = -1.0D0
END DO
END DO

DO J = 2, NY
DO I = 1, NX
K = (J-1)NX+
AL(K) = -1.0D0
END DO
END DO

DO J = 1, NY-1
DO | = 1, NX
K = (J-1)*NX+l
A5(K) = -1.0D0
END DO
END DO

RETURN
END

SUBROUTINE MATVEC (NX, NY, NXNY, TMP1, TMP2)

# ROUTINE TO OBTAIN THE MATRIX VECTOR MULTIPLY, USING THE MATRIX

FROM THE FIVE-DIAGONAL FORM. TMP1 IS THE INPUT VECTOR; TMP2 IS

THE OUTPUT VECTOR.

(continued on next page)
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Example 11-1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code) - Example filename: example_skysol_2.f

IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (NMAX = 100)

REAL*8 TMPL(*), TMP2(*)

INTEGER NX,NY,NXNY

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

o0 O O O O

DO | = 1, NXNY
TMP2(I) = A3(I)*TMPL()
END DO

DO | = 1, NXNY-1

TMP2(l) = TMP2()) + A4()*TMPL(I+1)
END DO
DO | = 2, NXNY

TMP2() = TMP2(l) + A2(1)*TMPL(-1)
END DO
DO | = 1, NXNY-NX

TMP2(l) = TMP2(l) + AS()*TMPL(+NX)
END DO
DO | = NX+1, NXNY

TMP2(l) = TMP2()) + AL()*TMP1(-NX)
END DO

RETURN
END

SUBROUTINE CONVERT TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)
#ewe ROUTINE FOR CONVERTING THE MATRIX FROM THE FIVE-DIAGONAL FORM
TO THE SYMMETRIC PROFILE-IN SKYLINE FORM. ONLY THE UPPER

TRIANGULAR PART IS STORED. THE MATRIX IS RETURNED IN THE REAL
AND INTEGER ARRAYS, AU AND IAUDIAG, RESPECTIVELY

IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (NMAX = 100)

REAL*8 AU(*)

INTEGER IAUDIAG(), NAU, NX, NY, NXNY

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

OO O O O O 000000 000

INDEX = 1
AU(INDEX) = A3(1)
IAUDIAG(L) = 1

INDEX = INDEX + 1

(continued on next page)
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Example 11-1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code) - Example filename: example_skysol_2.f

DO | = 2, NX
AU(INDEX) = A4(I-1)
AU(INDEX+1) = A3(l)
IAUDIAG() = INDEX+1
INDEX= INDEX+2
END DO

DO | = NX+1, NXNY
AU(INDEX) = A5(I-NX)
INDEX = INDEX+1
DO J = 1, NX-2

AU(INDEX) = 0.0D0
INDEX = INDEX+1
END DO
AU(INDEX) = A4(I-1)
INDEX = INDEX+1
AU(INDEX) = A3(l)
IAUDIAG(I) = INDEX
INDEX = INDEX+1
END DO

NAU = INDEX - 1

RETURN
END

(continued on next page)
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Example 11-1 (Cont.) Skyline Solver with the Simple Driver Routine (Fortran
Code) - Example filename: example_skysol_2.f

Output from Example 1

SOLVING EXAMPLE PROBLEM WITH SYMMETRIC PROFILE-IN SKYLINE STORAGE
MODE ORDER OF THE MATRIX: 100

simple driver for a symmetric matrix
storage scheme: symmetric profile-in skyline
order of matrix: 100

ut t-d-u factorization on a symmetric matrix
storage scheme: symmetric profile-in skyline

order of matrix: 100

factorization starts at row/column: 1
size of the envelope (upper triangle): 1009
number of initial zeros In the envelope: 729

percentage sparsity of the envelope: 72.25%

maximum column height (including diagonal): 11
average column height (including diagonal): 10.09
root-mean-square column height (including diagonal): 10.45
uM t-d-u factorization completed without error

ut t-d-u solve for a symmetric matrix

storage scheme: symmetric profile-in skyline

order of matrix: 100

number of right hand sides: 1

uM t-d-u solve completed without error

simple driver completed without error

MAXIMUM ERROR IN SOLUTION: 0.66613381E-15
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Example 11-2 Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

PROGRAM EXAMPLE_SKYSOL

C

C #** TO DEMONSTRATE THE USE OF THE SPARSE SKYLINE SOLVER.
C

C **** THIS PROGRAM ILLUSTRATES THE FOLLOWING:

(1) USE OF THE FACTOR AND SOLVE ROUTINES TO SOLVE THE TEST
PROBLEM WITH THE MATRIX STORED AS AN UNSYMMETRIC MATRIX
IN THE STRUCTURALLY SYMMETRIC PROFILE-IN STORAGE MODE.
(2) USE OF THE ITERATIVE REFINEMENT ROUTINES TO IMPROVE
THE SOLUTION AND OBTAIN THE ERROR BOUNDS.

IMPLICIT REAL*8 (A-H, 0-2)

O O0O00O00O0O0O0

PARAMETER (NMAX = 100)
PARAMETER (NMAX_SKY = 2000)

REAL*8 AU(NMAX_SKY), AU_ORIG(NMAX_SKY), XO(NMAX), BX(NMAX),

$ BX_ORIG(NMAX), RWRK(3*NMAX), RPARAM(100), FERR(1),
$ BERR(1), DUM, TEMP, ANORM

INTEGER IAUDIAG(NMAX), IPARAM(100), IWRK(5*NMAX),
$ NX, NY, NXNY, NAU, NAL, IDUM

wk SETUP OUTPUT FILE

OO0

IOUNIT = 7

OPEN (UNIT=IOUNIT, FILE='OUTPUT.DATA, STATUS="UNKNOWN)
REWIND IOUNIT

WRITE (IOUNIT, 101)

#ek SET UP THE PROBLEM SIZE

OO0 O

NX = 10

NY = 10

NXNY = NX*NY

WRITE (IOUNIT, 102) NXNY

#ek GENERATE THE MATRIX IN THE FIVE DIAGONAL FORM.
CALL GENMAT(NX, NY, NXNY)
#ek GENERATE XO, THE TRUE SOLUTION

OO0 OO0

DO | = 1, NXNY
XO(l) = 1.0D0
END DO

#xck OBTAIN THE CORRESPONDING RIGHT HAND SIDE (IN BX). THIS IS
OVERWRITTEN BY THE SOLUTION.

CALL MATVEC (NX, NY, NXNY, XO, BX)

#ck CONVERT THE MATRIX INTO STRUCTURALLY SYMMETRIC PROFILE-IN
SKYLINE STORAGE MODE.

OO0 OO0

CALL CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

C

C *+ COPY THE MATRIX AND THE RIGHT HAND SIDE FOR USE IN [TERATIVE
C REFINEMENT.
C

DO | = 1, NAU

AU_ORIG(l) = AU()

END DO
C

DO | = 1, NMAX

BX_ORIG(l) = BX(l)

END DO
C
C *+ SET THE PARAMETERS (INTEGER AND REAL) FOR THE FACTORIZATION
C
C IWRK = IPARAM(3) = 4*NXNY (INTEGER WORKSPACE)
C RWRK = IPARAM(4) = 0 (NO REAL WORKSPACE NEEDED)
C IOLEVEL = IPARAM(6) = 1 (FOR MINIMAL INFORMATION)
C IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
C ISTORE = IPARAM(8) = 3 (FOR STRUCTURALLY SYMMETRIC
C PROFILE-IN STORAGE MODE)
C IBEG = IPARAM(9) = 0 (FOR FULL FACTORIZATION)
C IDET = IPARAM(10) = 0 (NO EVALUATION OF THE DETERMINANT)
C IPVT = IPARAM(11) = 0 (STOP IF ABS(PIVOT) IS SMALLER THAN
C PVT_SML)
C PVT_SML = RPARAM(1) = 1.0D-1Z (STOP IF ABS(PIVOT) IS SMALLER
C THAN PVT_SML).
C

IPARAM(1) = 100

IPARAM(2) = 100

IPARAM(3) = 4*NXNY

IPARAM(4) = 0

IPARAM(5) = IOUNIT

IPARAM(6) = 1

IPARAM(7) = 1

IPARAM(8) = 3

IPARAM(9) = 0

IPARAM(10) = 0

IPARAM(11) = 0
C

RPARAM(1) = 1.0D-12
C
C #+ CALL THE ROUTINE FOR FACTORIZATION (AL, ALDIAG, NAL, RWRK ARE
C DUMMY ARGUMENTS).
C

CALL DUSKYF ( NXNY, AU, IAUDIAG, NAU,

$ DUM, IDUM, IDUM,

$ IPARAM, RPARAM, IWRK, DUM, IERROR )
C
C #+ CHECK THAT FACTORIZATION COMPLETED WITHOUT ERROR.
C

IF (IERROR.NE.O) THEN
WRITE (IOUNIT, 103) IERROR
GO TO 999

END IF

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -

OOOO0OO0OOO0O0O0

O0O0O0

[eXeXe]

[eXeXe]

OO0OO0O0O0O0O0OO0O0O0

Example filename: example_skysol_4.f

#xt SET THE PARAMETERS (INTEGER) FOR THE SOLUTION (NO REAL

PARAMETERS USED AT PRESENT).

IWRK = IPARAM(3) = 4*NXNY (INTEGER WORKSPACE)
RWRK = IPARAM(4) = 0 (NO REAL WORKSPACE NEEDED)
IOLEVEL = IPARAM(6) = 2 (FOR DETAILED INFORMATION)
IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)
ISTORE = IPARAM(8) = 3 (FOR STRUCTURALLY SYMMETRIC
PROFILE-IN STORAGE MODE)

ITRANS = IPARAM(9) = 0 (TO SOLVE A * X = B)

IPARAM(1) = 100

IPARAM(2) = 100

IPARAM(3) = 4*NXNY

IPARAM(4) = 0

IPARAM(5) = IOUNIT

IPARAM(6) = 2

IPARAM(7) = 1

IPARAM(8) = 3

IPARAM(9) = 0

#xek CALL THE ROUTINE FOR SOLUTION (SINGLE RIGHT HAND SIDE). AL,

IALDIAG, NAL, RPARAM AND RWRK ARE DUMMY ARGUMENTS.

LDBX = NMAX
NBX =1
CALL DUSKYS ( NXNY, AU, IAUDIAG, NAU,

DUM, IDUM, IDUM,
BX, LDBX, NBX,
IPARAM, DUM, IWRK, DUM, IERROR )

#ek CHECK THAT THE SOLUTION COMPLETED WITHOUT ERROR
IF (IERROR.NE.O) THEN

WRITE (IOUNIT, 104) IERROR
GO TO 999

END IF
#% FIND MAX ERROR IN THE SOLUTION BEFORE REFINEMENT.

TEMP = ABS(XO(1) - BX(1))
DO | = 2, NXNY

TEMP = MAX( TEMP, ABS(XO(l) - BX(l)) )

END DO
WRITE (IOUNIT, 105) TEMP

#k SET THE PARAMETERS (INTEGER) FOR ITERATIVE REFINEMENT. NO

REAL PARAMETERS USED AT PRESENT.

IWRK = IPARAM(3) = 5*NXNY (INTEGER WORKSPACE)

RWRK = IPARAM(4) = 3*NXNY (REAL WORKSPACE)

IOLEVEL = IPARAM(6) = 2 (FOR DETAILED INFORMATION)

IDEFAULT = IPARAM(7) = 1 (USER ASSIGNED VALUES)

ISTORE = IPARAM(8) = 3 (FOR STRUCTURALLY SYMMETRIC
PROFILE-IN STORAGE MODE)

ITRANS = IPARAM(9) = 1 (SOLVING A * X = B)

ITMAX = IPARAM(10) = 5 (MAXIMUM NUMBER OF ITERATIONS)

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

C
IPARAM(1) = 100
IPARAM(2) = 100
IPARAM(3) = 5*NXNY
IPARAM(4) = 3*NXNY
IPARAM(5) = IOUNIT
IPARAM(6) = 2
IPARAM(7) = 1
IPARAM(8) = 3
IPARAM(9) = 1
IPARAM(10) = 5
C
C = CALL THE ROUTINE FOR ITERATIVE REFINEMENT. AL_ORIG, AL,
C IALDIAG, NAL AND RPARAM ARE DUMMY ARGUMENTS.
C
CALL DUSKYR ( NXNY, AU_ORIG, AU, IAUDIAG, NAU,
$ DUM, DUM; IDUM, IDUM,
$ BX_ORIG, LDBX, BX, LDBX, FERR, BERR, NBX,
$ IPARAM, DUM, IWRK, RWRK, [ERROR )
C
C #+ CHECK THAT THE REFINEMENT COMPLETED WITHOUT ERROR.
C
IF (IERROR.NE.0) THEN
WRITE (IOUNIT, 106) IERROR
GO TO 999
END IF
C
C * FIND MAX ERROR IN THE SOLUTION AFTER REFINEMENT
C
TEMP = ABS(XO(1) - BX(1))
DO | = 2, NXNY
TEMP = MAX( TEMP, ABS(XO() - BX()) )
END DO
WRITE (IOUNIT, 107) TEMP
C
999 CONTINUE
C

101 FORMAT (/,2X, 'SOLVING EXAMPLE PROBLEM WITH STRUCTURALLY °,
$ 'SYMMETRIC PROFILE-IN SKYLINE',
$ /2x,* STORAGE MODE',))

102 FORMAT (/,2X, 'ORDER OF THE MATRIX:I5)

103 FORMAT (/,2X, 'ERROR IN THE FACTORIZATION ROUTINE,110)

104 FORMAT (/,2X, 'ERROR IN THE SOLUTION ROUTINE:,10)

105$FORMAT (,2X, 'MAXIMUM ERROR IN SOLUTION BEFORE REFINEMENT: ’,

E15.8,)

106 FORMAT (/,2X, 'ERROR IN THE ITERATIVE REFINEMENT ROUTINE?,I10)

107 FORMAT (/,2X, 'MAXIMUM ERROR IN SOLUTION AFTER REFINEMENT: ",
$ E15.8,))

STOP
END

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

O O O 00000 000

SUBROUTINE GENMAT (NX, NY, NXNY)

#xek ROUTINE TO GENERATE THE MATRIX FOR THE EXAMPLE (IN THE FIVE

DIAGONAL FORM). A1 AND A2 ARE THE SUBDIAGONALS, A3 IS THE
MAIN DIAGONAL, A4 AND A5 ARE THE SUPERDIAGONALS.

IMPLICIT REAL*8 (A-H,0-2)
PARAMETER (NMAX = 100)

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

DO I = 1, NXNY

DO | = 1, NX-1
K = (J-1)*NX+l
A4K) = -1.0D0
END DO
END DO

DO J = 2, NY
DO I = 1, NX
K = (J-1)NX+
AL(K) = -1.0D0
END DO
END DO

DO J = 1, NY-1
DO | = 1, NX
K = (J-1)*NX+l
A5(K) = -1.0D0
END DO
END DO

RETURN
END

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

SUBROUTINE MATVEC (NX, NY, NXNY, TMP1, TMP2)
wee ROUTINE TO OBTAIN THE MATRIX VECTOR MULTIPLY, USING THE MATRIX

FROM THE FIVE-DIAGONAL FORM. TMP1 IS THE INPUT VECTOR; TMP2 IS
THE OUTPUT VECTOR.

IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (NMAX = 100)

REAL*8 TMP1(¥), TMP2(*)

INTEGER NX,NY,NXNY

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

OO O O O O 00000 OO0

DO | = 1, NXNY
TMP2() = A3(I)*TMPL(l)
END DO

DO | = 1, NXNY-1
TMP2(1) = TMP2()) + A4()*TMPL(I+1)
END DO

DO | = 2, NXNY
TMP2(l) = TMP2(l) + A2())*TMP1(-1)
END DO

DO | = 1, NXNY-NX
TMP2(l) = TMP2(l) + A5(I)*TMPL(I+NX)
END DO

DO | = NX+1, NXNY
TMP2(l) = TMP2()) + AL()*TMP1(-NX)
END DO

RETURN
END

SUBROUTINE CONVERT_TO_SKYLINE (NX, NY, NXNY, AU, IAUDIAG, NAU)

#xk ROUTINE FOR CONVERTING THE MATRIX FROM THE FIVE-DIAGONAL FORM
TO THE STRUCTURALLY SYMMETRIC PROFILE-IN SKYLINE FORM. THE
MATRIX IS RETURNED IN REAL AND INTEGER ARRAYS, AU AND IAUDIAG,
RESPECTIVELY.

OO0O0O0O OO0

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

IMPLICIT REAL*8 (A-H,0-2)

PARAMETER (NMAX = 100)

REAL*8 AU()

INTEGER IAUDIAG(*), NAU, NX, NY, NXNY

COMMON /MATRIX/ AL(NMAX), A2(NMAX), A3(NMAX), A4(NMAX), A5(NMAX)

o0 O O O O O

INDEX = 1
AU(INDEX) = A3(1)
IAUDIAG(L) = 1
INDEX = INDEX + 1

DO | = 2, NX
AU(INDEX) = A2(l)
AU(INDEX+1) = Ad(-1)
AU(INDEX+2) = A3(l)
IAUDIAG(I) = INDEX+2
INDEX= INDEX+3

END DO

DO | = NX+1, NXNY
AU(INDEX) = AL(l)
INDEX = INDEX+1
DO J = 1, NX-2

AU(INDEX) = 0.0D0
INDEX = INDEX+1
END DO
AU(INDEX) = A2()
INDEX = INDEX+1
AU(INDEX) = A5(I-NX)
INDEX = INDEX+1
DO J = 1, NX-2
AU(INDEX) = 0.0D0
INDEX = INDEX+1
END DO
AU(INDEX) = A4(I-1)
INDEX = INDEX+1
AU(INDEX) = A3(l)
IAUDIAG(I) = INDEX
INDEX = INDEX+1
END DO

NAU = INDEX - 1
RETURN
END

(continued on next page)
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Example 11-2 (Cont.) Skyline Solver with Iterative Refinement (Fortran Code) -
Example filename: example_skysol_4.f

Output from Example 2

SOLVING EXAMPLE PROBLEM WITH STRUCTURALLY SYMMETRIC PROFILE-IN
SKYLINE STORAGE MODE ORDER OF THE MATRIX: 100

l-d-u factorization on an unsymmetric matrix

storage scheme: structurally symmetric profile-in skyline
order of matrix: 100

partial factorization starts at row/column:; 1
l-d-u factorization completed without error

l-d-u solve for a unsymmetric matrix

storage scheme: structurally symmetric profile-in skyline

order of matrix: 100

number of right hand sides: 1

solving the system a * x = b

I-d-u solve completed without error

MAXIMUM ERROR IN SOLUTION BEFORE REFINEMENT: 0.66613381E-15

iterative refinement using an unsymmetric matrix
storage scheme: structurally symmetric profile-in skyline
order of matrix: 100
number of right hand sides: 1
for the right hand side: 1
number of iterations of iterative refinement: 1
componentwise relative backward error: 0.97144515E-16
estimated forward error bound: 0.17274574E-12
iterative refinement completed without error
MAXIMUM ERROR IN SOLUTION AFTER REFINEMENT: 0.44408921E-15
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Example 11-3 Skyline Solver Using Factorize and Solve Routines (C Code) -

/*

*

Example filename: example_skysol_1.c

This is an example program to illustrate the use of the skyline

solver routines dsskyf and dsskys from a C application program. The
program generates the matrix, converts it into a profile-in symmetric
skyline matrix, factorizes the matrix using dsskyf and solves the

system using the routine dsskys. The right hand side of the problem

is generated assuming a known solution. The maximum absolute error

in the solution is printed out. The problem used is identical to the

one in the example section of the chapter on skyline solvers in the CXML
Reference Guide.

This program illustrates the following:
- routine naming convention for Tru64 UNIX and VMS
- Differences in array indexing between Fortran and C:
C default x[n]: 0 to (n-1)
Fortran default x(n): 1 to n
- implications for storing the index vector for the
skyline storage scheme.

For more detailed explanation of the routines used, please
check the Reference Manual.

Note: the code used in this example works on both Tru64 UNIX and
VMS. Conditional compilation is used to select the statements appropriate
to each operating system.

All output is directed to the screen.

#include <stdio.h>
#include <stdlib.h>

[*
*

Add trailing underscores to Fortran routines on Tru64 UNIX.

#if ldefined(vms) && !defined(__vms)
#define dsskyf dsskyf

#define dsskys dsskys_

#endif

#define ABS(X) ((x) < 0) ? -(x) : (x))
#define MAX(x,y) ((x) < (v)) 2 (¥) : (x)
extern void genmat();

extern void matvec();
extern void convert_to_skylinel();

extern void dsskyf();
extern void dsskys();

int main()

double *xo;
double *bx;
double *au;

double *avi;
double *av2;
double *av3;
double *av4;
double *av5;

(continued on next page)
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Example 11-3 (Cont.) Skyline Solver Using Factorize and Solve Routines (C
Code) - Example filename: example_skysol_1.c

I
¥

J*
¥

J*
¥l

double rparam[100];
double dum, temp, maxl, tmpl;
int *jaudiag;
int *wrk;
int iparam[100];
int iounit,
ierror,
nx, ny, nxny,
i, nau,

nmax_sky, nmax_sky au,
ldbx, nbx;

define the size of the problem

nx = 10;

ny = 10;

nxny = nx * ny;
nmax_sky au = 1200;

obtain the memory for the 1-dimensional arrays

au = (double *)malloc(nmax_sky_au*sizeof(double));
if (au == 0) perror("malloc");

X0 = (double *)malloc(nxny*sizeof(double));
if (xo == 0) perror("malloc");

bx = (double *)malloc(nxny*sizeof(double));
if (box == 0) perror("malloc");

avl = (double *)malloc(nxny*sizeof(double));
if (avl == 0) perror("malloc");

av2 = (double *)malloc(nxny*sizeof(double));
if (@v2 == 0) perror("malloc");

av3 = (double *)malloc(nxny*sizeof(double));
if (av3 == 0) perror("malloc");

av4d = (double *)malloc(nxny*sizeof(double));

if (av4 == 0) perror("malloc");

avs = (double *)malloc(nxny*sizeof(double));
if (av5 == 0) perror("malloc");

iaudiag = (int *)malloc(nxny*sizeof(int));

if (iaudiag == 0) perror("malloc");

iwrk = (int *)malloc(5*nxny*sizeof(int));

if (iwrk == 0) perror("malloc");

generate the matrix in the five diagonal form.

genmat(nx, ny, nxny, avl, av2, av3, av4, avb);
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Example 11-3 (Cont.) Skyline Solver Using Factorize and Solve Routines (C

[*
*

/*

*

/*

*

[*
*

[*
*

[*
*

generate xo, the true solution

for (i=0; i<nxny; i++)

xo[i] =

1.0;

Code) - Example filename: example_skysol_1.c

obtain the corresponding right hand side (in bx).

matvec(nx, ny, nxny, avl, av2, av3, av4, avb, xo, bx);

convert the matrix into symmetric profile-in skyline storage mode

convert_to_skylinel (nx, ny, nxny, avl, av2, av3, av4, avs,

au, iaudiag, &nau);

set the parameters (integer and real) for the factorization

iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam

PP OO0~ U WN — O

K=
o

rparam[0] = 1.0e-12;

call the factorization routine

100;
100;
2*nxny;
0;

6
2
1
1.
0
0

0,
0.

dsskyf(&nxny, au, iaudiag, &nau,
iparam, rparam, iwrk, &dum, &ierror);

if (ierror 1= 0)
printf("exit from routine dsskyf with error; %d\n" ierror);

call the solve routine

ldbx = nxny;
nbx = 1;

dsskys(&nxny, au, iaudiag, &nau,

bx, &ldbx, &nbx,

iparam, rparam, iwrk, &dum, &ierror);

if (ierror = 0)
printf("exit from routine dsskyf with error: %d\n" ierror);

(continued on next page)
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Example 11-3 (Cont.) Skyline Solver Using Factorize and Solve Routines (C
Code) - Example filename: example_skysol_1.c

/*

find the maximum absolute error in the solution
¥

max1 = ABS((bx[0]-xo[Q]));

for (i=1; i<nxny; i++)

tmpl = ABS((bx[i]-xo[i]));
maxl = MAX((max1),(tmpl));

/~k

print the maximum absolute error
¥

printf("maximum error in the solution: %.10e\n",maxl);
/*

release the memory
i

free(au);

free(xo);

free(bx);

free(avl);

free(av2);

free(av3);

free(avd);

free(avb);

free(iaudiag);

free(iwrk);
} I end of main() */

/*
routine to generate the matrix for the example (in the five
diagonal form). avl and av2 are the subdiagonals, av3 is the main
diagonal and av4 and av5 are the superdiagonals.

¥l

void genmat(int nx, int ny, int nxny, double avi[], double av2[],
double av3[], double av4[], double av5[])

int i, j, k;

for (i=0; i<nxny; i++)

{ av3[i] = 4.0;
avlfi] = 0.0
av2[i] = 0.0;
av4i] = 0.0

} avh[i] = 0.0;

(continued on next page)
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Example 11-3 (Cont.) Skyline Solver Using Factorize and Solve Routines (C
Code) - Example filename: example_skysol_1.c

for (j=0; j<ny; j++)
for (i=1; i<nx; i++)

K=j*nx+i
av2lk] = -1.0;

for (i=0; i<(nx-1); i++)

K=j*nx+i
avdlk] = -1.0;

}
for (j=1; j<ny; j++)

for (i=0; i<nx; i++)

k=j*nx+i
avlk] = -1.0;

}
for (=0; j<(ny-1); j++)

for (i=0; i<nx; i++)

k=]*nx+i
avblk] = -1.0;
}
}
} [ end of genmat() */
/*
routine to obtain the matrix vector multiply, using the matrix
from the five-diagonal form. tmpl is the input vector; tmp2 is
the output vector.
*

void matvec(int nx, int ny, int nxny,
double avl[], double av2[],
double av3[], double av4{], double avs[],
double *tmpl, double *tmp2)

int i
for (i=0; i<nxny; i++)

tmp2[i] = av3[i] * tmpl]i;
for (i=0; i<(nxny-1); i++)

tmp2[i] = tmp2[i] + av4[i] * tmpl[i+1];
for (i=1; i<nxny; i++)

tmp2[i] = tmp2[i] + av2[i] * tmpl[i-1];
for (i=0; i<(nxny-nx); i++)

tmp2[i] = tmp2[i] + avs[i] * tmpl[i+nx];
for (i=nx; i<nxny; i++)

tmp2[i] = tmp2[i] + avl[i] * tmpl[i-nx];

(continued on next page)

Using the Direct Solvers for Sparse Linear Systems 11-39



Using the Direct Solvers for Sparse Linear Systems

11.11 A Look at Some Skyline Solvers

Example 11-3 (Cont.) Skyline Solver Using Factorize and Solve Routines (C
Code) - Example filename: example_skysol_1.c

} ¥ end of matvec() */

/*

*
void

routine for converting the matrix from the five-diagonal form
to the symmetric profile-in skyline form. only the upper
triangular part is stored. the matrix is returned in the real
and integer arrays, au and iaudiag, respectively.

convert_to_skylinel(int nx, int ny, int nxny,
double avl[], double av2[], double av3]],
double av4[], double av5[],
double *a, int *ia, int *nau)

int i, j, index;
index = 0;
afindex] = av3[0];
ia[0] = 1;
index++;

for (i=1; i<nx; i++)

afindex] = av4[i-1];
afindex+1] = av3Ji;
index += 2;

iafi] = index ;

for (i=nx; i<nxny; i++)
afindex] = avb[i-nx];
index++;
for (j=1; j<=(nx-2); j++)

afindex] = 0.0;
index++;

.}a1[index] = avd[i-1];

index++;
afindex] = av3ji;
index++;

iafi] = index;

}

*nau = index - 1;

} I end of convert_to_skylinel() *
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Example 11-3 (Cont.) Skyline Solver Using Factorize and Solve Routines (C
Code) - Example filename: example_skysol_1.c

Output from Example 3

ut-d-u factorization on a symmetric matrix

storage scheme: symmetric profile-in skyline

order of matrix: 100

factorization starts at row/column: 1

size of the envelope (upper triangle): 1009

number of initial zeros in the envelope: 729
percentage sparsity of the envelope: 72.25 %

maximum column height (including diagonal): 11
average column height (including diagonal): 10.09
root-mean-square column height (including diagonal): 10.45
ur-d-u factorization completed without error

ut-d-u solve for a symmetric matrix

storage scheme: symmetric profile-in skyline

order of matrix: 100

number of right hand sides: 1

ut-d-u solve completed without error
maximum error in the solution: 1.1102230246e-15
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Example 11-4 Skyline Solver Using Factorize and Solve Routines (C++ Code) -

Example filename: example_skysol_1.cxx

/I This is an example program to illustrate the use of the skyline

Il solver routines dsskyf and dsskys from a C application program. The
/I program generates the matrix, converts it into a profile-in

Il symmetric skyline matrix, factorizes the matrix using dsskyf and

Il solves the system using the routine dsskys. The right hand side of

Il the problem is generated assuming a known solution. The maximum absolute

/I error in the solution is printed out. The problem used is identical to
Il the one in the example section of the chapter on skyline solvers in
/I the CXML Reference Guide.

/I This program illustrates the following:

Il - routine naming convention for Trué4 Unix and VMS
Il - Differences in array indexing:

Il C default x[nJ: 0 to (n-1)

Il Fortran default x(n): 1 to n

Il - implications for storing the index vector for the

Il skyline storage scheme.

/I For more detailed explanation of the routines used, please
/I check the CXML Reference Manual.

/I Note: the code used in this example works on both Tru64 Unix and
/I VMS. Conditional compilation is used to select the statements
Il appropriate to each operating system.

/I All output is directed to the screen.

#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <new.h>

il
/I Add trailing underscores to Fortran routines on Tru64 Unix,
I

#if !defined(vms) && !defined(__vms)
#define dsskyf dsskyf_

#define dsskys dsskys_

#endif

inline double ABS(double Xx)
{
return(((x) < 0) ? -(x) : (X));
}
inline double MAX(double x, double y)

\ return((x) < (y)) ? (y) : ();

extern void (*set_new_handler(void (*memory_err)()))();
void memory_err()

cout << "memory allocation error\n”;
exit(1); // quit program

(continued on next page)
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Example 11-4 (Cont.) Skyline Solver Using Factorize and Solve Routines (C++
Code) - Example filename: example_skysol_1.cxx

extern void genmat(int, int, int,
double [], double [], doublef],
double [], double []);
extern void matvec(int, int, int,
double [], double [], doublel],
double [], double ],
double [], double []);
extern void convert_to_skylinel(int, int, int,
double [], double [], double]],
double [], double ],
double [], int ],
int &);
Il
Il Declare the external Fortran routines

extern "C" {

void dsskyf(int &,
doublef], int [], int &,
int [], double ],
int [], double [],
int &);

void dsskys(int &,
double [], intf], int &,
double [], int &, int &,
int [], double [],
int [], double ],
int &);

}

void main()

{

double *xo;
double *bx;
double *au;
double *avi;
double *av2;
double *av3;
double *av4;
double *av5;

double rparam[100];
double dum, temp, maxl, tmpl;

int *audiag;
int *iwrk;

int iparam[100];

int iounit, ierror, nxny, i, nau, ldbx, nbx, nmax_sky au;
Il set up exception handler

set_new_handler(memory_err);
Il define the size of the problem

const int nx = 10;
const int ny = 10;
nxny = nx * ny,
nmax_sky au = 1200;

Il allocate storage for 1-dimensional arrays

(continued on next page)
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Example 11-4 (Cont.) Skyline Solver Using Factorize and Solve Routines (C++
Code) - Example filename: example_skysol_1.cxx

X0 = new double [nxny];
bx = new double [nxny];
au = new double [nmax_sky au]:

avl = new double [nxny];
av2 = new double [nxny];
av3 = new double [nxny];
avd = new double [nxny];
avb = new double [nxny];

iaudiag = new int[nxny];
iwrk = new int[5*nxny];

Il generate the matrix in the five diagonal form.
genmat(nx, ny, nxny, avl, av2, av3, avd4, avb),
Il generate xo, the true solution

for (i=0; i<nxny; i++)
xoi] = 1.0;

/I obtain the corresponding right hand side (in bx).
matvec(nx, ny, nxny, avl, av2, av3, av4, avb, xo, bx);
Il convert the matrix into symmetric profile-in skyline storage mode

convert_to_skylinel (nx, ny, nxny,
avl, av2, av3, av4, avb,
au, iaudiag, nau);

Il set the parameters (integer and real) for the factorization

100;
100;
2*nxny,

iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam
iparam[12] = O;

rparam[0] = 1.0e-12;
/I call the factorization routine

P OO~ Ol WwWN - O

dsskyf(nxny,
au, iaudiag, nau,
iparam, rparam,
iwrk, &dum,
ierror);

if (ierror 1= 0)

cout << "exit from routine dsskyf with error:
<< endl;

<< jerror

/I call the solve routine

(continued on next page)
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Example 11-4 (Cont.) Skyline Solver Using Factorize and Solve Routines (C++
Code) - Example filename: example_skysol_1.cxx

ldbx = nxny;

nbx = 1;

dsskys(nxny,
au, iaudiag, nau,
bx, Idbx, nbx,
iparam, rparam,
iwrk, &dum,
ierror);

if (ierror = 0)
cout << "exit from routine dsskyf with error:
<< endl;

<< jerror

/I find the maximum absolute error in the solution
max1 = ABS((bx[0]-xo[0]));
for (i=1; i<nxny; i++)

tmpl = ABS((bx[i]-xo[i]));
\ maxl = MAX((max1),(tmpl));

Il print the maximum absolute error

cout << "maximum error in the solution: " << maxl << endl;

Il deallocate the storage

delete au;
delete xo;
delete bx;

delete avi;
delete av2;
delete av3;
delete av4;
delete avb;

delete iaudiag;
delete iwrk;

} Il end of main()

Il routine to generate the matrix for the example (in the five
I diagonal form). avl and av2 are the subdiagonals, av3 is the main
1 diagonal and av4 and av5 are the superdiagonals.

void genmat(int nx, int ny, int nxny,
double avl[], double av2[], double av3[],
double av4[], double avs[])

int i, j, k;

(continued on next page)
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Example 11-4 (Cont.) Skyline Solver Using Factorize and Solve Routines (C++
Code) - Example filename: example_skysol_1.cxx

for (i=0; i<nxny; i++)

av3[i] = 4.0;
avlfi = 0.0;
av2[i] = 0.0;
avd[i] = 0.0;
avs|i] = 0.0;

}
for (=0; j<ny; j++)
for (i=1; i<nx; i++)
{
K=j*nx+i
av2[k] = -1.0;
for (i=0; i<(nx-1); i++)
kK=j*nx+i
avalk] = -1.0;
}
for (j=1; j<ny; j+t)
for (i=0; i<nx; i++)
k=j*nx+i
avllk] = -1.0;
}
for (=0; j<(ny-1); j++)
for (i=0; i<nx; i++)
k=j*nx+i
avslk] = -1.0;

}
} Il end of genmat()

Il routine to obtain the matrix vector multiply, using the matrix
Il from the five-diagonal form. tmpl is the input vector; tmp2 is
Il the output vector.

void matvec(int nx, int ny, int nxny,
double avl[], double av2[], double av3[],
double av4[], double av5[],
double tmpl[], double tmp2[])

int i,
for (i=0; i<nxny; i++)
tmp2[i] = av3[i] * tmpl[i;

for (i=0; i<(nxny-1); i++)
tmp2[i] = tmp2[i] + av4[i] * tmpd[i+1];
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Example 11-4 (Cont.) Skyline Solver Using Factorize and Solve Routines (C++

Code) - Example filename: example_skysol_1.cxx
for (i=1; i<nxny; i++)
tmp2[i] = tmp2[i] + av2[i] * tmpl[i-1];
for (i=0; i<(nxny-nx); i++)
tmp2[i] = tmp2[i] + avs[i] * tmpl[i+nx];
for (i=nx; i<nxny; i++)
tmp2[i] = tmp2[i] + avl[i] * tmpl[i-nx];

} 1l end of matvec()

)
)
)
)
)
i

routine for converting the matrix from the five-diagonal form
to the symmetric profile-in skyline form. only the upper
triangular part is stored. the matrix is returned in the real
and integer arrays, au and iaudiag, respectively.

void convert_to_skylinel(int nx, int ny, int nxny,

double avl[], double av2[], double av3],
double av4[], double avs][],
double af], int iaf], int &nau)

int i, j, index;
index = 0;
afindex] = av3[0];
ia0] = 1;
index++;

for (i=1; i<nx; i++)

afindex] = av4[i-1];
afindex+1] = ava[i;
index += 2,
iafi] = index ;

}

for (i=nx; i<nxny; i++)

{
afindex] = av5[i-nx];
index++;
for (=1; j<=(nx-2); j++)

afindex] = 0.0;
index++;

afindex] = av4[i-1];
index++;

afindex] = av3ji;
index++;

iafi] = index;

}

nau = index - 1;

} Il end of convert_to_skylinel()

(continued on next page)
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Example 11-4 (Cont.) Skyline Solver Using Factorize and Solve Routines (C++
Code) - Example filename: example_skysol_1.cxx

Output from Example 4

/I All output is directed to the screen. A sample output is:
il
il
Il uM-d-u factorization on a symmetric matrix
Il storage scheme: symmetric profile-in skyline

Il order of matrix: 100

/I factorization starts at row/column: 1

Il size of the envelope (upper triangle): 1009

/I number of initial zeros in the envelope: 729

Il percentage sparsity of the envelope: 72.25 %

/I maximum column height (including diagonal): 11

Il average column height (including diagonal): 10.09

/I root-mean-square column height (including diagonal): 10.45

/I uM-d-u factorization completed without error
Il
Il uM-d-u solve for a symmetric matrix

Il storage scheme: symmetric profile-in skyline
/I order of matrix: 100

/I number of right hand sides: 1

/I uM-d-u solve completed without error
/Imaximum error in the solution: 1.1102230246e-15
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Using the VLIB Routines

CXML includes a special set of routines that are similar to industry standard
array processor library routines. This special set of run-time library routines
operates on vectors—thus the name VLIB. This chapter provides information
about the following topics:

= Operations performed by the VLIB subprograms (Section 12.1)
= \Vector storage (Section 12.2)

= Subprogram naming conventions (Section 12.3)

= Subprogram summaries (Section 12.4)

= Calling VLIB subprograms (Section 12.5)

e Arguments used in the subprograms (Section 12.6)

= Error handling for VLIB subprograms (Section 12.7)

= Alook at a VLIB subprogram and its use (Section 12.8)

12.1 VLIB Operations

VLIB operations work with vectors. The VLIB subprograms operate on only one
vector (or possibly scalar), returning one or more vectors (or possibly scalars)

as output. These routines make it easier to port existing array processor-
oriented code, as well as provide enhanced performance, where possible. Many
simple array-oriented routines (such as adding a constant to each element of

an array) are more suitably coded by using the corresponding loop and letting
compiler optimizations improve performance. More complex routines are suitably
encapsulated in highly tuned routines such as those in VLIB.

For example, the VLIB routines include routines for transcendental functions. In
this case, the VLIB functions generally deliver performance 1.5 to 2 times faster
than the alternative of simply calling the appropriate run-time library function in
a loop. Careful code scheduling and algorithm design within the VLIB routines
take advantage of the fact that the input is a vector.

The results of these operations do not depend on the order in which the elements
of the vector are processed.

12.2 Vector Storage

For the VLIB subprograms, a vector is stored in a one-dimensional array. The
calling conventions for negative increment accesses to an array differ from BLAS1
conventions, but follow conventions used in existing array processor libraries. See
Section 12.2.2.
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12.2.1 Defining a Vector in an Array

A vector is usually stored in a one-dimensional array. The elements of a vector
are stored in order, but the elements are not necessarily contiguous.

An array can be much larger than a vector that is stored in the array. The

storage of a vector is defined using three arguments in a CXML subprogram
argument list:

= \Vector length: Number of elements in the vector
= Vector location: Base address of the vector in the array

e Stride: Space, or increment, between consecutive elements of the vector as
stored in the array

These three arguments together specify which elements of an array are selected
to become the vector.

12.2.1.1 Vector Length

To specify the length n of a vector, you specify an integer value for a length
argument, such as the n argument. The length of a vector can be less than the
length of the array that specifies the vector.

Vector length can also be thought of as the number of elements of the associated
array that a subroutine will process. Processing continues until n elements have
been processed.

12.2.1.2 Vector Location

The location of a vector is specified by the argument for the vector in the CXML
subprogram argument list. Usually, an array such as X is declared, for example,
X(1:20) or X(20). In this case, if you want to specify vector z as starting at the
first element of an array X, the argument is specified as X(1) or X. If you want to
specify vector z as starting at the fifth element of X, the argument is specified as
X(5).

However, in an array X that is declared as X(3:20), with a lower bound and an
upper bound given for the dimension, specifying vector z as starting at the fifth
element of X means that the argument is specified as X(7).

Most of the examples shown in this manual assume that the lower bound in each
dimension of an array is 1. Therefore, the lower bound is not specified, and the
value of the upper bound is the number of elements in that dimension. So, a
declaration of X(50) means X has 50 elements.

12.2.1.3 Stride of a Vector

The spacing parameter, called the increment or stride, indicates how to move
from the starting point through the array to select the vector elements from
the array. The increment is specified by an argument in the CXML subprogram
argument list, such as the incx argument.

The vector elements are stored in the array in the order zq,z5,...,z,. AN
increment of 1 indicates that the vector elements are contiguous in the array.
12.2.1.4 Selecting Vector Elements from an Array

CXML VLIB routines use the stride to select elements from the array to construct
the vector composed of these elements. The stride associates consecutive elements
of the vector with equally spaced elements of the array.
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12.2.2 Storing a Vector in an Array

Suppose X is a real one-dimensional array of ndim elements. Let vector z have
length n and let incz be the increment used to access the elements of vector z
whose components z;, : = 1,...,n, are stored in X.

If szncz > 0, and if the first element of the vector is specified at the first element
of the array, then z; is stored in the array location as shown in (12-1):

X(1+ (5 — 1) *2ncx) (12-1)

Therefore, ndim, the number of elements in the array, should satisfy the condition
shown in (12-2):
ndim > 1+ (n— 1) * incz| (12-2)

For the general case where the first element of the vector in the array is at the
point X(BP) rather than at the first element of the array, (12-3) can be used to
find the position of each vector element z; in a one-dimensional array.

For zncz # 0, the position of z; is as follows:

X(BP + (¢ — 1) *encz) (12-3)

For example, suppose that BP = 3, ndim = 20, and n = 5. Then a value of zncz = 2
implies that z;, zo, z3, 74, and zg are stored in array elements X(3), X(5), X(7),
X(9), and X(11). Using BP = 11 and zncz = —2 would mean that zq, z,, z3, z4, z5
were stored in X(11), X(9), X(7), X(5), X(3).

12.3 Naming Conventions

Table 12-1 shows the characters used in the names of the VLIB subprograms and
what the characters mean.

Table 12-1 Naming Conventions: VLIB Subprograms

Character Group Mnemonic Meaning

First group \ Operates on a vector.

Second group A combination of Type of computation such as sine (SIN) of a
letters at the end vector or reciprocal (RECIP) of the elements
such as SIN or of a vector.

RECIP

For example, the name VSQRT is the subprogram for computing the square-root
of the elements of a vector. All VLIB routines accept double-precision input
arrays and return double-precision output arrays.
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12.4 Summary of VLIB Subprograms

Table 12-2 summarizes the VLIB subprograms.

Table 12—-2 Summary of VLIB Subprograms

Subprogram
Name

Operation

VCOS

VCOS_SIN

VEXP

VLOG

VRECIP

VSIN

VSQRT

Calculates, in double-precision arithmetic, the cosine of the elements of
a real vector.

Calculates, in double-precision arithmetic, the sine and cosine of the
elements of a real vector.

Calculates, in double-precision arithmetic, the exponential of the
elements of a real vector.

Calculates, in double-precision arithmetic, the natural logarithm of the
elements of a real vector.

Calculates, in double-precision arithmetic, the reciprocal of the
elements of a real vector.

Calculates, in double-precision arithmetic, the sine of the elements of a
real vector.

Calculates, in double-precision arithmetic, the square root of the
elements of a real vector.

12.5 Calling Subprograms

The VLIB subprograms consist of only subroutines.

12.6 Argument Conventions

The VLIB subprograms use a list of arguments to specify the requirements and
control the result of the subprogram. All arguments are required. The argument
list is in the same order for each subprogram:

= Arguments that describe the input and output vectors
The following arguments describe a vector:

— The arguments X, y, and z define the location of the vectors z, y, and z in
the array. In the usual case, the argument x specifies the location in the
array as X(1), but the location can be specified at any other element of the
array. An array can be much larger than the vector that it contains.

— The arguments incx, incy, and incz provide the increment between
the locations of the elements of the vector z, vector y, and vector z,
respectively.

= Arguments that define the number of elements to process
The n argument specifies the number of elements to process. Ifn < 0, the
output vector is unchanged.
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12.7 Error Handling

Where applicable, the elements of the input vector (to the VLIB routines) are
checked for the possibility that a later arithmetic exception will occur. Nonfinite
operands will trap within the routine. Other situations such as finite inputs
that are illegal or exception causing inputs to the corresponding RTL routine are
typically caught by detecting the offending input argument, and then calling the
corresponding RTL routine with the offending argument. Thus, essentially the
same "traditional Fortran" exception behavior as with an RTL call is preserved.

12.8 A Look at a VLIB Subprogram

To understand the meaning of the arguments, consider the subroutine VSQRT.
VSQRT computes the square root of a real (n-element) vector z, and the result is
returned in the vector y. VSQRT has the arguments X, incx, y, incy and n.

For example, suppose that arrays X and Y are declared as follows:
REAL*8 X(-10:10), Y(41)

Then, the statements:

INCX = 1
INCY = 2
N =21

CALL VSQRT(X,INCX,Y,INCY,N))

yield the following results:

Y(1) = SQRT(X(-10))
Y(3) = SQRT(X(-9))
Y(5) =

SQRT(X(-8))

Y(39) = SQRT(X(9))
Y(41) = SQRT(X(10))

This call to routine VSQRT obtains the same results as the following Fortran
code segment:

DO | = 1, 41, 2
Y(l) = SQRT( X( (+1)/2 - 11) )
END DO

The argument x specifies the array X with 21 elements and specifies X(-10) as
the location of the vector z whose elements are embedded in X. Since n = 21, the
vector also has 21 elements. The length of the array X is the same as the length
of the vector z. The value of the argument incx = 1 specifies that the vector
elements are contiguous in the array. Since incy is 2, the square root of each
element of the array X is stored in array Y, beginning at Y(1), in the locations
Y(1), Y(3), Y(5), and so on.
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Using Random Number Generator
Subprograms

CXML provides four random number generator (RNG) subprograms and two
auxiliary input subprograms for parallel applications.

This chapter provides information about the following topics:

Standard Uniform RNG Subprograms (Section 13.2)
Long Period Uniform RNG Subprogram (Section 13.3)
Normally Distributed RNG Subprogram (Section 13.4)

Input Subprograms for Parallel Applications Using RNG Subprograms
(Section 13.5)

Summary of RNG Subprograms (Section 13.6)
Error Handling (Section 13.7)

RNG subprogram reference descriptions

13.1 Introduction

RNGs are an important part of many simulation programs and test procedures.
CXML provides the following RNG subprograms:

Three subprograms that generate uniform [0,1] random number distributions
using algorithms based on the following:

— Multiplicative generators — See Section 13.2 for a description of the
RAN216807 subprogram.

— Linear congruential generators — See Section 13.2 for a description of the
RANG9069 subprogram.

— Combined multiplicative generators — See Section 13.3 for a description
of the RANL subprogram.

One subprogram that generates normally distributed (N(0,1)) random
numbers using a sum-type algorithm based on the central limit theorem —
see Section 13.4 for a description of the RANL_NORMAL subprogram.

Two subprograms that generate input for two other CXML RNG subprograms
when they are used in parallel computing applications. Both input
subprograms use a repeated squaring algorithm — see Section 13.5 for
descriptions of the RANL_SKIP2 and RANL_SKIP64 subprograms.
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13.2 Standard Uniform RNG Subprograms

CXML provides the RAN16807 and the RAN69069 subprograms to generate full
period (m or m — 1), sequences of uniform random numbers. Both subprograms
use a single precision, function call interface. CXML provides these RNGs since
they are perhaps the two most commonly used 32-bit generators.

The RAN16807 subprogram uses an algorithm that corresponds to the “minimal
standard generator” recommended by Park and Miller. For further information
see Section D.