
HP ACMS for OpenVMS
Remote Systems Management
Guide
Order Number: AA-RJXRC-TE

January 2006

The Remote Manager is a process for remotely managing HP ACMS for
OpenVMS systems. This manual describes the features of the Remote
Manager, how to use those features, and how to manage the Remote
Manager.

Revision/Update Information: This document supersedes the HP
ACMS for OpenVMS Remote Systems
Management Guide, Version 4.5A.

Operating System: OpenVMS Alpha Version 8.2
OpenVMS I64 Version 8.2-1

Software Version: HP ACMS for OpenVMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors, or omissions contained herein.

Motif is a registered trademark of The Open Group.

Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Oracle CODASYL DBMS, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rdb, Oracle
SQL/Services, Oracle Trace, and Oracle Trace Collector are registered US trademarks of Oracle
Corporation, Redwood City, California.

Printed in the US

Contents

Preface . xiii

Part I Introduction

1 Overview of Remote Management

1.1 Architecture and Implementation . 1–1
1.2 Remote Management Capabilities . 1–3

2 Getting Started with the ACMS Remote Manager

2.1 Running the ACMS Remote Manager . 2–1
2.1.1 Server Node Setup . 2–2
2.1.1.1 Verify Portmapper (RPC) Setup . 2–2
2.1.1.2 Run the ACMS Postinstallation Procedure 2–3
2.1.1.3 Define Process Logicals and Symbols . 2–3
2.1.1.4 Prepare the ACMS Environment . 2–3
2.1.1.5 Start the ACMS Remote Manager . 2–3
2.1.2 Client Node Setup . 2–4
2.1.2.1 Run ACMS_POST_INSTALL.COM . 2–4
2.1.2.2 Copy Files and Define Symbols . 2–5
2.1.3 Communicate with the Remote Manager . 2–5
2.2 TCP/IP Setup . 2–6
2.2.1 Review TCP/IP Host Names . 2–7
2.2.2 Set Up the Portmapper (RPC) . 2–7
2.2.2.1 Determine the Current Portmapper Configuration 2–8
2.2.2.2 Remove the Existing Portmapper Configuration 2–8
2.2.2.3 Configure the Portmapper . 2–8
2.2.3 Set Up SNMP . 2–9
2.2.3.1 Determine the Current SNMP Configuration 2–10
2.2.3.2 Remove the Existing SNMP Configuration 2–10
2.2.3.3 Configure SNMP . 2–11
2.2.3.4 Test SNMP . 2–12
2.3 Remote Manager Setup . 2–13
2.3.1 Run the Postinstallation Procedure . 2–13
2.3.2 Define Process Logicals and Symbols . 2–15
2.3.3 Review and Update the Configuration File . 2–15
2.3.4 Start the Remote Manager . 2–16
2.3.5 Communicate with the Remote Manager . 2–17
2.3.5.1 Using ACMSMGR and Logging In Explicitly 2–17
2.3.5.2 Using ACMSMGR and a Proxy Account . 2–17
2.4 Monitoring the HP TP Desktop Connector Server or HP TP Web

Connector Gateway . 2–18
2.5 Troubleshooting the ACMS Remote Manager Startup 2–19

iii

2.5.1 Problems Starting ACMS . 2–19
2.5.2 Problems Starting the ACMS Remote Manager 2–20
2.5.2.1 ACMS$MGMT_SERVER.OUT Messages . 2–20
2.5.2.2 Remote Manager Log Entries . 2–21
2.5.3 Problems with the ACMSMGR Utility . 2–23
2.5.3.1 ACMSMGMT-W-NOCLNT_ATTACH Messages 2–23
2.5.3.2 ACMSMGR Hangs . 2–23

3 Using the ACMS Remote Manager Web Agent

3.1 Overview of the Remote Manager Web Agent . 3–1
3.2 Remote Manager Web Agent Setup . 3–2
3.2.1 Install the Remote Manager Web Agent Software 3–2
3.2.2 Install the HP Management Agents for OpenVMS Software 3–4
3.2.3 Assign Additional Rights Identifiers . 3–4
3.2.4 Start the Remote Manager Web Agent Process 3–5
3.2.5 Enable Access to Remote Manager Hosts . 3–5
3.2.6 Stop the Remote Manager Web Agent . 3–5
3.3 Using the Remote Manager Web Agent . 3–5
3.3.1 Accessing the ACMS Remote Management Web Page 3–5
3.3.2 Conventions . 3–7
3.3.3 Customizing the Display . 3–7
3.3.4 Selecting the Remote Manager Host . 3–8
3.4 Issuing Remote Manager Commands . 3–8
3.4.1 Using Show Commands . 3–8
3.4.2 Using Set Commands . 3–9
3.4.3 Using Start and Stop Commands . 3–10
3.4.4 Using Add and Delete Commands . 3–11
3.5 Troubleshooting the Remote Manager Web Agent 3–12
3.5.1 Reporting Problems . 3–12

4 Managing the Remote Manager

4.1 Overview . 4–1
4.2 Configuring Remote Manager Startup . 4–1
4.2.1 How to Run the ACMSCFG Utility . 4–2
4.2.2 Displaying Current Values . 4–3
4.2.3 Changing Values . 4–3
4.3 Starting and Stopping the Remote Manager . 4–4
4.3.1 Remote Manager Startup . 4–4
4.3.2 Remote Manager Shutdown . 4–5
4.4 Logging In to the Remote Manager . 4–5
4.4.1 Authentication . 4–5
4.4.1.1 Logging In . 4–6
4.4.1.2 Proxy Accounts . 4–7
4.4.2 Authorization . 4–7
4.4.2.1 Read Access (ACMS$MGMT_READ) . 4–7
4.4.2.2 Operate Access (ACMS$MGMT_OPER) . 4–7
4.4.2.3 Write Access (ACMS$MGMT_WRITE) . 4–8
4.4.2.4 Update Access (ACMS$MGMT_SYSUPD) 4–8
4.5 Starting and Stopping Interfaces . 4–8
4.5.1 Using ACMSCFG to Enable or Disable Interfaces 4–8
4.5.2 Using ACMSMGR to Start or Stop Interfaces 4–9
4.6 Modifying Management Parameters . 4–9

iv

4.6.1 Using ACMSCFG to Modify Management Parameters 4–9
4.6.2 Using ACMSMGR to Modify Management Parameters 4–10
4.7 Managing the Remote Manager Log File . 4–10
4.7.1 Setting Audit Levels . 4–10
4.7.2 Displaying Audit Messages . 4–12
4.7.3 Resetting the Log . 4–13

5 Using the Remote Manager to Manage ACMS

5.1 Managing Data Collection . 5–1
5.1.1 Entities, Classes, Names, and Collections . 5–2
5.1.2 Starting and Stopping Collections . 5–4
5.1.2.1 Using ACMSCFG to Start or Stop Collections 5–5
5.1.2.2 Using ACMSMGR to Start or Stop Collections 5–5
5.1.2.3 Using SNMP to Start or Stop Collections 5–6
5.2 Saving Collected Data . 5–6
5.2.1 Using ACMSCFG to Start or Stop Data Snapshots 5–8
5.2.2 Using ACMSMGR to Start or Stop Data Snapshots 5–8
5.2.3 Using SNMP to Start or Stop Data Snapshots 5–9
5.3 Displaying Collected Data . 5–9
5.3.1 Using ACMSMGR to Display Collected Data . 5–9
5.3.2 Using ACMSSNAP to Display Collected Data 5–9
5.3.2.1 How to Run the ACMSSNAP Utility . 5–10
5.3.2.2 Opening and Closing a Data Snapshot File 5–10
5.3.2.3 Navigating and Displaying Snapshot Record Data 5–10
5.3.2.4 Sample ACMSSNAP Session . 5–11
5.3.3 Managing Data Snapshot Files . 5–13
5.4 Managing ACMS Using the Remote Manager . 5–13
5.4.1 Types of Variables . 5–13
5.4.1.1 Stored Variables . 5–13
5.4.1.2 Active Variables . 5–14
5.4.2 How the Remote Manager Makes Changes . 5–14
5.4.3 Using ACMSMGR to Modify the ACMS Run-Time System 5–15
5.4.4 Using SNMP to Modify the ACMS Run-Time System 5–16
5.4.4.1 Starting and Stopping Processes Using SNMP 5–16
5.4.4.2 Adding and Deleting Rows Using SNMP . 5–16
5.4.4.3 Replacing Application Procedure Servers Using SNMP 5–17
5.4.5 Using ONC RPC to Modify the ACMS Run-Time System 5–17
5.5 Working with Error Logs . 5–17
5.5.1 Setting Error Filters . 5–17
5.5.1.1 Creating Error Filter Records . 5–18
5.5.1.2 Displaying Error Filter Records . 5–18
5.5.1.3 Saving Error Filter Records to a File . 5–19
5.5.1.4 Deleting Error Filter Records . 5–19
5.5.2 Displaying Error Messages . 5–19
5.5.3 Resetting the Error Log . 5–19

v

6 Management Programming Using ONC RPC

6.1 ONC RPC Overview . 6–1
6.2 Building Multithreaded Clients . 6–4
6.3 API Overview . 6–4
6.4 Initialization and Security . 6–4
6.4.1 Initialization Example . 6–5
6.5 Get Procedures . 6–6
6.5.1 Get Example . 6–6
6.6 List Procedures . 6–7
6.6.1 Linked List Example . 6–8
6.7 Set Procedures . 6–11
6.7.1 Set Example . 6–12
6.8 Delete Procedures . 6–13
6.8.1 Delete Example . 6–13
6.9 Add Procedures . 6–14
6.9.1 Add Example . 6–14
6.10 Start, Stop, and Replace Procedures . 6–15
6.10.1 Start Example . 6–16

7 Management Programming Using SNMP

7.1 SNMP Overview . 7–1
7.2 SNMP Security . 7–2
7.3 Initializing the SNMP Interface . 7–3
7.4 SNMP Tables . 7–4
7.4.1 Data Type Mapping . 7–5
7.4.2 Single-Row Tables . 7–5
7.4.3 Static Tables . 7–5
7.4.4 Dynamic Tables . 7–6
7.4.5 Servers and Task Groups . 7–7
7.5 SNMP GET Operations . 7–8
7.6 SNMP SET Operations . 7–8
7.7 Using SNMP to Start and Stop ACMS Entities . 7–9
7.8 SNMP Traps . 7–9
7.8.1 EXISTS Traps . 7–10
7.8.2 EVENT_SEVERITY Traps . 7–10
7.9 SNMP Debug Tracing . 7–11
7.9.1 Starting SNMP Debug Tracing . 7–11
7.9.2 Stopping SNMP Debug Tracing . 7–12
7.10 Remote Manager eSNMP Return Codes . 7–12

Part II Reference Information

8 Management APIs

8.1 Common RPC Fields . 8–1
8.1.1 Collection Classes . 8–1
8.1.2 Interface Types . 8–2
8.1.3 Enable States . 8–2
8.1.4 Entity Types . 8–2
8.1.5 Facility Types . 8–3
8.1.6 Running States . 8–3
8.1.7 Severity Codes . 8–3

vi

8.1.8 Trap Parameters . 8–4
8.2 Thread-Safe and Non-Thread Safe Clients . 8–4
8.3 ACMSMGMT_ADD_COLLECTION_2 . 8–5
8.4 ACMSMGMT_ADD_ERR_FILTER_2 . 8–8
8.5 ACMSMGMT_ADD_TRAP_1 . 8–11
8.6 ACMSMGMT_DELETE_COLLECTION_1 . 8–14
8.7 ACMSMGMT_DELETE_ERR_FILTER_2 . 8–17
8.8 ACMSMGMT_DELETE_TRAP_1 . 8–19
8.9 ACMSMGMT_GET_ACC_2 . 8–22
8.10 ACMS$MGMT_GET_CREDS . 8–24
8.11 ACMSMGMT_GET_ERR_FILTER_2 . 8–27
8.12 ACMSMGMT_GET_MGR_STATUS_1 . 8–30
8.13 ACMSMGMT_GET_PARAM_2 . 8–33
8.14 ACMSMGMT_GET_QTI_2 . 8–35
8.15 ACMSMGMT_GET_TSC_2 . 8–37
8.16 ACMSMGMT_GET_VERSION_2 . 8–39
8.17 ACMSMGMT_LIST_AGENT_2 . 8–41
8.18 ACMSMGMT_LIST_COLLECTIONS_2 . 8–45
8.19 ACMSMGMT_LIST_CP_2 . 8–49
8.20 ACMSMGMT_LIST_ERR_2 . 8–53
8.21 ACMSMGMT_LIST_EXC_2 . 8–59
8.22 ACMSMGMT_LIST_INTERFACES_1 . 8–63
8.23 ACMSMGMT_LIST_LOG_1 . 8–66
8.24 ACMSMGMT_LIST_PROC_1 . 8–72
8.25 ACMSMGMT_LIST_SERVER_1 . 8–77
8.26 ACMSMGMT_LIST_TG_2 . 8–81
8.27 ACMSMGMT_LIST_TRAP_1 . 8–85
8.28 ACMSMGMT_LIST_USERS_1 . 8–88
8.29 ACMSMGMT_REPLACE_SERVER_1 . 8–94
8.30 ACMSMGMT_RESET_LOG_1 . 8–98
8.31 ACMSMGMT_RESET_ERR_2 . 8–100
8.32 ACMSMGMT_SAVE_ERR_FILTER_2 . 8–102
8.33 ACMSMGMT_SET_ACC_2 . 8–106
8.34 ACMSMGMT_SET_AGENT_2 . 8–112
8.35 ACMSMGMT_SET_COLLECTION_2 . 8–117
8.36 ACMSMGMT_SET_CP_2 . 8–120
8.37 ACMSMGMT_SET_EXC_2 . 8–123
8.38 ACMSMGMT_SET_INTERFACE_1 . 8–128
8.39 ACMSMGMT_SET_PARAM_2 . 8–131
8.40 ACMSMGMT_SET_QTI_2 . 8–134
8.41 ACMSMGMT_SET_SERVER_1 . 8–140
8.42 ACMSMGMT_SET_TRAP_1 . 8–145
8.43 ACMSMGMT_SET_TSC_2 . 8–148
8.44 ACMSMGMT_START_ACC_1 . 8–154
8.45 ACMSMGMT_START_EXC_1 . 8–158
8.46 ACMSMGMT_START_QTI_1 . 8–162
8.47 ACMSMGMT_START_TRACE_MONITOR_1 . 8–166
8.48 ACMSMGMT_START_TSC_1 . 8–169
8.49 ACMSMGMT_STOP_1 . 8–173
8.50 ACMSMGMT_STOP_ACC_1 . 8–175
8.51 ACMSMGMT_STOP_EXC_1 . 8–179
8.52 ACMSMGMT_STOP_QTI_1 . 8–183
8.53 ACMSMGMT_STOP_TRACE_MONITOR_1 . 8–187
8.54 ACMSMGMT_STOP_TSC_1 . 8–190

vii

9 Remote Manager Reference Tables

9.1 Data Types . 9–2
9.2 ACC Table . 9–3
9.2.1 Field Descriptions . 9–6
9.3 Agent Table . 9–12
9.3.1 Field Descriptions . 9–15
9.4 Collection Table . 9–21
9.4.1 Field Descriptions . 9–21
9.5 CP Table . 9–23
9.5.1 Field Descriptions . 9–26
9.6 Error Filter Table . 9–30
9.6.1 Field Descriptions . 9–31
9.7 EXC Table . 9–31
9.7.1 Field Descriptions . 9–34
9.8 Interfaces Table . 9–40
9.8.1 Field Descriptions . 9–41
9.9 Manager Status Table . 9–42
9.9.1 Field Descriptions . 9–42
9.10 Parameter Table . 9–43
9.10.1 Field Descriptions . 9–45
9.11 QTI Table . 9–49
9.11.1 Field Descriptions . 9–51
9.12 Server Table . 9–54
9.12.1 Field Descriptions . 9–55
9.13 Task Group Table . 9–56
9.13.1 Field Descriptions . 9–57
9.14 Trap Table . 9–58
9.14.1 Field Descriptions . 9–59
9.14.2 Valid Trap Minimums and Maximums . 9–60
9.14.3 SNMP Trap Format . 9–61
9.15 TSC Table . 9–62
9.15.1 Field Descriptions . 9–64
9.16 Users Table . 9–67
9.16.1 Field Descriptions . 9–68

10 ACMSCFG Commands

10.1 ACMSCFG Overview . 10–1
10.1.1 Command Format . 10–1
10.1.2 Command Objects and Qualifiers . 10–2
10.2 ACMSCFG ADD COLLECTION . 10–4
10.3 ACMSCFG ADD TRAP . 10–8
10.4 ACMSCFG DELETE COLLECTION . 10–10
10.5 ACMSCFG DELETE TRAP . 10–12
10.6 ACMSCFG HELP . 10–14
10.7 ACMSCFG SET COLLECTION . 10–15
10.8 ACMSCFG SET INTERFACE . 10–19
10.9 ACMSCFG SET PARAMETER . 10–20
10.10 ACMSCFG SET TRAP . 10–22
10.11 ACMSCFG SHOW COLLECTION . 10–24
10.12 ACMSCFG SHOW CONTROL . 10–25
10.13 ACMSCFG SHOW INTERFACE . 10–26
10.14 ACMSCFG SHOW PARAMETER . 10–27
10.15 ACMSCFG SHOW TRAP . 10–29

viii

11 ACMSMGR Commands

11.1 ACMSMGR Overview . 11–1
11.1.1 Command Format . 11–1
11.1.2 Command Objects and Qualifiers . 11–2
11.2 ACMSMGR ADD COLLECTION . 11–7
11.3 ACMSMGR ADD FILTER‡ . 11–11
11.4 ACMSMGR ADD TRAP . 11–13
11.5 ACMSMGR DELETE COLLECTION . 11–16
11.6 ACMSMGR DELETE FILTER‡ . 11–18
11.7 ACMSMGR DELETE TRAP . 11–20
11.8 ACMSMGR HELP . 11–22
11.9 ACMSMGR LOGIN . 11–23
11.10 ACMSMGR LOGOUT . 11–25
11.11 ACMSMGR REPLACE SERVER . 11–27
11.12 ACMSMGR RESET ERROR‡ . 11–29
11.13 ACMSMGR RESET LOG . 11–31
11.14 ACMSMGR SAVE FILTER‡ . 11–33
11.15 ACMSMGR SET ACC . 11–35
11.16 ACMSMGR SET AGENT . 11–40
11.17 ACMSMGR SET COLLECTION . 11–42
11.18 ACMSMGR SET CP‡ . 11–46
11.19 ACMSMGR SET EXC . 11–48
11.20 ACMSMGR SET INTERFACE . 11–51
11.21 ACMSMGR SET PARAMETER . 11–53
11.22 ACMSMGR SET QTI . 11–56
11.23 ACMSMGR SET SERVER . 11–59
11.24 ACMSMGR SET TRAP . 11–62
11.25 ACMSMGR SET TSC . 11–64
11.26 ACMSMGR SHOW ACC . 11–68
11.27 ACMSMGR SHOW AGENT . 11–73
11.28 ACMSMGR SHOW COLLECTION . 11–78
11.29 ACMSMGR SHOW CP . 11–80
11.30 ACMSMGR SHOW ERROR‡ . 11–83
11.31 ACMSMGR SHOW EXC . 11–86
11.32 ACMSMGR SHOW FILTER‡ . 11–89
11.33 ACMSMGR SHOW GROUP . 11–91
11.34 ACMSMGR SHOW INTERFACE . 11–94
11.35 ACMSMGR SHOW LOG . 11–96
11.36 ACMSMGR SHOW MANAGER . 11–101
11.37 ACMSMGR SHOW PARAMETER . 11–103
11.38 ACMSMGR SHOW PROCESS . 11–106
11.39 ACMSMGR SHOW QTI . 11–109
11.40 ACMSMGR SHOW SERVER . 11–112
11.41 ACMSMGR SHOW TRAP . 11–115
11.42 ACMSMGR SHOW TSC . 11–117
11.43 ACMSMGR SHOW USER . 11–121
11.44 ACMSMGR SHOW VERSION‡ . 11–124
11.45 ACMSMGR START EXC . 11–126
11.46 ACMSMGR START QTI . 11–128
11.47 ACMSMGR START SYSTEM . 11–130
11.48 ACMSMGR START TERMINALS . 11–132
11.49 ACMSMGR START TRACE_MONITOR . 11–134
11.50 ACMSMGR STOP EXC . 11–136
11.51 ACMSMGR STOP MANAGER . 11–138

ix

11.52 ACMSMGR STOP QTI . 11–140
11.53 ACMSMGR STOP SYSTEM . 11–142
11.54 ACMSMGR STOP TERMINALS . 11–144
11.55 ACMSMGR STOP TRACE_MONITOR . 11–146

12 ACMSSNAP Commands

12.1 ACMSSNAP Overview . 12–1
12.1.1 Command Format . 12–1
12.1.2 Command Objects and Qualifiers . 12–2
12.2 ACMSSNAP CLOSE . 12–4
12.3 ACMSSNAP EXIT . 12–5
12.4 ACMSSNAP HELP . 12–6
12.5 ACMSSNAP NEXT . 12–7
12.6 ACMSSNAP OPEN . 12–8
12.7 ACMSSNAP PREV . 12–10
12.8 ACMSSNAP QUIT . 12–11
12.9 ACMSSNAP RESET . 12–12
12.10 ACMSSNAP SHOW . 12–13
12.11 ACMSSNAP TRACE . 12–17

A Remote Manager Logical Names

A.1 Remote Manager Server . A–1
A.2 Remote Manager Client (ACMSMGR) Utility . A–1
A.3 Remote Manager Data Snapshot (ACMSSNAP) Utility A–2

B RPC Procedures and Corresponding Rights Identifiers

C Remote Manager Error Messages

C.1 Server Messages . C–1
C.2 ACMSMGR Messages . C–11
C.3 ACMSCFG Messages . C–16
C.4 ACMSSNAP Messages . C–21

Index

Figures

1–1 ACMS Remote Manager Architecture . 1–2
3–1 Remote Manager Web Agent Page . 3–6
3–2 Select Host . 3–8
3–3 Show TSC . 3–9
3–4 Set ACC . 3–10
3–5 Add Error Filter . 3–11
6–1 ONC RPC Interface Overview . 6–2
6–2 ONC RPC Programming Overview . 6–2
6–3 Linked List: Return Structure and Construction 6–10
7–1 SNMP Program Interface with Remote Manager 7–2

x

Tables

3–1 Remote Manager Web Agent Conventions . 3–7
4–1 Audit Level Parameters . 4–11
4–2 Auditing Levels and Their Values . 4–11
4–3 Auditing Level Combinations and Their Values 4–12
5–1 Example 1: Collection with Wildcards . 5–3
5–2 Example 2: Collection with Wildcards . 5–4
6–1 Procedures for Accessing Remote Manager Functions 6–3
6–2 Get Procedures . 6–6
6–3 List Procedures . 6–7
6–4 Set Procedures . 6–11
6–5 Delete Procedures . 6–13
6–6 Add Procedures . 6–14
6–7 Start, Stop, and Replace Procedures . 6–16
7–1 Static Tables . 7–6
7–2 EXC Table (OID 1.3.6.1.4.1.36.2.18.48.13) . 7–7
7–3 Server Table (OID 1.3.6.1.4.1.36.2.18.48.13) . 7–7
7–4 Task Group Table (OID 1.3.6.1.4.1.36.2.18.48.13) 7–8
7–5 Remote Manager eSNMP Routines Return Codes 7–12
8–1 Collection Classes . 8–2
8–2 Interface Types . 8–2
8–3 Enable States . 8–2
8–4 Entity Types . 8–2
8–5 Facility Types . 8–3
8–6 Running States . 8–3
8–7 Severity Codes . 8–4
8–8 Trap Parameters . 8–4
9–1 ACC Table . 9–3
9–2 Agent Table . 9–12
9–3 Collection Table . 9–21
9–4 CP Table . 9–23
9–5 Error Filter Table . 9–30
9–6 EXC Table . 9–31
9–7 Interfaces Table . 9–40
9–8 Manager Status Table . 9–42
9–9 Parameter Table . 9–43
9–10 QTI Table . 9–49
9–11 Server Table . 9–54
9–12 Task Group Table . 9–56
9–13 Trap Table . 9–58
9–14 Trap Minimums and Maximums . 9–61
9–15 TSC Table . 9–62
9–16 Users Table . 9–68
10–1 ACMSCFG Command Objects and Qualifiers 10–2
11–1 ACMSMGR Command Objects and Qualifiers 11–2
12–1 ACMSSNAP Command Objects and Qualifiers 12–2

xi

B–1 RPC Procedures and Corresponding Rights Identifiers B–1

xii

Preface

This manual explains how to use the Remote Manager to manage local and
remote systems running HP ACMS for OpenVMS (ACMS) software. The manual
describes the features of the Remote Manager and explains how to use those
features to manage ACMS systems as well as the Remote Manager itself. It also
provides reference information for the utilities and commands you use in working
with the Remote Manager.

Intended Audience
This manual is intended for ACMS system managers.

Operating System Information
Information about the versions of the OpenVMS operating system and other
software compatible with this version of ACMS is included in HP ACMS Version
5.0 for OpenVMS Installation Guide.

For additional information on the compatibility of other optional software
products with this version of ACMS, refer to the HP ACMS for OpenVMS
Software Product Description (SPD 25.50.xx).

Document Structure
The chapters in this manual are grouped into two main sections (parts). The
first part describes the installation, configuration, and use of the Remote
Manager application (through the supported interfaces) and the Remote Manager
web agent. The second part contains associated API and command reference
information.

Part I Introduction

Chapter 1 Introduces the architecture, implementation, and capabilities of ACMS
remote management.

Chapter 2 Describes how to get started using the Remote Manager including
preparation and startup of the server and client nodes; setting up
TCP/IP; setting up SNMP; and troubleshooting the Remote Manager.

Chapter 3 Describes how to get started using the Remote Manager web agent
including installation of the web agent and associated software,
overview of the browser interface, and general troubleshooting tips.

Chapter 4 Describes how to manage the ACMS Remote Manager including
configuring startup; starting, stopping, and logging in to the Remote
Manager; starting and stopping interfaces; and modifying management
parameters and log files.

Chapter 5 Describes how to use the Remote Manager to manage ACMS, including
managing data collection, displaying collected data, and modifying
ACMS systems.

xiii

Chapter 6 Describes how programmers can use the Open Network Computing
(ONC) remote procedure call (RPC) interface to the ACMS Remote
Manager to develop their own programs for managing ACMS systems.

Chapter 7 Describes how programmers can use the Simple Network Management
Protocol (SNMP) interface to the ACMS Remote Manager to develop
their own programs for managing ACMS systems.

Part II Reference Information

Chapter 8 Provides reference information about the ACMS remote management
APIs, which are procedures that are intended to be called from ONC
RPC clients.

Chapter 9 Provides reference information about data types and tables for the
ACMS Remote Manager.

Chapter 10 Provides reference information about the commands of the ACMSCFG
utility for performing operations on the Remote Manager configuration
file.

Chapter 11 Provides reference information about the commands of the ACMSMGR
utility for performing operations on running ACMS systems.

Chapter 12 Provides reference information about the commands of the ACMSSNAP
utility for performing operations on Remote Manager data snapshot
files.

Appendixes

Appendix A Contains information about the logical names used by the Remote
Manager server and the Remote Manager client (ACMSMGR utility).

Appendix B Contains information providing cross-references of remote procedure
call (RPC) procedures to rights identifiers.

Appendix C Lists all error messages related to the Remote Manager server process,
as well as the ACMSCFG, ACMSMGR, and ACMSSNAP utilities.

ACMS Help
ACMS and its components provide extensive online help.

• DCL level help

Enter HELP ACMS at the DCL prompt for complete help about the ACMS
command and qualifiers, and for other elements of ACMS for which
independent help systems do not exist. DCL level help also provides
brief help messages for elements of ACMS that contain independent help
systems (such as the ACMS utilities) and for related products used by ACMS
(such as HP DECforms or Oracle CDD/Repository).

• ACMS utilities help

Each of the following ACMS utilities has an online help system:

ACMS Debugger
ACMSGEN Utility
ACMS Remote Manager Configuration Utility (ACMSCFG)
ACMS Remote Manager Client (ACMSMGR)
ACMS Remote Manager Data Snapshot Utility (ACMSSNAP)
ACMS Queue Manager (ACMSQUEMGR)
Application Definition Utility (ADU)
Application Authorization Utility (AAU)
Device Definition Utility (DDU)
User Definition Utility (UDU)
Audit Trail Report Utility (ATR)
Software Event Log Utility Program (SWLUP)

xiv

The two ways to get utility-specific help are:

Run the utility and type HELP at the utility prompt.

Use the DCL HELP command. At the ‘‘Topic?’’ prompt, type @ followed by
the name of the utility. Use the ACMS prefix, even if the utility does not
have an ACMS prefix (except for SWLUP). For example:

Topic? @ACMSQUEMGR
Topic? @ACMSADU

However, do not use the ACMS prefix with SWLUP:

Topic? @SWLUP

Note that if you run the ACMS Debugger Utility and then type HELP, you
must specify a file. If you ask for help from the DCL level with @, you do not
need to specify a file.

• ACMSPARAM.COM and ACMSEXCPAR.COM help

Help for the command procedures that set parameters and quotas is a subset
of the DCL level help. You have access to this help from the DCL prompt, or
from within the command procedures.

• LSE help

ACMS provides ACMS-specific help within the LSE templates that assist
in the creation of applications, tasks, task groups, and menus. The ACMS-
specific LSE help is a subset of the ADU help system. Within the LSE
templates, this help is context-sensitive. Type HELP/IND (PF1-PF2) at any
placeholder for which you want help.

• Error help

ACMS and each of its utilities provide error message help. Use HELP ACMS
ERRORS from the DCL prompt for ACMS error message help. Use HELP
ERRORS from the individual utility prompts for error message help for that
utility.

• Terminal user help

At each menu within an ACMS application, ACMS provides help about
terminal user commands, special key mappings, and general information
about menus and how to select tasks from menus.

• Forms help

For complete help for HP DECforms or HP TDMS, use the help systems for
these products.

Related Documents
The following table lists the books in the HP ACMS for OpenVMS documentation
set.

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS
Release Notes†

Information about the latest release of the software

†Available online only.

xv

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS
Installation Guide

Description of installation requirements, the installation
procedure, and postinstallation tasks.

HP ACMS for OpenVMS Getting
Started

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS application.
Description of the AVERTZ sample application.

HP ACMS for OpenVMS Concepts
and Design Guidelines

Description of how to design an ACMS application.

HP ACMS for OpenVMS Writing
Applications

Description of how to write task, task group, application, and
menu definitions using the Application Definition Utility.
Description of how to write and migrate ACMS applications on
an OpenVMS Alpha system.

HP ACMS for OpenVMS Writing
Server Procedures

Description of how to write programs to use with tasks and
how to debug tasks and programs.
Description of how ACMS works with the APPC/LU6.2
programming interface to communicate with IBM CICS
applications.
Description of how ACMS works with third-party database
managers, with ORACLE used as an example.

HP ACMS for OpenVMS Systems
Interface Programming

Description of using Systems Interface (SI) Services to submit
tasks to an ACMS system.

HP ACMS for OpenVMS ADU
Reference Manual

Reference information about the ADU commands, phrases,
and clauses.

HP ACMS for OpenVMS Quick
Reference

List of ACMS syntax with brief descriptions.

HP ACMS for OpenVMS Managing
Applications

Description of authorizing, running, and managing ACMS
applications, and controlling the ACMS system.

HP ACMS for OpenVMS Remote
Systems Management Guide

Description of the features of the Remote Manager for
managing ACMS systems, how to use the features, and how to
manage the Remote Manager.

Online help† Online help about ACMS and its utilities.

†Available online only.

For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product
Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG)
products and services, access the following OpenVMS World Wide Web address:

http://h71000.www7.hp.com/openvms

Reader’s Comments
HP welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xvi

How To Order Additional Documentation
Use the following World Wide Web address for information about how to order
additional documentation:

http://www.hp.com/go/openvms/doc

To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
1–800–ATCOMPA.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must press and
hold the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

In the HTML version of this document, this text style may
appear as italics.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xvii

bold text Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HMTL version of this document, this text style may
appear as italics.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE Uppercase text indicates the name of a routine, the name of a
file, the name of a file protection code, or the abbreviation for a
system privilege.

In command format descriptions, uppercase text is an optional
keyword.

UPPERCASE In command format descriptions, uppercase text that is
underlined is a required. You must include it in the statement
if the clause is used.

lowercase In command format descriptions, a lowercase word indicates a
required element.

<lowercase> In command format descriptions, lowercase text in angle
brackets indicates a required clause or phrase.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets must be included, however, in the syntax of a
directory name in an OpenVMS file specification or in
the syntax of a substring specification in an assignment
statement.)

[|] In command format descriptions, vertical bars separating items
inside brackets indicate that you choose one, none, several, or
all of the options.

{ } In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

[| |] In command format descriptions, vertical bars within square
brackets indicate that you can choose any combination of the
enclosed options, but you can choose each option only once.

{ | | } In command format descriptions, vertical bars within braces
indicate that you must choose one of the options listed, but you
can use each option only once.

References to Products
The ACMS documentation set to which this manual belongs often refers to certain
products by abbreviated names:

Abbreviation Product

ACMS HP ACMS for OpenVMS Alpha, and HP ACMS for OpenVMS I64

Ada HP Ada for OpenVMS Alpha Systems, and HP Ada for OpenVMS I64
Systems

BASIC HP BASIC for OpenVMS

xviii

Abbreviation Product

C HP C for OpenVMS Alpha Systems, and HP C for OpenVMS I64 Systems

CDD Oracle CDD/Administrator, and Oracle CDD/Repository

COBOL HP COBOL for OpenVMS Alpha Systems, and HP COBOL for OpenVMS
I64 Systems

DATATRIEVE HP DATATRIEVE for OpenVMS Alpha, and HP DATATRIEVE for
OpenVMS I64

DBMS Oracle CODASYL DBMS

DECforms HP DECforms

FORTRAN HP Fortran for OpenVMS Alpha Systems, and HP Fortran for OpenVMS
I64 Systems

OpenVMS The OpenVMS Alpha operating system, and the OpenVMS I64 operating
system

Pascal HP Pascal for OpenVMS Alpha, and HP Pascal for OpenVMS I64

Rdb Oracle Rdb

SQL The SQL interface to Oracle Rdb

xix

Part I
Introduction

Part I contains information about configuring and using the remote management
features of ACMS. It contains an overview of the Remote Manager as well as
information on how it is managed and operates.

Chapter 2 and Chapter 3 describe how to install and configure both the Remote
Manager and the Remote Manager web agent. Chapter 4 and Chapter 5 explain
how to manage data collection and how to use the Remote Manager to modify a
running ACMS system.

Finally, Chapter 6 and Chapter 7 show you how to write programs that perform
remote management using RPC and SNMP.

1
Overview of Remote Management

This chapter provides an overview of ACMS remote management.

1.1 Architecture and Implementation
The ACMS Remote Manager provides system managers with the capability
of monitoring and managing their ACMS application environment across a
network. The facilities that comprise the Remote Manager are based on a
client/server architecture. Two protocols are supported for accessing the ACMS
remote management server: Open Network Computing Remote Procedure Call
(ONC RPC), which is used by command line utilities (provided with the remote
management option) and can be called directly from user-written programs;
and Simple Network Management Protocol (SNMP), for use with third-party
management consoles.

As Figure 1–1 shows, users communicate with the ACMS Remote Manager over a
TCP/IP network using one of the supported interfaces:

• The SNMP interface provides network access to ACMS management
information using the industry-standard SNMP protocol. This protocol is
supported by most leading system management packages (including PATROL
from BMC).

• The RPC interface provides local or remote access to ACMS management
information and is used by the ACMSMGR command line utility, the Remote
Manager web agent, and user-written programs to access ACMS management
information.

ACMSMGR provides command line access to management information as
well as control of the Remote Manager process. This utility can be run from
any OpenVMS node that has TCP/IP network connectivity to the ACMS node.
For more information about the ACMSMGR and its commands, see Chapter 5
and Chapter 11.

The Remote Manager provides web-based access to management and
process information via the Remote Manager Hyper-Media Management
Object (ACMS$MGMT_HMMO). Integrated into HP’s web-based enterprise
management (WBEM) architecture, this server-based object communicates
with the WBEM$SERVER management agent, which handles all
communication to and from the client web browser. For more information
about the Remote Manager web agent, see Chapter 3. For information about
the WBEM architecture, visit the OpenVMS system management page:

http://h71000.www7.hp.com/openvms/products/mgmt_agents/intro.html

Overview of Remote Management 1–1

Overview of Remote Management
1.1 Architecture and Implementation

Figure 1–1 ACMS Remote Manager Architecture

Web-Based Client (Remote)

Windows Client (Remote)

SNMP

PATROL
Console

PATROL
Agent

TCP/IP Services for OpenVMS

ACMSGEN

ACMS OPERACMSGEN

Global
Section

ACMSMGR
Command

Web
Browser

ACMS
Process

VM-0804A-AI

TCP/IP
MIB

Browser

DCL
Subprocess

UDP/TCP

Elm
API

Port
2301

SNMP

WBEM$SERVER

Elm
API

ONCACMS$MGMT_HMMO

SNMP WBEM$CPQNIC
.
.
.

WBEM$CPQHOST

http://managed-element-URL

ACMS Remote Manager

RPC SNMP

RPC SNMP

DCL Client
TCP/IP MIB Client

ACC.KM
TSC.KM
CP.KM
EXC.KM
SER.KM
GRP.KM
RM.KM

Remote Manager Server

(Local or Remote)
(Local or Remote)

RPC

Using SNMP or RPC commands, ACMS system managers can configure and
control the system data being collected, automatic variable monitoring, and
operation of the interfaces themselves.

Communications between the ACMS Remote Manager and the ACMS run-time
system are transparent. Users may be on the same or a different node than the
Remote Manager, but the Remote Manager must be running on the same node as
the ACMS run-time system it is monitoring or accessing.

1–2 Overview of Remote Management

Overview of Remote Management
1.1 Architecture and Implementation

The Remote Manager obtains initial configuration information during process
startup from a user-maintained configuration file (described in Chapter 4). Once
started, the Remote Manager provides ACMS system managers remote access to
their ACMS application environment through the interfaces.

1.2 Remote Management Capabilities
The Remote Manager provides ACMS system managers with the ability to:

• Configure and enable the Remote Manager web agent for browser-based
access to remote ACMS information (Chapter 3)

• Remotely manage the Remote Manager and set standard configuration
options (Chapter 4)

• Remotely manage data collection and error reporting (Chapter 5), including:

Remotely view ACMS and OpenVMS system management information
online

Remotely save and view snapshots of collected data

Remotely generate and view run-time error logs

Remotely configure SNMP traps

• Remotely modify ACMS run-time systems (Chapter 5)

• Write programs that remotely access management information online using
ONC RPC (Chapter 6) and SNMP (Chapter 7)

Overview of Remote Management 1–3

2
Getting Started with the ACMS Remote

Manager

This chapter describes how to prepare and run the ACMS Remote Manager
software on a node where HP ACMS for OpenVMS, Version 5.0 has been installed.
This chapter does not describe the actual installation. For information about
installing HP ACMS for OpenVMS, Version 5.0, refer to the HP ACMS Version 5.0
for OpenVMS Installation Guide.

Note

The procedures in this chapter assume HP TCP/IP Services Version 5.0A
for OpenVMS (TCP/IP) or higher is installed. The image and process
names changed in Version 5.0 from UCX* to TCPIP*. If you are using a
machine with an older version of TCP/IP Services installed, you should
substitute UCX wherever you see TCPIP in the instructions in this
chapter.

Terminology
The following terms are used in this chapter:

• Server node

A node on which ACMS Version 5.0 has been installed and on which the
ACMS Remote Manager server will run. Server nodes can be either ACMS
application or submitter nodes, and can be managed either locally or remotely
using one of the supported interfaces (RPC or SNMP). Server nodes are
automatically client nodes, but not all client nodes are server nodes.

• Client node

A node on which ACMS Version 5.0 may or may not be installed. Client nodes
can get information from and perform operations on server nodes. However,
users cannot obtain ACMS system management information from or perform
system management functions on nodes that are client nodes only.

2.1 Running the ACMS Remote Manager
The following sections outline the steps required to get the ACMS Remote
Manager running on an OpenVMS system. If you are an inexperienced user of
ACMS, you should first read Section 2.2 and Section 2.3 for detailed information
about how to set up a node for ACMS remote management.

This section describes setup for both client and server nodes. Server nodes
automatically support all client functions; once a node is set up as a server, it
can function as a client and a server without additional work. Client nodes can
function only as clients.

Getting Started with the ACMS Remote Manager 2–1

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

When you complete the following procedures, the ACMS Remote Manager will be
running on your system and you can access it using the ACMSMGR command
line utility, the Remote Manager web agent, or a third-party or user-written client
that uses one of the supported interfaces.

Note that the Remote Manager web agent requires some configuration before
use. See Chapter 3 for detailed configuration instructions as well as for a brief
overview of the browser interface.

2.1.1 Server Node Setup
Before you begin, you must have already installed the ACMS Version 5.0 kit
on your system. Also ensure that you have the minimum supported version of
TCP/IP (as described in the ACMS Software Product Description [SPD 25.50.xx])
installed on your node, and that it is operational. (If TCP/IP is not installed and
operational, the ACMS Remote Manager will not run.) For information about
TCP/IP setup, see Section 2.2.

Once you have installed the ACMS and TCP/IP software, perform the following
steps to set up a Remote Manager server node:

1. Verify Portmapper (RPC) setup (see Section 2.1.1.1)

2. Run the ACMS postinstallation procedure (see Section 2.1.1.2)

3. Define process logicals and symbols (see Section 2.1.1.3)

4. Prepare the ACMS environment (see Section 2.1.1.4)

5. Start the ACMS Remote Manager (see Section 2.1.1.5)

Server nodes are automatically client nodes. Therefore, you do not need to
perform the tasks in Section 2.1.2 for nodes that you set up as server nodes.

2.1.1.1 Verify Portmapper (RPC) Setup
Before you attempt to start the Remote Manager, ensure that the proper TCP/IP
support is in place. This section provides an overview of the Portmapper (RPC)
verification process. If you need more detailed information, or if you will be using
third-party tools or writing your own SNMP management tools, see Section 2.2.

1. Look for the process TCPIP$PORTM (UCX$PORTM on older versions):

$ SHOW SYSTEM/PROCESS=TCPIP*

If you find the TCPIP$PORTM process, RPC is running and you can skip to
Section 2.1.1.2. Otherwise, go to step 2.

2. See whether the Portmapper service is enabled:

$ TCPIP
TCPIP> SHOW SERVICE PORTMAPPER

Service Port Proto Process Address State

PORTMAPPER 111 TCP,UDP TCPIP$PORTM 0.0.0.0 Enabled

The Portmapper should have both the TCP and UDP protocols defined. If it
does not, you may need to configure the Portmapper (see Section 2.2.2). If the
Portmapper state is Enabled, skip to Section 2.1.1.2. Otherwise, go to step 3.

2–2 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

3. To enable the Portmapper, enter the following commands:

$ TCPIP
TCPIP> ENABLE SERVICE PORTMAPPER
TCPIP> SET CONFIGURATION ENABLE SERVICE PORTMAPPER
TCPIP> EXIT

Then restart TCP/IP. The Portmapper process does not automatically start
when TCP/IP starts, so you may not see the TCPIP$PORTM process. The
process starts the first time the Portmapper is accessed.

2.1.1.2 Run the ACMS Postinstallation Procedure
If you did not run the postinstallation procedure when you installed the ACMS
Version 5.0 kit, do so now. For details, see Section 2.3.

1. Run the postinstallation procedure as follows:

$ @SYS$STARTUP:ACMS_POST_INSTALL

2. When you are asked whether you want to configure the ACMS Remote
Manager, answer YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]? YES

3. Answer the questions according to the needs of your organization.

2.1.1.3 Define Process Logicals and Symbols
The ACMS$MGMT_ENV.COM command procedure is provided to define some
symbols that make using the ACMSMGR utility simpler. For more information,
see Section 2.3.2, or run the procedure now by entering the following command:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.1.1.4 Prepare the ACMS Environment
You are now ready to start the Remote Manager. If you need more information
about this procedure, see Section 2.3.3. Then follow these steps:

1. Ensure that the ACMSTART.COM procedure has been run by entering the
following command:

$ ACMS/SHOW SYSTEM

If you get the following error, you must invoke the
SYS$STARTUP:ACMSTART.COM procedure described in step 2:

%DCL-W-ACTIMAGE, error activating image ACMSHR

If you get a message indicating that the ACMS system is stopped, or if some
information about the ACMS system is displayed, go to Section 2.1.1.5.

2. Invoke the ACMSTART command procedure:

$ @SYS$STARTUP:ACMSTART

2.1.1.5 Start the ACMS Remote Manager
To start the ACMS Remote Manager, follow these steps:

1. Enter the following command:

$ STARTMGR

Getting Started with the ACMS Remote Manager 2–3

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

2. Check that the Remote Manager processes (ACMS$MGMT_SVR,
ACMS$TRACE_MON, and ACMS$MGMT_DCL) are started by entering
the following command:

$ SHOW SYSTEM/PROCESS=ACMS$*

3. If the processes are running, you should be able to communicate with them
using ACMSMGR commands (see Section 2.1.3).

If any of the process are not running, you can look for information in the
following places:

• Type out the SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT text file:

$ TYPE/PAGE SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT

• View the Remote Manager log file by using the following command:

$ ACMSMGR SHOW LOG/LOCAL

For more information about these sources, refer to Section 2.5.2.1 and
Section 2.5.2.2.

2.1.2 Client Node Setup
All ACMS Remote Manager client nodes require that TCP/IP be installed and
operational. (For information about TCP/IP setup, refer to Section 2.2.) Other
than TCP/IP connectivity to the server node, no additional TCP/IP setup is
required. (The Portmapper does not need to be running on the client node.)

The following sections describe how to set up an ACMS Remote Manager client
node. You can skip these sections if you are installing the ACMS Remote
Mangement server; server nodes are automatically client nodes.

If the client node will not be used as an ACMS submitter node, the ACMS Remote
Option kit does not need to be installed. How you set up the client node depends
upon whether the ACMS Remote Option kit has been installed.

• If the ACMS Remote Option kit has been installed, simply run the
ACMS_POST_INSTALL.COM command procedure (see Section 2.1.2.1).

• If the ACMS Remote Option kit has not been installed, you must copy some
files and define several symbols before you can use the ACMSMGR utility on
a client node (see Section 2.1.2.2).

Once you have completed these tasks, you can try to communicate with a Remote
Manager on a server node using the procedure in Section 2.1.3.

Note that you cannot obtain ACMS system management information or perform
system management functions on nodes that are client nodes only. Client nodes
can get information from and perform operations on server nodes only.

2.1.2.1 Run ACMS_POST_INSTALL.COM
Follow these steps to run the ACMS_POST_INSTALL.COM command procedure:

1. Run the postinstallation procedure as follows:

$ @SYS$STARTUP:ACMS_POST_INSTALL

2. When you are asked whether you want to configure the ACMS Remote System
Manager, answer YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]? YES

3. Answer the questions according to the needs of your organization.

2–4 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

4. Now execute the ACMS$MGMT_ENV.COM command procedure to define
some symbols that make using the ACMSMGR utility simpler:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.1.2.2 Copy Files and Define Symbols
If you did not install the ACMS Remote Option kit (that is, if this node will not
be an ACMS submitter node), follow this procedure. You will need access to a
node with one of the ACMS Version 5.0 Run-Time kits installed.

1. Copy the ACMSMGR executable to your node from SYS$SYSTEM on the node
that has ACMS Version 5.0 installed. Which executable to copy depends on
the version of HP TCP/IP Services for OpenVMS (TCP/IP) you have installed:

• If you are running Version 4.2 of TCP/IP, copy the ACMS$MGMT_CMD_
UCX.EXE file to SYS$SYSTEM on your node.

• If you are running TCP/IP Version 5.0 or higher, copy the ACMS$MGMT_
CMD_TCPIP.EXE file to SYS$SYSTEM on your node.

2. Copy ACMS$MGMT_ENV.COM to your node and run it. This file is
located in SYS$STARTUP of a node where ACMS Version 5.0 is installed.
ACMS$MGMT_ENV.COM defines some symbols that make using the
ACMSMGR utility simpler. Execute the command procedure as follows:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.1.3 Communicate with the Remote Manager
Before you issue any ACMSMGR commands, you must either log in to the
Remote Manager (see step 1) or use an ACMS proxy (see step 2). For detailed
information, see Section 2.3.5.

1. To log in to the Remote Manager, you must have a valid user account
and password on the node on which the Remote Manager is running. The
following example commands log in to the Remote Manager on node SERVER,
using account MYACCT and password MYPASS. (For more details, see
Section 2.3.5.1.)

$ DEFINE ACMS$MGMT_SERVER_NODE SERVER
$ DEFINE ACMS$MGMT_USER MYACCT
$ ACMSMGR LOGIN

ACMS Remote Management -- Command line utility
Password:MYPASS

If the login succeeds, no messages are displayed. Go to step 3.

If the login fails, check the following possible reasons:

• You typed in an invalid user name or password.

• You defined the ACMS$MGMT_SERVER_NODE logical incorrectly (wrong
or misspelled node name).

• You defined the ACMS$MGMT_USER logical incorrectly (wrong or
misspelled account name).

• The Remote Manager is not running on the node you specified.

Refer to Section 2.5 for more help.

Getting Started with the ACMS Remote Manager 2–5

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

2. If you will be using ACMS proxies to access the Remote Manager, and you
already know that you have a valid proxy account, go to step 3. If you have
not set up proxies but would like to use them, create a proxy file on the
node on which the Remote Manager will run. (For more information, see
Section 2.3.5.2.)

$ SET DEFAULT SYS$SYSTEM
$ MCR ACMSUDU
UDU> CREATE/PROXY

Now you can add a proxy. To add a proxy, you need to know the following
information:

• The nodes and accounts from which you will access the Remote Manager

• The account on the Remote Manager node you will use

For example, assume you will be on node CLIENT using account MYACCT,
and you will be accessing node SERVER using account SRVACCT. Enter the
following command on node SERVER:

UDU> ADD/PROXY CLIENT::MYACCT SRVACCT

3. You can now enter any of the ACMSMGR commands. For example:

$ ACMSMGR SHOW INTERFACES

This command results in output similar to the following:

ACMS Remote Management -- Command line utility

ACMS V4.4-0 Interfaces Display Time: 18-APR-2001 13:59:15.51

Enabled Running Get Set Alarms Time Last
Node Interface State State Requests Requests Sent Alarm Sent
------ --------- ------- ------- -------- -------- ------ -----------------------
SERVER rpc enabled started 987 0 0 17-NOV-1858 00:00:00.00
SERVER snmp enabled started 0 0 0 17-NOV-1858 00:00:00.00

If you get error messages instead, refer to Section 2.5.

2.2 TCP/IP Setup
There are three components to the TCP/IP setup for the ACMS Remote Manager:

• Reviewing the TCP/IP host names (see Section 2.2.1)

In order for ACMS to parse and display node names consistently, ACMS
TCP/IP and DECnet host names should be identical, following the DECnet
Phase IV naming conventions. If the TCP/IP host name for a potential
ACMS client or server system differs from this convention, you must define a
six-character alias for that system in the hosts database.

• Portmapper (RPC) setup (see Section 2.2.2)

Portmapper setup is required if you will be using the DCL command line
utility ACMSMGR for remote management, or if you intend to write your own
programs using the RPC API.

• SNMP setup (see Section 2.2.3)

SNMP setup is required if you will be using third-party tools (such as
PATROL from BMC) for remote system management, or if you will be writing
your own SNMP management tools.

2–6 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

The information in the following sections applies mainly to server nodes on which
the ACMS Remote Manager will run. Section 2.2.2 and Section 2.2.3 do not apply
to ACMS Remote Manager client nodes.

2.2.1 Review TCP/IP Host Names
For consistent handling and display of commands that use the ACMSMGR
/NODE qualifier and the ACMS$MGMT_SERVER_NODE logical, all potential
ACMS systems should have a TCP/IP host name (or alias) that matches the
current six-character DECnet host name.

To determine whether potential ACMS hosts are named appropriately, use the
following command to list the contents of the TCP/IP hosts database:

$ TCPIP
TCPIP> SHOW HOST

You will see a display similar to the following, where SPARKS.ACMS.HP.COM is
the host name and SPARKS a system alias:

Host address Host name
.
.
.
160.113.95.52 SPARKS.ACMS.HP.COM, SPARKS

Review this list and do one of the following for each potential ACMS host:

• If the host name (or alias) matches the current DECnet name in length and
case, no further action is required for that host.

• If the host name (or alias) does not match the DECnet host name, define an
alias as follows, where NAME is the name of the host system for which you
want to define an alias, FirstAlias represents an existing alias, and SYSTEM
represents the new alias you are assigning:

$ TCPIP
TCPIP> SET HOST NAME -
_TCPIP> /ALIAS=("FirstAlias", "SYSTEM")

If you have defined any new aliases, restart TCP/IP to apply the changes made in
the host database.

2.2.2 Set Up the Portmapper (RPC)
Perform this task if the Portmapper has not previously been set up on the node
you are using, or if it has been set up incorrectly.

The procedure described here may require a restart of TCP/IP on the node you
are using.

Note

When you configure RPC, you are providing network access to the node.
This may have significant security implications. Be sure you understand
these implications before you configure SNMP. If you are in doubt, consult
your network or security administrator.

Getting Started with the ACMS Remote Manager 2–7

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

2.2.2.1 Determine the Current Portmapper Configuration
To determine whether the Portmapper is configured, use the following commands:

$ TCPIP
TCPIP> SHOW SERVICE PORTMAPPER

If the Portmapper is configured, you will see a display similar to the following:

Service Port Proto Process Address State

PORTMAPPER 111 TCP,UDP TCPIP$PORTM 0.0.0.0 Enabled

If you get an error message indicating that the record is not found, or if both
protocols are shown but the state is not Enabled, go to Section 2.2.2.3.

If the service is displayed, make sure that both TCP and UDP are shown in the
"Proto" column and that the state is Enabled. If both protocols are not shown or
if you suspect that the Portmapper is not working correctly, go to Section 2.2.2.2.

If both protocols are shown and the state is Enabled, then the Portmapper is
configured on this node and no additional work must be performed.

2.2.2.2 Remove the Existing Portmapper Configuration
Perform this task if you suspect the Portmapper is not working correctly, or if you
were directed here from Section 2.2.2.1.

Enter the following commands:

$ TCPIP
TCPIP> SET NOSERVICE PORTMAPPER

Enter Y at the "Remove? [N]:" prompt, and then exit the utility.

Now shut down and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after
the first command executes. You may have to reboot the machine in order
to log in and complete the procedure. To avoid this problem, put the
shutdown and startup commands into a command procedure, and submit
the procedure to a batch queue that is guaranteed to run on this node.

2.2.2.3 Configure the Portmapper
To configure the Portmapper, run the SYS$MANAGER:TCPIP$CONFIG
command procedure. Select option 3 (Server components) and then option 8
(PORTMAPPER). Select the option to "Enable service on this node." For example:

$ @SYS$MANAGER:TCPIP$CONFIG

HP TCP/IP Services for OpenVMS Configuration Menu

Configuration options:

1 - Core environment
2 - Client components
3 - Server components
4 - Optional components
5 - Shutdown HP TCP/IP Services for OpenVMS
6 - Startup HP TCP/IP Services for OpenVMS
7 - Run tests

2–8 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

A - Configure options 1 - 4
[E] - Exit configuration procedure

Enter configuration option: 3

HP TCP/IP Services for OpenVMS SERVER Components Configuration Menu

Configuration options:
1 - BIND Disabled Stopped 12 - NTP Disabled Stopped
2 - BOOTP Disabled Stopped 13 - PC-NFS Disabled Stopped
3 - DHCP Disabled Stopped 14 - POP Disabled Stopped
4 - FINGER Disabled Stopped 15 - PORTMAPPER Enabled Started
5 - FTP Enabled Started 16 - RLOGIN Enabled Started
6 - IMAP Disabled Stopped 17 - RMT Disabled Stopped
7 - LBROKER Disabled Stopped 18 - SNMP Enabled Started
8 - LPR/LPD Disabled Stopped 19 - SSH Disabled Stopped
9 - METRIC Disabled Stopped 20 - TELNET Enabled Started

10 - NFS Disabled Stopped 21 - TFTP Disabled Stopped
11 - LOCKD/STATD Disabled Stopped 22 - XDM Disabled Stopped

A - Configure options 1 - 22
[E] - Exit menu

Enter configuration option: 15

PORTMAPPER SERVER configuration options:

1 - Enable service on all nodes
2 - Enable service on this node
E - Exit PORTMAPPER configuration

Enter configuration option:2

To exit from the command procedure, enter E thrice.

Now shut down and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after
the first command executes. You may have to reboot the machine in order
to log in and complete the procedure. To avoid this problem, put the
shutdown and startup commands into a command procedure, and submit
the procedure to a batch queue that is guaranteed to run on this node.

After TCP/IP starts up, the Portmapper should be ready to use. The Portmapper
process itself does not start until it is needed, but you should make sure it is
defined as described in Section 2.2.2.1.

You can test RPC access to the Remote Manager by using ACMSMGR commands.
But you will need to get the ACMSMGR running first (see Section 2.3).

2.2.3 Set Up SNMP
Perform this task if SNMP is not set up on the node you are using, or if SNMP is
set up incorrectly.

Getting Started with the ACMS Remote Manager 2–9

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

This procedure may require that you restart TCP/IP on the node you are using.

Note

When you configure SNMP, you must configure the SNMP communities to
which the node will belong. SNMP communities govern SNMP network
access to the node, which may have significant security implications. Be
sure you understand these implications before you configure SNMP. If
you are in doubt, consult your network or security administrator. If the
SNMP communities are not configured properly, you may be unable to
access the ACMS Remote Manager.

2.2.3.1 Determine the Current SNMP Configuration
To determine whether SNMP is configured, enter the following commands:

$ TCPIP
TCPIP> SHOW SERVICES

If SNMP is configured, you will see a display similar to the following:

Service Port Proto Process Address State

...
ESNMP 242 UDP ESNMP 0.0.0.0 Disabled
SNMP 161 UDP TCPIP$SNMP 0.0.0.0 Enabled
...

If you do not see both of these services, proceed to Section 2.2.3.3. If both services
are displayed, SNMP is configured on this node. If you suspect that SNMP is
not working correctly, you can proceed to Section 2.2.3.2. Otherwise, there is
no additional work to be performed. (Note: It is fine if ESNMP has a state of
Disabled.)

2.2.3.2 Remove the Existing SNMP Configuration
Perform this step if you suspect SNMP is not working correctly or if you were
directed here from Section 2.2.3.1.

Enter the following commands:

$ TCPIP
TCPIP> SET NOSERVICE SNMP

Enter Y at the "Remove? [N]:" prompt, and then enter:

TCPIP> SET NOSERVICE ESNMP

Enter Y again at the "Remove? [N]:" prompt, and then exit the utility.

Now shut down and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SNMP_SHUTDOWN
$ @SYS$STARTUP:TCPIP$SNMP_STARTUP

2–10 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

2.2.3.3 Configure SNMP
To configure SNMP, run the SYS$MANAGER:TCPIP$CONFIG command
procedure. Select option 3 (Server components) and then option 10 (SNMP
Configuration). Select the option to "Enable service on this node", and respond to
the prompts as shown in the following example.

Note

Configuring SNMP communities must be coordinated among all nodes
that will participate. If you are unsure which SNMP communities to
configure, contact your network administrator.

$ @SYS$MANAGER:TCPIP$CONFIG

HP TCP/IP Services for OpenVMS Configuration Menu

Configuration options:

1 - Core environment
2 - Client components
3 - Server components
4 - Optional components
5 - Shutdown HP TCP/IP Services for OpenVMS
6 - Startup HP TCP/IP Services for OpenVMS
7 - Run tests

A - Configure options 1 - 4
[E] - Exit configuration procedure

Enter configuration option: 3

HP TCP/IP Services for OpenVMS SERVER Components Configuration Menu

Configuration options:
1 - BIND Disabled Stopped 12 - NTP Disabled Stopped
2 - BOOTP Disabled Stopped 13 - PC-NFS Disabled Stopped
3 - DHCP Disabled Stopped 14 - POP Disabled Stopped
4 - FINGER Disabled Stopped 15 - PORTMAPPER Enabled Started
5 - FTP Enabled Started 16 - RLOGIN Enabled Started
6 - IMAP Disabled Stopped 17 - RMT Disabled Stopped
7 - LBROKER Disabled Stopped 18 - SNMP Enabled Started
8 - LPR/LPD Disabled Stopped 19 - SSH Disabled Stopped
9 - METRIC Disabled Stopped 20 - TELNET Enabled Started
10 - NFS Disabled Stopped 21 - TFTP Disabled Stopped
11 - LOCKD/STATD Disabled Stopped 22 - XDM Disabled Stopped

A - Configure options 1 - 22
[E] - Exit menu

Enter configuration option: 18

SNMP Configuration

Service is defined in the SYSUAF.
Service is defined in the TCPIP$SERVICE database.
Configuration is defined in the TCPIP$CONFIGURATION database.
Service is enabled on cluster nodes.
Service is stopped.

SNMP configuration options:

1 - Enable service on this node
2 - Disable service on all nodes

3 - Enable & Start service on this node

[E] - Exit SNMP configuration

Getting Started with the ACMS Remote Manager 2–11

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

Enter configuration option: 3

Do you want to provide the public community [Y]: <site dependent>
Do you want to provide another community [N]: <site dependent>
Enter contact person(s): <site administrator>
Enter the location of the system: <site location>

To exit from the command procedure, enter E twice.

After exiting from the procedure, you may need to modify the public communities
you just specified to allow SNMP reads, writes, or traps. The following example
shows how to do so. (Community names are case sensitive. Also note the use
of double quotes.) To allow SNMP writes to occur on the node, you also need to
enable the set flag, as follows:

$ TCPIP
TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=WRITE
TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=TRAP
TCPIP> SET CONFIG SNMP/FLAGS=SETS

Now exit the TCP/IP utility and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after
the first command executes. You may have to reboot the machine in order
to log in and complete the procedure. To avoid this problem, put the
shutdown and startup commands into a command procedure, and submit
the procedure to a batch queue that is guaranteed to run on this node.

After TCP/IP starts, SNMP should be ready to use. The following SNMP
processes should be running:

TCPIP$ESNMP
TCPIP$OS_MIBS

2.2.3.4 Test SNMP
TCP/IP includes a DCL command line utility that can be used to issue SNMP
commands to SNMP agents on OpenVMS. To use this utility, define the following
foreign commands:

$ SNMPGET :== SYSSYSTEM:TCPIP$SNMP_REQUEST <your node name> PUBLIC GET -W 20
$ SNMPSET :== SYSSYSTEM:TCPIP$SNMP_REQUEST <your node name> PUBLIC SET -W 20

Then, after starting the ACMS Remote Manager (see Section 2.3), test access to
SNMP:

$ SNMPGET 1.3.6.1.4.1.36.2.18.48.5.1.10.1
1.3.6.1.4.1.36.2.18.48.5.1.10 = 14

$ SNMPSET 1.3.6.1.4.1.36.2.18.48.5.1.10.1 -I 15
1.3.6.1.4.1.36.2.18.48.5.1.10 = 15

In this example, the first command issues an SNMP GET to get the value
of the parameter mgr_audit_level (the audit level of the main thread). The
second command sets the value of the mgr_audit_level parameter to 15 (log all
messages). Following each command, the current value of the field is returned.

If these commands fail to return the expected results, refer to Section 2.5.

2–12 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

2.3 Remote Manager Setup
Setting up the Remote Manager primarily involves preparing the OpenVMS
environment to start the Remote Manager. While many of the steps in this
procedure can be performed without having previously configured TCP/IP, it is
strongly suggested that you perform TCP/IP setup tasks described in Section 2.2
before you attempt to start and access the Remote Manager.

Most of what you need to know to set up the ACMS Remote Manager is covered
in Chapter 4. Please read that chapter before you set up the ACMS Remote
Manager.

2.3.1 Run the Postinstallation Procedure
The postinstallation procedure creates two important command procedures:

• ACMS$MGMT_SETUP.COM

• ACMS$MGMT_ENV.COM

Both of these procedures are required to start and run the ACMS Remote
Manager successfully.

In addition, the postinstallation procedure modifies ACMSTART.COM to execute
ACMS$MGMT_SETUP.COM to ensure that important logicals are defined
whenever the ACMS run-time system is started.

Run the ACMS_POST_INSTALL.COM command procedure as follows:

$ @SYS$STARTUP:ACMS_POST_INSTALL

Respond appropriately to all prompts until you reach the following prompt:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?

Be sure to respond YES (the default) to this prompt. Several more questions are
posed. The procedure continues with the following questions. Your responses are
stored in the ACMS$MGMT_SETUP.COM file.

Do you want to allow Proxy Authorization [Y]?

All clients must be authenticated and authorized to access the ACMS Remote
Manager. Proxy access allows ACMS proxies to be used for this purpose. Proxy
access is described in detail in Section 4.4.1.2.

Enter Y to enable proxy authentication and authorization when the Remote
Manager is started.

(ACMS$MGMT_CONFIG) Enter the file specification for the configuration
file used by the ACMS Remote Manager

Equivalence string [SYS$SPECIFIC:[SYSEXE]ACMS$MGMT_CONFIG.ACM]:

The configuration file contains the default startup configuration for both
ACMS data collections and the Remote Manager. Section 4.2 describes how
to use the ACMSCFG utility to manage this file. The default location is
SYS$SPECIFIC:[SYSEXE]ACMS$MGMT_CONFIG.ACM. The information in
this file is not node dependent; however, you may choose to configure the nodes
in your cluster differently. If you configure all nodes in the cluster the same, you
can put this file in the cluster common root. Otherwise, the default value places
it in the node-specific root.

Getting Started with the ACMS Remote Manager 2–13

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

Either press Return to accept the default, or type the file specification you want
to use.

(ACMS$MGMT_TEMP) Enter the directory where the temp command procedures
will be created

Equivalence string [SYS$SPECIFIC:[SYSMGR]]:

The Remote Manager uses temporary command procedures (see Section 5.4.2)
to update the ACMS run-time system. The default location of the command
procedures is SYS$MANAGER. This directory should not be a cluster common
directory.

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

(ACMS$MGMT_LOG) Enter the directory for the ACMS Remote Manager’s Log file
Equivalence string [SYS$SPECIFIC:[ACMS_RM.LOG]]:

The Remote Manager log file (described in Section 4.7) contains a variety of
messages generated by the Remote Manager at run time. The default location
of the log is SYS$SPECIFIC:[ACMS_RM.LOG]ACMS$MGMT_LOG.LOG. If you
choose to place this log in a cluster common directory, be sure that the file name
is different for each node.

Either press Return to accept the default, or type the file specification you want
to use.

(ACMS$MGMT_CREDS_DIR) Enter the directory for the ACMS Remote Manager
Credential’s Equivalence string [SYS$SPECIFIC:[ACMS_RM.CREDS]]:

Client credential files (described in Section 4.4.1.1) contain encrypted client
identity information used for client authorization. The default location for these
files is SYS$SPECIFIC:[ACMS_RM.CREDS]. Credential files are created with
unique names and can be safely placed in a cluster common directory.

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

(ACMS$MGMT_SNAPSHOT) Enter the directory where the snapshot data will be stored
Equivalence string [SYS$SPECIFIC:[ACMS_RM.SNAPSHOT]]:

Data snapshot files (described in Section 5.2) contain ACMS system management
information (parameter and process quota settings) for one or more ACMS
systems. The default location for these files is SYS$SPECIFIC:[ACMS_
RM.SNAPSHOT]ACMS$MGMT_SNAPSHOT.DAT. If you choose to place this
log in a cluster common directory, be sure that the file name is different for each
node.

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

(ACMS$MGMT_ERR_LOG) Enter the directory where the Error Log data will be stored
Equivalence string [SYS$SPECIFIC:[ACMS_RM.ERR_LOG]]:

Error log files (described in Section 5.5) contain errors generated by ACMS run-
time processes. The default location for these files is SYS$SPECIFIC:[ACMS_
RM.ERR_LOG]ACMS$MGMT_LOG.LOG. If you choose to place this log in a
cluster common directory, be sure that the file name is different for each node.

2–14 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

Please enter the UIC for the ACMS$SNMP account, in the form [ggggg,nnnnnn]
UIC:

This account is used to control SNMP access to ACMS system management
information and functions. Section 4.4.1 and Section 7.2 describe the uses of this
account. In general, if you will be using an SNMP-based management console to
access ACMS, you should create this account.

Please enter a password of at least 8 characters, using only
the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_

Password:

The password for this account is never used. Enter any combination of the
characters shown. However, keep in mind that you will be prompted to verify
whatever you type.

After you run the postinstallation procedure, you should rerun
SYS$STARTUP:ACMSTART.COM to ensure that the newly created
ACMS$MGMT_SETUP.COM is run.

2.3.2 Define Process Logicals and Symbols
The following symbols are defined in the ACMS$MGMT_ENV.COM procedure:

• ACMSCFG: Used to invoke the ACMSCFG utility, which allows the Remote
Manager configuration file to be managed. The ACMSCFG utility is described
in detail in Chapter 10.

• ACMSMGR: Used to invoke the ACMSMGR utility, which provides remote
access to the ACMS Remote Manager. The ACMSMGR utility is described in
detail in Chapter 11.

• ACMSSNAP (and ACMSNAP): Used to invoke the ACMSSNAP utility, which
enables users to view ACMS Remote Manager data snapshot files. This
utility and its use is described in detail in Chapter 12.

• STARTMGR: Used to invoke the Remote Manager startup procedure.

• SNMPGET and SNMPSET: Used to issue SNMP get and set commands to
the Remote Manager. Requires knowledge of ACMS MIB OIDs, which are
listed in the file MIB_OID.LIS available from the directory ACMS$RM_
EXAMPLES.

Before you attempt to run any of these utilities, run the
ACMS$MGMT_ENV.COM procedure:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.3.3 Review and Update the Configuration File
The ACMS$MGMT_CONFIG system logical points to the configuration file.
This logical is defined in the ACMS$MGMT_SETUP.COM procedure, which is
executed by the ACMSTART.COM procedure. If this logical is not defined, the
ACMSCFG utility will not be able to locate the file. If you have not already run
ACMSTART.COM, do so before issuing any ACMSCFG commands.

During the initial installation of the Remote Manager, the ACMS_POST_
INSTALL.COM procedure creates a configuration file with default values in
SYS$SPECIFIC:[SYSEXE]ACMS$MGMT_CONFIG.ACM.

Getting Started with the ACMS Remote Manager 2–15

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

The configuration file contains the startup configuration for ACMS data
collections and provides many defaults for the Remote Manager. Section 4.2
describes how to use the ACMSCFG utility to manage this file.

In particular, consider the following:

• Interfaces

By default, both RPC and SNMP interfaces are enabled. The RPC interface
must be enabled if you intend to use the ACMSMGR command line utility, or
if you will be writing programs that use the RPC API. The SNMP interface is
required only if you will use a third-party SNMP management tool to manage
ACMS. The following command disables the SNMP interface:

$ ACMSCFG SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED

• Data collections

By default, only ID and CONFIG class data is collected by all ACMS
processes. If you intend to use the Remote Manager to monitor run-time,
pool, or error data, you must enable data collection for those classes. The
following commands enable run-time, pool, and error data collection for all
processes:

$ ACMSCFG ADD COLL/ENT=*/CLASS=RUNTIME/COLL_STATE=ENABLED
$ ACMSCFG ADD COLL/ENT=*/CLASS=POOL/COLL_STATE=ENABLED
$ ACMSCFG ADD COLL/ENT=*/CLASS=ERROR/COLL_STATE=ENABLED

• Traps

Configuring traps is optional. Traps are used only if your SNMP management
console listens for traps. Section 7.8 discusses traps in more detail. If you are
unsure about whether you need to configure traps, use the defaults.

• Parameters

The parameters in the configuration file control various aspects of the
Remote Manager. In general, use the default values unless you have a
particular reason to modify them. Refer to Section 9.10 includes a table with
descriptions of each parameter.

2.3.4 Start the Remote Manager
At this point, you can start the Remote Manager. You can start the Remote
Manager before or after you start the ACMS run-time system. Start the Remote
Manager by entering the following command:

$ STARTMGR

If you prefer, you can run the startup procedure directly:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP

Once this command completes, you should be able to see the Remote Manager
process running by issuing the following command:

$ SHOW SYSTEM/PROCESS=ACMS$MGMT_SVR

If this process is not running, refer to Section 2.5.

2–16 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

2.3.5 Communicate with the Remote Manager
If the ACMS$MGMT_SVR process is running and you have enabled both the RPC
interface and proxy access, you should be able to communicate with the Remote
Manager. The exact commands you will use depends on the interfaces you have
enabled and the mode of authentication you want to use. This section shows two
examples of communicating with the Remote Manager:

• Using ACMSMGR and logging in explicitly

• Using ACMSMGR and a proxy account

2.3.5.1 Using ACMSMGR and Logging In Explicitly
If you will not be using proxy accounts, or if you have not set them up yet, you
can log in directly to the Remote Manager and communicate with it. To reduce
typing, define the process logicals ACMS$MGMT_USER to be the user account
you will log in with, and ACMS$MGMT_SERVER_NODE to be the node on which
the Remote Manager is running:

$ DEFINE ACMS$MGMT_USER MYNAME
$ DEFINE ACMS$MGMT_SERVER_NODE NODE_SERVER_RUNS_ON

Then you can log in as follows (the ACMSMGR utility will prompt you for your
password):

$ ACMSMGR LOGIN
Password: MYPASSWORD

If no error messages are returned, you have successfully logged in to the Remote
Manager. You can now issue ACMSMGR commands from this process. Try the
following command:

$ ACMSMGR SHOW USERS

2.3.5.2 Using ACMSMGR and a Proxy Account
If you will be using proxy accounts, you must set them up prior to issuing any
ACMSMGR commands. If you have already set them up, you can skip to the
example ACMSMGR command.

If you have not set up your proxies, you start by running the ACMSUDU utility.
It is best to run this from the SYS$SYSTEM directory, since that is where
ACMSUDU expects to find the file in which it stores proxies.

Start ACMSUDU as follows:

$ SET DEFAULT SYS$SYSTEM
$ MCR ACMSUDU
UDU>

If you have never set up an ACMS proxy before, create the proxy file now. Use
the following command:

UDU> CREATE/PROXY

Now you need to define the proxy acounts. Proxy accounts have three
components: the remote node, the remote account, and the local account.

The remote node is the node from which you will be accessing this node. You can
either specify a node name or use the asterisk wildcard (*). Be aware that the
Remote Manager treats every access as a remote access. This means that even
if you access the Remote Manager only from the same node it runs on, you must
create a proxy. In that case, the remote and local nodes are the same.

Getting Started with the ACMS Remote Manager 2–17

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

The remote account is the account on the remote node that will be accessing the
Remote Manager. This is the user name on the remote node.

The local account is the account on the local node that will be used for
authorization. It must be a valid account on the local node.

To add the proxy record, use the following command:

UDU> ADD/PROXY remote-node::remote-account local-account

Once the proxy record has been added, you can attempt to access the Remote
Manager. Using a proxy does not require a separate login; you just issue the
command. Also, do not define the ACMS$MGMT_USER logical. If it is defined,
the ACMSMGR utility will look for login information and will not attempt proxy
access.

Try this command:

$ AMCMSGR SHOW USERS/NODE=remote-manager-node

If no error messages are returned, a list of users logged in to the Remote Manager
will be displayed. To reduce typing when issuing more commands, define the
process logical ACMS$MGMT_SERVER_NODE to be the name of the node
you want to access; this eliminates the need for using the /NODE qualifier in
ACMSMGR commands.

If an error is returned, refer to Section 2.5.

2.4 Monitoring the HP TP Desktop Connector Server or HP TP Web
Connector Gateway

HP TP Desktop Connector
The Remote Manager may be used to monitor user-written and HP supplied
agents.

To allow the ACMS Remote Manager to monitor the HP TP Desktop Connector
(ACMSDI$SERVER), the file SYS$STARTUP:ACMSDI$STARTUP.COM needs to
be modified as follows:

Edit SYS$STARTUP:ACMSDI$STARTUP.COM and search for the lines:

$ if _server_name .nes. ""
$ then
$ write tmpstartup "$ define/process ACMSDI$SERVER_NAME ", _server_name
$ endif

Insert the following before the lines above:

$ write tmpstartup "$ define/process ACMS$RM_AGENT_INIT ", "T"
$ write tmpstartup "$ define/process ACMS$RM_AGENT_KEEP ", "T"

The ACMSDI$SERVER must be restarted after the changes are made.

You should save a copy of this file. If you re-install or update the HP TP Desktop
Connector, the installation procedure will replace the file that you have edited.

2–18 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.4 Monitoring the HP TP Desktop Connector Server or HP TP Web Connector Gateway

TP Web Connector
To allow the ACMS Remote Manager to monitor the TP Web Connector
(ACMSDA$GATEWAY), the file SYS$STARTUP:ACMSDA$STARTUP.COM needs
to be modifed as follows:

Edit SYS$STARTUP:ACMSDA$STARTUP.COM and search for the lines:

$ write tmpstartup "$ define/process ACMSDI$ACMS_ERROR_MSG ", _acms_error_msg
$ write tmpstartup "$ define/process ACMSDI$PASSWORD_EXP ", _password_exp
$ write tmpstartup "$ define/process ACMSDI$INTEGRITY_CHECK ", _integrity_check

Inserver the following after the lines above:

$ write tmpstartup "$ define/process ACMS$RM_AGENT_INIT ", "T"
$ write tmpstartup "$ define/process ACMS$RM_AGENT_KEEP ", "T"

The ACMSDA$GATEWAY must be restarted after the changes are made.

You should save a copy of this file. If you re-install or update the TP Web
Connector, the installation procedure will replace the file that you have edited.

2.5 Troubleshooting the ACMS Remote Manager Startup
The following sections provide troubleshooting information for the following
problems:

• Problems starting ACMS (Section 2.5.1)

• Problems starting the ACMS Remote Manager (Section 2.5.2)

• Problems with ACMSMGR (Section 2.5.3)

2.5.1 Problems Starting ACMS
The following message is displayed when the ACMS run-time system is being
started and the ACMS Central Controller (ACC) cannot open the Remote
Manager configuration file:

%ACMSMGMT-I-CFGNOTOPEN, Unable to open management config file, using defaults

Possible reasons for this message include:

• The logical name ACMS$MGMT_CONFIG is not defined.

Solution: This logical is typically defined in the file
SYS$STARTUP:ACMS$MGMT_SETUP.COM, which is created
by the SYS$STARTUP:ACMS_POST_INSTALL.COM command
procedure. If the ACMS$MGMT_SETUP.COM file does not exist, run
ACMS_POST_INSTALL.COM. If it does exist, edit it and add the
definition of ACMS$MGMT_CONFIG. In either case make sure to run
ACMS$MGMT_SETUP.COM, and then run the ACMSCFG utility to create a
new, default file.

Getting Started with the ACMS Remote Manager 2–19

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

• The logical name ACMS$MGMT_CONFIG does not point to the configuration
file, or the file has not been created.

Solution: Ensure that the logical is defined properly (see the first bullet). If
it is, you can create a new file by running the ACMSCFG utility. ACMSCFG
will ask whether you want to create a new file. Answer yes, and then review
the default settings.

• The ACC process does not have read access to the file pointed to by the logical
name ACMS$MGMT_CONFIG.

Solution: Modify the permissions on the file and restart ACMS.

• The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS
Remote Manager. See the first bullet for more information.

2.5.2 Problems Starting the ACMS Remote Manager
During startup, the Remote Manager writes error messages to two locations. If
you are experiencing problems with the Remote Manager, check both locations for
messages.

• SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT (see Section 2.5.2.1)

• Remote Manager log, pointed to by logical ACMS$MGMT_LOG (see
Section 2.5.2.2)

2.5.2.1 ACMS$MGMT_SERVER.OUT Messages
This is an ASCII text file that contains the redirected SYS$OUTPUT from the
Remote Manager process. In general, messages appear in this log only if the
Remote Manager is unable to write to its log file. The following conditions are
exceptions:

• The literal "log_to_sysout" is passed to the Remote Manager startup procedure
as P1 (for example, @SYS$STARTUP:ACMS$MGMT_STARTUP.COM log_to_
sysout). Except for rare debugging circumstances, the "log_to_sysout" literal
should not be passed to the Remote Manager startup procedure as P1.

• The Remote Manager experiences an access violation or other nontrapped
fatal error.

Under these circumstances, OpenVMS exception output is written to
ACMS$MGMT_SERVER.OUT.

If you experience problems with SNMP, refer to Section 7.9 for information about
obtaining SNMP debug output.

LOG: Could not open file acms$mgmt_log
This message indicates that the Remote Manager could not open the file pointed
to by the logical ACMS$MGMT_LOG. Possible reasons for this include:

• The logical is not defined, or is improperly defined.

Solution: This logical is typically defined in the file
SYS$STARTUP:ACMS$MGMT_SETUP.COM, which is created by the
SYS$STARTUP:ACMS_POST_INSTALL.COM command procedure.
If the ACMS$MGMT_SETUP.COM file does not exist, run ACMS_
POST_INSTALL.COM. If it does exist, edit it and add the definition of
ACMS$MGMT_LOG. In either case, make sure to run ACMS$MGMT_
SETUP.COM, and then start the Remote Manager again.

2–20 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

• The device is full.

Solution: If there is insufficient space for the log file, either redefine the
logical to point to another device or make room on the device.

• The Remote Manager does not have write access to the file.

Solution: Modify the permissions on the file or directory to which the
ACMS$MGMT_LOG logical points.

• The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS
Remote Manager. See the first bullet for more information.

2.5.2.2 Remote Manager Log Entries
The messages written to the Remote Manager log are determined by Remote
Manager parameter settings (for example, mgr_audit_level, rpc_audit_level, and
so on). Changing the parameter values results in either more or fewer messages
appearing in the Remote Manager log. By default, messages with a severity of
warning (w), error (e), or fatal (f) are written to the Remote Manager log. The log
is pointed to by logical ACMS$MGMT_LOG.

You can use the ACMSMGR SHOW LOG command to display messages in the
Remote Manager log. If the Remote Manager is not running, use the /LOCAL
qualifier to read the log file directly. You must be logged in to a node with direct
access to the log file in order to use the /LOCAL switch. For instance:

$ ACMSMGR SHOW LOG/LOCAL

See Section 4.7 for detailed information about the log file maintained by the
ACMS Remote Manager.

mgr: f : Failure opening config file
The Remote Manager could not open the configuration file. See the discussion in
Section 2.5.2.1.

mgr: f : No Interfaces were enabled. Process will shutdown
At least one interface must be enabled when the Remote Manager is started.
Otherwise, it is impossible to communicate with the Remote Manager. If both
interfaces are disabled, the Remote Manager will not start.

Solution: Issue the following command to see the current interface settings in
the configuration file:

$ ACMSCFG SHOW INTERFACE

Enable at least one of the interfaces as follows (substitute SNMP for RPC if you
want to enable the SNMP interface instead of the RPC interface):

$ ACMSCFG SET INTERFACE/INTERFACE=RPC/STATE=ENABLED

Now restart the Remote Manager.

procmon: e : Failure obtaining current collection states. Bypassingqti
This message can safely be ignored. It is generated when an ACMS entity is not
started and the Remote Manager is parsing the collection table.

procmon: f : Failure waiting on mgmt$x_proc_mon_cond_var
This message can safely be ignored. It is generated when the process monitor
thread is unexpectedly interrupted, generally during Remote Manager shutdown.

Getting Started with the ACMS Remote Manager 2–21

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

Remote Manager hangs during process startup
Most Remote Manager hangs during process startup are due to problems with the
Portmapper. Verify that the Portmapper is functioning properly, and restart the
Remote Manager.

rpc: f : Unable to initialize security. Aborting
The Remote Manager was unable to find a rights identifier in the UAF.

Solution: Create the rights identifier.

sec: e : Failure obtaining uaf info for ACMS$SNMP
If the SNMP interface is enabled, the ACMS$SNMP account must exits.
Otherwise, it can perform no operations. If the account exists, it must be
granted at least one of the following rights identifiers: ACMS$MGMT_READ,
ACMS$MGMT_WRITE, ACMS$MGMT_OPER.

Solution: Either disable the SNMP interface ($[ACMSCFG,ACMSMGR]
SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED), or create the
ACMS$SNMP account and grant it one of the rights.

sec: e : MGMTL_ACMSMGMT_READ Rights identifier not found in rights db!
The Remote Manager was unable to find the rights identifier in the UAF.

Solution: Create the rights identifier.

sec: f : ACMS$SNMP user has been granted no rights.
If the SNMP interface is enabled, the ACMS$SNMP account must be
granted at least one of the following rights identifiers: ACMS$MGMT_READ,
ACMS$MGMT_WRITE, ACMS$MGMT_OPER. Otherwise, the account cannot
perform any operations. If it is not granted any rights identifiers, the thread will
not start.

Solution: Either disable the SNMP interface ($[ACMSCFG,ACMSMGR] SET
INTERFACE/INTERFACE=SNMP/STATE=DISABLED), or grant one of the
rights to the ACMS$SNMP account.

snmp: e : Terminating....
This is a general error that simply reports that the thread is exiting. Look in the
log file for the reason the thread is exiting. If there are no other error messages,
look in SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT.

snmp: f : Internal Initialization failed, exiting...
This is a general error that simply reports that the thread is exiting. Look in the
log file for the reason the thread is exiting. If there are no other error messages,
look in SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT.

snmp: w : An esnmp error has occurred: -1
This message, if followed by termination of the SNMP thread, usually indicates
that SNMP has not been set up properly on the node.

Solution: Configure and enable the SNMP interface. Restart TCP/IP and then
restart the Remote Manager.

If this message is received, but is not followed by termination of the SNMP
thread, the SNMP interface was able to recover from this error and there is no
action that must be taken.

2–22 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

snmp: w : An esnmp error has occurred: -5
This is a warning message that refers to a problem communicating with the
SNMP master agent. These errors usually are recoverable and the SNMP
interface continues to work. In general, you can ignore this message.

However, frequent occurrences of this error may be attributable to a busy system
and may indicate a need to modify one or more of the following parameters:
snmp_agent_time_out, snmp_are_you_there, snmp_sel_time_out.

2.5.3 Problems with the ACMSMGR Utility
ACMSMGR problems typically fall into two categories:

• ACMSMGMT-W-NOCLNT_ATTACH messages (see Section 2.5.3.1)

• ACMSMGR hangs (see Section 2.5.3.2)

2.5.3.1 ACMSMGMT-W-NOCLNT_ATTACH Messages
ACMSMGR can display the following message:

%ACMSMGMT-W-NOCLNT_ATTACH, Cannot create client for node NODE\NOCLNT_ATTACH

This message usually is followed by these messages:

%ACMSMGMT-E-NOCLIENTS, No clients created, cannot continue
%ACMSMGMT-E-FAIL, Operation failed

These messages usually are returned when the Remote Manager is not running
on the target node. Possible reasons for this include:

• The Remote Manager is not started.

Solution: Start the Remote Manager as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP

• The Remote Manager is not fully initialized. Complete initialization of the
Remote Manager may take several seconds.

Solution: Wait several seconds and then reissue the command that resulted
in this error.

• The node name is incorrect.

Solution: Double-check the spelling of the node name in the /NODE qualifier
or in the ACMS$MGMT_SERVER_NODE logical.

2.5.3.2 ACMSMGR Hangs
ACMSMGR hangs are generally the result of a problem with the Portmapper or
the Remote Manager. To verify that the Remote Manager has connected to the
Portmapper, issue the following commands on the node on which the Remote
Manager is running:

$ TCPIP
TCPIP> SHOW PORTMAPPER

If the Remote Manager has connected, you will see a display similar to the
following:

Program Number Version Protocol Port-number Process Service-name
---------------------- ------- -------- ----------- -------- ------------
000186A0 (100000) 2 TCP 111 20407E5E PORTMAPPER
000186A0 (100000) 2 UDP 111 20407E5E PORTMAPPER
20000099 (536871065) 1 UDP 1023 20408675
20000099 (536871065) 1 TCP 1023 20408675

Getting Started with the ACMS Remote Manager 2–23

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

If the bottom two lines are missing (program number 20000099, version 1), then
the Remote Manager is not connected to the Portmapper. Either the Remote
Manager is not started or has terminated, or the RPC interface is not enabled.

If no lines are displayed (that is, if a ‘‘record not found’’ message is displayed), the
Portmapper is not started. Refer to Section 2.2 for more information.

Solution: Correct the problem with the Remote Manager or the Portmapper.

2–24 Getting Started with the ACMS Remote Manager

3
Using the ACMS Remote Manager Web Agent

This chapter describes how to prepare and run the ACMS Remote Manager web
agent.

3.1 Overview of the Remote Manager Web Agent
With the Remote Manager web agent, system managers can use their web
browser to monitor and tune remote ACMS systems. The ACMS for OpenVMS
Alpha Development and Run-time kits include the Remote Manager Hyper-
Media Management Object (HMMO), which is integrated into the HP web-based
enterprise management (WBEM) environment. Known as the Remote Manager
web agent, this object functions as a Remote Manager client through the ONC
RPC interface.

Note

ACMS HMMO will work only with Insight Management Agents using
the ELM HTTP/HTTPS server. It will not work with versions of Insight
Management Agent using the System Management Homepage as the
HTTP/HTTPS server.

The Remote Manager web agent environment consists of the following host
systems:

• Web client – One or more local systems running a web browser that
supports Java plug-ins, JavaScript, and Cascading Style Sheets (CSS).

• Web server – An OpenVMS Alpha system where the web agent
(ACMS$MGMT_HMMO) and WBEM management server (WBEM$SERVER)
processes are running. This system serves the ACMS Remote Management
web page and handles all communication between the web client and Remote
Manager server systems.

• Remote Manager server – One or more OpenVMS Alpha or I64 systems
where Remote Manager server processes (ACMS$MGMT_SVR) are running.
The ACMS information displayed on the web agent home page is a result of
executing ACMSMGR commands on the Remote Manager servers.

As shown in Figure 1–1, the Remote Manager web agent (ACMS$MGMT_HMMO)
relies on the WBEM management server (WBEM$SERVER) to relay data to and
from the web browser. The web agent uses its internal web server to connect
to the ACMS Remote Management page. All command input is then relayed to
Remote Manager server through the HMMO.

Using the ACMS Remote Manager Web Agent 3–1

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

3.2 Remote Manager Web Agent Setup
Before you begin, you must have already installed OpenVMS Alpha Version 8.2
on the web server system. Also, ensure that all web client systems are running
one of the currently supported web browsers. See the HP ACMS for OpenVMS
Software Product Description (SPD 25.50.xx) for a list of the currently supported
web browsers.

Once the OpenVMS Alpha software is installed, perform the following steps to set
up the Remote Manager web agent on the web server system:

1. Install the Remote Manager web agent software (Section 3.2.1)

2. Install the HP Management Agents for OpenVMS software (Section 3.2.2)

3. Assign additional rights identifiers (Section 3.2.3)

4. Start the web agent (Section 3.2.4)

5. Enable access to Remote Manager hosts (Section 3.2.5)

3.2.1 Install the Remote Manager Web Agent Software
The Remote Manager web agent software is bundled with the ACMS for
OpenVMS Alpha Run-time and Development kits. To install the web agent
software, choose to install the WBEM-related files component of either kit.

This section contains excerpts from an ACMS Development kit installation.
Refer to the HP ACMS Version 5.0 for OpenVMS Installation Guide for detailed
information about the entire ACMS installation procedure.

1. Run the HP ACMS for OpenVMS Alpha 5.0 installation procedure for either
the ACMS Run-time or Development kit, in as described in Section 3.2.1 of
the HP ACMS Version 5.0 for OpenVMS Installation Guide. For example:

$ @SYS$UPDATE:VMSINSTAL ACMSDEVA_050 MTA0: OPTIONS N,AWD=DISK1
OpenVMS AXP Software Product Installation Procedure V8.2

It is 22-JUN-2001 at 11:00.

Enter a question mark (?) at any time for help.

2. A series of product-specific questions are displayed that prompt you to
choose the appropriate installation options. Answer the following prompts
accordingly:

* Do you want the full ACMS installation [NO]? N
* Do you want to install the ACMS component software [YES]? N
* Do you want to install the WBEM-related files for ACMS [YES]? Y
* Do you want to update the LSE environment for ACMS [YES]? N

The installation procedure then checks for prerequisite software and adequate
disk space and lists a summary of the components to be installed, as follows:

CHECKING INSTALLATION PREREQUISITES

(required and optional software checked)

(product licenses checked)

(disk space checked)

ACMS PREVIOUS INSTALLATION

(previous installation of ACMS is compatible with current installation)

3–2 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

ACMS WBEM CHECK

SUMMARY OF THIS ACMS INSTALLATION

The following steps will be taken to complete this installation:

o WBEM environment will be updated for ACMS

The rest of the installation will take approximately 7 minutes.

Note that this time is heavily dependent your system load, hardware
and kit media. The time mentioned was measured on a stand-alone

DEC 3000 (Alpha) system with a disk-resident kit. Your time may vary.

3. When prompted to continue the installation, answer YES. The procedure
enters the ACMS WBEM Setup phase.

4. The WBEM setup procedure (SYS$STARTUP:ACMS$WBEM_SETUP.COM)
is then invoked, which creates or updates the ACMS$WBEM account and
creates the necessary directories and web agent files.

Do one of the following:

• If the account does not exist, you are prompted to supply a UIC and
password for the account, as follows:

The ACMS$WBEM account used to execute ACMSMGR WBEM commands is not available.
You must supply a UIC and password for this account so that it can be created.
Please enter the UIC for the ACMS$WBEM account, in the form [ggggg,nnnnnn]
UIC: [320,525]

Please enter a password of at least 8 characters, using only
the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_
Password:
Verification:

Enter the appropriate UIC and password. The ACMS$WBEM account is
then created and assigned the ACMS$MGMT_READ rights identifier.

• If the account already exists, a list of the rights identifiers currently
assigned to the account are displayed, as follows:

**
* ACMS WBEM Setup *
**

Checking for user account ACMS$WBEM

Identifier for ACMS$MGMT_READ exists in RIGHTSLIST

Identifier for ACMS$MGMT_WRITE exists in RIGHTSLIST

Identifier for ACMS$MGMT_OPER exists in RIGHTSLIST

Identifier for ACMS$MGMT_SYSUPD exists in RIGHTSLIST

The account ACMS$WBEM exists.

The identifiers on the account ACMS$WBEM are

Identifier Value Attributes
ACMS$MGMT_READ %X8001012E
ACMS$MGMT_WRITE %X8001012F
ACMS$MGMT_OPER %X80010130
ACMS$MGMT_SYSUPD %X800101DB

Do you wish to reset the account ACMS$WBEM to the default values [N] ? y

You can choose to reset the identifiers at this time by answering YES.

Using the ACMS Remote Manager Web Agent 3–3

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

The setup procedure then completes by creating the following directories and
files on the web server system:

The ACMS WBEM setup has completed.

The following files were copied:

To SYS$SYSROOT:[WBEM]
ACMS$MGMT_HMMO.EXE
RUN_ACMS_HMMO.COM
STOP_ACMS_HMMO.COM

To SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.ENG]
ACMS.CSS
ACMSHMMO.JS
ACMSMENUTREE.JAR
ACMS_BANNER.HTML
ACMS_INDEX.HTML
ACMS_MENU.HTML
ACMS_OUTPUT.HTML

To SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.IMAGES]
ACMSHMMO.GIF
HPLOGO.GIF
WEBBUM.GIF

To SYS$COMMON:[SYSLIB]
ACMS$TRACE_SHR.EXE

You may wish to purge these directories.

Once the ACMS installation is complete, download and install the HP
Management Agent for OpenVMS software, as described in Section 3.2.2.

3.2.2 Install the HP Management Agents for OpenVMS Software
If you have not already installed the HP Management Agents for OpenVMS
software, do so now. You can download this software from the web page listed in
Section 3.1.

Follow the associated instructions to copy, unpack, and install the appropriate HP
Management Agents for OpenVMS PCSI kit. Once the software is installed, issue
the following command to start the management agent process:

$ SET DEFAULT SYS$SPECIFIC:[WBEM]
$ @WBEM$RUN_WEBSERVER.COM

Note that the WBEM server (WBEM$SERVER) is the only process started by
this procedure. None of the other Management Information Base (MIB) processes
included in the WBEM kit (such as, WBEM$CPQHOST) are used by the Remote
Manager agent. If you plan to use software on this system that relies on the MIB
processes, run the WBEM$STARTUP.COM procedure, as described in the WBEM
installation material.

3.2.3 Assign Additional Rights Identifiers
The installation procedure automatically grants the ACMS$MGMT_READ rights
identifier to the ACMS$WBEM account when it is created. This enables all
SHOW commands to be executed from the web agent. In order to enable all
other non-read operations (such as SAVE, SET, START, STOP, RESET, ADD,
and DELETE), grant one or more of the following rights identifiers to the
ACMS$WBEM account:

• ACMS$MGMT_WRITE

• ACMS$MGMT_OPER

3–4 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

• ACMS$MGMT_SYSUPD

See Section 4.4.2 for more information on the use of rights identifiers.

3.2.4 Start the Remote Manager Web Agent Process
Enter the following command to start the Remote Manager web agent process:

$ SUBMIT/NOTIFY/LOG=SYS$SYSROOT:[WBEM]/QUEUE=queue-name -
_$ /USER=ACMS$WBEM SYS$SPECIFIC:[WBEM]RUN_ACMS_HMMO.COM

where queue-name is a valid OpenVMS batch queue. If the process is already
running, this command restarts the process.

3.2.5 Enable Access to Remote Manager Hosts
In order for the Remote Manager web agent to access a Remote Manager server
system, the logical ACMS$MGMT_ALLOW_PROXY_ACCESS on the host system
must be set to a value of 1, which enables proxy access.

Also, an ACMS proxy entry for the ACMS$WBEM account is required. For
example, the following proxy entry grants the user ACMS$WBEM access to the
local host from any known system:

$ MCR ACMSUDU

UDU>SHOW /PROXY *::ACMS$WBEM
Remote User: *::ACMS$WBEM Local User: ACMS$WBEM

The rights identifiers on the local ACMS$WBEM account control the level of
access allowed on the host system.

Note

Even if the Remote Manager is running on the same node as the web
agent, it is still considered a remote host and the requirements above still
apply.

3.2.6 Stop the Remote Manager Web Agent
Use the following command to stop the web agent process:

$ @SYS$SPECIFIC:[WBEM]STOP_ACMS_HMMO.COM

If you also want to stop the WBEM server process, enter the following command:

$ @SYS$SPECIFIC:[WBEM]WBEM$STOP_WEBSERVER.COM

3.3 Using the Remote Manager Web Agent
The following sections describe how to access and use the Remote Manager web
agent interface.

3.3.1 Accessing the ACMS Remote Management Web Page
From a browser on the web client system, enter the following URL to connect to
the web server system:

http://server-host:2301/acmshmmo/eng/acms_index.html

where server-host represents the address of the OpenVMS Alpha system on which
the web agent software is running. This address can be expressed in any of the
following forms:

Using the ACMS Remote Manager Web Agent 3–5

Using the ACMS Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent

node (node name)
node.company.com (URL)
165.112.94.78 (IP address)

The ACMS Remote Management page is displayed, similar to Figure 3–1.

Figure 3–1 Remote Manager Web Agent Page

Banner

Command Selection

Output

This page consists of the following frames:

• Banner frame
Displays the application name as well as the name of the web server system.
This frame also contains a link that you can use to send feedback about the
web agent directly to HP.

• Command Selection frame
Displays a tree that contains selections representing the various ACMSMGR
commands. The items in this tree are grouped by common command verbs
(such as, SHOW and SET) or by object (such, as Remote Manager). This
frame also contains a series of links to pertinent HP WBEM and ACMS
information, such as to the HTML version of this guide.

3–6 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent

• Output frame
Displays the results of the selected command. Brief instructions on how to
interact with the data in this frame are displayed along with the related
output and status messages (if any).

3.3.2 Conventions
The web agent uses color and font highlighting to indicate the different states
and types of data displayed in the output frame. The default conventions are
described in Table 3–1. Note, however, that you can change these conventions as
described in the following section.

Table 3–1 Remote Manager Web Agent Conventions

Text appearing
in... Indicates...

White with
teal or blue
background

Active and stored values that can be changed. To set a value, single
click on the item. (Set commands)

Teal italics Dynamic configuration fields. (Show commands)

Gray Inactive data; old process data that is still available will be displayed.
The node name is also prefixed with an asterisk, similar to ACMSMGR
displays. (Show commands)

Red Warning or error messages. (All)

Blue Disabled collection state. Data displayed for the related class may not
be current. (Show commands)

3.3.3 Customizing the Display
The Remote Management web page relies on a cascading style sheet (CSS) to
manage its formatting. Based on the CSS level 2 specification (CSS2) from the
World Wide Web Consortium (W3C), the ACMS.CSS file functions as a template
for information displayed in the output frame.

If you are familiar with CSS files, you can customize the formatting of
information in the output frame by editing the file ACMS.CSS located in
SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.ENG].

For example, to remove the background image in the output frame, open the CSS
file and search for the following statement:

BODY {background-color: white; background-image:
url(/acmshmmo/images/webbum.gif); color: black;}

Replace this statement with the following:

BODY {background-color: white; color: black;}

To learn more about CSS files or the CSS2 specification, visit the W3C web site
for the latest information and resource listings:

http://www.w3.org/Style/CSS

Note

Each browser may interpret style sheet properties differently. Be aware
that slight variations in format may occur depending upon the browser
that you use.

Using the ACMS Remote Manager Web Agent 3–7

Using the ACMS Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent

3.3.4 Selecting the Remote Manager Host
When you first access the ACMS Remote Management web page, the name of the
web server is displayed as the Remote Manager host.

To choose a different Remote Manager host, click the Change button in the
command selection frame. The Select Host popup window is displayed, similar
to Figure 3–2.

Figure 3–2 Select Host

Enter the name of the Remote Manager host, and click OK. Note that if you
enter a URL or IP address, only the short form of the name is displayed in the
command selection frame.

3.4 Issuing Remote Manager Commands
The Remote Manager web agent interface provides detailed usage instructions on
each page displayed within the output frame. Therefore, the following sections
are only intended to provide a brief overview of issuing the most common Remote
Manager commands with the web agent.

The Remote Manager web agent interface provides you with much of the same
capability as ACMSMGR in managing ACMS systems. The main functional
differences are that with the web agent:

• You cannot view TRAP information.

• There is no equivalent to the SHOW LOG/LOCAL and SHOW
ERROR/LOCAL commands.

• You can only connect to one Remote Manager host system per window.

You can quickly reissue any web agent command using the Refresh (or Reload)
option of your browser to reload the page in the output frame. To save frequently
issued commands, bookmark the page in the output frame.

For detailed information about the function of each command, see Chapter 11.

3.4.1 Using Show Commands
To display information about an ACMS entity or object:

1. In the command selection frame, click Show to expand the list of valid
entities and Remote Manager objects.

3–8 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.4 Issuing Remote Manager Commands

2. Click on the appropriate entity (such as, TSC) or object (such as, Process). If
you selected an entity, click on the appropriate type of information to display
(such as, Config), and choose the scope of display (such as, Brief/Stored).

The results of the command are displayed in the output frame, similar to
Figure 3–3. Note that all dynamic data is displayed in italics.

Figure 3–3 Show TSC

3.4.2 Using Set Commands
To change information related to an ACMS entity or Remote Manager object:

1. In the command selection frame, click Set to expand the list of valid entities
and Remote Manager objects.

2. Click on the appropriate entity (such as, ACC) or object (such as, Remote
Manager > Collection). If you selected an entity, click on the appropriate
type of information you want to change (such as, ACMSGEN).

The available values are displayed in the output frame, similar to Figure 3–4.
Note that any active and stored data that can be changed is displayed reverse
highlight.

Using the ACMS Remote Manager Web Agent 3–9

Using the ACMS Remote Manager Web Agent
3.4 Issuing Remote Manager Commands

Figure 3–4 Set ACC

3. Move the cursor over the value you want to change until the link cursor
appears, and then click on the value. A popup window is displayed prompting
you for a new value.

4. Enter the new value in the popup window, and click OK.

Note that you can update the values displayed in the output frame at any time
by clicking the Refresh button.

3.4.3 Using Start and Stop Commands
To start or stop an ACMS object, such as an application (EXC):

1. In the command selection frame, click Start or Stop to expand the list of
objects.

2. Click on the appropriate object (such as, Remote Manager > Collection).

Except for System, the command is executed as soon as it is selected. If you
chose Start or Stop System, additional choices are displayed in the output
frame.

3. Click on the appropriate check boxes to set or unset one or more values, and
click the Start SYSTEM or Stop SYSTEM button.

3–10 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.4 Issuing Remote Manager Commands

3.4.4 Using Add and Delete Commands
To add or delete a Remote Manager object, such as an error filter:

1. In the command selection frame, click on the appropriate entry, either Error
Management or Remote Manager.

2. Click on the subentries until you reach the item you want to add or delete
(such as, Add Filter).

A form with related parameter information is displayed, similar to
Figure 3–5.

Figure 3–5 Add Error Filter

3. Complete form and click Add or Delete.

Using the ACMS Remote Manager Web Agent 3–11

Using the ACMS Remote Manager Web Agent
3.5 Troubleshooting the Remote Manager Web Agent

3.5 Troubleshooting the Remote Manager Web Agent

• WBEM Home Page does not display the ACMS Icon

ACMS HMMO is not registered with the WBEM$SERVER process. After
starting the WBEM server with the following command:

$ @SYS$SPECIFIC:[WBEM]WBEM$RUN_WEBSERVER.COM

You may need to delay starting the ACMS HMMO until the
WBEM$SERVER process is in the HIB state. If the ACMS HMMO is
started too soon it may not register with the WBEM$SERVER. The
SYS$SPECIFIC:[WBEM]WBEM$RUN_WEBSERVER.COM must be run
prior to running SYS$SPECIFIC:[WBEM]RUN_ACMS_HMMO.COM.

• WBEM Home Page does not display

If you access the WBEM Home Page at http://host_name:2301/, and the page
does not display, it may be that the WBEM$SERVER is not started. Another
possibility is that the ACMS$MGMT_HMMO process was started prior to the
WBEM$SERVER process. To ensure proper startup, stop both processes and
then restart them in the correct order.

• Remote Manager web page displays, but remote commands fail.

This indicates that the Remote Manager web agent cannot connect to the
specified Remote Manager server host. If all commands fail, ensure that
the Remote Manager server process is running on the host system and that
access to it has been properly setup (as described in Section 3.2.5. If some
commands work and others fail, the ACMS$WBEM account may not have the
required rights identifier; see Section 3.2.3.

• Page Refresh or Reload does not update the output frame.

This behavior is browser dependent. To refresh the information displayed in
the output frame, move the cursor inside the frame to specifically refresh or
reload the information within it.

3.5.1 Reporting Problems
If the ACMS$MGMT_HMMO process crashes, the following files will contain any
error information that was available: SYS$SPECIFIC:[WBEM]ACMS$MGMT_
HMMO.LOG;* SYS$SPECIFIC:[WBEM]ACMS$MGMT_HMMO.ERR;*.

If there are any new dump files you may want to examine the file to locate the
problem source. SYS$SPECIFIC:[WBEM]*.DMP;*

If the problem is with WBEM$SERVER process, send the dump file to your
HP support representative. If the problem is with the ACMS HMMO process,
please have the following files ready for analysis in addition to a procedure that
reproduces the situation:

SYS$SPECIFIC:[WBEM]ACMS$MGMT_HMMO.LOG;*
SYS$SPECIFIC:[WBEM]ACMS$MGMT_HMMO.ERR;*
SYS$SPECIFIC:[WBEM]*.html;*
SYS$SPECIFIC:[WBEM]*.txt;*
SYS$SPECIFIC:[WBEM]SYS$OUTPUT.*;
SYS$SPECIFIC:[WBEM]*.DMP;*

3–12 Using the ACMS Remote Manager Web Agent

4
Managing the Remote Manager

This chapter describes how to manage the ACMS Remote Manager.

4.1 Overview
The ACMS Remote Manager runs on the same node as the ACMS run-time
system but runs independently of it. The Remote Manager may be started and
stopped at any time without affecting the ACMS run-time system. Similarly,
the ACMS system can be started and stopped at any time without affecting the
Remote Manager process. Remote management can be performed only on nodes
where the Remote Manager has been started.

ACMS system managers configure the Remote Manager process (for example,
which interfaces are enabled, what alarms to send) using a combination of
the ACMSCFG utility (which provides initial configuration settings at process
startup) and the ACMSMGR utility (to change settings once the process has
started). Management consoles that support SNMP can also be used to configure
and manage the Remote Manager.

Before the Remote Manager process can communicate with external entities,
either SNMP or RPC must be configured and running on the appropriate nodes.
See the HP ACMS Version 5.0 for OpenVMS Installation Guide for information
about configuring and starting SNMP and RPC.

4.2 Configuring Remote Manager Startup
Before the Remote Manager is started, the configuration file should contain the
appropriate settings. Both the ACMS run-time system and the Remote Manager
read the configuration file during startup. If the ACMS Central Controller (ACC)
process cannot read the configuration file when starting up, it uses default values.
If the Remote Manager cannot read the configuration file when starting up, it
logs an error and exits.

By default, the configuration file is stored in SYS$SPECIFIC:ACMS$MGMT_
CONFIG.ACM. This location can be changed using the systemwide logical
ACMS$MGMT_CONFIG. Use the ACMSCFG utility to change values in this file.
The ACMSCFG utility allows ACMS system managers to set:

• The interfaces to be started

• Data collection and snapshot options

• Remote Manager run-time parameters

• SNMP traps

Managing the Remote Manager 4–1

Managing the Remote Manager
4.2 Configuring Remote Manager Startup

The configuration file is created during postinstallation with a set of default
values. ACMS system managers should review these settings prior to starting
the Remote Manager to determine whether the settings are appropriate for the
node on which the process will run. Use the ACMSCFG SHOW commands as
follows to display the settings:

$ ACMSCFG SHOW INTERFACE
$ ACMSCFG SHOW COLLECTION
$ ACMSCFG SHOW PARAMETER
$ ACMSCFG SHOW TRAP

Note

Changes made to the ACMSCFG file are not automatically reflected in
the running system. The ACMSCFG file is read during Remote Manager
and ACMS system startup only. The Remote Manager process must
be restarted in order for configuration file changes to the Parameter,
Interface, and Trap tables to become active. The ACMS run-time system
must be restarted in order for configuration file changes to the Collection
table to become active. After the Remote Manager process has been
started, you can use the ACMSMGR utility to make dynamic changes to
the active system.

4.2.1 How to Run the ACMSCFG Utility
The ACMSCFG utility is a DCL command line tool that is invoked using a foreign
command. The ACMSCFG utility accepts a number of command line arguments
that determine what operations it should perform. The basic syntax for running
the ACMSCFG utility is as follows:

ACMSCFG verb object qualifier

For example, to display the current data collection settings, you would use the
following command:

$ ACMSCFG SHOW COLLECTION

You can get help on the available ACMSCFG commands and their syntax using
the following command:

$ ACMSCFG HELP

You can define your own foreign command by using the following DCL command:

$ MYCOMMAND :== SYSSYSTEM:ACMS$MGMT_CONFIG_CMD

If you do this, you would substitute MYCOMMAND for ACMSCFG in the
preceding examples.

When the ACMSCFG utility is started, it attempts to locate the ACMS$MGMT_
CONFIG.ACM file by translating the logical name ACMS$MGMT_CONFIG. If
that attempt fails, it looks in the default location, SYS$SYSTEM:ACMS$MGMT_
CONFIG. If that lookup fails, ACMSCFG asks the user whether to create a new
file. New files are created with default values in the directory that the logical
name ACMS$MGMT_CONFIG translates to. If the logical name is not defined
or does not include a directory specification, the default directory location is the
current directory.

4–2 Managing the Remote Manager

Managing the Remote Manager
4.2 Configuring Remote Manager Startup

4.2.2 Displaying Current Values
Current ACMSCFG values can be displayed using the SHOW command, as
follows:

ACMSCFG SHOW object

Valid SHOW objects are:

• Collection

• Control

• Interface

• Parameter

• Trap

The values for each object type correspond directly to fields in management
configuration tables. These tables are discussed in Chapter 9.

The following is an example SHOW command and its output:

SPARKS> ACMSCFG SHOW COLLECTION

Entity Collect Collect Storage Storage
Type Entity Name Class State Storage Location State Interval
------- ------------- ------- --------- ------------------ -------- ---------
* * id enabled acms$mgmt_snapshot enabled 3600
* * config enabled acms$mgmt_snapshot disabled 3600
* * error enabled acms$mgmt_snapshot disabled 300

4.2.3 Changing Values
ACMSCFG values can be changed using one of three verbs:

• ADD

The ADD verb is used to add rows for the following objects:

Collection

Trap

Example:

$ ACMSCFG ADD COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME

• DELETE

The DELETE verb is used to delete rows for the following objects:

Collection

Trap

Example:

$ ACMSCFG DELETE COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME

• SET

The SET verb is used to add rows for the following objects:

Collection

Interface

Managing the Remote Manager 4–3

Managing the Remote Manager
4.2 Configuring Remote Manager Startup

Parameter

Trap

Example:

$ ACMSCFG SET COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME/COLL_STATE=ENABLED

Each object has unique qualifiers that determine which values are to change.
Qualifiers are either mandatory or optional. Mandatory qualifiers have no
default and must be specified by the user. Optional qualifiers have default
values and do not have to be specified. See Chapter 10 for a complete description
of the syntax for each command and the qualifiers they support.

4.3 Starting and Stopping the Remote Manager
The following information discusses starting and stopping the ACMS Remote
Manager.

4.3.1 Remote Manager Startup
The Remote Manager is started as a detached process using the command
procedure SYS$STARTUP:ACMS$MGMT_STARTUP, as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP

You should run this file from the SYSTEM account during system startup. You
can run the file either before or after the ACMS run-time system has been
started. Alternatively, you can run it at any time from a privileged account.

During process startup, the Remote Manager reads the ACMSCFG file (located
in SYS$SYSTEM:ACMS$MGMT_CONFIG.ACM or wherever the ACMS$MGMT_
CONFIG logical points). If the file cannot be found and opened, the Remote
Manager will not start.

The Remote Manager writes errors to the ACMS$MGMT_LOG file. This is a
binary file that can be displayed using the ACMSMGR utility, as follows:

$ ACMSMGR SHOW LOG

The ACMSMGR utility generally performs operations on remote nodes. If the
Remote Manager fails to start, it will not be accessible remotely. You will need to
log in to the node on which it failed to start, and issue the following command:

$ ACMSMGR SHOW LOG/LOCAL

This command instructs the ACMSMGR utility to read the log file directly,
bypassing the Remote Manager. See Chapter 11 for a complete description of the
ACMSMGR utility, commands, and command syntax.

In addition to writing messages to the ACMS$MGMT_LOG file, the Remote
Manager writes messages to SYS$OUTPUT if it cannot access the log file.
You can have all messages written to SYS$OUTPUT by invoking the startup
procedure with the LOG_TO_SYSOUT parameter, as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP LOG_TO_SYSOUT

The ACMS$MGMT_STARTUP procedure redirects SYS$OUTPUT for the Remote
Manager to a file called ACMS$MGMT_SERVER.OUT in the SYS$ERRORLOG
directory.

4–4 Managing the Remote Manager

Managing the Remote Manager
4.3 Starting and Stopping the Remote Manager

4.3.2 Remote Manager Shutdown
The Remote Manager is stopped using the ACMSMGR STOP MANAGER
command, which has the following syntax:

ACMSMGR STOP MANAGER /NODE=node-name

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE logical
is defined. If the /NODE qualifier is provided, it overrides the ACMS$MGMT_
SERVER_NODE logical.

The Remote Manager can be stopped independently of the ACMS run-time
system. Stopping the Remote Manager has no effect on the running ACMS
system. Note, however, that simply stopping the Remote Manager does not
stop any active data collections. Data collections can be stopped only by using
ACMSMGR commands or from an SNMP management console that has access to
the Remote Manager.

Note also that prior to issuing this command, the user must either have logged
in to the Remote Manager, or the user must have a valid proxy (and proxy access
must have been enabled). Regardless of how access is gained, the user must hold
the ACMS$MGMT_OPER rights identifier on the node the Remote Manager is
running in order to stop it. See Section 4.4 for a description of how to log in to
the Remote Manager.

The ACMSMGR STOP MANAGER command executes asynchronously of the
actual shutdown. That is, the command will complete (control will return to the
user) before the shutdown has completed.

If the Remote Manager fails to shut down, it can be stopped by using the DCL
command STOP/ID, which has the following syntax:

STOP/ID=pid

Determine the PID of the Remote Manager using the DCL command SHOW
SYSTEM, and then look for the process named ACMS$MGMT_SVR.

4.4 Logging In to the Remote Manager
The Remote Manager requires that each client is authenticated and that each
access attempt is authorized.

4.4.1 Authentication
Authentication can be performed in one of two ways: either through an explicit
login (using a valid OpenVMS user name and password) or through a valid ACMS
proxy account.

The exception to this rule is SNMP access, which is controlled by the presence
of the ACMS$SNMP account in the local rights database. Authentication for
external entities that communicate with the Remote Manager through the
SNMP protocol is allowed only when a valid OpenVMS account exists for
the user ACMS$SNMP. If this account exists and has the appropriate rights
identifier, the user ACMS$SNMP is considered to be an authenticated SNMP
user. Authorization for SNMP users is treated the same as for any other user
— by OpenVMS rights identifier. See Section 4.4.2 for more information about
authorization.

All access for an interface can be disabled by disabling the interface itself, either
through the ACMSCFG utility prior to management startup, or through the
ACMSMGR utility after Remote Manager startup.

Managing the Remote Manager 4–5

Managing the Remote Manager
4.4 Logging In to the Remote Manager

The total number of users that can be simultaneously logged in to the Remote
Manager (regardless of authentication mechanism) is controlled by the Remote
Manager parameter MAX_LOGINS, which can be modified by the Remote
Manager. (This parameter is not the same as the MAX_LOGINS ACMS system
parameter in ACMSGEN.) When the number of users currently logged in is
equal to the value of this parameter, new logins are rejected until some users
have logged out, or until their credentials have expired. You can set the initial
value of MAX_LOGINS with the ACMSCFG utility. You can change the value of
MAX_LOGINS dynamically (but nondurably) with the ACMSMGR utility.

Attempts to log in to the Remote Manager are recorded in the Remote Manager
log file if the SECURITY_AUDIT_LEVEL parameter is set for informational
level logging (any odd value, up to and including F). By default, informational
messages are not logged. See Section 4.7.1 for more information.

Use the SHOW USER command of the ACMSMGR utility to display a list of
users currently logged in to the Remote Manager:

$ ACMSMGR SHOW USER

Note

You must be authenticated in order to issue the SHOW USER command.

4.4.1.1 Logging In
Login is performed using the ACMSMGR LOGIN command, which has the
following syntax:

ACMSMGR LOGIN /USER=user-name /PASSWORD=password /NODE=node-name

The /USER qualifier can be omitted if the ACMS$MGMT_USER logical is defined.
If the qualifier is provided, it overrides the ACMS$MGMT_USER logical. If
neither the logical nor the qualifier is present, the ACMSMGR utility prompts the
user for the user name.

If the /PASSWORD qualifier is not present, the ACMSMGR utility prompts the
user for the password. There is no logical name for the password.

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE
logical is defined. If it is provided, it overrides the ACMS$MGMT_SERVER_
NODE logical. If neither the qualifier nor the logical name is provided, no login
is attempted.

For each node to which a user logs in, a credentials file is created, either
in the current directory or in the directory pointed to by the logical name
ACMS$MGMT_CREDS_DIR. The credentials file contains encrypted security
information (password is not stored in the file) and can be used by subsequent
executions of the ACMSMGR utility. Credentials are specific to the process that
created them and cannot be used by other processes. Prior to creating a new
credentials file, any old credential files for the process are deleted.

Once a user has logged in to the Remote Manager, the user’s credentials are valid
for the duration of the credentials lifetime period, as specified by the parameter
LOGIN_CREDS_LIFETIME. You can set the initial value of LOGIN_CREDS_
LIFETIME with the ACMSCFG utility. You can change the value of LOGIN_
CREDS_LIFETIME dynamically (but nondurably) with the ACMSMGR utility.

Once a user’s credentials have expired, the user must log in to the server again.

4–6 Managing the Remote Manager

Managing the Remote Manager
4.4 Logging In to the Remote Manager

4.4.1.2 Proxy Accounts
Proxy access to the management server is supported if the logical name
ACMS$MGMT_ALLOW_PROXY_ACCESS is defined on the Remote Manager
node. The valid values for this logical name are: 1, T, t, Y, y, TRUE, and true. If
the name is defined to be any other value or if the logical name is not defined,
proxy access is disabled.

When proxy access is allowed, users do not need to explicitly log in to the Remote
Manager with a user name and password, and no credentials file is created. See
Section 4.4.1.1 for a description of how to log in with user name and password.

In order for a user to be granted proxy access, there must be an entry in the
ACMSPROXY.DAT for the combination of node and user attempting access. See
HP ACMS for OpenVMS Managing Applications for more information. The first
time a user attempts to access a management function without having first logged
in using user name and password, the Remote Manager looks for a valid ACMS
proxy. If one is found, the OpenVMS account specified by the proxy is used for
authorization.

The Remote Manager maintains a cache of users who have been logged in by
proxy. Records remain in the cache for the duration of the proxy credentials’
lifetime, as specified by the PROXY_CREDS_LIFETIME parameter. You can set
the initial value of PROXY_CREDS_LIFETIME with the ACMSCFG utility.
You can change the value of PROXY_CREDS_LIFETIME dynamically (but
nondurably) with the ACMSMGR utility. Proxy credentials are automatically
refreshed when they expire.

4.4.2 Authorization
Authorization consists of ensuring that the user attempting access holds the
appropriate rights identifier on the node they are attempting to access. There are
four levels of access, each with its own identifier, as described in the following
sections.

4.4.2.1 Read Access (ACMS$MGMT_READ)
Read access allows users to perform the following functions:

• Log in

• Log out

• Issue all SHOW commands

4.4.2.2 Operate Access (ACMS$MGMT_OPER)
Operate access allows users to issue the following commands:

• REPLACE SERVER

• SET ACC, CP, EXC, QTI, SERVER, TSC

• START EXC, QTI, SYSTEM, TERMINALS, TRACE_MONITOR

• STOP EXC, MANAGER, QTI, SYSTEM, TERMINALS, TRACE_MONITOR

Managing the Remote Manager 4–7

Managing the Remote Manager
4.4 Logging In to the Remote Manager

4.4.2.3 Write Access (ACMS$MGMT_WRITE)
Write access allows users to issue the following commands:

• ADD COLLECTION, FILTER

• ADD TRAP

• DELETE COLLECTION, FILTER, TRAP

• RESET ERROR, LOG

• SAVE FILTER

• SET COLLECTION, INTERFACE, PARAMETER, TRAP

4.4.2.4 Update Access (ACMS$MGMT_SYSUPD)
Needed in addition to operate access, update access allows users to update specific
OpenVMS system parameters by issuing the following command:

• SET ACC /system-parameter
where system-parameter is CHANNELCNT, GBLPAGES, GBLPAGFIL, or
GBLSECTIONS.

4.5 Starting and Stopping Interfaces
You can control which interfaces are started or stopped by using either the
ACMSCFG utility prior to Remote Manager startup or the ACMSMGR utility
after Remote Manager startup. The Remote Manager supports two interfaces:

• RPC

The RPC interface is used by the ACMSMGR utility, Remote Manager web
agent, and also by any user-written programs based on the Remote Manager
API. Most users will enable the RPC interface.

• SNMP

The SNMP interface is used by third-party system management packages to
access ACMS management information. If no SNMP enabled packages are
being used, this interface can be safely disabled.

Note

Either the RPC or SNMP interface should always be enabled. If both are
disabled, there is no way to communicate with the Remote Manager.

For a more complete discussion of the available interfaces and their attributes,
see Section 9.8.

4.5.1 Using ACMSCFG to Enable or Disable Interfaces
Use the ACMSCFG utility to configure which interfaces should be enabled or
disabled when the Remote Manager starts up.

Use the ACMSCFG SET INTERFACE command to enable or disable an interface.
This command has the following syntax:

ACMSCFG SET INTERFACE /INTERFACE=interface-name /STATE=state

In this format:

• interface-name is one of the supported interfaces (SNMP or RPC).

4–8 Managing the Remote Manager

Managing the Remote Manager
4.5 Starting and Stopping Interfaces

• state is one of the following states: ENABLED or DISABLED.

Use the ACMSCFG SHOW INTERFACE command to determine the state of an
interface in the configuration file:

$ ACMSCFG SHOW INTERFACE

4.5.2 Using ACMSMGR to Start or Stop Interfaces
Use the ACMSMGR utility to dynamically enable or disable an interface after the
Remote Manager has already been started. Changes made with the ACMSMGR
interface are not stored in the ACMSCFG file and are lost when the Remote
Manager is stopped. Use the ACMSCFG utility to save changes to the ACMSCFG
file.

An interface cannot disable itself. Since the ACMSMGR utility uses the RPC
interface, it cannot be used to disable the RPC interface. To disable the RPC
interface, either use the ACMSCFG utility and restart the Remote Manager, or
use the SNMP interface.

Use the ACMSMGR SET INTERFACE command to disable the SNMP interface.
The command has the following syntax:

ACMSMGR SET INTERFACE /INTERFACE=interface-name /STATE=state

In this format:

• interface-name must be SNMP.

• state is one of the following states: ENABLED or DISABLED.

Use the ACMSMGR SHOW INTERFACE command to determine the state of an
interface:

$ ACMSMGR SHOW INTERFACE

4.6 Modifying Management Parameters
There are a large number of ACMS and OpenVMS system parameters that affect
the internal processing of the ACMS Remote Manager. In general, most of these
parameters will not need to be changed. However, you may need to alter some
of these parameters in order to tune the Remote Manager system to make it
operate more efficiently or to meet your computing needs. You can modify these
parameters using both the ACMSCFG and the ACMSMGR utilities.

For a more complete discussion of the available management parameters and
their functions, see Section 9.10.

4.6.1 Using ACMSCFG to Modify Management Parameters
Use the ACMSCFG utility to set the values of management parameters when the
Remote Manager starts up.

Use the ACMSCFG SET PARAMETER command to modify the value of a
parameter. The command has the following syntax:

ACMSCFG SET PARAMETER /parameter-name=value

In this format:

• parameter-name is one of the management parameters listed in Section 9.10.

• value is the new value for the parameter.

Managing the Remote Manager 4–9

Managing the Remote Manager
4.6 Modifying Management Parameters

Use the ACMSCFG SHOW PARAMETER command to determine the current
value of the parameter in the configuration file:

$ ACMSCFG SHOW PARAMETER

4.6.2 Using ACMSMGR to Modify Management Parameters
Use the ACMSMGR utility to dynamically modify a management parameter
after the Remote Manager has already been started. Not all parameters can be
modified dynamically. Also, changes made with the ACMSMGR interface are not
stored in the ACMSCFG file and are lost when the Remote Manager is stopped.

Use the ACMSMGR SET PARAMETER command to modify the value of a
parameter. The command has the following syntax:

ACMSMGR SET PARAMETER /parameter-name=value

In this format:

• parameter-name is one of the dynamic management parameters listed in
Section 9.10.

• value is the new value for the parameter.

Use the ACMSMGR SHOW PARAMETER command to determine the current
value of the parameter in the configuration file:

$ ACMSMGR SHOW PARAMETER

4.7 Managing the Remote Manager Log File
The ACMS Remote Manager maintains a Remote Manager log that contains
status messages about all Remote Manager transactions. The audit log is stored
in a location determined by the logical name ACMS$MGMT_LOG. If this logical
is not defined, the default location is in the default directory for the account
under which the Remote Manager process runs.

Depending on the audit tracing levels, the size of this file can vary. It is strongly
suggested that ACMS system managers monitor this file to ensure that it does
not grow too large.

If the Remote Manager is unable to write to the log file, it prints a message to
file SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT and terminates. This can
occur if a logical name is defined incorrectly, if the output device is full, or if the
Remote Manager does not have sufficient privilege to write to the file.

4.7.1 Setting Audit Levels
Facilities within the Remote Manager write audit messages based on the
parameter settings, as shown in Table 4–1.

4–10 Managing the Remote Manager

Managing the Remote Manager
4.7 Managing the Remote Manager Log File

Table 4–1 Audit Level Parameters

Parameter Function

DCL_AUDIT_LEVEL Controls auditing for the DCL subprocess (used
internally to modify the ACMS run-time system).

MGR_AUDIT_LEVEL Controls auditing for the main Remote Manager
process.

MSG_PROC_AUDIT_LEVEL Controls auditing for the message processing
thread (used internally to handle communications
from ACMS processes).

PROC_MON_AUDIT_LEVEL Controls auditing for the process monitor.

RPC_AUDIT_LEVEL Controls auditing for the RPC interface.

SECURITY_AUDIT_LEVEL Controls auditing for security access (authorization
and authentication).

SNAP_AUDIT_LEVEL Controls auditing for data snapshot threads.

SNMP_AUDIT_LEVEL Controls auditing for the SNMP interface.

TIMER_AUDIT_LEVEL Controls auditing for the timer thread.

TRAP_AUDIT_LEVEL Controls auditing for the trap thread.

The value of each parameter determines what level of information is stored in the
Remote Manager log. Table 4–2 shows the four levels of auditing and the integer
value for each.

Table 4–2 Auditing Levels and Their Values

Auditing Level Integer Value

Informational 1

Warning 2

Error 4

Fatal 8

Auditing values can be combined by logically ORing the integer values in order to
have multiple levels of auditing in effect for a given facility. Table 4–3 shows the
valid auditing values.

Managing the Remote Manager 4–11

Managing the Remote Manager
4.7 Managing the Remote Manager Log File

Table 4–3 Auditing Level Combinations and Their Values

Auditing Level Value

None 0

Info 1

Warn 2

Info, Warn 3

Error 4

Info, Error 5

Warn, Error 6

Info, Warn, Error 7

Fatal 8

Info, Fatal 9

Warn, Fatal A

Info, Warn, Fatal B

Error, Fatal C

Info, Error, Fatal D

Warn, Error, Fatal E

All F

Parameter settings are stored in the ACMSCFG file and can also be modified
dynamically using the ACMSMGR utility. For example, in order to specify that
all messages and events generated by the security routines should be stored in
the log, use the following command:

$ ACMSCFG SET PARAMETER/SECURITY_AUDIT_LEVEL=F

Alternatively, to dynamically modify an auditing level, use the following
ACMSMGR utility command:

$ ACMSMGR SET PARAMETER/SECURITY_AUDIT_LEVEL=F

4.7.2 Displaying Audit Messages
Use the SHOW LOG command in the ACMSMGR utility to display Remote
Manager audit messages. This command accepts a number of qualifiers, including
a qualifier that identifies the node from which to get audit messages (/NODE) and
a qualifier that specifies the beginning time of messages to display (/SINCE).

The following example shows how to display audit messages from the node
SPARKS:

$ ACMSMGR SHOW LOG/NODE=SPARKS

You can display audit messages from a node other than the current node only if
the Remote Manager is running on the target node. If the Remote Manager is
not running on the target node, you must first log in to the target node, and then
issue the SHOW LOG command using the /LOCAL qualifier.

The following example shows how to display audit messages on the current node
when the Remote Manager process is not running:

$ ACMSMGR SHOW LOG/LOCAL

4–12 Managing the Remote Manager

Managing the Remote Manager
4.7 Managing the Remote Manager Log File

For a complete description of the ACMSMGR commands and qualifiers, see
Chapter 11.

4.7.3 Resetting the Log
Use the ACMSMGR RESET LOG command to close the current Remote Manager
log file and open a new version. You may want to reset the log if it has grown too
large.

The following example shows how to reset the log on node SPARKS:

$ ACMSMGR RESET LOG/NODE=SPARKS

Managing the Remote Manager 4–13

5
Using the Remote Manager to Manage ACMS

This chapter describes how to use the Remote Manager to monitor and manage
ACMS run-time processes.

5.1 Managing Data Collection
Data collection is the mechanism by which ACMS run-time data is made
available to the ACMS Remote Manager and, consequently, to other processes.
Data collections themselves do not involve disk or network read/write operations.
All data collection is performed in memory on the local node. However, system
managers can choose to save collected data at periodic intervals and write that
data to a snapshot file (see Section 5.2).

ACMS system managers control what data is collected by manipulating entries in
the Collection table. In the Collection table, the data to be collected is specified
by a combination of entity, class, and name.

• Entity refers to an ACMS run-time process type, such as ACC, EXC, or CP.

• Class refers to the class of data to be collected (see Section 5.1.1).

• Name refers to a process or application name that uniquely identifies a
particular ACMS run-time process.

Using the combination of entity, class, and name gives ACMS system managers a
great deal of flexibility in configuring the data to be collected.

Data collection can be managed either statically, through the ACMSCFG file, or
dynamically, using one of the supported interfaces. For example, the ACMSMGR
SET COLLECTION command can be used to dynamically enable or disable data
collection on a local or remote node. Similarly, SNMP management tools can
issue SNMP SET commands to dynamically modify entries in the Collection
table. Users can also write their own programs and use the remote procedure
call acmsmgmt_set_collection_1 (see Chapter 8) to dynamically manage data
collection.

In general, management information is not collected unless an ACMS system
manager has specifically enabled it. The exceptions are identification and
configuration information (ID and CONFIG). By default, these two classes of data
are enabled for all ACMS entities. Having these classes enabled by default is
an optimization that imposes little run-time overhead and ensures that process
startup information is available. HP recommends that you leave these classes
enabled.

Using the Remote Manager to Manage ACMS 5–1

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

Data collection for other entities and classes is not enabled by default. When the
ACMS system is started, the ACMS processes read either the configuration file (if
the Remote Manager is not already running) or the Collection table to determine
which classes of data to collect. Thereafter, external processes use the SNMP or
RPC management interfaces to enable or disable data collection for a given entity,
class, and name.

For each entity and class for which collection is enabled, a table of data values
is populated by the appropriate ACMS processes (determined by name) and can
be accessed by external entities using one of the data access interfaces (SNMP or
RPC).

ACMS entities that collect data do so continuously when collection has been
enabled for that entity/class/name combination. With the exception of event
notifications (generated as the result of ACMS process startup or shutdown) and
POOL, ERROR, and snapshot information (which is updated based on timer
intervals), collection data is modified when it changes.

5.1.1 Entities, Classes, Names, and Collections
ACMS system managers control data collection by modifying entries in the
Collection table. The Collection table is keyed to entity, class, and name.

An entity is an ACMS run-time process or object. The valid ACMS entities are:

• ACC

• CP

• EXC

• QTI

• SERVER

• TASK GROUP

• TSC

• * (all)

The asterisk (*) wildcard value is valid and specifies all entities. When specifying
an entity, you are specifying its process type.

A class is a set of run-time data values that entities set. Referring to data by
class is a convenient method of referring to a set of related data values. However,
the actual values contained in a class are entity specific. The following are valid
classes:

• Configuration (CONFIG)

This class is a set of values that can be changed for the process and that
controls some fundamental aspects of the execution. Configuration values
are entity specific. An example of a Configuration class value for ACC is the
maximum number of applications that may be running. An example value for
a Server is the maximum number of instances.

• Identification (ID)

This class is a set of values that do not change for the process as long as it is
running and that help identify the process. Examples of Identification class
values are process name, PID, and version.

5–2 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

• Pool (POOL)

This class is a set of values related to the current or historical MSS or
workspace pool processing for the process. MSS pool values are the same
for all entities except ACC. An example of a Pool class value for ACC is the
current free amount in the MSS shared pool. An example value for other
processes is the current free amount in the MSS process pool.

• Run-time (RUNTIME)

This class is a set of values that reflect either current or historical run-time
processing for the process. Run-time values are also entity specific. An
example of a Run-time class value for ACC is current number of applications.
An example value for an EXC is the current number of executing tasks.

• Error (ERROR)

This class is a set of values pertaining to a specific error reported by a
process. Error values are the same for all entities. An example of an Error
class value is the date and time when an error occurred.

• *

The asterisk is a wildcard value that specifies all classes.

A name specifies one or more specific processes of an entity type. The name
field is entity specific. An example name for EXCs is the application name. An
example name for CPs is process name. The asterisk (*) wildcard value is also
supported and matches all names.

Entity, class, and name are used in combination to determine which processes
will collect which values. Duplicate rows (that is, rows with the same entity,
class, and name) are not allowed, but it is possible to have overlapping entries in
the Collection table if the asterisk wildcard value is used. Consider the example
in Table 5–1.

Table 5–1 Example 1: Collection with Wildcards

Name Entity Class

* ACC *

* ACC Runtime

In respect to typical data collections, the entries in this example overlap but are
not duplicates. This is allowed because the attributes of each collection may be
different.

In respect to data snapshots, the entries in this example would result in separate
snapshot threads if the storage state were enabled for both collections. Each
thread would write ACC run-time information, which may or may not be intended
result. Therefore, users should be cautious when using wildcards to avoid
redundant processing.

When more than one row applies to a data collection, the most specific row will
be used, based on the column precedence of name, then entity, and then class.
Within a particular column, wildcards are the least specific. In Table 5–1, both
rows are equivalent in name and entity, but the second row is more specific in
class. In this case, the values from the first row will be used for all classes except
the Runtime class. The values from the second row will be used for the Runtime
class.

Using the Remote Manager to Manage ACMS 5–3

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

Consider the example in Table 5–2.

Table 5–2 Example 2: Collection with Wildcards

Name Entity Class Collection State

* * Runtime Enabled

* EXC Runtime Disabled

VR_APPL EXC Runtime Enabled

In this example, the first row enables run-time data collection for all entities. The
second row disables it for all EXCs. The third row enables it for the VR_APPL.
As a result, among applications, only the VR_APPL will collect run-time data.

To help identify which row is the most specific and therefore will apply to a given
process, the ACMSMGR command SHOW COLLECTIONS includes a column that
represents the weight of a given row. A row with higher weight overrides a row
with lower weight when they apply to the same class and process. Consider the
following example, which is the same as the example in Table 5–2 but includes
the weights (in the column labelled "Wt") of each row.

Note

Weighting does not apply to data snapshot collections. Data is written for
each row in the Collection table that is eligible for snapshots (with both
storage_state and coll_state ENABLED).

SPARKS> ACMSMGR SHOW COLLECTION

ACMS Remote Management -- Command line utility

ACMS V5.0 Entity/Collection Table Display Time: 19-APR-2001 11:46:36.49

Node Wt Entity Collect Collect Storage Storage
Type Entity Name Class State Storage Location State Interval

------------ -- ------ -------------- ------- -------- ------------------ -------- --------
SPARKS 2 * * runtime enabled acms$mgmt_snapshot enabled 3600
SPARKS 4 exc * runtime disabled acms$mgmt_snapshot disabled 10
SPARKS 8 exc VR_APPL runtime enabled acms$mgmt_snapshot disabled 10

In this example, the last row has the highest weight, and will override the other
two rows for the RUNTIME class for the VR_APPL.

5.1.2 Starting and Stopping Collections
Users start and stop data collections by modifying the collection state (coll_state)
field in the Collection table. The Collection table is accessed through either the
ACMSCFG utility prior to management startup or through the ACMSMGR utility
after Remote Manager startup.

By default, the ACMSCFG file includes entries to enable collection for the
Identification and Configuration classes for all processes. Unless specific action
has been taken to disable these collections, identification and configuration
information is always available for all running processes.

Before a collection can be modified, it must be added to the entity collection table.
By default, if the collection state is not specified when a collection is added, the
collection state is DISABLED. Otherwise, the collection state is whatever was
specified.

5–4 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

When the data collection state is set to ENABLED, the Remote Manager sends
messages to the appropriate ACMS processes (based on the entity and name
fields in the Collection table row) to begin collection for the class. When the data
collection state is set to DISABLED, a similar message is sent to stop collection
for the class. Once collection has started, it continues until the data collection
state is set to DISABLED.

The requesting user must have ACMS$MGMT_WRITE privilege in order to start
or stop a collection.

5.1.2.1 Using ACMSCFG to Start or Stop Collections
Use the ACMSCFG utility to set the state for a collection when the Remote
Manager starts up. Some ACMSCFG commands are described here; for details on
all ACMSCFG commands, see Chapter 10.

Use the ACMSCFG ADD COLLECTION command to create a new collection
record. The command has the following syntax:

ACMSCFG ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Use the ACMSCFG SET COLLECTION command to modify the state of an
existing collection record in the configuration file. The command has the following
syntax:

ACMSCFG SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Use the ACMSCFG DELETE COLLECTION command to delete a collection. The
command has the following syntax:

ACMSCFG DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a
process because collections are disabled by default. The collection state for a
process becomes disabled when no collections remain to specifically enable the
class.

Use the ACMSCFG SHOW COLLECTION command to determine which
collections already exist and their collection states. The command has the
following syntax:

ACMSCFG SHOW COLLECTION

Note

You cannot use the ACMSCFG utility to add, delete, or modify Collection
and Identification class records.

5.1.2.2 Using ACMSMGR to Start or Stop Collections
Use the ACMSMGR utility to dynamically modify the state of a collection after
the Remote Manager has already been started. Note that changes made with the
ACMSMGR interface are not automatically stored in the ACMSCFG file and are
lost when the Remote Manager is stopped.

Use the ACMSMGR ADD COLLECTION command to create a new collection
record. The command has the following syntax:

ACMSMGR ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Using the Remote Manager to Manage ACMS 5–5

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

Use the ACMSMGR SET COLLECTION command to modify the state of an
existing collection. The command has the following syntax:

ACMSMGR SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Use the ACMSMGR DELETE COLLECTION command to delete a collection. The
command has the following syntax:

ACMSMGR DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a
process because collections are disabled by default. The collection state for a
process becomes disabled when no collections remain to specifically enable the
class.

Use the ACMSMGR SHOW COLLECTION command to determine which
collections already exist and their collection states. The command has the
following syntax:

ACMSMGR SHOW COLLECTION

5.1.2.3 Using SNMP to Start or Stop Collections
Use the SNMP interface to dynamically modify the state of a collection after
the Remote Manager has already been started. Note that changes made with
the SNMP interface are not stored in the ACMSCFG file and are lost when the
remote Remote Manager is stopped.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An
SNMP console issues an SNMP SET command to the Remote Manager to modify
the Collection table.

The SNMP OID (object ID) for the collection state columns are listed in in the
file MIB_OID.LIS in ACMS$RM_EXAMPLES. The data type for the field is
INTEGER. Possible settings for this field have the following meanings:

• 0 = Collection is disabled.

• 1 = Collection is enabled.

• 9 = Collection record is deleted.

You cannot add a collection record using the SNMP interface.

5.2 Saving Collected Data
Users can save collection data at predetermined intervals and direct that data to
a data snapshot file for later analysis and review. The data snapshot file lists
collected class data as it existed at the time when the information was saved.

Data snapshots are enabled per entity and are managed using the following fields
in the Collection table: storage_begin_time, storage_end_time, storage_interval,
storage_location, coll_state, and storage_state.

In order for data to be written, the following conditions must be met:

1. The specified entity must be valid and running.
The specified entity must have a valid record in the Collection table (entity,
class, and name) and be running on the node on which the Remote Manager
is running.

5–6 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.2 Saving Collected Data

2. The collection state and storage state for the entity must be enabled.
To activate the data snapshot, both the coll_state and storage_state fields
in the Collection table must be ENABLED. The coll_state field enables the
data collection; the storage_state field directs the Remote Manager to write
the collection data to the snapshot file. Once both states are ENABLED, the
Remote Manager writes data to the snapshot file until it reaches the end of
specified time period or until the storage state is DISABLED.

3. The current time must fall between the specified start and end time.
Each collection record entity can have its own snapshot interval and can be
scheduled to begin and end at a specific time. By default, both the start and
end time for a snapshot are set to 17-NOV-1858 00:00:00.00, which equates to
begin immediately (NOW) and run indefinitely (NEVER).

Data is written to the file at set intervals determined by value of the storage_
interval field. Note that the storage_interval value should be a multiple of the
timer_interval value. The timer_interval value determines the minimum elapsed
time for many Remote Manager parameters, including the storage interval
setting. The relationship of the values in these two fields determine how often
data snapshots are performed, for example:

• If the timer_interval value is greater, its value is used by default. For
instance, if the timer_interval is 10 and the storage_interval is 5, snapshots
will be written at 10 second intervals.

• If the storage_interval value is greater and is a multiple of the timer_interval,
the storage_interval value is used. For example, if the timer_interval is
10 and the storage_interval is 30, snapshots will be written at 30 second
intervals.

• If the storage_interval value is greater and is not a multiple of the timer_
interval, the next multiple of the timer_interval value is used. For example,
if the timer_interval is 10 and the storage_interval is 15, snapshots will be
written at 20 second intervals.

Multiple collection records can share the same data snapshot file or write data
to separate files.The location of the data snapshot file is specified by the storage_
location field in the Collection table. The file is typically stored in the location
specified by the logical name ACMS$MGMT_SNAPSHOT. If this logical is not
defined, the default location is in the default directory for the account under
which the Remote Manager process runs.

Similar to starting and stopping data collections, the requesting user must
have ACMS$MGMT_WRITE privilege in order to start or stop a data snapshot.
Also, both the ACMSCFG and ACMSMGR utilities can be used to configure
snapshots, as described in the following sections. Once configured and active, the
ACMSSNAP utility can be used to display and analyze the contents of the data
snapshot file (see Section 5.3.2).

Note

If the Remote Manager is unable to write to the data snapshot file,
it writes a message to the Remote Manager log (ACMS$MGMT_
SERVER.OUT). This can occur if a logical name is defined incorrectly,
if the output device is full, or if the Remote Manager does not have
sufficient privilege to write to the file. No further attempts are made to

Using the Remote Manager to Manage ACMS 5–7

Using the Remote Manager to Manage ACMS
5.2 Saving Collected Data

write snapshot data until the storage state value for the related collection
is manually reset (DISABLED then ENABLED).

5.2.1 Using ACMSCFG to Start or Stop Data Snapshots
Use the ACMSCFG utility to configure data snapshots for a collection prior to
starting the management process.

To determine which collections already exist and their collection states, use the
ACMSCFG SHOW COLLECTION command as described in Section 5.1.2.1.

Use the ACMSCFG SET COLLECTION command to modify the state of an
existing collection record in the configuration file. This command has the
following syntax:

ACMSCFG SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

/STORAGE_STATE=state /STORAGE_INTERVAL=interval /STORAGE_BEGIN_TIME=time

/STORAGE_END_TIME=time /STORAGE_LOCATION=location

To stop a data snapshot from occurring when starting the management process,
use the /STORAGE_STATE=DISABLED qualifier with the SET COLLECTION
command to modify the collection record in the configuration file. Note that
using ACMSCFG to disable the storage state, only changes the configuration file
settings; it does not affect any snapshots currently running. To do this, use the
ACMSMGR utility.

5.2.2 Using ACMSMGR to Start or Stop Data Snapshots
Use the ACMSMGR utility to dynamically modify the state of a collection record
after the Remote Manager has already been started. Note that changes made
with the ACMSMGR interface are not automatically stored in the ACMSCFG file
and are lost when the Remote Manager is stopped.

To determine which collections already exist and their collection states, use the
ACMSMGR SHOW COLLECTION command as described in Section 5.1.2.2.

Use the ACMSMGR SET COLLECTION command to modify the state of an
existing collection record in the configuration file. This command has the
following syntax:

ACMSMGR SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

/STORAGE_STATE=state /STORAGE_INTERVAL=interval /STORAGE_BEGIN_TIME=time

/STORAGE_END_TIME=time /STORAGE_LOCATION=location

You can also use this command to change current snapshot values. Changes to
the storage interval and storage state values are applied immediately; changes to
the storage location and storage end time are processed the next time snapshot
data is written.

To stop a data snapshot, use the /STORAGE_STATE=DISABLED qualifier with
the SET COLLECTION command to modify the collection record for this process.

5–8 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.2 Saving Collected Data

5.2.3 Using SNMP to Start or Stop Data Snapshots
Use the SNMP interface to dynamically modify the state of a collection after
the Remote Manager has already been started. Note that changes made with
the SNMP interface are not stored in the ACMSCFG file and are lost when the
remote Remote Manager is stopped.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An
SNMP console issues an SNMP SET command to the Remote Manager to modify
the Collection table.

The SNMP OID (object ID) for the storage columns are listed in in the file MIB_
OID.LIS in ACMS$RM_EXAMPLES.

5.3 Displaying Collected Data
The method used to display collected management data depends on whether the
data was simply collected or collected and saved to a data snapshot file.

To display collected data online, use the ACMSMGR utility or one of the
programming interfaces (SNMP or ONC RPC). (Section 5.3.1)

To display the contents of a data snapshot file, use the ACMSSNAP utility.
(Section 5.3.2)

5.3.1 Using ACMSMGR to Display Collected Data
Use the ACMSMGR SHOW command to display collected data. See Chapter 11
for a description of each command.

The following ACMSMGR command displays ACC data:

$ ACMSMGR SHOW ACC /NODE=SPARKS /ID

The following example shows output from this command:

ACMS Remote Management Option -- Command line utility
ACMS V5.0 ACC Table Display Time: 19-APR-2001 11:59:09.56

ID
Node Class PID Process Name Start Time UserName Version

------------ -------- -------- --------------- ----------------------- ------------ ------------
sparks enabled 2020C8BB ACMS01ACC001000 18-APR-2001 14:44:47.29 SYSTEM V5.0

5.3.2 Using ACMSSNAP to Display Collected Data
Use the ACMSSNAP utility to display the contents of a data snapshot file. Data
is written to a snapshot file as a series of RMS records. Each data snapshot
record contains all Remote Manager information collected for a single ACMS
entity at a particular storage interval. All records are indexed by entity and
stored chronologically by collection date. The ACMSSNAP utility enables you
to open a data snapshot file and quickly scan through the snapshot records to
identify system activity related to a specific ACMS entity.

As you navigate through the file, ACMSSNAP scans the snapshot records and
loads them into tables in local memory. Only the last read record for each
entity is kept resident in memory. Each record that you choose to read (using
the SHOW, NEXT, or PREV command) overlays the previous record read for
the entity. These tables persist in memory until you reset the buffer, close the
snapshot file, or exit the ACMSSNAP utility.

See Chapter 12 for detailed descriptions of the ACMSSNAP commands used when
working with data snapshot records and files.

Using the Remote Manager to Manage ACMS 5–9

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

5.3.2.1 How to Run the ACMSSNAP Utility
The ACMSSNAP utility runs as an interactive DCL command line utility.
You start ACMSSNAP using the following command (which is defined in
SYS$STARTUP:ACMS$MGMT_ENV.COM):

$ ACMSSNAP
ACMSSNAP>

At the utility prompt, you can then enter any of the commands described in
Chapter 12. To recall previously entered commands, press the up arrow key or
Ctrl/B.

Once you are through viewing snapshot data, exit from the ACMSSNAP utility
using either the EXIT or QUIT command, as follows:

ACMSSNAP> EXIT

5.3.2.2 Opening and Closing a Data Snapshot File
To open a file and quickly scan all snapshot records, invoke ACMSSNAP and
enter the following command:

$ ACMSSNAP
ACMSSNAP> OPEN file-name /SUMMARY

where file-name is an OpenVMS file specification or logical for the data snapshot
file.

The /SUMMARY qualifier is optional but is considered useful when first opening
a data snapshot file. This qualifier generates a report that provides a general
breakdown of the file’s content such as, the total number of records written (per
entity and file) and the types of records written (per entity).

When you are finished with the data in the current file, close the file, as follows:

ACMSSNAP> CLOSE

5.3.2.3 Navigating and Displaying Snapshot Record Data
Once a data snapshot file is open, you can navigate through the snapshot records
sequentially or by timeframe. In general, navigating by timeframe is easier,
especially if you have opened the file with the OPEN/SUMMARY command. To
navigate by timeframe, use the SHOW/AT command, as follows:

ACMSSNAP> SHOW entity/class-name/AT=date-time

The /AT qualifier locates the entity record closest to the specified time and
displays the requested data from that record. The timestamp for the record is
also enclosed in brackets ([]) in the last column on the right.

You can either continue displaying other views of the data in this record (using
the SHOW command without the /AT qualifier), or move sequentially through one
or more records for this entity using the /NEXT or /PREV qualifiers, as follows:

ACMSSNAP> SHOW entity/class-name/[NEXT,PREV]=number

If you want to navigate through the entire file sequentially, use the NEXT or
PREV command, as follows:

ACMSSNAP> [NEXT,PREV] number

These commands move through the specified number of records. You can then use
the SHOW command, as described above, to display data for one or more records.

5–10 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

5.3.2.4 Sample ACMSSNAP Session
The following example illustrates how a user might review snapshot data to
analyze how much process pool is being consumed by ACMS on node SPARKS
during peak system use.

First, ACMSSNAP is invoked, the data snapshot file SPARKS_SNAP.DAT is
opened 1 , and all records are scanned 2 .

To determine when peak system use occurred, the run-time values for ACC are
displayed 3 , which shows both the maximum value for each parameter as well as
the date and time when that value was reached.

Since the majority of maximum values were set at around 14:21 on the June, 7,
2001, the record closest that time is located 4 . The pool values for ACC at this
point in time are then displayed 5 .

$ ACMSSNAP

ACMSSNAP> OPEN SPARKS_SNAP.DAT/SUMMARY 1

ACMS Remote Management -- Snapshot utility
Compiling summary statics ...

Entity # Recs First Record Last Record All Id Cfg Rt Pool Error
-------- ------ ------------------------ ---------------------- ----- ----- ----- ----- ----- -----
* 0 0 0 0 0 0 0
acc 42 7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 42 0 0 0 0 0
tsc 42 7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 42 0 0 0 0 0
qti 0 0 0 0 0 0 0
cp 184 7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 184 0 0 0 0 0
exc 204 7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 204 0 0 0 0 0
server 6496 7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 6496 0 0 0 0 0
group 3032 7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 3032 0 0 0 0 0
mgr 0 0 0 0 0 0 0

10000 Records Read

MAX_APPL = 10 (use /MAX_APPL on OPEN or define ACMS$MGMT_SNAP_MAX_APPL to change)
CP_SLOTS = 10 (use /CP_SLOTS on OPEN or define ACMS$MGMT_SNAP_CP_SLOTS to change)

ACMSSNAP> NEXT 10000 2
ACMS Remote Management -- Snapshot utility
%RMS-E-EOF, end of file detected

ACMSSNAP> SHOW ACC/RUNTIME/FULL 3
ACMS Remote Management -- Snapshot utility

===

Node RUNTIME
------------ --
sparks Runtime Class Collection State enabled

DECnet Object started

Gauges Current Max Limit Max Time
---------------------------------- -------- -------- --------- ------------------------
Users: Total 99 100 7-JUN-2001 14:19:10.82
Users: Local 99 100 7-JUN-2001 14:19:10.82
Users: Remote 0 0 (null)
Applications 5 5 10 7-JUN-2001 14:01:44.51

Number of application starts 5

Using the Remote Manager to Manage ACMS 5–11

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

Process Quotas Current Max Limit Max Time
---------------------------- ----------------- ----------------- ---------- ------------------------
Working Set Size 17936 17936 786432 7-JUN-2001 14:21:26.00
AST Limit 6 (2%) 6 (2%) 274 7-JUN-2001 14:21:26.00
Byte Limit 3840 (3%) 3840 (3%) 97632 7-JUN-2001 14:21:26.00
Direct I/O Limit 0 (0%) 0 (0%) 150 7-JUN-2001 14:21:26.00
Buffered I/O Limit 3 (2%) 3 (2%) 150 7-JUN-2001 14:21:26.00
Enqueue Limit 19 (0%) 19 (0%) 2000 7-JUN-2001 14:21:26.00
File Limit 5 (0%) 5 (0%) 1600 7-JUN-2001 14:21:26.00
Page File Quota 8544 (13%) 8544 (13%) 65536 7-JUN-2001 14:21:26.00
Timer Queue Limit 3 (15%) 3 (15%) 20 7-JUN-2001 14:21:26.00
Channel Count 31 (12%) 31 (12%) 256 7-JUN-2001 14:21:26.00

ACMSSNAP> SHOW ACC/RUNTIME/AT="7-JUN-2001 14:21" 4

ACMS Remote Management -- Snapshot utility
Runtime DECnet ----- Users ----- - Applications -- Application

Node Class Object Current Maximum Current Maximum Starts
------------ -------- -------- -------- -------- -------- -------- ------------
sparks enabled started 97 100 5 5 5 [7-JUN-2001 14:20:31.98]

ACMSSNAP> SHOW ACC/POOL/FULL 5

ACMS Remote Management -- Snapshot utility

===

Node POOL
------------ ---
sparks Pool Class Collection State enabled

MSS Gauge Current Max Time
---------------------------------- --------- --------- -----------------------
MSS Objects 1859 1881 7-JUN-2001 14:19:12.45

MSS Maxbuf Message Counters Current Time
---------------------------------- ------------------ -----------------------
MSS Msg Size 0 to 1024 bytes 13927
MSS Msg Size 1025 to 2048 bytes 94
MSS Msg Size 2049 to 4096 bytes 15
MSS Msg Size 4097 to 8192 bytes 41
MSS Msg Size 8193 to 16384 bytes 0
MSS Msg Size 16385 to 32768 bytes 0
MSS Msg Size 32769 to 65536 bytes 0
MSS Message Counter Overflow Resets 0 (null)

MSS Process Pool Pct Time
-- -------- ------------------------
Pool Size (bytes) 524288
Current Free (bytes) 516688 (98%)
Minimum Free (bytes) 515664 (98%) 7-JUN-2001 14:18:16.00
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 7-JUN-2001 14:20:56.00
Allocation Failures 0
Garbage Collections 0

MSS Shared Pool Pct Time
-- -------- ------------------------
Pool Size (bytes) 33792000
Current Free (bytes) 33624344 (99%)
Minimum Free (bytes) 33620712 (99%) 7-JUN-2001 14:14:25.98
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 7-JUN-2001 14:20:56.00
Allocation Failures 0
Garbage Collections 0

WS/TWS Pools (for all EXCs) Current Max Time
---------------------------------- --------- --------- ------------------------
TWS Pool Size Total (pagelets) 562800 562800 7-JUN-2001 14:20:55.99
TWSC Pool Size Total (pagelets) 22500 22500 7-JUN-2001 14:20:55.99
WS Pool Largest Used (bytes) 536 536 7-JUN-2001 14:20:55.99
WSC Pool Largest Used (bytes) 848 848 7-JUN-2001 14:20:55.99
TWS Pool Largest Used (bytes) 73728 73728 7-JUN-2001 14:20:55.99
TWSC Pool Largest Used (bytes) 1792 1792 7-JUN-2001 14:20:55.99

5–12 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

WS/TWS Pools (for all EXCs) Current Min Time
---------------------------------- --------- --------- ------------------------
WS Pool Minimum Free (bytes) 130536 130536 7-JUN-2001 14:20:55.99
WSC Pool Minimum Free (bytes) 64688 64688 7-JUN-2001 14:20:55.99
TWS Pool Minimum Free (bytes) 3809280 3809280 7-JUN-2001 14:20:55.99
TWSC Pool Minimum Free (bytes) 152704 152704 7-JUN-2001 14:20:55.99

5.3.3 Managing Data Snapshot Files
Data snapshot files grow in proportion to the data that is written to them. The
more collection information that is being stored, and the more entities and classes
that are part of those collections, the larger the files will grow. As a result, it
is important for systems managers to periodically check the size of the data
snapshot files to ensure that there is sufficient disk space.

Data snapshot files are indexed RMS files, and when closed, you can manage
them using standard OpenVMS file utilities and commands. However, while
they are open (either being written to by active snapshots or being read by the
ACMSSNAP utility) you cannot copy, rename, move, or delete the files.

To close an open snapshot file, you must stop all Remote Manager snapshot
threads and ACMSSNAP utility processes that are accessing the file. To stop
a snapshot thread, either set the storage_state field to DISABLED or delete
the related row in the Collection table. Note that setting the coll_state field to
DISABLED prevents data from being written to the snapshot file but does not
stop the snapshot thread nor close the file.

5.4 Managing ACMS Using the Remote Manager
The ACMS Remote Manager provides the ability to modify the running
ACMS system using either the SNMP or the RPC interface. In general, only
Configuration class variables can be modified at run time. However, not all
Configuration class variables can be modified. Chapter 9 lists all Configuration
class variables by entity and indicates which ones can be modified.

5.4.1 Types of Variables
Many Configuration class variables can have the following two forms:

• Stored variable (see Section 5.4.1.1)

• Active variable (see Section 5.4.1.2)

The programming interfaces expose stored and active values as separate
variables.

5.4.1.1 Stored Variables
Stored variables are maintained by the ACMS run-time system on disk, either in
the ACMSGEN file or as part of an ADB or TDB file. For example, mss_maxobj
is a run-time variable that is stored in the ACMSGEN file. The auditing state
for a particular application is a run-time variable that is stored in the application
database (ADB).

As you might expect, the ACMS Remote Manager allows ACMSGEN stored
values to be modified, but it does not allow modifications to values that are stored
in application executables.

Changes to stored values are durable but not dynamic. That is, if the stored
value of a variable is modified, the value survives the restart of the ACMS run-
time system. However, changes to stored values do not take effect immediately.
Some or all of the ACMS run-time system needs to be restarted before the new
value takes effect.

Using the Remote Manager to Manage ACMS 5–13

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

For example, to change the value of the mss_net_retry_timer parameter in the
ACMSGEN file using ACMSMGR, use the following command:

$ ACMSMGR SET ACC/MSS_NET_RETRY_TIMER=50/STORED

To change the value in ACMSGEN file using the RPC interface, set the mss_net_
retry_timer_stored field in the acc_config_rec using the ACMSMGMT_SET_ACC
procedure. To change the same value using an SNMP console, set the acc_mss_
net_retry_timer_stored field in the ACC Table.

Note that none of these changes would effect the running system. To effect the
running system, you must change the active value (see Section 5.4.1.2.)

5.4.1.2 Active Variables
Active variables are maintained in memory by the ACMS run-time system. All
Configuration class variables are active because they have an in-memory value.
Although the ACMS Remote Manager allows most active values to be modified,
not all changes to active values are dynamic. Refer to Chapter 9 to determine
whether a particular active value is dynamic. Changes to nondynamic active
variables are essentially useless.

Changes to active values are never durable; that is, they never survive a restart
of the system.

For example, to change the active value of the mss_net_retry_timer using
ACMSMGR, use the following command:

$ ACMSMGR SET ACC/MSS_NET_RETRY_TIMER=50/ACTIVE

To change the value using the RPC interface, set the mss_net_retry_timer_active
field in the acc_config_rec using the ACMSMGMT_SET_ACC procedure. To
change the same value using an SNMP console, set the acc_mss_net_retry_timer_
active field in the ACC table.

Note that none of these changes would survive a system restart. To change a
value and have it survive a system restart, you have to change the stored value
(see Section 5.4.1.1.)

5.4.2 How the Remote Manager Makes Changes
The ACMS Remote Manager applies changes to the ACMS run-time system either
by using the ACMSGEN parameter file and utility, or through the ACMSOPER
utility. In either case, the ACMS Remote Manager server applies updates to the
running system by creating temporary command procedures that are executed by
a spawned DCL subprocess (process name ACMS$MGMT_DCL).

The temporary command procedures are written to and read from the directory
pointed to by the logical name ACMS$MGMT_TEMP. If this logical is not
defined when the Remote Manager starts, it will define the logical to point to
SYS$MANAGER.

Temporary command procedures are given names unique to the procedure
instance that creates them, but the names are not unique across nodes. These
names are deleted after they have been executed.

If the Remote Manager server does not have access to the directory pointed to
by ACMS$MGMT_TEMP, all update attempts fail. However, the definition of the
logical can be changed without restarting the Remote Manager. Changing the
definition at run time should be done cautiously. One or more updates could fail
if the logical is changed in the middle of an update operation.

5–14 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

If the ACMSMGR or RPC interface is used, any errors that occur during the
system update are returned to the user and are written to the Remote Manager
log file.1 Depending on the current setting of the dcl_audit_level parameter, some
messages may not be written to the log.

User accounts (including proxy accounts and the ACMS$SNMP account, if SNMP
is being used) must be granted the ACMS$MGMT_WRITE or ACMS$MGMT_
OPERATE rights identifier in order to modify Configuration class values. See
Section 4.4.2 for a list of functions and the rights identifier required for each.

5.4.3 Using ACMSMGR to Modify the ACMS Run-Time System
The ACMSMGR utility can be used to dynamically modify Configuration class
parameters for ACMS run-time entities. More than one value can be modified
at once, on one or more nodes. The command executes synchronously; that is,
it does not complete until an attempt has been made to update all parameters.
Multiple node updates are processed serially; all updates are performed on one
node before any updates are attempted on subsequent nodes.

Use the ACMSMGR SET command to modify a Configuration class variable. The
syntax of the command is as follows:

ACMSMGR SET entity [/parameter=value,...]

For example, the following command disables ACMS auditing on the node
specified by ACC:

$ ACMSMGR SET ACC /AUDIT_STATE=DISABLED

Two qualifiers are provided to control whether the active (/ACTIVE) or stored
(/STORED) value of a variable is to be modified. One qualifier can be specified
in a single command. For example, to modify both the active and stored values
of the ACC Configuration class variable node_name, separate commands must be
issued, as follows:

$ ACMSMGR SET ACC/NODE_NAME=SPARKS/ACTIVE
$ ACMSMGR SET ACC/NODE_NAME=SPARKS/STORED

If a specified qualifier does not apply (for example, /ACTIVE is specified for a
nondynamic variable), a warning message is displayed. For a complete list of
Configuration class variables, see Chapter 9.

The ACMSMGR START and STOP commands can be used to dynamically start
and stop the following processes:

• ACC (starts or stops the entire ACMS run-time system)

• EXC

• MANAGER (Remote Manager; stop only)

• QTI

• TRACE_MONITOR

• TSC (starts or stops the TSC and any CPs)

In addition, ACMS procedure servers can be replaced (stopped and restarted)
using the ACMSMGR REPLACE command. Different qualifiers are available for
each command and process. For more information about ACMSMGR commands,
refer to Chapter 11.

1 Log file entries are filtered by trace level, which is configured using the audit level
parameters in the Remote Manager Parameter table (see Section 4.7).

Using the Remote Manager to Manage ACMS 5–15

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

5.4.4 Using SNMP to Modify the ACMS Run-Time System
The SNMP interface can be used to dynamically modify Configuration class
parameters for ACMS run-time entities. Updates to Configuration class
parameters are synchronous; the SNMP command does not complete until an
attempt has been made to update the parameter.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An
SNMP console issues an SNMP SET command to the Remote Manager to modify
Configuration class parameters.

There are both active and stored values for many of the Configuration class
variables. In the ACMS MIB, each value is given a separate variable (OID).

Because the SNMP protocol offers only GET and SET commands, the SNMP
interface handles the following operations differently from the RPC interface in
order to perform the full range of management activities:

• Starting and stopping processes (see Section 5.4.4.1)

• Adding and deleting table rows (Section 5.4.4.2)

• Replacing servers (Section 5.4.4.3)

Not all operations that can be performed by the RPC interface can be performed
by the SNMP interface. The following sections indicate which operations are not
available in the SNMP interface.

5.4.4.1 Starting and Stopping Processes Using SNMP
To start or stop the following ACMS processes, issue an SNMP SET command on
the Configuration class variable acms_state, and specify the state as either 1 (to
start the process) or 0 (to stop the process).

• ACC

• QTI

• TSC

You cannot start or stop CP processes.

To start an ACMS application, issue an SNMP SET command on the exc-appl-
name field in the excTable, specifying a row that is not currently in use and that
is less than the value of the acc-max-appl-active field in the accTable.

To stop an ACMS application, issue an SNMP SET command on the exc-acms-
state field, specifying a value of 0.

You cannot start or stop application procedure servers or task groups.

5.4.4.2 Adding and Deleting Rows Using SNMP
Currently, no tables allow rows to be added using SNMP.

The Collection, Error Filter, and Trap tables allow rows to be deleted using
SNMP.

• To delete rows from the Collection table, set the collection-state field to 9. (A
value of 1 enables the collection; a value of 0 disables the collection; a value
of 9 deletes the collection.)

• To delete rows from the Error Filter table, set the err-delete field to 1. This is
the only value allowed for this field.

5–16 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

• To delete rows from the Trap table, set the trap-delete field to 1. This is the
only value allowed for this field.

5.4.4.3 Replacing Application Procedure Servers Using SNMP
To replace an ACMS application procedure server, issue an SNMP SET command
on the ser-replace-flag field in the Server table, specifying a nonzero value.

5.4.5 Using ONC RPC to Modify the ACMS Run-Time System
The RPC interface can be used to dynamically modify Configuration class
parameters for ACMS run-time entities. Configuration class parameter updates
are synchronous; the RPC command does not complete until an attempt has been
made to update the parameter.

There are both active and stored values for many of the Configuration class
variables. In the ACMSMGMT_RPC.X IDL file, each value is given a separate
variable.

Separate RPC commands for each entity type are provided for modifying
Configuration class variables. In addition, RPC commands are provided to
perform start, stop, add, delete, replace, and reset functions. Chapter 8 provides
details about all of the RPC commands.

5.5 Working with Error Logs
The Remote Manager collects, consolidates, and stores informational messages
generated by all ACMS processes in an error log. This log assists in
troubleshooting and system management by providing a single, comprehensive
view of error information across multiple ACMS nodes.

The error log contains all messages generated by ACMS processes and
applications at run-time. The log is stored in a location determined by the
logical name ACMS$MGMT_ERR_LOG. If this logical is not defined, the default
location is in the default directory for the account under which the Remote
Manager process runs.

The ACMSMGR utility enables you to filter the entries written to this log, as well
as display and manage the current contents of the log.

5.5.1 Setting Error Filters
Error filters are used to limit the amount of error messages that are sent to
the Remote Manager. If an ACMS run-time process generates an error contained
in an error filter record, the message is not sent to the Remote Manager or
subsequently written to the error log.

Error filter records are durably stored by the ACMS run-time system on the
target server node. Once specified, the filter records remain in place until
explicity deleted (using the ACMSMGR DELETE FILTER command).

Stored in the Error Filter table, each error filter record consists of the target
server node, name of the Remote Manager user, and one of the following:

• Symbolic name of the error message in the format facility-name-severity-ident
(such as, ACMSACC-W-QTI_STOPPING)

• Hexadecimal or decimal code equivalent of the error message (such as,
%xFDBC78)

• Complete OpenVMS specification for an error filter file that contains a list of
symbolic names or error code equivalents

Using the Remote Manager to Manage ACMS 5–17

Using the Remote Manager to Manage ACMS
5.5 Working with Error Logs

5.5.1.1 Creating Error Filter Records
Use the ACMSMGR ADD FILTER command to insert single records in the Error
Filter table or create multiple records using an error filter file. The following
example shows how to add a single error filter record for the node SPARKS:

$ ACMSMGR ADD FILTER/NAME="ACMSACC-I-QTI_STOPPING"/NODE=SPARKS

To load multiple records with an error filter file, create an ASCII file that contains
a one-column list of symbolic names, code equivalents, or a combination of both
preceded with the filter file header string. For example:

%%ACMS Filter File V1.00
ACMSEXC-E-NO_TDB
ACMSACC-I-QTI_STOPPING
%xFDBC78
.
.
.

You can then use the ACMSMGR ADD FILTER command to load the error filter
file entries, as follows:

$ ACMSMGR ADD FILTER/FILE=DISK$1:[ACMS.ERROR]FILTER.DAT/NODE=SPARKS

Note

The Remote Manager process on the server node must have access to the
error filter file in order for the file to be loaded into the Remote Manager
tables.

Certain system messages, such as event flags (ACMSACC-I-EVENT), often
spawn further status messages indicating the cause of the event (ACMSACC-W-
FORCEOUT). Error filtering is explicit; that is, only the specified messages are
suppressed. If you want to filter the initial and subsequent system messages, you
must add each message to the Error Filter table.

5.5.1.2 Displaying Error Filter Records
To display existing filter records, use the ACMSMGR SHOW FILTER command.
This command lists all the filter records for a particular node and displays both
their symbolic name and code equivalent. The following example shows all the
filter records for node SPARKS:

$ ACMSMGR SHOW FILTER/NODE=SPARKS

ACMS Remote Management -- Command line utility

ACMS V5.0 ACMS Error Filter Table Display Time: 20-APR-2001 11:39:31.13

Node Filtered Message Name (Code)
sparks ACMSACC-W-AUDSYSSTARTS (FD8748)
sparks SYSTEM-W-TOOMUCHDATA (298)
sparks SYSTEM-W-NOMOREREG (AE8)

5–18 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.5 Working with Error Logs

5.5.1.3 Saving Error Filter Records to a File
You can create an error filter file from existing records using the ACMSMGR
SAVE FILTER command. This feature can be used to distribute the same set
of error filters across separate nodes in a cluster. For example, the following
command saves the current set of error filter records on node SPARKS to a file on
node VLCROW:

$ ACMSMGR SAVE FILTER/FILE=VLCROW::DISK$1:[ACMS.ERROR]FILTER.DAT/NODE=SPARKS

5.5.1.4 Deleting Error Filter Records
Error filter records remain in effect until deleted. Use the ACMSMGR to delete
an error filter record, as follows:

$ ACMSMGR DELETE FILTER/CODE="%xFDBC78"/NODE=SPARKS

5.5.2 Displaying Error Messages
Use the ACMSMGR SHOW ERROR command to display messages from the error
log. This command accepts a number of qualifiers, including a qualifier that
identifies the node from which to get error messages (/NODE) and a qualifier that
specifies the beginning time of messages to display (/SINCE).

The following example shows how to display error messages from the node
SPARKS:

$ ACMSMGR SHOW ERROR/NODE=SPARKS

You can display error messages from a node other than the current node only if
the Remote Manager is running on the target node. If the Remote Manager is
not running on the target node, you must first log in to the target node, and then
issue the SHOW ERROR command using the /LOCAL qualifier.

The following example shows how to display error messages on the current node
when the Remote Manager process is not running:

$ ACMSMGR SHOW ERROR/LOCAL

For a complete description of the ACMSMGR commands and qualifiers, see
Chapter 11.

5.5.3 Resetting the Error Log
Use the ACMSMGR RESET ERROR command to close the current error log file
and open a new version. You may want to reset the log if it has grown too large.

The following example shows how to reset the log on node SPARKS:

$ ACMSMGR RESET ERROR/NODE=SPARKS

Using the Remote Manager to Manage ACMS 5–19

6
Management Programming Using ONC RPC

Programmers who want to access and maintain the ACMS Remote Manager from
their own programs can use the following two interfaces:

• Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management
packages such as PATROL® from BMC® and Tivoli from IBM®. For more
information, see Chapter 7.

• Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers
who want to write custom tools and applications that access the ACMS
Remote Manager.

This chapter describes the ONC RPC interface. Programmers who are familiar
with the C programming language and RPC mechanisms can use this information
when coding and building their own client programs. For a more complete
discussion of ONC RPC programming, see Power Programming with RPC by
John Bloomer, published by O’Reilly & Associates, Inc., Sebastopol, CA.

6.1 ONC RPC Overview
ONC RPC is a widely used and supported remote procedure call (RPC)
mechanism. Similar to other RPC mechanisms, the ONC RPC protocol supports
a request/response model, in which client applications make requests of servers
and receive responses. Clients typically make synchronous calls to remote servers
over a network. The RPC mechanism hides the network operations from the
programmer, making each remote procedure call appear to be a local function
invocation.

Unlike the SNMP interface, which connects to the ACMS Remote Manager using
the SNMP master agent, access through ONC RPC is directly to the ACMS
Remote Manager.

Figure 6–1 provides a graphical overview of the ONC RPC interface.

Management Programming Using ONC RPC 6–1

Management Programming Using ONC RPC
6.1 ONC RPC Overview

Figure 6–1 ONC RPC Interface Overview

VM-0425A-AI

ACMS Remote
Manager

(RPC listener)

Remote Manager
clients

(user-written programs)

ACMS
run-time system

ONC RPC

Programming for ONC RPC is based on interface definitions coded in Interface
Definition Language (IDL). Functions and their arguments are described in IDL
source files, which are precompiled using an IDL compiler. The outputs from
the IDL compiler are a set of C source and header files that are then compiled
and linked with client and server programs to form run-time executables. (For
Remote Manger client development, server stub files are not needed and can be
discarded.)

Figure 6–2 provides a graphical overview of programming for ONC RPC.

Figure 6–2 ONC RPC Programming Overview

ACMSMGMT_RPC_CLNT.C

VM-0328A-AI

ACMSMGMT_RPC.X

Function and
argument

definitions (IDL)

Client stub

Header file

Server stub

ACMSMGMT_RPC_XDR.C

ACMSMGMT_RPC.H

ACMSMGMT_RPC_SVC.C

Data
conversion

routines

$RPCGEN
ACMSMGMT_RPC.X

IDL compiler

The IDL that describes the procedures supported by the ACMS Remote Manager
is provided with the ACMS Remote Manager installation and provides the
basis for ACMS management programming. Users write their own client
programs, calling the functions described in the ACMS Remote Manager IDL
file (ACMSMGMT_RPC.X). They precompile the IDL file with the precompiler
provided by their TCP/IP package, and then compile and link their client

6–2 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.1 ONC RPC Overview

programs. No compilation or linking is required for the Remote Manager; it
contains all the support required by ONC RPC client programs.

The ACMS Remote Manager provides several types of procedures that are
callable through the ONC RPC interface. These procedures provide read and
write access to each table maintained by the Remote Manager, as well as
command routines (such as start and stop). Table 6–1 summarizes the types of
procedures available.

Table 6–1 Procedures for Accessing Remote Manager Functions

Procedure
Type Table or Object Description

Add Collection, Error Filter,
Trap

Allows entries to be added to configuration
tables.

Delete Collection, Error Filter,
Trap

Allows entries to be removed from
configuration tables.

Get ACC, Error Filter,
Manager (MGR) Status,
Parameters, QTI, TSC,
Version

Returns all columns in the table.

List Collection, CP, Error
Data, EXC, Interfaces,
Log, Process, Server, Task
Group, Trap, Users

Returns a linked list of records based on
selection criteria. All columns in the table
are returned with each row.

Replace Server Allows an application server to be replaced.

Reset Error Data, Log Allows the current version of the Remote
Manager log or error log to be closed and a
new version to be opened.

Save Error Filter Saves the current error filter records for a
specific node and writes them to an error
filter file.

Set ACC, Collection, CP, EXC,
Interfaces, Parameters,
QTI, Server, Trap, TSC

Allows modifications to the table. For
configuration tables, set functions allow
rows to be added to tables. (Entity rows can
only be added by starting the appropriate
process.)

Start ACC, EXC, QTI, Trace
Monitor, TSC

Allows ACMS processes to be started.

Stop Manager, ACC, EXC, QTI,
TSC, Trace Monitor

Allows ACMS processes to be stopped.

The procedure names and arguments for each procedure type are similar — all
get calls have similar names and arguments; set calls have similar names and
arguments, and so on.

The sections that follow describe in more detail how to write programs that access
these functions.

Management Programming Using ONC RPC 6–3

Management Programming Using ONC RPC
6.2 Building Multithreaded Clients

6.2 Building Multithreaded Clients
The file ACMS$MGMT_EXAMPLES_BUILD.COM describes how to use the
client stub provided with the Remote Manager when compiling and linking your
application. The sample procedures provided in ACMS$MGMT_EXAMPLES.C
are designed to use the thread-safe client stub, and as a result, each procedure
contains one or more "free" calls (to prevent memory leaks).

To implement a non-thread safe client using the RPC-generated stub, omit the
"free" calls. See ACMS$MGMT_EXAMPLES_BUILD.COM for detailed build
instructions.

6.3 API Overview
Remote management client programs follow a typical programming model that
involves the following phases:

• Initialization

During the initialization phase, client programs establish connections
with the Remote Managers they will be calling. As part of this phase, the
programs select a security mode (explicit or implicit). Once this phase is
complete, the Remote Managers have been verified to be available, and
the client authentication has been verified. This phase involves using a
combination of ONC RPC function calls and an ACMS Remote Manager
function call (if explicit authentication is being used).

• Processing

During the processing phase, client programs make procedure calls to the
Remote Managers. During this phase, clients obtain or modify management
information. This phase involves the use of the functions defined in the
ACMS$RM_EXAMPLES:ACMSMGMT_RPC.X IDL file.

• Termination

During the termination phase, clients halt execution. There is no API
support or programming requirement for this phase.

6.4 Initialization and Security
In order to perform initialization, ACMS remote client programs must first
determine the type of authentication (explicit or implicit) they will use. The type
of authentication determines whether or not the client program must obtain
credentials.

The Remote Manager performs authentication either explicitly, using a
valid OpenVMS account name and password, or implicitly, using ACMS
proxies. Implicit authentication is allowed only if it has been enabled on the
Remote Manager node, and does not require the use of credentials. Explicit
authentication requires the use of credentials and also requires that the client
process execute a separate login using the ACMSMGR utility.

See Section 4.4 for a discussion of the various security modes and how to log in
using ACMSMGR.

Once the authentication mode has been determined, remote management clients
perform the following tasks:

• Establish an RPC connection with the Remote Manager on the target node.

The clnt_create function call establishes RPC client connections.

6–4 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.4 Initialization and Security

• Establish the security context and, optionally, populate it with credentials
information.

The security context is established by calling the authunix_create_default
function. As a result of this call, client process-identity information is
passed to the server on each procedure call. The Remote Manager uses this
information to authorize the user for each function.

The default security context is not sufficient if explicit authentication is
being used. Clients that need to support explicit authentication call the
acms$mgmt_get_credentials function to obtain a client ID, which was
previously issued for the client process by executing a login through the
ACMSMGR utility. This client ID is used on subsequent RPC calls.

Note

In order for credentials information to be created, the client process must
first execute the login command of the ACMSMGR utility. The only way
to create credentials files is by using the ACMSMGR utility.

6.4.1 Initialization Example
The following example code shows a client program that establishes an RPC
connection with the Remote Manager, establishes the security context, and then
populates it with credentials information if a logical name (ACMS$MGMT_USER)
has been defined.

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;
char sname[] = "sparks";
char *username_p, username[13] = "";
int client_id;
int status;

int acms$mgmt_get_creds();

int main ()
{

/* if the logical is defined, credential information will be used */
username_p = getenv("ACMS$MGMT_USER");
if (username_p)

strcpy(username,username_p);

/* establish an rpc connection to the server */
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

/* if the connection was established */
if (cl != NULL) {

/* create a security context */
cl->cl_auth = authunix_create_default();
client_id = 0;

/* optionally, get credentials for this user & server */
if (strlen(username))

status = acms$mgmt_get_creds(sname,username,&client_id);

}

return(1);
}

Management Programming Using ONC RPC 6–5

Management Programming Using ONC RPC
6.5 Get Procedures

6.5 Get Procedures
Get procedures are available for all ACMS Remote Manager tables. Get
procedures return all columns from a single table row.

As Table 6–2 shows, a separate get procedure is available for each entity and
table.

Input arguments to get procedures are client_id. See Chapter 8 for details about
each call.

Table 6–2 Get Procedures

Procedure Description

acmsmgmt_get_acc_2 No keys; only 1 ACC per node.

acmsmgmt_get_err_filter_2 No keys; only 1 Error Filter per node.

acmsmgmt_get_mgr_status_1 No keys; only one row in the Manager Status table.

acmsmgmt_get_param_2 No keys; only one row in the Parameter table.

acmsmgmt_get_qti_2 No keys; only 1 QTI per node.

acmsmgmt_get_tsc_2 No keys; only 1 TSC per node.

acmsmgmt_get_version_2 No keys; only 1 version per node.

6.5.1 Get Example
The following example code shows how a client program calls the acmsmgmt_get_
param_2 procedure and displays the current value of a parameter.

int get_param_data(int client_id,CLIENT *cl)
{

int x = 0;
int y = 0;

param_rec2 *params;
param_rec_out2 *param_rec;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

param_rec = acmsmgmt_get_param_2(&sub_rec,cl);

if (!param_rec) {
printf("\n RPC Call to get Parameter data failed");
return(MGMT_FAIL);

}

if (param_rec->status != MGMT_SUCCESS) {
printf("\n Call to get Parameter data failed, returning status code %d",

param_rec->status);
status = param_rec->status;

xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec);

return(status);
}

params = ¶m_rec->param_rec_out2_u.data;

printf("\n Maximum logins allowed is %d",params->max_logins);
xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec);

return(0);
}

6–6 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.6 List Procedures

6.6 List Procedures
List procedures operate on all rows in a table. Procedures are available for each
entity and each configuration table with more than one row. There are no list
procedures for the following tables, since they contain only one row:

• ACC table

• Parameter table

• QTI table

• TSC table

As Table 6–3 shows, separate list procedures are provided for the remainder of
the management information and configuration tables. Input to a list procedure
is a selection criteria record, which varies depending on the table being accessed.
Some key values in the selection criteria records support wildcards (*, %).

Table 6–3 List Procedures

Procedure Description

acmsmgmt_list_agent_2 Key value is table index.

acmsmgmt_list_collections_2 Key value is table index.

acmsmgmt_list_cp_2 No keys.

acmsmgmt_list_err_2 No keys.

acmsmgmt_list_err_filter_2 No keys.

acmsmgmt_list_exc_2 Key value is application name or table index.

acmsmgmt_list_interfaces_1 No keys.

acmsmgmt_list_log_1 No keys; selection criteria is before_time, since_time,
file_name, facility, severity.

acmsmgmt_list_proc_1 No keys.

acmsmgmt_list_server_1 Key value is application name, server name, or table
index.

acmsmgmt_list_tg_2 Key value is application name, task group name, or
table index.

acmsmgmt_list_trap_1 No keys.

acmsmgmt_list_users_1 No keys.

For all list procedures, only entire rows (that is, all columns in the row) are
returned. Data is returned in a linked list. The number of nodes in the list is
determined by the systemwide parameter table field max_rpc_return_recs. When
the number of rows to be returned exceeds the value of max_rpc_return_recs, the
caller must reissue the call, providing the appropriate key values to fetch the
next set of rows. The call returns status MGMT_NO_MORE_ROWS if there are
no more rows available. Procedures with no keys return all rows in the table on
the first call, regardless of the value of the max_rpc_return_recs field.

Management Programming Using ONC RPC 6–7

Management Programming Using ONC RPC
6.6 List Procedures

6.6.1 Linked List Example
Data from list calls is returned in a linked list. The example in this section uses
the acmsmgmt_list_log_1 procedure to illustrate how linked list processing works.

The call to the acmsmgmt_list_log_1 procedure requires the following input
structure:

struct log_sel_struct {
int client_id;
string before_time<TIME_SIZE_A>;
string since_time<TIME_SIZE_A>;
string file_name<STORAGE_LOC_SIZE>;
int dup_count;
int facility;
int severity;
};

In the code example that follows, the lines of code beginning with log_rec initialize
the fields in this structure as follows:

• Client_id is set to 0 to select proxy authentication.

• Before_time is set to a NULL string to specify no end date for viewing log
entries. Note that you cannot provide a NULL pointer.

• Since_time is set to the 1st of January 1998. Log entries from this date and
later will be viewed.

• File_name is set to an empty string, which causes the active log file to be
used.

• Dup_count is set to -1. This field is used to uniquely identify log records with
identical times.

• Facility is set to -1, which causes entries for all facilities to be returned.

• Severity is set to -1, which causes entries of all severity levels to be returned.

The following example code shows the initialization of the client and the call to
the acmsmgmt_list_log_1 procedure:

#include <rpc/rpc.h>
#include <stdio.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;

int main ()
{

int skip_rec = 0;

char null_time_str[24] = "";
char first_of_jan[24] = "01-JAN-1998 00:00:00.00";
char file_spec[] = ""; /* use default, i.e. active log file */
char time_cache[MGMT_S_TIME_A+1];
static struct log_sel_struct log_rec;
log_data_list *log;
log_link *nl;

/* Initialize client connection; if that fails, exit*/

cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");
if (!cl)

return(MGMT_FAIL);

/* Create a default security context */

6–8 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.6 List Procedures

cl->cl_auth = authunix_create_default();

/* So far so good. Initialize log selection data */

log_rec.client_id = 0;
log_rec.before_time = null_time_str;
log_rec.since_time = first_of_jan;
log_rec.file_name = file_spec;
log_rec.dup_count = -1;
log_rec.facility = -1; /* don’t match on facility */
log_rec.severity = -1; /* don’t match on severity */

top:
/* Now make RPC */
log = acmsmgmt_list_log_1(&log_rec,cl);

The return value from the calls to all list procedures (including acmsmgmt_list_
log_1) is a pointer to a union. If the pointer returned is NULL, the call has failed.
RPC error checking must be used to determine the cause of the error. If a valid
pointer has been returned, it will point to a structure containing a union with the
following structure:

struct log_data_list {
int status;
union {

log_list list;
int rc;

} log_data_list_u;
};

The status field determines which structure is being returned. If the status is
equal to MGMT_FAIL, the rc field is returned. The rc field contains a status code
indicating the reason for failure.

If the status field is not equal to MGMT_FAIL, a pointer to a linked list has been
returned.

The log_list field is defined as a pointer to linked list node, as follows:

typedef struct log_link *log_list;

The linked list node has the following structure:

struct log_link {
logging_rec log_data;
log_list pNext;

};

In this structure, log_data is of type logging_rec, which is a record structure
containing the log data. The pNext field is a pointer to the next node in the
linked list (which is of type log_link).

Figure 6–3 illustrates the return structure and how the linked list is constructed.

Management Programming Using ONC RPC 6–9

Management Programming Using ONC RPC
6.6 List Procedures

Figure 6–3 Linked List: Return Structure and Construction

struct log_link {
 logging_rec log_data;

};

myptr = acmsmgmt_list_log(myrec);

struct log_link {
 logging_rec log_data;

};

struct log_data_list {
 int status;
 union {

 int rc;
 } log_data_list_u;
};

struct log_link {
 logging_rec log_data;

 log_list pNext;

};

VM-0329A-AI

 log_list pNext;

 log_list pNext;

myptr

 log_list list;

The following example code shows how to check whether the call completed
successfully, and how to traverse the linked list to display the data:

/* if a NULL pointer was returned, the RPC failed */
if (!log)

return(MGMT_FAIL);

/* if bad status was returned, something failed in our call.
log->log_data_list_u.rc contains the status */

if (log->status == MGMT_FAIL)
return(log->log_data_list_u.rc);

/* while more data in the list, display the data */
for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {

if (skip_rec)
skip_rec = 0;

else
printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);

/* save last time received to use as next time to read forward from */
memcpy(&time_cache[0],nl->log_data.log_msg,23);
log_rec.dup_count = nl->log_data.dup_count;
log_rec.since_time = time_cache;

}
if (log->status == MGMT_NOMORE_DATA)

printf("\n *** End of data **");
else {

skip_rec = 1;
goto top;

}

return(1);
}

In this example, the returned pointer is checked for whether data has been
returned (log is not NULL). Then the status code is checked for whether the call
completed successfully.

6–10 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.6 List Procedures

If the call completed successfully, the code drops into a FOR loop and starts
printing the data. For this particular call, the client prints all the records
the very first time the RPC is called; on subsequent calls, the first record is a
duplicate of the last one from the previous call and is not printed.

After printing a record, the key data is saved to be used again on a subsequent
call. Remember that only max_rpc_return_recs is returned in each call to the
acmsmgmt_list_log_data_1 procedure. There may be more log records than can
be sent at once. It is the responsibility of the client to initialize the call properly
to get the next set of records.

Once all the returned records have been returned, the code will call the
acmsmgmt_list_log_data_1 procedure again if the status code from the call
was not MGMT_NOMORE_DATA. In this way, all the records are retrieved.

6.7 Set Procedures
Set procedures are available for many of the ACMS Remote Manager tables. Set
procedures allow you to modify ACMS entity and Remote Manager configuration
information. As Table 6–4 shows, a separate set procedure is available for each
entity and table.

Table 6–4 Set Procedures

Procedure Description

acmsmgmt_set_acc_2 No keys; only 1 ACC per node.

acmsmgmt_set_agent_2 Key value is PID of the agent.

acmsmgmt_set_coll_2 Key value is entity, ID, and class.

acmsmgmt_set_cp_2 No keys; only 1 CP per node.

acmsmgmt_set_exc_2 Key value is application name.

acmsmgmt_set_interface_1 Key value is interface name.

acmsmgmt_set_param_2 No keys; only one row in the parameter table.

acmsmgmt_set_qti_2 No keys; only 1 QTI per node.

acmsmgmt_set_server_1 Key value is application name and server name.

acmsmgmt_set_trap_1 Key value is entity, ID, and parameter.

acmsmgmt_set_tsc_2 No keys; only 1 TSC per node.

For Entity tables, set procedures allow fields to be modified for a particular entry.
A unique key value must be provided to identify the particular table row to be
updated for tables with more than one row. Only configuration class fields can be
modified in entity tables.

For the Trap and Collection tables, add and delete procedures (described in
Section 6.8 and Section 6.9) are available along with set procedures. Each
procedure requires a unique key value.

For all tables, some or all fields in a row can be modified in a single call. The
Remote Manager scans the input record for uninitialized fields (that is, fields
that are not set to the default value of -1); if a field contains an initialized value,
the Remote Manager attempts to apply the update. The corresponding field in
the return record is updated with the completion status of the update. Updates
are applied serially, but the Remote Manager attempts to update all initialized
fields regardless of the outcome of any individual update. The exception to this
processing is if an internal error occurs, in which case processing is aborted.

Management Programming Using ONC RPC 6–11

Management Programming Using ONC RPC
6.7 Set Procedures

All calls are synchronous.

See Chapter 8 for details about each call.

6.7.1 Set Example
The following example code shows how a client program calls the acmsmgmt_set_
param_2 procedure to change the values of the proc_mon_interval and mss_coll_
interval parameters.

This example assumes client initialization has been performed as described in
Section 6.4.

int set_param_data(int client_id,CLIENT *cl)
{

int x = 0;
int y = 0;

static param_config_rec2 set_struct;
param_status_rec2 *ret_struct;
static int *status;

/* initialize input argument; values < 0 are not processed
by the server */

memset(&set_struct,-1,sizeof(set_struct));

/* establish the client id */
set_struct.client_id = client_id;
set_struct.params.proc_mon_interval = 60;
set_struct.params.mss_coll_interval = 60;

ret_struct = acmsmgmt_set_param_2(&set_struct,cl);

if (!ret_struct) {
printf("\nCall to modify parameters failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to modify parameters failed, returning %d",

ret_struct->status);
status=ret_struct->status;

xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

if (ret_struct->param_status_rec_u.data.proc_mon_interval != MGMT_SUCCESS)
printf("\n Call to modify proc_mon_interval failed");

if (ret_struct->param_status_rec_u.data.mss_coll_interval != MGMT_SUCCESS)
printf("\n Call to modify mss_coll_interval failed");

xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}
else

printf("\n Call to update parameters successful");
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);

return(0);
}

In this example, note that the input argument (set_struct) is initialized to
negative values prior to the call. The Remote Manager will attempt to apply
updates for any positive values found; negative values are ignored.

6–12 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.7 Set Procedures

Following the call to the update routine, the return record pointer is tested to
ensure that it is not NULL (that is, that the call completed). Then individual
return codes are tested to determine the status of the updates. The first status
check (ret_rec->status) determines the overall call status. For instance, security
violations will be recorded in this field. If that status field contains a failure
code, no updates were attempted. If that status field contains MGMT_SUCCESS,
updates were attempted for the two fields. The subsequent status checks in the
return record determine the outcome of those updates.

6.8 Delete Procedures
Delete procedures are available for the Collection, Error Filter, and Trap tables.
Delete procedures allow you to remove rows from the corresponding table. As
Table 6–5 shows, a separate delete procedure is available for each of these tables.

The delete procedures require an input record with key data to be passed by the
caller. A simple status code is returned indicating the success or failure of the
operation.

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6–5 Delete Procedures

Procedure Description

acmsmgmt_delete_collection_1 Key value is entity, ID, and class.

acmsmgmt_delete_err_filter_2 Key value is message code.

acmsmgmt_delete_trap_1 Key value is entity, ID, and parameter.

6.8.1 Delete Example
The following example code shows how a client program calls the acmsmgmt_
delete_collection_1 procedure to remove a collection row.

This example assumes that client initialization has been performed as described
in Section 6.4.

int del_coll_data(int client_id,CLIENT *cl)
{

static int *status;
static coll_del_rec set_struct;
static char ent_name[MGMT_S_ENTITY_NAME];

set_struct.client_id = client_id;
set_struct.entity_type = MGMT_ACC;
strcpy(ent_name,"*");
set_struct.entity_name = ent_name;
set_struct.collection_class = MGMT_CLASS_ALL;

status = acmsmgmt_delete_collection_1(&set_struct,cl);

if (!status) {
printf("\n Call to delete collection failed");
return(MGMT_FAIL);

}

Management Programming Using ONC RPC 6–13

Management Programming Using ONC RPC
6.8 Delete Procedures

if (*status != MGMT_SUCCESS) {
printf("\nCall to delete collection failed with status %d",*status);
return(MGMT_FAIL);

}
else

printf("\nCall to delete collection was executed");
free(status)

return(0);
}

In this example, the input record is prepared with key information, and then
the call to delete the row is performed. Following the call to the delete routine,
the value pointed by status is checked for success or failure. In either event, a
message is printed out indicating the completion status of the call.

6.9 Add Procedures
Add procedures are available for the Collection, Error Filter, and Trap tables.
Add procedures provide the ability to add rows to the corresponding table. As
shown in Table 6–6, a separate add procedure is available for each of these tables.

The add procedures require an input record with an entire table row, including
unique key data to be passed by the caller. The Remote Manager validates the
input fields before adding the record, including checking for duplicate keys. A
record is returned with an overall status code indicating the success or failure
of the operation, and with individual status codes for each field indicating which
fields are invalid.

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6–6 Add Procedures

Procedure Description

acmsmgmt_add_collection_2 Key value is entity, ID, and class.

acmsmgmt_add_err_filter_2 Key value is node and message code.

acmsmgmt_add_trap_1 Key value is entity, ID, and parameter.

6.9.1 Add Example
The following example code shows how a client program calls the acmsmgmt_
add_collection_2 procedure to add a collection row.

This example assumes client initialization has been performed as described in
Section 6.4.

int add_collection_data(int client_id,CLIENT *cl)
{
static char c_name_all[2] = "*";
static coll_config_rec_2 set_struct;
struct coll_status_rec_2 *status_rec;

set_struct.client_id = client_id;
set_struct.coll.entity_type = MGMT_ACC;
set_struct.coll.entity_name = c_name_all;
set_struct.coll.collection_class = MGMT_CLASS_ALL;
set_struct.coll.collection_state = MGMT_STATE_ENABLED;

status_rec = acmsmgmt_add_collection_2(&set_struct,cl);

6–14 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.9 Add Procedures

if (!status_rec) {
printf("\n Call to add collection record failed");
return(MGMT_FAIL);

}

if (status_rec->status == MGMT_WARN) {
printf("\nThe following fields are invalid: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type == MGMT_FAIL)

printf("\n entity_type");
if (status_rec->coll_status_rec_2_u.data_warn.collection_class

== MGMT_FAIL)
printf("\n collection_class");

if (status_rec->coll_status_rec_2_u.data_warn.collection_state
== MGMT_FAIL)

printf("\n coll_state");
return(0);

}
else if (status_rec->status != MGMT_SUCCESS) {

printf("\nCall to add collection failed with status",
status_rec->coll_status_rec_2_u.rc);

xdr_free(xdr_coll_status_rec_2,status_rec);
free(status_rec);

return(0);
}
else

printf("\nCall to add collection was executed");
xdr_free(xdr_coll_status_rec_2,status_rec);
free(status_rec);

return(1);
}

In this example, the input record is prepared with key and data values, and then
the call to add the row is performed.

Following the call to the add routine, the return record pointer is tested to ensure
that it is not NULL (that is, that the call completed). Then the overall status
code (status_rec->status) is checked to determine whether the add was performed.

A status value of MGMT_WARN indicates that some fields were in error, so
individual return codes are tested to determine which fields were invalid.

A status value other than MGMT_WARN or MGMT_SUCCESS means a general
error occurred. A value of MGMT_SUCCESS means the record was added.

6.10 Start, Stop, and Replace Procedures
These three types of procedures are similar in the way they are called and in
the data that is returned to them, even though they do very different operations.
Start and stop procedures are used to start or stop various ACMS processes; the
replace procedure is used to replace a running procedure server in an application.

An exception is the call to the acmsmgmt_stop_1 procedure, which requests the
Remote Manager to shut down. For more information about the acmsmgmt_stop_
1 procedure, see Chapter 8.

For the rest of the start, stop, and replace procedures, an input record, which
contains key data or startup or shutdown qualifier flags, is provided by the caller;
the return data contains a status code and a linked list of status messages.
Status messages are generated by ACMSOPER and are returned in their entirety.
(Linked-list processing is illustrated in Section 6.6.1.)

All calls are synchronous.

Management Programming Using ONC RPC 6–15

Management Programming Using ONC RPC
6.10 Start, Stop, and Replace Procedures

See Chapter 8 for details about each call.

Table 6–7 Start, Stop, and Replace Procedures

Procedure Description

acmsmgmt_replace_server_1 Key is application name and server name.

acmsmgmt_start_acc_1 No keys; specify auditing, QTI, and terminal disposition.

acmsmgmt_start_exc_1 Key is application name; no startup qualifiers.

acmsmgmt_start_qti_1 No keys or qualifiers.

acmsmgmt_start_trace_
monitor_1

No keys or qualifiers.

acmsmgmt_start_tsc_1 No keys or qualifiers.

acmsmgmt_stop_1 No keys or qualifiers.

acmsmgmt_stop_acc_1 No keys; specify cancel disposition.

acmsmgmt_stop_exc_1 Key is application name; specify cancel disposition.

acmsmgmt_stop_qti_1 No keys or qualifiers.

acmsmgmt_stop_trace_
monitor_1

No keys or qualifiers.

acmsmgmt_stop_tsc_1 No keys or qualifiers.

6.10.1 Start Example
The following example code shows how a client program calls the acmsmgmt_
start_acc_1 procedure to start ACMS on a remote node. In this example, the QTI
and TSC are started along with the system, and system auditing is enabled.

This example assumes client initialization has been performed as described in
Section 6.4.

int start_acc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static acc_startup_rec start_struct;
static cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.audit_sw = 1;
start_struct.qti_sw = 1;
start_struct.terminals_sw = 1;

ret_struct = acmsmgmt_start_acc_1(&start_struct,cl);

if (!ret_struct) {
printf ("\n Call to start ACMS system failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS system failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

printf("\n Call to start ACMS system completed with warnings or
errors");

6–16 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.10 Start, Stop, and Replace Procedures

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}
else {

printf("\nCall to start ACMS system was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In this example, the input record is prepared with qualifier data, and then the
call to start the system is performed. Auditing is enabled, and QTI and TSC will
be started with the sytem.

The return value from the calls to the start, stop (except acmsmgmt_stop_1), and
replace procedures is a pointer to a union. If the pointer returned is NULL, the
call has failed. RPC error checking must be used to determine the cause of the
error. If a valid pointer is returned, it points to a structure containing a union
with the following structure:

union cmd_output_rec switch (int status) {
case MGMT_WARN:

cmd_rec data_warn;
case MGMT_SUCCESS:

cmd_rec data;
case MGMT_FAIL:

int rc;
default:

void;
};

The status field determines which structure is being returned. If the status is
equal to MGMT_FAIL, the rc field is returned. The rc field contains a status code
indicating the reason for failure.

If the status field is not equal to MGMT_WARN or MGMT_SUCCESS, a pointer
to a linked list has been returned. The linked list contains a text field and a
forward pointer. By following the forward pointers, all the records in the list can
be retrieved. Section 6.6.1 illustrates how to follow the linked list.

In either case, the example code prints out the contents of all the strings in the
linked list. These strings are status messages returned by ACMSOPER.

Management Programming Using ONC RPC 6–17

7
Management Programming Using SNMP

Programmers who want to access and maintain the ACMS Remote Manager from
their own programs can use the following two interfaces:

• Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers
who want to write custom tools and applications that access the ACMS
Remote Manager. For more information, see Chapter 6.

• Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management
packages such as PATROL® from BMC® and Tivoli from IBM®.

This chapter discusses the SNMP interface. Programmers who are familiar with
SNMP console programming can use this information when writing routines
that interact with the ACMS Remote Manager using the SNMP protocol. The
information in this chapter is also useful for programmers who are integrating
the ACMS Remote Manager with other enterprise management packages through
the SNMP protocol.

The ACMS Remote Manager implements the management information base
(MIB) for SNMP. To access ACMS MIB information through SNMP, you must
have an SNMP-enabled console (such as PATROL® from BMC®) or you can use
an SNMP MIB browser such as the one provided by HP TCP/IP Services for
OpenVMS, which includes the TCPIP$SNMP_REQUEST.EXE utility.

Alternatively, you can write your own SNMP interface. For more information
about programming SNMP, refer to Windows NT SNMP by James D. Murray,
published by O’Reilly & Associates, Inc., Sebastopol, CA.

7.1 SNMP Overview
The ACMS Remote Manager implements a MIB for ACMS. When the SNMP
interface is enabled, either during or after Remote Manager process startup, it
registers the ACMS subtree with the local SNMP master agent. SNMP console
requests go first to the SNMP master agent (provided by the installed TCP/IP
software, such as HP TCP/IP Services for OpenVMS), which in turn delivers them
to the ACMS Remote Manager. Figure 7–1 illustrates the SNMP interface with
the ACMS Remote Manager.

Communications between the SNMP interface and the master agent use the
eSNMP protocol. This protocol is transparent to SNMP consoles.

Management Programming Using SNMP 7–1

Management Programming Using SNMP
7.1 SNMP Overview

Figure 7–1 SNMP Program Interface with Remote Manager

SNMP management
consoles

VM-0330A-AI

SNMP master
agent

ACMS Remote
Manager

(SNMP subagent)

ACMS
run-time system

SNMP eSNMP

The ACMS Remote Manager provides management information to SNMP
management platforms in response to snmp_get and snmp_getnext messages.
Management platforms can modify many management data elements by sending
the appropriate snmp_set message. If any traps have been configured, the ACMS
Remote Manager will generate SNMP traps when the Remote Manager detects a
trap condition (for example, when an ACMS process starts or stops).

All Management table fields are available to SNMP management applications
through get operations, but not all fields can be set. In general, the fields that
can be set are Configuration class fields (in ACMS entity tables) and nearly all
Manager configuration table fields. See Chapter 9 for a list of all tables and
fields.

Object identifier (OID) values are documented in the file MIB_OID.LIS available
from the directory ACMS$RM_EXAMPLES. This file presents a list of the
ACMS MIB fields and their corresponding SNMP OIDs, as generated from the
files MGMTMIB.MY and RFC1155.MY. The MGMTMIB.MY file is found in the
ACMS$RM_EXAMPLES. For information about RFC1155, visit the Internet
Engineering Task Force (IETF) web site at http://www.ietf.org/.

The information in this list is presented in the form of a table that identifies the
name, object identifier, data type, access privilege associated with each ACMS
MIB field.

Note

The MIB list is subject to change with each release of ACMS. To obtain
the most current information, consult the source document (ACMS$RM_
EXAMPLES:MGMTMIB.MY), or regenerate the file, as follows:

$ MIBCOMP MGMTMIB.MY,RFC1155.MY "ACMS" /PRINT

7.2 SNMP Security
Security for the SNMP interface is enforced first by the SNMP master agent
(not the ACMS MIB). SNMP supports the concept of communities, which are
essentially node inclusion lists. Whoever installs and configures the SNMP
software package (typically the network manager) sets up SNMP communities.

7–2 Management Programming Using SNMP

Management Programming Using SNMP
7.2 SNMP Security

Nodes that are part of the SNMP community to which the subagent belongs can
connect to the master agent; any node that can connect to the master agent can
connect and interact with the subagent. All SNMP communities are allowed
any combination of read, write, and trap access. Nodes that are not part of the
community do not have access to the master agent.

Note that communities work at the node level only. It is not possible to restrict
the access of individual user accounts on the node, although it may be possible to
restrict access to the SNMP console software on a per-user basis. Note also that
node authentication itself is relatively weak and provides no safeguards against
masquerades or other forms of network deception.

As a second level of security, the ACMS Remote Manager requires that a special
OpenVMS account (ACMS$SNMP) be created for the SNMP interface on nodes
on which the Remote Manager runs. The account must be granted OpenVMS
rights for read, write, operate access, or update (or some combination of these)
to Remote Manager data and functions. This allows ACMS system managers to
grant read access, for instance, through the SNMP interface, but to prevent write,
operate, or update access. See Section 4.4 for a discussion of how to configure
Remote Manager authentication and authorization for the SNMP interface.

7.3 Initializing the SNMP Interface
In order for SNMP consoles to communicate with the ACMS Remote Manager
through SNMP, the Remote Manager SNMP interface must have been started.
The SNMP interface runs as a separate thread in the Remote Manager and can
be started or stopped at any time without restarting the Remote Manager.

The SNMP interface is started using the SET INTERFACE command. The
current state of the interface can be determined using the SHOW INTERFACE
command. Refer to Section 4.5 for more information about using ACMSCFG and
ACMSMGR to start and stop interfaces.

During startup, the SNMP interface first performs some housekeeping tasks and
then attempts to register with the SNMP master agent.

In order for the SNMP interface to initialize successfully, the following conditions
must be met:

• The ACMS$SNMP account on the Remote Manager node must exist.

• The ACMS$MGMT_READ, ACMS$MGMT_WRITE, ACMS$MGMT_OPER,
and ACMS$MGMT_SYSUPD rights identifiers must exist. At least one of
these identifiers must be granted to the ACMS$SNMP account.

• The SNMP master agent must be running on the Remote Manager node.

If any of the initialization tasks fail, or if registration fails, the SNMP interface
writes error messages to the Remote Manager log and the thread exits. In this
case, users should check the Remote Manager log for messages, correct the
problem, and restart the interface.

During initialization, the Remote Manager establishes a timeout that the master
agent will use when communicating with it. The timeout is based on the value of
the Remote Manager parameter SNMP_AGENT_TIME_OUT.

If initialization is successful, the SNMP interface thread waits for incoming
SNMP requests. The wait times out periodically (based on the Remote Manager
parameters SNMP_SEL_TIME_OUT and SNMP_ARE_YOU_THERE stored in
the Parameter table), and checks to make sure the SNMP master agent is still

Management Programming Using SNMP 7–3

Management Programming Using SNMP
7.3 Initializing the SNMP Interface

running by sending an ‘‘are you there’’ message to the master agent. If the
master agent responds, the Remote Manager continues to wait for incoming
messages. If the master agent does not respond, the SNMP interface thread
attempts to restart the connection. If the restart fails, the SNMP thread exits.

7.4 SNMP Tables
The tables in Chapter 9 and the tables defined in the ACMS MIB map to each
other on a one-to-one basis. However, data types are slightly different between
SNMP and RPC, most significantly in the use of the gauge structure type.
Section 7.4.1 describes data type mapping.

When accessing any of the ACMS MIB tables, it is important to keep in mind the
dynamic nature of the ACMS run-time system. ACMS entities may be stopped
and restarted; collection states for the entities may change dynamically; new
processes (especially EXC and CPs) may be created. It is also important to
understand that the size of some ACMS MIB tables may change when either the
ACMS run-time system is restarted, or even as certain processes are started and
stopped.

If the proper access strategies are not used when getting or setting ACMS MIB
data, unpredictable and erroneous results can occur.

Different access strategies must be used for different types of tables. In the
ACMS MIB, there are three types of tables. Specific access strategies for each
table type are discussed in separate sections, as follows:

• Single-row tables (see Section 7.4.2)

• Static tables (see Section 7.4.3)

• Dynamic tables (see Section 7.4.4)

Also refer to Section 7.4.5 for a discussion of how the Server and Task Group
tables are indexed.

Regardless of the type of table, identity and state validation should be performed
for all ACMS entity tables (ACC, TSC, CP, QTI, EXC, server, task group).

Identity validation is performed by storing the PID field of the process occupying
the row the first time the row is accessed. Then, when revisiting the table, get
the PID along with the data values. Then check that the PID has not changed. If
it has, the data refers to a new process.

Note that the process name is not a good means of identifying a process, because
process names can be reused between entity executions.

Also note PID is not an ID class field for servers and task groups. For these two
entity types, the EXC PID should be used.

State validation is performed by checking the collection state for the class that
contains the field. For instance, if the exc-current-waiting-tasks-num (in the EXC
run-time class) is being monitored, ensure that the exc-rt-coll-state is enabled
(equal to 1). Otherwise, the value in that field is no longer being updated by the
EXC, and is no longer accurate.

7–4 Management Programming Using SNMP

Management Programming Using SNMP
7.4 SNMP Tables

7.4.1 Data Type Mapping
The ACMS Remote Manager implements three data types:

• Integer

• String

• Gauge

The integer and string data types map directly to the SNMP INTEGER and
DisplayString data types.

The gauge data type defined for the Remote Manager is not the same as the
SNMP Gauge type. In order to avoid confusion, the Remote Manager SNMP
interface maps the Remote Manager gauge fields to SNMP INTEGER and
DisplayString data types. So for each Remote Manager gauge data type, three
fields are defined in the MIB: the current field value, the maximum (or minimum)
field value, and the maximum (or minimum) field value time.

For example, consider the ACC run-time field current_appls. This is defined as
a Remote Manager gauge data type in Section 9.2. In the MIB, three fields are
defined:

acc-current-appls-num INTEGER,
acc-current-appls-max INTEGER,
acc-current-appls-time DisplayString

This is the case for all Remote Manager gauge data types. For Remote Manager
min gauge data types, there is a -min field instead of a -max field. For both gauge
data types, time is expressed in the form DD-MMM-YYYY HH:MM:SS.hh.

7.4.2 Single-Row Tables
Access to single-row tables is straightforward, because only a single row is ever
accessed. The following are single-row tables:

• ACC table

• QTI table

• TSC table

• Parameter table

• Remote Manager table

Bounds checking need not be performed. However, for Entity tables (ACC, QTI,
TSC), both identity and state validation must be performed.

7.4.3 Static Tables
Static tables are sized when the parent process starts and do not change as long
as the parent process is running. For each static table, there is a field in the
table of the parent process that indicates the upper bound of the static table.

Table 7–1 shows the static tables, their parent process, and the field that
indicates the upper bound of the table.

Management Programming Using SNMP 7–5

Management Programming Using SNMP
7.4 SNMP Tables

Table 7–1 Static Tables

Table Parent Process Upper Bound (field and table)

CP TSC tsc-cp-slots-active in the TSC table

EXC ACC acc-max-appl-active in the ACC table

Server EXC exc-server-types in the EXC table

Task Group EXC exc-task-groups in the EXC table

Interfaces Remote Manager rmIfCt in the Remote Manager table

Collection Remote Manager totl-entity-slots in the Parameter table

In static tables, table data is not always contiguous and table rows can be reused.
The PID field should be used to establish process identity.

For example, consider the following CP table. Assume that the first CP is
permanent, and the second two are not.

Table Row CP process name CP PID
1 ACMS01CP001000 2040013D
2 ACMS01CP002000 2040013E
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially would find all three CP
instances; access to table row 4 would return an error. However, if the users
attached to the CP in table row 2 log out, the CP terminates and the table now
looks like this:

Table Row CP process name CP PID
1 ACMS01CP001000 2040013D
2
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially and stopping when the
first error is returned would find only the first CP. Access to the second row
would return an error. Therefore, when scanning static tables, it is important to
examine all rows of the table before terminating the scan; that is, perform a loop
based on the tsc-cp-slots-active field in the TSC table.

Finally, consider what happens if a new CP now starts. The table would look as
follows:

Table Row CP process name CP PID
1 ACMS01CP001000 2040013D
2 ACMS01CP002000 20400140
3 ACMS01CP003000 2040013F

Table row 2 is now valid again, but a different process occupies it. Therefore, any
cached information for table row 2 is invalid and must be refreshed with the data
from the new process.

7.4.4 Dynamic Tables
Dynamic tables do not have a fixed upper bound; they grow and shrink as entries
are added and removed. However, data in dynamic tables is always contiguous,
so there are never invalid rows stored between valid rows. When a row becomes
invalid because it is empty or unoccupied, it is removed from the table and the
remaining rows are renumbered.

The following are dynamic tables:

• User table

7–6 Management Programming Using SNMP

Management Programming Using SNMP
7.4 SNMP Tables

• Log table

• Trap table

To see how a dynamic table changes when a table row is removed, assume that a
user table has the following contents:

Table row User Name Client Id
1 User1 1
2 User2 2
3 User3 3
4 User4 4

If User2 logs out, the contents of the table would change as follows:

Table row User Name Client Id
1 User1 1
2 User3 3
3 User4 4

As with static tables, you must ensure that the table row being accessed has not
been reused or renumbered. Among dynamic tables, only the Trap and Error
Filter tables allow updates. Note that entries are never deleted or modified in the
Log table; new entries are always appended to the end.

7.4.5 Servers and Task Groups
The Servers and Task Group tables are indexed by a compound index. For both
tables, the first key value is the table row of the owning EXC; the second key
value is the Server or Task Group row. When fetching or setting Server or Task
Group rows, you must first determine the EXC (application) they belong to, and
then determine the particular server or task group.

For example, assume the EXC table has a total of four rows. Application Appl1
occupies row 1, and has two servers (ServerA and ServerB) and one task group
(TaskGroupA). Application Appl2 occupies row 3 and has two servers (ServerC
and ServerD) and two task groups (TaskGroupB, TaskGroupC). EXC table rows 2
and 4 are unused. Table 7–2 and Table 7–3 list the contents of each table.

Table 7–2 EXC Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Row Contents

1 Appl1

2 (unused)

3 Appl2

4 (unused)

Table 7–3 Server Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Server) Contents

1 1 ServerA

1 2 ServerB

3 1 ServerC

3 2 ServerD

Management Programming Using SNMP 7–7

Management Programming Using SNMP
7.4 SNMP Tables

Table 7–4 Task Group Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Task Group) Contents

1 1 TaskGroupA

3 1 TaskGroupB

3 2 TaskGroupC

In order to access the ser-server-name field for ServerA in application Appl1, the
OID would be 1.3.6.1.4.1.36.2.18.48.14.1.3.1.1 To access the same field for ServerD
in Appl2, the OID would be 1.3.6.1.4.1.36.2.18.48.14.1.3.3.2.

You can always determine from the OID which application a server or task group
belongs to because ACMS requires that each server be given a unique name
within the application.

7.5 SNMP GET Operations
SNMP get requests are satisfied at the time they are received by the subagent.
Get requests can take one of three forms: get, get next, and get bulk.

• Get operations are simple requests for single data items.

• Get next requests are iterative requests for logically sequential information.

• Get bulk requests obtain a logical sequence of information in a single request.

The SNMP subagent for ACMS supports only the first operation. SNMP ‘‘walks’’,
if performed, return unpredictable results.

OIDs for ACMS Management tables are documented in the file MIB_OID.LIS
available from the directory ACMS$RM_EXAMPLES. The MIB definition for
the ACMS subtree is also provided in ACMS$RM_EXAMPLES, in the file
MGMTMIB.MY.

In order for SNMP get requests to complete successfully, the following conditions
must be met:

• The ACMS$SNMP account on the Remote Manager node must be granted the
ACMS$MGMT_READ identifier.

• The SNMP interface must already be started.

• The ACMS run-time system must already be started (to access ACMS entity
information).

General eSNMP return codes are returned from the Remote Manager for SNMP
get requests (see Section 7.10). For details about a specific error, refer to the
Remote Manager log.

7.6 SNMP SET Operations
SNMP set requests are executed at the time they are received by the subagent
and are applied to the running system. However, not all fields that can be set
are dynamic; the actual implementation of modification may not occur until the
affected entities are restarted.

For more discussion about updates that modify the ACMS run-time system, see
Section 5.4.

7–8 Management Programming Using SNMP

Management Programming Using SNMP
7.6 SNMP SET Operations

OIDs for ACMS Management tables are documented in the file MIB_OID.LIS
available from the directory ACMS$RM_EXAMPLES. The MIB definition for
the ACMS subtree is also provided in ACMS$RM_EXAMPLES, in the file
MGMTMIB.MY.

In order for SNMP set requests to complete successfully, the following conditions
must be met:

• Depending on the operation being performed, the ACMS$SNMP account
on the Remote Manager node must be granted one or more of the following
identifiers: ACMS$MGMT_WRITE, ACMS$MGMT_OPER, ACMS$MGMT_
OPER, or ACMS$MGMT_SYSUPD (see Appendix B).

• The SNMP interface must already be started.

• The ACMS run-time system must already be started (to update ACMS entity
information).

General eSNMP return codes for SNMP get requests are returned from the
Remote Manager (see Section 7.10). For details about a specific error, refer to the
Remote Manager log.

7.7 Using SNMP to Start and Stop ACMS Entities
To start and stop ACMS entities (or to stop the Remote Manager), the Remote
Manager allows SNMP users to modify the ID class field running_state. In
general, ID class fields are read only. However, since SNMP does not support a
START or STOP command, the SET command must be used.

Modifications to the running_state fields are not performed directly by the
Remote Manager. Instead, the Remote Manager uses ACMSOPER commands to
request the shutdown or startup of the ACMS entity. The ACMS entities update
the running_state field when they start or stop.

For instance, to start the ACMS run-time system, an SNMP console program
issues an SNMP SET command for the ACC running_state OID, specifying the
value ‘‘started’’. The Remote Manager interprets this message as an attempt to
start the system and issues the appropriate ACMSOPER command.

The SNMP set call is synchronous. That is, it does not complete until the ACMS
operation has completed.

Failure messages related to start or stop requests are written to the Remote
Manager log.

7.8 SNMP Traps
SNMP traps provide a means of automatically notifying the system support team
when a warning or error condition exists. Users configure SNMP traps in the
SNMP trap table; when a matching condition or event occurs, an SNMP trap is
generated. SNMP management consoles listen for SNMP traps and then respond
in a console-dependent (and usually user-configurable) manner.

See Section 9.14 for a discussion of the Trap table and the format of trap
messages.

At run time, SNMP traps can be generated as the result of either an ACMS
process starting or stopping, or an event that occurred within the Remote
Manager (for example, a failure in communications with ACMS).

Management Programming Using SNMP 7–9

Management Programming Using SNMP
7.8 SNMP Traps

ACMS system managers configure traps by modifying the Trap table, either by
using the ACMSCFG utility prior to Remote Manager startup or by using the
ACMSMGR utility after the Remote Manager has been started. Changes made
using ACMSCFG do not affect the running system until the Remote Manager
is restarted; changes made using ACMSMGR are not saved when the Remote
Manager stops.

The configuration process is the same with either utility. You use the ADD TRAP
command to add new traps, use the DELETE TRAP command to remove traps,
and use the SET TRAP command to modify traps.

Keep in mind that although you can add, delete, or modify entries in the trap
table at almost any time, traps will not be generated unless the SNMP interface
is started. In addition, traps are not queued if the SNMP interface is disabled.

The combination of entity, name, and parameter uniquely identify a trap in the
Trap table. For each trap, a minimum and a maximum value can be specified,
along with a severity. Minimum and maximum trap values specify thresholds
that trigger traps when the associated parameter is either greater than or less
than the threshold. Minimum and maximum trap values are parameter specific.

A special value of -1 is used as a placeholder when creating a trap for which a
minimum or maximum does not apply. In many situations, only the minimum
or maximum value setting is meaningful. In this instance, set the desired field
(minimum or maximum) to the threshold value, and set the other to -1.

Two trap parameters are supported:

• EXISTS (see Section 7.8.1)

• EVENT_SEVERITY (see Section 7.8.2)

7.8.1 EXISTS Traps
The trap parameter EXISTS allows traps to be generated based on whether an
ACMS process starts or stops.

Specifying a minimum trap value of 1 for a process specifies, in effect, that a
trap should be generated whenever the process stops — that is, when the process
existence is less than 1.

Specifying a maximum value of 0 specifies that a trap should be generated
whenever the process starts — that is, when the processes existence is greater
than 0.

A minimum value of 0 or a maximum value of 1, while valid, is basically useless,
since the EXISTS parameter is never greater than 1 or less than 0.

7.8.2 EVENT_SEVERITY Traps
The trap parameter EVENT_SEVERITY allows traps to be generated based on
the facility and severity of events being logged to the Remote Manager log. For
example, an EVENT_SEVERITY trap can be configured for Remote Manager
SNMP events with severity higher than WARNING (such as ERROR or FATAL).
Any time a Remote Manager SNMP operation fails with a severity higher than
WARNING, an SNMP trap is generated.

Other facilities that can be monitored are:

• * (all)

• MGR (Remote Manager main process)

7–10 Management Programming Using SNMP

Management Programming Using SNMP
7.8 SNMP Traps

• PROCMON (process monitor thread)

• RPC (RPC interface thread)

• SNAP (data snapshot thread)

• SNMP (SNMP interface thread)

• SEC (security routines)

• LOG (event logging thread)

• TIMER (internal timer thread)

• DCL (DCL subprocess management thread)

• MSG_PROC (processes incoming ACMS errors)

• TRAP (trap sender thread)

Use care when you configure traps so that you do not create unnecessary
traps. In general, traps are intended to be used to signal significant events.
For instance, specifying a minimum severity of FATAL or ERROR causes all
informational and warning messages to generate traps. This is probably not a
good use of network or console resources.

7.9 SNMP Debug Tracing
In addition to the normal logging the Remote Manager performs, it is possible
to enable debug-level SNMP tracing. This level of tracing is performed by the
eSNMP TCP/IP code layer and may not be available for all TCP/IP products. The
HP TCP/IP Services for OpenVMS product supports debug-level SNMP tracing. If
you use a third-party TCP/IP product, check with that vendor regarding support
for this option.

Debug-level tracing of the Remote Manager SNMP interface can be valuable for
developing SNMP console applications or for trying to debug a particular SNMP
environmental problem. However, it is relatively resource intensive and should
be performed in a controlled environment for short durations.

To enable debug-level SNMP tracing, the Remote Manager must be started with
the command line argument LOG_TO_SYSOUT, as follows:

@sys$startup:acms$mgmt_startup LOG_TO_SYSOUT

The SNMP_AUDIT_LEVEL parameter must be greater than 0. When
the SNMP interface is started, it will enable debug-level tracing in the
eSNMP code layer. All output is directed to SYS$OUTPUT for the Remote
Manager process, which is redirected by the startup command procedure to
SYS$ERRRORLOG:ACMS$MGMT_SERVER.OUT.

7.9.1 Starting SNMP Debug Tracing
To start the Remote Manager with debug-level SNMP tracing, run the startup
command procedure SYS$STARTUP:ACMS$MGMT_STARTUP, specifying
LOG_TO_SYSOUT as the only parameter to the command procedure, as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP LOG_TO_SYSOUT

Once the Remote Manager has been started and the SNMP interface has been
enabled, make sure that the SNMP_AUDIT_LEVEL parameter is greater than 0.
To do this, use the following ACMSMGR command:

$ ACMSMGR SET PARAM/SNMP_AUDIT_LEVEL=F

Management Programming Using SNMP 7–11

Management Programming Using SNMP
7.9 SNMP Debug Tracing

The SNMP debug output is written to SYS$ERRORLOG:ACMS$MGMT_
SERVER.OUT, which is an ASCII file that can be typed or edited.

7.9.2 Stopping SNMP Debug Tracing
To stop debug-level SNMP tracing, either restart the Remote Manager (without
the LOG_TO_SYSOUT parameter), or use the following command to set the
SNMP_AUDIT_LEVEL parameter to 0:

$ ACMSMGR SET PARAM/SNMP_AUDIT_LEVEL=0

7.10 Remote Manager eSNMP Return Codes
Table 7–5 describes the return codes returned by the Remote Manager eSNMP
routines.

Table 7–5 Remote Manager eSNMP Routines Return Codes

Return Code Description

ESNMP_MTHD_commitFailed An attempt to apply an update failed. This
is also returned from a start or stop attempt
that fails. Refer to the Remote Manager log
for details.

ESNMP_MTHD_genErr An internal error occurred. This could be
due to security violations, a failure updating
a particular field, or an internal processing
error. Refer to the Remote Manager log for
details.

ESNMP_MTHD_noCreation The table does not allow new rows to be
created. The OID specified for the set
operation indicates a table row that does
not exist, and the table does not allow new
rows to be created.

ESNMP_MTHD_noError The set operation was successful.

ESNMP_MTHD_noSuchInstance A request was made for a variable that does
not exist. Either the OID is invalid, or the
particular table row does not exist (is out of
bounds).

ESNMP_MTHD_noSuchObject The column specified does not exist.

ESNMP_MTHD_notWritable An attempt was made to set a variable that
is read only.

ESNMP_MTHD_resourceUnavailable The table row exists (is within the bounds of
the table) but is currently unused (empty).

ESNMP_MTHD_wrongValue An attempt was made to update a field with
an invalid value.

7–12 Management Programming Using SNMP

Part II
Reference Information

Part II contains reference information for the ACMS Remote Manager.

8
Management APIs

The Management APIs are intended to be called from Open Network Computing
(ONC) Remote Procedure Call (RPC) clients. ONC RPC Interface Definition
Language (IDL) for all procedures is contained in the file ACMS$RM_
EXAMPLES:ACMSMGMT_RPC.X.

Programmers who write client programs are strongly urged to become familiar
with the contents of this file. Many programming questions can be answered by
looking at the actual RPC definitions. All structure definitions, for example, are
contained within this file.

The procedures documented in this chapter are based on the most current record
and field data available with Version 4.4 of the Remote Manager. Procedures
names with _2 indicate new or modified API functions that take advantage of
this new data. These procedures should only be called from a Remote Manager
Version 4.4 server system.

To ensure backwards compatibility, the _1 version of all calls is still available and
provided with the Remote Manager Version 4.4 software.

Note

The acms$mgmt_get_creds procedure is not included in the ACMSMGMT_
RPC.X IDL because it is not a remote procedure call. It is a statically
linked, locally executed function for those clients performing explicit
authentication. The ACMS$MGMT_GET_CREDENTIALS.OBJ object
module is located in the ACMS$RM_EXAMPLES directory.

The acms$mgmt_get_creds procedure is for use by ONC RPC clients only.

8.1 Common RPC Fields
The tables in this section list commonly used fields and their values.

8.1.1 Collection Classes
Table 8–1 shows the symbolic names for Remote Manager collection classes.

Management APIs 8–1

Management APIs
8.1 Common RPC Fields

Table 8–1 Collection Classes

Symbolic Name Description

MGMT_CLASS_ALL All classes

MGMT_CLASS_CFG Config class

MGMT_CLASS_ERROR Error class

MGMT_CLASS_ID ID class

MGMT_CLASS_POOL Pool class

MGMT_CLASS_RT Runtime class

8.1.2 Interface Types
Table 8–2 shows the symbolic names for Remote Manager interfaces.

Table 8–2 Interface Types

Symbolic Name Description

MGMT_IF_RPC Remote Procedure Call (RPC) interface

MGMT_IF_SNMP Simple Network Management Protocol (SNMP) interface

8.1.3 Enable States
Table 8–3 shows the symbolic names for Remote Manager enable states.

Table 8–3 Enable States

Symbolic Name Description

MGMT_STATE_DISABLED Disabled

MGMT_STATE_ENABLED Enabled

8.1.4 Entity Types
Table 8–4 shows the symbolic names for Remote Manager entity types.

Table 8–4 Entity Types

Symbolic Name Description

MGMT_ACC Application Central Controller (ACC) process

MGMT_AGENT User-written agents

MGMT_ALL All entities

MGMT_CP Command Process (CP) process

MGMT_EXC Application Execution Controller (EXC) process

MGMT_MGR Remote Manager process

MGMT_QTI Queued Task Initiator (QTI) process

MGMT_SER Procedure server types

MGMT_TG Task groups

MGMT_TSC Terminal Subsystem Controller (TSC) process

MGMT_UNSUPPORTED Null value

8–2 Management APIs

Management APIs
8.1 Common RPC Fields

8.1.5 Facility Types
Table 8–5 shows the symbolic names for Remote Manager facility types.

Table 8–5 Facility Types

Symbolic Name Description

MGMT_FAC_ALL Any facility type.

MGMT_FAC_DCL A thread that manages a spawned DCL process. The DCL
process is used to execute ACMSOPER commands.

MGMT_FAC_LOG The event log writer thread.

MGMT_FAC_MGR The mainline Remote Manager process.

MGMT_FAC_MSGPROC A thread that handles messages coming in from ACMS
processes.

MGMT_FAC_PROCMON A thread dedicated to monitoring processes.

MGMT_FAC_RPC The RPC interface thread (listener and procedures).

MGMT_FAC_SEC Security routines in the Remote Manager.

MGMT_FAC_SNAP A thread dedicated to performing data snapshots.

MGMT_FAC_SNMP The SNMP interface thread (message loop and
procedures).

MGMT_FAC_TIMER A thread that controls timers for the Remote Manager.

MGMT_FAC_TRAP A thread that sends out SNMP traps.

8.1.6 Running States
Table 8–6 shows the symbolic names for Remote Manager running states.

Table 8–6 Running States

Symbolic Name Description

MGMT_STATE_INITED Process or object has initialized.

MGMT_STATE_INITING Process or object is initializing.

MGMT_STATE_LOAD_
DONE

Process or object has finished loading.

MGMT_STATE_LOADING Process or object is loading itself.

MGMT_STATE_STARTED Process or object has started and is ready to run.

MGMT_STATE_STARTING Process or object is starting the mainline.

MGMT_STATE_STOPPED Process or object is stopped.

8.1.7 Severity Codes
Table 8–7 shows the symbolic names for Remote Manager severities.

Severities are generally reported as simple severities (informational, warning,
error, fatal) but may be combined by logically ORing the values when used as
selection criteria (such as for selecting log records).

Management APIs 8–3

Management APIs
8.1 Common RPC Fields

Table 8–7 Severity Codes

Symbolic Name Description

MGMT_SEV_ERR Error

MGMT_SEV_FATAL Fatal

MGMT_SEV_INFO Informational

MGMT_SEV_NONE Null value

MGMT_SEV_WARN Warning

8.1.8 Trap Parameters
Table 8–8 shows the symbolic names for Remote Manager trap parameters.

Table 8–8 Trap Parameters

Symbolic Name Description

MGMT_EXISTS Existence traps

MGMT_SEVERITY Remote Manager severity traps

8.2 Thread-Safe and Non-Thread Safe Clients
Each of the procedures documented in this chapter (and those in ACMS$MGMT_
EXAMPLES.C) are designed to use the thread-safe client stub provided with
the Remote Manager, as described in the file ACMS$MGMT_EXAMPLES_
BUILD.COM. As a result, each procedure contains one or more "free" calls that
prevent memory leaks in multithreaded client implementations.

If you intend to build a multithreaded client, you must modify any existing,
customized API functions to include these calls, then recompile them along with
the thread-safe client stub.

If you want to implement a non-thread safe client using the RPC-generated stub,
omit the "free" calls. See ACMS$MGMT_EXAMPLES_BUILD.COM for detailed
build instructions.

8–4 Management APIs

ACMSMGMT_ADD_COLLECTION_2

8.3 ACMSMGMT_ADD_COLLECTION_2

This procedure adds entries to the Remote Manager Collection table. Collection
table entries can also be modified (see Section 8.35) and deleted (see Section 8.6).

Format

coll_status_rec_2 *acmsmgmt_add_collection_2(coll_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Coll_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

coll
Type: Coll_update_rec_r_2
Access: Read
Mechanism: By value
Usage: Structure containing a Collection table record.

Collection table fields are described in Section 9.4.
See the Description section for information on
how to initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–5

ACMSMGMT_ADD_COLLECTION_2

Return Value

Type: Coll_status_rec_2
Access: write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type coll_update_rec_r_2, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

status
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Coll_output_rec_r_2
Access: write
Mechanism: By value
Usage: Structure containing a Collection table record.

The entries in this field contain status codes
corresponding to the fields in the coll structure.
See the Description section for a discussion of
how to determine the update status for any field.

Description

This procedure adds a row to the Collection table (see Section 9.4).

Additions to this table are not durable; that is, they do not survive a restart of
the Remote Manager. To make nondynamic, permanent updates to the Collection
table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_
class. The combination of these fields must be unique within the collection table
for the row to be added. Table 8–4 and Table 8–1 contain symbolic values used to
populate the entity_type and collection_class fields; entity_name is specified as a
null-terminated string.

ID and Config class rows cannot be added. By default, these classes are always
enabled for all ACMS processes.

The Collection table contains a fixed number of rows, which is determined by the
Remote Manager parameter total_entity_slots. This is a nondynamic parameter
and requires a restart of the ACMS system in order to be changed. The default is
20 rows.

Additions to the Collection table are processed immediately, and may affect more
than one ACMS process. See Section 5.1 for a discussion of how the Collection
table affects ACMS data collection.

8–6 Management APIs

ACMSMGMT_ADD_COLLECTION_2

Example

int add_collection_data(int client_id,CLIENT *cl)
{

static char c_name_all[] = "*";
static coll_config_rec_2 set_struct;
struct coll_status_rec_2 *status_rec;

set_struct.client_id = client_id;
set_struct.coll.entity_type = MGMT_ALL;
set_struct.coll.entity_name = c_name_all;
set_struct.coll.collection_class = MGMT_CLASS_RT;
set_struct.coll.collection_state = MGMT_STATE_DISABLED;

status_rec = acmsmgmt_add_collection_2(&set_struct,cl);

if (!status_rec) {
printf("\n Call to add collection failed");
return(MGMT_FAIL);

}

if (status_rec->status == MGMT_WARN) {
printf("\nThe following updates failed: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type == MGMT_FAIL)

printf("\n entity type invalid");
if (status_rec->coll_status_rec_2_u.data_warn.collection_state

== MGMT_FAIL)
printf("\n coll_state invalid");

if (status_rec->coll_status_rec_2_u.data_warn.storage_state == MGMT_FAIL)
printf("\n storage_state invalid");

if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
== MGMT_FAIL)

printf("\n storage_interval invalid");
}

else if (status_rec->status != MGMT_SUCCESS) {
printf("\nCall to add collection with status %d",

status_rec->coll_status_rec_2_u.rc);
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);

return(MGMT_FAIL);
}
else

printf("\nCall to add collection was executed");
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);

return(0);
}

In the preceding example, the ACMSMGMT_ADD_COLLECTION_2 procedure is
called to add a row to the Collection table. The row added is for entity type of *
(all), entity name of * (all), and collection class RUNTIME. The collection state is
set to DISABLED. If the call succeeds, a Collection table row is added, and the
RUNTIME collection state for some processes may be disabled. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

Management APIs 8–7

ACMSMGMT_ADD_ERR_FILTER_2

8.4 ACMSMGMT_ADD_ERR_FILTER_2

This procedure adds entries to the ACMS Error Filter table. Error Filter table
entries can also be deleted (see Section 8.7.

Format

error_filter_config_rec_r_2 *acmsmgmt_add_err_filter_2(err_filter_config_rec_r_2 *err_filter_cfg_rec,CLIENT *cl2)

Parameters

err_filter_cfg_rec

Type: Err_filter_config_rec_r_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Error Filter table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

error_code
Type: Integer
Access: Read
Mechanism: By value
Usage: Structure containing an Error Filter table

record. Error Filter table fields are described
in Section 9.6. See the Description section for
information on how to initialize this record.

cl2

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–8 Management APIs

ACMSMGMT_ADD_ERR_FILTER_2

Return Value

Type: Err_filter_status_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type err_filter_update_rec_r, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Err_filter_update_rec_r
Access: Write
Mechanism: By value
Usage: Structure containing an Error Filter table record.

The entries in this field contain status codes
corresponding to the fields in the err_filter_entry
structure. See the Description section for a
discussion of how to determine the update status
for any field.

Description

This procedure adds a row to the Error Filter table (see Section 9.6).

Additions to this table are durable; that is, they do survive a restart of the
Remote Manager.

Calls to this procedure must specify a valid message_code for the row to be added.

The Error Filter table is dynamic and does not have a fixed upper boundary. The
size of the table fluctuates as entries are added and deleted. When a row becomes
empty or unoccupied, it is removed and the remaining rows are renumbered.

Additions to the Error Filter table are processed immediately, and may affect
more than one ACMS process. See Section 5.1 for a discussion of how the Error
Filter table affects ACMS error logging.

Management APIs 8–9

ACMSMGMT_ADD_ERR_FILTER_2

Example

int add_err_filter(int client_id,CLIENT *cl2)
{

int *status;
err_filter_config_rec_r_2 set struct;

set_struct.client_id = client_id;
set_struct.err_code = 16637820;

status = acmsmgmt_add_err_filter_2(&set_struct,cl2);

if (!status) {
printf("\n Call to add filter failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\nCall to add error filter failed with status %d", *status);

free(status);
return(MGMT_FAIL);

}
else {

printf("\nCall to add error filter was executed");
}

free(status);
return(0);

}

In the preceding example, the acmsmgmt_add_err_filter_2 procedure is called
to add a row to the Error Filter table. If the call succeeds, the filter is added to
the Error Filter table. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8–10 Management APIs

ACMSMGMT_ADD_TRAP_1

8.5 ACMSMGMT_ADD_TRAP_1

This procedure adds entries to the Remote Manager Trap table. Trap table
entries can also be modified (see Section 8.42) and deleted (see Section 8.8).

Format

trap_status_rec *acmsmgmt_add_trap_1(trap_config_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Trap_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Trap table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

trap_entry
Type: Trap_update_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a Trap table record. Trap

table fields are described in Section 9.14. See
the Description section for information on how to
initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–11

ACMSMGMT_ADD_TRAP_1

Return Value

Type: Trap_status_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either

a failure code or a structure of type trap_update_rec_r, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Trap_update_rec_r
Access: Write
Mechanism: By value
Usage: Structure containing a Trap table record.

The entries in this field contain status codes
corresponding to the fields in the trap_entry
structure. See the Description section for a
discussion of how to determine the update status
for any field.

Description

This procedure adds a row to the Trap table (see Section 9.14).

Additions to this table are not durable; that is, they do not survive a restart
of the Remote Manager. To make nondynamic, permanent updates to the Trap
table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_
trap. The combination of these fields must be unique within the Trap table for
the row to be added. Table 8–1 and Table 8–4 contain symbolic values used
to populate the collection_class and entity_type fields; symbolic values to the
param_to_trap field are described in Table 8–8.

Setting fields trap_min, trap_max and/or severity to -1 causes them to be
ignored when trap conditions are evaluated at run time; see Section 7.8 for more
discussion. Otherwise, they must contain valid values for the row to be added
(trap_min and trap_max must be position numbers; severity must be one of the
valid severities listed in Table 8–7).

Additions to the Trap table are processed immediately, and may affect more than
one ACMS process. See Section 7.8 for a discussion of how to set SNMP traps.

The size of the Trap table is unbounded.

8–12 Management APIs

ACMSMGMT_ADD_TRAP_1

Example

int add_trap_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_config_rec set_struct;
struct trap_status_rec *status_rec;

set_struct.client_id = client_id;
set_struct.trap_entry.entity_type = MGMT_ACC;
set_struct.trap_entry.entity_name = c_name_all;
set_struct.trap_entry.param_to_trap = MGMT_EXISTS;
set_struct.trap_entry.min = -1;
set_struct.trap_entry.max = 0;
set_struct.trap_entry.severity = MGMT_SEV_ERR;

status_rec = acmsmgmt_add_trap_1(&set_struct,cl);

if (!status_rec) {
printf("\n Call to add trap failed");
return(MGMT_FAIL);

}

if (status_rec->status == MGMT_WARN) {
printf("\nThe following fields are invalid: ");
if (status_rec->trap_status_rec_u.data_warn.entity_type == MGMT_FAIL)

printf("\n entity_type not found or invalid");
if (status_rec->trap_status_rec_u.data_warn.param_to_trap == MGMT_FAIL)

printf("\n param not found or invalid");
if (status_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)

printf("\n min invalid");
if (status_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)

printf("\n max invalid");
if (status_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)

printf("\n severity invalid");
}

else if (status_rec->status != MGMT_SUCCESS) {
printf("\nCall to add trap failed with status %d",

status_rec->trap_status_rec_u.rc);
xdr_free(xdr_trap_status_rec, status_rec);
free(status_rec);

return(MGMT_FAIL);
}
else

printf("\nCall to add trap was executed");
xdr_free(xdr_trap_status_rec, status_rec);
free(status_rec);

return(0);
}

In the preceding example, the ACMSMGMT_ADD_TRAP_1 procedure is called to
add a row to the Trap table. The new row will contain an entity type of ACC, an
entity name of * (all), and a trap parameter of EXISTS. The value of the trap_
min field is -1 (ignored), and the value of the trap_max field is 0. The severity
of the trap will be error. The effect of this addition is to cause an error-level
trap to be generated whenever the ACC is started on the target node. If the call
succeeds, the trap is added to the Trap table. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

Management APIs 8–13

ACMSMGMT_DELETE_COLLECTION_1

8.6 ACMSMGMT_DELETE_COLLECTION_1

This procedure deletes entries from the Remote Manager Collection table.
Collection table entries can also be added (see Section 8.3) and updated (see
Section 8.35).

Format

int *acmsmgmt_delete_collection_1(coll_del_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Coll_del_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

entity_type
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of ACMS entity the process is. Entity

types are listed in Table 8–4.

8–14 Management APIs

ACMSMGMT_DELETE_COLLECTION_1

entity_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Pointer to a character string containing a full

or partial entity name. May contain wildcard
characters (*, !).

collection_class
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of collection class to delete. Collection

classes are listed in Table 8–1.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description

This procedure deletes a row from the Collection table (see Section 9.4).

Calls to this procedure must specify entity_type, entity_name, and collection_
class. The combination of these fields must exactly match an existing row in
the table for the row to be deleted. Table 8–1 and Table 8–4 contain symbolic
values used to populate the collection_class and entity_type fields; entity_name is
specified as a null-terminated string.

ID and CONFIG class rows cannot be deleted.

The Collection table contains a fixed number of rows, which is determined by the
Remote Manager Parameter table field total_entity_slots. This is a nondynamic
parameter and requires a restart of the ACMS system in order to be changed.
The default is 20 rows. When a row is deleted, it becomes immediately available
for reuse.

Management APIs 8–15

ACMSMGMT_DELETE_COLLECTION_1

Deletions from the collection table are processed immediately, and may affect
more than one ACMS process. See Section 5.1 for a discussion of how the
Collection table affects ACMS data collection.

Example

int delete_collection_data(int client_id,CLIENT *cl)
{

static char c_name_all[] = "*";
static coll_del_rec set_struct;
int *status;

set_struct.client_id = client_id;
set_struct.entity_type = MGMT_ALL;
set_struct.entity_name = c_name_all;
set_struct.collection_class = MGMT_CLASS_RT;

status = acmsmgmt_delete_collection_1(&set_struct,cl);

if (!status) {
printf("\n Call to delete collection failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to delete collection failed with status %d",*status);

free (status);
return(MGMT_FAIL);

}
else

printf("\nCall to delete collection was executed");
free (status);

return(0);
}

In the preceding example, the ACMSMGMT_DELETE_COLLECTION_1
procedure is called to delete a row from the Collection table. The row deleted
is for entity type of * (all), entity name of * (all), and a collection class of
RUNTIME. If the call succeeds, the collection table row is deleted, and the
RUNTIME collection state for some processes may be changed depending on the
collection state of the row before it was deleted. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

8–16 Management APIs

ACMSMGMT_DELETE_ERR_FILTER_2

8.7 ACMSMGMT_DELETE_ERR_FILTER_2

This procedure deletes entries from the Remote Manager Error Filter table. Error
Filter table entries can also be added (see Section 8.4).

Format

int *acmsmgmt_delete_err_filter_2(err_del_rec *set_struct,CLIENT *cl2)

Parameters

set_struct

Type: Err_del_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Error Filter table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

error_code
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of ACMS entity the process is. Entity

types are listed in Table 8–4.

cl2

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–17

ACMSMGMT_DELETE_ERR_FILTER_2

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description

This procedure deletes rows from the Error Filter table (see Section 9.6).

The Error Filter table is dynamic and does not have a fixed upper boundary. The
size of the table fluctuates as entries are added and deleted. When a row becomes
empty or unoccupied, it is removed and the remaining rows are renumbered.

Changes to the Error Filter table are processed immediately, and may affect more
than one ACMS process. See Section 5.1 for a discussion of how the Error Filter
table affects ACMS error logging.

Example

int delete_err_filter(int client_id,CLIENT *cl2)
{

int *status;
err_filter_config_rec_r_2 set_struct;

set_struct.client_id = client_id;
set_struct.err_code = 16638720;

status = acmsmgmt_delete_err_filter_2(&set_struct,cl2);

if (!status) {
printf("\n RPC Call to delete filter failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to delete error filter failed with status %d",*status);
free(status);
return(MGMT_FAIL);

}
else {

printf("\n Call to delete error filter was executed");
}
free(status);
return(0);

}

In the preceding example, the acmsmgmt_delete_err_filter_2 procedure is called
to delete a row from the Error Filter table. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–18 Management APIs

ACMSMGMT_DELETE_TRAP_1

8.8 ACMSMGMT_DELETE_TRAP_1

This procedure deletes entries from the Remote Manager Trap table. Trap table
entries can also be added (see Section 8.5) and updated (see Section 8.42).

Format

int *acmsmgmt_delete_trap_1(trap_del_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Trap_del_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Trap table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

entity_type
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of ACMS entity the process is. Entity

types are listed in Table 8–4.

Management APIs 8–19

ACMSMGMT_DELETE_TRAP_1

entity_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Pointer to a character string containing a full

or partial entity name. May contain wildcard
characters (*, !).

param_to_trap
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of parameter to be monitored for

trap conditions. Parameter types are listed in
Table 8–8.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description

This procedure deletes rows from the Trap table (see Section 9.14).

Calls to this procedure must specify entity_type, entity_name, and param_to_
trap. These fields must exactly match an existing record in the Trap table for
the delete to be performed. Table 8–1 and Table 8–4 contain symbolic values
used to populate the collection_class and entity_type fields; symbolic values to the
param_to_trap field are described in Table 8–8.

Deletions from the Trap table are processed immediately and may affect more
than one ACMS process. See Section 7.8 for a discussion of how to set SNMP
traps.

8–20 Management APIs

ACMSMGMT_DELETE_TRAP_1

Example

int delete_trap_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_del_rec set_struct;
static int *status;

set_struct.client_id = client_id
set_struct.entity_type = MGMT_ACC;
set_struct.entity_name = c_name_all;
set_struct.param_to_trap = MGMT_EXISTS;

status = acmsmgmt_delete_trap_1(&set_struct,cl);

if (!status) {
printf("\n Call to delete trap failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\nCall to delete trap failed with status %d",*status);

free(status);
return(MGMT_FAIL);

}
else

printf("\nCall to delete trap was executed");
free(status);

return(0);
}

In the preceding example, the ACMSMGMT_DELETE_TRAP_1 procedure is
called to delete a row from the Trap table. The row to be deleted contains an
entity type of ACC, an entity name of * (all), and a trap parameter of EXISTS.
If the call succeeds, the trap is deleted from the Trap table. Otherwise, an error
message is displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

Management APIs 8–21

ACMSMGMT_GET_ACC_2

8.9 ACMSMGMT_GET_ACC_2

ACMS Remote Manager clients call this procedure to obtain class information
about an ACMS Central Controller (ACC) on a local or remote node.

Format

acc_rec_out_2 *acmsmgmt_get_acc_2 (sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Acc_rec_out_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

8–22 Management APIs

ACMSMGMT_GET_ACC_2

Description

This procedure obtains class information about an ACC. The return pointer
points to a record of type acc_rec_out_2, which contains a union consisting of
either a failure return code or a pointer to an ACC record. See Section 9.2 for a
description of the fields in the ACC record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int get_acc_data(int client_id,CLIENT *cl)
{

acc_rec_r_2 *accs;
acc_rec_out_2 *acc_rec;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

acc_rec = acmsmgmt_get_acc_2(&sub_rec,cl);

if (!acc_rec) {
printf("\n RPC Call to get ACC data failed");
return(MGMT_FAIL);

}

if (acc_rec->status != MGMT_SUCCESS) {
printf("\n Call to get ACC data failed, returning status code %d",

acc_rec->status);
xdr_free(xdr_acc_rec_out_2, acc_rec);
free(acc_rec);

return(status);
}

accs = &acc_rec->acc_rec_out_2_u.acc_rec;

printf("\n ACC version is %s",accs->acms_version);
xdr_free(xdr_acc_rec_out_2, acc_rec);
free(acc_rec);

return(0);

}

In the preceding example, the ACMSMGMT_GET_ACC_2 procedure is called
to fetch ACC management information. If the call succeeds, the ACC version is
printed from the retreived record. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APIs 8–23

ACMS$MGMT_GET_CREDS

8.10 ACMS$MGMT_GET_CREDS

Clients that support explicit authentication call this procedure to obtain a client
ID. A client ID is issued for the client process when the client process logs in
to the ACMS Remote Manager using the ACMSMGR LOGIN command. Once
obtained by this procedure, the client ID is used on subsequent RPC calls.

Format

int acms$mgmt_get_creds(char *server_node,char *user_name, int *client)

Parameters

server_node

Type: String
Access: Read
Mechanism: By reference
Usage: Name of the node the server that issued the client ID was

running on; the node that will be accessed. Client_id is valid
only for the server that issued it.

user_name

Type: String
Access: Read
Mechanism: By reference
Usage: Name of the user the client ID was issued to, and on whose

behalf the client ID is used. The name may the same as or
different than the account name of the client process.

client

Type: Integer
Access: Write
Mechanism: By reference
Usage: The client ID to be used for the target user on the target server

node. The client ID is valid only for the client process that
created it.

8–24 Management APIs

ACMS$MGMT_GET_CREDS

Return Value

Type: Integer
Access: Write
Mechanism: By value
Usage: The completion status of the call. The following are possible

return values:
Value Description
MGMT_SUCCESS Client ID was fetched; credentials

verified.
MGMT_NO_
NODELOGICAL

Can’t translate UCX$INET_HOST
logical name to get local node
name.

MGMT_NO_CREDS_FILE Credentials file was not found.
MGMT_CREDS_DATA_
ERR

Credentials file is corrupt.

MGMT_WRONG_PID PID in credentials file doesn’t
match client process’s PID.

MGMT_WRONG_NODE Node name in credentials file
doesn’t match server_node
argument.

Description

Clients call this procedure to fetch a previously created client ID from an
encrypted credentials file. Credentials files can be created only by the ACMSMGR
LOGIN command. They are stored in the directory pointed to by the logical name
ACMS$MGMT_CREDS_DIR (or SYS$LOGIN if ACMS$MGMT_CREDS_DIR is
not defined). Credentials files are named using the following format:

user-name_pid_target-node_current-node.dat

In this format:

user-name must match the user_name argument string.
pid must match the PID of the client process.
target-node must match the server_node argument string.
current-node must be the local node name (as determined by the logical name
UCX$INET_HOST).

Note

For credentials information to be created, the client process must first
execute the login command of the ACMSMGR utility. The only way to
create credentials files is by using the ACMSMGR utility.

If the credentials file cannot be located, opened, and read, an error is returned.
Once opened and read, the credentials in the file are verified. If the credentials
are acceptable, the client_id field is populated and the procedure returns a status
that indicates success.

This procedure is statically linked and locally executed.

Management APIs 8–25

ACMS$MGMT_GET_CREDS

Example

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;
char sname[] = "sparks";
char *username_p, username[13] = "";
int client_id;
int status;

int acms$mgmt_get_creds();

int main ()
{

/* if the logical is defined, credential information will be used */
username_p = getenv("ACMS$MGMT_USER");
if (username_p)

strcpy(username,username_p);

/* establish an rpc connection to the server */
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

/* if the connection was established */
if (cl != NULL) {

/* create a security context */
cl->cl_auth = authunix_create_default();
client_id = 0;

/* optionally, get credentials for this user & server */
if (strlen(username))

status = acms$mgmt_get_creds(sname,username,&client_id);

}

return(1);
}

The preceding example is a program that performs initialization for an ACMS
Remote Manager client. The program calls the acms$mgmt_get_creds procedure
to obtain the client ID for the user whose name is defined by the logical name
ACMS$MGMT_USER on the node SPARKS.

8–26 Management APIs

ACMSMGMT_GET_ERR_FILTER_2

8.11 ACMSMGMT_GET_ERR_FILTER_2

ACMS Remote Manager clients call this procedure to obtain a listing of system
messages currently being filtered from the Remote Manager, and subsequently,
the error log.

Format

int *acmsmgmt_get_err_filter_2 (sub_id_struct *sub_id_rec,CLIENT *cl2)

Parameters

sub_id_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl2

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–27

ACMSMGMT_GET_ERR_FILTER_2

Return Value

Type: Err_filter_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Description

This procedure obtains class information about an Error Filter. The return
pointer points to a record of type err_filter_data_list_2, which is a union
containing either an error code or a pointer to an Error Filter record. See
Section 9.6 for a description of the fields in the Error Filter record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int get_err_filter(int client_id,CLIENT *cl2)
{

int status;
err_filter_data_list_2 *err_filter;
err_filter_link_2 *nl;
struct sub_id_struct sub_rec;

sub_rec.client_id = client_id;

err_filter = acmsmgmt_get_err_filter_2(&sub_rec,cl2);

if (!err_filter) {
printf("\n RPC Call to get Error Filter failed");
return(MGMT_FAIL);

}

if (err_filter->status != MGMT_SUCCESS) {
printf("\n Call to get Error Filter failed, returning status code %d",

err_filter->status);
status = err_filter->status;
xdr_free(xdr_err_filter_data_list_2, err_filter);
free(err_filter);
return(status);

}

for (n1 = err_filter->err_filter_data_list_2_u.list; nl != NULL;
nl = nl->pNext) {
printf("Filter name = %s, and code =%X\n",

nl->err_filter_data.err_msg_name,
nl->err_filter_data.err_code);

}

xdr_free(xdr_err_filter_data_list_2, err_filter);
free(err_filter);
return(0);

8–28 Management APIs

ACMSMGMT_GET_ERR_FILTER_2

}

In the preceding example, the acmsmgmt_get_err_filter_2 procedure is called to
fetch error filter information. If the call succeeds, the message code and symbolic
name are fetched. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIs 8–29

ACMSMGMT_GET_MGR_STATUS_1

8.12 ACMSMGMT_GET_MGR_STATUS_1

ACMS Remote Manager clients call this procedure to obtain run-time status
information about a Remote Manager on a particular node.

Format

mgr_status_rec_out *acmsmgmt_get_mgr_status_1(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–30 Management APIs

ACMSMGMT_GET_MGR_STATUS_1

Return Value

Type: Mgr_status_rec_out
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting either of a

failure code or a pointer to a structure of type mgr_status_rec,
which contains the status data. The following are the contents of
this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data
Type: Mgr_status_rec
Access: Write
Mechanism: By reference
Usage: Remote Manager status data record. Contains

the fields from the Manager Status table (see
Section 9.9).

Description

This procedure gets run-time information about a Remote Manager on a
particular node. The return pointer points to a record of type mgr_status_
rec_out, which contains a union consisting of a failure returns code or a pointer
to a manager status record. See Section 9.9 for a description of the fields in the
manager status record.

This procedure does not require the ACMS run-time system in order to execute.

Example

int get_mgr_data(int client_id,CLIENT *cl)
{

mgr_status_rec *mgrs;
mgr_status_rec_out *mgr_data;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

mgr_data = acmsmgmt_get_mgr_status_1(&sub_rec,cl);

if (!mgr_data) {
printf("\n RPC Call to get RM data failed");
return(MGMT_FAIL);

}

Management APIs 8–31

ACMSMGMT_GET_MGR_STATUS_1

if (mgr_data->status != MGMT_SUCCESS) {
printf("\n Call to get RM data failed, returning status code %d",

mgr_data->status);
status = mgr_data->status;

xdr_free(xdr_mgr_status_rec_out, mgr_data);
free(mgr_data);

return(status);
}

mgrs = &mgr_data->mgr_status_rec_out_u.data;

printf("\n RPC UDP state is %d",mgrs->rpc_udp_state);
xdr_free(xdr_mgr_status_rec_out, mgr_data);
free(mgr_data);

return(0);
}

In the preceding example, the ACMSMGMT_GET_MGR_STATUS_1 procedure
is called to fetch the contents of the Manager Status table. If the call succeeds,
the current state of the TCP/UDP protocol in the RPC interface is printed from
the retrieved record. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8–32 Management APIs

ACMSMGMT_GET_PARAM_2

8.13 ACMSMGMT_GET_PARAM_2

ACMS Remote Manager clients call this procedure to obtain configuration
information about a Remote Manager on a particular node.

Format

param_rec_out2 *acmsmgmt_get_param_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Param_rec_out2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason), or the
data requested.

Management APIs 8–33

ACMSMGMT_GET_PARAM_2

Description

This procedure gets configuration information about a Remote Manager on a
particular node. The return pointer points to a record of type param_rec_out2,
which contains a union consisting of either a failure return code or a pointer
to a Parameter record. See Section 9.10 for a description of the fields in the
Parameter record.

This procedure does not require the ACMS run-time system in order to execute.

Example

int get_param_data(int client_id,CLIENT *cl)
{

int x = 0;
int y = 0;

param_rec2 *params;
param_rec_out2 *param_rec;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

param_rec = acmsmgmt_get_param_2(&sub_rec,cl);

if (!param_rec) {
printf("\n RPC Call to get Parameter data failed");
return(MGMT_FAIL);

}

if (param_rec->status != MGMT_SUCCESS) {
printf("\n Call to get Parameter data failed, returning status code %d",

param_rec->status);
status = param_rec->status;

xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec);

return(status);
}

params = ¶m_rec->param_rec_out2_u.data;

printf("\n Maximum logins allowed is %d",params->max_logins);
xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec);

return(0);
}

In the preceding example, the ACMSMGMT_GET_PARAM_2 procedure is called
to fetch the contents of the Parameter table. If the call succeeds, the maximum
number of logins is printed from the retrieved record. Otherwise, an error
message is displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

8–34 Management APIs

ACMSMGMT_GET_QTI_2

8.14 ACMSMGMT_GET_QTI_2

ACMS Remote Manager clients call this procedure to obtain class information
about a Queued Task Initiator (QTI) on a local or remote node.

Format

qti_rec_out_2 *acmsmgmt_get_qti_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Qti_rec_out2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Management APIs 8–35

ACMSMGMT_GET_QTI_2

Description

This procedure obtains class information about a QTI on a local or remote node.
The return pointer points to a record of type qti_rec_out_2, which contains a
union consisting of either a failure return code or a pointer to a QTI record. See
Section 9.11 for a description of the fields in the QTI record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int get_qti_data(int client_id,CLIENT *cl)
{

qti_rec_r_2 *qtis;
qti_rec_out_2 *qti_rec;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

qti_rec = acmsmgmt_get_qti_2(&sub_rec,cl);

if (!qti_rec) {
printf("\n RPC Call to get QTI data failed");
return(MGMT_FAIL);

}

if (qti_rec->status != MGMT_SUCCESS) {
printf("\n Call to get QTI data failed, returning status code %d",

qti_rec->status);
status = qti_rec->status;

xdr_free(xdr_qti_rec_out_2, qti_rec);
free(qti_rec);

return(status);
}

qtis = &qti_rec->qti_rec_out_2_u.qti_rec;

printf("\n QTI process name is %s",qtis->process_name);
xdr_free(xdr_qti_rec_out_2, qti_rec);
free(qti_rec);

return(0);
}

In the preceding example, the ACMSMGMT_GET_QTI_2 procedure is called to
fetch QTI management information. If the call succeeds, the QTI process name is
printed from the retrieved record. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

8–36 Management APIs

ACMSMGMT_GET_TSC_2

8.15 ACMSMGMT_GET_TSC_2

ACMS Remote Manager clients call this procedure to obtain class information
about a Terminal Subsystem Controller (TSC) on a local or remote node.

Format

tsc_rec_out_2 *acmsmgmt_get_tsc_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Tsc_rec_out_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Management APIs 8–37

ACMSMGMT_GET_TSC_2

Description

The return pointer points to a record of type tsc_rec_out_2, which contains a
union consisting of either a failure return code or a pointer to a TSC record. See
Section 9.15 for a description of the fields in the record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int get_tsc_data(int client_id,CLIENT *cl)
{

tsc_rec_r_2 *tscs;
tsc_rec_out_2 *tsc_rec;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

tsc_rec = acmsmgmt_get_tsc_2(&sub_rec,cl);

if (!tsc_rec) {
printf("\n RPC Call to get TSC data failed");
return(MGMT_FAIL);

}

if (tsc_rec->status != MGMT_SUCCESS) {
printf("\n Call to get TSC data failed, returning status code %d",

tsc_rec->status);
status = tsc_rec->status;

xdr_free(xdr_tsc_rec_out_2, tsc_rec);
free(tsc_rec);

return(status);
}

tscs = &tsc_rec->tsc_rec_out_2_u.tsc_rec;

printf("\n TSC process name is %s",tscs->process_name);
xdr_free(xdr_tsc_rec_out_2, tsc_rec);
free(tsc_rec);

return(0);
}

In the preceding example, the ACMSMGMT_GET_TSC_2 procedure is called to
fetch TSC management information. If the call succeeds, the TSC’s process name
is printed from the retrieved record. Otherwise, an error message is displayed.
The example in Section 6.4.1 shows how to declare and initialize the input
arguments to this procedure.

8–38 Management APIs

ACMSMGMT_GET_VERSION_2

8.16 ACMSMGMT_GET_VERSION_2

ACMS Remote Manager clients call this procedure to obtain version information
for ACMS.

Format

version_data_list_2 *acmsmgmt_get_version_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: version_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Management APIs 8–39

ACMSMGMT_GET_VERSION_2

Description

The return pointer points to a record of type version_data_list_2, which constains
a union consisting of either a failure return code or a pointer to a version record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int get_version_data(int client_id,CLIENT *cl2)
{

struct sub_id_struct sub_rec;
version_data_list_2 *version;
int status;

sub_rec.client_id = client_id;

version = acmsmgmt_get_version_2(&sub_rec,cl2);

if (!version) {
printf("\n RPC Call to get Version data failed");
return(MGMT_FAIL);

}

if (version->status != MGMT_SUCCESS) {
printf("\n Call to get Version data failed, returning status code %d",

version->status);
status = version->status;

xdr_free(xdr_version_data_list_2, version);
free(version);

return(status);
}

printf("\n ACMS version is %s",version->
version_data_list_2_u.data.acms_version);

xdr_free(xdr_version_data_list_2, version);
free(version);

return(0);
}

In the preceding example, the ACMSMGMT_GET_VERSION_2 procedure is
called to fetch ACMS version information. If the call succeeds, the version of
the installed ACMS software is printed from the retrieved record. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

8–40 Management APIs

ACMSMGMT_LIST_AGENT_2

8.17 ACMSMGMT_LIST_AGENT_2

ACMS Remote Manager clients call this procedure to obtain a list of Agent
Process table entries.

Format

agent_data_list *acmsmgmt_list_agent_2(agent_sel_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: agent_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

proc_name
Type: String
Access: Read
Mechanism: By value
Usage: String that lists the OpenVMS process name for

each Agent.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–41

ACMSMGMT_LIST_AGENT_2

Return Value

Type: agent_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a union. The union contains either a failure code or a

pointer to a structure of type agent_data_list, which contains the
start of a linked list of records. The following are the contents of
this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: agent_list
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of

Agent table record, and a forward pointer to the
next node in the linked list. The following are the
contents of this structure:.

pNext
Type: agent_write
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

agent_data
Type: agent_rec_r
Access: Write
Mechanism: By reference
Usage: Agent table row. Agent table

fields.

8–42 Management APIs

ACMSMGMT_LIST_AGENT_2

Description

The ACMSMGMT_LIST_AGENT_2 procedure returns a linked list of Agent
table rows. All Agent table rows are returned in each call. Records are returned
sequentially from the table, beginning at the start of the table. Entire table rows
are returned.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the Agent table are subject to reuse. Rows are assigned round-robin, and
are not cleared until they have been reassigned. So some rows may contain data
for inactive Agents. It is the callers responsibility to examine the record_state
field to determine whether this row belongs to an active (record_state field is
MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) Agent, and
to process the row accordingly.

Example

int list_agent_data(int client_id,CLIENT *cl)
{

static char c_all_agents[2] = "*";
agent_data_list *agent_data;
agent_link *nl;
static struct agent_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.proc_name = c_all_agents;

agent_data = acmsmgmt_list_agent_2(&sub_rec,cl);

if (!agent_data) {
printf("\n RPC Call to get agent data failed");
return(MGMT_FAIL);

}

if (agent_data->status == MGMT_FAIL) {
if (agent_data->agent_data_list_u.rc == MGMT_NOMORE_DATA) {

printf("\n No agent data found");
xdr_free(xdr_agent_data_list, agent_data);
free(agent data);

return(MGMT_FAIL);
}
printf("\n Call to get agent data failed, returning status code %d",

agent_data->agent_data_list_u.rc);
status = agent_data->agent_data_list_u.rc;

xdr_free(xdr_agent_data_list, agent_data);
free(agent_data);

return(status);
}

if (agent_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

for (nl = agent_data->agent_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->agent_data.record_state == MGMT_INACTIVE)

printf("\n INACTIVE ");
else

printf("\n ");
printf(" PID: %8X Process Name: %-s",

nl->agent_data.pid,
nl->agent_data.process_name);

}

Management APIs 8–43

ACMSMGMT_LIST_AGENT_2

printf("\n End of data");
xdr_free(xdr_agent_data_list, agent_data);
free(agent_data);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_AGENT_2 procedure is called
to fetch a linked list of agents running on the system. If the call succeeds, the pid
and name of each agent in the list are printed. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

8–44 Management APIs

ACMSMGMT_LIST_COLLECTIONS_2

8.18 ACMSMGMT_LIST_COLLECTIONS_2

ACMS Remote Manager clients call this procedure to obtain a list of Collection
table entries.

Format

coll_data_list_2 *acmsmgmt_list_collections_2(coll_sel_struct *coll_rec, CLIENT *cl)

Parameters

coll_rec

Type: Coll_sel_struct
Access: Read
Mechanism: By reference
Usage: Defines starting point for list of records to be returned. Also

identifies the user. The coll_rec structure contains the following
fields:

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used.

starting_rec
Type: Integer
Access: Read
Mechanism: By value
Usage: Sequential record number (starting at 0) of

record to begin list from. Records are returned
sequentially from the table. Up to max_rpc_
return_recs (Parameter table configuration value)
are returned in each call.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–45

ACMSMGMT_LIST_COLLECTIONS_2

Return Value

Type: Coll_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to a union. The union contains either a failure code or a

pointer to a structure of type coll_list, which contains the start
of a linked list of records. The following are the contents of this
union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Coll_list_2
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of

collection table record, and a forward pointer to
the next node in the linked list. The following are
the contents of this structure:

pNext
Type: Coll_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

coll_data
Type: Coll_rec_2
Access: Write
Mechanism: By reference
Usage: Collection table row. Collection

table fields are described in
Section 9.4.

8–46 Management APIs

ACMSMGMT_LIST_COLLECTIONS_2

Description

The ACMSMGMT_LIST_COLLECTIONS_2 procedure returns a linked list of
collection table rows. The number of rows returned in a single call is bounded
by the value of the Parameter table field max_rpc_return_recs. More than one
call may be required to fetch all the rows. The selection record field starting_rec
determines the table row to begin with. Records are returned sequentially from
the table, beginning with the starting_rec row. Row numbering begins at 0.

Entire table rows are returned. See Section 9.4 for a description of the fields in
the coll_rec structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

If the end of the table is reached during execution of this procedure, MGMT_
NOMORE_DATA is returned in the status field.

Example

int list_collection_data(int client_id,CLIENT *cl)
{

int rec_count = 0;
coll_data_list_2 *coll;
coll_link_2 *nl;
static struct coll_sel_struct coll_rec;
int status;
char c_states[2][9] = {"enabled","disabled"};
char c_entities[10][9] = {"unknown","*","acc","tsc","qti","cp","exc",

"server","group","mgr"};
char c_classes[6][8] = {"*","id","config","runtime","pool","error"};

coll_rec.client_id = client_id;
top:

coll_rec.starting_rec = rec_count;

coll = acmsmgmt_list_collections_2(&coll_rec,cl);

if (!coll) {
printf("\n RPC Call to get Collection data failed");
return(MGMT_FAIL);

}

if ((coll->status != MGMT_SUCCESS) && (coll->status != MGMT_NOMORE_DATA)) {
printf("\n Call to get Collection data failed, returning status code

%d",coll->status);
xdr_free(xdr_coll_data_list2, coll);
free(coll);

return(status);
}

for (nl = coll->coll_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
rec_count++;
if (nl->coll_data.entity_name_s > 0)

printf("\n Entity: %-9s Name: %-32s Class: %-9s
Collection State: %-9s",
c_entities[nl->coll_data.entity_type],
nl->coll_data.entity_name,
c_classes[nl->coll_data.collection_class],
c_states[nl->coll_data.collection_state]);

}

if (coll->status != MGMT_NOMORE_DATA)
goto top;

Management APIs 8–47

ACMSMGMT_LIST_COLLECTIONS_2

printf("\n End of data");
xdr_free(xdr_coll_data_list_2, coll);
free(coll);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_COLLECTIONS_2 procedure
is called to fetch the contents of the Collection table. If the call succeeds, the
entity type, name, class, and collection state are printed for each row in the table.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–48 Management APIs

ACMSMGMT_LIST_CP_2

8.19 ACMSMGMT_LIST_CP_2

ACMS Remote Manager clients call this procedure to obtain a list of Command
Process (CP) table entries.

Format

cp_data_list_2 *acmsmgmt_list_cp_2(cp_sel_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Cp_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

proc_name
Type: String
Access: Read
Mechanism: By value
Usage: String that lists the OpenVMS process name for

each CP.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–49

ACMSMGMT_LIST_CP_2

Return Value

Type: Cp_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either

a failure code or a pointer to a structure of type cp_data_list2,
which contains the start of a linked list of records. The following
are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Cp_list_2
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of CP

table record, and a forward pointer to the next
node in the linked list. The following are the
contents of this structure:

pNext
Type: Cp_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

cp_data
Type: Cp_rec_r_2
Access: Write
Mechanism: By reference
Usage: CP table row. CP table fields are

described in Section 9.5.

8–50 Management APIs

ACMSMGMT_LIST_CP_2

Description

The ACMSMGMT_LIST_CP_2 procedure returns a linked list of CP table rows.
All CP table rows are returned in each call. Records are returned sequentially
from the table, beginning at the start of the table.

Entire table rows are returned. See Section 9.5 for a description of the fields in
the cp_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the CP table are subject to reuse. Rows are assigned round-robin, and
are not cleared until they have been reassigned. So some rows may contain data
for inactive CPs. It is the caller’s responsibility to examine the record_state
field to determine whether this row belongs to an active (record_state field is
MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) CP, and to
process the row accordingly.

Example

int list_cp_data(int client_id,CLIENT *cl)
{

static char c_all_cps[2] = "*";
cp_data_list_2 *cp_data;
cp_link_2 *nl;
static struct cp_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.proc_name = c_all_cps;

cp_data = acmsmgmt_list_cp_2(&sub_rec,cl);

if (!cp_data) {
printf("\n RPC Call to get CP data failed");
return(MGMT_FAIL);

}

if (cp_data->status == MGMT_FAIL) {
if (cp_data->cp_data_list_2_u.rc == MGMT_NOMORE_DATA) {

printf("\n No CP data found");
xdr_free(xdr_cp_data_list_2, cp_data);
free(cp data);

return(MGMT_FAIL);
}
printf("\n Call to get CP data failed, returning status code %d",

cp_data->cp_data_list_2_u.rc);
status = cp_data->cp_data_list_2_u.rc;

xdr_free(xdr_cp_data_list_2, cp_data);
free(cp_data);

return(status);
}

if (cp_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

Management APIs 8–51

ACMSMGMT_LIST_CP_2

for (nl = cp_data->cp_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
if (nl->cp_data.record_state == MGMT_INACTIVE)

printf("\n INACTIVE ");
else

printf("\n ");
printf(" PID: %8X Process Name: %-s",

nl->cp_data.pid,
nl->cp_data.process_name);

}

printf("\n End of data");
xdr_free(xdr_cp_data_list_2, cp_data);
free(cp_data);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_CP_2 procedure is called to
fetch the contents of the CP table. If the call succeeds, the state of the CP (if
INACTIVE), its PID, and process name are displayed for each table row returned.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–52 Management APIs

ACMSMGMT_LIST_ERR_2

8.20 ACMSMGMT_LIST_ERR_2

ACMS Remote Manager clients call this procedure to obtain a list of the error log
entries.

Format

err_data_list *acmsmgmt_list_err_2(err_sel_struct *err_sel, CLIENT *cl)

Parameters

log_rec

Type: Log_sel_struct
Access: Read
Mechanism: By reference
Usage: Defines which log records to return. The log_sel_struct contains

the following fields:

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

before_time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing a valid OpenVMS ASCII time string.
This field determines the chronological starting
point for the list of records to be returned. If
omitted, records are returned beginning at the
start of the file. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

Management APIs 8–53

ACMSMGMT_LIST_ERR_2

since_time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing a valid OpenVMS ASCII time string.
This field determines the chronological ending
point for the list of records to be returned. If
omitted, records are returned until end of file
is reached. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

file_name
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing either a valid OpenVMS file
specification or a logical name pointing to a valid
OpenVMS file specification. This field determines
the log file to be processed. An empty string
requests the default (currently open) log file.

dup_count
Type: Integer
Access: Read
Mechanism: By value
Usage: A sequential counter of records with the same

time. This allows records to be unique even if
they were generated at the same time. Set this
value to -1 for the initial call.

facility
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote Manager facility. If

specified, only records with matching facility
codes are returned. Facility codes are listed in
Section 8.1.5.

8–54 Management APIs

ACMSMGMT_LIST_ERR_2

severity
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote Manager severity. If

specified, only records with matching severity are
returned. Severities are listed in Section 8.1.7.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Log_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a union. The union contains either a failure code

or a pointer to the start of a linked list of records. See the
Description section for a discussion of the structure of the union.
The following are the contents of this record:

log_data_list
Type: Logging_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a structure of type logging_rec.

dup_count
Type: Integer
Access: Write
Mechanism: By value
Usage: Integer value with uniquely identifies records

generated at the same time.

Management APIs 8–55

ACMSMGMT_LIST_ERR_2

log_msg
Type: Null-terminated character string
Access: Write
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing the error information.

pNext
Type: Log_list
Access: Write
Mechanism: By value
Usage: Pointer to the next record in the linked list.

Description

The ACMSMGMT_LIST_ERR_2 procedure returns a linked list of error log
entries, ordered by time. The records to be returned are determined by the fields
specified in the log_sel_struct input argument. Records can be selected by
date and time, facility, and severity. Note that only max_rpc_return_rec data
(Parameter table field) is returned in each call. The end of data is signaled by
the status field (see the following example). If the end of data is not signaled,
repeated calls are needed to fetch all matching records.

The return record is a union containing either a failure code or the first record in
the list:

struct log_data_list {
int status;
union {

int rc;
log_list list;

} log_data_list_u;
};

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

• MGMT_NOMORE_DATA

There are no more records in the file. The linked list may or may not contain
the final records, depending on whether any more records matched the
selection criteria.

• MGMT_SUCCESS

The call completed successfully. More records exist than were returned in the
call.

8–56 Management APIs

ACMSMGMT_LIST_ERR_2

The ACMSMGMT_LIST_ERR_2 procedure returns n records per call, where n
is determined by the Remote Manager parameter field max_rpc_return_recs.
Therefore, repeated calls may be necessary to retrieve all records that match
the selection criteria. Context is not maintained by the server between calls; the
selection criteria are evaluated on each call by the Remote Manager. Following
the initial call, callers should place the correct time value in the since_time field
of the log_sel_struct input argument, as well as the correct dup_count value in
order to have the chronologically next n records returned.

This procedure does not require the ACMS run-time system to execute.

Example

int list_err_data(int client_id,CLIENT *cl)
{

int skip_rec = 0;
char null_time_str[24] = "";
char first_of_jan[24] = "01-JAN-1998 00:00:00.00";
char file_spec[] = "acms$mgmt_err_log";
char time_cache[MGMT_S_TIME_A+1];
struct log_sel_struct log_rec;
log_data_list *log;
log_link *nl;
int status;

/* Initialize err selection data */

log_rec.client_id = client_id;
log_rec.before_time = null_time_str;
log_rec.since_time = first_of_jan;
log_rec.file_name = file_spec;
log_rec.dup_count = -1;
log_rec.facility = =1;
log_rec.severity = -1;

top:

log = acmsmgmt_list_log_1(&log_rec,cl);

if (!log) {
return(MGMT_FAIL);

}

if (log->status == MGMT_FAIL) {
status = log->log_data_list_u.rc;

xdr_free(xdr_log_data_list, log);
free(log);

return(status);
}

for (nl = log->log_data_list_u.list; nl != NULL; n1 = n1->pNext) {
if (skip_rec)

skip_rec = 0;
else

printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);
memcpy(&time_cache[0],nl->log_data.log_msg,23);
log_rec.dup_count = nl->log_data.dup_count;
log_rec.since_time = time_cache;

}

Management APIs 8–57

ACMSMGMT_LIST_ERR_2

if (log->status == MGMT_NOMORE_DATA)
printf("\n *** End of data**");

else {
skip_rec = 1;
goto top;

}

xdr_free(xdr_log_data_list, log);
free(log);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_ERR_2 procedure is called
to fetch the contents of the error log. If the call succeeds, the node, symbolic
name, and code equivalent are displayed for each ACMS run-time error relayed
to the Remote Manager. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8–58 Management APIs

ACMSMGMT_LIST_EXC_2

8.21 ACMSMGMT_LIST_EXC_2

ACMS Remote Manager clients call this procedure to obtain a list of Application
Execution Controller (EXC) (ACMS application) table entries.

Format

exc_data_list_2 *acmsmgmt_list_exc_2(exc_sel_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Exc_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains client information and application

selection critera. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application name. The name may

contain wildcard characters (*, !). Specify in all
uppercase characters.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–59

ACMSMGMT_LIST_EXC_2

Return Value

Type: Exc_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type exc_data_list_2,
which contains the start of a linked list of records. The following
are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Exc_list_2
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure

containing an EXC table record, and a forward
pointer to the next node in the linked list. The
following are the contents of this structure:

pNext
Type: Exc_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

exc_data
Type: Exc_rec_r_2
Access: Write
Mechanism: By reference
Usage: EXC table row. EXC table fields

are described in Section 9.7.

8–60 Management APIs

ACMSMGMT_LIST_EXC_2

Description

The ACMSMGMT_LIST_EXC_2 procedure returns a linked list of EXC table
rows. All EXC table rows whose application_name field matches the appl_name
field in the selection record are returned in each call.

Entire table rows are returned. See Section 9.7 for a description of the fields in
the exc_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin,
and are not cleared until they have been reassigned. Therefore, some rows may
contain data for inactive EXCs. It is the caller’s responsibility to examine the
record_state field to determine whether this row belongs to an active (record_state
field is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC,
and to process the row accordingly.

Example

int list_exc_data(int client_id,CLIENT *cl)
{

static char c_all_appls[2] = "*";
exc_data_list_2 *exc_data;
exc_link_2 *nl;
static struct exc_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;

exc_data = acmsmgmt_list_exc_2(&sub_rec,cl);

if (!exc_data) {
printf("\n RPC Call to get EXC data failed");
return(MGMT_FAIL);

}

if (exc_data->status == MGMT_FAIL) {
if (exc_data->exc_data_list_2_u.rc == MGMT_NOMORE_DATA) {

printf("\n No EXC data found");
xdr_free(xdr_exc_data_list_2, exc_data);
free(exc_data);

return(MGMT_FAIL);
}
printf("\n Call to get EXC data failed, returning status code %d",

exc_data->exc_data_list_2_u.rc);
status = exc_data->exc_data_list_2_u.rc;

xdr_free(xdr_exc_data_list_2, exc_data);
free(exc_data);

return(status);
}

if (exc_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

Management APIs 8–61

ACMSMGMT_LIST_EXC_2

for (nl = exc_data->exc_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
if (nl->exc_data.record_state == MGMT_INACTIVE)

printf("\n INACTIVE ");
else

printf("\n ");
printf(" PID: %8X Application : %-s",

nl->exc_data.pid,
nl->exc_data.appl_name);

}

printf("\n End of data");
xdr_free(xdr_exc_data_list_2, exc_data);
free(exc_data);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_EXC_2 procedure is called to
fetch the contents of the EXC table. If the call succeeds, the state of the EXC
(if inactive), its PID, and its application name are displayed for each table row
returned. Otherwise, an error message is displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8–62 Management APIs

ACMSMGMT_LIST_INTERFACES_1

8.22 ACMSMGMT_LIST_INTERFACES_1

ACMS Remote Manager clients call this procedure to obtain information about all
configured interfaces for a Remote Manager server on a local or remote node.

Format

interfaces_rec_out *acmsmgmt_list_interfaces_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–63

ACMSMGMT_LIST_INTERFACES_1

Return Value

Type: Interfaces_rec_out
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to the start of a linked list of records.
See the Description section for a discussion of the structure of the
union. The records contain all the fields of the Interfaces table
(see Section 9.8).

Description

The ACMSMGMT_LIST_INTERFACES_1 procedure returns an array of Remote
Manager Interfaces table rows. All records in the table are returned. Each record
represents a separate interface, as determined by the interface_type field.

The return record is a union containing either a failure code or the first record in
the list, as follows:

struct interfaces_rec_out {
int status;
union {

interfaces_rec_out_r interfaces;
int rc;

} interfaces_rec_out_u;
};

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

• MGMT_SUCCESS

The call completed successfully. All rows in the table were returned.

The array is contained in a structure of type interfaces_rec_out_r with an
integer field (num_elements) containing the size of the array, as follows:

struct interfaces_rec_out_r {
int num_elements;
interfaces_rec values[MGMT_K_MAX_IF];
};

Example

int list_interfaces_data(int client_id,CLIENT *cl)
{

interfaces_rec_out *if_ptr;
interfaces_rec_out_r *inter;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

8–64 Management APIs

ACMSMGMT_LIST_INTERFACES_1

if_ptr = acmsmgmt_list_interfaces_1(&sub_rec,cl);

if (!if_ptr) {
printf("\n RPC Call to get Interfaces data failed");
return(MGMT_FAIL);

}

inter = &if_ptr->interfaces_rec_out_u.interfaces;
if (if_ptr->status == MGMT_FAIL) {

printf("\n Call to get Interfaces data failed, returning status code
%d",if_ptr->interfaces_rec_out_u.rc);

status = if_ptr->interfaces_rec_out_u.rc;
xdr_free(xdr_interfaces_rec_out, if_ptr);
free(if_ptr);

return(status);
}

printf("\n RPC interface has processed %d read requests",
inter->values[0].get_request_count);

printf("\n SNMP interface has processed %d read requests",
inter->values[1].get_request_count);

xdr_free(xdr_interfaces_rec_out, if_ptr);
free(if_ptr);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_INTERFACES_1 procedure
is called to fetch the contents of the Interfaces table. If the call succeeds, the
number of read requests by each interface is printed from the retrieved record.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

Management APIs 8–65

ACMSMGMT_LIST_LOG_1

8.23 ACMSMGMT_LIST_LOG_1

ACMS Remote Manager clients call this procedure to obtain information from a
Remote Manager log on a local or remote node.

Format

log_data_list *acmsmgmt_list_log_1 (log_sel_struct *log_rec, CLIENT *cl)

Parameters

log_rec

Type: Log_sel_struct
Access: Read
Mechanism: By reference
Usage: Defines which log records to return. The log_sel_struct contains

the following fields:

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used.

before_time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing a valid OpenVMS ASCII time string.
This field determines the chronological starting
point for the list of records to be returned. If
omitted, records are returned beginning at the
start of the file. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

8–66 Management APIs

ACMSMGMT_LIST_LOG_1

since_time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing a valid OpenVMS ASCII time string.
This field determines the chronological ending
point for the list of records to be returned. If
omitted, records are returned until end of file
is reached. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

file_name
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing either a valid OpenVMS file
specification or a logical name pointing to a valid
OpenVMS file specification. This field determines
the log file to be processed. An empty string
requests the default (currently open) log file.

dup_count
Type: Integer
Access: Read
Mechanism: By value
Usage: A sequential counter of records with the same

time. This allows records to be unique even if
they were generated at the same time. Set this
value to -1 for the initial call.

facility
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote Manager facility. If

specified, only audit records with matching
facility codes are returned. Facility codes are
listed in Section 8.1.5.

Management APIs 8–67

ACMSMGMT_LIST_LOG_1

severity
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote Manager severity. If

specified, only audit records with matching
severity are returned. Severities are listed in
Section 8.1.7.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Log_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a union. The union contains either a failure code

or a pointer to the start of a linked list of records. See the
Description section for a discussion of the structure of the union.
The following are the contents of this record:

log_data_list
Type: Logging_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a structure of type logging_rec.

dup_count
Type: Integer
Access: Write
Mechanism: By value
Usage: Integer value with uniquely identifies records

generated at the same time.

8–68 Management APIs

ACMSMGMT_LIST_LOG_1

log_msg
Type: Null-terminated character string
Access: Write
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing the audit information.

pNext
Type: Log_list
Access: Write
Mechanism: By value
Usage: Pointer to the next record in the linked list.

Description

Note

The ACMSMGMT_LIST_LOG_1 procedure is also described in detail in
Section 6.6.1.

The ACMSMGMT_LIST_LOG_1 procedure returns a linked list of Remote
Manager log entries, ordered by time. The records to be returned are determined
by the fields specified in the log_sel_struct input argument. Records can be
selected by date and time, facility, and severity. Note that only max_rpc_return_
rec data (Parameter table field) is returned in each call. The end of data is
signaled by the status field (see the following example). If the end of data is not
signaled, repeated calls are needed to fetch all matching records.

The return record is a union containing either a failure code or the first record in
the list:

struct log_data_list {
int status;
union {

int rc;
log_list list;

} log_data_list_u;
};

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

• MGMT_NOMORE_DATA

There are no more records in the file. The linked list may or may not contain
the final records, depending on whether any more records matched the
selection criteria.

Management APIs 8–69

ACMSMGMT_LIST_LOG_1

• MGMT_SUCCESS

The call completed successfully. More records exist than were returned in the
call.

The ACMSMGMT_LIST_LOG_1 procedure returns n records per call, where n
is determined by the Remote Manager parameter field max_rpc_return_recs.
Therefore, repeated calls may be necessary to retrieve all records that match
the selection criteria. Context is not maintained by the server between calls; the
selection criteria are evaluated on each call by the Remote Manager. Following
the initial call, callers should place the correct time value in the since_time field
of the log_sel_struct input argument, as well as the correct dup_count value in
order to have the chronologically next n records returned.

This procedure does not require the ACMS run-time system to execute.

Example

int list_log_data(int client_id,CLIENT *cl)
{

int skip_rec = 0;
char null_time_str[24] = "";
char first_of_jan[24] = "01-JAN-1998 00:00:00.00";
char file_spec[] = ""; /* use default, i.e. active log file */
char time_cache[MGMT_S_TIME_A+1];
static struct log_sel_struct log_rec;
log_data_list *log;
log_link *nl;
int status;

/* Initialize log selection data */

log_rec.client_id = client_id;
log_rec.before_time = null_time_str;
log_rec.since_time = first_of_jan;
log_rec.file_name = file_spec;
log_rec.dup_count = -1;
log_rec.facility = -1; /* don’t match on facility */
log_rec.severity = -1; /* don’t match on severity */

top:

log = acmsmgmt_list_log_1(&log_rec,cl);

if (!log)
return(MGMT_FAIL);

if (log->status == MGMT_FAIL) {
status = log->log_data_list_u.rc;

xdr_free(xdr_log_data_list, log);
free(log);

return(status);
}

for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (skip_rec)

skip_rec = 0;
else

printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);

memcpy(&time_cache[0],nl->log_data.log_msg,23);
log_rec.dup_count = nl->log_data.dup_count;
log_rec.since_time = time_cache;

}

8–70 Management APIs

ACMSMGMT_LIST_LOG_1

if (log->status == MGMT_NOMORE_DATA)
printf("\n *** End of data **");

else {
skip_rec = 1;
goto top;

}

xdr_free(xdr_log_data_list, log);
free(log);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_LOG_1 procedure is called
to fetch the contents of the RM log file. All entries since January 1, 1998 are
requested. If the call succeeds, each entry is printed out. Otherwise, an error
message is displayed. This example is very similar to the one described in detail
in Chapter 6. The example in Section 6.4.1 shows how to declare and initialize
the input arguments to this procedure.

Management APIs 8–71

ACMSMGMT_LIST_PROC_1

8.24 ACMSMGMT_LIST_PROC_1

ACMS Remote Manager clients call this procedure to obtain a list of ACMS
processes running on a particular node, along with some collection state
information for each process.

Format

proc_data_list *acmsmgmt_list_proc_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–72 Management APIs

ACMSMGMT_LIST_PROC_1

Return Value

Type: Proc_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type proc_link, which
contains the start of a linked list of records. The following are the
contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Proc_list
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of

process data, and a forward pointer to the next
node in the linked list. The following are the
contents of this structure:

pNext
Type: Proc_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type user_list.

proc_data
Type: Proc_rec
Access: Write
Mechanism: By reference
Usage: The data describing the process.

This record contains the following
fields:

Management APIs 8–73

ACMSMGMT_LIST_PROC_1

record_state
Type: Integer
Access: Write
Mechanism: By value
Usage: The current state

of the record.
Will be either
MGMT_VALID
or MGMT_
INACTIVE.

entity_type
Type: Integer
Access: Write
Mechanism: By value
Usage: The type of

ACMS entity the
process is. Entity
types are listed
in Section 8.1.4.

pid
Type: Integer
Access: Write
Mechanism: By value
Usage: OpenVMS

Process ID.

process_name
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The OpenVMS

process name.

8–74 Management APIs

ACMSMGMT_LIST_PROC_1

class_states
Type: Array of integers
Size: 5
Access: Write
Mechanism: By value
Usage: An array of

integers. Each
array element
represents
the collection
state for a class.
Positions are:

• 0: ID

• 1: CONFIG

• 2: RUNTIME

• 3: POOL

• 4: ERROR

Description

The ACMSMGMT_LIST_PROC_1 procedure returns a linked list of processes that
a particular Remote Manager is aware of. The Remote Manager builds this list
from the various ACMS Entity tables (Chapter 9). For each process, the Remote
Manager populates a proc_data record.

Note that some entity tables may contain rows with inactive data, that is, data
for processes that are no longer active. The data in these rows may or may not be
interesting to the caller. To distinguish active and inactive processes, the Remote
Manager sets the record_state field to MGMT_VALID for active processes and to
MGMT_INACTIVE for inactive processes. The caller is responsible for checking
this field and taking appropriate action.

The collection_states field is a simple array of five integers. Each array element
contains either a 1 (if the collection class is enabled) or a 0 (if the collection class
is disabled). Array elements are positional, as described in the Return Value
section.

Like other procedures that return linked lists (see Section 6.6.1 for a detailed
example of linked-list processing), the return parameter is a union containing
either a failure status code or a linked list of records.

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

• MGMT_SUCCESS

The call completed successfully. All user records have been returned.

Management APIs 8–75

ACMSMGMT_LIST_PROC_1

If the status field value is MGMT_SUCCESS, a linked list has been returned.
The linked list contains a structure containing the process data, and a forward
pointer. By following the forward pointer, all the records in the list can be
retrieved.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int list_process_data(int client_id,CLIENT *cl)
{

proc_data_list *proc;
proc_link *nl;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

proc = acmsmgmt_list_proc_1(&sub_rec,cl);

if (!proc) {
printf("\n RPC Call to get Process data failed");
return(MGMT_FAIL);

}

if ((proc->status != MGMT_SUCCESS) && (proc->status != MGMT_NOMORE_DATA)) {
printf("\n Call to get Process data failed, returning status code %d",

proc->proc_data_list_u.rc);
status = proc->proc_data_list_u.rc;

xdr_free(xdr_proc_data_list, proc);
free(proc);

return(status);
}

for (nl = proc->proc_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->proc_data.record_state == MGMT_INACTIVE)

printf("\n INACTIVE ");
else

printf("\n ");
printf(" PID: %8X Process Name: %s",nl->proc_data.pid,

nl->proc_data.process_name);
}

printf("\n End of data");
xdr_free(xdr_proc_data_list, proc);
free(proc);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_PROC_1 procedure is called
to fetch information about collection states from all processes accessible to the
Remote Manager. If the call succeeds, the name of the process, along with its
state is displayed (inactive processes have that string printed before the process
name). Otherwise, an error message is displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8–76 Management APIs

ACMSMGMT_LIST_SERVER_1

8.25 ACMSMGMT_LIST_SERVER_1

ACMS Remote Manager clients call this procedure to obtain a list of procedure
server table (Server table) entries.

Format

ser_data_list *acmsmgmt_list_server_1(ser_sel_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Ser_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains client information and procedure server

selection criteria. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application name. The name may

contain wildcard characters (*, !). Specify in all
uppercase characters.

server_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a procedure server name. The name

may contain wildcard characters (*, !). Specify in
all uppercase characters.

Management APIs 8–77

ACMSMGMT_LIST_SERVER_1

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Ser_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type ser_link, which
contains the start of a linked list of records. The following are the
contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Ser_list
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure

containing an EXC table record, and a forward
pointer to the next node in the linked list. The
following are the contents of this structure:

pNext
Type: Ser_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

8–78 Management APIs

ACMSMGMT_LIST_SERVER_1

ser_data
Type: Ser_rec_r
Access: Write
Mechanism: By reference
Usage: Server table row. Server

table fields are described in
Section 9.12.

Description

The ACMSMGMT_LIST_SER_1 procedure returns a linked list of Server table
rows. All matching Server table rows are returned in each call. Matching is
performed first on application name, and then on server name. Therefore, all
matching servers for all matching applications are returned.

Entire table rows are returned. See Section 9.12 for a description of the fields in
the ser_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin,
and are not cleared until they have been reassigned. Therefore, some rows may
contain data for inactive EXCs. The Remote Manager attempts to retrieve server
information for inactive EXCs. It is the caller’s responsibility to examine the
record_state field to determine whether this row belongs to an active (record_
state field is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE)
EXC, and to process the row accordingly.

Example

int list_ser_data(int client_id,CLIENT *cl)
{

static char c_all_appls[2] = "*";
ser_data_list *ser_data;
ser_link *nl;
static struct ser_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;
sub_rec.server_name = c_all_appls;

ser_data = acmsmgmt_list_server_1(&sub_rec,cl);

if (!ser_data) {
printf("\n RPC Call to get Server data failed");
return(MGMT_FAIL);

}

Management APIs 8–79

ACMSMGMT_LIST_SERVER_1

if (ser_data->status == MGMT_FAIL) {
if (ser_data->ser_data_list_u.rc == MGMT_NOMORE_DATA) {

printf("\n No SERVER data found");
xdr_free(xdr_ser_data_list, ser_data);
free(ser_data);

return(MGMT_FAIL);
}

printf("\n Call to get Server data failed, returning status code %d",
ser_data->ser_data_list_u.rc);

status = ser_data->ser_data_list_u.rc;
xdr_free(xdr_ser_data_list, ser_data);
free(ser_data);

return(status);
}

if (ser_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

for (nl = ser_data->ser_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->ser_data.record_state == MGMT_INACTIVE)

printf("\n INACTIVE ");
else

printf("\n ");
printf(" Application : %-32s Server: %-s",

nl->ser_data.appl_name,
nl->ser_data.server_name);

}

printf("\n End of data");
xdr_free(xdr_ser_data_list, ser_data);
free(ser_data);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_SERVER_1 procedure is
called to fetch the contents of the Server tables for all applications on the target
node. If the call succeeds, the state of the server (if inactive), the name of the
application it belongs to, and the name of the server are displayed for each
table row returned. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8–80 Management APIs

ACMSMGMT_LIST_TG_2

8.26 ACMSMGMT_LIST_TG_2

ACMS Remote Manager clients call this procedure to obtain a list of Task Group
table entries.

Format

tg_data_list_2 *acmsmgmt_list_tg_2(tg_sel_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Tg_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains client information and task group

selection critera. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application name. The name may

contain wildcard characters (*, !). Specify in all
uppercase characters.

tg_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a task group name. The name may

contain wildcard characters (*, !). Specify in all
uppercase characters.

Management APIs 8–81

ACMSMGMT_LIST_TG_2

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Tg_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type tg_link_2, which
contains the start of a linked list of records. The following are the
contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Tg_list_2
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure

containing a Task Group table record, and a
forward pointer to the next node in the linked list.
The following are the contents of this structure:

pNext
Type: Tg_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

8–82 Management APIs

ACMSMGMT_LIST_TG_2

tg_data
Type: Tg_rec_r_2
Access: Write
Mechanism: By reference
Usage: Task Group table row. Task

Group table fields are described
in Section 9.13.

Description

The ACMSMGMT_LIST_TG_2 procedure returns a linked list of Task Group table
rows. All matching Task Group table rows are returned in each call. Matching
is performed first on the application name, and then on the task group name.
Therefore, all matching task groups for all matching applications are returned.

Entire table rows are returned. See Section 9.13 for a description of the fields in
the tg_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin,
and are not cleared until they have been reassigned. Therefore, some rows may
contain data for inactive EXCs. The Remote Manager will attempt to retrieve
task group information for inactive EXCs. It is the caller’s responsibility to
examine the record_state field to determine whether this row belongs to an active
(record_state field is MGMT_VALID) or inactive (record_state field is MGMT_
INACTIVE) EXC, and to process the row accordingly.

Example

int list_group_data(int client_id,CLIENT *cl)
{

static char c_all_appls[2] = "*";
tg_data_list_2 *tg_data;
tg_link_2 *nl;
static struct tg_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;
sub_rec.tg_name = c_all_appls;

tg_data = acmsmgmt_list_tg_2(&sub_rec,cl);

if (!tg_data) {
printf("\n RPC Call to get Task Group data failed");
return(MGMT_FAIL);

}

Management APIs 8–83

ACMSMGMT_LIST_TG_2

if (tg_data->status == MGMT_FAIL) {
if (tg_data->tg_data_list_2_u.rc == MGMT_NOMORE_DATA) {

printf("\n No GROUP data found");
xdr_free(xdr_tg_data_list_2, tg_data);
free(tg_data);

return(MGMT_FAIL);
}
printf("\n Call to get Task Group data failed, returning status code

%d",tg_data->tg_data_list_2_u.rc);
status = tg_data->tg_data_list_2_u.rc;

xdr_free(xdr_tg_data_list_2, tg_data);
free(tg_data);

return(status);
}

if (tg_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

for (nl = tg_data->tg_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
if (nl->tg_data.record_state == MGMT_INACTIVE)

printf("\n INACTIVE ");
else

printf("\n ");
printf(" Application: %-32s Task Group: %-s",

nl->tg_data.appl_name,
nl->tg_data.tg_name);

}

printf("\n End of data");
xdr_free(xdr_tg_data_list_2, tg_data);
free(tg_data);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_TG_1 procedure is called to
fetch the contents of the Task Group tables for all applications on the target
node. If the call succeeds, the state of the task group (if inactive), the name of
the application it belongs to, and the name of the task group are displayed for
each table row returned. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8–84 Management APIs

ACMSMGMT_LIST_TRAP_1

8.27 ACMSMGMT_LIST_TRAP_1

ACMS Remote Manager clients call this procedure to obtain a list of Trap table
entries.

Format

trap_data_list *acmsmgmt_list_trap_1(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–85

ACMSMGMT_LIST_TRAP_1

Return Value

Type: Trap_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type trap_link, which
contains the start of a linked list of records. The following are the
contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Trap_list
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of trap

table rows, and a forward pointer to the next
node in the linked list. The following are the
contents of this structure:

pNext
Type: Trap_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type trap_list.

trap_data
Type: Trap_rec
Access: Write
Mechanism: By reference
Usage: Trap table row. Trap table fields

are described in Section 9.14.

8–86 Management APIs

ACMSMGMT_LIST_TRAP_1

Description

The ACMSMGMT_LIST_TRAP_1 procedure returns a linked list of Trap table
rows. All Trap table rows are returned in each call. Records are returned
sequentially from the table, beginning at the start of the table.

Entire table rows are returned. See Section 9.14 for a description of the fields in
the trap_rec structure.

This procedure does not require the ACMS run-time system in order to execute.

Example

int list_trap_data(int client_id,CLIENT *cl)
{

char c_states[2][9] = {"enabled","disabled"};
char c_entities[10][9] = {"unknown","*","acc","tsc","qti","cp","exc",

"server","group","mgr"};
char c_classes[6][8] = {"*","id","config","runtime","pool","error"};
char c_trap_params[2][15] = {"exists","event severity"};

trap_data_list *trap;
trap_link *nl;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

trap = acmsmgmt_list_trap_1(&sub_rec,cl);

if (!trap) {
printf("\n RPC Call to get Trap data failed");
return(MGMT_FAIL);

}

if (trap->status != MGMT_SUCCESS) {
printf("\n Call to get Trap data failed, returning status code %d",

trap->trap_data_list_u.rc);
status = trap->trap_data_list_u.rc;

xdr_free(xdr_trap_data_list, trap);
free(trap);

return(status);
}

for (nl = trap->trap_data_list_u.list; nl != NULL; nl = nl->pNext) {
printf("\n Entity: %-9s Name: %-32s Param: %-15s Trap Min: %d

Trap Max: %d",
c_entities[nl->trap_data.entity_type],
nl->trap_data.entity_name,
c_trap_params[nl->trap_data.param_to_trap],
nl->trap_data.min,
nl->trap_data.max);

}

printf("\n End of data");
xdr_free(xdr_trap_data_list, trap);
free(trap);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_TRAP_1 procedure is called to
fetch the contents of the Trap table. If the call succeeds, the entity_type, entity_
name, parameter, trap_min, and trap_max fields are displayed for each row in the
table. Otherwise, an error message is displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

Management APIs 8–87

ACMSMGMT_LIST_USERS_1

8.28 ACMSMGMT_LIST_USERS_1

ACMS Remote Manager clients call this procedure to obtain information about
users attached to a Remote Manager server on a local or remote node.

Format

user_data_list *acmsmgmt_list_users_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–88 Management APIs

ACMSMGMT_LIST_USERS_1

Return Value

Type: User_data_list
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type user_link, which
contains the start of a linked list of records. The following are the
contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: User_list
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of user

data, and a forward pointer to the next node in
the linked list. The following are the contents of
this structure:

pNext
Type: User_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type user_list.

user_data
Type: User_rec
Access: Write
Mechanism: By reference
Usage: The data describing the user.

This record contains the following
fields:

Management APIs 8–89

ACMSMGMT_LIST_USERS_1

client_id
Type: Integer
Access: Write
Mechanism: By value
Usage: Integer value

containing the
client ID for the
user.

reserved
Type: Integer
Access: Write
Mechanism: By value
Usage: Reserved for HP

use.

gid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC group

identifier.

uid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC user

identifier.

proxy_gid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC group

identifier of
the proxy user,
if proxy is being
used.

8–90 Management APIs

ACMSMGMT_LIST_USERS_1

proxy_uid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC user

identifier of
the proxy user,
if proxy is being
used.

node-name
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: Pointer to a null-

terminated string
containing the
name of the node
from which the
user logged in.

expires
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: Time the user’s

credentials
expire. Time
is expressed in
OpenVMS ASCII
time format (DD-
MMM-YYYY
HH:MM:SS.hh).

Management APIs 8–91

ACMSMGMT_LIST_USERS_1

user-name
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: Pointer to a null-

terminated string
containing the
user name.

rights
Type: Array of integers
Access: Write
Mechanism: By value
Usage: ACMS

management
rights identifiers
held by the user.

proxy_flag
Type: Integer
Access: Write
Mechanism: By value
Usage: Indicates whether

the record is for
a proxy user
(proxy_flag =
1) or is not for
a proxy user
(proxy_flag = 0).

Description

The ACMSMGMT_LIST_USERS_1 procedure returns a linked list of users who
are logged in to a particular Remote Manager. All user records are returned on
each call to this procedure.

Like other procedures that return linked lists, the return parameter is a
union containing either a failure status code or a linked list of records. (See
Section 6.6.1 for a detailed example of linked list processing.)

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values for the status field:

• MGMT_FAIL

The call has failed, and the rc field contains a specific error code describing
the failure.

• MGMT_SUCCESS

The call completed successfully. All user records have been returned.

8–92 Management APIs

ACMSMGMT_LIST_USERS_1

If the status field is equal to MGMT_SUCCESS, a linked list has been returned.
The linked list contains a structure containing the user data and a forward
pointer. By following the forward pointer, all the records in the list can be
retrieved.

This procedure does not require the ACMS run-time system to execute.

Example

int list_users_data(int client_id,CLIENT *cl)
{

user_data_list *user;
user_link *nl;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;

user = acmsmgmt_list_users_1(&sub_rec,cl);

if (!user) {
printf("\n RPC Call to get User data failed");
return(MGMT_FAIL);

}

if ((user->status != MGMT_SUCCESS) && (user->status != MGMT_NOMORE_DATA)) {
printf("\n Call to get User data failed, returning status code %d",

user->user_data_list_u.rc);
status = user->user_data_list_u.rc;

xdr_free(xdr_user_data_list, user);
free(user);

return(status);
}

for (nl = user->user_data_list_u.list; nl != NULL; nl = nl->pNext)
printf("\n User %s is logged in from node %s",nl->user_data.uname,

nl->user_data.nodename);

printf("\n End of data");
xdr_free(xdr_user_data_list, user);
free(user);

return(0);
}

In the preceding example, the ACMSMGMT_LIST_USERS_1 procedure is called
to fetch information about the users who have logged in to the Remote Manager.
If the call succeeds, the name of the user and the node they logged in from
are displayed. Otherwise, an error message is displayed. Note that the name
displayed is the name by which the user is known to the server, and may be a
proxy account. The example in Section 6.4.1 shows how to declare and initialize
the input arguments to this procedure.

Management APIs 8–93

ACMSMGMT_REPLACE_SERVER_1

8.29 ACMSMGMT_REPLACE_SERVER_1

This procedure requests the Remote Manager to replace an ACMS procedure
server in an ACMS application on the same node on which the Remote Manager
is running.

Format

cmd_output_rec *acmsmgmt_replace_server_1(ser_sel_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Ser_sel_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains client information and procedure server

selection criteria. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application name. The name may

contain wildcard characters (*, !). Specify in all
uppercase characters.

server_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a procedure server name. The name

may contain wildcard characters (*, !). Specify in
all uppercase characters.

8–94 Management APIs

ACMSMGMT_REPLACE_SERVER_1

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a union. The union contains either a failure code or a

structure of type cmd_rec, which points to a linked list containing
status messages. The following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

Management APIs 8–95

ACMSMGMT_REPLACE_SERVER_1

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests to have an ACMS procedure server replaced (stopped
and started) in an application that is running on the same node on which the
Remote Manager is running. The combination of appl_name and server_name in
the input record determines which server will be replaced.

This call executes synchronously. It does not return to the caller until the attempt
to replace the server is complete. Any messages associated with an unsuccessful
replacing of the server are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. There are no status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status
messages returned; instead, the reason for the failure is contained in the rc field.

8–96 Management APIs

ACMSMGMT_REPLACE_SERVER_1

Example

int replace_server(int client_id,CLIENT *cl)
{

dcl_link *nl;
static char c_name_all[2] = "*";
static char vr_read_server[] = "VR_READ_SERVER";
static struct ser_sel_struct sub_rec;
static cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_name_all;
sub_rec.server_name = vr_read_server;

ret_struct = acmsmgmt_replace_server_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to replace server failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to replace procedure server %s failed",

sub_rec.server_name);
return(MGMT_FAIL);

}

printf("\n Call to replace procedure server %s completed with warnings or
errors",sub_rec.server_name);

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl= nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to replace procedure server %s was executed",

sub_rec.server_name);
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_REPLACE_SERVER_1 procedure is
called to replace servers named VR_READ_SERVER in any application on the
target node. If the call succeeds, all VR_READ_SERVER servers are replaced
(stopped and started). Otherwise, any error messages associated with the failure
are displayed. The example in Section 6.4.1 shows how to declare and initialize
the input arguments to this procedure.

Management APIs 8–97

ACMSMGMT_RESET_LOG_1

8.30 ACMSMGMT_RESET_LOG_1

This procedure requests the Remote Manager to close the current version of its
log file and open a new one.

Format

int *acmsmgmt_reset_log_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

8–98 Management APIs

ACMSMGMT_RESET_LOG_1

Description

This procedure requests the Remote Manager to close the currently open version
of its log and to open a new one. All subsequent log entries are posted to the new
version, and the old version can be safely removed.

Example

int reset_log_data(int client_id,CLIENT *cl)
{

static struct sub_id_struct sub_rec;
int *status;

sub_rec.client_id = client_id;

status = acmsmgmt_reset_log_1(&sub_rec,cl);

if (!status) {
printf("\n Call to reset log failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to reset log failed with status %d",*status);

free(status);
return(MGMT_FAIL);

}
else

printf("\n Call to reset log completed");
free(status);

return(0);
}

In the preceding example, the ACMSMGMT_RESET_LOG_1 procedure is
called to close the current Remote Manager log and to open a new one. If the
call succeeds, a success message is displayed. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

Management APIs 8–99

ACMSMGMT_RESET_ERR_2

8.31 ACMSMGMT_RESET_ERR_2

This procedure requests the Remote Manager to close the current version of the
error log file and open a new one.

Format

int *acmsmgmt_reset_err_2(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

8–100 Management APIs

ACMSMGMT_RESET_ERR_2

Description

This procedure requests the Remote Manager to close the currently open version
of the error log and to open a new one. All subsequent erro log entries are posted
to the new version, and the old version can be safely removed.

Example

int reset_err_data(int client_id,CLIENT *cl)
{

static struct sub_id_struct sub_rec;
int *status;

sub_rec.client_id = client_id;

status = acmsmgmt_reset_err_2(&sub_rec,cl);

if (!status) {
printf("\n Call to reset log failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to reset log failed with status %d",*status);

free(status);
return(MGMT_FAIL);

}
else

printf("\n Call to reset log completed");
free(status);

return(0);
}

In the preceding example, the ACMSMGMT_RESET_ERR_2 procedure is called
to close the current error log and to open a new one. If the call succeeds, a
success message is displayed. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APIs 8–101

ACMSMGMT_SAVE_ERR_FILTER_2

8.32 ACMSMGMT_SAVE_ERR_FILTER_2

This procedure saves the current error filter records to an error filter file.

Format

int *acmsmgmt_save_err_filter_2(sub_id_struct *sub_rec,CLIENT *cl)

8–102 Management APIs

ACMSMGMT_SAVE_ERR_FILTER_2

Parameters

set_struct

Type: Err_filter_config_rec_r_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization and

error filter record information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

err_filter_file_name
Type: file_spec
Access: Read
Mechanism: By value
Usage: Specifies the OpenVMS file specification for the

error filter file.

err_msg_name
Type: String
Access: Read
Mechanism: By value
Usage: Symbolic name of the error message.

err_code
Type: String
Access: Read
Mechanism: By value
Usage: Decimal or hexadecimal code for the error

message.

Management APIs 8–103

ACMSMGMT_SAVE_ERR_FILTER_2

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description

This procedure saves all records in the Error Filter table to the specified ASCII
text file.

Example

int save_err_filter(int client_id, CLIENT *cl)
{

int *status;
static char c_null_str[2] = "";
static char file_spec = "sys$login:err_filter.dat";
err_filter_config_rec_r_2 set_struct;

set_struct.client_id = client_id;
set_struct.err_filter_file_name = file_spec;
set_struct.err_msg_name = c_null_str;
set_struct.err_code = -2;

status = acmsmgmt_save_err_filter_file_2(&set_struct, cl);

if (!status) {
printf("\n Call to save error filter failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to save error filter failed with status %d",

*status);
free(status);

return(MGMT_FAIL);
}
else {

printf("\n Call to save error filter completed");
}

free(status);
return(0);

}

In the preceding example, the ACMSMGMT_SAVE_ERR_FILTER_2

8–104 Management APIs

ACMSMGMT_SAVE_ERR_FILTER_2

procedure is called to save all the records in the Error Filter table to the
file SYS$LOGIN:ERR_FILTER.DAT. If the call succeeds, a success message
is displayed. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIs 8–105

ACMSMGMT_SET_ACC_2

8.33 ACMSMGMT_SET_ACC_2

This procedure modifies ACMS Central Controller (ACC) Config class fields.

Format

acc_status_rec_2 *acmsmgmt_set_acc_2(acc_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Acc_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

ACC table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

active_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether active variables should be

updated (active_sw = 1). Active variables are
currently in use by the ACMS system; updates to
active variables take effect immediately but are
not durable (that is, they do not survive a restart
of the ACMS system). Not all variables are
dynamic, however. Refer to Section 9.2, and to
the field descriptions in this section, to determine
whether a particular variable can be updated
dynamically.

8–106 Management APIs

ACMSMGMT_SET_ACC_2

current_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether current variables should be

updated (current_sw = 1). Current variables are
those stored in the ACMSGEN file currently in
use by the ACMS system and are durable (that is,
they can survive a restart of the ACMS system).
Updates to current variables take effect when the
ACMS system is restarted.

acc_priority, audit_state, max_appl, mss_maxobj, mss_
maxbuf, mss_net_retry_timer, mss_poolsize, mss_process_
pool, ws_poolsize, wsc_poolsize, tws_poolsize, twsc_
poolsize
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to fields of the same names in the ACC table,
depending on the value of active_sw and current_
sw in this record (for example, acc_priority will
update the acc_priority_active field if active_sw
is equal to 1). See Section 9.2 for a discussion
of these fields. Note that not all fields can be
updated dynamically.

astlm, biolm, bytlm, channelcnt, diolm, enqlm, fillm,
gblpages, gblpagfil, gblsections, pgflquota, tqelm,
wsdefault, wsextent, wsquota
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to fields of the same names in the ACC table,
depending on the value of active_sw and current_
sw in this record (for example, astlm will update
the astlm_stored field if current_sw is equal to
1). See Section 9.2 for a discussion of these fields.
None of these fields can be updated dynamically.

Management APIs 8–107

ACMSMGMT_SET_ACC_2

acc_username, username_default, node_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Values to be updated. These fields correspond

to fields of the same names in the ACC table,
depending on the value of active_sw and current_
sw in this record (for example, username_default
will update the username_default_active field if
active_sw is equal to 1). See Section 9.2 for a
discussion of these fields. Note that not all fields
can be updated dynamically. In order to have any
of these fields set to null (that is, ""), set the field
to the string "NULL".

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Acc_status_rec_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type acc_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

8–108 Management APIs

ACMSMGMT_SET_ACC_2

data, data_warn
Type: Acc_config_rec_out
Access: Write
Mechanism: By value
Usage: Structure containing fields corresponding to the

fields in the acc_config_rec_2 structure, as well
as a linked list of status messages associated
with the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

acc_priority, acc_username, astlm, audit_
state, biolm, bytlm, channelcnt, diolm,
enqlm, fillm, gblpages, gblpagfil, gblsections,
max_appl, mss_maxobj, mss_maxbuf, mss_
net_retry_timer, mss_poolsize, mss_process_
pool, node_name, pgflquota, tqelm, twsc_
poolsize, tws_poolsize, username_default,
wsc_poolsize, wsdefault, wsextent, ws_
poolsize, wsquota
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the

fields in the input argument.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APIs 8–109

ACMSMGMT_SET_ACC_2

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests updates to ACMS ACC Config class fields contained in
the ACC table (see Section 9.2). Note that the ACC table contains both active and
stored values. The active_sw field and current_sw field control which fields are to
be updated.

Attempting to update an active field that is nondynamic is essentially useless,
since the value of the active field value will not change. For instance, calling this
procedure with the active_sw field set to 1 and the acc_username field populated
produces no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current
ACMSGEN file. These updates are durable (that is, they can survive a restart
of the ACMS sytem), but they do not affect the active system until the system is
restarted.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure. For string fields, the
string field value is returned regardless of the status of the call.

In order to have one of the string fields set to a null string (that is, ""), populate
the field with the value NULL. To have one of the string fields ignored, pass in a
null string.

Example

int set_acc_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char c_null_str[2] = "";
static acc_config_rec_2 set_struct;
acc_status_rec_2 *ret_struct;
dcl_link *nl;

8–110 Management APIs

ACMSMGMT_SET_ACC_2

memset(&set_struct,-1,sizeof(set_struct));
set_struct.client_id = client_id;
set_struct.active_sw = 1;
set_struct.current_sw = 0;
set_struct.audit_state = MGMT_STATE_DISABLED;

/* Have to provide a pointer for string conversions by XDR
or it will access vio. RM will ignore any fields with
strlen of 0 */

set_struct.acc_username = c_null_str;
set_struct.username_default = c_null_str;
set_struct.node_name = c_null_str;

ret_struct = acmsmgmt_set_acc_2(&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify ACC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify ACC returned the following warnings or

errors\n");
else

printf("\n Call to modify ACC completed\n");

for (nl = ret_struct->acc_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_acc_status_rec_2, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the acmsmgmt_set_acc_2 procedure is called to disable
system auditing on the target node. If the call succeeds, system auditing is
disabled on the target node, and a success message is displayed. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

Management APIs 8–111

ACMSMGMT_SET_AGENT_2

8.34 ACMSMGMT_SET_AGENT_2

This procedure modifies the ACMS Agent Process class attributes.

Format

agent_status_rec *acmsmgmt_set_agent_2(agent_config_rec *agent_cfg_rec,CLIENT *cl)

Parameters

set_struct

Type: agent_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Agent table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

current_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Update current values flag, required to be set to

1.

pid
Type: Integer
Access: Read
Mechanism: By reference
Usage: PID of the Agent process to be updated, required.

8–112 Management APIs

ACMSMGMT_SET_AGENT_2

user1_time, user2_time, user3_time
Type: Null-terminated String
Access: Read
Mechanism: By reference
Usage: Time fields provided for use by programmers.

Pointers to character strings representing VMS
time (for example, "18-NOV-2003 00:00:00.00"). If
these fields are not to be set, the fields should be
initialized to a null string (""). See the note at the
end of this section for a discussion of these fields.

user1_data, user2_data, user3_data, user4_data, user5_
data, user6_data
Type: Integer
Access: Read
Mechanism: By value
Usage: Integer fields provided for use by programmers.

astlm, biolm, bytlm, diolm, enqlm, fillm, pgflquota, tqelm,
wsdefault, wsextent, wsquota
Type: Integer
Access: Read
Mechanism: By value
Usage: Quota values to be updated. These fields

correspond to the stored fields of the same names
in the Agent table (for example, astlm will update
astlm_stored). See the note at the end of this
section for a discussion of these fields.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–113

ACMSMGMT_SET_AGENT_2

Return Value

Type: agent_status_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type agent_config_rec_out, which
contains status codes for each quota field, as well as a linked list
of status messages associated with the update. The following are
the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: agent_config_rec_out
Access: Write
Mechanism: By value
Usage: Structure containing fields corresponding to the

quota fields in the agent_config_rec structure, as
well as a linked list of status messages associated
with the update. The following are the contents
of this structure:

astlm, biolm, bytlm, diolm, enqlm, fillm,
pgflquota, tqelm, wsdefault, wsextent,
wsquota
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to

the quota fields in the input
argument.

8–114 Management APIs

ACMSMGMT_SET_AGENT_2

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Note

This procedure requests updates to ACMS Agent Config class fields
contained in the Agent table at the end of this section. Note that the
Agent table contains both active and stored quota values; however, only
the stored fields can be changed.

Description

The ACMSMGMT_SET_AGENT_2 procedure sets the three user time fields and
six user data fields, these fields are provided for agent developers to use as they
see fit for individual agents.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Management APIs 8–115

ACMSMGMT_SET_AGENT_2

Example

int set_agent_data(int client_id,CLIENT *cl)
{

static char null_time[] = "";
static agent_config_rec set_struct;
agent_status_rec *ret_struct;
dcl_link *nl;

static char time1[MGMT$S_TIME_A+1] = "18-NOV-1858 00:00:00.00";
static char time2[MGMT$S_TIME_A+1] = "19-NOV-1858 00:00:00.00";
static char time3[MGMT$S_TIME_A+1] = "20-NOV-1858 00:00:00.00";

// Initialize the agent config record.
memset(&set_struct,-1,sizeof(set_struct));
set_struct.user1_time = null_time;
set_struct.user2_time = null_time;
set_struct.user3_time = null_time;

set_struct.pid = 0x45400931;
set_struct.client_id = client_id;
set_struct.current_sw = 1;
set_struct.astlm = 500;

set_struct.user1_time = time1;
set_struct.user2_time = time2;
set_struct.user3_time = time3;
set_struct.user1_data = 1;
set_struct.user2_data = 2;
set_struct.user3_data = 3;
set_struct.user4_data = 4;
set_struct.user5_data = 5;
set_struct.user6_data = 6;

ret_struct = acmsmgmt_set_agent_2(&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify Agent failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify Agent returned the following warnings or errors\n");

else
printf("\n Call to modify Agent completed\n");

for (nl = ret_struct->agent_status_rec_u.data.cmd_output;
nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);

xdr_free(xdr_agent_status_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_AGENT_2 procedure is call
to set the user time and data fields. If the call succeeds, a success message is
displayed. Otherwise, an error message is displayed. The example in Section
5.3.1 shows how to declare and initialize the input arguments to this procedure.

8–116 Management APIs

ACMSMGMT_SET_COLLECTION_2

8.35 ACMSMGMT_SET_COLLECTION_2

This procedure modifies entries in the Remote Manager Collection table.
Collection table entries can also be added (see Section 8.3) and deleted (see
Section 8.6).

Format

coll_status_rec_2 *acmsmgmt_set_collection_2(coll_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Coll_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

coll
Type: Coll_update_rec_r_2
Access: Read
Mechanism: By value
Usage: Structure containing a Collection table record.

Collection table fields are described in Section 9.4.
See the Description section for information on
how to initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–117

ACMSMGMT_SET_COLLECTION_2

Return Value

Type: Coll_status_rec_2
Access: write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type coll_update_rec_r_2, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

rc
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Coll_output_rec_r_2
Access: write
Mechanism: By value
Usage: Structure containing a Collection table record.

The entries in this field contain status codes that
correspond to the fields in the coll structure. See
the Description section for a discussion of how to
determine the update status for any field.

Description

This procedure requests updates to fields in the Collection table (see Section 9.4).

Updates to this table are not durable; that is, they do not survive a restart of
the Remote Manager. To make nondynamic, permanent updates to the collection
table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_
class. These fields must exactly match an existing record in the Collection table
for the update to be applied. Table 8–1 and Table 8–4 contain symbolic values
used to populate the collection_class and entity_type fields; entity_name is
specified as a null-terminated string.

For any nonnegative fields, the completion status of the update is returned in
the corresponding field in the return structure. This includes the key fields of
entity_type, entity_name, and collection_class. If no matching record is found in
the table, entity_type and collection_class contain values of MGMT_FAIL.

Updates to the collection table are processed immediately and may affect more
than one ACMS process. See Section 5.1 for discussion of how the collection table
affects ACMS data collection.

8–118 Management APIs

ACMSMGMT_SET_COLLECTION_2

Example

int set_collection_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static coll_config_rec_2 set_struct;
struct coll_status_rec_2 *status_rec;

set_struct.client_id = client_id;
set_struct.coll.entity_type = MGMT_ALL;
set_struct.coll.entity_name = c_name_all;
set_struct.coll.collection_class = MGMT_CLASS_RT;
set_struct.coll.collection_state = MGMT_STATE_ENABLED;

status_rec = acmsmgmt_set_collection_2(&set_struct,cl);
if (!status_rec) {

printf("\n Call to modify collection failed");
return(MGMT_FAIL);

}

if (status_rec->status == MGMT_WARN) {
printf("\nThe following updates failed: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type == MGMT_FAIL)

printf("\n Record not found");
if (status_rec->coll_status_rec_2_u.data_warn.collection_state

== MGMT_FAIL)
printf("\n coll_state invalid");

if (status_rec->coll_status_rec_2_u.data_warn.storage_state == MGMT_FAIL)
printf("\n storage_state invalid");

if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
== MGMT_FAIL)

printf("\n storage_interval invalid");
}

else if (status_rec->status != MGMT_SUCCESS) {
printf("\n Call to modify collection failed with status

%d",status_rec->coll_status_rec_2_u.rc);
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);

return(MGMT_FAIL);
}
else

printf("\nCall to modify collection was executed");
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);

return(0);
}

In the preceding example, the ACMSMGMT_SET_COLLECTION_2 procedure
is called to set the collection state to ENABLED for the Collection table record
with an entity of * (all), a name of * (all), and class of RUNTIME. If the call
succeeds, the new value will be stored in the Collection table, all ACMS processes
on the target node will begin collecting run-time data, and a success message
will be displayed. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIs 8–119

ACMSMGMT_SET_CP_2

8.36 ACMSMGMT_SET_CP_2

This procedure modifies the ACMS Central Process (CP) class attributes.

Format

cp_status_rec_2 *acmsmgmt_set_cp_2(cp_config_rec_2 *cp_cfg_rec,CLIENT *cl)

Parameters

cp_cfg_rec_2

Type: Cp_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

astlm, biolm, bytlm, current_sw, diolm, enqlm, fillm,
pgflquota, tqelm, wsdefault, wsextent, wsquota
Type: Cp_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a CP table record. CP

table fields are described in Section 9.5. See the
Description section for information on how to
initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–120 Management APIs

ACMSMGMT_SET_CP_2

Return Value

Type: Cp_status_rec_2
Access: write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either

a failure code or a structure of type config_rec_out_2, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

rc
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Config_rec_out_2
Access: write
Mechanism: By value
Usage: Structure containing a CP table record. The

entries in this field contain status codes that
correspond to the fields in the cp structure. See
the Description section for a discussion of how to
determine the update status for any field.

Description

This procedure requests updates to fields in the CP table (see Section 9.5).

Updates to this table are not durable; that is, they do not survive a restart of
the Remote Manager. To make nondynamic, permanent updates to the collection
table, use the ACMSCFG utility.

Updates to the CP table are processed immediately and may affect more than one
ACMS process.

Example

int set_cp_data(int client_id,CLIENT *cl)
{

cp_config_rec_2 set_struct;
cp_status_rec_2 *ret_struct;
dcl_link *nl;

memset(&set_struct,-1,sizeof(set_struct));

set_struct.client_id = client_id;
set_struct.current_sw = 1;
set_struct.astlm = 500;

ret_struct = acmsmgmt_set_cp_2(&set_struct,cl);

Management APIs 8–121

ACMSMGMT_SET_CP_2

if (!ret_struct) {
printf("\n Call to modify CP failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify CP returned the following warnings or

errors\n");
else

printf("\n Call to modify CP completed\n");

for (nl = ret_struct->cp_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cp_status_rec_2, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_CP_2 procedure is called.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–122 Management APIs

ACMSMGMT_SET_EXC_2

8.37 ACMSMGMT_SET_EXC_2

This procedure modifies the ACMS Application Execution Controller (EXC) Config
class attributes.

Format

exc_status_rec_2 *acmsmgmt_set_exc_2(exc_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Exc_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

EXC table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to update.

Management APIs 8–123

ACMSMGMT_SET_EXC_2

active_sw, audit_state, current_sw, max_tasks, max_
servers, sp_mon_interval, transaction_timeout
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond to

the active fields of the same names in the EXC
table (for example, max_tasks will update max_
tasks_active). See Section 9.7 for a discussion
of these fields. All fields in this record can be
updated dynamically. Stored values cannot be
changed for EXCs (application must be rebuilt).

astlm, biolm, bytlm, diolm, enqlm, fillm, pgflquota, tqelm,
wsdefault, wsextent, wsquota
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to the stored fields of the same names in the
EXC table (for example, astlm will update astlm_
stored). See Section 9.7 for a discussion of these
fields.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–124 Management APIs

ACMSMGMT_SET_EXC_2

Return Value

Type: Exc_status_rec_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type exc_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Exc_config_rec_out_2
Access: Write
Mechanism: By value
Usage: Structure containing fields corresponding to the

fields in the exc_config_rec_2 structure, as well
as a linked list of status messages associated
with the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

astlm, audit_state, biolm, bytlm, diolm,
enqlm, fillm, max_servers, max_tasks,
pgflquota, sp_mon_interval, tqelm,
transaction_timeout, wsdefault, wsextent,
wsquota
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the

fields in the input argument.

Management APIs 8–125

ACMSMGMT_SET_EXC_2

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests updates to ACMS EXC Config class fields contained in
the EXC table (see Section 9.7). Note that the EXC table contains both active and
stored values; however, only the active fields can be changed. In order to change
the stored values, the application must be rebuilt.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure.

Example

int set_exc_data(int client_id,CLIENT *cl)
{

static char vr_appl[] = "VR_APPL";
static exc_config_rec_2 set_struct;
exc_status_rec_2 *ret_struct;
dcl_link *nl;

memset(&set_struct,-1,sizeof(set_struct));
set_struct.client_id = client_id;
set_struct.audit_state = MGMT_STATE_DISABLED;
set_struct.appl_name = vr_appl;

ret_struct = acmsmgmt_set_exc_2(&set_struct,cl);

8–126 Management APIs

ACMSMGMT_SET_EXC_2

if (!ret_struct) {
printf("\n Call to modify EXC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify EXC returned the following warnings or

errors\n");
else

printf("\n Call to modify EXC completed\n");

for (nl = ret_struct->exc_status_rec_2_u.data.cmd_output; nl != NULL; nl =
nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_exc_status_rec_2, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_EXC_2 procedure is called to
disable application auditing for the application VR_APPL on the target node. If
the call succeeds, the VR_APPL no longer writes application auditing messages,
and a success message is displayed. Otherwise, an error message is displayed.
The example in Section 6.4.1 shows how to declare and initialize the input
arguments to this procedure.

Management APIs 8–127

ACMSMGMT_SET_INTERFACE_1

8.38 ACMSMGMT_SET_INTERFACE_1

This procedure modifies the status of a Remote Manager interface. Either the
SNMP or RPC interface can be modified.

Note

The ACMS Remote Manager will not allow the RPC interface to be
DISABLED through this call. The only way to disable the RPC interface
dynamically is to use the SNMP interface.

Format

int *acmsmgmt_set_interface_1(interface_config_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Interface_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

interface configuration fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

interface_type
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates the interface to be modified. Table 8–2

shows the valid symbolic values for interface
types.

8–128 Management APIs

ACMSMGMT_SET_INTERFACE_1

state
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates desired state of the interface. Table 8–3

shows the valid symbolic values for the allowable
states.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If NULL or MGMT_SUCCESS,

the RPC has succeeded. If neither NULL nor MGMT_SUCCESS,
the procedure call failed and the value pointed to is the reason
for failure.

Description

This procedure modifies the status of an interface. Interfaces can be enabled
(that is, requested to start) or disabled (that is, requested to stop) by setting the
state field in set_struct to the appropriate value.

Note that it is not possible to use the RPC interface to enable the RPC interface.
In order to use the RPC interface, it must already be enabled. In order to start
the RPC interface, either use the SNMP interface, or use the ACMSCFG utility to
configure the RPC interface to be enabled when the Remote Manager starts up.

It is also not possible to use this call to disable the RPC interface. The ACMS
Remote Manager does not allow an interface to disable itself. The only way to
disable the RPC interface dynamically is to use the SNMP interface.

Example

int set_interface_data(int client_id,CLIENT *cl)
{

static interface_config_rec set_struct;
int *status;

memset(&set_struct,-1,sizeof(set_struct));

Management APIs 8–129

ACMSMGMT_SET_INTERFACE_1

set_struct.client_id = client_id;
set_struct.interface_type = MGMT_IF_SNMP;
set_struct.state = MGMT_STATE_ENABLED;

status = acmsmgmt_set_interface_1(&set_struct,cl);

if (!status) {
printf("\n Call to update SNMP interface failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to update SNMP interface failed with status %d",*status);

free(status);
return(MGMT_FAIL);

}
else

printf("\n Call to set SNMP interface completed");
free(status);

return(0);
}

In the preceding example, the ACMSMGMT_SET_INTERFACE_1 procedure is
called to enable the SNMP interface. If the call succeeds, the SNMP interface is
running on the target node, and a success message is displayed. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

8–130 Management APIs

ACMSMGMT_SET_PARAM_2

8.39 ACMSMGMT_SET_PARAM_2

This procedure requests updates to fields in the Remote Manager Parameter
table.

Format

param_status_rec2 *acmsmgmt_set_param_2(param_config_rec2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Param_config_rec2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

parameter configuration fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

params
Type: Param_rec2
Access: Read
Mechanism: By value
Usage: Structure containing a Parameter table

record. Parameter table fields are described
in Section 9.10. See the Description section for
information on how to initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–131

ACMSMGMT_SET_PARAM_2

Return Value

Type: Param_status_rec2
Access: write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type param_rec2, which contains
status codes for each field. See the Description section for a
discussion of how to determine the update status for any field.
The following are the contents of this union:

rc
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Param_rec_2
Access: write
Mechanism: By value
Usage: Structure containing a Parameter table record.

The entries in this field contain status codes
correspond to the fields in the params structure.
See the Description section for a discussion of
how to determine the update status for any field.

Description

This procedure requests updates to fields in the Parameter table (see
Section 9.10). Some field updates are dynamic; others are not. Updates to
this table are not durable; that is, they do not survive a restart of the Remote
Manager.

When this procedure is called, any fields with negative values are ignored.
Callers should initialize any fields to a negative value (for example, -1) for which
updates are not to be applied. All nonnegative fields are validated prior to being
updated.

For any nonnegative fields, the completion status of the update is returned in the
corresponding field in the return structure. For instance, if the mss_coll_interval
and max_logins fields in the params structure of the param_config_rec are
nonnegative when this procedure is called, the mss_coll_interval and max_logins
field of the data or data_warn structures of the param_status_rec will contain the
completion status for those updates.

The data and data_warn structures contain identical data. If the operation fails,
the status field of either structure is MGMT_WARN; in this case, use the data_
warn structure to fetch the status messages from the cmd_output linked list.

8–132 Management APIs

ACMSMGMT_SET_PARAM_2

If the operation is successful, the status field of either structure is MGMT_
SUCCESS. There are no status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status
messages returned; instead, the reason for the failure is contained in the rc field.

Example

int set_param_data(int client_id,CLIENT *cl)
{

static param_config_rec2 set_struct;
param_status_rec2 *ret_struct;
int status;

memset(&set_struct,-1,sizeof(set_struct));

set_struct.client_id = client_id;
set_struct.params.max_logins = 25;

ret_struct = acmsmgmt_set_param_2(&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify parameters failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to modify parameters failed, returning %d",

ret_struct->status);
status = ret_struct->status;

xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

if (ret_struct->param_status_rec2_u.data.max_logins != MGMT_SUCCESS)
printf("\n max_logins specified was invalid ");

xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else
printf("\n Call to set params completed");

xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_PARAM_2 procedure is called
to set the maximum number of logins to the Remote Manager to 25. If the call
succeeds, the new value will be stored in the Parameter table and a success
message will be displayed. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APIs 8–133

ACMSMGMT_SET_QTI_2

8.40 ACMSMGMT_SET_QTI_2

This procedure modifies Queued Task Initator (QTI) Config class attributes.

Format

qti_status_rec_2 *acmsmgmt_set_qti_2(qti_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Qti_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and QTI

table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

active_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether active variables should be

updated (active_sw = 1). Active variables are
currently in use by the ACMS system; updates
to active variables take effect immediately but
are not durable (that is, they do not survive a
restart of the ACMS system). Not all variables
are dynamic, however. Refer to Section 9.11
and to the field descriptions in this section, to
determine whether a particular variable can be
updated dynamically.

8–134 Management APIs

ACMSMGMT_SET_QTI_2

current_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether current variables should be

updated (current_sw = 1). Current variables are
those stored in the ACMSGEN file currently in
use by the ACMS system and are durable (that
is, they survive a restart of the ACMS system).
Updates to current variables take effect when the
ACMS system is restarted.

qti_priority, sub_timeout, max_threads, retry_timer,
polling_timer
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to fields of the same names in the QTI table,
depending on the value of active_sw and current_
sw in this record (for example, qti_priority will
update the qti_priority_stored field if current_sw
is equal to 1). See Section 9.11 for a discussion of
these fields. None of these fields can be updated
dynamically.

astlm, biolm, bytlm, diolm, enqlm, fillm, pgflquota, tqelm,
wsdefault, wsextent, wsquota
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to fields of the same names in the QTI table,
depending on the value of active_sw and current_
sw in this record (for example, astlm will update
the astlm_stored field if current_sw is equal to
1). See Section 9.11 for a discussion of these
fields. Note that not all fields can be updated
dynamically.

Management APIs 8–135

ACMSMGMT_SET_QTI_2

qti_username
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Values to be updated. This field corresponds

to the qti_username field in the QTI table; the
exact field depends on the value of active_sw
and current_sw in this record (for example, qti_
username will update the qti_username_stored
field if current_sw is equal to 1). See Section 9.11
for a discussion of these fields. Note that not all
fields can be updated dynamically. In order to
have this field set to null (that is, ""), set the field
to the string "NULL".

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Qti_status_rec_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type qti_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

8–136 Management APIs

ACMSMGMT_SET_QTI_2

data, data_warn
Type: Qti_config_rec_out_2
Access: Write
Mechanism: By value
Usage: Structure containing fields corresponding to the

fields in the set_struct structure, as well as a
linked list of status messages associated with
the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

astlm, biolm, bytlm, diolm, enqlm, fillm,
max_threads, pgflquota, polling_timer,
qti_priority, qti_username, retry_timer,
sub_timeout, tqelm, wsdefault, wsextent,
wsquota
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the

fields in the input argument.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

Management APIs 8–137

ACMSMGMT_SET_QTI_2

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests updates to ACMS QTI Config class fields contained in
the QTI table (see Section 9.11). Note that the QTI table contains both active
and stored values. The active_sw field and current_sw field control which fields
should be updated.

Attempting to update an active field that is nondynamic is essentially useless,
since the active field value does not change. For instance, calling this procedure
with the active_sw field set to 1 and the qti_username field populated produces
no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current
ACMSGEN file. These updates are durable (that is, they survive a restart of the
ACMS sytem) but do not affect the active system until the system is restarted.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure. For string fields, the
string field value is returned, regardless of the status of the call.

In order to have one of the string fields set to a null string (that is, ""), populate
the field with value "NULL". To have one of the string fields ignored, pass in a
null string.

Example

int set_qti_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char c_null_str[2] = "";
static qti_config_rec_2 set_struct;
qti_status_rec_2 *ret_struct;
dcl_link *nl;

memset(&set_struct,-1,sizeof(set_struct));
set_struct.client_id = client_id;
set_struct.active_sw = 1;
set_struct.current_sw = 0;
set_struct.polling_timer = 4999;

/* Have to provide a pointer for string conversions by XDR
or it will qtiess vio. RM will ignore any fields with
strlen of 0 */

set_struct.qti_username = c_null_str;

ret_struct = acmsmgmt_set_qti_2(&set_struct,cl);

8–138 Management APIs

ACMSMGMT_SET_QTI_2

if (!ret_struct) {
printf("\n Call to modify qti failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify QTI returned the following warnings or

errors\n");
else

printf("\n Call to modify QTI completed\n");

for (nl = ret_struct->qti_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_qti_status_rec_2, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_QTI_2 procedure is called to
set the ACMSGEN parameter qti_polling_timer to 4999 milliseconds. If the call
succeeds, only the active value is modified, the stored value is unchanged, and
a success message is displayed. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APIs 8–139

ACMSMGMT_SET_SERVER_1

8.41 ACMSMGMT_SET_SERVER_1

This procedure modifies server (ACMS procedure server) Config class attributes.

Format

ser_status_rec *acmsmgmt_set_server_1(ser_config_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Ser_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Server table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to which the server to be

updated belongs.

server_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the server to update.

8–140 Management APIs

ACMSMGMT_SET_SERVER_1

creation_delay, creation_interval, deletion_delay, deletion_
interval, server_proc_dmpflag, minimum_instances,
maximum_instances
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond to

the active fields of the same names in the Server
table (for example, creation_delay updates the
creation_delay_active field). See Section 9.12
for a discussion of these fields. All fields in this
record can be updated dynamically.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Ser_status_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either

a failure code or a structure of type ser_config_rec_out, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

Management APIs 8–141

ACMSMGMT_SET_SERVER_1

data, data_warn
Type: Ser_config_rec_out
Access: Write
Mechanism: By value
Usage: Structure containing fields corresponding to the

fields in the ser_config_rec structure, as well as
a linked list of status messages associated with
the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

creation_delay, creation_interval, deletion_
delay, deletion_interval, server_proc_
dmpflag, minimum_instances, maximum_
instances
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the

fields in the input argument.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

8–142 Management APIs

ACMSMGMT_SET_SERVER_1

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests updates to ACMS server Config class fields contained
in the Server table (see Section 9.12). Note that the Server table contains only
active values.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure.

Example

int set_ser_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char vr_appl[] = "VR_APPL";
static ser_config_rec set_struct;
ser_status_rec *ret_struct;
dcl_link *nl;

memset(&set_struct,-1,sizeof(set_struct));
set_struct.client_id = client_id;
set_struct.appl_name = vr_appl;
set_struct.server_name = c_name_all;
set_struct.creation_delay = 20;

ret_struct = acmsmgmt_set_server_1(&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify Server failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify Server returned the following warnings or

errors\n");
else

printf("\n Call to modify Server completed\n");

for (nl = ret_struct->ser_status_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_ser_status_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_SERVER_1 procedure is called
to set the creation_delay parameter field for all servers in application VR_APPL
to 20 seconds. If the call succeeds, this parameter field is modified for all servers
in the VR_APPL, and a success message is displayed. Otherwise, an error

Management APIs 8–143

ACMSMGMT_SET_SERVER_1

message is displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

8–144 Management APIs

ACMSMGMT_SET_TRAP_1

8.42 ACMSMGMT_SET_TRAP_1

This procedure modifies entries in the Remote Manager Trap table. Trap table
entries can also be added (see Section 8.5) and deleted (see Section 8.8).

Format

trap_status_rec *acmsmgmt_set_trap_1(trap_config_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Trap_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Trap table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

trap_entry
Type: Trap_update_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a Trap table record. Trap

table fields are described in Section 9.14. See
the Description section for information on how to
initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–145

ACMSMGMT_SET_TRAP_1

Return Value

Type: Trap_status_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either

a failure code or a structure of type trap_update_rec_r, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Trap_update_rec_r
Access: Write
Mechanism: By value
Usage: Structure containing a Trap table record.

The entries in this field contain status codes
corresponding to the fields in the trap_entry
structure. See the Description section for a
discussion of how to determine the update status
for any field.

Description

This procedure requests updates to fields in the Trap table (see Section 9.14).

Updates to this table are not durable; that is, they do not survive a restart of the
Remote Manager. To make nondynamic, permanent updates to the Trap table,
use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_
trap. These fields must exactly match an existing record in the Trap table for
the update to be applied. Table 8–1 and Table 8–4 contain symbolic values used
to populate the collection_class and entity_type fields; symbolic values to the
param_to_trap field are described in Table 8–8.

Setting fields trap_min, trap_max, or severity to -2 excludes them from being
updating. Otherwise, the corresponding field in the matching trap record is
modified. (-1 is a special value that causes the field to be ignored when evaluating
the trap conditions; see Section 7.8.)

Updates to the Trap table are processed immediately and may affect more than
one ACMS process. See Section 7.8 for a discussion of how to set SNMP traps.

8–146 Management APIs

ACMSMGMT_SET_TRAP_1

Example

int set_trap_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_config_rec set_struct;
struct trap_status_rec *status_rec;

set_struct.client_id = client_id
set_struct.trap_entry.entity_type = MGMT_ACC;
set_struct.trap_entry.entity_name = c_name_all;
set_struct.trap_entry.param_to_trap = MGMT_EXISTS;
set_struct.trap_entry.min = 1;
set_struct.trap_entry.max = -1;
set_struct.trap_entry.severity = MGMT_SEV_FATAL;

status_rec = acmsmgmt_set_trap_1(&set_struct,cl);

if (!status_rec) {
printf("\n Call to modify trap failed");
return(MGMT_FAIL);

}

if (status_rec->status == MGMT_WARN) {
printf("\nThe following updates failed: ");
if (status_rec->trap_status_rec_u.data_warn.entity_type == MGMT_FAIL)

printf("\n entity_type not found or invalid");
if (status_rec->trap_status_rec_u.data_warn.param_to_trap == MGMT_FAIL)

printf("\n param not found or invalid");
if (status_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)

printf("\n min invalid");
if (status_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)

printf("\n max invalid");
if (status_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)

printf("\n severity invalid");
}

else if (status_rec->status != MGMT_SUCCESS) {
printf("\nCall to modify trap failed with status %d",

status_rec->trap_status_rec_u.rc);
xdr_free(xdr_trap_status_rec, status_rec);
free(status_rec);

return(MGMT_FAIL);
}
else

printf("\nCall to modify trap was executed");
xdr_free(xdr_trap_status_rec, status_rec);
free(status_rec);

return(0);
}

In the preceding example, the ACMSMGMT_SET_TRAP_1 procedure is called
to set the trap_min field to 1, the trap_max field to -1, and the trap severity to
FATAL for a trap based on an entity_type of ACC, an entity_name of * (all), and a
trap parameter of EXISTS. The effect of this change is to cause a fatal-level trap
to be generated if the ACC on the target node is stopped. If the call succeeds, the
trap is reconfigured in the Trap table in memory. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

Management APIs 8–147

ACMSMGMT_SET_TSC_2

8.43 ACMSMGMT_SET_TSC_2

This procedure modifies Terminal Subsystem Controller (TSC) Config class
attributes.

Format

tsc_status_rec_2 *acmsmgmt_set_tsc_2(tsc_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Tsc_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

TSC table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

active_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether active variables should be

updated (active_sw = 1). Active variables are
currently in use by the ACMS system; updates
to active variables take effect immediately but
are not durable (that is, they do not survive a
restart of the ACMS system). Not all variables
are dynamic, however. Refer to Section 9.15,
and to the field descriptions in this section, to
determine whether a particular variable can be
updated dynamically.

8–148 Management APIs

ACMSMGMT_SET_TSC_2

current_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether current variables should be

updated (current_sw = 1). Current variables are
those stored in the ACMSGEN file currently in
use by the ACMS system and are durable (that
is, they survive a restart of the ACMS system).
Updates to current variables take effect when the
ACMS system is restarted.

tsc_priority, cp_priority, cp_slots, max_logins, max_tts_cp,
perm_cps, min_cpis
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to fields of the same names in the TSC table,
depending on the value of active_sw and current_
sw in this record (for example, tsc_priority will
update the tsc_priority_stored field if current_sw
is equal to 1). See Section 9.15 for a discussion of
these fields. None of these fields can be updated
dynamically.

astlm, biolm, bytlm, diolm, enqlm, fillm, pgflquota, tqelm,
wsdefault, wsextent, wsquota
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These fields correspond

to fields of the same names in the TSC table,
depending on the value of active_sw and current_
sw in this record (for example, astlm will update
the astlm_stored field if current_sw is equal to
1). See Section 9.15 for a discussion of these
fields. Note that not all fields can be updated
dynamically.

Management APIs 8–149

ACMSMGMT_SET_TSC_2

tsc_username, cp_username
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Values to be updated. These fields correspond

to fields of the same names in the TSC table,
depending on the value of active_sw and current_
sw in this record (for example, tsc_username
will update the tsc_username_stored field if
current_sw is equal to 1). See Section 9.15 for a
discussion of these fields. Note that not all fields
can be updated dynamically. In order to have any
of these fields set to null (that is, ""), set the field
to the string "NULL".

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Tsc_status_rec_2
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type tsc_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

8–150 Management APIs

ACMSMGMT_SET_TSC_2

data, data_warn
Type: Tsc_config_rec_out_2
Access: Write
Mechanism: By value
Usage: Structure containing fields corresponding to the

fields in the set_struct structure, as well as a
linked list of status messages associated with
the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

astlm, biolm, bytlm, cp_priority, cp_slots, cp_
username, diolm, enqlm, fillm, max_logins,
max_tts_cp, min_cpis, pgflquota, perm_cps,
tqelm, tsc_priority, tsc_username, wsdefault,
wsextent, wsquota
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the

fields in the input argument.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

Management APIs 8–151

ACMSMGMT_SET_TSC_2

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests updates to ACMS TSC Config class fields contained in
the TSC table (see Section 9.15). Note that the TSC table contains both active
and stored values. The active_sw field and current_sw field control which fields
are attempted to be updated.

Attempting to update an active field that is nondynamic is essentially useless,
since the active field value will not change. For instance, calling this procedure
with the active_sw field set to 1 and the tsc_username field populated does not
result in any change to the system.

Setting the current_sw field to 1 causes updates to be written to the current
ACMSGEN file. These updates are durable (that is, they survive a restart of the
ACMS sytem) but do not affect the active system until the system is restarted.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure. For string fields, the
string field value is returned, regardless of the status of the call.

In order to have one of the string fields set to a null string (that is, ""), populate
the field with value "NULL". To have one of the string fields ignored, pass in a
null string.

Example

int set_tsc_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char c_null_str[2] = "";
static tsc_config_rec set_struct;
tsc_status_rec *ret_struct;
dcl_link *nl;

memset(&set_struct,-1,sizeof(set_struct));

set_struct.client_id = client_id;
set_struct.active_sw = 1;
set_struct.current_sw = 0;
set_struct.max_logins = 61;

/* Have to provide a pointer for string conversions by XDR
or it will tscess vio. RM will ignore any fields with
strlen of 0 */

set_struct.tsc_username = c_null_str;
set_struct.cp_username = c_null_str;

ret_struct = acmsmgmt_set_tsc_2(&set_struct,cl);

8–152 Management APIs

ACMSMGMT_SET_TSC_2

if (!ret_struct) {
printf("\n Call to modify TSC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify TSC returned the following warnings or

errors\n");
else

printf("\n Call to modify TSC completed\n");
for (nl = ret_struct->tsc_status_rec_2_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

xdr_free(xdr_tsc_status_rec_2, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_SET_TSC_2 procedure is called
to set the ACMSGEN parameter max_logins to 61. If the call succeeds, only
the active value is modified; the stored value is unchanged, and a success
message is displayed. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIs 8–153

ACMSMGMT_START_ACC_1

8.44 ACMSMGMT_START_ACC_1

This procedure requests that the Remote Manager start the ACMS system.

Format

cmd_output_rec *acmsmgmt_start_acc_1(acc_startup_rec *start_struct,CLIENT *cl)

Parameters

start_struct

Type: Acc_startup_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

audit_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether system auditing should be

enabled (audit_sw = 1), or disabled (audit_sw =
0).

qti_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the Queued Task Initiator

(QTI) should be started (qti_sw = 1), or not (qti_
sw = 0).

8–154 Management APIs

ACMSMGMT_START_ACC_1

terminals_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the Terminal Subsystem

Controller (TSC) should be started (terminals_sw
= 1), or not (terminals_sw = 0).

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

Management APIs 8–155

ACMSMGMT_START_ACC_1

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests startup of the ACMS run-time system on the same node
that the Remote Manager is running on. Fields in the input argument determine
how the ACMS system will be started (that is, with or without auditing, terminals
or QTI).

This call executes synchronously. It does not return to the caller until the attempt
to start the system is complete. Any messages associated with an unsuccessful
start of the system are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. There are no status messages associated with a successful call. If
the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

8–156 Management APIs

ACMSMGMT_START_ACC_1

Example

int start_acc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static acc_startup_rec start_struct;
cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.audit_sw = 1;
start_struct.qti_sw = 1;
start_struct.terminals_sw = 1;

ret_struct = acmsmgmt_start_acc_1(&start_struct,cl);

if (!ret_struct) {
printf("\n Call to start system failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS system failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to start ACMS system completed with warnings or
errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to start ACMS system was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_START_ACC_1 procedure is called
to start the ACMS run-time system on the target node. The system is started
with system auditing enabled, the QTI started, and terminals started. If the call
succeeds, the ACMS run-time system is started on the target node. Otherwise,
any error messages associated with the failure are displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIs 8–157

ACMSMGMT_START_EXC_1

8.45 ACMSMGMT_START_EXC_1

This procedure requests that the Remote Manager start an ACMS application on
the same node on which the Remote Manager is running.

Format

cmd_output_rec *acmsmgmt_start_exc_1(exc_startup_rec *start_struct,CLIENT *cl)

Parameters

start_struct

Type: Exc_startup_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Pointer to the application name of the application

to be started.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–158 Management APIs

ACMSMGMT_START_EXC_1

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APIs 8–159

ACMSMGMT_START_EXC_1

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure starts an ACMS application on the same node on which the
Remote Manager is running. The appl_name field in the input record determines
which application will be started.

This call executes synchronously. It does not return to the caller until the
attempt to start the application is complete. Any messages associated with an
unsuccessful start of the application are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of either structure will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of either structure will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int start_exc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static char c_appl_name[] = "VR_APPL";
static exc_startup_rec start_struct;
cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.appl_name = c_appl_name;

ret_struct = acmsmgmt_start_exc_1(&start_struct,cl);

if (!ret_struct) {
printf("\n Call to start EXC failed");
return(MGMT_FAIL);

}

8–160 Management APIs

ACMSMGMT_START_EXC_1

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS EXC failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to start ACMS EXC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to start ACMS EXC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_START_EXC_1 procedure is called
to start an application named VR_APPL on the target node. If the call succeeds,
the VR_APPL application is started on the target node. Otherwise, any error
messages associated with the failure are displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

Management APIs 8–161

ACMSMGMT_START_QTI_1

8.46 ACMSMGMT_START_QTI_1

This procedure requests that the Remote Manager start a Queued Task Initiator
(QTI) on the same node on which the Remote Manager is running.

Format

cmd_output_rec *acmsmgmt_start_qti_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–162 Management APIs

ACMSMGMT_START_QTI_1

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APIs 8–163

ACMSMGMT_START_QTI_1

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure starts an ACMS QTI on the same node on which the Remote
Manager is running.

This call executes synchronously. It does not return to the caller until the attempt
to start the QTI is complete. Any messages associated with an unsuccessful start
of the QTI are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int start_qti(int client_id,CLIENT *cl)
{

dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;

ret_struct = acmsmgmt_start_qti_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to start QTI failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

8–164 Management APIs

ACMSMGMT_START_QTI_1

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS QTI failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to start ACMS QTI completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to start ACMS QTI was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL; \

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_START_QTI_1 procedure is called to
start the Queued Task Initiator (QTI) on the target node. If the call succeeds, the
QTI is started on the target node. Otherwise, any error messages associated with
the failure are displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

Management APIs 8–165

ACMSMGMT_START_TRACE_MONITOR_1

8.47 ACMSMGMT_START_TRACE_MONITOR_1

This procedure requests that the Remote Manager start the ACMS$TRACE_
MONITOR process. The ACMS$TRACE_MONITOR process is an intermediate
process used by the Remote Manager to communicate with ACMS run-time
processes to enable and disable collections.

Format

int *acmsmgmt_start_trace_monitor_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–166 Management APIs

ACMSMGMT_START_TRACE_MONITOR_1

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If the value is NULL or MGMT_

SUCCESS, the RPC has succeeded. If the value is neither NULL
nor MGMT_SUCCESS, the call failed and the value pointed to is
the reason for failure.

Description

This procedure requests that the Remote Manager start the ACMS$TRACE_
MONITOR process on the target node. The ACMS$TRACE_MONITOR process
is an intermediate process used by the Remote Manager to communicate with
ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup and shutdown request of
the trace monitor process. The Remote Manager starts the trace monitor during
process initialization and stops it during process shutdown. Additionally, the
Remote Manager starts the trace monitor anytime it is needed (if it is not already
started). Once started, the trace monitor continues to run until the Remote
Manager shuts down.

After issuing the start command to the trace monitor, the Remote Manager waits
for a period of up to trace_start_wait_time (a Parameter table parameter that is
dynamic and expressed in seconds). If the trace monitor fails to start during that
period, the Remote Manager returns an error to the caller.

Example

int start_trace(int client_id,CLIENT *cl)
{

int *status;
static struct sub_id_struct sub_rec;

sub_rec.client_id = client_id;

status = acmsmgmt_start_trace_monitor_1(&sub_rec,cl);

if (!status) {
printf("\nStartup of Trace Monitor has failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\nStartup of Trace Monitor has failed with return code %d",

*status);
return(*status);

}

printf("\nTrace Monitor has been started ");
free(status);

return(MGMT_SUCCESS);
}

In the preceding example, the ACMSMGMT_START_TRACE_MONITOR_1
procedure is called to start the ACMS$TRACE_MON process on the target
node. If the call succeeds, the process is started. Otherwise, any error messages

Management APIs 8–167

ACMSMGMT_START_TRACE_MONITOR_1

associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–168 Management APIs

ACMSMGMT_START_TSC_1

8.48 ACMSMGMT_START_TSC_1

This procedure requests that the Remote Manager start a Terminal Subsystem
Controller (TSC) on the same node on which it is running.

Format

cmd_output_rec *acmsmgmt_start_tsc_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–169

ACMSMGMT_START_TSC_1

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

8–170 Management APIs

ACMSMGMT_START_TSC_1

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests that an ACMS TSC be started on the same node on
which the Remote Manager is running.

This call executes synchronously. It does not return to the caller until the attempt
to start the TSC is complete. Any messages associated with an unsuccessful start
of the TSC are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int start_tsc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;

ret_struct = acmsmgmt_start_tsc_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to start TSC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

Management APIs 8–171

ACMSMGMT_START_TSC_1

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS TSC failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to start ACMS TSC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to start ACMS TSC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_START_TSC_1 procedure is called
to start the terminal subsystem on the target node. If the call succeeds, the
terminal subsystem is started on the target node. Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–172 Management APIs

ACMSMGMT_STOP_1

8.49 ACMSMGMT_STOP_1

This procedure initiates shutdown of the Remote Manager server on a particular
node.

Format

int *acmsmgmt_stop_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If the value is NULL or MGMT_

SUCCESS, the RPC has succeeded. If the value is neither null
nor MGMT_SUCCESS, the call failed and the value pointed to is
the reason for failure.

Management APIs 8–173

ACMSMGMT_STOP_1

Description

This procedure shuts down the Remote Manager server on the target node. As
part of shutdown, the RPC interface is stopped, which may result in a NULL
pointer being returned to the caller. A NULL pointer in this case signals success
of the shutdown request.

Note that the success of this procedure does not guarantee that the Remote
Manager server has actually shut down. It guarantees only that the shutdown
has been requested.

Example

int stop_manager(int client_id,CLIENT *cl)
{

static int *status;
static struct sub_id_struct sub_rec;
sub_rec.client_id = client_id;

status = acmsmgmt_stop_1(&sub_rec,cl);

if (!status) {
printf("\nServer shutdown has been requested");
return(0);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to stop server failed with status %d",*status);
return(MGMT_FAIL);

}

printf("\n Server shutdown has been requested");

return(0);
}

In the preceding example, the ACMSMGMT_STOP_1 procedure is called to
request shutdown of the ACMS Remote Manager. A message is displayed
indicating the success or failure of the operation. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8–174 Management APIs

ACMSMGMT_STOP_ACC_1

8.50 ACMSMGMT_STOP_ACC_1

This procedure requests that the Remote Manager stop the ACMS system.

Format

cmd_output_rec *acmsmgmt_stop_acc_1(acc_shutdown_rec *stop_struct,CLIENT *cl)

Parameters

stop_struct

Type: Acc_shutdown_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

ACC control fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cancel_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the system should be stopped

immediately (cancel_sw = 1), or whether currently
executing tasks should be allowed to complete
first (cancel_sw = 0).

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–175

ACMSMGMT_STOP_ACC_1

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

8–176 Management APIs

ACMSMGMT_STOP_ACC_1

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure shuts down the ACMS run-time system on the same node on
which the Remote Manager is running. Fields in the input argument determine
how the ACMS system will be stopped. If the value for cancel_sw is 1, currently
executing tasks are cancelled, and the system is stopped. If the value for cancel_
sw is 0, currently executing tasks are allowed to complete before the system is
shut down.

This call executes synchronously. It does not return to the caller until the attempt
to stop the system is complete. Any messages associated with an unsuccessful
stop of the system are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int stop_acc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static acc_shutdown_rec stop_struct;
cmd_output_rec *ret_struct;

stop_struct.client_id = client_id;
stop_struct.cancel_sw = 1;

ret_struct = acmsmgmt_stop_acc_1(&stop_struct,cl);

Management APIs 8–177

ACMSMGMT_STOP_ACC_1

if (!ret_struct) {
printf("\n Call to stop ACC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {
if (ret_struct->status != MGMT_WARN) {

printf("\nCall to stop ACMS ACC failed with status %d",
ret_struct->status);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to stop ACMS ACC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}
else {

printf("\nCall to stop ACMS ACC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_STOP_ACC_1 procedure is called
to stop the ACMS run-time system on the target node. The system is stopped
abruptly (/CANCEL), terminating any in-process tasks. If the call succeeds, the
ACMS system is stopped on the target node. Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8–178 Management APIs

ACMSMGMT_STOP_EXC_1

8.51 ACMSMGMT_STOP_EXC_1

This procedure requests that the Remote Manager stop the ACMS system.

Format

cmd_output_rec *acmsmgmt_stop_exc_1(exc_shutdown_rec *stop_struct,CLIENT *cl)

Parameters

stop_struct

Type: Exc_shutdown_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

Application Execution Controller (EXC) control fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cancel_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the application should be

stopped immediately (cancel_sw = 1), or whether
currently executing tasks should be allowed to
complete first (cancel_sw = 0).

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to be stopped.

Management APIs 8–179

ACMSMGMT_STOP_EXC_1

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

8–180 Management APIs

ACMSMGMT_STOP_EXC_1

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure shuts down an ACMS application on the same node on which
the Remote Manager is running. Fields in the input argument determine which
application to stop (appl_name) and how the application will be stopped. If
the value for cancel_sw is 1, currently executing tasks are cancelled, and the
application is stopped. If the value for cancel_sw is 0, currently executing tasks
are allowed to complete before the application is shut down.

This call executes synchronously. It does not return to the caller until the attempt
to stop the application is complete. Any messages associated with an unsuccessful
stop of the system are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structure will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Management APIs 8–181

ACMSMGMT_STOP_EXC_1

Example

int stop_exc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static char c_appl_name[] = "VR_APPL";
static exc_shutdown_rec stop_struct;
cmd_output_rec *ret_struct;

stop_struct.client_id = client_id;
stop_struct.cancel_sw = 1;
stop_struct.appl_name = c_appl_name;

ret_struct = acmsmgmt_stop_exc_1(&stop_struct,cl);

if (!ret_struct) {
printf("\n Call to stop EXC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to stop ACMS EXC failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to stop ACMS EXC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to stop ACMS EXC was executed");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
}

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_STOP_EXC_1 procedure is called
to stop an application named VR_APPL on the target node. If the call succeeds,
the VR_APPL application is stopped on the target node. Otherwise, any error
messages associated with the failure are displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8–182 Management APIs

ACMSMGMT_STOP_QTI_1

8.52 ACMSMGMT_STOP_QTI_1

This procedure requests that the Remote Manager stop a Queued Task Initiator
(QTI) on the same node on which the Remote Manager is running.

Format

cmd_output_rec *acmsmgmt_stop_qti_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–183

ACMSMGMT_STOP_QTI_1

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

8–184 Management APIs

ACMSMGMT_STOP_QTI_1

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests to stop an ACMS QTI on the same node on which the
Remote Manager is running.

This call executes synchronously. It does not return to the caller until the attempt
to stop the QTI is complete. Any messages associated with an unsuccessful stop
of the QTI are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int stop_qti(int client_id,CLIENT *cl)
{

dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;

ret_struct = acmsmgmt_stop_qti_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to stop qti failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

Management APIs 8–185

ACMSMGMT_STOP_QTI_1

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to stop ACMS QTI failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to stop ACMS QTI completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to stop ACMS QTI was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_STOP_QTI_1 procedure is called
to stop the Queued Task Initiator (QTI) on the target node. If the call succeeds,
the QTI is stopped on the target node. Otherwise, any error messages associated
with the failure are displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

8–186 Management APIs

ACMSMGMT_STOP_TRACE_MONITOR_1

8.53 ACMSMGMT_STOP_TRACE_MONITOR_1

This procedure requests that the Remote Manager stop the ACMS$TRACE_
MONITOR process. The ACMS$TRACE_MONITOR process is an intermediate
process used by the Remote Manager to communicate with ACMS run-time
processes to enable and disable collections.

Format

int *acmsmgmt_stop_trace_monitor_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIs 8–187

ACMSMGMT_STOP_TRACE_MONITOR_1

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If the value is NULL or MGMT_

SUCCESS, the RPC has succeeded. If the value is neither NULL
nor MGMT_SUCCESS, the call failed and the value pointed to is
the reason for failure.

Description

This procedure requests that the Remote Manager stop the ACMS$TRACE_
MONITOR process on the target node. The ACMS$TRACE_MONITOR process
is an intermediate process used by the Remote Manager to communicate with
ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup and shutdown request of
the trace monitor process. The Remote Manager starts the trace monitor during
process initialization and stops it during process shutdown. Additionally, the
Remote Manager starts the trace monitor anytime it is needed (if it is not already
started). Once started, the trace monitor continues to run until the Remote
Manager shuts down.

After issuing the stop command to the trace monitor, the Remote Manager waits
for a period of up to trace_start_wait_time (a Parameter table parameter that is
dynamic and expressed in seconds). If the trace monitor fails to stop during that
period, the Remote Manager returns an error to the caller.

Example

int stop_trace(int client_id,CLIENT *cl)
{

int *status;
static struct sub_id_struct sub_rec;

sub_rec.client_id = client_id;

status = acmsmgmt_stop_trace_monitor_1(&sub_rec,cl);

if (!status) {
printf("\nShutdown of Trace Monitor has failed");
return(MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\nShutdown of Trace Monitor has failed with return code %d",

*status);
free(status);

return(MGMT_FAIL);
}

printf("\nTrace Monitor has been stopped ");
free(status);

return(MGMT_SUCCESS);
}

In the preceding example, the ACMSMGMT_STOP_TRACE_MONITOR_1
procedure is called to stop the ACMS$TRACE_MON process on the target node.

8–188 Management APIs

ACMSMGMT_STOP_TRACE_MONITOR_1

If the call succeeds, the process is stopped. Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

Management APIs 8–189

ACMSMGMT_STOP_TSC_1

8.54 ACMSMGMT_STOP_TSC_1

This procedure requests that the Remote Manager stop a Terminal Subsystem
Controller (TSC) on the same node on which the Remote Manager is running.

Format

cmd_output_rec *acmsmgmt_stop_tsc_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

8–190 Management APIs

ACMSMGMT_STOP_TSC_1

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a union. The union contains either a failure code or a

structure of type cmd_rec, which points to a linked list containing
status messages. The following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value
Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APIs 8–191

ACMSMGMT_STOP_TSC_1

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests to stop an ACMS TSC on the same node on which the
Remote Manager is running.

This call executes synchronously. It does not return to the caller until the attempt
to stop the TSC is complete. Any messages associated with an unsuccessful start
of the TSC are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structure will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT_
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int stop_tsc(int client_id,CLIENT *cl)
{

dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;

ret_struct = acmsmgmt_stop_tsc_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to stop TSC failed");
return(MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS) {

8–192 Management APIs

ACMSMGMT_STOP_TSC_1

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to stop ACMS TSC failed with status %d",

ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

printf("\n Call to stop ACMS TSC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(MGMT_FAIL);
}

else {
printf("\nCall to stop ACMS TSC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);

return(0);
}

In the preceding example, the ACMSMGMT_STOP_TSC_1 procedure is called
to stop the terminal subsystem on the target node. If the call succeeds, the
terminal subsystem is stopped on the target node. Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

Management APIs 8–193

9
Remote Manager Reference Tables

This chapter contains information about data types that the Remote Manager
implements and the reference tables for the Remote Manager. The Remote
Manager reference tables include the following:

ACC table

Agent table

Collection table

CP table

Error Filter table

EXC table

Interfaces table

Manager status table

Parameter table

QTI table

Server table

Task Group table

Trap table

TSC table

Users table

Note

The following sections describe the records and fields in each Remote
Manager reference table. Many of these tables now contain a subset of
fields intended solely for use on or by systems running ACMS Version
4.4 or higher. These fields are denoted with the double dagger (‡) symbol
within each table listing.

Remote Manager Reference Tables 9–1

Remote Manager Reference Tables
9.1 Data Types

9.1 Data Types
The ACMS Remote Manager implements the following data types:

• Gauge and Min Gauge

Gauge fields are structures containing the following fields:

current_value

The value of the object when last observed. Represents the most current
known value.

max_value or min_value

The largest or smallest observed value for the object.

time_max_seen or time_min_seen

The date and time the max_value or min_value was set.

• Integer

Integer fields are 32-bit signed integers.

• State 1

State 1 fields are integers with two possible values:

MGMT$K_STATE_DISABLED

MGMT$K_STATE_ENABLED

• State 2

State 2 fields are integers with the following possible values:

MGMT$K_STATE_INITED

MGMT$K_STATE_INITING

MGMT$K_STATE_LOAD_DONE

MGMT$K_STATE_LOADING

MGMT$K_STATE_STARTED

MGMT$K_STATE_STARTING

MGMT$K_STATE_STOPPED

MGMT$K_STATE_STOPPING

• String

String fields are null-terminated ASCII strings.

• Time

Time fields are stored internally in OpenVMS internal time format and
are generally displayed as DD-MMM-YYY HH:MM:SS.hh. When present
in a record supplied by the Remote Manager (that is, from either an RPC
or SNMP call, or in a file), time is always an ASCII value in the default
OpenVMS format (DD-MMM-YYYY HH:MM:SS.hh) and is stored as a
null-terminated string.

9–2 Remote Manager Reference Tables

Remote Manager Reference Tables
9.2 ACC Table

9.2 ACC Table
The ACC table contains a single entry for ACC management information.

Table 9–1 ACC Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID process_name string R R

ID pid integer R R

ID username_active string R R

ID username_stored string R R

ID start_time time R R

ID end_time time R R

ID acms_version string R R

CONFIG config_coll_state integer R R

CONFIG acms_state integer RW R D

CONFIG acc_priority_active integer R R

CONFIG acc_priority_stored integer RW RW

CONFIG max_appl_active integer R R

CONFIG max_appl_stored integer RW RW

CONFIG mss_maxobj_active integer R R

CONFIG mss_maxobj_stored integer RW RW

CONFIG mss_maxbuf_active integer R R

CONFIG mss_maxbuf_stored integer RW RW

CONFIG mss_poolsize_active integer R R

CONFIG mss_poolsize_stored integer RW RW

CONFIG mss_process_pool_active integer R R

CONFIG mss_process_pool_stored integer RW RW

CONFIG mss_net_retry_timer_
active

integer RW RW D

CONFIG mss_net_retry_timer_
stored

integer RW RW

CONFIG audit_state integer RW RW D

CONFIG username_default_active integer RW RW D

CONFIG username_default_
stored

integer RW RW

CONFIG node_name_active integer R R

CONFIG node_name_stored integer RW RW

CONFIG ws_poolsize_active integer R R

CONFIG ws_poolsize_stored integer RW RW

(continued on next page)

Remote Manager Reference Tables 9–3

Remote Manager Reference Tables
9.2 ACC Table

Table 9–1 (Cont.) ACC Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

CONFIG wsc_poolsize_active integer R R

CONFIG wsc_poolsize_stored integer RW RW

CONFIG tws_poolsize_active integer R R

CONFIG tws_poolsize_stored integer RW RW

CONFIG twsc_poolsize_active integer R R

CONFIG twsc_poolsize_stored integer RW RW

CONFIG astlm_active‡ integer R R

CONFIG astlm_stored‡ integer RW RW

CONFIG biolm_active‡ integer R R

CONFIG biolm_stored‡ integer RW RW

CONFIG bytlm_active‡ integer R R

CONFIG bytlm_stored‡ integer RW RW

CONFIG diolm_active‡ integer R R

CONFIG diolm_stored‡ integer RW RW

CONFIG enqlm_active‡ integer R R

CONFIG enqlm_stored‡ integer RW RW

CONFIG fillm_active‡ integer R R

CONFIG fillm_stored‡ integer RW RW

CONFIG pgflquota_active‡ integer R R

CONFIG pgflquota_stored‡ integer RW RW

CONFIG tqelm_active‡ integer R R

CONFIG tqelm_stored‡ integer RW RW

CONFIG wsdefault_active‡ integer R R

CONFIG wsdefault_stored‡ integer RW RW

CONFIG wsextent_active‡ integer R R

CONFIG wsextent_stored‡ integer RW RW

CONFIG wsquota_active‡ integer R R

CONFIG wsquota_stored‡ integer RW RW

CONFIG channelcnt_active‡ integer R R

CONFIG channelcnt_stored‡ integer RW RW

CONFIG gblsections_active‡ integer R R

CONFIG gblsections_stored‡ integer RW RW

CONFIG gblpages_active‡ integer R R

CONFIG gblpages_stored‡ integer RW RW

CONFIG gblpagfil_active‡ integer R R

CONFIG gblpagfil_stored‡ integer RW RW

RUNTIME runtime_coll_state integer R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–4 Remote Manager Reference Tables

Remote Manager Reference Tables
9.2 ACC Table

Table 9–1 (Cont.) ACC Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

RUNTIME current_appls gauge R R

RUNTIME current_users gauge R R

RUNTIME current_local_users gauge R R

RUNTIME current_remote_users gauge R R

RUNTIME appl_starts integer R R

RUNTIME decnet_object integer R R

RUNTIME astlm_current‡ gauge R R

RUNTIME biolm_current‡ gauge R R

RUNTIME bytlm_current‡ gauge R R

RUNTIME diolm_current‡ gauge R R

RUNTIME enqlm_current‡ gauge R R

RUNTIME fillm_current‡ gauge R R

RUNTIME pgflquota_current‡ gauge R R

RUNTIME tqelm_current‡ gauge R R

RUNTIME wssize_current‡ gauge R R

RUNTIME channelcnt_current‡ gauge R R

POOL pool_coll_state integer R R

POOL mss_shared_total integer R R

POOL mss_shared_free min gauge R R

POOL mss_shared_largest min gauge R R

POOL mss_shared_failures integer R R

POOL mss_shared_garbage integer R R

POOL mss_process_total integer R R

POOL mss_process_free min gauge R R

POOL mss_process_largest min gauge R R

POOL mss_process_failures integer R R

POOL mss_process_garbage integer R R

POOL mss_objects gauge R R

POOL mss_msgs_1-1024‡ integer R R

POOL mss_msgs_1025-2048‡ integer R R

POOL mss_msgs_2049-4096‡ integer R R

POOL mss_msgs_4097-8192‡ integer R R

POOL mss_msgs_8193-16384‡ integer R R

POOL mss_msgs_16385-32768‡ integer R R

POOL mss_msgs_32769-65636‡ integer R R

POOL mss_msg_count_resets‡ gauge R R

POOL tws_poolsize_total‡ gauge R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–5

Remote Manager Reference Tables
9.2 ACC Table

Table 9–1 (Cont.) ACC Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

POOL tws_pool_large_used‡ gauge R R

POOL tws_pool_min_free‡ gauge R R

POOL twsc_poolsize_total‡ gauge R R

POOL twsc_pool_large_used‡ gauge R R

POOL twsc_pool_min_free‡ gauge R R

POOL ws_pool_large_used‡ gauge R R

POOL ws_pool_min_free‡ gauge R R

POOL wsc_pool_large_used‡ gauge R R

POOL wsc_pool_min_free‡ gauge R R

ERROR err_coll_state‡ integer R R

ERROR err_count‡ integer R R

ERROR last_err_msg‡ string R R

ERROR time_of_last_error‡ time R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.2.1 Field Descriptions
Following are descriptions of the fields in Table 9–1.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• username_active

The OpenVMS user name under which the process is currently running. This
is the value that was in the ACMSGEN file when the process was started.

9–6 Remote Manager Reference Tables

Remote Manager Reference Tables
9.2 ACC Table

• username_stored

The OpenVMS process name currently stored in the ACMSGEN file for this
process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field
will be null.

• acms_version

Current version of the ACC.

• config_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• acms_state

Current ACMS state of the process. This field can be set (to DISABLED or
to 0) by the SNMP interface only. RPC users use the ACMSMGMT_STOP_
ACC_1 procedure described in Section 8.50. ACMSMGR users use the STOP
SYSTEM command.

• acc_priority_active

The base priority for this process. This is the value of the ACMSGEN field
when the process was started.

• acc_priority_stored

The base priority currently stored in the ACMSGEN file for this process.

• max_appl_active

The maximum number of ACMS applications that can be started
simultaneously on this node. This is the value of the ACMSGEN field
when the ACC process was started.

• max_appl_stored

The value of the max_appl field currently stored in the ACMSGEN file.

• mss_maxobj_active

The maximum number of ACMS message switch objects that can be started
simultaneously on this node. This is the value of the ACMSGEN field when
the ACC process was started. See the MSS class field mss_objects for a count
of the current and maximum number of MSS objects instantiated on the
system.

• mss_maxobj_stored

The value of the mss_maxobj field currently stored in the ACMSGEN file.

• mss_maxbuf_active

The maximum size of a message segment of an ACMS message switch
message. This is the value of the ACMSGEN field when the ACC process was
started.

Remote Manager Reference Tables 9–7

Remote Manager Reference Tables
9.2 ACC Table

• mss_maxbuf_stored

The value of the mss_maxbuf field currently stored in the ACMSGEN file.

• mss_poolsize_active

The size of the MSS shared pool (in pagelets). This is the value of the
ACMSGEN field when the ACC process was started.

• mss_poolsize_stored

The value of the mss_poolsize field currently stored in the ACMSGEN file.

• mss_process_pool_active

The default size of the MSS pool (in pagelets) allocated for each ACMS
process. This is the value of the ACMSGEN field when the ACC process was
started.

• mss_process_pool_stored

The value of the mss_process_pool field currently stored in the ACMSGEN
file.

• mss_net_retry_active

The time ACMS processes will wait before retrying an MSS network
operation. This field can be modified dynamically.

• mss_net_retry_timer_stored

The value of the mss_net_retry_timer field currently stored in the ACMSGEN
file.

• audit_state

The current system auditing state.

• username_default_active

The default user name for remote users. This is the value of the ACMSGEN
field when the ACC process was started.

• username_default_stored

The value of the username_default field currently stored in the ACMSGEN
file.

• node_name_active

The node name for the current node. This is the value of the ACMSGEN field
when the ACC process was started.

• node_name_stored

The value of the node_name field currently stored in the ACMSGEN file.

• ws_poolsize_active, wsc_poolsize_active, tws_poolsize_active, twsc_poolsize
active

The default size of the group and user workspace (WS), user workspace
control (WSC), task workspace (TWS), or task workspace control (TWSC) pool
(in pagelets). This is the value of the ACMSGEN field when the ACC process
was started.

• ws_poolsize_stored, wsc_poolsize_stored, tws_poolsize_stored, twsc_poolsize_
stored

The value of associated poolsize field currently stored in the ACMSGEN file.

9–8 Remote Manager Reference Tables

Remote Manager Reference Tables
9.2 ACC Table

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_
active, pgflquota_active, tqelm_active, wsdefault_active, wsextent_active,
wsquota_active

The default value of the related OpenVMS process quota. This is the value of
the quota when the ACC process was started.

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_
stored, pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored,
wsquota_stored

The value of the related process quota currently stored in the OpenVMS
system user authorization file (SYSUAF.DAT).

• channelcnt_active, gblsections_active, gblpages_active, gbpagfil_active

The default value of the related OpenVMS system parameter. This is the
value of the parameter when the ACC process was started.

• channelcnt_stored, gblsections_stored, gblpages_stored, gbpagfil_stored

The value of the related system parameter currently stored in the OpenVMS
System Generation utility (SYSGEN) work area.

• runtime_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• current_appls

The number of applications currently running on the node.

• current_users

The number of users currently logged in to the node.

• current_local_users

The number of current users logged in to ACMS locally.

• current_remote_users

The number of current users who are logged in to ACMS remotely.

• appl_starts

The number of applications that have been started on the node since the
system was started.

• decnet_object

If the process has a current DECnet object, the value of this field is
STARTED. Otherwise, the value is STOPPED. If the DECnet object is stopped
(and the runtime_coll_state is enabled for this process), either distributed
processing has not been enabled (that is, the node_name parameter in the
ACMSGEN file is NULL) or there is currently a problem with DECnet. Also,
check the ACC CONFIG parameters node_name_active and node_name_
stored to determine the current status of the ACMSGEN node_name field.

Remote Manager Reference Tables 9–9

Remote Manager Reference Tables
9.2 ACC Table

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current,
fillm_current, pgflquota_current, tqelm_current, wssize_current, channelcnt_
current

The actual amount of the related OpenVMS process or system resource that
is being consumed by the ACC process. The frequency with which these
fields are updated is based on the value of the vms_coll_interval field in the
Parameter table (see Table 9–9).

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• mss_shared_total

The total size (in bytes) of the MSS shared pool on this node. The frequency
with which this field is updated is based on the value of the Parameter table
field mss_coll_interval (see Table 9–9).

• mss_shared_free

The amount (in bytes) of unused MSS shared pool. The frequency with which
this field is updated is based on the value of the Parameter table field mss_
coll_interval (see Table 9–9).

• mss_shared_largest

The largest unused block (in bytes) available in the MSS shared pool. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_shared_failures

The number of failed attempts to allocate space from the MSS shared pool.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_shared_garbage

The number of garbage collections that have been run to reclaim space in the
MSS shared pool. The frequency with which this field is updated is based on
the value of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_total

The total size (in bytes) of the MSS process pool allocated for this process.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_free

The amount of unused MSS process pool (in bytes) for this process. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_largest

The largest unused block (in bytes) available in the MSS process pool for this
process. The frequency with which this field is updated is based on the value
of the Parameter table field mss_coll_interval (see Table 9–9).

9–10 Remote Manager Reference Tables

Remote Manager Reference Tables
9.2 ACC Table

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for
this process. The frequency with which this field is updated is based on the
value of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_garbage

The number of garbage collections for this process that have been run to
reclaim space in the MSS process pool. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval
(see Table 9–9).

• mss_objects

The number of MSS objects currently instantiated on the node. The frequency
with which this field is updated is based on the value of the Parameter table
field mss_coll_interval (see Table 9–9).

• mss_msgs_1-1024, mss_msgs_1025-2048, mss_msgs_2049-4096, mss_msgs_
4097-8192, mss_msgs_8193-16384, mss_msgs_16385-32768, mss_msgs_
32769-65636

The number of MSS messages whose sizes fall within the specified range (in
bytes).

• mss_msg_count_resets

The number of MSS message size counter resets that have occurred. Each
of the preceding counters (mss_msgs_n-n) are reset if one of the counters
overflows.

• tws_poolsize_total, twsc_poolsize_total

The total amount (in pagelets) of TWS or TWSC process pool being used by
all task groups running on the current node. The frequency with which these
fields are updated is based on the value of the wksp_coll_interval field in the
Parameter table (see Table 9–9).

• tws_pool_large_used, twsc_pool_large_used

The largest amount (in bytes) of TWS or TWSC process pool being used by
a task group running on the current node. The frequency with which these
fields are updated is based on the value of the wksp_coll_interval field in the
Parameter table (see Table 9–9).

• tws_pool_min_free, twsc_pool_min_free

The minimum amount (in bytes) of unused TWS or TWSC process pool
available on the current node. The frequency with which these fields are
updated is based on the value of the wksp_coll_interval field in the Parameter
table (see Table 9–9).

• ws_pool_large_used, wsc_pool_large_used

The largest amount (in bytes) of WS or WSC process pool being used by an
application running on the current node. The frequency with which these
fields are updated is based on the value of the wksp_coll_interval field in the
Parameter table (see Table 9–9).

• ws_pool_min_free, wsc_pool_min_free

The minimum amount (in bytes) of unused WS or WSC process pool available
on the current node. The frequency with which these fields are updated is
based on the value of the wksp_coll_interval field in the Parameter table (see
Table 9–9).

Remote Manager Reference Tables 9–11

Remote Manager Reference Tables
9.2 ACC Table

• err_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

Errors for this process are only sent to the Remote Manager if this field is set
to ENABLED. If this field is set to DISABLED, the process will not collect
data for the fields in this class; existing field values reflect activity during a
prior period when collection was enabled.

• err_count

The total number of errors related to this process that were sent to the
Remote Manager.

• last_err_msg

The text of the most recent error message related to this process that was
sent to the Remote Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that
was sent to the Remote Manager.

9.3 Agent Table
The Agent table contains a row for each Agent Process running on the node.

Table 9–2 Agent Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID process_name string R R

ID pid integer R R

ID start_time time R R

ID end_time time R R

ID user_name string R R

ID acms_state integer R R

CONFIG cfg_coll_state integer R R

CONFIG astlm_active‡ integer R R

CONFIG astlm_stored‡ integer RW RW

CONFIG biolm_active‡ integer R R

CONFIG biolm_stored‡ integer RW RW

CONFIG bytlm_active‡ integer R R

CONFIG bytlm_stored‡ integer RW RW

CONFIG diolm_active‡ integer R R

CONFIG diolm_stored‡ integer RW RW

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–12 Remote Manager Reference Tables

Remote Manager Reference Tables
9.3 Agent Table

Table 9–2 (Cont.) Agent Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

CONFIG enqlm_active‡ integer R R

CONFIG enqlm_stored‡ integer RW RW

CONFIG fillm_active‡ integer R R

CONFIG fillm_stored‡ integer RW RW

CONFIG pgflquota_active‡ integer R R

CONFIG pgflquota_stored‡ integer RW RW

CONFIG tqelm_active‡ integer R R

CONFIG tqelm_stored‡ integer RW RW

CONFIG wsdefault_active‡ integer R R

CONFIG wsdefault_stored‡ integer RW RW

CONFIG wsextent_active‡ integer R R

CONFIG wsextent_stored‡ integer RW RW

CONFIG wsquota_active‡ integer R R

CONFIG wsquota_stored‡ integer RW RW

RUNTIME rt_coll_state integer R R

RUNTIME decnet_object integer R R

RUNTIME active_task_calls gauge R R

RUNTIME current_attached_terms gauge R R

RUNTIME active_tdms_menu_reqs gauge R R

RUNTIME total_tdms_menu_reqs integer R R

RUNTIME active_tdms_reqs gauge R R

RUNTIME active_tdms_msgrd gauge R R

RUNTIME active_tdms_msgwt gauge R R

RUNTIME active_tdms_cancel gauge R R

RUNTIME total_tdms_reqs integer R R

RUNTIME total_tdms_msgrd integer R R

RUNTIME total_tdms_msgwt integer R R

RUNTIME total_tdms_cancel integer R R

RUNTIME active_vf_menu_reqs gauge R R

RUNTIME total_vf_menu_reqs integer R R

RUNTIME active_vf_reqs gauge R R

RUNTIME active_vf_enable gauge R R

RUNTIME active_vf_disable gauge R R

RUNTIME active_vf_cancel gauge R R

RUNTIME active_vf_send gauge R R

RUNTIME active_vf_receive gauge R R

RUNTIME active_vf_xceive gauge R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–13

Remote Manager Reference Tables
9.3 Agent Table

Table 9–2 (Cont.) Agent Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

RUNTIME total_vf_reqs integer R R

RUNTIME total_vf_enable integer R R

RUNTIME total_vf_disable integer R R

RUNTIME total_vf_cancel integer R R

RUNTIME total_vf_send integer R R

RUNTIME total_vf_receive integer R R

RUNTIME total_vf_xceive integer R R

RUNTIME total_tasks_executed integer R R

RUNTIME user1_time time RW RW

RUNTIME user2_time time RW RW

RUNTIME user3_time time RW RW

RUNTIME user1_data integer RW RW

RUNTIME user2_data integer RW RW

RUNTIME user3_data integer RW RW

RUNTIME user4_data integer RW RW

RUNTIME user5_data integer RW RW

RUNTIME user6_data integer RW RW

RUNTIME astlm_current‡ gauge R R

RUNTIME biolm_current‡ gauge R R

RUNTIME bytlm_current‡ gauge R R

RUNTIME diolm_current‡ gauge R R

RUNTIME enqlm_current‡ gauge R R

RUNTIME fillm_current‡ gauge R R

RUNTIME pgflquota_current‡ gauge R R

RUNTIME tqelm_current‡ gauge R R

RUNTIME wssize_current‡ gauge R R

RUNTIME channelcnt_current‡ gauge R R

POOL pool_coll_state integer R R

POOL mss_process_total integer R R

POOL mss_process_free min gauge R R

POOL mss_process_largest min gauge R R

POOL mss_process_failures integer R R

POOL mss_process_garbage integer R R

ERROR err_coll_state‡ integer R R

ERROR err_count‡ integer R R

ERROR last_err_msg‡ string R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–14 Remote Manager Reference Tables

Remote Manager Reference Tables
9.3 Agent Table

Table 9–2 (Cont.) Agent Table

Class Field Data Type
SNMP
Access

RPC
Access Dynamic

ERROR time_of_last_error‡ time R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.3.1 Field Descriptions
Following are descriptions of the fields in Table 9–2.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. If this field is set
to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection
was enabled.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field
is null.

• user_name

The OpenVMS account under which the process is running.

• acms_state

The ACMS state of the process.

Remote Manager Reference Tables 9–15

Remote Manager Reference Tables
9.3 Agent Table

• cfg_coll_state

Collection states can be modified by modifying entries in the Collection table.
If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_
active, pgflquota_active, tqelm_active, wsdefault_active, wsextent_active,
wsquota_active

The default value of the related OpenVMS process quota. This is the value of
the quota when the Agent process was started.

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_
stored, pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored,
wsquota_stored

The value of the related process quota currently stored in the OpenVMS
system user authorization file (SYSUAF.DAT).

• rt_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. If this field is set
to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection
was enabled.

• decnet_object

If the process has a current DECnet object, the value of this field is
STARTED. Otherwise, the value is STOPPED. If the DECnet object is stopped
(and the runtime_coll_state is enabled for this process), either distributed
processing has not been enabled (that is, the node_name parameter in the
ACMSGEN file is NULL) or there is currently a problem with DECnet. Also,
check the ACC CONFIG parameters node_name_active and node_name_
stored to determine the current status of the ACMSGEN node_name field.

• active_task_calls

The number of task calls currently being executed by all users of the Agent.

• current_attached_terms

The number of terminals currently attached to the Agent.

• active_tdms_menu_reqs

The number of TDMS menu requests currently being executed by all users of
the Agent.

9–16 Remote Manager Reference Tables

Remote Manager Reference Tables
9.3 Agent Table

• total_tdms_menu_reqs

The total number of TDMS menu requests executed by all users of the Agent
since the Agent was started.

• active_tdms_reqs

The number of TDMS requests of all types currently being executed by all
users of the Agent.

• active_tdms_msgrd

The number of TDMS read messages currently being executed by all users of
the Agent.

• active_tdms_msgwt

The number of TDMS write messages currently being executed by all users of
the Agent.

• active_tdms_cancel

The number of TDMS cancels currently being executed by all users of the
Agent.

• total_tdms_reqs

The total number of TDMS requests (menu and exchange) executed by all
users of the Agent since the Agent was started.

• total_tdms_msgrd

The total number of TDMS read messages executed by all users of the Agent
since the Agent was started.

• total_tdms_msgwt

The total number of TDMS write messages executed by all users of the Agent
since the Agent was started.

• total_tdms_cancel

The total number of TDMS cancels executed by all users of the Agent since
the Agent was started.

• active_vf_menu_reqs

The number of HP DECforms menu requests currently being executed by all
users of the Agent.

• total_vf_menu_reqs

Remote Manager Reference Tables 9–17

Remote Manager Reference Tables
9.3 Agent Table

The total number of HP DECforms menu requests executed by all users of the
Agent since the Agent was started.

• active_vf_reqs

The number of HP DECforms requests of all types currently being executed
by all users of the Agent.

• active_vf_enable

The number of HP DECforms enable requests currently being executed by all
users of the Agent.

• active_vf_disable

The number of HP DECforms disable requests currently being executed by all
users of the Agent.

• active_vf_cancel

The number of HP DECforms cancel requests currently being executed by all
users of the Agent.

• active_vf_send

The number of HP DECforms requests currently being executed by all users
of the Agent.

• active_vf_receive

The number of HP DECforms receive requests currently being executed by all
users of the Agent.

• active_vf_xceive

The number of HP DECforms enable transceives currently being executed by
all users of the Agent.

• total_vf_reqs

The total number of HP DECforms requests of all types executed by all users
of the Agent since the Agent was started.

• total_vf_enable

The total number of HP DECforms enable requests executed by all users of
the Agent since the Agent was started.

• total_vf_disable

The total number of HP DECforms disable requests executed by all users of
the Agent since the Agent was started.

9–18 Remote Manager Reference Tables

Remote Manager Reference Tables
9.3 Agent Table

• total_vf_cancel

The total number of HP DECforms cancel requests executed by all users of
the Agent since the Agent was started.

• total_vf_send

The total number of HP DECforms send requests executed by all users of the
Agent since the Agent was started.

• total_vf_receive

The total number of HP DECforms receive requests executed by all users of
the Agent since the Agent was started.

• total_vf_xceive

The total number of HP DECforms transceive requests executed by all users
of the Agent since the Agent was started.

• total_tasks_executed

The total number of tasks started in the Agent since the Agent was started.

• user1_time, user2_time, user3_time, user1_data, user2_data, user3_data,
user4_data, user5_data, user6_data

Additional generic runtime fields that are available to programmers and
Agent developers.

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current,
fillm_current, pgflquota_current, tqelm_current, wssize_current, channelcnt_
current

The actual amount of the related OpenVMS process or system resource that
is being consumed by the Agent process. The frequency with which these
fields are updated is based on the value of the vms_coll_interval field in the
Parameter table.

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. If this field is set
to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection
was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval.

Remote Manager Reference Tables 9–19

Remote Manager Reference Tables
9.3 Agent Table

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field
mss_coll_interval.

• mss_process_largest

The largest unused block available in the MSS process pool for this process.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval.

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for
this process. The frequency with which this field is updated is based on the
value of the Parameter table field mss_coll_interval.

• mss_process_garbage

The number of garbage collections that have been run to reclaim space in this
processes MSS process pool. The frequency with which this field is updated is
based on the value of the Parameter table field mss_coll_interval.

• error_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. Errors for this
process are only sent to the Remote Manager if this field is set to ENABLED.
If this field is set to DISABLED, the process will not collect data for the fields
in this class; existing field values reflect activity during a prior period when
collection was enabled.

• error_count

The total number of errors related to this process that were sent to the
Remote Manager.

• last_error_message

The text of the most recent error message related to this process that was
sent to the Remote Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that
was sent to the Remote Manager.

9–20 Remote Manager Reference Tables

Remote Manager Reference Tables
9.4 Collection Table

9.4 Collection Table
The Collection table is populated from the configuration file maintained by the
user on the local system (or in a cluster common area) when the ACMS run-time
system is started.

This table can be used at run time to enable or disable data collection and data
snapshots by entity and class. The primary key to this table is the combination
of entity, class, and name. Duplicate rows are not allowed.

Table 9–3 Collection Table

Field Data Type
SNMP
Access

RPC
Access

Configuration
Access Dynamic

entity string R RW RW D

class string R RW RW D

name string R RW RW D

coll_state state 1 RW RW RW D

storage_location‡ string R RW RW D

storage_state‡ state1 R RW RW D

storage_interval‡ integer R RW RW D

storage_begin_
time‡

time RW RW RW D

storage_end_
time‡

time RW RW RW D

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.4.1 Field Descriptions
Following are descriptions of the fields in Table 9–3.

• entity

Name or type of the entity. Valid values are ACC, CP, EXC, GROUP, QTI,
SERVER, and TSC.

• class

Class of data to be collected. Valid values are CONFIG, ID, ERROR, POOL,
and RUNTIME.

• name

A name for the entity that helps to uniquely identify an instance of the entity
type. Possible entity names are:

ACC, CP, QTI, TSC (process name)

EXC (application name)

GROUP (task group name)

SERVER (server name)

Remote Manager Reference Tables 9–21

Remote Manager Reference Tables
9.4 Collection Table

Name can include the following wildcard values:

asterisk (*) (matches all characters)

exclamation point (!) (negation)

• coll_state

Current state as configured, either from the configuration file or by a user at
run time. Valid values are ENABLED or DISABLED. A change to this field
causes collection to be initiated or terminated.

• storage_location

An OpenVMS file specification (or logical name) that indicates where
collection data is to be writer. The default value for this field the logical
ACMS$MGMT_SNAPSHOT.

If a directory is not specified as part of the file specification, the file is placed
in the default directory of the account under which the Remote Manager
process is running.

Multiple collection entities can share and write output to the same data
snapshot file.

See Section 5.1 for more information on creating data snapshots by
periodically saving data collections.

• storage_state

Current state of data snapshots as configured either from the configuration
file or by a user at run time. Valid values are ENABLED or DISABLED. A
change to this field causes data snapshots to be either initiated or terminated.

In order for data snapshots to be fully functional, the coll_state field must
be set to ENABLED, and the current time must fall between the specified
storage_begin_time and storage_end_time values.

See Section 5.1 for more information on creating data snapshots by saving
periodically data collections.

9–22 Remote Manager Reference Tables

Remote Manager Reference Tables
9.4 Collection Table

• storage_interval

Controls the frequency (in seconds) at which data snapshots are collected. A
lower value causes data snapshots to be collected more often; a higher value
causes data snapshots to be collected less often.

The storage_interval value should be a multiple of the timer_interval value.
The timer_interval value determines the minimum elapsed time for many
Remote Manager parameters, including the storage interval setting. The
relationship of the values in these two fields determine how often data
snapshots are performed, for example:

– If the timer_interval value is greater, its value is used by default.
For instance, if the timer_interval is 10 and the storage_interval is 5,
snapshots will be written at 10 second intervals.

– If the storage_interval value is greater and is a multiple of the timer_
interval, the storage_interval value is used. For example, if the timer_
interval is 10 and the storage_interval is 30, snapshots will be written at
30 second intervals.

– If the storage_interval value is greater and is not a multiple of the
timer_interval, the next multiple of the timer_interval value is used.
For example, if the timer_interval is 10 and the storage_interval is 15,
snapshots will be written at 20 second intervals.

See Section 5.1 for more information on creating data snapshots by
periodically saving data collections.

• storage_begini_time

The date and time (DD-MMM-YY:hh:mm:ss.nn) when the data snapshot
interval is scheduled to begin. The default value is NOW (begin immediately).

See Section 5.1 for more information on creating data snapshots by
periodically saving data collections.

• storage_end_time

The date and time (DD-MMM-YY:hh:mm:ss.nn) when the data snapshot
interval is scheduled to end. The default value is NEVER (run indefinitely).

See Section 5.1 for more information on creating data snapshots by
periodically saving data collections.

9.5 CP Table
The CP table contains a row for each terminal Command Process (CP) running
on the node.

Table 9–4 CP Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID process_name string R R

(continued on next page)

Remote Manager Reference Tables 9–23

Remote Manager Reference Tables
9.5 CP Table

Table 9–4 (Cont.) CP Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID pid integer R R

ID start_time time R R

ID end_time time R R

ID user_name string R R

CONFIG astlm_active‡ integer R R

CONFIG astlm_stored‡ integer RW RW

CONFIG biolm_active‡ integer R R

CONFIG biolm_stored‡ integer RW RW

CONFIG bytlm_active‡ integer R R

CONFIG bytlm_stored‡ integer RW RW

CONFIG diolm_active‡ integer R R

CONFIG diolm_stored‡ integer RW RW

CONFIG enqlm_active‡ integer R R

CONFIG enqlm_stored‡ integer RW RW

CONFIG fillm_active‡ integer R R

CONFIG fillm_stored‡ integer RW RW

CONFIG pgflquota_active‡ integer R R

CONFIG pgflquota_stored‡ integer RW RW

CONFIG tqelm_active‡ integer R R

CONFIG tqelm_stored‡ integer RW RW

CONFIG wsdefault_active‡ integer R R

CONFIG wsdefault_stored‡ integer RW RW

CONFIG wsextent_active‡ integer R R

CONFIG wsextent_stored‡ integer RW RW

CONFIG wsquota_active‡ integer R R

CONFIG wsquota_stored‡ integer RW RW

RUNTIME runtime_coll_state integer R R

RUNTIME acms_state integer R R

RUNTIME decnet_object integer R R

RUNTIME current_attached_terms gauge R R

RUNTIME active_task_calls gauge R R

RUNTIME active_tdms_menu_reqs gauge R R

RUNTIME total_tdms_menu_reqs integer R R

RUNTIME active_tdms_reqs gauge R R

RUNTIME active_tdms_read_msgs gauge R R

RUNTIME active_tdms_write_msgs gauge R R

RUNTIME active_tdms_cancels gauge R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–24 Remote Manager Reference Tables

Remote Manager Reference Tables
9.5 CP Table

Table 9–4 (Cont.) CP Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

RUNTIME total_tdms_reqs integer R R

RUNTIME total_tdms_read_msgs integer R R

RUNTIME total_tdms_write_msgs integer R R

RUNTIME total_tdms_cancels integer R R

RUNTIME active_df_menu_reqs gauge R R

RUNTIME total_df_menu_reqs integer R R

RUNTIME active_df_reqs gauge R R

RUNTIME active_df_enables gauge R R

RUNTIME active_df_disables gauge R R

RUNTIME active_df_cancels gauge R R

RUNTIME active_df_sends gauge R R

RUNTIME active_df_receives gauge R R

RUNTIME active_df_transceives gauge R R

RUNTIME total_df_reqs integer R R

RUNTIME total_df_enables integer R R

RUNTIME total_df_disables integer R R

RUNTIME total_df_cancels integer R R

RUNTIME total_df_sends integer R R

RUNTIME total_df_receives integer R R

RUNTIME total_df_transceives integer R R

RUNTIME data_set_hangups integer R R

RUNTIME astlm_current‡ gauge R R

RUNTIME biolm_current‡ gauge R R

RUNTIME bytlm_current‡ gauge R R

RUNTIME diolm_current‡ gauge R R

RUNTIME enqlm_current‡ gauge R R

RUNTIME fillm_current‡ gauge R R

RUNTIME pgflquota_current‡ gauge R R

RUNTIME tqelm_current‡ gauge R R

RUNTIME wssize_current‡ gauge R R

RUNTIME channelcnt_current‡ gauge R R

POOL pool_coll_state integer R R

POOL mss_process_total integer R R

POOL mss_process_free min gauge R R

POOL mss_process_largest min gauge R R

POOL mss_process_failures integer R R

POOL mss_process_garbage integer R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–25

Remote Manager Reference Tables
9.5 CP Table

Table 9–4 (Cont.) CP Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ERROR err_coll_state‡ integer R R

ERROR err_count‡ integer R R

ERROR last_err_msg‡ string R R

ERROR time_of_last_error‡ time R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic

9.5.1 Field Descriptions
Following are descriptions of the fields in Table 9–4.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field
is null.

• user_name

The OpenVMS account under which the process is running.

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_
active, pgflquota_active, tqelm_active, wsdefault_active, wsextent_active,
wsquota_active

The default value of the related OpenVMS process quota. This is the value of
the quota when the CP process was started.

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_
stored, pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored,
wsquota_stored

9–26 Remote Manager Reference Tables

Remote Manager Reference Tables
9.5 CP Table

The value of the related process quota currently stored in the OpenVMS
system user authorization file (SYSUAF.DAT).

• runtime_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• acms_state

The ACMS state of the process.

• decnet_object

If the process has a current DECnet object, the value of this field is
STARTED. Otherwise, the value is STOPPED. If the DECnet object is stopped
(and the runtime_coll_state is enabled for this process), either distributed
processing has not been enabled (that is, the node_name parameter in the
ACMSGEN file is NULL) or there is currently a problem with DECnet. Also,
check the ACC CONFIG parameters node_name_active and node_name_
stored to determine the current status of the ACMSGEN node_name field.

• current_attached_terms

The number of terminals currently attached to the CP.

• active_task_calls

The number of task calls currently being executed by all users of the CP.

• active_tdms_menu_reqs

The number of TDMS menu requests currently being executed by all users of
the CP.

• total_tdms_menu_reqs

The total number of TDMS menu requests executed by all users of the CP
since the CP was started.

• active_tdms_reqs

The number of TDMS requests of all types currently being executed by all
users of the CP.

• active_tdms_read_msgs

The number of TDMS read messages currently being executed by all users of
the CP.

• active_tdms_write_msgs

The number of TDMS write messages currently being executed by all users of
the CP.

• active_tdms_cancels

The number of TDMS cancels currently being executed by all users of the CP.

• total_tdms_reqs

The total number of TDMS requests (menu and exchange) executed by all
users of the CP since the CP was started.

Remote Manager Reference Tables 9–27

Remote Manager Reference Tables
9.5 CP Table

• total_tdms_read_msgs

The total number of TDMS read messages executed by all users of the CP
since the CP was started.

• total_tdms_write_msgs

The total number of TDMS write messages executed by all users of the CP
since the CP was started.

• total_tdms_cancels

The total number of TDMS cancels executed by all users of the CP since the
CP was started.

• active_df_menu_reqs

The number of HP DECforms menu requests currently being executed by all
users of the CP.

• total_df_menu_reqs

The total number of HP DECforms menu requests executed by all users of the
CP since the CP was started.

• active_df_reqs

The number of HP DECforms requests of all types currently being executed
by all users of the CP.

• active_df_enables

The number of HP DECforms enable requests currently being executed by all
users of the CP.

• active_df_disables

The number of HP DECforms disable requests currently being executed by all
users of the CP.

• active_df_cancels

The number of HP DECforms cancel requests currently being executed by all
users of the CP.

• active_df_sends

The number of HP DECforms requests currently being executed by all users
of the CP.

• active_df_receives

The number of HP DECforms receive requests currently being executed by all
users of the CP.

• active_df_transceives

The number of HP DECforms enable transceives currently being executed by
all users of the CP.

• total_df_reqs

The total number of HP DECforms requests of all types executed by all users
of the CP since the CP was started.

• total_df_enables

The total number of HP DECforms enable requests executed by all users of
the CP since the CP was started.

9–28 Remote Manager Reference Tables

Remote Manager Reference Tables
9.5 CP Table

• total_df_disables

The total number of HP DECforms disable requests executed by all users of
the CP since the CP was started.

• total_df_cancels

The total number of HP DECforms cancel requests executed by all users of
the CP since the CP was started.

• total_df_sends

The total number of HP DECforms send requests executed by all users of the
CP since the CP was started.

• total_df_receives

The total number of HP DECforms receive requests executed by all users of
the CP since the CP was started.

• total_df_transceives

The total number of HP DECforms transceive requests executed by all users
of the CP since the CP was started.

• data_set_hangups

The total number of data set hangups detected by the CP since the CP was
started.

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current,
fillm_current, pgflquota_current, tqelm_current, wssize_current, channelcnt_
current

The actual amount of the related OpenVMS process or system resource that is
being consumed by the CP process. The frequency with which these fields are
updated is based on the value of the vms_coll_interval field in the Parameter
table (see Table 9–9).

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 9.4
and Section 5.1 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9–9).

• mss_process_largest

The largest unused block available in the MSS process pool for this process.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

Remote Manager Reference Tables 9–29

Remote Manager Reference Tables
9.5 CP Table

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for
this process. The frequency with which this field is updated is based on the
value of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_garbage

The number of garbage collections that have been run to reclaim space in this
processes MSS process pool. The frequency with which this field is updated
is based on the value of the Parameter table field mss_coll_interval (see
Table 9–9).

• err_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

Errors for this process are only sent to the Remote Manager if this field is set
to ENABLED. If this field is set to DISABLED, the process will not collect
data for the fields in this class; existing field values reflect activity during a
prior period when collection was enabled.

• err_count

The total number of errors related to this process that were sent to the
Remote Manager.

• last_err_msg

The text of the most recent error message related to this process that was
sent to the Remote Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that
was sent to the Remote Manager.

9.6 Error Filter Table
The Error Filter table enables users to increase the usefulness and manage
the size of the Remote Manager error log by preventing an ACMS process from
relaying repetitive or non-critical system messages. Each error filter record
specifies a particular system message to suppress. These messages continue to be
displayed on ACMS systems, but they are not sent to or recorded by the Remote
Manager.

The following table shows the fields in an ACMS error filter record. Note that the
data in this table is persistent and durable. However, table entries can removed
manually using the ACMSMGR DELETE FILTER command.

Table 9–5 Error Filter Table

Field Name Data Type
SNMP
Access

RPC
Access Dynamic

node_name‡ string RW RW

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–30 Remote Manager Reference Tables

Remote Manager Reference Tables
9.6 Error Filter Table

Table 9–5 (Cont.) Error Filter Table

Field Name Data Type
SNMP
Access

RPC
Access Dynamic

message_code‡ integer RW RW

message_name‡ string RW RW

‡Only valid for use with systems running ACMS Version 4.4 or higher.

9.6.1 Field Descriptions
Following are descriptions of the fields in Table 9–5.

• node_name

Name of the OpenVMS node on which to filter error messages.

• message_code

The hexadecimal value or symbolic error name associated with the message
being filtered.

9.7 EXC Table
The EXC table is sized according to the MAX_APPLS ACMSGEN parameter.

Table 9–6 EXC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID process_name string R R

ID user_name string R R

ID pid integer R R

ID start_time time R R

ID end_time time R R

ID appl_name string R R

ID build_time time R R

ID exc_appl_tbl_state integer R

ID exc_server_types integer R

ID exc_task_groups integer R

CONFIG config_coll_state integer R R

CONFIG acms_state integer RW R D

CONFIG audit_state_active integer RW RW D

CONFIG audit_state_stored state1 R R

CONFIG max_tasks_active integer RW RW D

CONFIG max_tasks_stored integer R R

(continued on next page)

Remote Manager Reference Tables 9–31

Remote Manager Reference Tables
9.7 EXC Table

Table 9–6 (Cont.) EXC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

CONFIG sp_monitoring_interval_active integer RW RW D

CONFIG sp_monitoring_interval_stored state1 R R

CONFIG max_servers_active integer RW RW D

CONFIG max_servers_stored integer R R

CONFIG transaction_timeout_active integer RW RW D

CONFIG transaction_timeout_stored integer R R

CONFIG astlm_active‡ integer R R

CONFIG astlm_stored‡ integer RW RW

CONFIG biolm_active‡ integer R R

CONFIG biolm_stored‡ integer RW RW

CONFIG bytlm_active‡ integer R R

CONFIG bytlm_stored‡ integer RW RW

CONFIG diolm_active‡ integer R R

CONFIG diolm_stored‡ integer RW RW

CONFIG enqlm_active‡ integer R R

CONFIG enqlm_stored‡ integer RW RW

CONFIG fillm_active‡ integer R R

CONFIG fillm_stored‡ integer RW RW

CONFIG pgflquota_active‡ integer R R

CONFIG pgflquota_stored‡ integer RW RW

CONFIG tqelm_active‡ integer R R

CONFIG tqelm_stored‡ integer RW RW

CONFIG wsdefault_active‡ integer R R

CONFIG wsdefault_stored‡ integer RW RW

CONFIG wsextent_active‡ integer R R

CONFIG wsextent_stored‡ integer RW RW

CONFIG wsquota_active‡ integer R R

CONFIG wsquota_stored‡ integer RW RW

CONFIG ws_poolsize‡ integer R R

CONFIG wsc_poolsize‡ integer R R

CONFIG tws_poolsize‡ integer R R

CONFIG twsc_poolsize‡ integer R R

RUNTIME runtime_coll_state integer R R

RUNTIME decnet_object integer R R

RUNTIME current_servers gauge R R

RUNTIME current_submitters gauge R R

RUNTIME current_tasks gauge R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–32 Remote Manager Reference Tables

Remote Manager Reference Tables
9.7 EXC Table

Table 9–6 (Cont.) EXC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

RUNTIME total_tasks_executed integer R R

RUNTIME total_submitters integer R R

RUNTIME current active_servers gauge R R

RUNTIME current_free_servers gauge R R

RUNTIME current_waiting_tasks gauge R R

RUNTIME server_start_count integer R R

RUNTIME server_failure_count integer R R

RUNTIME server_process_total‡ gauge R R

RUNTIME task_failures integer R R

RUNTIME task_start_failures integer R R

RUNTIME task_security_failures integer R R

RUNTIME task_cancels integer R R

RUNTIME active_tdms_requests gauge R R

RUNTIME active_tdms_read_messages gauge R R

RUNTIME active_tdms_write_messages gauge R R

RUNTIME active_tdms_cancels gauge R R

RUNTIME total_tdms_requests integer R R

RUNTIME total_tdms_read_messages integer R R

RUNTIME total_tdms_write_messages integer R R

RUNTIME total_tdms_cancels integer R R

RUNTIME total_dataset_hangups integer R R

RUNTIME astlm_current‡ gauge R R

RUNTIME biolm_current‡ gauge R R

RUNTIME bytlm_current‡ gauge R R

RUNTIME diolm_current‡ gauge R R

RUNTIME enqlm_current‡ gauge R R

RUNTIME fillm_current‡ gauge R R

RUNTIME pgflquota_current‡ gauge R R

RUNTIME tqelm_current‡ gauge R R

RUNTIME wssize_current‡ gauge R R

RUNTIME channelcnt_current‡ gauge R R

POOL pool_coll_state integer R R

POOL mss_process_total integer R R

POOL mss_process_free min gauge R R

POOL mss_process_largest min gauge R R

POOL mss_process_failures integer R R

POOL mss_process_garbage integer R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–33

Remote Manager Reference Tables
9.7 EXC Table

Table 9–6 (Cont.) EXC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

POOL ws_pool_total integer R R

POOL ws_pool_used‡ gauge R R

POOL ws_pool_free min gauge R R

POOL ws_pool_largest min gauge R R

POOL ws_pool_failures integer R R

POOL ws_pool_garbage integer R R

POOL wsc_pool_total integer R R

POOL wsc_pool_used‡ gauge R R

POOL wsc_pool_free min gauge R R

POOL wsc_pool_largest min gauge R R

POOL wsc_pool_failures integer R R

POOL wsc_pool_garbage integer R R

POOL tws_pool_total‡ integer R R

POOL tws_poolsize_total‡ integer R R

POOL tws_pool_large_used‡ gauge R R

POOL twsc_pool_total‡ integer R R

POOL twsc_poolsize_total‡ integer R R

POOL twsc_pool_large_used‡ gauge R R

ERROR err_coll_state‡ integer R R

ERROR err_count‡ integer R R

ERROR last_err_msg‡ string R R

ERROR time_of_last_error‡ time R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic

9.7.1 Field Descriptions
Following are descriptions of the fields in Table 9–6.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• process_name

The OpenVMS process name for the process.

9–34 Remote Manager Reference Tables

Remote Manager Reference Tables
9.7 EXC Table

• user_name

The OpenVMS account under which the process is running.

• pid

The OpenVMS process identifier of the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field
will be null.

• appl_name

Name of the application.

• build_time

Date and time the application database (ADB) was built.

• exc_appl_tbl_state

This field is available to the SNMP interface only. It contains the state of
the application global section for this EXC. When EXCs have completed
their startup, they construct global sections containing server and task group
tables. If this field is not MGMT$K_VALID (2), the Server and Task Group
tables are not available.

• exc_server_types

This field is available to the SNMP interface only. It contains the number of
server types contained in the application, which is also the number of rows in
the Server table for this EXC.

• exc_task_groups

This field is available to the SNMP interface only. It contains the number of
task groups contained in the application, which is also the number of rows in
the Task Group table for this EXC.

• config_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• audit_state_active

Current auditing state of the application.

• audit_state_stored

Value of the auditing state of the application as specified in the ACMS
application database (.ADB file).

• max_tasks_active

The current maximum number of executing tasks allowed.

• max_tasks_stored

The maximum number of executing tasks allowed as specified in the ACMS
application database (.ADB file).

Remote Manager Reference Tables 9–35

Remote Manager Reference Tables
9.7 EXC Table

• sp_monitoring_interval_active

The current server process monitoring interval for the application.

• sp_monitoring_interval_stored

The server process monitoring interval for the application as specified in the
ACMS application database (.ADB file).

• max_servers_active

The current maximum number of started server instances for the application.

• max_servers_stored

The maximum number of started server instances for the application as
specified in the ACMS application database (.ADB file).

• transaction_timeout_active

The current default task timeout for the application.

• transaction_timeout_stored

The default task timeout for the application as specified in the ACMS
application database (.ADB file).

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_
active, pgflquota_active, tqelm_active, wsdefault_active, wsextent_active,
wsquota_active

The default value of the related OpenVMS process quota. This is the value of
the quota when the EXC process was started.

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_
stored, pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored,
wsquota_stored

The value of the related process quota currently stored in the OpenVMS
system user authorization file (SYSUAF.DAT).

• ws_poolsize, wsc_poolsize

The default size (in pagelets) of WS or WSC process pool for the application.

• tws_poolsize, twsc_poolsize

The default size (in pagelets) of TWS or TWSC process pool for the
application.

• acms_state

The current ACMS state of this process.

• runtime_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

9–36 Remote Manager Reference Tables

Remote Manager Reference Tables
9.7 EXC Table

• decnet_object

If the process has a current DECnet object, the value of this field is
STARTED. Otherwise, the value is STOPPED. If the DECnet object is stopped
(and the runtime_coll_state is enabled for this process), either distributed
processing has not been enabled (that is, the node_name parameter in the
ACMSGEN file is NULL) or there is currently a problem with DECnet. Also,
check the ACC CONFIG parameters node_name_active and node_name_
stored to determine the current status of the ACMSGEN node_name field.

• current_servers

The number of server instances currently started in this application.

• current_submitters

The number of submitters currently logged in to this application.

• current_tasks

The number of tasks currently started in the application.

• total_tasks_executed

The total number of tasks started in the application since the application was
started.

• total_submitters

The total number of submitters who have submitted tasks to this application
since the application was started.

• current_active_servers

The current number of active servers (that is, those servers performing
processing steps).

• current_free_servers

The number of started servers which are not currently active (that is, not
currently executing processing steps).

• current_waiting_tasks

The number of tasks that are not executing, waiting for a procedure server to
become available.

• server_start_count

The number of times servers have been started in this application.

• server_failure_count

The number of times servers have been stopped in this application.

• server_process_total

The number of concurrent server processes (active or free) running in this
application.

• task_failures

The number of tasks in this application that have failed to complete
successfully.

• task_start_failures

The number of tasks in this application that have failed to start.

Remote Manager Reference Tables 9–37

Remote Manager Reference Tables
9.7 EXC Table

• task_security_failures

The number of tasks in this application that have failed to start because of
security violations.

• task_cancels

The number of tasks in this application that have been canceled.

• active_tdms_requests

The number of TDMS requests (both exchange and menu) that are currently
executing for this process.

• active_tdms_read_messages

The number of TDMS read messages currently outstanding for this process.

• active_tdms_write_messages

The number of TDMS write messages currently outstanding for this process.

• active_tdms_cancels

The number of TDMS cancels currently outstanding for this process.

• total_tdms_requests

The total number of TDMS requests (both exchange and menu) processed by
this process while the runtime_coll_state has been ENABLED.

• total_tdms_read_messages

The total number of TDMS read messages processed by this process while the
runtime_coll_state has been ENABLED.

• total_tdms_write_messages

The total number of TDMS write messages processed by this process while
the runtime_coll_state has been ENABLED.

• total_tdms_cancels

The total number of TDMS cancels processed by this process while the
runtime_coll_state has been ENABLED.

• total_dataset_hangups

The total number of TDMS dataset hangups (unexpected session
interruptions) processed by this process while the runtime_coll_state has
been ENABLED.

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current,
fillm_current, pgflquota_current, tqelm_current, wssize_current, channelcnt_
current

The actual amount of the related OpenVMS process or system resource that
is being consumed by the EXC process.

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

9–38 Remote Manager Reference Tables

Remote Manager Reference Tables
9.7 EXC Table

• mss_process_total

The total size of the MSS process pool (in bytes) allocated for this process.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_free

The amount of unused MSS process pool (in bytes) for this process. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_largest

The largest unused block available (in bytes) in the MSS process pool for this
process. The frequency with which this field is updated is based on the value
of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for
this process. The frequency with which this field is updated is based on the
value of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_garbage

The number of garbage collections for this process that have been run to
reclaim space in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9–9).

• ws_pool_total, wsc_pool_total

The total size of the WS or WSC pool (in bytes) allocated for this application.
The frequency with which these fields are updated is based on the value of
the Parameter table field wksp_coll_interval (see Table 9–9).

• ws_pool_used, wsc_pool_used

The amount of WS or WSC pool (in bytes) used by this application. The
frequency with which these fields are updated is based on the value of the
Parameter table field wksp_coll_interval (see Table 9–9).

• ws_pool_free, wsc_pool_free

The amount of unused WS or WSC pool (in bytes) for this application. The
frequency with which these fields are updated is based on the value of the
Parameter table field wksp_coll_interval (see Table 9–9).

• ws_pool_largest, wsc_pool_largest

The largest unused block available in the WS or WSC pool for this application.
The frequency with which these fields are updated is based on the value of
the Parameter table field wksp_coll_interval (see Table 9–9).

• ws_pool_failures, wsc_pool_failures

The number of failed attempts to allocate space in the WS or WSC pool for
this application. The frequency with which these fields are updated is based
on the value of the Parameter table field wksp_coll_interval (see Table 9–9).

• ws_pool_garbage, wsc_pool_garbage

The number of garbage collections that have been run to reclaim space in the
WS or WSC pool for this application. The frequency with which these fields
are updated is based on the value of the Parameter table field wksp_coll_
interval (see Table 9–9).

Remote Manager Reference Tables 9–39

Remote Manager Reference Tables
9.7 EXC Table

• tws_pool_total, twsc_pool_total

The default size for TWS or TWSC pools (in bytes) allocated for this
application. The frequency with which these fields are updated is based
on the value of the Parameter table field wksp_coll_interval (see Table 9–9).

• tws_poolsize_total, twsc_poolsize_total

The total size of all TWS or TWSC pools (in bytes) for all task groups in this
application. The frequency with which these fields are updated is based on
the value of the Parameter table field wksp_coll_interval (see Table 9–9).

• tws_pool_large_used, twsc_pool_large_used

The largest amount of TWS or TWSC pool used (in bytes) by a task group in
this application. The frequency with which these fields are updated is based
on the value of the Parameter table field wksp_coll_interval (see Table 9–9).

• err_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

Errors for this process are only sent to the Remote Manager if this field is set
to ENABLED. If this field is set to DISABLED, the process will not collect
data for the fields in this class; existing field values reflect activity during a
prior period when collection was enabled.

• err_count

The total number of errors generated by this process. related to this process
that were sent to the Remote Manager.

• last_err_msg

The text of the most recent error message related to this process that was
sent to the Remote Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that
was sent to the Remote Manager.

9.8 Interfaces Table
The Interfaces table is populated from the configuration file by the ACMS Remote
Manager process during process startup. This table specifies which interfaces are
active and contains parameters associated with each interface. By default, the
RPC interface is started; SNMP is not started .

Table 9–7 Interfaces Table

Field Data Type
SNMP
Access

RPC
Access

Configuration
Access Dynamic

interface string R R R

state state1 RW RW RW D

running_state state2 R R R

(continued on next page)

9–40 Remote Manager Reference Tables

Remote Manager Reference Tables
9.8 Interfaces Table

Table 9–7 (Cont.) Interfaces Table

Field Data Type
SNMP
Access

RPC
Access

Configuration
Access Dynamic

get_request_count integer R R

set_request_count integer R R

alarms_sent integer R R

time_alarm_last_
sent

integer R R

Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.8.1 Field Descriptions
Following are descriptions of the fields in Table 9–7.

• interface

Name or type of the interface. Valid values are RPC or SNMP.

• state

Current state as configured, either from the configuration file or by a user at
run time. Valid values are ENABLED or DISABLED. Note that state and
acms_state are not always the same because of potential run-time failures in
a thread. For instance, if a thread fails to start, state may be ENABLED, but
acms_state may be STOPPED.

A thread can be enabled only if the acms_state value is STOPPED. A thread
can be disabled only if the acms_state value is not STOPPED.

• acms_state

Actual execution state. Interfaces go through the following states:

INITING

The Remote Manager is in the process of creating the interface thread.

STARTING

The interface thread has been created and is initializing.

STARTED

The interface thread has completed initializing and is now running.

STOPPING

The thread is starting shutdown, as the result of either a stop request or
a fatal error.

STOPPED

The thread is no longer executing.

• get_request_count

The number of read requests submitted to the interface. This includes
requests that are rejected because of authorization failures.

Remote Manager Reference Tables 9–41

Remote Manager Reference Tables
9.8 Interfaces Table

• set_request_count

The number of write requests submitted to the interface. This includes
requests that are rejected because of authorization failures.

• alarms_sent

The number of alarms that have been sent by this interface. For SNMP, these
are SNMP traps. For RPC, this field is undefined.

• time_alarm_last_sent

The time the most recent alarm was sent by this interface. For SNMP, this is
the time the last SNMP trap was sent. For RPC, this field is undefined.

9.9 Manager Status Table
The Manager Status table contains run-time values that reflect Remote Manager
activity. This table is maintained internally by the Remote Manager and is read
only to all external entities. Values in the table can be accessed through one of
the supported interfaces. No changes can be made to the table by external users.

In general, the values in this table are informational only.

Table 9–8 Manager Status Table

Field Name Data Type SNMP Access RPC Access Dynamic

collection_count integer R R

interfaces_count integer R R

timer_count integer R R

trap_count integer R R

rpc_udp_state state1 R R

rpc_tcp_state state1 R R

Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic

9.9.1 Field Descriptions
Following are descriptions of the fields in Table 9–8.

• collection_count

Current number of Collection table entries.

• interfaces_count

Current number of entries in the Interfaces table.

• timer_count

Current number of entries in the Timer table.

• trap_count

Current number of entries in the Trap table.

9–42 Remote Manager Reference Tables

Remote Manager Reference Tables
9.9 Manager Status Table

• rpc_udp_state

Current state of the RPC interface using the UDP protocol. A value of 1
means that the UDP protocol is active. A value of 0 means that the UDP
protocol is inactive.

• rpc_tcp_state

Current state of the RPC interface using the TCP protocol. A value of 1
means that the UDP protocol is active. A value of 0 means that the UDP
protocol is inactive.

9.10 Parameter Table
The Parameter table contains values that control the operation of the ACMS
Remote Manager and that are not directly related to any ACMS entity. This table
is populated initially from the ACMSCFG file. The Remote Manager maintains
the table internally at run time; users can access data in the table only through
one of the supported interfaces. Changes made to the table at run time are lost
when the Remote Manager is stopped.

In general, the values in this table should be modified for fine tuning only, and
only if a demonstrated need exists.

Note

All the fields in Table 9–9 are of type integer, and all fields have read and
write access.

Table 9–9 Parameter Table

Field
Default
Value

Minimum
Value Maximum Value Dynamic Interface

dcl_audit_level E 0 F D S,R,F

dcl_mgr_priority 5 1 10 S,R,F

dcl_stacksize 300 1 2147483647 S,R,F

error_interval‡ 10 1 863999999 D S,R,F

event_log_priority 5 1 10 S,R,F

log_stacksize 300 1 2147483647 S,R,F

login_creds_lifetime 60 1 14399999 D S,R,F

max_logins 20 1 2147483647 D S,R,F

max_rpc_return_recs 20 1 2147483647 S,R,F

mgr_audit_level E 0 F D S,R,F

msg_proc_audit_level E 0 F D S,R,F

msg_proc_priority 5 1 10 S,R,F

msg_proc_stacksize 300 1 2147483647 S,R,F

mss_coll_interval 10 1 863999999 D S,R,F

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–43

Remote Manager Reference Tables
9.10 Parameter Table

Table 9–9 (Cont.) Parameter Table

Field
Default
Value

Minimum
Value Maximum Value Dynamic Interface

proc_mon_audit_level E 0 F S,R,F

proc_mon_interval 30 1 14399999 D S,R,F

proc_mon_priority 5 1 10 S,R,F

proc_mon_stacksize 300 1 2147483647 S,R,F

proxy_creds_lifetime 60 1 14399999 D S,R,F

rpc_audit_level E 0 F D S,R,F

rpc_priority 5 1 10 S,R,F

rpc_stacksize 300 1 2147483647 S,R,F

security_audit_level E 0 F D S,R,F

snap_audit_level‡ E 0 F D S,R,F

snap_priority‡ 5 1 10 S,R,F

snap_stacksize‡ 400 300 2147483647 S,R,F

snmp_agent_time_out 10 1 863999999 D S,R,F

snmp_audit_level E 0 F D S,R,F

snmp_are_you_there 300 1 863999999 S,R,F

snmp_priority 5 1 10 S,R,F

snmp_sel_time_out 5 0 863999999 S,R,F

snmp_stacksize 300 1 2147483647 S,R,F

tcp_enabled‡ 1 0 1 S,R,F

timer_audit_level E 0 F D S,R,F

timer_interval 30 1 863999999 D S,R,F

timer_priority 5 1 10 S,R,F

timer_stacksize 300 1 2147483647 S,R,F

total_entity_slots 20 1 2147483647 S,R,F

trace_msg_wait_time 5 1 14399999 D S,R,F

trace_start_wait_time 5 1 14399999 D S,R,F

trap_audit_level E 0 F D S,R,F

trap_priority 5 1 10 S,R,F

trap_stacksize 300 1 2147483647 S,R,F

udp_enabled‡ 1 0 1 S,R,F

vms_coll_interval 10 1 863999999 D S,R,F

wksp_coll_interval‡ 10 1 863999999 D S,R,F

max_agents 2 1 2147483647 S,R,F

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Interface

S—SNMP
R—RPC (API and ACMSMGR utility)
F—File (configuration file)
D—Field is dynamic.

9–44 Remote Manager Reference Tables

Remote Manager Reference Tables
9.10 Parameter Table

9.10.1 Field Descriptions
Following are descriptions of the fields in Table 9–9.

• dcl_audit_level, mgr_audit_level, msg_audit_level,proc_mon_audit_level,
rpc_audit_level, security_audit_level, snap_audit_level, snmp_audit_level,
timer_audit_level, trap_audit_level

Audit levels determine the amount of auditing information written for a given
facility. Audit levels are specified using a hexadecimal value from 0 (none) to
F (all). The integer values are a logical ORing of the following:

INFO 1

WARN 2

ERROR 4

FATAL 8

For example, to specify auditing of both error and fatal information, specify
a value of C. For more information about auditing and audit levels see
Section 4.7.

• dcl_mgr_priority

Relative priority of the DCL manager thread. The DCL manager is used to
send ACMS run-time changes to the ACMS system. Priority is specified as a
whole number between 1 and 10, where 1 is the lowest priority and 10 is the
highest. This value should be left at the default.

• dcl_stacksize, log_stacksize, msg_proc_stacksize, proc_mon_stacksize, rpc_
stacksize, snap_stacksize, snmp_stacksize, timer_stacksize, trap_stacksize,

These values determine the internal stack sizes for each thread. Stack sizes
are set during thread creation and are not adjusted after the thread has been
started. Restartable threads, such as RPC and SNMP, can be adjusted while
the Remote Manager is running by disabling the interface, modifying the
parameter, and then reenabling the interface.

• error_interval

Controls the frequency (in seconds) at which error data is filtered. Any errors
that are rebroadcast within the specified interval are not sent to the Remote
Manager server. A lower value causes errors to be filtered more often; a
higher value causes errors to be filtered less often.

• event_log_priority

Relative priority of the event log thread. The event log thread writes audit
messages to the audit log. Priority is specified as a whole number between
1 and 10, where 1 is the lowest priority and 10 is the highest. This value
should be left at the default.

• login_creds_lifetime

The amount of time (in minutes) that explicit logins are valid. When a user
logs in to a Remote Manager process using a valid OpenVMS account and
password, a login is created for the user, and the expiration of that login is
calculated and stored based on this parameter. When the current time is
greater than the expiration time, the user is logged out and must log in again
using the ACMSMGR LOGIN command. A change to this parameter takes
effect for any login that takes place after the change is made. A change to
this parameter does not take effect for any login that took place before the
change was made.

Remote Manager Reference Tables 9–45

Remote Manager Reference Tables
9.10 Parameter Table

• max_logins

Maximum number of external processes allowed to concurrently connect to
the Remote Manager. Starting the SNMP interface counts as one login. Each
RPC client counts as one login. RPCs are serviced serially.

• max_rpc_return_recs

The maximum number of records to be returned to any given request for data.
This parameter allows network bandwidth to be conserved by sending data in
user-managed chunks.

• msg_proc_priority

Relative priority of the message processor thread. The message processor is
responsible for removing messages sent by ACMS processes to the Remote
Manager from the error input queue and for processing messages according
to configuration values specified in the Collection and Trap tables. This value
should be left at the default. Priority is specified as a whole number between
1 and 10, where 1 is the lowest priority and 10 is the highest.

• mss_coll_interval

Controls the frequency (in seconds) at which MSS values are collected. A
lower value causes MSS values to be collected more often; a higher value
causes MSS values to be collected less often. MSS values are collected by all
ACMS run-time processes except SWL, ATR, and procedure servers.

• proc_mon_interval

The frequency (in seconds) at which the process monitor thread should run.
The process monitor thread checks for the existence of the ACC and other
ACMS run-time processes in order to map the MGMT global section and to
send alarms.

• proc_mon_priority

Relative priority of the process monitor thread. The process monitor thread
periodically checks for the existence of the ACC process in order to map the
MGMT global section and to send alarms. Priority is specified as a whole
number between 1 and 10, where 1 is the lowest priority and 10 is the
highest. This value should be left at the default.

• proxy_creds_lifetime

The amount of time (in minutes) that proxy logins are valid. When a user
first accesses a Remote Manager process using an ACMS proxy, a login
is created for the user, and the expiration of that login is calculated and
stored based on this parameter. When the current time is greater than the
expiration time, the user’s proxy information is refreshed. A change to this
parameter takes effect for any login that takes place after the change is made.
A change to this parameter does not take effect for any login that took place
before the change was made.

• rpc_priority

Relative priority of the RPC management thread. The RPC management
thread responds to RPC requests to get or set data values. Priority is
specified as a whole number between 1 and 10, where 1 is the lowest priority
and 10 is the highest.

9–46 Remote Manager Reference Tables

Remote Manager Reference Tables
9.10 Parameter Table

• snap_priority

Relative priority of the data snapshot management thread. The data snapshot
thread responds to data snapshot requests to get or set data values. Priority
is specified as a whole number between 1 and 10, where 1 is the lowest and
10 is the highest.

• snmp_agent_time_out

Number of seconds that the SNMP Master agent waits for a response from
the Remote Manager. The maximum is 10 seconds for HP TCP/IP Services
Version 4.2. For HP TCP/IP Services Version 5.0 and higher, the maximum is
60 seconds.

• snmp_are_you_there

Controls how often are you there messages are sent by the Remote Manager
to the SNMP Master agent. This value should be entered as a multiple of the
snmp_sel_time_out value. Each time a timeout occurs, a timeout counter is
incremented. The product of the timeout counter and the snmp_sel_timeout
are then compared to the snmp_are_you_there value. If the product is greater
than the snmp_are_you_there value, an are_you_there message is sent.

• snmp_priority

Relative priority of the SNMP management thread. The SNMP management
thread responds to SNMP requests to get or set data values. Priority is
specified as a whole number between 1 and 10, where 1 is the lowest and 10
is the highest.

• snmp_sel_time_out

Controls how long the Remote Manager waits for a response from the SNMP
master agent. If the timeout value is reached and no messages are expected,
the snmp_are_you_there interval is checked (see snmp_are_you_there) .
If a message is expected and is not received before the select times out,
the connection to the master agent is assumed to have been lost and an
attempt is made to reregister. There is a hard coded 2 second wait prior to
reregistration.

This value also controls how long it takes to begin disabling this interface.
Requests to disable the interface do not interrupt the socket select—they wait
for it to either timeout or end naturally (that is, when a message is received).
At worse case, a request to disable the interface has to wait snmp_sel_time_
out seconds before the shutdown of the interface begins. Once it begins, it
usually shuts down quickly—within a second or two.

• tcp_enabled

Controls how the Remote Manager client and desktop server work together.
If this field is set to 0, then the current TCP/IP connection is disabled. If both
the tcp_enabled and udp_enabled fields are set to 0, the entire RPC thread is
shut down.

• timer_interval

The Remote Manager runs one internal timer that controls the operation of
all other timers. The interval of this timer effectively sets the smallest timer
interval for the process. The interval is set in seconds. If the value is too
small, the timer will run frequently with no work to do. This value should be
set to smallest desired timer interval.

Remote Manager Reference Tables 9–47

Remote Manager Reference Tables
9.10 Parameter Table

• timer_priority

Relative priority of the timer thread. The timer thread manages all internal
timers. Priority is specified as a whole number between 1 and 10, where 1
is the lowest priority and 10 is the highest. This value should be left at the
default.

• total_entity_slots

The total number of Collection table entries to allow. When this number is
reached, additional ACMSMGR ADD COLLECTION requests are rejected.
Slots are allocated when the ACMS run-time system is started.

• trace_msg_wait_time

The number of seconds the Remote Manager should wait for updates to the
mss_coll_interval and wksp_coll_interval parameters to become effective
(processed by the ACC). Updates to the ACC are sent by means of the trace
monitor. The Remote Manager will poll the value being changed for up to
trace_msg_wait_time seconds to see whether the value was in fact changed.
If it is not changed within this timeframe, the Remote Manager logs an error
and returns an error to the caller.

• trace_start_wait_time

The number of seconds the Remote Manager should wait for the trace monitor
to be started. The Remote Manager communicates to ACMS process through
the trace monitor. The Remote Manager attempts to start the trace monitor
if the Remote Manager needs to send a message and the trace monitor is not
already running. This value controls how long the Remote Manager will wait
for the trace monitor to start before aborting the message send. Messages
that are not sent are discarded (lost).

• trap_priority

Relative priority of the trap sender thread. The trap sender thread dispatches
trap messages to SNMP and RPC receivers. Priority is specified as a whole
number between 1 and 10, where 1 is the lowest priority and 10 is the
highest. This value should be left at the default.

• udp_enabled

Controls how the Remote Manager client and desktop server work together. If
this field is set to 0, a UDP listener is not registered for the Remote Manager.
If both the tcp_enabled and udp_enabled fields are set to 0, the entire RPC
thread is shut down.

• vms_coll_interval

Controls the frequency (in seconds) at which OpenVMS process quota and
system parameter values are collected. A lower value causes these values to
be collected more often; a higher value causes these values to be collected less
often. OpenVMS process quota values are collected by all ACMS processes;
system parameter values are collected only by ACC.

• wksp_coll_interval

Controls the frequency (in seconds) at which workspace (WS, WSC, TWS,
TWSC) pool values are collected. A lower value causes workspace values to
be collected more often; a higher value causes workspace pool values to be
collected less often. Workspace pool values are collected only by ACC and
EXC.

• max_agents

9–48 Remote Manager Reference Tables

Remote Manager Reference Tables
9.10 Parameter Table

Controls the value for the number of agents to be monitored. The default
value is 2, and the minimum value is 1. This value sets the size of the table
used to monitor agents. If the value is set too low, newly created agents will
not be monitored.

9.11 QTI Table
The QTI table contains a single entry for QTI management information.

Table 9–10 QTI Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID process_name string R R

ID pid integer R R

ID start_time time R R

ID end_time time R R

CONFIG config_coll_state integer R R

CONFIG acms_state integer RW R D

CONFIG qti_username_active string R R

CONFIG qti_username_stored string RW RW

CONFIG qti_priority_active integer R R

CONFIG qti_priority_stored integer RW RW

CONFIG sub_timeout_active integer RW RW D

CONFIG sub_timeout_stored integer RW RW

CONFIG retry_timer_active integer RW RW D

CONFIG retry_timer_stored integer RW RW

CONFIG polling_timer_active integer RW RW D

CONFIG polling_timer_stored integer RW RW

CONFIG astlm_active‡ integer R R

CONFIG astlm_stored‡ integer RW RW

CONFIG biolm_active‡ integer R R

CONFIG biolm_stored‡ integer RW RW

CONFIG bytlm_active‡ integer R R

CONFIG bytlm_stored‡ integer RW RW

CONFIG diolm_active‡ integer R R

CONFIG diolm_stored‡ integer RW RW

CONFIG enqlm_active‡ integer R R

CONFIG enqlm_stored‡ integer RW RW

CONFIG fillm_active‡ integer R R

CONFIG fillm_stored‡ integer RW RW

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–49

Remote Manager Reference Tables
9.11 QTI Table

Table 9–10 (Cont.) QTI Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

CONFIG pgflquota_active‡ integer R R

CONFIG pgflquota_stored‡ integer RW RW

CONFIG tqelm_active‡ integer R R

CONFIG tqelm_stored‡ integer RW RW

CONFIG wsdefault_active‡ integer R R

CONFIG wsdefault_stored‡ integer RW RW

CONFIG wsextent_active‡ integer R R

CONFIG wsextent_stored‡ integer RW RW

CONFIG wsquota_active‡ integer R R

CONFIG wsquota_stored‡ integer RW RW

RUNTIME runtime_coll_state integer R R

RUNTIME max_threads integer R R

RUNTIME started_queues gauge R R

RUNTIME current_tasks gauge R R

RUNTIME current_submitters gauge R R

RUNTIME task_successes integer R R

RUNTIME task_failures integer R R

RUNTIME task_retries integer R R

RUNTIME errors_queued integer R R

RUNTIME astlm_current‡ gauge R R

RUNTIME biolm_current‡ gauge R R

RUNTIME bytlm_current‡ gauge R R

RUNTIME diolm_current‡ gauge R R

RUNTIME enqlm_current‡ gauge R R

RUNTIME fillm_current‡ gauge R R

RUNTIME pgflquota_current‡ gauge R R

RUNTIME tqelm_current‡ gauge R R

RUNTIME wssize_current‡ gauge R R

RUNTIME channelcnt_current‡ gauge R R

POOL pool_coll_state integer R R

POOL mss_process_total integer R R

POOL mss_process_free min gauge R R

POOL mss_process_largest min gauge R R

POOL mss_process_failures integer R R

POOL mss_process_garbage integer R R

ERROR err_coll_state‡ integer R R

ERROR err_count‡ integer R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–50 Remote Manager Reference Tables

Remote Manager Reference Tables
9.11 QTI Table

Table 9–10 (Cont.) QTI Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ERROR last_err_msg‡ string R R

ERROR time_of_last_error‡ time R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.11.1 Field Descriptions
Following are descriptions of the fields in Table 9–10.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field
will be null.

• config_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• qti_username_active

The OpenVMS account under which the QTI will run. This is the value of the
ACMSGEN field when the process was started.

• qti_username_stored

The value of the qti_username field currently stored in the ACMSGEN file.

• qti_priority_active

The base priority for this process. This is the value of the ACMSGEN field
when the process was started.

Remote Manager Reference Tables 9–51

Remote Manager Reference Tables
9.11 QTI Table

• qti_priority_stored

The base priority currently stored in the ACMSGEN file for this process.

• sub_timeout_active

The current value of the QTI submitter timeout.

• sub_timeout_stored

The value of the qti_sub_timeout field in the current ACMSGEN file.

• retry_timer_active

The current value of the QTI retry timer.

• retry_timer_stored

The value of the qti_retry_timer field in the current ACMSGEN file.

• polling_timer_active

The current value of the QTI polling timer.

• polling_timer_stored

The value of the qti_polling_timer field in the current ACMSGEN file.

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_
active, pgflquota_active, tqelm_active, wsdefault_active, wsextent_active,
wsquota_active

The default value of the related OpenVMS process quota. This is the value of
the quota when the QTI process was started.

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_
stored, pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored,
wsquota_stored

The value of the related process quota currently stored in the OpenVMS
system user authorization file (SYSUAF.DAT).

• acms_state

The current ACMS state of this process.

• runtime_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• max_threads

The maximum number of threads allowed.

• started_queues

The number of queues currently started on the node.

• current_tasks

The number of tasks currently executed that were submitted by the QTI.

• current_submitters

The number of submitters currently logged in by the QTI.

9–52 Remote Manager Reference Tables

Remote Manager Reference Tables
9.11 QTI Table

• task_successes

The number of tasks successfully submitted and executed by the QTI.

• task_failures

The number of tasks that failed to complete successfully after being submitted
by the QTI.

• task_retries

The number of times the QTI has attempted to re-run a task that is currently
failed.

• errors_queued

The number of tasks queued to error queues by the QTI.

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current,
fillm_current, pgflquota_current, tqelm_current, wssize_current, channelcnt_
current

The actual amount of the related OpenVMS process or system resource that
is being consumed by the QTI process. The frequency with which these
fields are updated is based on the value of the vms_coll_interval field in the
Parameter table (see Table 9–9).

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_free

The amount of MSS process pool for this process that is currently unused.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_largest

The largest unused block available in the MSS process pool for this process.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for
this process. The frequency with which this field is updated is based on the
value of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_garbage

The number of garbage collections for this process that have been run to
reclaim space in the MSS process pool. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval
(see Table 9–9).

Remote Manager Reference Tables 9–53

Remote Manager Reference Tables
9.11 QTI Table

• err_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

Errors for this process are only sent to the Remote Manager if this field is set
to ENABLED. If this field is set to DISABLED, the process will not collect
data for the fields in this class; existing field values reflect activity during a
prior period when collection was enabled.

• err_count

The total number of errors related to this process that were sent to the
Remote Manager.

• last_err_msg

The text of the most recent error message related to this process that was
sent to the Remote Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that
was sent to the Remote Manager.

9.12 Server Table
The Server table contains a separate row for each server type (not server
instance) in the application. Totals are for all instances of the server type.

Table 9–11 Server Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID appl_name string R R

ID server_name string R R

CONFIG config_coll_state integer R R

CONFIG creation_delay_active integer RW RW D

CONFIG creation_interval_active integer RW RW D

CONFIG deletion_delay_active integer RW RW D

CONFIG deletion_interval_active integer RW RW D

CONFIG server_process_dump_flag_active integer RW RW D

CONFIG server_replace_flag integer RW RW D

CONFIG minimum_instances_active integer RW RW D

CONFIG maximum_instances_active integer RW RW D

RUNTIME runtime_coll_state integer R R

RUNTIME current_servers gauge R R

RUNTIME current_waiting tasks gauge R R

(continued on next page)

9–54 Remote Manager Reference Tables

Remote Manager Reference Tables
9.12 Server Table

Table 9–11 (Cont.) Server Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

RUNTIME server_start_count integer R R

RUNTIME server_failures integer R R

Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.12.1 Field Descriptions
Following are descriptions of the fields in Table 9–11.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• appl_name

Name of the application to which this server type belongs.

• server_name

Name of this server type.

• config_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• creation_delay_active

The current creation delay for this server type.

• creation_interval_active

The current creation interval for this server type.

• deletion_delay_active

The current deletion delay for this server type.

• deletion_interval_active

The current deletion interval for this server type.

• server_process_dump_flag_active

The current server process dump flag for this server type.

• server_replace_flag

This field provides the ability for SNMP users to replace a server type by
setting this value to 1. This field is available only to the SNMP interface.

Remote Manager Reference Tables 9–55

Remote Manager Reference Tables
9.12 Server Table

• minimum_instances_active

The current minimum number of started instances for this server type.

• maximum_instances_active

The current maximum number of started instances for this server type.

• runtime_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• current_servers

The current number of started servers of this type in the application.

• current_waiting_tasks

The current number of tasks waiting to execute processing steps that call
servers of this type in this application.

• server_start_count

The number of times a server instance has been created for servers of this
type in this application.

9.13 Task Group Table
The Task Group table contains a row for each task group in the application.

Table 9–12 Task Group Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID appl_name string R R

ID task_group_name string R R

ID build_time time R R

POOL pool_coll_state integer R R

POOL tws_poolsize‡ integer R R

POOL tws_pool_used‡ gauge R R

POOL tws_pool_total integer R R

POOL tws_pool_free min gauge R R

POOL tws_pool_largest min gauge R R

POOL tws_pool_failures integer R R

POOL tws_pool_garbage integer R R

POOL twsc_poolsize‡ integer R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–56 Remote Manager Reference Tables

Remote Manager Reference Tables
9.13 Task Group Table

Table 9–12 (Cont.) Task Group Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

POOL twsc_pool_used‡ gauge R R

POOL twsc_pool_total integer R R

POOL twsc_pool_free min gauge R R

POOL twsc_pool_largest min gauge R R

POOL twsc_pool_failures integer R R

POOL twsc_pool_garbage integer R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic

9.13.1 Field Descriptions
Following are descriptions of the fields in Table 9–12.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• appl_name

Name of the application to which this server type belongs.

• task_group_name

Name of this task group.

• build_time

The date and time the task group database (TDB) was built.

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• tws_poolsize, twsc_poolsize

The size of the task workspace (TWS) or task workspace control (TWSC) pool.
This is the value of the ACMSGEN field when this task group was started.

Remote Manager Reference Tables 9–57

Remote Manager Reference Tables
9.13 Task Group Table

• tws_pool_used, twsc_pool_used

The amount of TWS or TWSC pool used by this task group. The frequency
with which these fields are updated is based on the value of the Parameter
table field wksp_coll_interval (see Table 9–9).

• tws_pool_total, twsc_pool_total

The total size of the TWS or TWSC pool allocated for this task group. The
frequency with which these fields are updated is based on the value of the
Parameter table field wksp_coll_interval (see Table 9–9).

• tws_pool_free, twsc_pool_free

The amount of unused TWS or TWSC pool this task group. The frequency
with which these fields are updated is based on the value of the Parameter
table field wksp_coll_interval (see Table 9–9).

• tws_pool_largest, twsc_pool_largest

The largest unused block available in the TWS or TWSC pool for this task
group. The frequency with which these fields are updated is based on the
value of the Parameter table field wksp_coll_interval (see Table 9–9).

• tws_pool_failures, twsc_pool_failures

The number of failed attempts to allocate space in the TWS or TWSC pool for
this task group, The frequency with which these fields are updated is based
on the value of the Parameter table field wksp_coll_interval (see Table 9–9).

• tws_pool_garbage, twsc_pool_garbage

The number of garbage collections that have been run to reclaim space in
the TWS or TWSC pool for this task group. The frequency with which these
fields are updated is based on the value of the Parameter table field wksp_
coll_interval (see Table 9–9).

9.14 Trap Table
The Trap table is used to control which events trigger the Remote Manager to
generate an SNMP trap. The ACMS Remote Manager populates this table from
the configuration file at system startup. Thereafter, users make modifications to
this table through either the SNMP interface or the ACMSMGR interface.

The primary key to this table is the combination of entity, name, and parameter.
Duplicate rows are not allowed.

Table 9–13 Trap Table

Field Data Type
SNMP
Access

RPC
Access

Configuration
Access Dynamic

entity integer R RW RW D

name string R RW RW D

parameter integer R RW RW D

min_value integer RW RW RW D

max_value integer RW RW RW D

(continued on next page)

9–58 Remote Manager Reference Tables

Remote Manager Reference Tables
9.14 Trap Table

Table 9–13 (Cont.) Trap Table

Field Data Type
SNMP
Access

RPC
Access

Configuration
Access Dynamic

severity integer RW RW RW D

alarms_sent integer R R

alarm_last_sent integer R R

trap_delete integer RW D

Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic

9.14.1 Field Descriptions
Following are descriptions of the fields in Table 9–13.

• entity

Name or type of the entity. Valid values are ACC, CP, EXC, MGR, QTI, and
TSC. Symbolic values for the RPC interface are defined in Section 8.1.4. This
value for entity cannot be changed from the SNMP interface.

• name

A name for the entity that helps to uniquely identify an instance of the entity
type. This value cannot be changed from the SNMP interface. Possible entity
names are:

ACC, CP, QTI, TSC (process name)

EXC (application name)

GROUP (task group name)

MGR: Must be *

SERVER (server name): One of the following wildcard values:

+ asterisk (*) (matches all characters)

+ exclamation point (!) (negation)

• parameter

Parameter specifies the value or condition to be monitored for potential
alarms. This value cannot be changed from the SNMP interface.

Not all parameters are valid for all entity types (see Table 9–14). Valid values
are:

EVENT_SEVERITY

This parameter causes a test to be performed each time an auditable
event is raised in the Remote Manager. Remote Manager events are
filtered using the fields in the Parameter table (see Section 9.10) and are
stored in the Remote Manager log (see Section 4.7). Events are monitored
for traps even if the event is not currently being logged.

Remote Manager Reference Tables 9–59

Remote Manager Reference Tables
9.14 Trap Table

EXISTS

This parameter causes a test to be performed each time the Remote
Manager detects that a process has started or stopped.

• min_value

The minimum allowable value for the parameter. Valid minimums are
parameter dependent (see Table 9–14). If the field or condition being
monitored is less than the value specified, an alarm is generated. A value of
-1 is used when this field is not to be evaluated.

• max_value

The maximum allowable value for the parameter. Valid maximums are
parameter dependent (see Table 9–14). If the field or condition being
monitored is greater than the value specified, an alarm is generated. A
value of -1 is used when this field is not to be evaluated.

• severity

A severity to be associated with the trap. Severity codes are embedded in the
trap message (see Section 9.14.3) and must be parsed by the trap receiver.
Valid values are:

INFO

WARN

ERROR

FATAL

• alarms_sent

A count of the number of alarms that have been sent.

• alarm_last_sent

The date and time the last alarm was sent.

• trap_delete

This field is available only through the SNMP interface. Set this field to 1
to delete the table row. RPC users call the procedure shown in Section 8.8.
ACMSMGR and ACMSCFG each provide a DELETE TRAP command for this
purpose.

9.14.2 Valid Trap Minimums and Maximums
Table 9–14 lists the values that can be specified as the minimum or maximum for
each parameter type.

9–60 Remote Manager Reference Tables

Remote Manager Reference Tables
9.14 Trap Table

Table 9–14 Trap Minimums and Maximums

Parameter Value Meaning Valid for These Entities

EVENT_SEVERITY 11 Informational MGR

21 Warning MGR

41 Error MGR

81 Fatal MGR

–12 Ignore this field. MGR

EXISTS 03 Stopped ACC, CP, EXC, QTI, TSC

14 Started ACC, CP, EXC, QTI, TSC

–12 Ignore this field. ACC, CP, EXC, QTI, TSC

1When configuring alarms for event severities, remember how the values are evaluated. For example,
specifying the value 8 (FATAL) as a minimum results in an alarm being generated by all lesser
severities. Similarly, specifying the value 1 (INFO) as a maximum results in an alarm being generated
by all greater severities.
2The value of -1 causes the field to be ignored. When configuring traps, it is not always desirable to
specify both minimum and maximum values. The value -1 can be used as a null placeholder when
either value is to be ignored.
3When specified as a maximum, this value causes an alarm to be generated whenever the associated
entity type and name is started. This value can be used, for example, to signal when the QTI has
been started on a node on which it should not run.
4When specified as a minimum, this value causes an alarm to be generated whenever the associated
entity type and name is stopped. This value can be used, for example, to signal when a particular
application has been stopped.

9.14.3 SNMP Trap Format
The following is the format of an SNMP trap message. Note that the message is
generated as an ASCII string. Fields within the string are separated by a colon.

time: severity: entity_type: entity_name: parameter: value

In this format:

• time is a 23-character ASCII time in the format DD-MMM-YYYY
HH:MM:SS.hh.

• severity is a single ASCII character that specifies the severity as determined
from the severity field in the table that raised the alarm. Severities are:

I (informational)

W (warning)

E (error)

F (fatal)

• entity_type is one of the valid entity types (ACC, TSC, QTI, EXC, CP, MGR)
and represents the entity that caused the alarm to be raised.

• entity_name is the process name of the entity that raised the alarm.

• parameter is the parameter that caused the alarm to be raised.

• value is the value that caused the alarm to be raised.

Remote Manager Reference Tables 9–61

Remote Manager Reference Tables
9.15 TSC Table

9.15 TSC Table
The TSC table contains a single entry for TSC management information.

Table 9–15 TSC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ID record_state integer R R

ID id_coll_state integer R R

ID process_name string R R

ID pid integer R R

ID start_time time R R

ID end_time time R R

CONFIG config_coll_state integer R R

CONFIG tsc_priority_active integer R R

CONFIG acms_state integer RW R D

CONFIG tsc_priority_stored integer RW RW

CONFIG tsc_username_active string R R

CONFIG tsc_username_stored integer RW RW

CONFIG cp_priority_active integer R R

CONFIG cp_priority_stored integer RW RW

CONFIG cp_slots_active integer R R

CONFIG cp_slots_stored integer RW RW

CONFIG max_logins_active integer RW RW D

CONFIG max_logins_stored integer RW RW

CONFIG max_tts_cp_active integer RW RW D

CONFIG max_tts_cp_stored integer RW RW

CONFIG perm_cps_active integer RW RW D

CONFIG perm_cps_stored integer RW RW

CONFIG min_cpis_active integer RW RW D

CONFIG min_cpis_stored integer RW RW

CONFIG cp_username_active integer R R

CONFIG cp_username_stored integer RW RW

CONFIG astlm_active‡ integer R R

CONFIG astlm_stored‡ integer RW RW

CONFIG biolm_active‡ integer R R

CONFIG biolm_stored‡ integer RW RW

CONFIG bytlm_active‡ integer R R

CONFIG bytlm_stored‡ integer RW RW

CONFIG diolm_active‡ integer R R

CONFIG diolm_stored‡ integer RW RW

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

9–62 Remote Manager Reference Tables

Remote Manager Reference Tables
9.15 TSC Table

Table 9–15 (Cont.) TSC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

CONFIG enqlm_active‡ integer R R

CONFIG enqlm_stored‡ integer RW RW

CONFIG fillm_active‡ integer R R

CONFIG fillm_stored‡ integer RW RW

CONFIG pgflquota_active‡ integer R R

CONFIG pgflquota_stored‡ integer RW RW

CONFIG tqelm_active‡ integer R R

CONFIG tqelm_stored‡ integer RW RW

CONFIG wsdefault_active‡ integer R R

CONFIG wsdefault_stored‡ integer RW RW

CONFIG wsextent_active‡ integer R R

CONFIG wsextent_stored‡ integer RW RW

CONFIG wsquota_active‡ integer R R

CONFIG wsquota_stored‡ integer RW RW

RUNTIME runtime_coll_state integer R R

RUNTIME current_users gauge R R

RUNTIME cp_slots_used‡ gauge R R

RUNTIME terminals_per_cp_avg‡ gauge R R

RUNTIME astlm_current‡ gauge R R

RUNTIME biolm_current‡ gauge R R

RUNTIME bytlm_current‡ gauge R R

RUNTIME diolm_current‡ gauge R R

RUNTIME enqlm_current‡ gauge R R

RUNTIME fillm_current‡ gauge R R

RUNTIME pgflquota_current‡ gauge R R

RUNTIME tqelm_current‡ gauge R R

RUNTIME wssize_current‡ gauge R R

RUNTIME channelcnt_current‡ gauge R R

POOL pool_coll_state integer R R

POOL mss_process_total integer R R

POOL mss_process_free min gauge R R

POOL mss_process_largest min gauge R R

POOL mss_process_failures integer R R

POOL mss_process_garbage integer R R

ERROR err_coll_state‡ integer R R

ERROR err_count‡ integer R R

ERROR last_err_msg‡ string R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.

(continued on next page)

Remote Manager Reference Tables 9–63

Remote Manager Reference Tables
9.15 TSC Table

Table 9–15 (Cont.) TSC Table

Collection
Class Field Data Type

SNMP
Access

RPC
Access Dynamic

ERROR time_of_last_error‡ time R R

‡Only valid for use with systems running ACMS Version 4.4 or higher.
Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic

9.15.1 Field Descriptions
Following are descriptions of the fields in Table 9–15.

• record_state

The current state of this table entry. Valid states are VALID (the process
is currently running and maintaining this table entry) or INACTIVE (the
process is no longer running). Inactive rows are subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field
will be null.

• config_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

• tsc_priority_active

The base priority for this process. This is the value of the ACMSGEN field
when the process was started.

• tsc_priority_stored

The base priority currently stored in the ACMSGEN file for this process.

• tsc_username_active

The OpenVMS account under which the TSC will run. The tsc_username_
active is the value of the ACMSGEN field when the process was started.

9–64 Remote Manager Reference Tables

Remote Manager Reference Tables
9.15 TSC Table

• tsc_username_stored

The value of the tsc_username field currently stored in the ACMSGEN file.

• cp_priority_active

The base priority for CP processes. This is the value of the ACMSGEN field
when the TSC process was started.

• cp_priority_stored

The base priority currently stored in the ACMSGEN file for CP processes.

• cp_slots_active

The current number of CP slots. This is the value of the ACMSGEN field
when the TSC process was started. This field also represents the maximum
number of entries in the CP table.

• cp_slots_stored

The value of the cp_slots field in the current ACMSGEN file.

• max_logins_active

The current maximum number of logins allowed.

• max_logins_stored

The value of the max_logins field in the current ACMSGEN file.

• max_tts_cp_active

The current maximum number of terminals that a CP will support.

• max_tts_cp_stored

The value of the max_tts_cp field in the current ACMSGEN file.

• perm_cps_active

The number of permanent CPs that will be maintained on the system.

• perm_cps_stored

The value of the perm_cps field in the current ACMSGEN file.

• min_cpis_active

The number of CP slots that will be left open on a given CP.

• min_cpis_stored

The value of the min_cpis field in the current ACMSGEN file.

• cp_username_active

The current user name under which CP processes will run.

• cp_username_stored

The value of the cp_username field in the current ACMSGEN file.

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_
active, pgflquota_active, tqelm_active, wsdefault_active, wsextent_active,
wsquota_active

The default value of the related OpenVMS process quota. This is the value of
the quota when the TSC process was started.

Remote Manager Reference Tables 9–65

Remote Manager Reference Tables
9.15 TSC Table

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_
stored, pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored,
wsquota_stored

The value of the related process quota currently stored in the OpenVMS
system user authorization file (SYSUAF.DAT).

• acms_state

Current ACMS state of the process.

• runtime_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• current_users

The current number of users in all CPs started by this TSC.

• cp_slots_used

The number of CP processes running on the current node.

• terminals_per_cp_avg

The average number of user terminals per CP process on the current node.

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current,
fillm_current, pgflquota_current, tqelm_current, wssize_current, channelcnt_
current

The actual amount of the related OpenVMS process or system resource that
is being consumed by the TSC process. The frequency with which these
fields are updated is based on the value of the vms_coll_interval field in the
Parameter table (see Table 9–9).

• pool_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

If this field is set to DISABLED, the process is not currently collecting data
for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The
frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9–9).

9–66 Remote Manager Reference Tables

Remote Manager Reference Tables
9.15 TSC Table

• mss_process_largest

The largest unused block available in the MSS process pool for this process.
The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for
this process. The frequency with which this field is updated is based on the
value of the Parameter table field mss_coll_interval (see Table 9–9).

• mss_process_garbage

The number of garbage collections that have been run to reclaim space in
the MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval
(see Table 9–9).

• err_coll_state

The current collection state for this class and this process. Collection states
can be modified by modifying entries in the Collection table. See Section 5.1
and Section 9.4 for discussions of data collection.

Errors for this process are only sent to the Remote Manager if this field is set
to ENABLED. If this field is set to DISABLED, the process will not collect
data for the fields in this class; existing field values reflect activity during a
prior period when collection was enabled.

• err_count

The total number of errors related to this process that were sent to the
Remote Manager.

• last_err_msg

The text of the most recent error message related to this process that was
sent to the Remote Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that
was sent to the Remote Manager.

9.16 Users Table
The Users table contains information about users who have logged in to Remote
Manager, either explicitly (using a user name and password) or implicitly (using
a proxy account). This table is maintained internally by the Remote Manager and
is read only to all external entities. Values in the table can be accessed through
one of the supported interfaces. External users cannot make changes to this
table. In general, the values in this table are informational only.

Remote Manager Reference Tables 9–67

Remote Manager Reference Tables
9.16 Users Table

Table 9–16 Users Table

Field Name Data Type SNMP Access RPC Access Dynamic

client_id integer R R

gid short integer R R

uid short integer R R

proxy_gid short integer R R

proxy_uid short integer R R

nodename string R R

expires string R R

uname string R R

rights integer array R R

proxy_flag integer R R

Key to Access Modes

R—Read Access
RW—Read/Write Access
Blank—Not available to the interface
D—Field is dynamic.

9.16.1 Field Descriptions
Following are descriptions of the fields in Table 9–16.

• client_id

Unique number that identifies this client.

• gid

Group portion of the user’s UIC on the client node.

• uid

User portion of the user’s UIC on the client node,

• proxy_gid

Group portion of the UIC from the proxy account on the server node.

• proxy_uid

User portion of the UIC from the proxy account on the server node.

• nodename

Name of client node. This is the only node from which the client ID is valid.

• expires

Date and time the user log in expires. Full OpenVMS ASCII date (DD-MMM-
YYYY HH:MM:SS.hh).

• uname

Account name of the account being used for authorization. This can be the
account name for the proxy.

9–68 Remote Manager Reference Tables

Remote Manager Reference Tables
9.16 Users Table

• rights

Rights held by the user. This is an array of four elements. The first
element contains the ACMS$MGMT_READ rights identifier; the second
contains the ACMS$MGMT_WRITE rights identifier; the third contains the
ACMS$MGMT_OPER identifier; the fourth contains the ACMS$MGMT_
SYSUPD identifier. A value of 0 indicates the user does not hold the right.

• proxy_flag

A flag indicating whether the user has explicitly logged in (value of 0) or
implicitly logged in by means of proxy (value of 1).

Remote Manager Reference Tables 9–69

10
ACMSCFG Commands

This chapter provides reference information about the commands of the
ACMSCFG utility.

Note

Certain ACMSCFG commands and qualifiers are designed to configure
values for and return values from systems running ACMS Version 4.4
or higher. These commands and qualifiers are denoted with the double
dagger (‡) symbol in the individual command description sections.

10.1 ACMSCFG Overview
The ACMSCFG utility is provided for performing operations on the ACMS
Remote Manager configuration file. Similar to the ACMSMGR utility (described
in Chapter 11), the ACMSCFG utility performs only a subset of the operations
that the ACMSMGR utility performs.

The ACMSCFG utility performs operations on the Remote Manager configuration
file only, and only on configuration files that are directly accessible to the process
running the utility.

Section 4.2 discusses the purpose and use of the configuration file, as well as file
defaults.

10.1.1 Command Format
The format for ACMSCFG commands is as follows:

ACMSCFG verb object qualifiers

The following verbs are supported:

• ADD

• DELETE

• HELP

• SET

• SHOW

Each verb has associated objects. The following sections list the objects and any
qualifiers for each ACMSCFG command.

ACMSCFG Commands 10–1

ACMSCFG Commands
10.1 ACMSCFG Overview

10.1.2 Command Objects and Qualifiers
The objects and qualifiers for the ACMSCFG commands are summarized in
Table 10–1.

Table 10–1 ACMSCFG Command Objects and Qualifiers

Objects Qualifiers

ADD Command

COLLECTION /CLASS, /COLL_STATE, /ENTITY, /NAME, /STORAGE_END_TIME,
/STORAGE_INTERVAL, /STORAGE_LOCATION, /STORAGE_
BEGIN_TIME, /STORAGE_STATE

TRAP /ENTITY, /NAME, /PARAMETER, /SEVERITY, /TRAP_MIN, /TRAP_
MAX

DELETE Command

COLLECTION /CLASS, /ENTITY, /NAME

TRAP /ENTITY, /NAME, /PARAMETER

HELP Command

None None

SET Command

COLLECTION /CLASS, /COLL_STATE, /ENTITY, /NAME, /STORAGE_END_TIME,
/STORAGE_INTERVAL, /STORAGE_LOCATION, /STORAGE_
BEGIN_TIME, /STORAGE_STATE

INTERFACE /INTERFACE, /STATE

PARAMETER /DCL_AUDIT_LEVEL, /DCL_MGR_PRIORITY, /DCL_STACKSIZE,
/ERROR_INTERVAL, /EVENT_LOG_PRIORITY, /LOG_STACKSIZE,
/LOGIN_CREDS_LIFETIME, /MAX_LOGINS, /MAX_RPC_RETURN_
RECS, /MGR_AUDIT_LEVEL, /MSG_PROC_AUDIT_LEVEL,
/MSG_PROC_PRIORITY, /MSG_PROC_STACKSIZE, /MSS_
COLL_INTERVAL, /PROC_MON_AUDIT_LEVEL, /PROC_MON_
INTERVAL, /PROC_MON_PRIORITY, /PROC_MON_STACKSIZE,
/PROXY_CREDS_LIFETIME, /RPC_AUDIT_LEVEL, /RPC_
PRIORITY, /RPC_STACKSIZE, /SECURITY_AUDIT_LEVEL, /SNAP_
AUDIT_LEVEL, /SNAP_PRIORITY, /SNAP_STACKSIZE, /SNMP_
AGENT_TIME_OUT, /SNMP_ARE_YOU_THERE, /SNMP_AUDIT_
LEVEL, /SNMP_PRIORITY, /SNMP_SEL_TIME_OUT, /SNMP_
STACKSIZE, /TCP_ENABLED, /TIMER_AUDIT_LEVEL, /TIMER_
INTERVAL, /TIMER_PRIORITY, /TIMER_STACKSIZE, /TOTAL_
ENTITY_SLOTS, /TRACE_MSG_WAIT_TIME, /TRACE_START_
WAIT_TIME, /TRAP_AUDIT_LEVEL, /TRAP_PRIORITY, /TRAP_
STACKSIZE, /UDP_ENABLED, /VMS_COLL_INTERVAL, /WKSP_
COLL_INTERVAL, /MAX_AGENTS

TRAP /ENTITY, /NAME, /PARAMETER, /SEVERITY, /TRAP_MIN, /TRAP_
MAX

(continued on next page)

10–2 ACMSCFG Commands

ACMSCFG Commands
10.1 ACMSCFG Overview

Table 10–1 (Cont.) ACMSCFG Command Objects and Qualifiers

Objects Qualifiers

SHOW Command

COLLECTION /BRIEF, /FULL

CONTROL None

INTERFACE None

PARAMETER None

TRAP None

ACMSCFG Commands 10–3

ACMSCFG ADD COLLECTION Command

10.2 ACMSCFG ADD COLLECTION

Adds records to the collection table in the configuration file.

Format

ACMSCFG ADD COLLECTION [/qualifiers]

Command Qualifier Default

/CLASS=keyword * (all)
/COLL_STATE=keyword DISABLED
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/STORAGE_END_TIME=[NEVER, NEVER; run until DISABLED
/time]‡
/STORAGE_INTERVAL=value‡ 300
/STORAGE_LOCATION=file-name‡ Translation of logical ACMS$MGMT_SNAPSHOT
/STORAGE_BEGIN_TIME=[NOW, NOW; start as soon as ENABLED
/time]‡
/STORAGE_STATE=keyword‡ DISABLED

Privileges Required

None.

Parameters

None.

Qualifiers

/CLASS=[*, ERROR, POOL, RUNTIME]
This qualifier determines the class that will be enabled or disabled. The default
is all (*).

See Section 5.1.1 for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the collection. The default is DISABLED.
When a SHOW entity command is issued, data for those classes that have their
collection state set to ENABLED is displayed. Note that while the collection state
is DISABLED, the data displayed for an entity may not be accurate. Data cannot
be written to the data snapshot file when this qualifier is DISABLED, even when
the storage state is ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]
This required qualifier determines the entity for which collection should be
enabled or disabled.

/NAME=[*,entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

‡ Only for use on systems running ACMS Version 4.4 or higher.

10–4 ACMSCFG Commands

ACMSCFG ADD COLLECTION Command

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process
name. For EXCs, the entity name is the name of the application (for example,
VR_APPL).

Server and task group names can be specified as compound names made up
of application name and server or task group name, separated by a period (for
example, VR_APPL.VR_READ_SERVER). Either part of server or task group
name can be a wildcard (for example, *.VR_READ_SERVER or VR_APPL.*). If
only one part of a server or task group name is specified, it is assumed to be the
application name, and a wildcard is used as the server or task group name. For
example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/STORAGE_END_TIME=[NEVER, time]
This qualifier specifies a time after which the collection data should no longer be
written to the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn.
Partial dates and times (for example, 10-OCT or 09:00) are supported. If this
qualifier is not specified, the default keyword of NEVER is applied, which equates
to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of NEVER,
collection data continues to be written to the snapshot file until the storage state
is set to DISABLED.

/STORAGE_INTERVAL=value
This qualifier controls the frequency (in seconds) at which data snapshots are
performed. The default value is 300 seconds.

The storage interval value should be a multiple of the timer interval parameter
(SET PARAMETER/TIMER_INTERVAL). The timer interval value determines
the minimum elapsed time for many Remote Manager parameters, including the
storage interval setting. The relationship of these values determine how often
data snapshots are performed, for example:

– If the timer interval value is greater, its value is used by default. For
instance, if the timer interval is 10 and the storage interval is 5, snapshots
will be written at 10 second intervals.

– If the storage interval value is greater and is a multiple of the timer interval,
the storage interval value is used. For example, if the timer interval is 10 and
the storage interval is 30, snapshots will be written at 30 second intervals.

– If the storage interval value is greater and is not a multiple of the timer
interval, the next multiple of the timer interval value is used. For example,
if the timer interval is 10 and the storage interval is 15, snapshots will be
written at 20 second intervals.

/STORAGE_LOCATION=file-name
This qualifier specifies an OpenVMS file specification to which collection data is
to be written. The format of file-name is a valid OpenVMS pathname or logical
(such as DISK$1:[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the ACMSCFG utility
checks for the presence of the logical name ACMS$MGMT_SNAPSHOT. If the
logical is defined, the value of the logical is used by default. If a directory is not
provided as part of the specification, the file is written to the default directory of
the account under which the Remote Manager process is running.

ACMSCFG Commands 10–5

ACMSCFG ADD COLLECTION Command

Multiple collections can share a single snapshot file or be stored in separate files.
For continuity, HP recommends that EXC, Server, and Task Group collection
information be written to the same snapshot file.

/STORAGE_BEGIN_TIME=[NOW, time]
This qualifier specifies a time after which the collection data should be written to
the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates
and times (for example, 10-OCT or 09:00) are supported. If this qualifier is not
specified, the default keyword of NOW is applied, which equates to the OpenVMS
zero date of 17-NOV-1858 00:00:00.00. With a value of NOW, collection data is
written to the snapshot file immediately, or as soon as the storage state is set to
ENABLED.

/STORAGE_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the data snapshots. If this qualifier is not
specified, data snapshots are disabled by default. To fully enable data snapshots,
both the storage state and the collection state (/COLL_STATE) must be set to
ENABLED.

Notes

When adding new collection records, the combination of class, entity, and name
must be unique.

It is not possible to add records for the ID and CONFIG class. By default, all
ACMS processes collect ID and CONFIG class data.

ACMS processes read the Collection table during process startup to determine
which classes to begin collecting. Once the Remote Manager has been started,
the ACMSMGR SHOW PROCESS command can be used to determine the class
states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following
conditions must be met:

• A qualifying entity must be running (one with an entity type and name
matching fields in the Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end
time.

If all these conditions are met, the Remote Manager opens the snapshot file for
shared write operations. The file remains open until the storage state is set to
DISABLED or until the snapshot period expires.

When multiple collection records apply to a given process, the records are
assigned weights according to a precedence of name, then entity, and then class.
Within a column, wildcard entries are weighted less than nonwildcard entries.
The row with the highest weight that applies to a process is used. The command
ACMSMGR SHOW COLLECTIONS displays weights for each row in the table.
See Section 5.1.1 for a discussion of the Collection table and how weights are
assigned.

In contrast to typical collections, weighting for data snapshot threads does not
apply. Therefore, it is possible for redundant collection data to be written to one
or more snapshot files. If multiple collection records compile overlapping data,
and each has their storage state set to ENABLED, each record writes data to the
designated snapshot file.

10–6 ACMSCFG Commands

ACMSCFG ADD COLLECTION Command

See Section 11.2 for a discussion about adding collection records at run time.

Examples

1. $ ACMSCFG ADD COLLECTION/ENTITY=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command creates an entry in the Collection table in the configuration
file. Both the collection state and storage state for this collection are disabled
by default; run-time data for EXC is not collected or written to a snapshot
file.

ACMSCFG Commands 10–7

ACMSCFG ADD TRAP Command

10.3 ACMSCFG ADD TRAP

Adds records to the trap table in the configuration file.

Format

ACMSCFG ADD TRAP [/qualifiers]

Command Qualifier Default

/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] E
/TRAP_MIN=value -1
/TRAP_MAX=value -1

Privileges Required

None.

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]
This required qualifier determines the entities for which a trap should be set.

/NAME=[*,entity-name]
This qualifier specifies particular instances of an entity. In general, the entity
name is the process name. The exceptions are the EXC entity and the MGR
entity.

For the EXC entity, use the assigned application name.

For the MGR entity, you must specify all (*).

Wildcards (*) are allowed in names. The default qualifier is the asterisk (*)
wildcard.

/PARAMETER=[EVENT_SEVERITY, EXISTS]
The field that should be monitored. Valid values are:

• EVENT_SEVERITY

This parameter is used for monitoring internal Remote Manager events.
The Remote Manager logs internal events in the Remote Manager log. (See
Section 4.7 and Section 11.35 for discussions of the Remote Manager log.)
Traps can be generated based on the severity levels of these events.

• EXISTS

This parameter is used for monitoring process existence. Traps are generated
if the associated entity type and name either start or stop.

10–8 ACMSCFG Commands

ACMSCFG ADD TRAP Command

/SEVERITY=[I, W, E, F]
A severity to be associated with the trap. Severity codes are embedded in the trap
message and must be parsed by the trap receiver. Severities can be informational
(I), warning (W), error (E), and fatal (F).

/TRAP_MIN=value
This qualifier specifies the minimum allowable value for the parameter being
monitored. A trap is generated if the parameter value is less than the minimum
value. See Table 9–13 for a list of valid /TRAP_MIN values.

/TRAP_MAX=value
This qualifier specifies the maximum allowable value for the parameter being
monitored. A trap is generated if the parameter value is greater than the
maximum value. See Table 9–13 for a list of valid /TRAP_MAX values.

Notes

When adding new trap records, the combination of entity, name, and parameter
must be unique.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and
maximums. See Section 9.14.3 for a description of the trap message generated.

Examples

1. $ ACMSCFG ADD TRAP /ENTITY=ACC/PARAMETER=EXISTS/TRAP_MIN=1

This command causes an SNMP trap to be generated whenever the ACC
process stops if the SNMP interface is running.

ACMSCFG Commands 10–9

ACMSCFG DELETE COLLECTION Command

10.4 ACMSCFG DELETE COLLECTION

Deletes records from the collection table in the configuration file.

Format

ACMSCFG DELETE COLLECTION [/qualifiers]

Command Qualifier Default

/CLASS=keyword * (all)
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)

Privileges Required

None.

Parameters

None.

Qualifiers

/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]
This qualifier determines the class that will be enabled or disabled.

See Section 5.1.1 for a description of each class type.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]
This required qualifier determines the entities for which collection should be
enabled or disabled.

/NAME=[*,entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process
name. For EXCs, the entity name is the name of the application (for example,
VR_APPL).

Server and task group names can be specified as compound names made up
of application name and server or task group name, separated by a period (for
example, VR_APPL.VR_READ_SERVER). Either part of server or task group
names can be a wildcard (for example, *.VR_READ_SERVER or VR_APPL.*). If
only one part of a server or task group name is specified, it is assumed to be the
application name, and a wildcard is used as the server or task group name. For
example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

10–10 ACMSCFG Commands

ACMSCFG DELETE COLLECTION Command

Notes

When deleting collection records, the combination of class, entity, and name must
exactly match the row to be deleted. Deleting a collection record automatically
terminates all related snapshot threads.

It is not possible to delete records for the ID and CONFIG class. By default, all
ACMS processes collect ID and CONFIG class data.

When multiple collection records apply to a given process, the records are
assigned weights according to a precedence of name, then entity, then class.
Within a column, wildcard entries are weighted less than nonwildcard entries.
The row with the highest weight that applies to a process is used. The
ACMSMGR SHOW COLLECTIONS command displays weights for each row
in the table. See also Section 5.1.1 for a discussion of the Collection table and
how weights are assigned.

See Section 11.5 for a discussion about deleting collection records at run time.

Examples

1. $ ACMSCFG DELETE COLLECTION/ENTITY=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command deletes the entry in the Collection table for run-time collection
by the VR_APPL application.

ACMSCFG Commands 10–11

ACMSCFG DELETE TRAP Command

10.5 ACMSCFG DELETE TRAP

Deletes a record from the trap table in the configuration file.

Format

ACMSCFG DELETE TRAP [/qualifiers]

Command Qualifier Default

/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/PARAMETER=keyword EXISTS

Privileges Required

None.

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]
This required qualifier determines the entity or entities for which a trap should
be set.

/NAME=[*,entity-name]
This qualifier specifies particular instances of an entity. In general, the entity
name is the process name. The exceptions are the EXC entity and the MGR
entity.

For the EXC entity, use the assigned application names.

For the MGR entity, you must specify all (*).

Wildcards (*) are allowed in names. The default qualifier is the asterisk (*)
wildcard.

/PARAMETER=[EVENT_SEVERITY,EXISTS]
The field that should be monitored. Valid values are:

• EVENT_SEVERITY

This parameter is used for monitoring internal Remote Manager events.
The Remote Manager logs internal events in the Remote Manager log. (See
Section 4.7 and Section 11.35 for discussions of the Remote Manager log.)
Traps can be generated based on the severity levels of these events.

• EXISTS

This parameter is used for monitoring process existence. Traps are generated
if the associated entity type and name either start or stop.

10–12 ACMSCFG Commands

ACMSCFG DELETE TRAP Command

Notes

When deleting trap records, the combination of entity, name, and parameter must
exactly match a row in the Trap table.

Examples

1. $ ACMSCFG DELETE TRAP/ENTITY=ACC/PARAMETER=EXISTS

This command deletes a trap from the Trap table in the configuration file.

ACMSCFG Commands 10–13

ACMSCFG HELP Command

10.6 ACMSCFG HELP

Displays help information about the ACMS Configuration utility (ACMSCFG) and
its commands.

Format

ACMSCFG HELP

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

Online help is available for each ACMSCFG command. Each help topic
summarizes the valid syntax, abbreviations, parameters, and qualifiers for a
particular command and also indicates all default and required values.

For a comprehensive list of ACMS utilities that offer online help or for further
instructions on how to invoke help, see ACMS Help.

Examples

1. $ ACMSCFG HELP

This command invokes online help for the ACMSCFG utility and displays a list of
available topics.

10–14 ACMSCFG Commands

ACMSCFG SET COLLECTION Command

10.7 ACMSCFG SET COLLECTION

Modifies in the Collection table in the configuration file.

Format

ACMSCFG SET COLLECTION [/qualifiers]

Command Qualifier Default

/CLASS=keyword * (all)
/COLL_STATE=keyword None
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/STORAGE_END_TIME=[NEVER, None
/time]‡
/STORAGE_INTERVAL=value‡ None
/STORAGE_LOCATION=file-name‡ Translation of logical ACMS$MGMT_SNAPSHOT
/STORAGE_BEGIN_TIME=[NOW, None
/time]‡
/STORAGE_STATE=keyword‡ None

Privileges Required

None.

Parameters

None.

Qualifiers

/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]
This qualifier determines the class that will be enabled or disabled. See
Section 5.1.1 for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the collection. When an ACMSMGR SHOW
entity command is issued, data for those classes that have their collection state
set to ENABLED is displayed. Note that while the collection state is DISABLED,
data is not collected. As a result, data cannot be written to the data snapshot file
when this qualifier is DISABLED, even when the storage state is ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]
This required qualifier determines the entities for which collection should be
enabled or disabled.

/NAME=[*,entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process
name. For the EXC entity, the entity name is the name of the application (for
example, VR_APPL).

‡ Only for use on systems running ACMS Version 4.4 or higher.

ACMSCFG Commands 10–15

ACMSCFG SET COLLECTION Command

Server and task group names can be specified as compound names made up
of application name and server or task group name, separated by a period (for
example, VR_APPL.VR_READ_SERVER). Either part of server or task group
names can be a wildcard (for example, *.VR_READ_SERVER or VR_APPL.*). If
only one part of a server or task group name is specified, it is assumed to be the
application name, and a wildcard is used as the server or task group name. For
example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/STORAGE_END_TIME=[NEVER,time]
This qualifier specifies a time after which the collection data should no longer be
written to the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn.
Partial dates and times (for example, 10-OCT or 09:00) are supported. The
keyword NEVER is also supported, which equates to the OpenVMS zero date of
17-NOV-1858 00:00:00.00. With a value of NEVER, collection data continues to
be written to the snapshot file until the storage state is set to DISABLED.

If this qualifier is not specified, the existing value remains unchanged. This value
can be modified dynamically.

/STORAGE_INTERVAL=value
This qualifier controls the frequency (in seconds) at which data snapshots are
performed.

The storage interval value should be a multiple of the timer interval parameter
(SET PARAMETER/TIMER_INTERVAL). The timer interval value determines
the minimum elapsed time for many Remote Manager parameters, including the
storage interval setting. The relationship of these values determine how often
data snapshots are performed, for example:

– If the timer interval value is greater, its value is used by default. For
instance, if the timer interval is 10 and the storage interval is 5, snapshots
will be written at 10 second intervals.

– If the storage interval value is greater and is a multiple of the timer interval,
the storage interval value is used. For example, if the timer interval is 10 and
the storage interval is 30, snapshots will be written at 30 second intervals.

– If the storage interval value is greater and is not a multiple of the timer
interval, the next multiple of the timer interval value is used. For example,
if the timer interval is 10 and the storage interval is 15, snapshots will be
written at 20 second intervals.

/STORAGE_LOCATION=file-name
This qualifier specifies an OpenVMS file specification to which collection data is
to be written. The format of file-name is a valid OpenVMS pathname or logical
(such as DISK$1:[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the current value remains
unchanged. If a directory is not provided as part of the specification, the file is
written to the default directory of the account under which the Remote Manager
process is running.

Multiple collections can share a single snapshot file or be stored in separate files.
For continuity, HP recommends that EXC, Server, and Task Group collection
information be written to the same snapshot file.

This value can be modified dynamically.

10–16 ACMSCFG Commands

ACMSCFG SET COLLECTION Command

/STORAGE_BEGIN_TIME=time
This qualifier specifies a time after which the collection data should be written
to the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial
dates and times (for example, 10-OCT or 09:00) are supported. The keyword
NOW is also supported, which equates to the OpenVMS zero date of 17-NOV-1858
00:00:00.00. With a value of NOW, collection data is written to the snapshot file
immediately, or as soon as the storage state is set to ENABLED.

If this qualifier is not specified, the current value remains unchanged. This value
can be modified dynamically.

/STORAGE_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the data snapshots. To fully enable data
snapshots, both the storage state and the collection state (/COLL_STATE) must
be set to ENABLED. If this qualifier is not specified, the current value remains
unchanged. This value can be modified dynamically.

Notes

When updating collection records, the combination of class, entity, and name
must exactly match a record in the collection table.

By default, processes collect only ID and CONFIG class data during process
initialization. If these classes were disabled during process startup, that
information would not be available until the class was enabled and the process
was restarted.

ACMS processes read the Collection table during process startup to determine
which classes to begin collecting. Once the Remote Manager has been started,
the ACMSMGR SHOW PROCESS command can be used to determine the class
states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following
conditions must be met:

• A qualifying entity must be running (one with an entity type and name
matching fields in the Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end
time.

If all these conditions are met, the Remote Manager opens the snapshot file for
shared write operations. The file remains open until the storage state is set to
DISABLED or until the snapshot period expires.

Changes to snapshot values are processed dynamically. Updated storage interval
and storage state values are applied immediately; updated storage location and
storage end time values are applied during the next snapshot interval.

When multiple collection records apply to a given process, the records are
assigned weights according to a precedence of name, then entity, and then class.
Within a column, wildcard entries are weighted less than nonwildcard entries.
The row with the highest weight that applies to a process is used. The command
ACMSMGR SHOW COLLECTION displays weights for each row in the table.
See Section 5.1.1 for a discussion of the Collection table and how weights are
assigned.

ACMSCFG Commands 10–17

ACMSCFG SET COLLECTION Command

In contrast to typical collections, weighting for data snapshot threads does not
apply. Therefore, it is possible for redundant collection data to be written to one
or more snapshot files. If multiple collection records compile overlapping data,
and each has their storage state set to ENABLED, each record writes data to the
designated snapshot file.

Examples

1. $ ACMSCFG SET COLLECTION/ENTITY=EXC/CLASS=RUNTIME/NAME=VR_APPL/COLL_STATE=DISABLED

This command disables run-time data collection for the VR_APPL application.

10–18 ACMSCFG Commands

ACMSCFG SET INTERFACE Command

10.8 ACMSCFG SET INTERFACE

Allows Remote Manager interfaces to be enabled or disabled in the configuration
file.

Format

ACMSCFG SET INTERFACE [/qualifiers]

Command Qualifier Default

/INTERFACE=interface None
/STATE=keyword DISABLED

Privileges Required

None.

Parameters

None.

Qualifiers

/INTERFACE=interface
This required qualifier determines which interface to modify. Valid values are:

• RPC

• SNMP

/STATE=[DISABLED, ENABLED]
This qualifier determines the operation to perform. If the value supplied is
ENABLED, the interface will be started (if it is not already running). If the value
supplied is DISABLED, the interface will be stopped.

Notes

The ACMSMGR uses the RPC interface. Stopping an interface disables
communication to the Remote Manager through that interface. Stopping the
RPC interface on a given node prevents ACMSMGR from communicating with
the Remote Manager on that node.

Examples

1. $ ACMSCFG SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED

ACMS Remote Management Option -- Command line utility
Call to modify interface on server sparks was executed
%ACMSMGMT-S-SUCCESS, Operation completed

This command stops the SNMP interface on the node specified by the logical
name ACMS$MGMT_SERVER_NODE.

ACMSCFG Commands 10–19

ACMSCFG SET PARAMETER Command

10.9 ACMSCFG SET PARAMETER

Allows Remote Manager parameters to be updated in the configuration file.

Format

ACMSCFG SET PARAMETER [/qualifiers]

Command Qualifier Default

/DCL_AUDIT_LEVEL=value None
/DCL_MGR_PRIORITY=value None
/DCL_STACKSIZE=value None
/ERROR_INTERVAL=value‡ None
/EVENT_LOG_PRIORITY=value None
/LOG_STACKSIZE=value None
/LOGIN_CREDS_LIFETIME=value None
/MAX_LOGINS=value None
/MAX_RPC_RETURN_RECS=value None
/MGR_AUDIT_LEVEL=value None
/MSG_PROC_AUDIT_LEVEL=value None
/MSG_PROC_PRIORITY=value None
/MSG_PROC_STACKSIZE=value None
/MSS_COLL_INTERVAL=value None
/PROC_MON_AUDIT_LEVEL=value None
/PROC_MON_INTERVAL=value None
/PROC_MON_PRIORITY=value None
/PROC_MON_STACKSIZE=value None
/PROXY_CREDS_LIFETIME=value None
/RPC_AUDIT_LEVEL=value None
/RPC_PRIORITY=value None
/RPC_STACKSIZE=value None
/SECURITY_AUDIT_LEVEL=value None
/SNAP_AUDIT_LEVEL=value‡ None
/SNAP_PRIORITY=value‡ None
/SNAP_STACKSIZE=value‡ None
/SNMP_AGENT_TIME_OUT None
/SNMP_ARE_YOU_THERE=value None
/SNMP_AUDIT_LEVEL=value None
/SNMP_PRIORITY=value None
/SNMP_SEL_TIME_OUT=value None
/SNMP_STACKSIZE=value None
/TCP_ENABLED=value‡ None
/TIMER_AUDIT_LEVEL=value None
/TIMER_INTERVAL=value None
/TIMER_PRIORITY=value None
/TIMER_STACKSIZE=value None
/TOTAL_ENTITY_SLOTS=value None
/TRACE_MSG_WAIT_TIME=value None
/TRACE_START_WAIT_TIME=value None
/TRAP_AUDIT_LEVEL=value None
/TRAP_PRIORITY=value None
/TRAP_STACKSIZE=value None
/UDP_ENABLED=value‡ None
/VMS_COLL_INTERVAL=value‡ None
/WKSP_COLL_INTERVAL=value None
/MAX_AGENTS=value None

‡ Only for use on systems running ACMS Version 4.4 or higher.

10–20 ACMSCFG Commands

ACMSCFG SET PARAMETER Command

Privileges Required

None.

Parameters

None.

Qualifiers

/[parameter]=value
All qualifiers correspond directly to fields in the Parameter table. See
Section 9.10.1 for descriptions of each field.

Notes

See Section 9.10 for a description of each parameter.

Example

$ ACMSCFG SET PARAMETER /MGR_AUDIT_LEVEL=E

This command modifies the dynamic parameter field mgr_audit_level.

ACMSCFG Commands 10–21

ACMSCFG SET TRAP Command

10.10 ACMSCFG SET TRAP

Updates records in the Trap table in the configuration file.

Format

ACMSCFG SET TRAP [/qualifiers]

Command Qualifier Default

/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] None
/TRAP_MIN=value None
/TRAP_MAX=value None

Privileges Required

None.

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]
This required qualifier determines the entity or entities for which a trap should
be set.

/NAME=[*,entity-name]
This qualifier specifies particular instances of an entity. Specify the value of the
name field for the record you wish to modify.

/PARAMETER=[EVENT_SEVERITY, EXISTS]
The field that should be monitored. Valid values are:

• EVENT_SEVERITY

This parameter is used for monitoring internal Remote Manager events.
The Remote Manager logs internal events in the Remote Manager log. (See
Section 4.7 and Section 11.35 for discussions of the Remote Manager log.)
Traps can be generated based on the severity levels of these events.

• EXISTS

This parameter is used for monitoring process existence. Traps are generated
if the associated entity type and name either starts or stops.

/SEVERITY=[I,W,E,F]
A severity to be associated with the trap. Severity codes are embedded in the trap
message and must be parsed by the trap receiver. Severities are informational
(I), warning (W), error (E), and fatal (F).

/TRAP_MIN=value
This qualifier specifies the minimum allowable value for the parameter being
monitored. A trap is generated if the parameter value is less than the minimum
value. See Table 9–13 for a list of valid values.

10–22 ACMSCFG Commands

ACMSCFG SET TRAP Command

/TRAP_MAX=value
This qualifier specifies the maximum allowable value for the parameter being
monitored. A trap is generated if the parameter value is greater than the
maximum value. See Table 9–13 for a list of valid values.

Notes

When updating trap records, the combination of entity, name, and parameter
must exactly match a record in the trap table.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and
maximums. See Section 9.14.3 for a description of the trap message generated.

Examples

1. $ ACMSCFG SET TRAP /ENTITY=QTI/PARAMETER=EXISTS/TRAP_MAX=0

This command causes an SNMP trap to be generated whenever the QTI
process is started if the SNMP interface is running.

ACMSCFG Commands 10–23

ACMSCFG SHOW COLLECTION Command

10.11 ACMSCFG SHOW COLLECTION

Displays Collection table data from the configuration file.

Format

ACMSCFG SHOW COLLECTION [/qualifiers]

Command Qualifier Default

/[BRIEF,FULL] /BRIEF

Privileges Required

None.

Parameters

None.

Qualifier

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. The default is /BRIEF.

Note that storage start and end times for data snapshots are only visible when
/FULL is provided. When not specified, the resulting summary display may
contain truncated values for some of the longer fields (such as, entity name and
storage location).

Notes

See Section 9.4 for a discussion of each field displayed. See Section 5.1 for a
discussion of collections.

Examples

1. $ ACMSCFG SHOW COLLECTION

Entity Collect Collect Storage Storage
Type Entity Name Class State Storage location State Interval
------- -------------- -------- -------- ------------------- --------- --------
* * id enabled acms$mgmt_snapshot enabled 3600
* * config enabled acms$mgmt_snapshot disabled 3600
* * runtime enabled acms$mgmt_snapshot disabled 10
* * pool enabled acms$mgmt_snapshot disabled 10
* * error enabled acms$mgmt_snapshot disabled 10

This command shows the current contents of the Collection table as stored in
the configuration file.

10–24 ACMSCFG Commands

ACMSCFG SHOW CONTROL Command

10.12 ACMSCFG SHOW CONTROL

Displays the control record from the configuration file.

Format

ACMSCFG SHOW CONTROL

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

The control record is used by the Remote Manager and cannot be modified or
deleted. The ACMSCFG SHOW CONTROL command displays the following
fields:

• Interface count — Number of interface records in the file.

• Collection count — Number of collection records in the file.

• Timer count — Number of timer records in the file.

• Trap count — Number of trap records in the file.

• Parameter count — Number of parameter records in the file.

• Version — Internal file version identifier.

Examples

1. $ ACMSCFG SHOW CONTROL

Record Counts
Record type Count

------------ -------

Interface 2
Collection 2
Timer 1
Trap 1
Parameter 1
Version 6

This command shows the current contents of the control record in the
configuration file.

ACMSCFG Commands 10–25

ACMSCFG SHOW INTERFACE Command

10.13 ACMSCFG SHOW INTERFACE

Displays the Remote Manager interface from the configuration file.

Format

ACMSCFG SHOW INTERFACE

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

The Remote Manager supports two interfaces: RPC and SNMP. This command
displays the enabled states of each interface.

See Section 9.8 for a discussion of each field displayed.

Examples

1. $ ACMSCFG SHOW INTERFACE

Interface Enable
Type State
--
rpc enabled
snmp enabled

This command shows the current contents of the Interfaces table in the
configuration file. As shown, both interfaces are started when the Remote
Manager is started.

10–26 ACMSCFG Commands

ACMSCFG SHOW PARAMETER Command

10.14 ACMSCFG SHOW PARAMETER

Displays Remote Manager parameter information from the configuration file.

Format

ACMSCFG SHOW PARAMETER

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

See Section 9.10 for a description of each parameter.

Examples

1. $ ACMSCFG SHOW PARAMETER

Management Parameters
Parameter Value Default Min Max (D)ynamic
--
dcl_audit_level E E 0 F (D)
dcl_mgr_priority 5 5 1 10
dcl_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
error_interval 10 10 1 863999999 seconds (D)
event_log_priority 5 5 1 10
log_stacksize 300 300 1 2147483647 K (Vax), 8k (Alpha)
login_creds_lifetime 60 60 1 14399999 minutes (D)
max_logins 20 20 1 2147483647 (D)
max_rpc_return_recs 20 20 1 2147483647
mgr_audit_level E E 0 F (D)
msg_proc_audit_level E E 0 F (D)
msg_proc_priority 5 5 1 10
msg_proc_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
mss_coll_interval 10 10 1 863999999 seconds (D)
proc_mon_audit_level E E 0 F (D)
proc_mon_interval 30 30 1 14399999 seconds (D)
proc_mon_priority 5 5 1 10
proc_mon_stacksize 300 300 1 2147483647 K (Vax), 8k (Alpha)
proxy_creds_lifetime 60 60 1 14399999 minutes (D)
rpc_audit_level E E 0 F (D)
rpc_priority 5 5 1 10
rpc_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
security_audit_level E E 0 F (D)
snap_audit_level E E 0 F (D)
snap_priority 5 5 1 10
snap_stacksize 30 30 1 2147483647 k (Vax), 8k (Alpha)
snmp_agent_time_out 10 10 1 863999999 seconds
snmp_are_you_there 300 300 2 863999999 seconds
snmp_audit_level E E 0 F (D)
snmp_priority 5 5 1 10

ACMSCFG Commands 10–27

ACMSCFG SHOW PARAMETER Command

snmp_sel_time_out 5 5 1 863999999 seconds
snmp_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
tcp_enabled 1 1 0 1 [0,1] 1=enabled
timer_audit_level E E 0 F (D)
timer_interval 30 30 1 863999999 seconds (D)
timer_priority 5 5 1 10
timer_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
total_entity_slots 20 20 1 2147483647
trace_msg_wait_time 5 5 1 14399999 seconds (D)
trace_start_wait_time 5 5 1 14399999 seconds (D)
trap_audit_level E E 0 F (D)
trap_priority 5 5 1 10
trap_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
udp_enabled 1 1 0 1 [0,1] 1=enabled
vms_coll_interval 10 10 0 863999999 seconds (D)
wksp_coll_interval 10 10 1 863999999 seconds (D)
max_agents 2 2 1 2147483647

This command shows the current contents of the Parameter table in the
configuration file.

10–28 ACMSCFG Commands

ACMSCFG SHOW TRAP Command

10.15 ACMSCFG SHOW TRAP

Displays SNMP trap configurations from the configuration file.

Format

ACMSCFG SHOW TRAP

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

SNMP traps are generated only if the SNMP interface is started.

See Section 9.14 for a description of each field displayed.

Examples

1. $ ACMSCFG SHOW TRAP

Entity Entity
Type Name Parameter Min Max Severity
------- ----------------------- ---------------- ------- -------- --------
* * exists 1 -1 i

This command shows the current contents of the Trap table in the
configuration file. As shown, a single trap has been configured to send
an informational trap when any ACMS process is stopped. This is the default
configuration.

ACMSCFG Commands 10–29

11
ACMSMGR Commands

This chapter provides reference information about the commands for the
ACMSMGR utility.

Note

Certain ACMSMGR commands and qualifiers are designed to configure
values for and return values from systems running ACMS Version 4.4
or higher. These commands and qualifiers are denoted with the double
dagger (‡) symbol in the individual command description sections.

11.1 ACMSMGR Overview
The ACMSMGR utility is used to perform operations on running ACMS systems.

You can use the ACMSMGR utility to perform the following functions:

• User authentication (login, logout)

• Display and update ACMS system management data

• Display and update a subset of OpenVMS system management data (such as,
process quotas and system parameters)

• Manage the ACMS Remote Manager

• Configure ACMS data snapshot functions

The ACMSMGR utility uses the ACMS management interface, which is based on
ONC RPC. Commands can be executed remotely from any node in the network,
and many commands can be executed against more than one node.

See Chapter 4 for a description of how to use ACMSMGR to manage the Remote
Manager.

11.1.1 Command Format
The format for ACMSMGR commands is as follows:

ACMSMGR verb object qualifiers

The following verbs are supported:

• ADD

• DELETE

• HELP

• LOGIN

• LOGOUT

ACMSMGR Commands 11–1

ACMSMGR Commands
11.1 ACMSMGR Overview

• REPLACE

• RESET

• SAVE

• SET

• SHOW

• START

• STOP

Each verb has an associated object and set of qualifiers.

11.1.2 Command Objects and Qualifiers
The objects and qualifiers for the ACMSMGR commands are summarized in
Table 11–1.

Table 11–1 ACMSMGR Command Objects and Qualifiers

Objects Qualifiers

ADD Command

COLLECTION /CLASS, /COLL_STATE, /ENTITY, /NAME, /NODE, /STORAGE_
END_TIME, /STORAGE_INTERVAL, /STORAGE_LOCATION,
/STORAGE_BEGIN_TIME, /STORAGE_STATE, /USER

FILTER /CODE, /FILE, /NAME, /NODE, /USER

TRAP /ENTITY, /NAME, /NODE, /PARAMETER, /SEVERITY, /TRAP_MIN,
/TRAP_MAX, /USER

DELETE Command

COLLECTION /CLASS, /ENTITY, /NAME, /NODE, /USER

FILTER /CODE, /NAME, /NODE, /USER

TRAP /ENTITY, /NAME, /NODE, /PARAMETER, /USER

HELP Command

None None

LOGIN Command

None /NODE, /PASSWORD, /USER

LOGOUT Command

None /NODE, /USER

REPLACE Command

SERVER /APPLICATION, /NODE, /SERVER, /USER

(continued on next page)

11–2 ACMSMGR Commands

ACMSMGR Commands
11.1 ACMSMGR Overview

Table 11–1 (Cont.) ACMSMGR Command Objects and Qualifiers

Objects Qualifiers

RESET Command

ERROR /NODE, /USER

LOG /NODE, /USER

SAVE Command

FILTER /FILE, /NODE, /USER

(continued on next page)

ACMSMGR Commands 11–3

ACMSMGR Commands
11.1 ACMSMGR Overview

Table 11–1 (Cont.) ACMSMGR Command Objects and Qualifiers

Objects Qualifiers

SET Command

ACC /ACC_PRIORITY, /ACC_USERNAME, /ACTIVE, /ASTLM, /AUDIT_
STATE, /BIOLM, /BYTLM, /CHANNELCNT, /DIOLM, /ENQLM,
/FILLM, /GBLPAGES, /GBLPAGFIL, /GBLSECTIONS, /LOG, /MAX_
APPL, /MSS_MAXBUF, /MSS_MAXOBJ, /MSS_NET_RETRY_TIMER,
/MSS_POOLSIZE, /MSS_PROCESS_POOL, /NODE, /NODE_NAME,
/PGFLQUOTA, /STORED, /TQELM, /TWS_POOLSIZE, /TWSC_
POOLSIZE, /USER, /USERNAME_DEFAULT, /WS_POOLSIZE,
/WSC_POOLSIZE, /WSDEFAULT, /WSEXTENT, /WSQUOTA

AGENT /PID, /ASTLM, /BIOLM, /BYTLM, /DIOLM, /ENQLM, /FILLM,
/PGFLQUOTA, /TQELM, /WSDEF, /WSEXTENT, /WSQUOTA, /LOG,
/NODE, /USER

COLLECTION /CLASS, /COLL_STATE, /ENTITY, /NAME, /NODE, /STORAGE_
END_TIME, /STORAGE_INTERVAL, /STORAGE_LOCATION,
/STORAGE_BEGIN_TIME, /STORAGE_STATE, /USER

CP /ASTLM, /BIOLM, /BYTLM, /DIOLM, /ENQLM, /FILLM, /LOG
/PGFLQUOTA, /TQELM, /WSEXTENT, /WSDEFAULT, /WSQUOTA

EXC /ACTIVE, /APPLICATION, /ASTLM, /AUDIT_STATE, /BIOLM,
/BYTLM, /DIOLM, /ENQLM, /FILLM, /LOG, /MAX_SERVERS,
/MAX_TASKS, /NODE, /PGFLQUOTA, /SP_MON_INTERVAL,
/STORED, /TQELM, /TRANSACTION_TIMEOUT, /USERNAME,
/WSEXTENT, /WSDEFAULT, /WSQUOTA

INTERFACE /INTERFACE, /NODE, /STATE, /USE

PARAMETER /DCL_AUDIT_LEVEL, /DCL_MGR_PRIORITY, /DCL_STACKSIZE,
/ERROR_INTERVAL /EVENT_LOG_PRIORITY, /LOG_STACKSIZE,
/LOGIN_CREDS_LIFETIME, /MAX_LOGINS, /MAX_RPC_RETURN_
RECS, /MGR_AUDIT_LEVEL, /MSG_PROC_AUDIT_LEVEL,
/MSG_PROC_PRIORITY, /MSG_PROC_STACKSIZE, /MSS_COLL_
INTERVAL, /NODE, /PROC_MON_AUDIT_LEVEL, /PROC_MON_
INTERVAL, /PROC_MON_PRIORITY, /PROC_MON_STACKSIZE,
/PROXY_CREDS_LIFETIME, /RPC_AUDIT_LEVEL, /RPC_
PRIORITY, /RPC_STACKSIZE, /SECURITY_AUDIT_LEVEL, /SNAP_
AUDIT_LEVEL, /SNAP_PRIORITY, /SNAP_STACKSIZE, /SNMP_
AGENT_TIME_OUT, /SNMP_ARE_YOU_THERE, /SNMP_AUDIT_
LEVEL, /SNMP_PRIORITY, /SNMP_SEL_TIME_OUT, /SNMP_
STACKSIZE, /TCP_ENABLED, /TIMER_AUDIT_LEVEL, /TIMER_
INTERVAL, /TIMER_PRIORITY, /TIMER_STACKSIZE, /TOTAL_
ENTITY_SLOTS, /TRACE_MSG_WAIT_TIME, /TRACE_START_
WAIT_TIME, /TRAP_AUDIT_LEVEL, /TRAP_PRIORITY, /TRAP_
STACKSIZE, /UDP_ENABLED, /USER, /VMS_COLL_INTERVAL,
WKSP_COLL_INTERVAL, MAX_AGENTS

QTI /ACTIVE, /ASTLM, /BIOLM, /BYTLM, /DIOLM, /ENQLM, /FILLM,
/LOG, /NODE, /PGFLQUOTA, /POLLING_TIMER, /QTI_PRIORITY,
/QTI_USERNAME, /RETRY_TIMER, /STORED, /SUB_TIMEOUT,
/TQELM, /WSEXTENT, /WSDEFAULT, /WSQUOTA, /USER

SERVER /APPLICATION, /CREATION_DELAY, /CREATION_INTERVAL,
/DELETION_DELAY, /DELETION_INTERVAL, /LOG, /MAX_
INSTANCE, /MIN_INSTANCE, /NODE, /SERVER, /SP_DUMP_
FLAG, /USER

TRAP /ENTITY, /NAME, /NODE, /PARAMETER, /SEVERITY, /TRAP_MIN,
/TRAP_MAX, /USER

(continued on next page)

11–4 ACMSMGR Commands

ACMSMGR Commands
11.1 ACMSMGR Overview

Table 11–1 (Cont.) ACMSMGR Command Objects and Qualifiers

Objects Qualifiers

SET Command

TSC /ACTIVE, /ASTLM, /BIOLM, /BYTLM, /CP_PRIORITY, /CP_
SLOTS, /CP_USERNAME, /DIOLM, /ENQLM, /FILLM, /LOG,
/MAX_LOGINS, /MAX_TTS_CP, /MIN_CPIS, /NODE, /PERM_
CPS, /PGFLQUOTA, /STORED, /TQELM, /TSC_PRIORITY, /TSC_
USERNAME, /USER, /WSEXTENT, /WSDEFAULT, /WSQUOTA

SHOW Command

ACC /ACTIVE, /BRIEF, /CONFIG, /ERROR, /FULL, /ID, /INTERVAL,
/NODE, /OUT, /POOL, /RUNTIME, /STORED, /USER

AGENT /ACTIVE, /ALL, /BRIEF, /[CONFIG,ERROR,ID,POOL,RUNTIME],
/FULL, /INTERVAL, /OUT, /PROCESS_NAME, /STORED, /NODE,
/USER

COLLECTION /BRIEF, /FULL, /INTERVAL, /NODE, /OUT, /USER

CP /ACTIVE, /ALL, /BRIEF, /CONFIG, /ERROR, /FULL, /ID,
/INTERVAL, /NODE, /OUT, /POOL, /PROCESS_NAME, /RUNTIME,
/STORED, /USER

ERROR /BEFORE, /FILENAME, /INTERVAL, /LOCAL, /NODE, /OUT,
/SEVERITY, /SINCE, /USER

EXC /ACTIVE, /ALL, /APPLICATION, /BRIEF, /CONFIG, /ERROR, /FULL,
/ID, /INTERVAL, /NODE, /OUT, /POOL, /RUNTIME, /STORED,
/USER

FILTER /NODE, /USER

GROUP /APPLICATION, /BRIEF, /FULL, /GROUP, /ID, /INTERVAL, /NODE,
/OUT, /POOL, /USER

INTERFACE /INTERVAL, /NODE, /OUT, /USER

LOG /BEFORE, /FACILITY, /FILENAME, /INTERVAL, /LOCAL, /NODE,
/OUT, /SEVERITY, /SINCE, /USER

MANAGER /INTERVAL, /NODE, /OUT, /USER

PARAMETER /INTERVAL, /NODE, /OUT, /USER

PROCESS /ALL, /BRIEF, /FULL, /INTERVAL, /NODE, /OUT, /USER

QTI /ACTIVE, /ALL, /BRIEF, /CONFIG, /ERROR, /FULL, /ID,
/INTERVAL, /NODE, /OUT, /POOL, /RUNTIME, /STORED, /USER

SERVER /APPLICATION, /BRIEF, /CONFIG, /FULL, /ID, /INTERVAL, /NODE,
/OUT, /RUNTIME, /SERVER, /USER

TRAP /INTERVAL, /NODE, /OUT, /USER

TSC /ACTIVE, /ALL, /BRIEF, /CONFIG, /ERROR, /FULL, /ID,
/INTERVAL, /NODE, /OUT, /POOL, /RUNTIME, /STORED, /USER

USER /BRIEF, /FULL, /INTERVAL, /NODE, /OUT, /USER

VERSION None.

(continued on next page)

ACMSMGR Commands 11–5

ACMSMGR Commands
11.1 ACMSMGR Overview

Table 11–1 (Cont.) ACMSMGR Command Objects and Qualifiers

Objects Qualifiers

START Command

EXC /APPLICATION, /NODE, /USER

QTI /NODE, /USER

SYS /NOAUDIT, /NODE, /QTI, /NOTERMINALS, /USER

TERMINALS /NODE, /USER

TRACE_
MONITOR

/NODE, /USER

STOP Command

EXC /APPLICATION, /CANCEL, /NODE, /USER

MANAGER /NODE, /USER

QTI /NODE, /USER

SYS /CANCEL, /NODE, /USER

TERMINALS /NODE, /USER

TRACE_
MONITOR

/NODE, /USER

11–6 ACMSMGR Commands

ACMSMGR ADD COLLECTION Command

11.2 ACMSMGR ADD COLLECTION

Adds records to the Collection table.

Format

ACMSMGR ADD COLLECTION [/qualifiers]

Command Qualifier Default

/CLASS=class-name * (all)
/COLL_STATE=keyword DISABLED
/ENTITY=keyword Qualifier is required
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/STORAGE_END_TIME=[NEVER, NEVER; run until DISABLED
time]‡/
/STORAGE_INTERVAL=value‡ 300
/STORAGE_LOCATION=file-name‡ Translation of logical ACMS$MGMT_SNAPSHOT
/STORAGE_BEGIN_TIME=[NOW, NOW; start as soon as ENABLED
time]‡/
/STORAGE_STATE=keyword‡ DISABLED
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/CLASS=[*, ERROR, POOL, RUNTIME]
This qualifier specifies the class to be enabled or disabled. The default is * (all).
See Section 5.1.1 for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the collection. The default is DISABLED.
When a SHOW entity command is issued, data for those classes that have their
collection state set to ENABLED is displayed. Note that while the collection state
is DISABLED, the data displayed for an entity may not be accurate. Data cannot
be written to the data snapshot file when this qualifier is DISABLED, even when
the storage state is ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]
This required qualifier specifies the entity for which collection should be enabled
or disabled.

/NAME=[*, entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

‡ Only for use on systems running ACMS Version 4.4 or higher.

ACMSMGR Commands 11–7

ACMSMGR ADD COLLECTION Command

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process
name. For the EXC entity type, the entity name is the name of the application
(for example, VR_APPL).

Server and task group names can be specified as compound names made up of
an application name and a server or task group name, separated by a period (for
example, VR_APPL.VR_READ_SERVER). Either part of server or task group
names can be a wildcard (for example, *.VR_READ_SERVER or VR_APPL.*). If
only one part of a server or task group name is specified, it is assumed to be the
application name, and the server or task group name is wildcarded. For example,
VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

To execute the command on more than one node, you can specify the node names
in a comma-separated list. The ACMSMGR utility attempts to perform the
operation sequentially on each node in the list.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/STORAGE_END_TIME=[NEVER, time]
This qualifier specifies a time after which the collection data should no longer be
written to the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn.
Partial dates and times (for example, 10-OCT or 09:00) are supported. If this
qualifier is not specified, the default keyword of NEVER is applied, which equates
to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of NEVER,
collection data continues to be written to the snapshot file until the storage state
is set to DISABLED.

/STORAGE_INTERVAL=value
This qualifier controls the frequency (in seconds) at which data snapshots are
performed. The default value is 300 seconds.

The storage interval value should be a multiple of the timer interval parameter
(SET PARAMETER/TIMER_INTERVAL). The timer interval value determines
the minimum elapsed time for many Remote Manager parameters, including the
storage interval setting. The relationship of these values determine how often
data snapshots are performed, for example:

– If the timer interval value is greater, its value is used by default. For
instance, if the timer interval is 10 and the storage interval is 5, snapshots
will be written at 10 second intervals.

– If the storage interval value is greater and is a multiple of the timer interval,
the storage interval value is used. For example, if the timer interval is 10 and
the storage interval is 30, snapshots will be written at 30 second intervals.

11–8 ACMSMGR Commands

ACMSMGR ADD COLLECTION Command

– If the storage interval value is greater and is not a multiple of the timer
interval, the next multiple of the timer interval value is used. For example,
if the timer interval is 10 and the storage interval is 15, snapshots will be
written at 20 second intervals.

/STORAGE_LOCATION=file-name
This qualifier specifies an OpenVMS file specification to which collection data is
to be written. The format of file-name is a valid OpenVMS pathname or logical
(such as DISK$1:[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the ACMSMGR utility
checks for the presence of the logical name ACMS$MGMT_SNAPSHOT. If the
logical is defined, the value of the logical is used by default. If a directory is not
provided as part of the specification, the file is written to the default directory of
the account under which the Remote Manager process is running.

Multiple collections can share a single snapshot file or be stored in separate files.
For continuity, HP recommends that EXC, Server, and Task Group collection
information be written to the same snapshot file.

/STORAGE_BEGIN_TIME=[NOW, time]
This qualifier specifies a time after which the collection data should be written to
the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates
and times (for example, 10-OCT or 09:00) are supported. If this qualifier is not
specified, the default keyword of NOW is applied, which equates to the OpenVMS
zero date of 17-NOV-1858 00:00:00.00. With a value of NOW, collection data is
written to the snapshot file immediately, or as soon as the storage state is set to
ENABLED.

/STORAGE_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the data snapshots. If this qualifier is not
specified, data snapshots are disabled by default. To fully enable data snapshots,
both the storage state and the collection state (/COLL_STATE) must be set to
ENABLED.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

When adding new collection records, the combination of class, entity, and name
must be unique.

It is not possible to add records for the ID and CONFIG class. By default, all
ACMS processes collect ID and CONFIG class data.

ACMSMGR Commands 11–9

ACMSMGR ADD COLLECTION Command

ACMS processes read the Collection table during process startup to determine
which classes to begin collecting. Once the Remote Manager has been started,
the ACMSMGR SHOW PROCESS command can be used to determine the class
states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following
conditions must be met:

• A qualifying entity must be running (one with an entity type and name
matching fields in the Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end
time.

If all these conditions are met, the Remote Manager opens the snapshot file for
shared write operations. The file remains open until the storage state is set to
DISABLED or until the snapshot period expires.

When multiple collection records apply to a given process, the records are
assigned weights according to a precedence of name, then entity, and then class.
Within a column, wildcard entries are weighted less than nonwildcard entries.
The row with the highest weight that applies to a process is used. The command
ACMSMGR SHOW COLLECTION displays weights for each row in the table.
See Section 5.1.1 for a discussion of the Collection table and how weights are
assigned.

In contrast to typical collections, weighting for data snapshot threads does not
apply. Therefore, it is possible for redundant collection data to be written to one
or more snapshot files. If multiple collection records compile overlapping data,
and each has their storage state set to ENABLED, each record writes data to the
designated snapshot file.

Example

$ ACMSMGR ADD COLL/ENT=EXC/CLASS=RUNTIME/NAME=VR_APPL/COLL_STATE=ENABLED

This command creates an entry in the Collection table. As a result of
this command, the EXC entity for VR_APPL will begin collecting run-time
information; however this data will not be saved and written to the data snapshot
file.

11–10 ACMSMGR Commands

ACMSMGR ADD FILTER Command

11.3 ACMSMGR ADD FILTER‡

Adds records to the Remote Manager Error Filter table.

Format

ACMSMGR ADD FILTER [/qualifiers]

Command Qualifier Default

/CODE=value None.
/FILE=file-name None.
/NAME=error-name None.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/CODE=value
This qualifier specifies the decimal or hexadecimal value (such as, %x5258028)
related to the error message being filtered.

/FILE=file-name
This qualifier specifies the name of an input file that contains a list of error filter
values. The Remote Manager reads this file and adds each code or symbolic name
to the Error Filter table.

/NAME=error-name
This qualifier specifies the symbolic name (such as, %ACMSACC-W-TCS_
LOADING) related to the error message being filtered.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

To execute the command on more than one node, you can specify the node names
in a comma-separated list. The ACMSMGR utility attempts to perform the
operation sequentially on each node in the list.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

ACMSMGR Commands 11–11

ACMSMGR ADD FILTER Command

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

When adding new error filter records, you must specify either the /CODE,
/NAME, or /FILE qualifier.

ACMS processes read the Error Filter table during process startup to determine
which errors to refrain from sending to the Remote Manager server. Error
filtering begins or ends immediately after filter records are added. The Remote
Manager signals the appropriate ACMS process as soon as it has reevaluated
the Error Filter table following an addition. Messages are sent to active ACMS
processes using the ACMS Trace Monitor.

Certain system messages, such as event flags (ACMSACC-I-EVENT), often
spawn further status messages indicating the cause of the event (ACMSACC-W-
FORCEOUT). Error filtering is explicit; that is, only the specified messages are
suppressed. If you want to filter the initial and subsequent system messages, you
must add each message to the Error Filter table. See Section 5.5 for information
on working with error logs and error filtering.

Errors are also filtered using the command SET PARAMETER/ERROR_
INTERVAL=n. Any errors that are rebroadcast within the specified interval
are not sent to the Remote Manager server. The command ACMSMGR SHOW
PARAMETER can be used to determine the the current error interval for ACMS
systems.

Example

$ ACMSMGR ADD FILTER /NAME="ACMSACC-W-FORCEOUT" /NODE=SPARKS

This command adds the ACMS ACC force out warning message to the Error
Filter table. If this message is generated by an ACMS process on node SPARKS,
it is not relayed to the Remote Manager.

$ ACMSMGR ADD FILTER /FILE=DISK$1:[USER1]FILTER_ERR.DAT

This command adds all the system messages in the file FILTER_ERR.DAT to the
Error Filter table. These messages are no longer relayed to the Remote Manager.

11–12 ACMSMGR Commands

ACMSMGR ADD TRAP Command

11.4 ACMSMGR ADD TRAP

Adds records to the Remote Manager Trap table.

Format

ACMSMGR ADD TRAP [/qualifiers]

Command Qualifier Default

/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] E
/TRAP_MIN=value -1
/TRAP_MAX=value -1
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]
This required qualifier specifies the entity or entities for which a trap should be
set.

/NAME=[*, entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

This field is ignored for the MGR entity.

For ACC, CP, QTI, and TSC entity types, the entity name is the process name.
For the EXC entity type, the entity name is the name of the application (for
example, VR_APPL).

The default is all (*).

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

ACMSMGR Commands 11–13

ACMSMGR ADD TRAP Command

/PARAMETER=[EVENT_SEVERITY, EXISTS]
This parameter specifies the field that should be monitored.

• EVENT_SEVERITY

Internal Remote Manager events are to be monitored. The Remote Manager
logs internal events in the Remote Manager log. (See Section 4.7 and
Section 11.35 for discussions of the Remote Manager log.) Traps can be
generated based on the severity levels of these events.

• EXISTS

Process existence is to be monitored. Traps are generated if the associated
entity type and name either starts or stops.

/SEVERITY=[I, W, E, F]
This qualifier specifies the severity to be associated with the trap. Severity codes
are embedded in the trap message and must be parsed by the trap receiver.
Severities are informational (I), warning (W), error (E), or fatal (F).

/TRAP_MIN=value
This qualifier specifies the minimum allowable value for the parameter being
monitored. A trap is generated if the parameter value is less than the minimum.
See Section 9.14.2 for a list of valid values.

/TRAP_MAX=value
This qualifier specifies the maximum allowable value for the parameter being
monitored. A trap is generated if the parameter value is greater than the
maximum. See Section 9.14.2 for a list of valid values.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

When adding new trap records, the combination of entity, name, and parameter
must be unique.

Traps become active as soon as they are added to the Trap table and the SNMP
interface is running.

See Section 9.14.2 for a discussion about setting appropriate trap minimums
and maximums. See also Section 9.14.3 for a description of the trap message
generated.

11–14 ACMSMGR Commands

ACMSMGR ADD TRAP Command

Example

$ ACMSMGR ADD TRAP /ENT=ACC/PARAMETER=EXISTS/TRAP_MIN=1

This command causes an SNMP trap to be generated whenever the ACC process
stops if the SNMP interface is running.

ACMSMGR Commands 11–15

ACMSMGR DELETE COLLECTION Command

11.5 ACMSMGR DELETE COLLECTION

Deletes records from the Collection table.

Format

ACMSMGR DELETE COLLECTION [/qualifiers]

Command Qualifier Default

/CLASS=class-name * (all)
/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]
This qualifier specifies the class to be enabled or disabled. The default is * (all).
See Section 5.1.1 for a description of each class type.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]
This required qualifier specifies the entity or entities for which collection should
be enabled or disabled.

/NAME=[*, entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process
name. For the EXC entity type, the entity name is the name of the application
(for example, VR_APPL).

Server and task group names can be specified as compound names made up of
an application name and a server or task group name, separated by a period (for
example, VR_APPL.VR_READ_SERVER). Either part of server or task group
names can be a wildcard (for example, *.VR_READ_SERVER or VR_APPL.*). If
only one part of a server or task group name is specified, it is assumed to be the
application name, and the server or task group name is wildcarded. For example,
VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

11–16 ACMSMGR Commands

ACMSMGR DELETE COLLECTION Command

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

When deleting collection records, the combination of class, entity, and name must
exactly match the row to be deleted. Deleting a collection record automatically
terminates all related snapshot threads.

It is not possible to delete records for the ID and CONFIG class. By default, all
ACMS processes collect ID and CONFIG class data.

Collections begin or end immediately after collection records are deleted. The
Remote Manager signals the appropriate ACMS process as soon as it has
reevaluated the Collection table following a deletion. Messages are sent to the
ACMS process using the ACMS Trace Monitor.

ACMS processes read the Collection table during process startup to determine
which classes to begin collecting.

The ACMSMGR SHOW PROCESS command can be used to determine the class
states for the currently running ACMS processes.

Example

$ ACMSMGR DELETE COLL/ENT=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command deletes the entry in the Collection table for run-time collection
by the VR_APPL application. After the deletion, if there are no other Collection
table entries that apply to the run-time class for VR_APPL, run-time collection is
disabled.

ACMSMGR Commands 11–17

ACMSMGR DELETE FILTER Command

11.6 ACMSMGR DELETE FILTER‡

Removes records from the Remote Manager Error Filter table.

Format

ACMSMGR DELETE FILTER [/qualifiers]

Command Qualifier Default

/CODE=value None.
/NAME=error-name None.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/CODE=value
This qualifier specifies the hexadecimal value (such as, %x5258028) related to the
error message being filtered.

/NAME=error-name
This required qualifier specifies the symbolic name (such as, %ACMSACC-W-
TCS_LOADING) related to the error message being filtered.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

11–18 ACMSMGR Commands

ACMSMGR DELETE FILTER Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

Either the /CODE or /NAME qualifier must be specified. When deleting error
filter records, the combination of code (or name) and node must exactly match the
row to be deleted.

ACMS processes read the Error Filter table during process startup to determine
which errors to refrain from sending to the Remote Manager server. Error
filtering ends immediately after filter records are deleted. The Remote Manager
signals the appropriate ACMS process as soon as it has reevaluated the Error
Filter table following a deletion. Messages are sent to active ACMS processes
using the ACMS Trace Monitor.

Errors are also filtered using the command SET PARAMETER/ERROR_
INTERVAL=n. Any errors that are rebroadcast within the specified interval
are not sent to the Remote Manager server. The command ACMSMGR SHOW
PARAMETER can be used to determine the the current error interval for ACMS
systems.

See Section 5.5 for information on working with error logs and error filtering.

Example

$ ACMSMGR DELETE FILTER /NAME="ACMSACC-W-FORCEOUT" /NODE=SPARKS

This command deletes the ACMS ACC force out warning message from the Error
Filter table. If this message is generated by an ACMS process on node SPARKS,
it is relayed to the Remote Manager and written to the error log.

ACMSMGR Commands 11–19

ACMSMGR DELETE TRAP Command

11.7 ACMSMGR DELETE TRAP

Deletes a record from the trap table.

Format

ACMSMGR DELETE TRAP [/qualifiers]

Command Qualifier Default

/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PARAMETER=keyword EXISTS
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]
This required qualifier specifies the entity or entities for which a trap should be
set.

/NAME=[*, entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

For the MGR entity, this field should always be set to asterisk (*).

For ACC, CP, QTI, and TSC entity types, the entity name is the process name.
For the EXC entity type, the entity name is the name of the application (for
example, VR_APPL).

The default is all (*).

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

11–20 ACMSMGR Commands

ACMSMGR DELETE TRAP Command

/PARAMETER=[EVENT_SEVERITY, EXISTS]
This parameter specifies the field that should be monitored.

• EVENT_SEVERITY

Internal Remote Manager events are to be monitored. The Remote Manager
logs internal events in the Remote Manager log. (See Section 11.35 and
Section 4.7 for discussions of the Remote Manager log.) Traps can be
generated based on the severity levels of these events.

• EXISTS

Process existence is to be monitored. Traps are generated if the associated
entity type and name either starts or stops.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

When deleting trap records, the combination of entity, name and parameter must
exactly match a row in the trap table.

Traps become deactive as soon as they are deleted from the Trap table.

Example

$ ACMSMGR DELETE TRAP/ENT=ACC/PARAM=EXISTS

This command deletes a trap from the Trap table.

ACMSMGR Commands 11–21

ACMSMGR HELP Command

11.8 ACMSMGR HELP

Displays help information about the ACMS Remote Manager Client (ACMSMGR)
and its commands.

Format

ACMSMGR HELP

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

Online help is available for each ACMSMGR command. Each help topic
summarizes the valid syntax, abbreviations, parameters, and qualifiers for a
particular command and also inidicates all default and required values.

For a comprehensive list of ACMS utilities that offer online help or for further
instructions on how to invoke help, see ACMS Help.

Examples

1. $ ACMSMGR HELP

This command invokes online help for the ACMSMGR utility and displays a list
of available topics.

11–22 ACMSMGR Commands

ACMSMGR LOGIN Command

11.9 ACMSMGR LOGIN

Logs in to a server on one or more nodes.

Format

ACMSMGR LOGIN [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PASSWORD=password None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/PASSWORD=password
This qualifier specifies the password of the OpenVMS account on the server node
to log in as. It is sent encrypted to the server node for verification.

If the /PASSWORD parameter is not specified, the ACMSMGR will prompt the
user for a password. Login will not be attempted without a password.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node on
which to log in.

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility prompts the user for a user name. Login cannot
be attempted without a user name.

ACMSMGR Commands 11–23

ACMSMGR LOGIN Command

Notes

In order to access any remote management functions, a valid login is required if
proxy access is not enabled or if proxy accounts have not been set up.

A credentials file is created for each node logged in to. Credentials files are
specific for a user, process, and node. In addition, a separate credentials file is
created for each combination of user name and node. Subsequent ACMSMGR
commands pass the authentication information in the appropriate credentials
file to the Remote Manager server, which then performs function authorization.
Users determine which credentials are used either by using the /USER qualifier
or by defining the ACMS$MGMT_USER logical.

For example, suppose user BOB on node CLIENT logs in to node SERV1 as
ACMS_ADMIN. Also, suppose user BOB on node CLIENT logs in to node SERV2
as ACMS_USER. BOB will have two active logins (two credentials files). He can
specify which one to use by either defining the logical ACMS$MGMT_USER, or
specifying a user name using the /USER qualifier.

Logins are valid for the duration of the login_credentials_lifetime parameter
(specified using the ACMSMGR SET PARAMETER command).

See Section 4.4 for a complete discussion of how logins are processed and how
credentials files are handled.

Examples

1. $ ACMSMGR LOGIN /NODE=SPARKS /USER=USERNAME /PASSWORD=12345678

This command logs in user USERNAME to node SPARKS.

2. $ ACMSMGR LOGIN /NODE=SPARKS,NELSON /USER=USERNAME /PASSWORD=12345678

This command logs in user USERNAME to nodes SPARKS and NELSON.

3. $ ACMSMGR LOGIN /USER=USERNAME

This command logs in user USERNAME to the node specified by the logical
name ACMS$MGMT_SERVER_NODE. The ACMSMGR utility will prompt
the user for the password.

4. $ ACMSMGR LOGIN

This command logs in the user defined by the logical name ACMS$MGMT_
USER to the node specified by the logical name ACMS$MGMT_SERVER_
NODE. If the logical name ACMS$MGMT_USER is not defined, the
ACMSMGR utility will prompt for the user name. The ACMSMGR utility
also will prompt for the password.

11–24 ACMSMGR Commands

ACMSMGR LOGOUT Command

11.10 ACMSMGR LOGOUT

Logs out a user from a server on one or more nodes.

Format

ACMSMGR LOGOUT [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
from which to log out.

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility prompts the user for a user name. Logout cannot
be performed without a user name.

Notes

Once logout is complete, subsequent ACMSMGR commands for a user, process,
and node will fail authorization checks.

ACMSMGR Commands 11–25

ACMSMGR LOGOUT Command

Examples

1. $ ACMSMGR LOGOUT /NODE=SPARKS /USER=USERNAME

This command logs out user USERNAME from node SPARKS.

2. $ ACMSMGR LOGOUT /NODE=SPARKS,NELSON /USER=USERNAME /PASSWORD=12345

This command logs out user USERNAME from nodes SPARKS and NELSON.

3. $ ACMSMGR LOGOUT /USER=USERNAME

This command logs out user USERNAME from the node specified by the
logical name ACMS$MGMT_SERVER_NODE.

4. $ ACMSMGR LOGOUT

This command logs out the user defined by the logical name ACMS$MGMT_
USER from the node specified by the logical name ACMS$MGMT_SERVER_
NODE. If the logical name ACMS$MGMT_USER is not defined, the
ACMSMGR utility will prompt for the user name.

11–26 ACMSMGR Commands

ACMSMGR REPLACE SERVER Command

11.11 ACMSMGR REPLACE SERVER

Replaces a running server in a running ACMS application.

Format

ACMSMGR REPLACE SERVER [/qualifiers]

Command Qualifier Default

/APPLICATION=[*,application-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/SERVER=[*,server-name] * (all)
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/APPLICATION=[*, application-name]
This qualifier specifies the name of the application. If this qualifier is not
specified, the command is executed for all applications on the target node.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/SERVER=[*, server-name]
This qualifier specifies the name of the server. If this qualifier is not specified, the
command is executed for all servers on the target node in the target application.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

ACMSMGR Commands 11–27

ACMSMGR REPLACE SERVER Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/REPLACE
SERVER. The command is executed synchronously.

Example

$ ACMSMGR REPLACE SERVER /APPL=VR_APPL/SERV=VR_READ_SERVER/NODE=SPARKS

This command replaces the VR_READ_SERVER in the VR_APPL application on
node SPARKS.

11–28 ACMSMGR Commands

ACMSMGR RESET ERROR Command

11.12 ACMSMGR RESET ERROR‡

Resets (closes) the Remote Manager error log file and creates (opens) a new
version.

Format

ACMSMGR RESET ERROR [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

ACMSMGR Commands 11–29

ACMSMGR RESET ERROR Command

Notes

This command closes the current version of the ACMSMGR error log file and
opens a new version.

Example

$ ACMSMGR RESET ERROR /NODE=SPARKS /USER=USERNAME

This command resets the Remote Manager error log on node SPARKS.

11–30 ACMSMGR Commands

ACMSMGR RESET LOG Command

11.13 ACMSMGR RESET LOG

Resets (closes) the Remote Manager log file and creates (opens) a new version.

Format

ACMSMGR RESET LOG [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command closes the current version of the ACMSMGR log file and opens a
new version.

ACMSMGR Commands 11–31

ACMSMGR RESET LOG Command

Example

$ ACMSMGR RESET LOG /NODE=SPARKS /USER=USERNAME

This command resets the Remote Manager log on node SPARKS.

11–32 ACMSMGR Commands

ACMSMGR SAVE FILTER Command

11.14 ACMSMGR SAVE FILTER‡

Saves the current records in the Error Filter table to a file.

Format

ACMSMGR SAVE FILTER [/qualifiers]

Command Qualifier Default

/FILE=file-name Qualifier is required.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/FILE=file-name
This required qualifier specifies a full OpenVMS file specification
(node::device:[directory]file-name.ext) that indicates where the error filter
information is to be written. Partial specifications and logical names are not
valid.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

ACMSMGR Commands 11–33

ACMSMGR SAVE FILTER Command

Notes

This command provides the ability to write the current set of error filter records
to an external file. The /FILE qualifier is required and must reference a
valid, complete OpenVMS file specification. Logicals and partial names are
not recognized.

See Section 5.5 for information on working with error logs and error filtering.

Example

$ ACMSMGR SAVE FILTER/FILE=VLCROW::DISK1$:[SYSTEM.FILTER]ERROR_FILTER.TXT/NODE=SPARKS

This command saves the error filter records for node SPARKS to the
DISK1$:[SYSTEM.FILTER]ERROR_FILTER.TXT on node VLCROW.

11–34 ACMSMGR Commands

ACMSMGR SET ACC Command

11.15 ACMSMGR SET ACC

Makes modifications to the ACMS system.

Format

ACMSMGR SET ACC [/qualifiers]

Command Qualifier Default

/ACC_PRIORITY=value None
/ACC_USERNAME=user-name None
/ACTIVE /STORED
/ASTLM=value‡ None
/AUDIT_STATE=keyword None
/BIOLM=value‡ None. See /process-quota.
/BYTLM=value‡ None. See /process-quota.
/CHANNELCNT=value‡ † None. See /system-parameter.
/DIOLM=value‡ None. See /process-quota.
/ENQLM=value‡ None. See /process-quota.
/FILLM=value‡ None. See /process-quota.
/GBLPAGES=value‡ None. See /system-parameter.
/GBLPAGFIL=value‡ None. See /system-parameter.
/GBLSECTIONS=value‡ None. See /system-parameter.
/LOG None
/MAX_APPL=value None
/MSS_MAXBUF=value None
/MSS_MAXOBJ=value None
/MSS_NET_RETRY_TIMER=value None
/MSS_POOLSIZE=value None
/MSS_PROCESS_POOL=value None
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/NODE_NAME=node-name None
/PGFLQUOTA=value‡ None. See /process-quota.
/STORED /STORED
/TQELM=value‡ None. See /process-quota.
/TWS_POOLSIZE=value None
/TWSC_POOLSIZE=value None
/USER=user-name Translation of logical ACMS$MGMT_USER
/USERNAME_DEFAULT=user-name None
/WS_POOLSIZE=value None
/WSC_POOLSIZE=value None
/WSDEFAULT=value‡ None. See /process-quota.
/WSEXTENT=value‡ None. See /process-quota.
/WSQUOTA=value‡ None. See /process-quota.

Privileges Required

ACMS$MGMT_OPER
ACMS$MGMT_SYSUPD (for system parameters)

‡ Only for use on systems running ACMS Version 4.4 or higher.
† This special parameter is used by HP and is subject to change. Do not change this

parameter unless HP recommends that you do so.

ACMSMGR Commands 11–35

ACMSMGR SET ACC Command

Parameters

None.

Qualifiers

/process-quota=value
These qualifiers correspond to and update the related process quota fields in
the system user authorization (SYSUAF) record for the user specified by ACC_
USERNAME. Updated quota values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process
quotas, the /ACTIVE qualifier cannot be specified. The /STORED qualifier is the
default and causes the specified values to be stored in the current SYSUAF.DAT
file.

For information on using AUTHORIZE to modify process quotas, see the
OpenVMS System Manager’s Manual. For more information about the individual
quotas and their values, see OpenVMS System Management Utilities Reference
Manual: A–L or access the online help for AUTHORIZE.

/system-parameter=value
These qualifiers correspond to and update the related OpenVMS System
Generation utility (SYSGEN) parameters. Updated parameter values apply
to the next process that is created. The ACMS$MGMT_SYSUPD rights identifier
is required to set these parameters.

Because these qualifiers control the nondynamic values for the related syste
parameters, the /ACTIVE qualifier cannot be specified. The /STORED qualifier is
the default and causes the specified values to be stored in the current SYSGEN
work area.

For information on using SYSGEN, see the OpenVMS System Manager’s Manual.
For more information about the individual parameters and their values, see
OpenVMS System Management Utilities Reference Manual: M–Z or access the
online help for SYSGEN.

/ACC_PRIORITY=value
This qualifier corresponds to and updates the ACMSGEN field ACC_PRIORITY.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/ACC_USERNAME=user-name
This qualifier corresponds to and updates the ACMSGEN field ACC_USERNAME.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/ACTIVE
This qualifier causes dynamic ACMSGEN field values to be updated from the
current ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same
command with the /STORED qualifier. If neither is specified, the default is
/STORED. If /ACTIVE is specified, no updates are written to the file.

/AUDIT_STATE=[ENABLED, DISABLED]
This qualifier is equivalent to the ACMSOPER command ACMS/SET
SYSTEM/AUDIT (or /NOAUDIT if the value is DISABLED).

11–36 ACMSMGR Commands

ACMSMGR SET ACC Command

/LOG
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

/MAX_APPL=value
This qualifier corresponds to and updates the ACMSGEN field MAX_APPL.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/MSS_MAXBUF=value
This qualifer corresponds to and updates the ACMSGEN field MSS_MAXBUF.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/MSS_MAXOBJ=value
This qualifier corresponds to and updates the ACMSGEN field MSS_MAXOBJ.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/MSS_NET_RETRY_TIMER=value
This qualifier corresponds to and updates the ACMSGEN field MSS_NET_
RETRY_TIMER. As this is a dynamic ACMSGEN field, the /ACTIVE qualifier
causes the current value to be modified for the running system. The /STORED
qualifier causes the specified value to be stored in the current ACMSGEN file.

/MSS_POOLSIZE=value
This qualifier corresponds to and updates the ACMSGEN field MSS_POOLSIZE.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/MSS_PROCESS_POOL=value
This qualifier corresponds to and updates the ACMSGEN field MSS_PROCESS_
POOL. Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier
cannot be specified with this qualifier. The /STORED qualifier causes the
specified value to be stored in the current ACMSGEN file.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

ACMSMGR Commands 11–37

ACMSMGR SET ACC Command

/NODE_NAME=node-name
This qualifier corresponds to and updates the ACMSGEN field NODE_NAME.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/STORED
This qualifier causes ACMSGEN field updates to be written and saved in the
current ACMSGEN file. The /STORED qualifier cannot be specified on the
same command as the /ACTIVE qualifier. If neither is specified, the default is
/STORED.

/TWS_POOLSIZE=value
This qualifier corresponds to and updates the ACMSGEN field TWS_POOLSIZE.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/TWSC_POOLSIZE=value
This qualifier corresponds to and updates the ACMSGEN field TWSC_POOLSIZE.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the value specified to
be stored in the current ACMSGEN file.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

/USERNAME_DEFAULT=user-name
This qualifier corresponds to and updates the ACMSGEN field USERNAME_
DEFAULT. Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier
causes the current value to be modified for the running system. The /STORED
qualifier causes the specified value to be stored in the current ACMSGEN file.

/WS_POOLSIZE=value
This qualifier corresponds to and updates the ACMSGEN field WS_POOLSIZE.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/WSC_POOLSIZE=value
This qualifier corresponds to and updates the ACMSGEN field WSC_POOLSIZE.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

11–38 ACMSMGR Commands

ACMSMGR SET ACC Command

Notes

This command provides the ability to remotely update either the running ACMS
system or the current ACMSGEN file.

The /ACTIVE and /STORED qualifiers control how updates are posted to
ACMSGEN. The /ACTIVE and /STORED qualifiers have no effect on the /AUDIT_
STATE qualifier, which is processed independently of any ACMSGEN updates.

Examples

1. $ ACMSMGR SET ACC /NODE=SPARKS/MSS_NET_RETRY_TIMER=250/ACTIVE

This command modifies the ACMSGEN field mss_net_retry_timer on node
SPARKS and updates the active system only. The change is not saved in the
ACMSGEN file.

2. $ ACMSMGR SET ACC /NODE=SPARKS/MSS_NET_RETRY_TIMER=500/STORED

This command modifies the ACMSGEN field mss_net_retry_timer on node
SPARKS and saves the change in the ACMSGEN file. The active system is
not updated.

3. $ ACMSMGR SET ACC /NODE=SPARKS/CHANNELCNT=255/STORED

This command modifies the CHANNELCNT system parameter on node
SPARKS and saves the change in the SYSGEN work area. The active system
is not updated.

ACMSMGR Commands 11–39

ACMSMGR SET AGENT Command

11.16 ACMSMGR SET AGENT

Makes modifications to the ACMS system.

Format

ACMSMGR SET AGENT [/qualifiers]

Command Qualifier Default

/PID=value None (Mandatory)
/ASTLM=value None. See /process-quota.
/BIOLM=value None. See /process-quota.
/BYTLM=value None. See /process-quota.
/DIOLM=value None. See /process-quota.
/ENQLM=value None. See /process-quota.
/FILLM=value None. See /process-quota.
/LOG None
/PGFLQUOTA=value None. See /process-quota.
/TQELM=value None. See /process-quota.
/WSDEFAULT=value None. See /process-quota.
/WSEXTENT=value None. See /process-quota.
/WSQUOTA=value None. See /process-quota.
/NODE=value None
/USER=value None

Privileges Required

ACMS$MGMT_OPER
ACMS$MGMT_SYSUPD (for system parameters)

Parameters

None.

Qualifiers

/PID=pid
Specifies the Process ID of the Agent the stored values of which to modify. The
/PID qualifier is Mandatory.

/process-quota=value
These qualifiers correspond to and update the related process quota fields in
the system user authorization (SYSUAF) record for the user of the Agent using
the supplied process PID. Updated quota values apply to the next Agent that is
created.

Because these qualifiers control the nondynamic values for the related process
quota fields, the /ACTIVE qualifier cannot be specified. The /STORED qualifier
causes the specified values to be stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the
OpenVMS System Manager’s Manual. For more information about the individual
quotas and their values, see OpenVMS System Management Utilities Reference
Manual: A–L or access the online help for AUTHORIZE.

11–40 ACMSMGR Commands

ACMSMGR SET AGENT Command

/LOG=value
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command provides the ability to remotely update the current ACMSGEN
file.

The /ACTIVE and /STORED qualifiers are not used with the ACMSMGR SET
AGENT command because only stored values can be modified.

Examples

1. $ ACMSMGR SET AGENT /NODE=SPARKS /ASTLM=250 /PID=274009D6

This command modifies the ACMSGEN field astlm on node SPARKS for the
Agent running in the process of the specified PID.

ACMSMGR Commands 11–41

ACMSMGR SET COLLECTION Command

11.17 ACMSMGR SET COLLECTION

Updates records in the Collection table.

Format

ACMSMGR SET COLLECTION [/qualifiers]

Command Qualifier Default

/CLASS=class-name * (all)
/COLL_STATE=keyword None
/ENTITY=keyword Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/STORAGE_END_TIME=[NEVER, None
time]‡/
/STORAGE_INTERVAL=value‡ None
/STORAGE_LOCATION=file-name‡ Translation of logical ACMS$MGMT_SNAPSHOT
/STORAGE_BEGIN_TIME=[NOW, None
time]‡/
/STORAGE_STATE=keyword‡ None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]
This qualifier specifies the class to be enabled or disabled. The default is * (all).
See Section 5.1.1 for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the collection. When a SHOW entity command
is issued, data for those classes that have their collection state set to ENABLED
is displayed. Note that while the collection state is DISABLED, the data
displayed for an entity may not be accurate. Data cannot be written to the
data snapshot file when this qualifier is DISABLED, even when the storage state
is ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]
This required qualifier specifies the entity or entities for which collection should
be enabled or disabled.

/NAME=[*, entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

‡ Only for use on systems running ACMS Version 4.4 or higher.

11–42 ACMSMGR Commands

ACMSMGR SET COLLECTION Command

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process
name. For the EXC entity type, the entity name is the name of the application
(for example, VR_APPL).

Server and task group names can be specified as compound names made up of
an application name and a server or task group name, separated by a period (for
example, VR_APPL.VR_READ_SERVER). Either part of server or task group
names can be a wildcard (for example, *.VR_READ_SERVER or VR_APPL.*). If
only one part of a server or task group name is specified, it is assumed to be the
application name, and the server or task group name is wildcarded. For example,
VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/STORAGE_END_TIME=[NEVER,time]
This qualifier specifies a time after which the collection data should no longer be
written to the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn.
Partial dates and times (for example, 10-OCT or 09:00) are supported. The
keyword NEVER is also supported, which equates to the OpenVMS zero date of
17-NOV-1858 00:00:00.00. With a value of NEVER, collection data continues to
be written to the snapshot file until the storage state is set to DISABLED.

If this qualifier is not specified, the existing value remains unchanged. This value
can be modified dynamically.

/STORAGE_INTERVAL=value
This qualifier controls the frequency (in seconds) at which data snapshots are
performed.

The storage interval value should be a multiple of the timer interval parameter
(SET PARAMETER/TIMER_INTERVAL). The timer interval value determines
the minimum elapsed time for many Remote Manager parameters, including the
storage interval setting. The relationship of these values determine how often
data snapshots are performed, for example:

– If the timer interval value is greater, its value is used by default. For
instance, if the timer interval is 10 and the storage interval is 5, snapshots
will be written at 10 second intervals.

– If the storage interval value is greater and is a multiple of the timer interval,
the storage interval value is used. For example, if the timer interval is 10 and
the storage interval is 30, snapshots will be written at 30 second intervals.

ACMSMGR Commands 11–43

ACMSMGR SET COLLECTION Command

– If the storage interval value is greater and is not a multiple of the timer
interval, the next multiple of the timer interval value is used. For example,
if the timer interval is 10 and the storage interval is 15, snapshots will be
written at 20 second intervals.

/STORAGE_LOCATION=file-name
This qualifier specifies an OpenVMS file specification to which collection data is
to be written. The format of file-name is a valid OpenVMS pathname or logical
(such as DISK$1:[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the current value remains
unchanged. If a directory is not provided as part of the specification, the file is
written to the default directory of the account under which the Remote Manager
process is running.

Multiple collections can share a single snapshot file or be stored in separate files.
For continuity, HP recommends that EXC, Server, and Task Group collection
information be written to the same snapshot file.

This value can be modified dynamically.

/STORAGE_BEGIN_TIME=time
This qualifier specifies a time after which the collection data should be written
to the snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial
dates and times (for example, 10-OCT or 09:00) are supported. The keyword
NOW is also supported, which equates to the OpenVMS zero date of 17-NOV-1858
00:00:00.00. With a value of NOW, collection data is written to the snapshot file
immediately, or as soon as the storage state is set to ENABLED.

If this qualifier is not specified, the current value remains unchanged. This value
can be modified dynamically.

/STORAGE_STATE=[ENABLED, DISABLED]
This qualifier specifies the state of the data snapshots. To fully enable data
snapshots, both the storage state and the collection state (/COLL_STATE) must
be set to ENABLED. If this qualifier is not specified, the current value remains
unchanged. This value can be modified dynamically.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

11–44 ACMSMGR Commands

ACMSMGR SET COLLECTION Command

Notes

When updating collection records, the combination of class, entity, and name
must exactly match a record in the Collection table.

You cannot modify Collection table entries for the ID and CONFIG classes.

ACMS processes read the Collection table during process startup to determine
which classes to begin collecting. Once the Remote Manager has been started,
the ACMSMGR SHOW PROCESS command can be used to determine the class
states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following
conditions must be met:

• A qualifying entity must be running (one with an entity type and name
matching fields in the Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end
time.

If all these conditions are met, the Remote Manager opens the snapshot file for
shared write operations. The file remains open until the storage state is set to
DISABLED or until the snapshot period expires.

Changes to the Collection table are processed immediately, except for storage
location and storage end time values. These values are applied the next time
snapshot data is written. The Remote Manager signals the appropriate ACMS
process as soon as it has reevaluated the Collection table following an addition.
Messages are sent to the ACMS process using the ACMS Trace Monitor.

When multiple collection records apply to a given process, the records are
assigned weights according to a precedence of name, then entity, then class.
Within a column, wildcard entries are weighted less than nonwildcard entries.
The row with the highest weight that applies to a process is used. The
ACMSMGR SHOW COLLECTION command displays weights for each row
in the table. See also Section 5.1.1 for a discussion of the Collection table and of
how weights are assigned.

In contrast to typical collections, weighting for data snapshot threads does not
apply. Therefore, it is possible for redundant collection data to be written to one
or more snapshot files. If multiple collection records compile overlapping data,
and each has their storage state set to ENABLED, each record writes data to the
designated snapshot file.

Example

$ ACMSMGR SET COLLECTION/ENT=EXC/CLASS=RUNTIME/NAME=VR_APPL/COLL_S=DISABLED

This command disables run-time data collection for the VR_APPL application.

ACMSMGR Commands 11–45

ACMSMGR SET CP Command

11.18 ACMSMGR SET CP‡

Makes modifications to an ACMS system process.

Format

ACMSMGR SET CP [/qualifiers]

Command Qualifier Default

/ASTLM=value None. See /process-quota.
/BIOLM=value None. See /process-quota.
/BYTLM=value None. See /process-quota.
/DIOLM=value None. See /process-quota.
/ENQLM=value None. See /process-quota.
/FILLM=value None. See /process-quota.
/LOG None
/PGFLQUOTA=value None. See /process-quota.
/TQELM=value None. See /process-quota.
/WSDEFAULT=value None. See /process-quota.
/WSEXTENT=value None. See /process-quota.
/WSQUOTA=value None. See /process-quota.

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/process-quota=value
These qualifiers correspond to and update the related process quota fields in
the system user authorization (SYSUAF) record for the user specified by CP_
USERNAME. Updated quota values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process
quota fields, the /ACTIVE qualifier cannot be specified. The /STORED qualifier
causes the specified values to be stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the
OpenVMS System Manager’s Manual. For more information about the individual
quotas and their values, see OpenVMS System Management Utilities Reference
Manual: A–L or access the online help for AUTHORIZE.

/LOG
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

11–46 ACMSMGR Commands

ACMSMGR SET CP Command

Notes

This command provides the ability to remotely update either the running ACMS
system or the current ACMSGEN file quota values for subsequent CP processes.

Examples

1. $ ACMSMGR SET CP /ASTLM=1000 /LOG

This command modifies the ASTLM process quota and causes informational
messages to be displayed that indicate the status of the update. The new
ASTLM value will be applied to subsequent CP processes.

ACMSMGR Commands 11–47

ACMSMGR SET EXC Command

11.19 ACMSMGR SET EXC

Makes modifications to running ACMS applications.

Format

ACMSMGR SET EXC [/qualifiers]

Command Qualifier Default

/ACTIVE /ACTIVE
/APPLICATION=application-name None
/ASTLM=value‡ None. See /process-quota.
/AUDIT_STATE=keyword None
/BIOLM=value‡ None. See /process-quota.
/BYTLM=value‡ None. See /process-quota.
/DIOLM=value‡ None. See /process-quota.
/ENQLM=value‡ None. See /process-quota.
/FILLM=value‡ None. See /process-quota.
/LOG None
/MAX_SERVERS=value None
/MAX_TASKS=value None
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PGFLQUOTA=value‡ None. See /process-quota.
/SP_MON_INTERVAL=value None
/STORED /ACTIVE
/TQELM=value‡ None. See /process-quota.
/TRANSACTION_TIMEOUT=value None
/USER=user-name Translation of logical ACMS$MGMT_USER
/WSDEFAULT=value‡ None. See /process-quota.
/WSEXTENT=value‡ None. See /process-quota.
/WSQUOTA=value‡ None. See /process-quota.

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/process-quota=value
These qualifiers correspond to and update the related process quota fields in
the system user authorization (SYSUAF) record for the user specified by SHOW
EXC/ID. Updated quota values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process
quota fields, the /ACTIVE qualifier cannot be specified. The /STORED qualifier
causes the specified values to be stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the
OpenVMS System Manager’s Manual. For more information about the individual
quotas and their values, see OpenVMS System Management Utilities Reference
Manual: A–L or access the online help for AUTHORIZE.

‡ Only for use on systems running ACMS Version 4.4 or higher.

11–48 ACMSMGR Commands

ACMSMGR SET EXC Command

/ACTIVE
This qualifier causes dynamic ACMSGEN field values to be updated from the
current ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same
command with the /STORED qualifier. If neither is specified, the default is
/ACTIVE for all values except for process quotas (which default to /STORED). If
/ACTIVE is specified, no updates are written to the file.

/APPLICATION=application-name
The name of the application to be modified. The command ACMSMGR SET EXC
requires the /APPL qualifier for any values that are stored values. If the /APPL
qualifier is missing, the error NOAPPLQUAL will be returned.

A different error, NOSUCHAPPL, will be returned if the application you are
attempting to modify is not active.

/AUDIT_STATE=[ENABLED, DISABLED]
This qualifier is equivalent to the ACMSOPER command ACMS/MODIFY
APPLICATION /APPL=AUDIT (or /APPL=NOAUDIT if the value is DISABLED).

/LOG
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

/MAX_SERVERS=value
This qualifier updates the MAX_SERVERS limit in the running application.
Updates are lost when the application is restarted.

/MAX_TASKS=value
This qualifier updates the MAX_TASKS limit in the running application. Updates
are lost when the application is restarted.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/SP_MON_INTERVAL=value
This qualifier updates the SP_MON_INTERVAL field in the running application.
Updates are lost when the application is restarted.

/STORED
This qualifier causes ACMSGEN field updates to be written and saved in the
current ACMSGEN file. The /STORED qualifier cannot be specified on the same
command as the /ACTIVE qualifier. If neither is specified, the default is /ACTIVE
for all values except for process quotas (which default to /STORED).

ACMSMGR Commands 11–49

ACMSMGR SET EXC Command

/TRANSACTION_TIME=value
This qualifier updates the TRANSACTION_TIMEOUT default value in the
running application. Updates are lost when the application is restarted.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/MOD
APPLICATION. Any changes made to the running system are lost when the
application is restarted.

Example

$ ACMSMGR SET EXC/APPL=VR_APPL/SP_MON_INTERVAL=10/MAX_TASKS=50

This command modifies the running application VR_APPL.

11–50 ACMSMGR Commands

ACMSMGR SET INTERFACE Command

11.20 ACMSMGR SET INTERFACE

Allows Remote Manager interfaces to be started or stopped.

Format

ACMSMGR SET INTERFACE [/qualifiers]

Command Qualifier Default

/INTERFACE=[RPC,SNMP] Qualifier is required.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/STATE=[ENABLED,DISABLED] DISABLED
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/INTERFACE=[RPC, SNMP]
This required qualifier specifies which interface to modify. Only SNMP is
supported.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/STATE=[ENABLED, DISABLED]
This qualifier specifies the operation to perform. If the value is ENABLED, the
interface will be started (if it is not already running). If the value is DISABLED,
the interface will be stopped (if it is not already stopped).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

ACMSMGR Commands 11–51

ACMSMGR SET INTERFACE Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command allows interfaces to be stopped or started. However, an interface
cannot disable itself. Since the ACMSMGR utility uses the RPC interface, it
cannot be used to disable the RPC interface.To disable the RPC interface, either
use the ACMSCFG utility and restart the Remote Manager, or use the SNMP
interface.

The SNMP interface can be both enabled and disabled using this command. It
may take several seconds for this command to complete if the SNMP interface is
in a non-interruptible state when the command is issued

Example

$ ACMSMGR SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED

ACMS Remote Management Option -- Command line utility
Call to modify interface on server sparks was executed
%ACMSMGMT-S-SUCCESS, Operation completed

This command stops the SNMP interface on the node specified by the logical
name ACMS$MGMT_SERVER_NODE. Authorization is either performed for the
user specified by the logical ACMS$MGMT_USER, or is based on an ACMS proxy
on the target node if the logical is not defined.

11–52 ACMSMGR Commands

ACMSMGR SET PARAMETER Command

11.21 ACMSMGR SET PARAMETER

Allows Remote Manager parameters to be modified.

Format

ACMSMGR SET PARAMETER [/qualifiers]

Command Qualifier Default

/DCL_AUDIT_LEVEL=value See /parameter.
/DCL_MGR_PRIORITY=value See /parameter.
/DCL_STACKSIZE=value See /parameter.
/ERROR_INTERVAL=value‡ See /parameter.
/EVENT_LOG_PRIORITY=value See /parameter.
/LOG_STACKSIZE=value See /parameter.
/LOGIN_CREDS_LIFETIME=value See /parameter.
/MAX_LOGINS=value See /parameter.
/MAX_RPC_RETURN_RECS=value See /parameter.
/MGR_AUDIT_LEVEL=value See /parameter.
/MSG_PROC_AUDIT_LEVEL=value See /parameter.
/MSG_PROC_PRIORITY=value See /parameter.
/MSG_PROC_STACKSIZE=value See /parameter.
/MSS_COLL_INTERVAL=value See /parameter.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PROC_MON_AUDIT_LEVEL=value See /parameter.
/PROC_MON_INTERVAL=value See /parameter.
/PROC_MON_PRIORITY=value See /parameter.
/PROC_MON_STACKSIZE=value See /parameter.
/PROXY_CREDS_LIFETIME=value See /parameter.
/RPC_AUDIT_LEVEL=value See /parameter.
/RPC_PRIORITY=value See /parameter.
/RPC_STACKSIZE=value See /parameter.
/SECURITY_AUDIT_LEVEL=value See /parameter.
/SNAP_AUDIT_LEVEL=value‡ See /parameter.
/SNAP_PRIORITY=value‡ See /parameter.
/SNAP_STACKSIZE=value‡ See /parameter.
/SNMP_AGENT_TIME_OUT=value See /parameter.
/SNMP_ARE_YOU_THERE=value See /parameter.
/SNMP_AUDIT_LEVEL=value See /parameter.
/SNMP_PRIORITY=value See /parameter.
/SNMP_SEL_TIME_OUT=value See /parameter.
/SNMP_STACKSIZE=value See /parameter.
/TCP_ENABLED‡ See /parameter.
/TIMER_AUDIT_LEVEL=value See /parameter.
/TIMER_INTERVAL=value See /parameter.
/TIMER_PRIORITY=value See /parameter.
/TIMER_STACKSIZE=value See /parameter.
/TOTAL_ENTITY_SLOTS=value See /parameter.
/TRACE_MSG_WAIT_TIME=value See /parameter.
/TRACE_START_WAIT_TIME=value See /parameter.
/TRAP_AUDIT_LEVEL=value See /parameter.
/TRAP_PRIORITY=value See /parameter.
/TRAP_STACKSIZE=value See /parameter.
/UDP_ENABLED‡ See /parameter.
/USER=user-name Translation of logical ACMS$MGMT_USER
/VMS_COLL_INTERVAL=value‡ See /parameter.
/WKSP_COLL_INTERVAL=value See /parameter.

ACMSMGR Commands 11–53

ACMSMGR SET PARAMETER Command

/MAX_AGENTS=value See /parameter.

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/parameter=value
All qualifiers except NODE and USER correspond directly to fields in the
Parameter table. See Section 9.10.1 for a description of each field. For a
listing of the current default, minimum, and maximum values, use the SHOW
PARAMETER command.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

Some parameter changes take effect immediately; others take effect only when
the Remote Manager is restarted, and only if they are written to the ACMSCFG
file (using the ACMSCFG SET PARAMETER command). Table 9–9 shows which
parameters are dynamic and which are not.

For parameters that are not dynamic, you must restart the appropriate facility
for the change to take effect. For example, to modify the SNMP_SELECT_TIME_
OUT parameter, you must stop and restart the SNMP interface.

See Table 9–9 for a description of each parameter.

‡ Only for use on systems running ACMS Version 4.4 or higher.

11–54 ACMSMGR Commands

ACMSMGR SET PARAMETER Command

The ACMS Remote Manager allows an authorized user to make changes to the
VMS parameter file (via SYSGEN), ACMS parameter file (via ACMSGEN), user
quotas (via AUTHORIZE), ACMS Remote Manager parameters (via ACMSMGR
SET PARAM) and to a running ACMS system (via ACMSOPR commands).

Some values are checked for minimums, like negative numbers and zero. ACMS
Remote Manager parameters are checked for limits but Authorize, ACMSGEN
and SYSGEN values are not. Use the same caution with the ACMS Remote
Manager as you would with SYSGEN and AUTHORIZE and verify any changes
you make.

Example

$ ACMSMGR SET PARAMETER /MGR_AUDIT_LEVEL=E /NODE=SPARKS /USER=USERNAME

ACMS Remote Management Option -- Command line utility
Call to modify parameters on server sparks was executed
%ACMSMGMT-S-SUCCESS, Operation completed

This command modifies the dynamic parameter MGR_AUDIT_LEVEL on node
SPARKS and specifies that authorization be performed for user USERNAME.

ACMSMGR Commands 11–55

ACMSMGR SET QTI Command

11.22 ACMSMGR SET QTI

Makes modifications related to the Queued Task Initiator (QTI).

Format

ACMSMGR SET QTI [/qualifiers]

Command Qualifier Default

/ACTIVE /STORED
/ASTLM=value‡ None. See /process-quota.
/BIOLM=value‡ None. See /process-quota.
/BYTLM=value‡ None. See /process-quota.
/DIOLM=value‡ None. See /process-quota.
/ENQLM=value‡ None. See /process-quota.
/FILLM=value‡ None. See /process-quota.
/LOG None
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PGFLQUOTA=value‡ None. See /process-quota.
/POLLING_TIMER=value None
/QTI_PRIORITY=value None
/QTI_USERNAME=user-name None
/RETRY_TIMER None
/STORED /STORED
/SUB_TIMEOUT None
/TQELM=value‡ None. See /process-quota.
/USER=user-name Translation of logical ACMS$MGMT_USER
/WSDEFAULT=value‡ None. See /process-quota.
/WSEXTENT=value‡ None. See /process-quota.
/WSQUOTA=value‡ None. See /process-quota.

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/process-quota=value
These qualifiers correspond to and update the related process quota fields in
the system user authorization (SYSUAF) record for the user specified by QTI_
USERNAME. Updated quota values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process
quota fields, the /ACTIVE qualifier cannot be specified. The /STORED qualifier
causes the specified values to be stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the
OpenVMS System Manager’s Manual. For more information about the individual
quotas and their values, see OpenVMS System Management Utilities Reference
Manual: A–L or access the online help for AUTHORIZE.

‡ Only for use on systems running ACMS Version 4.4 or higher.

11–56 ACMSMGR Commands

ACMSMGR SET QTI Command

/ACTIVE
This qualifier causes dynamic ACMSGEN field values to be updated from the
current ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same
command with the /STORED qualifier. If neither is specified, the default is
/STORED. If /ACTIVE is specified, no updates are written to the file.

/LOG
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/POLLING_TIMER=node-name
This qualifier corresponds to and updates the ACMSGEN field QTI_POLLING_
TIMER. Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes
the current value to be modified for the running system. The /STORED qualifier
causes the specified value to be stored in the current ACMSGEN file.

/QTI_PRIORITY=value
This qualifier corresponds to and updates the ACMSGEN field QTI_PRIORITY.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/QTI_USERNAME=user-name
This qualifier corresponds to and updates the ACMSGEN field QTI_USERNAME.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/RETRY_TIMER=value
This qualifier corresponds to and updates the ACMSGEN field QTI_RETRY_
TIMER. Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes
the current value to be modified for the running system. The /STORED qualifier
causes the specified value to be stored in the current ACMSGEN file.

/STORED
This qualifier causes ACMSGEN field updates to be written and saved in the
current ACMSGEN file. The /STORED qualifier cannot be specified on the
same command as the /ACTIVE qualifier. If neither is specified, the default is
/STORED.

ACMSMGR Commands 11–57

ACMSMGR SET QTI Command

/SUB_TIMEOUT=value
This qualifier corresponds to and updates the ACMSGEN field QTI_SUB_
TIMEOUT. Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier
causes the current value to be modified for the running system. The /STORED
qualifier causes the specified value to be stored in the current ACMSGEN file.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command allows you to remotely update either the running ACMS system or
the current ACMSGEN file.

The /ACTIVE and /STORED qualifiers control how updates are posted to
ACMSGEN. The /ACTIVE and /STORED qualifiers have no effect on the /AUDIT_
STATE qualifier, which is processed independently of any ACMSGEN updates.

Examples

1. $ ACMSMGR SET QTI /NODE=SPARKS/SUB_TIMEOUT=5000/ACTIVE

This command modifies the ACMSGEN field qti_sub_timeout on node
SPARKS and updates the active system only. The change is not saved in the
ACMSGEN file.

2. $ ACMSMGR SET QTI /NODE=SPARKS/SUB_TIMEOUT=5000/STORED

This command modifies the ACMSGEN field qti_sub_timeout on node
SPARKS and saves the change in the ACMSGEN file. The active system is
not updated.

11–58 ACMSMGR Commands

ACMSMGR SET SERVER Command

11.23 ACMSMGR SET SERVER

Makes modifications to servers running in ACMS applications.

Format

ACMSMGR SET SERVER [/qualifiers]

Command Qualifier Default

/APPLICATION=[*,application-name] * (all)
/CREATION_DELAY=value None
/CREATION_INTERVAL=value None
/DELETION_DELAY=value None
/DELETION_INTERVAL=value None
/LOG None
/MAX_INSTANCE=value None
/MIN_INSTANCE=value None
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/SERVER=[*,server-name] * (all)
/SP_DUMP_FLAG=

[ENABLED,DISABLED] None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/APPLICATION=application-name
The name of the application to be modified. If this qualifier is not specified,
modifications are applied to all applications.

/CREATION_DELAY=value
This qualifier updates the CREATION_DELAY for the specified server in the
running application. Updates are lost when the application is restarted.

/CREATION_INTERVAL=value
This qualifier updates the CREATION_INTERVAL for the specified server in the
running application. Updates are lost when the application is restarted.

/DELETION_DELAY=value
This qualifier updates the DELETION_DELAY for the specified server in the
running application. Updates are lost when the application is restarted.

/DELETION_INTERVAL=value
This qualifier updates the DELETION_INTERVAL for the specified server in the
running application. Updates are lost when the application is restarted.

ACMSMGR Commands 11–59

ACMSMGR SET SERVER Command

/LOG
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

/MAX_INSTANCE=value
This qualifier updates the MAX_INSTANCE limit for the specified server in the
running application. Updates are lost when the application is restarted.

/MIN_INSTANCE=value
This qualifier updates the MIN_INSTANCE limit for the specified server in the
running application. Updates are lost when the application is restarted.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/SERVER=server-name
This qualifier specifies the name of the server to be modified. If this qualifier is
not specified, all servers in the application are modified.

/SP_DUMP_FLAG=value
This qualifier updates the SP_DUMP_FLAG for the specified server in the
running application. Updates are lost when the application is restarted.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/MOD
APPLICATION/SERVER. Any changes made to the running system are lost
when the application is restarted.

11–60 ACMSMGR Commands

ACMSMGR SET SERVER Command

Example

$ ACMSMGR SET SERVER/APPL=VR_APPL/SERVER=VR_READ_SERVER/SP_DUMP_FLAG=ENABLED

This command modifies the SP_DUMP_FLAG field for the server VR_READ_
SERVER running in the VR_APPL application.

ACMSMGR Commands 11–61

ACMSMGR SET TRAP Command

11.24 ACMSMGR SET TRAP

Updates records in the Trap table.

Format

ACMSMGR SET TRAP [/qualifiers]

Command Qualifier Default

/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] E
/TRAP_MIN=value -1
/TRAP_MAX=value -1
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]
This required qualifier specifies the entity or entities for which a trap should be
set.

/NAME=[*, entity-name]
This qualifier specifies particular instances of an entity. Wildcards (*) are allowed
in names.

For the MGR entity, this field should always be set to asterisk (*).

For ACC, CP, QTI, and TSC entity types, the entity name is the process name.
For the EXC entity type, the entity name is the name of the application (for
example, VR_APPL).

The default is all (*).

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

11–62 ACMSMGR Commands

ACMSMGR SET TRAP Command

/PARAMETER=[EVENT_SEVERITY, EXISTS]
This parameter specifies the field that should be monitored.

• EVENT_SEVERITY

Internal Remote Manager events are to be monitored. The Remote Manager
logs internal events in the Remote Manager log. (See Section 11.35 and
Section 4.7 for discussions of the Remote Manager log.) Traps can be
generated based on the severity levels of these events.

• EXISTS

Process existence is to be monitored. Traps are generated if the associated
entity type and name either starts or stops.

/SEVERITY=[I, W, E, F]
This qualifier specifies the severity to be associated with the trap. Severity codes
are embedded in the trap message and must be parsed by the trap receiver.
Severities are informational (I), warning (W), error (E), or fatal (F).

/TRAP_MIN=value
This qualifier specifies the minimum allowable value for the parameter being
monitored. A trap is generated if the parameter value is less than the minimum.
See Section 9.14.2 for a list of valid values.

/TRAP_MAX=value
This qualifier specifies the maximum allowable value for the parameter being
monitored. A trap is generated if the parameter value is greater than the
maximum. See Section 9.14.2 for a list of valid values.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

When updating trap records, the combination of entity, name, and parameter
must exactly match a record in the Trap table.

Changes become active as soon as they are added to the Trap table.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and
maximums. See Section 9.14.3 for a description of the trap message generated.

Example

$ ACMSMGR SET TRAP /ENT=QTI/PARAM=EXISTS/MAX=0

This command causes an SNMP trap to be generated whenever the QTI process
is started if the SNMP interface is running.

ACMSMGR Commands 11–63

ACMSMGR SET TSC Command

11.25 ACMSMGR SET TSC

Makes modifications to the ACMS terminal subsystem.

Format

ACMSMGR SET TSC [/qualifiers]

Command Qualifier Default

/ACTIVE /STORED
/ASTLM=value‡ None. See /process-quota.
/BIOLM=value‡ None. See /process-quota.
/BYTLM=value‡ None. See /process-quota.
/CP_PRIORITY=value None
/CP_SLOTS=value None
/CP_USERNAME=user-name None
/DIOLM=value‡ None. See /process-quota.
/ENQLM=value‡ None. See /process-quota.
/FILLM=value‡ None. See /process-quota.
/LOG None
/MAX_LOGINS=value None
/MAX_TTS_CP=value None
/MIN_CPIS=value None
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/PERM_CPS=value None
/PGFLQUOTA=value‡ None. See /process-quota.
/STORED /STORED
/TQELM=value‡ None. See /process-quota.
/TSC_PRIORITY=value None
/TSC_USERNAME=user-name None
/USER=user-name Translation of logical ACMS$MGMT_USER
/WSDEFAULT=value‡ None. See /process-quota.
/WSEXTENT=value‡ None. See /process-quota.
/WSQUOTA=value‡ None. See /process-quota.

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/process-quota=value
These qualifiers correspond to and update the related process quota fields in
the system user authorization (SYSUAF) record for the user specified by /TSC_
USERNAME. Updated quota values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process
quota fields, the /ACTIVE qualifier cannot be specified. The /STORED qualifier
is the default and causes the specified values to be stored in the current
SYSUAF.DAT file.

‡ Only for use on systems running ACMS Version 4.4 or higher.

11–64 ACMSMGR Commands

ACMSMGR SET TSC Command

For information on using AUTHORIZE to modify process quotas, see the
OpenVMS System Manager’s Manual. For more information about the individual
quotas and their values, see OpenVMS System Management Utilities Reference
Manual: A–L or access the online help for AUTHORIZE.

/ACTIVE
This qualifier causes dynamic ACMSGEN field values to be updated from the
current ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same
command with the /STORED qualifier. If neither is specified, the default is
/STORED. If /ACTIVE is specified, no updates are written to the file.

/CP_PRIORITY=value
This qualifier corresponds to and updates the ACMSGEN field CP_PRIORITY.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/CP_SLOTS=value
This qualifier corresponds to and updates the ACMSGEN field CP_SLOTS.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/CP_USERNAME=user-name
This qualifier corresponds to and updates the ACMSGEN field CP_USERNAME.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/LOG
This qualifier causes status information for the current SET transaction to be
displayed to the terminal (SYS$OUTPUT). This qualifier is useful when setting
multiple values; a separate status message is displayed for each value that is set.

/MAX_LOGINS=value
This qualifier corresponds to and updates the ACMSGEN field MSS_MAX_
LOGINS. As this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes
the current value to be modified for the running system. The /STORED qualifier
causes the value specified to be stored in the current ACMSGEN file.

/MAX_TTS_CP=value
This qualifier corresponds to and updates the ACMSGEN field MAX_TTS_CP.
Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the
current value to be modified for the running system. The /STORED qualifier
causes the specified value to be stored in the current ACMSGEN file.

/MIN_CPIS=value
This qualifier corresponds to and updates the ACMSGEN field MIN_CPIS.
Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the
current value to be modified for the running system. The /STORED qualifier
causes the specified value to be stored in the current ACMSGEN file.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names

ACMSMGR Commands 11–65

ACMSMGR SET TSC Command

(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/PERM_CPS=value
This qualifier corresponds to and updates the ACMSGEN field PERM_CPS.
Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the
current value to be modified for the running system. The /STORED qualifier
causes the specified value to be stored in the current ACMSGEN file.

/STORED
This qualifier causes ACMSGEN field updates to be written and saved in the
current ACMSGEN file. The /STORED qualifier cannot be specified on the
same command as the /ACTIVE qualifier. If neither is specified, the default is
/STORED.

/TSC_PRIORITY=value
This qualifier corresponds to and updates the ACMSGEN field TSC_PRIORITY.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/TSC_USERNAME=user-name
This qualifier corresponds to and updates the ACMSGEN field TSC_USERNAME.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be
specified with this qualifier. The /STORED qualifier causes the specified value to
be stored in the current ACMSGEN file.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command provides the ability to remotely update either the running ACMS
system or the current ACMSGEN file.

The /ACTIVE and /STORED qualifiers control how updates are posted to
ACMSGEN.

11–66 ACMSMGR Commands

ACMSMGR SET TSC Command

Examples

1. $ ACMSMGR SET TSC /NODE=SPARKS/MAX_LOGINS=500/ACTIVE

This command modifies the ACMSGEN field max_logins on node SPARKS and
updates the active system only. The change is not saved in the ACMSGEN
file.

2. $ ACMSMGR SET TSC /NODE=SPARKS/MAX_LOGINS=500/STORED

This command modifies the ACMSGEN field max_logins on node SPARKS and
saves the change in the ACMSGEN file. The active system is not updated.

ACMSMGR Commands 11–67

ACMSMGR SHOW ACC Command

11.26 ACMSMGR SHOW ACC

Displays information about an ACC on one or more remote nodes.

Format

ACMSMGR SHOW ACC [/qualifiers]

Command Qualifier Default

/ACTIVE See Notes.
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ERROR, /ID, /POOL,

or /RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE
When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN
field values to be displayed. /ACTIVE is effective only when used with the
/CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL). Note that OpenVMS process quota and SYSGEN parameter information
is only shown when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]
This qualifier causes data for only the specified class to be displayed. The default
is to display information for all classes.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

11–68 ACMSMGR Commands

ACMSMGR SHOW ACC Command

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/STORED
When specified with the /BRIEF qualifier, this qualifier causes field values from
the ACMSGEN file (not those active in memory) to be displayed. The /STORED
qualifier is effective only when used with the /CONFIG qualifier. If /BRIEF is
not specified, or if /FULL is specified, this qualifier has no effect (both active and
stored values are displayed).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about the ACC on the target node. The
/BRIEF and /FULL qualifiers control the format ofinformation to be displayed. To
display OpenVMS process quota and SYSGEN parameter information, use the
/FULL qualifier.

See Section 9.2 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the ACC. The Config Class field
indicates whether or not information is being collected for that class.

Examples

1. $ ACMSMGR SHOW ACC /CONFIG /NODE=GOCROW,VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 ACC Table Display Time: 18-APR-2001 13:59:06.99

A Config Audit Max Mss Mss Proc Mss Mss WS TWS
Node S Class State Appl Max Obj Pool Poolsize Maxbuf Poolsize Poolsize

------ - ------- ------- ---- ------- -------- -------- ------ -------- --------
gocrow A enabled enabled 10 1006 512 4096 1544 256 1440
vlcrow A enabled enabled 10 1006 512 2048 1544 256 1440

This command displays ACC configuration information from nodes GOCROW and
VLCROW. Authorization is performed for the user specified by the logical name

ACMSMGR Commands 11–69

ACMSMGR SHOW ACC Command

ACMS$MGMT_USER, or by proxy if the logical is not defined. Only summary
configuration information is displayed because neither the /BRIEF nor /FULL
qualifier was supplied.

2. $ ACMSMGR SHOW ACC /NODE=VLCROW /USER=JONES

ACMS Remote Management -- Command line utility

ACMS V5.0 ACC Table Display Time: 19-APR-2001 13:59:04.38

==

Node IDENTIFICATION
-------- ---
vlcrow ID Class Collection State enabled

Version V5.0
Process Name ACMS01ACC001000
PID 37C0024F
User Name LT$ACC_V31
Start Time 18-APR-2001 14:49:15.76
End Time (null)

Node CONFIGURATION Active Stored
-------- --------------------------------- --------------- -------------
vlcrow Config Class Collection State enabled

System Auditing State enabled
ACC Running State started
ACC Username LT$ACC_V31 LT$ACC_V31
ACC Base Priority 4 4
MSS Net Retry Timer (D) (seconds) 10 10
Max Applications 10 10
MSS Max Objects 1006 1006
MSS Maxbuf [Msg Buffer] (bytes) 1544 1544
MSS Process Pool Size (pagelets) 512 512
MSS Pool Size [Shared] (pagelets) 2048 2048
WS Pool Size (pagelets) 256 256
WSC Pool Size (pagelets) 128 128
TWS Pool Size (pagelets) 1440 1440
TWSC Pool Size (pagelets) 169 169
Username Default (D) LTU_ACMSDEF LTU_ACMSDEF
Node Name (ACMSGEN) (DECnet node) VLCROW VLCROW
Working Set Default 1744 1744
Working Set Extent 300000 300000
Working Set Quota 4000 4000
AST Limit 500 500
Byte Limit 497632 497632
Direct I/O Limit 500 500
Buffered I/O Limit 500 500
Enqueue Limit 3000 3000
File Limit 500 500
Page File Quota 100000 100000
Timer Queue Limit 20 20
Channel Count 256 256
Global Sections 2000 2000
Global Pages 1118076 1118076
Global Page File 60000 60000

Node RUNTIME
-------- ---
vlcrow Runtime Class Collection State enabled

DECnet Object started

11–70 ACMSMGR Commands

ACMSMGR SHOW ACC Command

Gauges Current Max Limit Max Time
--------------------------------- -------- ------ ------- ------------------------
Users: Total 4 85 (null)
Users: Local 4 20 (null)
Users: Remote 0 0 (null)
Applications 1 1 20 18-APR-2001 14:49:49.19

Number of application starts 6

Process Quotas Current Max Limit Max Time
--------------------------- ----------- ---------- ------- ------------------------
Working Set Size 6544 6544 300000 18-APR-2001 14:49:15.76
AST Limit 5 (0%) 5 (0%) 500 18-APR-2001 14:49:15.76
Byte Limit 1792 (0%) 3648 (0%) 1775409 18-APR-2001 14:49:15.76
Direct I/O Limit 0 (0%) 1 (0%) 15000 18-APR-2001 14:49:15.76
Buffered I/O Limit 2 (0%) 3 (0%) 10000 18-APR-2001 14:49:15.76
Enqueue Limit 2 (0%) 2 (0%) 2000 18-APR-2001 14:49:15.76
File Limit 3 (0%) 3 (0%) 1001 18-APR-2001 14:49:15.76
Page File Quota 7056 (1%) 7056 (1%) 500000 18-APR-2001 14:49:15.76
Timer Queue Limit 4 (0%) 4 (0%) 500 18-APR-2001 14:49:15.76
Channel Count 29 (11%) 31 (12%) 256 18-APR-2001 14:49:15.76

Node POOL
-------- --
vlcrow Pool Class Collection State enabled

MSS Gauge Current Max Time
--------------------------------- --------- ------ -----------------------
MSS Objects 252 432 18-APR-2001 14:49:15.76

MSS Maxbuf Message Counters Current Time
--------------------------------- ---------------- -----------------------
MSS Msg Size 0 to 1024 bytes 157
MSS Msg Size 1025 to 2048 bytes 0
MSS Msg Size 2049 to 4096 bytes 0
MSS Msg Size 4097 to 8192 bytes 0
MSS Msg Size 8193 to 16384 bytes 0
MSS Msg Size 16385 to 32768 bytes 0
MSS Msg Size 32769 to 65536 bytes 0
MSS Message Counter Overflow Resets 0 (null)

MSS Process Pool Pct Time
--- ------ ------------------------
Pool Size 262144
Current Free (bytes) 255312 (97%)
Minimum Free (bytes) 255056 (97%) 18-APR-2001 15:00:17.30
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 19-APR-2001 13:59:03.25
Allocation Failures 0
Garbage Collections 0

MSS Shared Pool Pct Time
--- ------ ------------------------
Pool Size 1048576
Current Free (bytes) 973176 (92%)
Minimum Free (bytes) 948480 (90%) 18-APR-2001 16:22:58.01
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 19-APR-2001 13:59:03.25
Allocation Failures 0
Garbage Collections 0

WS/TWS Pools (for all EXCs) Current Max Time
--------------------------------- --------- ------ -----------------------
TWS Pool Size Total (pagelets) 3520 3520 18-APR-2001 14:49:15.76
TWSC Pool Size Total (pagelets) 500 500 18-APR-2001 14:49:15.76
WS Pool Largest Used (bytes) 512 512 18-APR-2001 14:49:15.76
WSC Pool Largest Used (bytes) 544 544 18-APR-2001 14:49:15.76
TWS Pool Largest Used (bytes) 8192 8192 18-APR-2001 14:49:15.76
TWSC Pool Largest Used (bytes) 512 512 18-APR-2001 14:49:15.76

ACMSMGR Commands 11–71

ACMSMGR SHOW ACC Command

WS/TWS Pools (for all EXCs) Current Min Time
--------------------------------- --------- ------ -----------------------
WS Pool Minimum Free (bytes) 0 0 18-APR-2001 14:49:15.76
WSC Pool Minimum Free (bytes) 0 0 18-APR-2001 14:49:15.76
TWS Pool Minimum Free (bytes) 0 0 18-APR-2001 14:49:15.76
TWSC Pool Minimum Free (bytes) 0 0 18-APR-2001 14:49:15.76

Node ERROR
-------- --
vlcrow Error Class Collection State enabled

Error Count 1
Last Error Message FDA462
Time of Last Error 17-APR-2001 14:26:01.37

This command displays all ACC management information from node VLCROW.
Authorization is performed for user JONES. Since no class qualifiers (/ID,
/CONFIG, /RUNTIME, /POOL, /ERROR) were specified, information is returned
for all classes by default.

11–72 ACMSMGR Commands

ACMSMGR SHOW AGENT Command

11.27 ACMSMGR SHOW AGENT

Displays Collection table data for one or more Agents.

Format

ACMSMGR SHOW AGENT [/qualifiers]

Command Qualifier Default

/ACTIVE active (CONFIG class brief display)
/ALL Inactive data not displayed
/BRIEF default when a class is specified
/[CONFIG,ERROR,ID,POOL,RUNTIME]all are shown when no class is specified
/FULL full when no class is specified
/INTERVAL=value none
/OUT=[filespec,logical_name] sys$output
/PROCESS_NAME=proc_name *
/STORED active
/NODE=value none
/USER=value none

Parameters

None.

Qualifiers

/ACTIVE
When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN
field values to be displayed. /ACTIVE is effective only when used with the
/CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/ALL
This qualifier displays all available application data, even data for applications
that may no longer be running. When applications are stopped, the table row
they were occupying is marked for reuse. If the row has not been reused, the
data remains available for display. This qualifier allows that data to be displayed.
Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only
data for currently running processes is displayed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL). Available OpenVMS process quota and SYSGEN parameter information
is only displayed when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

ACMSMGR Commands 11–73

ACMSMGR SHOW AGENT Command

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/PROCESS_NAME=process-name
This qualifier causes data for only the specified process to be displayed. If this
qualifier is omitted, the default is to display information for all Agent processes.

/STORED
When specified with the /BRIEF qualifier, this qualifier causes field values from
the ACMSGEN file (not those active in memory) to be displayed. The /STORED
qualifier is effective only when used with the /CONFIG qualifier. If /BRIEF is
not specified, or if /FULL is specified, this qualifier has no effect (both active and
stored values are displayed).

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Example

$ ACMSMGR SHOW AGENT

ACMS Remote Management -- Command line utility

ACMS RM Client V5.0 Agent Table Display Time: 9-FEB-2005 10:00:15.32

===

11–74 ACMSMGR Commands

ACMSMGR SHOW AGENT Command

Node IDENTIFICATION
------------ ---

-
OHMARY ID Class Collection State enabled

Process Name _FTA37:
PID 00014D60
User Name HALL
Start Time 9-FEB-2005 09:58:47.12
End Time (null)

Node CONFIGURATION Active Stored
------------ ---------------------------------- -------------- --------------
OHMARY Config Class Collection State enabled

Working Set Default 65536 80000
Working Set Extent 262144 90000
Working Set Quota 65536 65535
AST Limit 1024 1024
Byte Limit 347184 350000
Direct I/O Limit 500 500
Buffered I/O Limit 500 500
Enqueue Limit 16776959 32767
File Limit 5000 5000
Page File Quota 1000000 1000000
Timer Queue Limit 150 150

Node RUNTIME
------------ ---

OHMARY Runtime Class Collection State enabled

Agent Running State started
DECnet Object stopped

Terminals/Tasks/User Defined Current Max Max Time
---------------------------------- -------- --------- -----------

Attached Terminals 0 0 (null)
Active Task Calls 0 1 9-FEB-

2005 09:58:50.64
Total Tasks Executed 258
User1 Time (null)
User2 Time (null)
User3 Time (null)
User1 Data 0
User2 Data 0
User3 Data 0
User4 Data 0
User5 Data 0
User6 Data 0

TDMS Current Max Max Time
---------------------------------- -------- --------- -----------

Active TDMS Requests 0 0 (null)
Active TDMS Menu Requests 0 0 (null)
Active TDMS Read Messages 0 0 (null)
Active TDMS Write Messages 0 0 (null)
Active TDMS Cancels 0 0 (null)
Total TDMS Requests 0
Total TDMS Menu Requests 0
Total TDMS Read Messages 0
Total TDMS Write Messages 0
Total TDMS Cancels 0

ACMSMGR Commands 11–75

ACMSMGR SHOW AGENT Command

DECforms Current Max Max Time
---------------------------------- -------- --------- -----------

Active DECforms Requests 0 0 (null)
Active DECforms Menu Requests 0 0 (null)
Active DECforms Enables 0 0 (null)
Active DECforms Disables 0 0 (null)
Active DECforms Cancel Requests 0 0 (null)
Active DECforms Send Requests 0 0 (null)
Active DECforms Receive Requests 0 0 (null)
Active DECforms Transceive Reqsts 0 0 (null)
Total DECforms Requests 0
Total DECforms Menu Requests 0
Total DECforms Cancel Requests 0
Total DECforms Send Requests 0
Total DECforms Receive Requests 0
Total DECforms Transceive Reqsts 0
Total DECforms Enables 0
Total DECforms Disables 0

Process Quotas Current Max Limit Max Time
------------------ ------- --------- ------ -------------------

-
Working Set Size 65536 65536 262144 9-FEB-

2005 10:00:07.13
AST Limit 11 (1%) 11(1%) 1024 9-FEB-

2005 10:00:07.13
Byte Limit 9024(2%) 9024(2%) 347184 9-FEB-

2005 10:00:07.13
Direct I/O Limit 0 (0%) 0(0%) 500 9-FEB-

2005 10:00:07.13
Buffered I/O Limit 2 (0%) 2(0%) 500 9-FEB-

2005 10:00:07.13
Enqueue Limit 1 (0%) 1(0%) 16776959 9-FEB-

2005 10:00:07.13
File Limit 5 (0%) 5(0%) 5000 9-FEB-

2005 10:00:07.13
Page File Quota 25904(2%) 25904(2%)1000000 9-FEB-

2005 10:00:07.13
Timer Queue Limit 5 (3%) 5 (3%) 150 9-FEB-

2005 10:00:07.13
Channel Count 29 29 9-FEB-

2005 10:00:07.13

Node POOL
--------- ---

OHMARY Pool Class Collection State enabled

MSS Process Pool Pct Time
-- -------- -----------

Pool Size (bytes) 7680000
Current Free (bytes) 7669200 (99%)
Minimum Free (bytes) 7669200 (99%) 9-FEB-

2005 10:00:07.13
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 9-FEB-

2005 10:00:07.13
Allocation Failures 0
Garbage Collections 0

11–76 ACMSMGR Commands

ACMSMGR SHOW AGENT Command

Node ERROR
------------ ---

OHMARY Error Class Collection State enabled

Error Count 0
Last Error Message 0
Time of Last Error (null)

This command displays the contents of the Collection table for all Agents that are
running.

ACMSMGR Commands 11–77

ACMSMGR SHOW COLLECTION Command

11.28 ACMSMGR SHOW COLLECTION

Displays Collection table data from one or more remote nodes.

Format

ACMSMGR SHOW COLLECTION [/qualifiers]

Command Qualifier Default

/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed.

Note that storage start and end times for data snapshots are only visible when
/FULL is provided. When not specified, the resulting summary display may
contain truncated values for some of the longer fields (such as, entity name and
storage location).

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

11–78 ACMSMGR Commands

ACMSMGR SHOW COLLECTION Command

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays data-collection configuration information on the target
node. The /BRIEF and /FULL qualifiers control the format of information to be
displayed.

See Section 9.7 for a discussion of each field displayed. See Section 5.1 for a
discussion of collections.

Example

$ ACMSMGR SHOW COLL /NODE=VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 Entity/Collection table Display Time: 18-APR-2001 13:59:11.31

Entity Entity Collect Collect Storage Storage
Node Wt Type Name Class State Storage Location State Interval
-------- -- -------- ----- ------- -------- ----------------- -------- ----
vlcrow 2 * * id enabled acms$mgmt_snapshot enabled 3600
vlcrow 2 * * config enabled acms$mgmt_snapshot disabled 3600
vlcrow 2 * * runtime enabled acms$mgmt_snapshot disabled 10
vlcrow 2 * * pool enabled acms$mgmt_snapshot disabled 10
vlcrow 2 * * error enabled acms$mgmt_snapshot disabled 10

This command displays the contents of the Collection table on node VLCROW,
where all collections have been enabled for all entities. Authorization is
performed for the user specified by the logical ACMS$MGMT_USER, or by
proxy if the logical is not defined. Data snapshots for the ID class have been
enabled and are set to occur every 5 minutes (3600 seconds). The data files are
stored in the file specified by the logical ACMS$MGMT_SNAPSHOT.

ACMSMGR Commands 11–79

ACMSMGR SHOW CP Command

11.29 ACMSMGR SHOW CP

Displays information about terminal command processes (CPs) on one or more
remote nodes.

Format

ACMSMGR SHOW CP [/qualifiers]

Command Qualifier Default

/ACTIVE See Notes.
/ALL Current data only.
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or

/RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/PROCESS_NAME=process-name * (all)
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE
When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN
field values to be displayed. /ACTIVE is effective only when used with the
/CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/ALL
This qualifier displays all available application data, even data for applications
that are no longer running. When applications are stopped, the CP table row
they were occupying is marked for reuse. If the row has not been reused, the
data remains available for display. This qualifier allows that data to be displayed.
Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only
data for currently running processes is displayed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL). Available OpenVMS process quota and SYSGEN parameter information
is only displayed when /FULL is specified.

11–80 ACMSMGR Commands

ACMSMGR SHOW CP Command

/[CONFIG, ERROR, ID, POOL, RUNTIME]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/PROCESS_NAME=process-name
This qualifier causes data for only the specified process to be displayed. If this
qualifier is omitted, the default is to display information for all CP processes.

/STORED
When specified with the /BRIEF qualifier, this qualifier causes field values from
the ACMSGEN file (not those active in memory) to be displayed. The /STORED
qualifier is effective only when used with the /CONFIG qualifier. If /BRIEF is
not specified, or if /FULL is specified, this qualifier has no effect (both active and
stored values are displayed).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

ACMSMGR Commands 11–81

ACMSMGR SHOW CP Command

Notes

This command displays information about ACMS command processes (CPs)
on the target node. The /BRIEF and /FULL qualifiers control the format of
information to be displayed. To display OpenVMS process quota and SYSGEN
parameter information, use the /FULL qualifier.

See Section 9.5 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the CP. The Runtime Class field
indicates whether or not information is being collected for that class.

Example

$ ACMSMGR SHOW CP/RUNTIME/NODE=VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 CP Table Display Time: 18-APR-2001 13:59:13.39

Active Active Total Total Total
Runtime Process Attached Task DECforms TDMS Task Dataset

Node Class Name Terms Calls Requests Requests Calls Hangups
------ ------- -------------- -------- ------ -------- -------- ----- -------
vlcrow enabled ACMS01CP001000 0 0 0 0 20 0
vlcrow enabled ACMS01CP002000 1 1 0 0 20 0
vlcrow enabled ACMS01CP003000 0 0 0 0 20 0
vlcrow enabled ACMS01CP004000 1 1 0 0 20 0

This command displays summary RUNTIME class information for CPs on node
VLCROW. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

11–82 ACMSMGR Commands

ACMSMGR SHOW ERROR Command

11.30 ACMSMGR SHOW ERROR‡

Displays the errors recorded in the Remote Manager error log file.

Format

ACMSMGR SHOW ERROR [/qualifiers]

Command Qualifier Default

/BEFORE=time End of file
/BRIEF Brief
/FILENAME=file-name Translation of logical ACMS$MGMT_ERR_LOG
/FULL Brief
/INTERVAL=interval Command is executed once.
/LOCAL Remote
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/SEVERITY=[I,W,E,F] All
/SINCE=time Beginning of file
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/BEFORE=time
This qualifier causes only those error log entries with a timestamp less than or
equal to the time specified by time to be returned and displayed. The format
of time is DD-MMM-YY:HH:MM:SS.nn. Partial dates and times (for example,
10-OCT or 09:00) are supported. If this qualifier is not specified, the search ends
when the end of the audit file is reached.

/BRIEF
The /BRIEF and /FULL qualifiers control the amount of information shown for
any errors. ACMSMGR SHOW ERROR defaults to the /BRIEF display.

/FILENAME=file-name
This qualifier allows log records to be displayed from a file other than the current
error log file. Specify a fully- or partially-qualified file specification.

/FULL
The /BRIEF and /FULL qualifiers control the amount of information shown for
any errors. ACMSMGR SHOW ERROR defaults to the /BRIEF display.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

ACMSMGR Commands 11–83

ACMSMGR SHOW ERROR Command

/LOCAL
This qualifier causes the ACMSMGR to open and read the error log on the
local node directly. You can use this qualifier if the Remote Manager process
is not started. The /LOCAL qualifier overrides the /NODE qualifier and the
ACMS$MGMT_SERVER_NODE logical.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/SEVERITY=[I, W, E, F]
This qualifier causes only error log entries with matching severities to be
displayed. Valid severities are informational (I), warning (W), error (E), and fatal
(F). If this qualifier is not specified, all severities are returned.

/SINCE=time
This qualifier causes only error log entries with a timestamp greater than or
equal to the time specified by time to be returned and displayed. The format of
time is DD-MMM-YY:HH:MM:SS.nn. Partial dates and times (for example, 10-
OCT or 09:00) are supported. If this qualifier is not specified, the search begins
at the beginning of the audit file.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays Remote Manager error log information. The format of the
error log entries displayed is:

node time: severity: error-text

In this format:

• node is the node from which the information was obtained.

11–84 ACMSMGR Commands

ACMSMGR SHOW ERROR Command

• time is the time the error was logged.

• severity is the severity of the error.

• error-text is the details of the error.

Example

$ ACMSMGR SHOW ERROR /NODE=VLCROW
ACMS Remote Management -- Command line utility

ACMS V5.0 Log Display Time: 18-APR-2001 13:59:13.39

Node Message
vlcrow : 17-APR-2001 10:40:41.04 : %ACMSACC-I-EVENT, Event

: -ACMSACC-E-ERRSTARTA, Error occurred starting application
: -ACMSEXC-E-

NO_TDB, Error opening TDB file !AS for task group !AS
vlcrow : 16-APR-2001 14:26:01.34 : %ACMSMSS-E-ERRNETCRE, Error creating DECnet object

: -ACMSMSS-E-
NODEMISMATCH, NODE_Name is ACMSPAR does not match DECnet node name

This command displays entries from the Remote Manager error log on node
VLCROW. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

ACMSMGR Commands 11–85

ACMSMGR SHOW EXC Command

11.31 ACMSMGR SHOW EXC

Displays information about an application on one or more remote nodes.

Format

ACMSMGR SHOW EXC [/qualifiers]

Command Qualifier Default

/ACTIVE See Notes.
/ALL Current applications only.
/APPLICATION=application-name * (all)
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ERROR, /ID, /POOL,

or /RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE
When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN
field values to be displayed. /ACTIVE is effective only when used with the
/CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/ALL
This qualifier displays all available application data, even data for applications
that may no longer be running. When applications are stopped, the EXC table
row they were occupying is marked for reuse. If the row has not been reused, the
data remains available for display. This qualifier allows that data to be displayed.
Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only
data for currently running processes is displayed.

/APPLICATION=application-name
This qualifer specifies a particular ACMS application to display. Wildcard
matching is performed on the name provided; use of asterisks (*) is allowed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to

11–86 ACMSMGR Commands

ACMSMGR SHOW EXC Command

/FULL). Available OpenVMS process quota and SYSGEN parameter information
is only displayed when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically every interval
seconds. Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is
not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/STORED
When specified with the /BRIEF qualifier, this qualifier causes field values from
the ACMSGEN file (not those active in memory) to be displayed. The /STORED
qualifier is effective only when used with the /CONFIG qualifier. If /BRIEF is
not specified, or if /FULL is specified, this qualifier has no effect (both active and
stored values are displayed).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about ACMS applications on the target
node. The /BRIEF and /FULL qualifiers control the format of information to
be displayed. To display OpenVMS process quota and SYSGEN parameter
information, use the /FULL qualifier.

See Section 9.7 for a discussion of each field displayed.

ACMSMGR Commands 11–87

ACMSMGR SHOW EXC Command

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the application. The ID Class
field indicates whether or not information is being collected for that class.

Example

$ ACMSMGR SHOW EXC/ID

ACMS Remote Management -- Command line utility

ACMS V5.0 EXC Table Display Time: 18-APR-2001 13:59:09.33

ID
Node Class PID Process Name Start Time Application Name

------ ------- -------- --------------- ----------------------- --------------------------
vlcrow enabled 37C0025A ACMS01EXC001000 18-APR-2001 14:49:49.22 LDT_APPL_A
gocrow enabled 38000249 ACMS01EXC001000 18-AUG-2001 15:07:23.51 LDT_APPL_B

This command displays summary IDENTIFICATION class information for all
applications on the nodes specified by the logical name ACMS$MGMT_SERVER_
NODE. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

11–88 ACMSMGR Commands

ACMSMGR SHOW FILTER Command

11.32 ACMSMGR SHOW FILTER‡

Displays the errors currently being filtered on one or more nodes.

Format

ACMSMGR SHOW FILTER [/qualifiers]

Command Qualifier Default

/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

ACMSMGR Commands 11–89

ACMSMGR SHOW FILTER Command

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays all system errors currently being filtered for the specified
node or nodes.

See Section 5.5 for information on working with error logs and error filtering.

Example

$ ACMSMGR SHOW FILTER /NODE=VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 ACMS Error Filter Table Display Time: 18-APR-2001 13:59:09.33

Node Filtered Message Name (Code)
------ --
VLCROW ACMSACC-W-AUDSYSSTARTS (FD8748)
VLCROW SYSTEM-W-TOOMUCHDATA (298)
VLCROW SYSTEM-W-NOMOREREG (AE8)

This command displays the current errors being filtered for node VLCROW. When
generated by an ACMS process on node VLCROW, these errors are not relayed to
the Remote Manager.

11–90 ACMSMGR Commands

ACMSMGR SHOW GROUP Command

11.33 ACMSMGR SHOW GROUP

Displays information about one or more ACMS task groups on one or more nodes.

Format

ACMSMGR SHOW GROUP [/qualifiers]

Command Qualifier Default

/APPLICATION=application-name * (all)
/[BRIEF,FULL] /FULL if no class qualifier (/ID or /POOL)

is specified. Otherwise, /BRIEF.
/GROUP=group-name * (all)
/[ID,POOL] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/APPLICATION=application-name
This qualifer specifies a particular ACMS application to display. Wildcard
matching is performed on the name provided; use of asterisks (*) is allowed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information
to be displayed. If no class qualifier (/ID or /POOL) is specified, this qualifier is
ignored and all details are displayed (equivalent to /FULL). If a class qualifier is
used on the command, the default action provides a brief format display. Using
/FULL with a class qualifier produces a full format display.

/GROUP=group-name
This qualifier specifies a particular ACMS task group to display. Wildcard
matching is performed on the name provided; use of asterisks (*) is allowed.

/[ID, POOL]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

ACMSMGR Commands 11–91

ACMSMGR SHOW GROUP Command

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about ACMS application task groups on the
target node. The /BRIEF and /FULL qualifiers control the format of information
to be displayed. To display OpenVMS process quota and SYSGEN parameter
information, use the /FULL qualifier.

See Section 9.13 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the task group. The Pool Class
field indicates whether or not information is being collected for that class.

Example

$ ACMSMGR SHOW GROUP/POOL

ACMS Remote Management -- Command line utility

ACMS V5.0 Task Group Table Display Time: 18-APR-2001 13:59:36.35

11–92 ACMSMGR Commands

ACMSMGR SHOW GROUP Command

Pool Application -TWS Pool Free- -TWSC Pool Free-
Node Class Name Task Group Name Current Minimum Current Mininum

------ -------- ----------- --------------- -------- --------- ------- ---------
VLCROW enabled LDT_APPL_A TEST_GRP01 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A TLOAD001_GRP 97 % 97 % 98 % 98 %
VLCROW enabled LDT_APPL_A DBMS_LOAD_GRP 99 % 99 % 99 % 99 %
VLCROW enabled LDT_APPL_A RDB_LOAD_GRP 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A RMSR_GRP 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A TCT_ LDT_GROUP 99 % 90 % 98 % 95 %
VLCROW enabled LDT_APPL_A AT_TT_GROUP 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A RI_FMS 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A RI_SMG 99 % 99 % 99 % 99 %
VLCROW enabled LDT_APPL_A VF_GROUP 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A CS_GROUP 99 % 99 % 99 % 97 %
VLCROW enabled LDT_APPL_A DT_GROUP 96 % 95 % 92 % 89 %
VLCROW enabled LDT_APPL_A VF_V32_GROUP 99 % 99 % 98 % 97 %
VLCROW enabled LDT_APPL_A DCL_CLI_GROUP 99 % 99 % 99 % 98 %
VLCROW enabled LDT_APPL_A DETASK_GROUP 99 % 99 % 99 % 98 %

This command displays summary POOL class information for all task groups
in all applications on the node specified by the logical name ACMS$MGMT_
SERVER_NODE. Authorization is performed for the user specified by the logical
name ACMS$MGMT_USER, or by proxy if the logical is not defined.

ACMSMGR Commands 11–93

ACMSMGR SHOW INTERFACE Command

11.34 ACMSMGR SHOW INTERFACE

Displays Remote Manager interface (RPC or SNMP) information for a Remote
Manager process on one or more nodes.

Format

ACMSMGR SHOW INTERFACE [/qualifiers]

Command Qualifier Default

/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

11–94 ACMSMGR Commands

ACMSMGR SHOW INTERFACE Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

The ACMS Remote Manager supports two interfaces: RPC and SNMP. This
command displays the running and enabled states of each interface, along with
some counter and status information. See Section 9.8 for a discussion of each
field displayed.

Example

$ ACMSMGR SHOW INTERFACE /NODE=VLCROW,GOCROW /USER=JONES

ACMS Remote Management -- Command line utility

ACMS V5.0 Interfaces Display Time: 18-APR-2001 13:59:15.51

Enabled Running Get Set Alarms Time Last
Node Interface State State Requests Requests Sent Alarm Sent
------ --------- ------- ------- -------- -------- ------ -----------------------
vlcrow rpc enabled started 987 0 0 17-NOV-1858 00:00:00.00
vlcrow snmp enabled started 0 0 0 17-NOV-1858 00:00:00.00
gocrow rpc enabled started 964 0 0 17-NOV-1858 00:00:00.00
gocrow snmp enabled started 0 0 0 17-NOV-1858 00:00:00.00

This command displays information for the Remote Manager interfaces on nodes
VLCROW and GOCROW. Authorization is performed for user JONES.

ACMSMGR Commands 11–95

ACMSMGR SHOW LOG Command

11.35 ACMSMGR SHOW LOG

Displays Remote Manager log entries for a server on one or more nodes.

Format

ACMSMGR SHOW LOG [/qualifiers]

Command Qualifier Default

/BEFORE=time End of file
/FACILITY=facility All
/FILENAME=file-name Translation of logical ACMS$MGMT_LOG
/INTERVAL=interval Command is executed once.
/LOCAL Remote
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/SEVERITY=[I,W,E,F] All
/SINCE=time Beginning of file
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/BEFORE=time
This qualifier causes only audit log entries with a timestamp less than or equal
to the time specified by time to be returned and displayed. The format of time is
DD-MMM-YY:HH:MM:SS.nn. Partial dates and times (for example, 10-OCT or
09:00) are supported. If this qualifier is not specified, the search ends when the
end of the audit file is reached.

/FACILITY=[DCL, LOG, MGR, MSG_PROC, PROCMON, RPC, SEC, SNAP, SNMP,
TRAP]
This qualifier causes only audit log entries with matching facilities to be
displayed. If this qualifier is not specified, all facilities are returned.

/FILENAME=file-name
This qualifier allows log records to be displayed from a file other than the current
log file. Specify a fully or partially qualified file specification.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/LOCAL
This qualifier causes the ACMSMGR to open and read the audit log on the
local node directly. You can use this qualifier if the Remote Manager process
is not started. The /LOCAL qualifier overrides the /NODE qualifier and the
ACMS$MGMT_SERVER_NODE logical.

11–96 ACMSMGR Commands

ACMSMGR SHOW LOG Command

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/SEVERITY=[I, W, E, F]
This qualifier causes only audit log entries with matching severities to be
displayed. Valid severities are informational (I), warning (W), error (E), and fatal
(F). If this qualifier is not specified, all severities are returned.

/SINCE=time
This qualifier causes only audit log entries with a timestamp greater than or
equal to the time specified by time to be returned and displayed. The format of
time is DD-MMM-YY:HH:MM:SS.nn. Partial dates and times (for example, 10-
OCT or 09:00) are supported. If this qualifier is not specified, the search begins
at the beginning of the audit file.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays Remote Manager audit file information. The format of
the audit entries displayed is:

node time: facility: severity: error-text

In this format:

• node is the node from which the information was obtained.

• time is the time the entry was logged.

• facility is the facility that generated the entry.

• severity is the severity of the entry.

ACMSMGR Commands 11–97

ACMSMGR SHOW LOG Command

• error-text is the details of the entry.

Examples

1. $ ACMSMGR SHOW LOG /NODE=VLCROW /SINCE="20-MAR-2001 11:00" -
_$ /BEFORE="20-MAR-2001 12:00"

ACMS Remote Management -- Command line utility

ACMS V5.0 Log Display Time: 18-APR-2001 13:59:17.45

Node Message
vlcrow 20-MAR-2001 11:00:37.15 : log: i : Log opened
vlcrow 20-MAR-2001 11:02:29.43 : msg_proc: i : EXC shutdown. Attempting to

unmap application global section for ACMS01EXC001000
vlcrow 20-MAR-2001 11:02:29.43 : msg_proc: i : Application global section

unmapped for ACMS01EXC001000
vlcrow 20-MAR-2001 11:02:29.43 : msg_proc: i : EXC shutdown processing

complete for ACMS01EXC001000
vlcrow 20-MAR-2001 11:02:35.18 : msg_proc: i : CP process shutdown message

received for ACMS01CP001000
vlcrow 20-MAR-2001 11:02:38.40 : msg_proc: i : CP process shutdown message

received for ACMS01CP004000
vlcrow 20-MAR-2001 11:02:38.40 : msg_proc: i : CP process shutdown message

received for ACMS01CP003000
vlcrow 20-MAR-2001 11:02:38.40 : msg_proc: i : CP process shutdown message

received for ACMS01CP002000
vlcrow 20-MAR-2001 11:02:39.23 : msg_proc: i : TSC process shutdown message

received for ACMS01TSC001000
vlcrow 20-MAR-2001 11:02:41.93 : msg_proc: i : ACC process shutdown message

received for ACMS01ACC001000
vlcrow 20-MAR-2001 11:02:42.05 : procmon: w : ACC process is absent after

being present.
vlcrow 20-MAR-2001 11:03:00.23 : msg_proc: i : ACC process startup message

received for ACMS01ACC001000
vlcrow 20-MAR-2001 11:03:00.23 : msg_proc: e : Failure getting current

collection states. Ignoring process ACMS01ACC001000
vlcrow 20-MAR-2001 11:03:03.93 : msg_proc: i : TSC process startup message

received for ACMS01TSC001000
vlcrow 20-MAR-2001 11:03:10.03 : msg_proc: i : CP process startup message

received for ACMS01CP001000
vlcrow 20-MAR-2001 11:03:10.04 : msg_proc: i : CP process startup message

received for ACMS01CP002000
vlcrow 20-MAR-2001 11:03:10.04 : msg_proc: i : CP process startup message

received for ACMS01CP004000
vlcrow 20-MAR-2001 11:03:10.05 : msg_proc: i : CP process startup message

received for ACMS01CP003000
vlcrow 20-MAR-2001 11:03:31.87 : msg_proc: i : EXC startup. Attempting to map

application global section for ACMS01EXC001000
vlcrow 20-MAR-2001 11:03:31.87 : msg_proc: i : EXC startup processing complete

for ACMS01EXC001000
vlcrow 20-MAR-2001 11:03:51.28 : sec: w : Operator access attempt by user

vlcrow.zko.dec.com::LT_SUT [305,3] for function ACMSMGMT_STOP
vlcrow 20-MAR-2001 11:03:51.28 : rpc: e : Call to mgmt_shutdown complete
vlcrow 20-MAR-2001 11:03:51.28 : rpc: f : svc_run returned!
vlcrow 20-MAR-2001 11:03:51.48 : procmon: f : Failure waiting on

mgmt$x_proc_mon_cond_var
vlcrow 20-MAR-2001 11:03:51.50 : mgr: w : Rejected request to stop RPC

interface when it is already stopped.
vlcrow 20-MAR-2001 11:04:00.12 : log: i : Log opened
vlcrow 20-MAR-2001 11:04:02.08 : procmon: e : Failure obtaining current

collection states. Bypassingqti
vlcrow 20-MAR-2001 11:04:02.63 : msg_proc: i : Message proc thread

initializing
vlcrow 20-MAR-2001 11:04:02.63 : msg_proc: i : Message proc thread starting

11–98 ACMSMGR Commands

ACMSMGR SHOW LOG Command

vlcrow 20-MAR-2001 11:04:02.63 : msg_proc: i : Message proc thread executing
vlcrow 20-MAR-2001 11:04:03.14 : sec: e : Failure obtaining uaf info for

ACMS$SNMP
vlcrow 20-MAR-2001 11:04:03.20 : sec: e : %RMS-E-RNF, record not found
vlcrow 20-MAR-2001 11:04:03.20 : sec: e : Account verification failed for

ACMS$SNMP user

vlcrow 20-MAR-2001 11:25:53.20 : msg_proc: i : CP process shutdown message
received for ACMS01CP001000

vlcrow 20-MAR-2001 11:25:53.72 : msg_proc: i : CP process shutdown message
received for ACMS01CP003000

vlcrow 20-MAR-2001 11:25:53.72 : msg_proc: i : CP process shutdown message
received for ACMS01CP002000

vlcrow 20-MAR-2001 11:25:53.72 : msg_proc: i : CP process shutdown message
received for ACMS01CP004000

vlcrow 20-MAR-2001 11:26:07.51 : msg_proc: i : CP process shutdown message
received for ACMS01CP002000

vlcrow 20-MAR-2001 11:26:38.34 : msg_proc: i : TSC process shutdown message
received for ACMS01TSC001000

This command displays entries from the Remote Manager log on node
VLCROW. Only entries that were logged between 11:00 AM and 12:00 PM
on March 20, 2001, are displayed. Authorization is performed for the user
specified by the logical name ACMS$MGMT_USER, or by proxy if the logical
is not defined.

2. $ ACMSMGR SHOW LOG /SINCE=20-MAR /BEFORE=21-MAR

ACMS Remote Management -- Command line utility

ACMS V5.0 Log Display Time: 18-APR-2001 13:59:20.12

Node Message
local 20-MAR-2001 15:13:23.47 : msg_proc: i : CP process shutdown message

received for ACMS01CP001000
local 20-MAR-2001 15:13:25.57 : msg_proc: i : CP process shutdown message

received for ACMS01CP004000
local 20-MAR-2001 15:13:25.88 : msg_proc: i : CP process shutdown message

received for ACMS01CP002000
local 20-MAR-2001 15:13:41.77 : msg_proc: i : CP process shutdown message

received for ACMS01CP003000
local 20-MAR-2001 15:14:14.16 : msg_proc: i : CP process startup message

received for ACMS01CP001000
local 20-MAR-2001 15:14:14.87 : msg_proc: i : CP process startup message

received for ACMS01CP002000
local 20-MAR-2001 16:55:50.92 : log: i : Log opened
local 20-MAR-2001 16:55:53.44 : msg_proc: i : Message proc thread

initializing
local 20-MAR-2001 16:55:53.44 : msg_proc: i : Message proc thread starting
local 20-MAR-2001 16:55:53.44 : msg_proc: i : Message proc thread executing
local 20-MAR-2001 16:55:54.49 : sec: f : ACMS$SNMP user has been granted

no rights.
local 20-MAR-2001 16:56:44.20 : sec: w : User does not hold the proper

rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 16:56:44.20 : rpc: w : Security check failed
local 20-MAR-2001 17:02:35.17 : sec: w : User does not hold the proper

rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 17:02:35.17 : rpc: w : Security check failed
local 20-MAR-2001 17:05:16.46 : sec: w : User does not hold the proper

rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 17:05:16.46 : rpc: w : Security check failed
local 20-MAR-2001 17:05:20.53 : sec: w : User does not hold the proper

rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 17:05:20.53 : rpc: w : Security check failed
local 20-MAR-2001 17:46:22.40 : msg_proc: i : ACC process startup message

ACMSMGR Commands 11–99

ACMSMGR SHOW LOG Command

received for ACMS01ACC001000
local 20-MAR-2001 17:46:22.42 : msg_proc: e : Failure getting current

collection states. Ignoring process ACMS01ACC001000
local 20-MAR-2001 17:46:22.85 : procmon: e : Failure obtaining current

collection states. Bypassingtsc
local 20-MAR-2001 17:46:22.85 : procmon: e : Failure obtaining current

collection states. Bypassingqti
local 20-MAR-2001 17:46:25.92 : msg_proc: i : TSC process startup message

received for ACMS01TSC001000

This command displays entries from the Remote Manager log on node
VLCROW. Only entries that were logged between March 20 and 21, 2001,
are displayed. Authorization is performed for the user specified by the logical
name ACMS$MGMT_USER, or by proxy if the logical is not defined.

11–100 ACMSMGR Commands

ACMSMGR SHOW MANAGER Command

11.36 ACMSMGR SHOW MANAGER

Displays run-time information about a Remote Manager on one or more nodes.

Format

ACMSMGR SHOW MANAGER [/qualifiers]

Command Qualifier Default

/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/[BRIEF,FULL]
Specifies the format of the data displayed. /BRIEF is the default. /FULL qualifier
displays timer information in addition to the information displayed in the brief
display.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

ACMSMGR Commands 11–101

ACMSMGR SHOW MANAGER Command

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

See Section 9.9 for a discussion of each field displayed.

Example

$ ACMSMGR SHOW MANAGER

ACMS Remote Management -- Command line utility

ACMS V5.0 Remote Manager Status Table Display Time: 18-APR-2001 13:59:22.76

Node Fields
------------- --
VLCROW Collection Count 0
VLCROW Interfaces Count 2
VLCROW Trap Count 0
VLCROW RPC UDP State 1
VLCROW RPC TCP State 1
VLCROW Timer Count 0

This command displays summary information about the Remote Manager on the
node specified by the logical name ACMS$MGMT_SERVER_NODE. Authorization
is performed for the user specified by the logical name ACMS$MGMT_USER, or
by proxy if the logical is not defined.

11–102 ACMSMGR Commands

ACMSMGR SHOW PARAMETER Command

11.37 ACMSMGR SHOW PARAMETER

Displays Remote Manager configuration parameters for a server on one or more
nodes.

Format

ACMSMGR SHOW PARAMETER [/qualifiers]

Command Qualifier Default

/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

ACMSMGR Commands 11–103

ACMSMGR SHOW PARAMETER Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

See Section 9.10 for a description of each parameter.

Example

$ ACMSMGR SHOW PARAMETER /NODE=VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 Parameters Table Display Time: 18-APR-2001 13:59:24.79

Node Parameter Value Default Min Max Units

VLCROW dcl_audit_level E E 0 F (D)
VLCROW dcl_mgr_priority 5 5 1 10
VLCROW dcl_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW event_log_priority 5 5 1 10
VLCROW error_interval 10 10 1 863999999 seconds (D)
VLCROW log_stacksize 300 300 1 2147483647 K (Vax), 8k (Alpha)
VLCROW login_creds_lifetime 60 60 1 14399999 minutes (D)
VLCROW max_logins 20 20 1 2147483647 (D)
VLCROW max_rpc_return_recs 20 20 1 2147483647
VLCROW mgr_audit_level E E 0 F (D)
VLCROW msg_proc_audit_level E E 0 F (D)
VLCROW msg_proc_priority 5 5 1 10
VLCROW msg_proc_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW mss_coll_interval 10 10 1 863999999 seconds (D)
VLCROW proc_mon_audit_level E E 0 F (D)
VLCROW proc_mon_interval 3 30 1 14399999 seconds (D)
VLCROW proc_mon_priority 5 5 1 10
VLCROW proc_mon_stacksize 300 300 1 2147483647 K (Vax), 8k (Alpha)
VLCROW proxy_creds_lifetime 60 60 1 14399999 minutes (D)
VLCROW rpc_audit_level E E 0 F (D)
VLCROW rpc_priority 5 5 1 10
VLCROW rpc_stacksize 30 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW security_audit_level E E 0 F (D)
VLCROW snap_audit_level E E 0 F (D)
VLCROW snap_priority 5 5 1 10
VLCROW snap_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW snmp_agent_time_out 10 10 1 863999999 seconds
VLCROW snmp_are_you_there 300 300 2 863999999 seconds
VLCROW snmp_audit_level E E 0 F (D)
VLCROW snmp_priority 5 5 1 10
VLCROW snmp_sel_time_out 5 5 1 863999999 seconds
VLCROW snmp_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW tcp_enabled 1 1 0 1 [0,1] 1=enabled
VLCROW timer_audit_level E E 0 F (D)
VLCROW timer_interval 30 30 1 863999999 seconds (D)
VLCROW timer_priority 5 5 1 10
VLCROW timer_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW total_entity_slots 20 20 1 2147483647
VLCROW trace_msg_wait_time 5 5 1 14399999 seconds (D)
VLCROW trace_start_wait_time 5 5 1 14399999 seconds (D)
VLCROW trap_audit_level E E 0 F (D)
VLCROW trap_priority 5 5 1 10
VLCROW trap_stacksize 300 300 1 2147483647 k (Vax), 8k (Alpha)
VLCROW udp_enabled 1 1 0 1 [0,1] 1=enabled
VLCROW vms_coll_interval 10 10 0 863999999 seconds (D)
VLCROW wksp_coll_interval 10 10 1 863999999 seconds (D)

11–104 ACMSMGR Commands

ACMSMGR SHOW PARAMETER Command

VLCROW max_agents 2 2 1 2147483647

This command displays data from the Remote Manager Parameter table on node
VLCROW. Authorization is performed on the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

ACMSMGR Commands 11–105

ACMSMGR SHOW PROCESS Command

11.38 ACMSMGR SHOW PROCESS

Displays summary data collection information for processes on one or more nodes.

Format

ACMSMGR SHOW PROCESS [/qualifiers]

Command Qualifier Default

/ALL Current processes only.
/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ALL
This qualifier displays all available application data, even data for applications
that may no longer be running. When applications are stopped, the table row
they were occupying is marked for reuse. If the row has not been reused, the
data remains available for display. This qualifier allows that data to be displayed.
Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only
data for currently running processes is displayed.

/[BRIEF,FULL]
Specifies the format of the data displayed. /BRIEF is the default and displays
data in tabular format.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

11–106 ACMSMGR Commands

ACMSMGR SHOW PROCESS Command

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays the current data-collection states for all process entry
slots. Both active and inactive process data is displayed. Inactive data is flagged
with an asterisk (*) in the first column. The following fields are displayed:

• Server Node: The node from which the information was fetched.

• Entity Type: The ACMS entity type to which the data belongs.

• PID: The OpenVMS PID of the process.

• Process Name: The process name for the process.

• Collection States: The current collection state of the process for each
class (ID, CONFIG, RUNTIME, POOL, and ERROR). Collection states
are displayed as binary values.

0 = Collection is currently disabled.

1 = Collection is currently enabled.

Previously, the SHOW PROCESS/BRIEF and SHOW PROCESS/FULL commands
displayed all collection states for entities even when some were not applicable.
You can enable/disable collection states for all classes and all entities. However,
some combinations have no effect. These states are now shown in the SHOW
PROCESS/BRIEF display as a "-", and as "N/A" for the SHOW PROCESS/FULL
command. The display for the SHOW PROCESS command in the WEB display
has also been modified.

For Task Groups, the following classes are not applicable: CONFIG, RUNTIME,
ERROR. For Servers, the following classes are not applicable: POOL, ERROR.

ACMSMGR Commands 11–107

ACMSMGR SHOW PROCESS Command

Example

$ ACMSMGR SHOW PROCESS

ACMS Remote Management -- Command line utility

ACMS V5.0 Process Table Display Time: 18-APR-2001 13:59:26.77

Server Entity Process Name -or- Application. Collection States
Node Type PID [server_name, task_group_name] ID Cfg RT Pool Err
------ ------ -------- -------------------------------------- ---- ---- ---- ---- ----
VLCROW acc 37C0024F ACMS01ACC001000 1 1 1 1 1
VLCROW tsc 37C00251 ACMS01TSC001000 1 1 1 1 1
VLCROW cp 37C00252 ACMS01CP001000 1 1 1 1 1
VLCROW cp 37C00253 ACMS01CP002000 1 1 1 1 1
VLCROW cp 37C00254 ACMS01CP003000 1 1 1 1 1
VLCROW cp 37C00255 ACMS01CP004000 1 1 1 1 1
VLCROW exc 37C0025A ACMS01EXC001000 1 1 1 1 1
VLCROW server LDT_APPL_A.TESTSRV01 1 1 1 1 1
VLCROW group LDT_APPL_A.TEST_GRP01 1 1 0 1 1

This command displays Collection state information on a per-process basis
from the node specified by the logical name ACMS$MGMT_SERVER_
NODE. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

11–108 ACMSMGR Commands

ACMSMGR SHOW QTI Command

11.39 ACMSMGR SHOW QTI

Displays information about QTIs on one or more remote nodes.

Format

ACMSMGR SHOW QTI [/qualifiers]

Command Qualifier Default

/ACTIVE See Notes.
/ALL Current process data only.
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ERROR, /ID, /POOL,

or /RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE
When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN
field values to be displayed. /ACTIVE is effective only when used with the
/CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/ALL
This qualifier displays all available QTI data, including data for processes that
are no longer running. When QTI processes are stopped, the QTI table row they
were occupying is marked for reuse. If the row has not been reused, the data
remains available for display. This qualifier allows that data to be displayed.
Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only
data for currently running processes is displayed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL). Available OpenVMS process quota and SYSGEN parameter information
is only displayed when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

ACMSMGR Commands 11–109

ACMSMGR SHOW QTI Command

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/STORED
When specified with the /BRIEF qualifier, this qualifier causes field values from
the ACMSGEN file (not those active in memory) to be displayed. The /STORED
qualifier is effective only when used with the /CONFIG qualifier. If /BRIEF is
not specified, or if /FULL is specified, this qualifier has no effect (both active and
stored values are displayed).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about the QTIs on the target nodes. The
/BRIEF and /FULL qualifiers control the format of information to be displayed.
To display OpenVMS process quota and SYSGEN parameter information, use the
/FULL qualifier.

See Section 9.11 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the QTI. The Runtime Class field
indicates whether or not information is being collected for that class.

11–110 ACMSMGR Commands

ACMSMGR SHOW QTI Command

Example

$ ACMSMGR SHOW QTI /NODE=KAZONS /RUNTIME

ACMS Remote Management -- Command line utility

ACMS V5.0 QTI Table Display Time: 18-APR-2001 13:41:11.09

Runtime Started Current Task Tasks Tasks Current Errors
Node Class Queues Tasks Retries Success Failed Submitrs Queued
------ -------- ------- ------- -------- -------- -------- -------- --------
kazons enabled 3 17 4361 14859 5783 5 1329

This command displays summary run-time information for the QTI on node
KAZONS. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

ACMSMGR Commands 11–111

ACMSMGR SHOW SERVER Command

11.40 ACMSMGR SHOW SERVER

Displays information about one or more ACMS application server types on one or
more nodes.

Format

ACMSMGR SHOW SERVER [/qualifiers]

Command Qualifier Default

/APPL=application-name * (all)
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ERROR, /ID,

or /RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/SERVER=server-name * (all)
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/APPL=application-name
Use this qualifer to specify a particular ACMS application to display. Wildcard
matching is performed on the name provided; use of asterisks (*) is allowed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information
to be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL).

/[CONFIG,ERROR,ID,RUNTIME]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

11–112 ACMSMGR Commands

ACMSMGR SHOW SERVER Command

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/SERVER=server-name
This qualifier specifies a particular ACMS application server to display. Wildcard
matching is performed on the name provided; use of asterisks (*) is allowed.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about ACMS application servers on the
target node. The /BRIEF and /FULL qualifiers control the format of information
to be displayed.

See Section 9.12 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the server. The Runtime Class
field indicates whether or not information is being collected for that class.

Example

$ ACMSMGR SHOW SERVER /NODE=VLCROW /RUNTIME

ACMS Remote Management -- Command line utility

ACMS V5.0 SER Table Display Time: 18-APR-2001 13:59:33.60

ACMSMGR Commands 11–113

ACMSMGR SHOW SERVER Command

Runtime Application Current Waiting Server Server
Node Class Name Server Name Servers Tasks Starts Failures

------ ------- ----------- -------------------- ------- ----- ------ --------
VLCROW enabled LDT_APPL_A TESTSRV01 2 0 2 0
VLCROW enabled LDT_APPL_A TESTSRV1D 0 0 3419 0
VLCROW enabled LDT_APPL_A TESTSRV2D 1 0 19 0
VLCROW enabled LDT_APPL_A TESTSRV3D 1 0 1 0
VLCROW enabled LDT_APPL_A TESTSRV05 0 0 0 0
VLCROW enabled LDT_APPL_A TLOAD001S 4 0 6 0
VLCROW enabled LDT_APPL_A TLOAD002S 1 0 1 0
VLCROW enabled LDT_APPL_A DBMSLSRV1 1 0 1 0
VLCROW enabled LDT_APPL_A DBMSLSRV2 1 0 1 0
VLCROW enabled LDT_APPL_A RDBLSRV1 1 0 44 0
VLCROW enabled LDT_APPL_A RMSRSERVR 1 0 33 0
VLCROW enabled LDT_APPL_A TCT_LDT_PROC_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A TCT_LDT_CHAIN_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A TCT_LDT_DCL_SERVER 0 0 0 0
VLCROW enabled LDT_APPL_A RI_DCL_SERVER 2 0 9 0
VLCROW enabled LDT_APPL_A RI_V3016_FMS_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A RI_V3016_RI_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A VF_V3111_SERVER 0 0 0 0
VLCROW enabled LDT_APPL_A LDT_CS_V3111_SERVER 3 0 3 0
VLCROW enabled LDT_APPL_A TESTV32_RMS_SERVER 8 0 28 0
VLCROW enabled LDT_APPL_A TESTV32_RDB_SERVER 8 0 375 0
VLCROW enabled LDT_APPL_A TESTV32_DBMS_SERVER 8 0 47 0
VLCROW enabled LDT_APPL_A TESTV32_SQL_SERVER 8 0 405 0
VLCROW enabled LDT_APPL_A TESTV32_RM_SERVER 4 0 4 0
VLCROW enabled LDT_APPL_A GEN_INPUT_SERVER 4 0 24 0
VLCROW enabled LDT_APPL_A NOOP_SERVER 4 0 4 0
VLCROW enabled LDT_APPL_A UNUSED_VF_V32 0 0 0 0
VLCROW enabled LDT_APPL_A V_SERVER_W_DCL 1 0 1 0
VLCROW enabled LDT_APPL_A I_SERVER_W_DCL 1 0 1 0
VLCROW enabled LDT_APPL_A DETASK_SERVER 2 0 3 0

This command displays summary run-time information for all servers on node
VLCROW. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined.

11–114 ACMSMGR Commands

ACMSMGR SHOW TRAP Command

11.41 ACMSMGR SHOW TRAP

Displays SNMP trap configurations for one or more nodes.

Format

ACMSMGR SHOW TRAP [/qualifiers]

Command Qualifier Default

/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

ACMSMGR Commands 11–115

ACMSMGR SHOW TRAP Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays Remote Manager SNMP trap configuration information.
SNMP traps are generated only if the SNMP interface is started. Changes to this
table take effect immediately after they are processed.

See Section 9.14 for a description of each field displayed.

Example

$ ACMSMGR SHOW TRAP

ACMS Remote Management -- Command line utility

ACMS V5.0 Trap Table Display Time: 18-APR-2001 13:59:38.69

Node Entity Entity Name Parameter Min Max Sev Alarms Alarm Time
------ ------- ----------- --------- --- --- --- ------ -----------------------
VLCROW * * exists 1 -1 i 0 17-NOV-1858 00:00:00.00

This command displays SNMP traps that have been configured on the node
specified by the logical name ACMS$MGMT_SERVER_NODE. Authorization is
performed for the user specified by the logical name ACMS$MGMT_USER, or by
proxy if the logical is not defined.

11–116 ACMSMGR Commands

ACMSMGR SHOW TSC Command

11.42 ACMSMGR SHOW TSC

Displays information about TSCs on one or more remote nodes.

Format

ACMSMGR SHOW TSC [/qualifiers]

Command Qualifier Default

/ACTIVE See Notes.
/ALL Current data only.
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or)
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE
When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN
field values to be displayed. /ACTIVE is effective only when used with the
/CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/ALL
This qualifier displays all available TSC data, including data for processes that
are no longer running. When TSC processes are stopped, the TSC table row they
were occupying is marked for reuse. If the row has not been reused, the data
remains available for display. This qualifier allows that data to be displayed.
Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only
data for currently running processes is displayed.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed. If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME)
is specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL). Available OpenVMS process quota and SYSGEN parameter information
is only displayed when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]
This qualifier causes data for only the specified class to be displayed. If this
qualifier is omitted, the default is to display information for all classes.

ACMSMGR Commands 11–117

ACMSMGR SHOW TSC Command

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/STORED
When specified with the /BRIEF qualifier, this qualifier causes field values from
the ACMSGEN file (not those active in memory) to be displayed. The /STORED
qualifier is effective only when used with the /CONFIG qualifier. If /BRIEF is
not specified, or if /FULL is specified, this qualifier has no effect (both active and
stored values are displayed).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about the TSCs on the target nodes. The
/BRIEF and /FULL qualifiers control the format of information to be displayed.
To display OpenVMS process quota and SYSGEN parameter information, use the
/FULL qualifier.

/ACTIVE is the default when the CONFIG class is being displayed.

See Section 9.15 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class
to which the data belongs has been enabled for the TSC. The Config Class field
indicates whether or not information is being collected for that class.

11–118 ACMSMGR Commands

ACMSMGR SHOW TSC Command

Examples

1. $ ACMSMGR SHOW TSC /NODE=VLCROW /CONFIG

ACMS Remote Management -- Command line utility

ACMS V5.0 TSC Table Display Time: 18-APR-2001 13:59:43.00

A Config Run CP Max Max TTS Perm Min
Node S Class State User Name Slots Logins Per CP CPs CPIs

------------ -- -------- -------- ------------ ----- ------ ------- ----- -----
VLCROW A enabled started LT$TSC_V31 20 400 20 4 0

This command displays summary Configuration class information for the TSC on
node VLCROW. Authorization is performed for the user specified by the logical
name ACMS$MGMT_USER, or by proxy if the logical is not defined. Since the
/FULL qualifier was not supplied, only summary information is displayed.

2. $ ACMSMGR SHOW TSC /NODE=VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 TSC Table Display Time: 18-APR-2001 13:59:40.62

===

Node IDENTIFICATION
------ --
VLCROW ID Class Collection State enabled

Process Name ACMS01TSC001000
PID 37C00251
User Name LT$TSC_V31
Start Time 18-APR-2001 14:49:18.98
End Time (null)

Node CONFIGURATION Active Stored
------ ---------------------------------- --------------- -------------
VLCROW Config Class Collection State enabled

TSC Running State started
TSC Username LT$TSC_V31 LT$TSC_V31
TSC Base Priority 4 4
CP Username LT$CP_V40 LT$CP_V40
CP Base Priority 4 4
CP Slots 20 20
Max Logins (D) 400 400
Max TTS per CP (D) 20 20
Permanent CPs (D) 4 4
Min CP slots (D) 0 0
Working Set Default 65008 65001
Working Set Extent 322992 90000
Working Set Quota 65536 65536
AST Limit 1999 1999
Byte Limit 1775409 1777777
Direct I/O Limit 15000 15000
Buffered I/O Limit 10000 10000
Enqueue Limit 10000 10000
Page File Quota 500000 500000
Timer Queue Limit 500 500

Node RUNTIME
------ --
VLCROW Runtime Class Collection State enabled

ACMSMGR Commands 11–119

ACMSMGR SHOW TSC Command

Gauges Current Max Limit Max Time
-------------------------------- --------- ------- ------- -----------------------
Logins 2 4 60 18-APR-2001 15:49:55.13
CP Slots Used 4 4 4 18-APR-2001 18:21:19.78
Terminals per CP (avg) 1 1 20 14-APR-2001 15:50:19.34

Process Quotas Current Max Limit Max Time
----------------------------- --------- -------- ------- -----------------------
Working Set Size 65008 65008 322992 18-APR-2001 18:21:19.78
AST Limit 4 (0%) 5 (0%) 1999 11-APR-2001 15:50:19.34
Byte Limit 0 (0%) 0 (0%) 1775409 18-APR-2001 18:21:19.78
Direct I/O Limit 0 (0%) 0 (0%) 15000 18-APR-2001 18:21:19.78
Buffered I/O Limit 2 (0%) 2 (0%) 10000 18-APR-2001 18:21:19.78
Enqueue Limit 0 (0%) 0 (0%) 10000 18-APR-2001 18:21:19.78
File Limit 1 (0%) 1 (0%) 1001 18-APR-2001 18:21:19.78
Page File Quota 6704 (1%) 6704 (1%) 500000 18-APR-2001 18:21:19.78
Timer Queue Limit 3 (0%) 3 (0%) 500 11-APR-2001 09:14:55.49
Channel Count 15 15

Node POOL
------ --
VLCROW Pool Class Collection State enabled

Process Pool Pct Time
--- ----- -----------------------
Pool Size 262144
Current Free (bytes) 259760 (99%)
Minimum Free (bytes) 259760 (99%) 19-APR-2001 13:59:32.98
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 19-APR-2001 13:59:32.98
Allocation Failures 0
Garbage Collections 0

Node ERROR
------ --
VLCROW Error Class Collection State enabled

Error Count 0
Last Error Message 0
Time of Last Error (null)

This command displays all Configuration class information for the TSC on node
VLCROW. Authorization is performed for the user specified by the logical name
ACMS$MGMT_USER, or by proxy if the logical is not defined. Since neither the
/FULL nor the /BRIEF qualifier was supplied, and no specific class was selected,
all TSC information is displayed.

11–120 ACMSMGR Commands

ACMSMGR SHOW USER Command

11.43 ACMSMGR SHOW USER

Displays Remote Manager user information for a server on one or more nodes.
Information about both proxy and nonproxy users is displayed.

Format

ACMSMGR SHOW USER [/qualifiers]

Command Qualifier Default

/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/[BRIEF,FULL]
This qualifier causes detailed information about each user to be displayed. When
the qualifier is omitted, only summary information is displayed.

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

ACMSMGR Commands 11–121

ACMSMGR SHOW USER Command

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command displays information about each user currently logged in to the
Remote Manager server. The following fields are displayed:

• Server Node: The node from which the information was obtained.

• Client Id: A unique identifier for each client.

• Username: The name of the local (server node) account to which the user is
logged in. This is the user name that is being used for authorization.

• Proxy: A flag indicating whether the user is logged in using an ACMS proxy.
A value of zero (0) indicates that the login is not proxy based; a value of 1
indicates that the login is proxy based.

• Login Node: The node from which the client logged in. This node may not be
the same as the server node.

If the /FULL qualifier is specified, the following additional information is
displayed:

• Credentials expiration: The date and time at which the user’s credentials will
expire.

• UIC: The UIC of the account from which the login was initiated.

• Proxy UIC: The UIC of the account on the server node that is used for
authorization.

Examples

1. $ ACMSMGR SHOW USERS

ACMS Remote Management -- Command line utility

ACMS V5.0 User Table Display Time: 18-APR-2001 13:59:45.09

Server Client Login
Node Id Username Proxy Node
------------ -------- ------------ ----- -----------------------------
gocrow 16 LT_SUT 1 gocrow.zko.dec.com
gocrow 17 LT_SUT 1 vlcrow.zko.dec.com
vlcrow 16 LT_SUT 1 vlcrow.zko.dec.com
vlcrow 20 LT_SUT 1 vlcrow.zko.dec.com

This command displays summary information about users who have logged in
to Remote Manager on the node specified by the logical name ACMS$MGMT_
SERVER_NODE. Authorization is performed for the user specified by the

11–122 ACMSMGR Commands

ACMSMGR SHOW USER Command

logical name ACMS$MGMT_USER, or by proxy if the logical is not defined.
In this example, all users logged in using proxy (Proxy = 1).

2. $ ACMSMGR SHOW USERS /FULL /NODE=VLCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 User Table Display Time: 18-APR-2001 13:59:47.07

Node User Information
------------- ---
VLCROW Client id 16

Username LT_SUT
Login Node vlcrow.zko.dec.com
Credentials expiration 18-APR-2002 13:59:47.07
Proxy Flag 1
UIC [208,40]
Proxy UIC [197,3]

Node User Information
------------- ---
VLCROW Client id 18

Username LT_SUT
Login Node vlcrow.zko.dec.com
Credentials expiration 18-APR-2001 14:44:01.02
Proxy Flag 1
UIC [197,3]
Proxy UIC [197,3]

This command displays all information about users who have logged in to
Remote Manager on the node specified by the logical name ACMS$MGMT_
SERVER_NODE. Authorization is performed for the user specified by the
logical name ACMS$MGMT_USER, or by proxy if the logical is not defined.
In this example, both users logged in using proxy (Proxy = 1).

ACMSMGR Commands 11–123

ACMSMGR SHOW VERSION Command

11.44 ACMSMGR SHOW VERSION‡

Displays the current version of ACMSMGR and its related software components.

Format

ACMSMGR SHOW VERSION [/qualifiers]

Command Qualifier Default

/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/INTERVAL=interval
This qualifier causes the command to be reissued automatically at a specified
interval (in seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If
this qualifier is not specified, the command is executed only once.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

‡ This command (and its qualifiers) is only for use with systems running ACMS Version
4.4 or higher.

11–124 ACMSMGR Commands

ACMSMGR SHOW VERSION Command

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Example

$ ACMSMGR SHOW VERSION /NODE=GOCROW

ACMS Remote Management -- Command line utility

ACMS V5.0 ACMS Version Display Time: 18-APR-2001 13:59:47.07

Node Version Information
------------- ---
local ACMSMGR Version ACMS V5.0

GOCROW ACMS Version V5.0
MGMT Header Version 2
MGMT EXC Header Version 2
MGMT Config File Version 2

This command displays the current version of the ACMSMGR installed locally as
well as the location and version of the related software components.

ACMSMGR Commands 11–125

ACMSMGR START EXC Command

11.45 ACMSMGR START EXC

Starts an ACMS application on one or more remote nodes.

Format

ACMSMGR START EXC [/qualifiers]

Command Qualifier Default

/APPLICATION=application-name Qualifier is required.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/APPLICATION=application-name
This required qualifier specifies a particular ACMS application to start. The full
application name must be specified.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

11–126 ACMSMGR Commands

ACMSMGR START EXC Command

Notes

This command is equivalent to the ACMSOPER command ACMS/START APPL.
This command is executed synchronously. If the command completes successfully,
the application has been started on the target nodes. If not, error messages are
displayed.

Example

$ ACMSMGR START EXC/APPL=VR_APPL/NODE=SPARKS

This command starts the VR_APPL application on node SPARKS.

ACMSMGR Commands 11–127

ACMSMGR START QTI Command

11.46 ACMSMGR START QTI

Starts an ACMS Queued Task Initiator (QTI) on one or more remote nodes.

Format

ACMSMGR START QTI [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/START QTI.
This command is executed synchronously. If the command completes successfully,
the application has been started on the target nodes. If not, error messages are
displayed.

11–128 ACMSMGR Commands

ACMSMGR START QTI Command

Example

$ ACMSMGR START QTI/NODE=SPARKS

This command starts the QTI on node SPARKS.

ACMSMGR Commands 11–129

ACMSMGR START SYSTEM Command

11.47 ACMSMGR START SYSTEM

Starts an ACMS run-time system on one or more remote nodes.

Format

ACMSMGR START SYSTEM [/qualifiers]

Command Qualifier Default

/NOAUDIT Start system with auditing enabled.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/QTI Start system without QTI running.
/NOTERMINALS Start system with TSC and CPs running.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NOAUDIT
This qualifier starts the system with auditing disabled. If this qualifier is not
specified, the system is started with auditing enabled.

There is no "/AUDIT" qualifier to start ACMS with auditing enabled. Rather as
the notes below describe, just start ACMS without the /NOAUDIT qualifier in
order for ACMS to start with auditing enabled.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/QTI
This qualifier starts the system with QTI running. If this qualifier is not
specified, the system is started with QTI in stopped state.

There is no "/NOQTI" qualifier to start ACMS with QTI stopped. Rather as the
notes below describe, just start ACMS without the /QTI qualifier in order for
ACMS to start with QTI stopped.

11–130 ACMSMGR Commands

ACMSMGR START SYSTEM Command

/NOTERMINALS
This qualifier starts the system without the TSC and CPs running. If this
qualifier is not specified, the system is started with the TSC and CPs running.

There is no "/TERMINALS" qualifier to start ACMS with the TSC and CPs
running. Rather as the notes below describe, just start ACMS without the
/NOTERMINALS qualifier in order for ACMS to start without the TSC and CPs
running.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/START SYS.
This command is executed synchronously. If the command completes successfully,
the system has been started on the target nodes. If not, error messages are
displayed.

If no qualifiers are specified with this command, the equivalent ACMSOPER
command is ACMS/START SYS/NOQTI/TERMINALS/AUDIT. In other words,
the default values for the ACMSMGR START SYS command are /AUDIT,
/TERMINALS, and /NOQTI. If you want to override a default you may use
/NOAUDIT, /NOTERMINALS, or /QTI however you may not specify any of the
defaults directly. You may only select them by leaving out the qualifier and
taking the default.

Example

$ ACMSMGR START SYSTEM/NODE=SPARKS/NOTERMINALS

This command starts the ACMS run-time system on node SPARKS, without the
QTI, TSC, or CPs running.

ACMSMGR Commands 11–131

ACMSMGR START TERMINALS Command

11.48 ACMSMGR START TERMINALS

Starts an ACMS TSC and any associated CPs on one or more remote nodes.

Format

ACMSMGR START TERMINALS [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/START
TERMINALS. This command is executed synchronously. If the command
completes successfully, the application has been started on the target nodes.
If not, error messages are displayed.

11–132 ACMSMGR Commands

ACMSMGR START TERMINALS Command

Example

$ ACMSMGR START TERMINALS/NODE=SPARKS

This command starts the TSC on node SPARKS.

ACMSMGR Commands 11–133

ACMSMGR START TRACE_MONITOR Command

11.49 ACMSMGR START TRACE_MONITOR

This command requests the Remote Manager on the target nodes to start
the ACMS$TRACE_MON process. The ACMS$TRACE_MON process is an
intermediate process used by the Remote Manager to communicate with ACMS
run-time processes to enable and disable collections.

Format

ACMSMGR START TRACE_MONITOR [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

11–134 ACMSMGR Commands

ACMSMGR START TRACE_MONITOR Command

Notes

This command requests the Remote Manager to start the ACMS$TRACE_MON
process on the target node. The ACMS$TRACE_MON process is an intermediate
process used by the Remote Manager to communicate with ACMS run-time
processes to enable and disable collections.

In general, external entities do not require a startup or shutdown request of
the trace monitor process. The Remote Manager starts the trace monitor during
process initialization and stops it during process shutdown. Additionally, the
Remote Manager starts the trace monitor anytime it is needed if it is not already
started. Once started, the trace monitor continues running until the Remote
Manager shuts down.

After issuing the start command to the trace monitor, the Remote Manager waits
for a period of up to trace_start_wait_time (a Parameter table parameter that is
dynamic and expressed in seconds). If the trace monitor fails to start during that
period, the ACMSMGR command returns an error.

Example

$ ACMSMGR START TRACE_MONITOR

This command starts the ACMS$TRACE_MON process on the node specified by
the logical name ACMS$MGMT_SERVER_NODE. Authorization is performed
for the user specified by the logical name ACMS$MGMT_USER, or based on an
ACMS proxy on the target node if the logical is not defined. If the process is
successfully started, no messages are displayed.

ACMSMGR Commands 11–135

ACMSMGR STOP EXC Command

11.50 ACMSMGR STOP EXC

Stops an ACMS application on one or more remote nodes.

Format

ACMSMGR STOP EXC [/qualifiers]

Command Qualifier Default

/APPLICATION=application-name Qualifier is required.
/CANCEL Wait for executing tasks to complete.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/APPLICATION=application-name
This required qualifier specifies a particular ACMS application to start. The
entire application name must be specified.

/CANCEL
This qualifier stops the application without waiting for currently executing tasks
to complete. If this qualifier is omitted, any tasks currently executing are allowed
to complete before the application is stopped.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

11–136 ACMSMGR Commands

ACMSMGR STOP EXC Command

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/STOP APPL.
This command is executed synchronously. If the command completes successfully,
the application has been stopped on the target nodes. If not, error messages are
displayed.

Example

$ ACMSMGR STOP EXC/APPL=VR_APPL/NODE=SPARKS

This command stops the VR_APPL application on node SPARKS.

ACMSMGR Commands 11–137

ACMSMGR STOP MANAGER Command

11.51 ACMSMGR STOP MANAGER

Stops the Remote Manager on the target nodes.

Format

ACMSMGR STOP MANAGER [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command requests an orderly shutdown of the Remote Manager process.
This command may take several minutes to complete if any of the interfaces is in
a noninterruptible state when the command is issued.

If the command fails to complete successfully, an alternative means of stopping
the Remote Manager is to use the DCL command STOP/ID.

11–138 ACMSMGR Commands

ACMSMGR STOP MANAGER Command

The Remote Manager can be restarted only by logging in to the target node and
running the ACMS$MGMT_STARTUP command procedure.

Example

$ ACMSMGR STOP MANAGER

This command stops the Remote Manager on the node specified by the logical
name ACMS$MGMT_SERVER_NODE. Authorization is performed for the user
specified by the logical ACMS$MGMT_USER, or is based on an ACMS proxy on
the target node if the logical is not defined. If the server is successfully stopped,
no messages are displayed.

ACMSMGR Commands 11–139

ACMSMGR STOP QTI Command

11.52 ACMSMGR STOP QTI

Stops an ACMS Queued Task Initiator (QTI) on one or more remote nodes.

Format

ACMSMGR STOP QTI [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/STOP QTI. This
command is executed synchronously. If the command completes successfully, the
QTI has been stopeed on the target nodes. If not, error messages are displayed.

11–140 ACMSMGR Commands

ACMSMGR STOP QTI Command

Example

$ ACMSMGR STOP QTI/NODE=SPARKS

This command stops the QTI on node SPARKS.

ACMSMGR Commands 11–141

ACMSMGR STOP SYSTEM Command

11.53 ACMSMGR STOP SYSTEM

Stops an ACMS run-time system on one or more remote nodes.

Format

ACMSMGR STOP SYSTEM [/qualifiers]

Command Qualifier Default

/CANCEL Wait for executing tasks to complete.
/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/CANCEL
This qualifier stops the ACMS run-time system without waiting for currently
executing tasks to complete. If not specified, any tasks currently executing are
allowed to complete before the application is stopped.

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

11–142 ACMSMGR Commands

ACMSMGR STOP SYSTEM Command

Notes

This command is equivalent to the ACMSOPER command ACMS/STOP SYSTEM.
This command is executed synchronously. If the command completes successfully,
the application has been stopped on the target nodes. If not, error messages are
displayed.

Example

$ ACMSMGR STOP SYS/NODE=SPARKS/CANCEL

This command stops the ACMS run-time system on node SPARKS. All currently
executing tasks, servers, and users are canceled.

ACMSMGR Commands 11–143

ACMSMGR STOP TERMINALS Command

11.54 ACMSMGR STOP TERMINALS

Stops the TSC and any related CPs on one or more remote nodes.

Format

ACMSMGR STOP TERMINALS [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/STOP
TERMINALS. This command is executed synchronously. If the command
completes successfully, the terminal subsystem has been stopped on the target
nodes. If not, error messages are displayed.

11–144 ACMSMGR Commands

ACMSMGR STOP TERMINALS Command

Example

$ ACMSMGR STOP TERMINALS/NODE=SPARKS/CANCEL

This command stops the ACMS terminal subsystem on node SPARKS.

ACMSMGR Commands 11–145

ACMSMGR STOP TRACE_MONITOR Command

11.55 ACMSMGR STOP TRACE_MONITOR

Stops the ACMS$TRACE_MON process on the target node.

Format

ACMSMGR STOP TRACE_MONITOR [/qualifiers]

Command Qualifier Default

/NODE=node-name Translation of logical ACMS$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name
This qualifier specifies a fully- or partially-qualified TCP/IP host name. This
name must match the current DECnet host name. IP addresses and host names
(or aliases) that exceed six characters or include mixed case are not allowed. For
more information on TCP/IP host names and defining aliases, see Section 2.2.1.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SERVER_NODE. If the logical is
defined, the value of the logical is used by default.

In order for the command to execute, either the /NODE qualifier must be
provided on the command line, or the ACMS$MGMT_SERVER_NODE logical
must be defined.

/USER=user-name
This qualifier specifies the name of the OpenVMS account on the server node
to be used for authorization. If this qualifier is specified, an explicit login must
already have been completed successfully (see Section 11.9).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_USER. If the logical is defined, the
value of the logical is used by default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not
defined, the ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a
discussion of proxy access.

Notes

This command requests the Remote Manager to stop the ACMS$TRACE_MON
process on the target node. The ACMS$TRACE_MON process is an intermediate
process used by the Remote Manager to communicate with ACMS run-time
processes to enable and disable collections.

11–146 ACMSMGR Commands

ACMSMGR STOP TRACE_MONITOR Command

In general, external entities do not require a startup or shutdown request of
the trace monitor process. The Remote Manager starts the trace monitor during
process initialization and stops it during process shutdown. Additionally, the
Remote Manager starts the trace monitor anytime it is needed if it is not already
started. Once started, the trace monitor continues running until the Remote
Manager shuts down.

After issuing the stop command to the trace monitor, the Remote Manager waits
for a period of up to trace_start_wait_time (a Parameter table parameter that is
dynamic and expressed in seconds). If the trace monitor fails to stop during that
period, the ACMSMGR command returns an error.

Example

$ ACMSMGR STOP TRACE_MONITOR

This command stops the ACMS$TRACE_MON process on the node specified by
the logical name ACMS$MGMT_SERVER_NODE. Authorization is performed
for the user specified by the logical name ACMS$MGMT_USER, or based on an
ACMS proxy on the target node if the logical is not defined. If the process is
successfully stopped, no messages are displayed.

ACMSMGR Commands 11–147

12
ACMSSNAP Commands

This chapter provides reference information about ACMSSNAP utility commands.
Note that this utility and its commands are designed to run locally on a Remote
Manager Version 4.4 or higher system.

12.1 ACMSSNAP Overview
The ACMSSNAP utility is used to display information collected in an ACMS
Remote Manager data snapshot file. ACMSSNAP runs locally and requires local
access to data snapshot files. This means that although a data snapshot file may
have been created on a remote node, that file must be directly accessible to the
local process running the ACMSSNAP utility.

The ACMSSNAP utility only displays information from the data snapshot file. It
does not modify the data in the file or make modifications to the ACMS run-time
system.

See Section 5.2 for a description of how to to save collected management
information in data snapshot files.

12.1.1 Command Format
The format for ACMSSNAP commands is as follows:

ACMSSNAP> verb object qualifiers

The following verbs are supported:

• CLOSE

• EXIT

• HELP

• NEXT

• OPEN

• PREV

• QUIT

• RESET

• SHOW

• TRACE

Most verbs have associated objects and qualifiers. The following sections list the
objects and any qualifiers for each ACMSSNAP command.

ACMSSNAP Commands 12–1

ACMSSNAP Commands
12.1 ACMSSNAP Overview

12.1.2 Command Objects and Qualifiers
The objects and qualifiers for the ACMSSNAP commands are summarized in
Table 12–1.

Table 12–1 ACMSSNAP Command Objects and Qualifiers

Objects Qualifiers

CLOSE Command

None None

EXIT Command

None None

HELP Command

None None

NEXT Command

[number] None

OPEN Command

[file-name] /AT, /CP_SLOTS, /MAX_AGENTS, /MAX_APPL, /SUMMARY

PREV Command

[number] None

QUIT Command

None None

RESET Command

None /ALL

(continued on next page)

12–2 ACMSSNAP Commands

ACMSSNAP Commands
12.1 ACMSSNAP Overview

Table 12–1 (Cont.) ACMSSNAP Command Objects and Qualifiers

Objects Qualifiers

SHOW Command

ACC /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL, /PREV,
/RUNTIME

AGENT /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL, /PREV,
/RUNTIME

CP /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL, /PREV,
/RUNTIME

EXC /APPL, /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL,
/PREV, /RUNTIME

GROUP /APPL, /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL,
/PREV, /RUNTIME

QTI /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL, /PREV,
/RUNTIME

SERVER /APPL, /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL,
/PREV, /RUNTIME

TSC /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /OUT, /POOL, /PREV,
/RUNTIME

TRACE Command

None None

ACMSSNAP Commands 12–3

ACMSSNAP CLOSE Command

12.2 ACMSSNAP CLOSE

Closes the current data snapshot file.

Format

ACMSSNAP> CLOSE

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

Only one snapshot file can be open at a time.

Example

ACMSSNAP> CLOSE

This command closes the current data snapshot file.

12–4 ACMSSNAP Commands

ACMSSNAP EXIT Command

12.3 ACMSSNAP EXIT

Ends the current ACMSSNAP session.

Format

ACMSSNAP> EXIT

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

This command ends the current ACMSSNAP session and returns control to DCL.
It is equivalent to the QUIT command.

Example

ACMSSNAP> EXIT

This command ends the current ACMSSNAP session.

ACMSSNAP Commands 12–5

ACMSSNAP HELP Command

12.4 ACMSSNAP HELP

Displays help information about the ACMS Remote Manager Data Snapshot
Utility (ACMSSNAP) and its commands.

Format

ACMSSNAP> HELP

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

Online help is available for each ACMSSNAP command. Each help topic
summarizes the valid syntax, abbreviations, parameters, and qualifiers for a
particular command and also in‘dicates all default and required values.

For a comprehensive list of ACMS utilities that offer online help or for further
instructions on how to invoke help, see ACMS Help.

Example

ACMSSNAP> HELP

This command invokes online help for the ACMSSNAP utility and displays a list
of available topics.

12–6 ACMSSNAP Commands

ACMSSNAP NEXT Command

12.5 ACMSSNAP NEXT

Reads the next sequence of snapshot records.

Format

ACMSSNAP> NEXT [number]

Privileges Required

None.

Parameters

number
A numeric value that indicates the number of records to be read. If a value is not
specified, the default value of 1 record is used.

Qualifiers

None.

Notes

Use the NEXT command to move forward incrementally in a data snapshot file.
When the NEXT command is issued, the ACMSSNAP utility reads the next
record or series of records from the currently open snapshot file in chronological
order. If a number is not specified with this command, NEXT moves forward one
record at a time.

Note that the NEXT and PREV commands are not intended to be the primary
means of navigation through a data snapshot file. Use the ACMSSNAP
SHOW/AT command to first identify an approximate timeframe for the ACMS
activity that you want to view. Then use the NEXT or PREV command to move
forward or backward incrementally from that timeframe.

If tracing is turned on (TRACE command), header information is displayed for
each record read.

See Section 5.3.2.3 for more information on navigating through a data snapshot
file with ACMSSNAP.

Example

ACMSSNAP> NEXT 10

This command reads the next 10 records in the data snapshot file. These records
overlay any previous records for this entity and class.

ACMSSNAP Commands 12–7

ACMSSNAP OPEN Command

12.6 ACMSSNAP OPEN

Opens the specified data snapshot file.

Format

ACMSSNAP> OPEN file-name [/qualifiers]

Command Qualifier Default

/AT=time None
/CP_SLOTS=value The value of ACMS$MGMT_SNAP_CP_SLOTS,

or if not defined, 3.
/MAX_AGENTS=value The value of ACMS$MGMT_SNAP_MAX_AGENTS,

or if not defined, 2.
/MAX_APPLS=value The value of ACMS$MGMT_SNAP_CP_SLOTS,

or if not defined, 10.
/SUMMARY None

Privileges Required

None.

Parameters

file-name
This required parameter specifies an OpenVMS file specification or logical that
indicates the name and location of the data snapshot file.

Qualifiers

/AT=time
This qualifier moves through the open data snapshot file to the first record
equal to or greater than the specified time. The format of time is DD-MMM-
YY:hh:mm:ss.nn. Partial dates and times (for example, 10-OCT or 09:00) are
supported.

/CP_SLOTS=value
This qualifier reserves space for CP records in a statically-sized internal table. CP
records are stored in the table by process name. These records are not removed
from the table until the snapshot file is closed. If there is insufficient space in
the table, data for subsequent CP processes is discarded. (A warning message
is issued if the CP table becomes full and TRACE is turned on). Specifying
this qualifier overrides the value of the logical name ACMS$MGMT_SNAP_CP_
SLOTS, if defined. The default value is 3.

/MAX_AGENTS=value
This qualifier determines the number of different AGENT processes that can
be read while the file is open. AGENT data is stored internally in a statically
sized table, with one row for each unique AGENT process name found. If there is
insufficient space in the table to hold all the AGENT records in the file, AGENT
records are discarded. This qualifier overrides the ACMS$MGMT_SNAP_MAX_
AGENTS logical name, which is an alternative way of specifying this value.
Specifying this qualifier overrides the value of the logical name ACMS$MGMT_
SNAP_MAX_AGENTS, if defined. The default value is 2.

12–8 ACMSSNAP Commands

ACMSSNAP OPEN Command

/MAX_APPLS=value
This qualifier reserves space for EXC records in a statically-sized internal table.
EXC records are stored in the table by application name. These records are not
removed from the table until the snapshot file is closed. If there is insufficient
space in the table, data for subsequent EXC processes is discarded. (A warning
message is issued if the EXC table becomes full and TRACE is turned on).
Specifying this qualifier overrides the value of the logical name ACMS$MGMT_
SNAP_MAX_APPL, if defined. The default value is 10.

/SUMMARY
This qualifier scans the entire data snapshot file and displays a summary report
that shows the total number of records written (per entity, class, and file) as well
as the time when the first and last record was written (per entity).

Notes

Data snapshot files are RMS indexed files. You can open a snapshot file with the
ACMSSNAP utility even if it is currently being written to by an ACMS Remote
Manager process.

For more information about opening and closing data snapshot files, see
Section 5.3.2.2.

Example

ACMSSNAP> OPEN ACMS$MGMT_SNAPSHOT /SUMMARY /CP_SLOTS=10 /MAX_APPL=5
ACMS Remote Management -- Snapshot utility
Compiling summary statics ...

Entity # Recs First
Record Last Record All Id Cfg

Rt Pool Error
------ ------ ---------------------- ---------------------- ---- --- --- ---

---- -----
* 0 0 0 0
0 0 0
acc 42 7-JUN-2001 14:00:56.69 7-JUN-

2001 14:21:32.19 42 0 0 0 0 0
tsc 42 7-JUN-2001 14:00:56.69 7-JUN-

2001 14:21:32.19 42 0 0 0 0 0
qti 0 0 0 0 0 0 0
cp 184 7-JUN-2001 14:00:56.69 7-JUN-

2001 14:21:32.19 184 0 0 0 0 0
exc 204 7-JUN-2001 14:01:28.01 7-JUN-

2001 14:21:32.19 204 0 0 0 0 0
server 6496 7-JUN-2001 14:01:28.01 7-JUN-

2001 14:21:32.19 6496 0 0 0 0 0
group 3032 7-JUN-2001 14:01:28.01 7-JUN-

2001 14:21:32.19 3032 0 0 0 0 0
mgr 0 0 0 0 0 0 0

10000 Records Read

MAX_APPL = 10 (use /MAX_APPL on OPEN or define ACMS$MGMT_SNAP_MAX_APPL to change)
CP_SLOTS = 10 (use /CP_SLOTS on OPEN or define ACMS$MGMT_SNAP_CP_SLOTS to change)

This command opens the data snapshot file referenced by the ACMS$MGMT_
SNAPSHOT logical, scans all the records, and displays a summary report. The
CP_SLOTS and MAX_APPLS values are explicitly set.

ACMSSNAP Commands 12–9

ACMSSNAP PREV Command

12.7 ACMSSNAP PREV

Scans the previous sequence of snapshot records.

Format

ACMSSNAP> PREV [number]

Privileges Required

None.

Parameters

number
A numeric value that indicates the number of records to be read. If a value is not
specified, the default value of 1 record is used.

Qualifiers

None.

Notes

Use the PREV command to move backward incrementally in a data snapshot file.
When the PREV command is issued, the ACMSSNAP utility reads the previous
record or series of records from the currently open snapshot file in reverse
chronological order. If a number is not specified with this command, PREV moves
backward one record at a time.

Note that the NEXT and PREV commands are not intended to be the primary
means of navigation through a data snapshot file. Use the SHOW/AT=date-time
command to first identify an approximate timeframe for the ACMS activity that
you want to view. Then use the NEXT or PREV command to move forward or
backward incrementally from that timeframe.

If tracing is turned on (TRACE command), header information is displayed for
each record read.

See Section 5.3.2.3 for more information on navigating through a data snapshot
file with ACMSSNAP.

Example

ACMSSNAP> PREV 10

This command scans and reads the previous 10 data snapshot records. These
records overlay any previous records for this entity and class.

12–10 ACMSSNAP Commands

ACMSSNAP QUIT Command

12.8 ACMSSNAP QUIT

Ends the current ACMSSNAP session.

Format

ACMSSNAP> QUIT

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

This command ends the current ACMSSNAP session and returns control to DCL.
It is equivalent to the EXIT command.

Example

ACMSSNAP> QUIT

This command ends the current ACMSSNAP session.

ACMSSNAP Commands 12–11

ACMSSNAP RESET Command

12.9 ACMSSNAP RESET

Clears the local memory tables.

Format

ACMSSNAP> RESET [/qualifiers]

Command Qualifier Default

/ALL None

Privileges Required

None.

Parameters

None.

Qualifiers

/ALL
This qualifier instructs the ACMSSNAP utility to place the file pointer at the
beginning of the data snapshot file. If this qualifier is not specified, the local
memory tables are cleared; however, the file pointer remains at the current
position within the data snapshot file.

Notes

Use the RESET command to remove all data snapshot records from internal data
tables and clear the local memory buffer.

Specifying the /ALL qualifier is equivalent to closing and reopening the data
snapshot file; the position marker is moved to the beginning of the data snapshot
file. Without the /ALL qualifier, the internal tables are cleared, but the location
of the position marker is not changed.

Example

ACMSSNAP> RESET /ALL

This command clears the local buffer of all data snapshot records and places the
position marker at the beginning of the data snapshot file.

12–12 ACMSSNAP Commands

ACMSSNAP SHOW Command

12.10 ACMSSNAP SHOW

Locates and displays information from one or more data snapshot records.

Format

ACMSSNAP> SHOW entity [/qualifiers]

Command Qualifier Default

/APPL=application-name None. Valid for EXC, SERVER, and Task Group only.
/AT=time None
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ID, /POOL,

or /RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/GROUP=group-name Valid for Task Group only.
/NEXT=value None
/OUT=file-name None
/PREV=value None
/SERVER=server-name Valid for Server only.

Privileges Required

None.

Parameters

entity
This parameter can be one of the following ACMS entities: ACC, AGENT, CP,
EXC, GROUP, QTI, SERVER, or TSC.

Qualifiers

/APPL=application-name
This qualifier specifies the application for which you want to view information.
This qualifier is only valid when specified with the EXC, SERVER, or GROUP
entity.

/AT=time
This qualifier moves through the available data snapshot records and displays
the first record equal to or greater than the specified time. The format of time
is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for example, 10-OCT or
09:00) are supported.

/[BRIEF,FULL]
This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to
be displayed.

/[CONFIG,ID,POOL,RUNTIME]
This qualifier causes data for the class to be displayed. If no class qualifier is
specified, this qualifier is ignored and all details are displayed (equivalent to
/FULL).

/GROUP=group-name
This qualifier specifies the ACMS task group for which you want to view
information. Wildcard matching is performed on the name provided. This
qualifier is only valid when specified with the GROUP entity.

ACMSSNAP Commands 12–13

ACMSSNAP SHOW Command

/NEXT=value
Use this qualifier to display the specified number of records (in chronological
order) for an entity. Data is displayed for each record found. If /FULL is
not specified, a timestamp that indicates when the record was created is also
displayed. A value is required with this qualifier.

/OUT=file-name
This qualifier causes output to be written to the specified file. If this qualifier is
not specified, output is displayed to the terminal (SYS$OUTPUT).

/PREV=value
Use this qualifier to display the specified number of records (in reverse
chronological order) for an entity. Data is displayed for each record found. If
/FULL is not specified, a timestamp that indicates when the record was created is
also displayed. A value is required with this qualifier.

/SERVER=server-name
This qualifier specifies the ACMS procedure server for which you want to view
information. Wildcard matching is performed on the name provided. This
qualifier is only valid when specified with the SERVER entity.

Notes

The data shown for each entity parallels the format of the equivalent ACMSMGR
command with the following exceptions:

• A timestamp is appended within square brackets to the output of /BRIEF
displays. This is provided as a navigational aid.

• The node name is derived from the translation of the UCX$INET_HOST
logical on the system the snapshot file was created. In ACMSMGR, the
node name is taken from whatever was specified by the client when the
ACMSMGR command was issued (such as from the /NODE qualifier or from
the ACMS$MGMT_SERVER_NODE logical).

Data is written to snapshot files based on entries in the Collection table. As
a result, only specific classes of information for a given entity may have been
stored. Show commands for entities and classes that were not stored may display
their default collection values along with a state value of disabled. The storage
state for the collection row must be enabled for the actual data to be stored.

The /AT qualifier is intended to be the initial means of navigation by locating a
specific entity record for a point in time. The ACMSSNAP utility uses the date
given with the /AT qualifier and reads either backwards or forwards through the
file until it finds a record for the specified entity. If the timestamp of the record is
greater than the one specified, the utility begins reading backwards through the
file until it finds an entity record with a time stamp equal to or less than the one
specified.

If end or beginning of file is reached first, the search ends and an end-of-file
message is displayed. Otherwise, the requested data is displayed. The end result
is that when the command completes, a record is shown which is either at the
exact time requested, or is the record just before or just after the time requested.
You can then use the /NEXT or /PREV qualifier to navigate chronologically
through adjacent records.

12–14 ACMSSNAP Commands

ACMSSNAP SHOW Command

Special timestamps are used to deal with beginning and end of file conditions.
If the beginning of file is reached, the current timestamp is forced to be NULL
(17-NOV-1958 00:00:00.00). If the end of file is reached, the current timestamp is
forced to be 17-NOV-3000 00:00:00.00. To recover from these situations, a single
NEXT or PREV command will read either the first or last record in the file.

See Section 5.3.2.3 for more information on navigating through a data snapshot
file with ACMSSNAP.

Examples

1. ACMSSNAP> SHOW ACC /RUNTIME /AT="7-JUN-2001 14:21"
ACMS Remote Management -- Snapshot utility

Runtime DECnet ----- Users ----- - Applications --Application
Node Class Object Current Maximum Current Maximum Starts
------- -------- ------- ------ ------- ------- ------- ------------
sparks enabled started 97 100 5 5 5 [7-JUN-2001

14:20:31.98]

This command displays ACC runtime information for the record written on
June 7, 2001 at 14:20:31.98.

2. ACMSSNAP> SHOW ACC /POOL /FULL
ACMS Remote Management -- Snapshot utility

===

Node POOL
------------ --
sparks Pool Class Collection State enabled

MSS Gauge Current Max Time
-------------------- -----------------------
MSS Objects 1859 1881 7-JUN-2001 14:19:12.45

MSS Maxbuf Message Counters Current Time
---------------------------------- ------------------ ----------------
MSS Msg Size 0 to 1024 bytes 13927
MSS Msg Size 1025 to 2048 bytes 94
MSS Msg Size 2049 to 4096 bytes 15
MSS Msg Size 4097 to 8192 bytes 41
MSS Msg Size 8193 to 16384 bytes 0
MSS Msg Size 16385 to 32768 bytes 0
MSS Msg Size 32769 to 65536 bytes 0
MSS Message Counter Overflow Resets 0 (null)

MSS Process Pool Pct Time
-- ----- ----------------------
Pool Size (bytes) 524288
Current Free (bytes) 516688 (98%)
Minimum Free (bytes) 515664 (98%) 7-JUN-2001 14:18:16.00
Largest Current Free
Block (bytes) 65536
Minimum Largest Free
Block (bytes) 65536 7-JUN-2001 14:20:56.00
Allocation Failures 0
Garbage Collections 0

ACMSSNAP Commands 12–15

ACMSSNAP SHOW Command

MSS Shared Pool Pct Time
-- ---- ------------------------
Pool Size (bytes) 33792000
Current Free (bytes) 33624344 (99%)
Minimum Free (bytes) 33620712 (99%) 7-JUN-2001 14:14:25.98
Largest Current Free
Block (bytes) 65536
Minimum Largest Free
Block (bytes) 65536 7-JUN-2001 14:20:56.00
Allocation Failures 0
Garbage Collections 0

WS/TWS Pools (for all EXCs) Current Max Time
---------------------------------- --------- --------- ------------------------
TWS Pool Size Total (pagelets) 562800 562800 7-JUN-2001 14:20:55.99
TWSC Pool Size Total (pagelets) 22500 22500 7-JUN-2001 14:20:55.99
WS Pool Largest Used (bytes) 536 536 7-JUN-2001 14:20:55.99
WSC Pool Largest Used (bytes) 848 848 7-JUN-2001 14:20:55.99
TWS Pool Largest Used (bytes) 73728 73728 7-JUN-2001 14:20:55.99
TWSC Pool Largest Used (bytes) 1792 1792 7-JUN-2001 14:20:55.99

WS/TWS Pools (for all EXCs) Current Min Time
---------------------------------- --------- --------- ------------------------
WS Pool Minimum Free (bytes) 130536 130536 7-JUN-2001 14:20:55.99
WSC Pool Minimum Free (bytes) 64688 64688 7-JUN-2001 14:20:55.99
TWS Pool Minimum Free (bytes) 3809280 3809280 7-JUN-2001 14:20:55.99
TWSC Pool Minimum Free (bytes) 152704 152704 7-JUN-2001 14:20:55.99

This command displays ACC pool information from the same record.

12–16 ACMSSNAP Commands

ACMSSNAP TRACE Command

12.11 ACMSSNAP TRACE

Toggles tracing information on and off.

Format

ACMSSNAP> TRACE

Privileges Required

None.

Parameters

None.

Qualifiers

None.

Notes

The main function of tracing is to display the node, timestamp, entity, and class
type for the record being read. Tracing also provides some warning information
when the internal CP or EXC tables become full.

The TRACE command either turns tracing on or off, depending on the current
state. A status message is displayed when the command is issued that indicates
which action was performed.

Example

ACMSSNAP> TRACE

This command activates tracing for the current ACMSSNAP session.

ACMSSNAP Commands 12–17

A
Remote Manager Logical Names

This appendix contains information about the Remote Manager logical names
used by the Remote Manager server and the Remote Manager client (ACMSMGR)
and Remote Manager Data Snapshot (ACMSSNAP) utilities.

A.1 Remote Manager Server
The following list describes the logical names used by the Remote Manager
server. If these logical names are present, they must be defined at a level that
will be translated by the Remote Manager server. In general, these should be
defined as system logicals.

• ACMS$MGMT_ALLOW_PROXY_ACCESS

If defined as 1 or TRUE, the Remote Manager will perform proxy
authorization using the ACMSPROXY.DAT file. If not defined, only explicit
(user name and password) authorization is allowed.

• ACMS$MGMT_CONFIG

File specification for the configuration file. If not defined, the default is
SYS$SYSROOT:[SYSEXE]ACMS$MGMT_CONFIG.ACM. The default file
extension is .ACM.

• ACMS$MGMT_DISABLED

When defined to be T,t,Y,y,1 (or any odd number), this logical prevents
ACMS from performing any operations that support remote management.
Management global sections are not created, and class data is not collected.

• ACMS$MGMT_LOG

File specification for the Remote Manager log. If not defined, the default is
ACMS$MGMT_LOG.LOG in the default directory of the Remote Manager.

• ACMS$MGMT_TEMP

Pointer to a directory that the Remote Manager server uses for writing and
reading temporary command procedures used to modify the ACMS run-time
system. If not defined when the Remote Manager server is started, the
Remote Manager will define this as a system logical with a translation of
SYS$MANAGER.

A.2 Remote Manager Client (ACMSMGR) Utility
The following us a list of logical names used by the ACMSMGR utility:

• ACMS$MGMT_CREDS_DIR

Defines the directory in which the ACMSMGR stores and looks for credentials
files. Credentials files are created by the ACMSMGR LOGIN command and
are specific to a process on a node. See Section 4.4.1.1 for more information.

Remote Manager Logical Names A–1

Remote Manager Logical Names
A.2 Remote Manager Client (ACMSMGR) Utility

• ACMS$MGMT_ERR_LOG

File specification for the run-time error log. If not defined, the default is
ACMS$MGMT_LOG.LOG in the default directory of the Remote Manager.

• ACMS$MGMT_SERVER_NODE

Defines one or more fully- or partially-qualified TCP/IP host names.
ACMS$MGMT_SERVER_NODE determines the nodes to which the
ACMSMGR command can be submitted.

This logical can be specified as a comma-separated list of node names, in
which case an attempt is made to execute the command on each node in
the list serially. This logical name can be overridden by using the /NODE
qualifier to ACMSMGR commands.

Note

To ensure consistent handling and display of command output, the names
of TCP/IP hosts specified by this logical must match the current DECnet
host name. IP addresses and host names (or aliases) that exceed six
characters or include mixed case are not allowed. For more information
on TCP/IP host names and defining aliases, see Section 2.2.1.

• ACMS$MGMT_SNAPSHOT

Full OpenVMS file specification (node::device:[directory]filename.ext) for a data
snapshot file. If not defined, the default is ACMS$MGMT_SNAPSHOT.DAT
in the default directory of the Remote Manager.

• ACMS$MGMT_USER

Defines the user name for Remote Manager authentication and authorization.
This logical name should not be defined if proxy access is being used. If
ACMS$MGMT_USER is not defined, the ACMSMGR utility either creates a
user name (during login) or searches for the credentials file for this user. This
logical name can be overriden by using the /USER qualifier on ACMSMGR
commands.

A.3 Remote Manager Data Snapshot (ACMSSNAP) Utility
The following is a list of logical names used by the ACMSSNAP utility:

• ACMS$MGMT_SNAP_CP_SLOTS

Specifies the size for the CP table in the local section created by the
ACMSSNAP utility. If this logical is not defined, a default value of 3 is used.

• ACMS$MGMT_SNAP_MAX_AGENTS

This logical determines the number of different AGENT processes that can
be read while the snapshot file is open. AGENT data is stored internally
in a statically sized table, with one row for each unique AGENT process
name found. If there is insufficient space in the table to hold all the AGENT
records in the file, AGENT records are discarded. If this logical is not defined,
a default value of 2 is used.

• ACMS$MGMT_SNAP_MAX_APPL

Specifies the size for the EXC table in the local section created by the
ACMSSNAP utility. If this logical is not defined, a default value of 10 is used.

A–2 Remote Manager Logical Names

B
RPC Procedures and Corresponding Rights

Identifiers

Table B–1 lists RPC procedures and their corresponding rights identifiers.

Table B–1 RPC Procedures and Corresponding Rights Identifiers

Procedure Rights Identifier

ACMSMGMT_ADD_COLLECTION_2 ACMS$MGMT_WRITE

ACMSMGMT_ADD_ERR_FILTER_2 ACMS$MGMT_WRITE

ACMSMGMT_ADD_TRAP_1 ACMS$MGMT_OPER

ACMSMGMT_DELETE_COLLECTION_1 ACMS$MGMT_WRITE

ACMSMGMT_DELETE_ERR_FILTER_2 ACMS$MGMT_WRITE

ACMSMGMT_DELETE_TRAP_1 ACMS$MGMT_OPER

ACMSMGMT_GET_ACC_2 ACMS$MGMT_READ

ACMSMGMT_GET_ERR_FILTER_2 ACMS$MGMT_READ

ACMSMGMT_GET_MGR_STATUS_1 ACMS$MGMT_READ

ACMSMGMT_GET_PARAM_2 ACMS$MGMT_READ

ACMSMGMT_GET_QTI_2 ACMS$MGMT_READ

ACMSMGMT_GET_TSC_2 ACMS$MGMT_READ

ACMSMGMT_GET_VERSION_2 ACMS$MGMT_READ

ACMSMGMT_LIST_AGENT_2 ACMS$MGMT_READ

ACMSMGMT_LIST_COLLECTIONS_2 ACMS$MGMT_READ

ACMSMGMT_LIST_CP_2 ACMS$MGMT_READ

ACMSMGMT_LIST_ERR_2 ACMS$MGMT_READ

ACMSMGMT_LIST_EXC_2 ACMS$MGMT_READ

ACMSMGMT_LIST_INTERFACES_1 ACMS$MGMT_READ

ACMSMGMT_LIST_LOG_1 ACMS$MGMT_READ

ACMSMGMT_LIST_PROC_1 ACMS$MGMT_READ

ACMSMGMT_LIST_SERVER_1 ACMS$MGMT_READ

ACMSMGMT_LIST_TG_2 ACMS$MGMT_READ

ACMSMGMT_LIST_TRAP_1 ACMS$MGMT_READ

ACMSMGMT_LIST_USERS_1 ACMS$MGMT_READ

ACMSMGMT_REPLACE_SERVER_1 ACMS$MGMT_OPER

ACMSMGMT_RESET_ERR_2 ACMS$MGMT_WRITE

(continued on next page)

RPC Procedures and Corresponding Rights Identifiers B–1

RPC Procedures and Corresponding Rights Identifiers

Table B–1 (Cont.) RPC Procedures and Corresponding Rights Identifiers

Procedure Rights Identifier

ACMSMGMT_RESET_LOG_1 ACMS$MGMT_WRITE

ACMSMGMT_SAVE_FILTER_2 ACMS$MGMT_WRITE

ACMSMGMT_SET_ACC_2 ACMS$MGMT_OPER (+
ACMS$MGMT_SYSUPD, if updating
OpenVMS system parameter values.)

ACMSMGMT_SET_AGENT_2 ACMS$MGMT_OPER

ACMSMGMT_SET_COLLECTION_2 ACMS$MGMT_WRITE

ACMSMGMT_SET_COLLECTION_2 ACMS$MGMT_WRITE

ACMSMGMT_SET_CP_2 ACMS$MGMT_WRITE

ACMSMGMT_SET_INTERFACE_1 ACMS$MGMT_WRITE

ACMSMGMT_SET_PARAM_2 ACMS$MGMT_WRITE

ACMSMGMT_SET_QTI_2 ACMS$MGMT_OPER

ACMSMGMT_SET_SERVER_1 ACMS$MGMT_OPER

ACMSMGMT_SET_TRAP_1 ACMS$MGMT_OPER

ACMSMGMT_SET_TSC_2 ACMS$MGMT_OPER

ACMSMGMT_START_ACC_1 ACMS$MGMT_OPER

ACMSMGMT_START_EXC_1 ACMS$MGMT_OPER

ACMSMGMT_START_QTI_1 ACMS$MGMT_OPER

ACMSMGMT_START_TRACE_MONITOR_1 ACMS$MGMT_OPER

ACMSMGMT_START_TSC_1 ACMS$MGMT_OPER

ACMSMGMT_STOP_1 ACMS$MGMT_OPER

ACMSMGMT_STOP_ACC_1 ACMS$MGMT_OPER

ACMSMGMT_STOP_EXC_1 ACMS$MGMT_OPER

ACMSMGMT_STOP_QTI_1 ACMS$MGMT_OPER

ACMSMGMT_STOP_TRACE_MONITOR_1 ACMS$MGMT_OPER

ACMSMGMT_STOP_TSC_1 ACMS$MGMT_OPER

B–2 RPC Procedures and Corresponding Rights Identifiers

C
Remote Manager Error Messages

This appendix contains the error messages related to the Remote Manager server
process, as well as the ACMSMGR, ACMSCFG, and ACMSSNAP utilities.

C.1 Server Messages
The following error messages pertain to the ACMS Remote Manager server
process.

2MANY_USERS, the maximum number of users has been reached
Explanation: The user could not be logged in because the maximum number
of concurrent users has been reached. This maximum is determined by the
max_logins parameter, which is a dynamic parameter (that is, it can be
changed dynamically).
User Action: Either log some users out, or increase the value of the max_
logins parameter. You can use the ACMSMGR SHOW USERS command to
determine which users are already logged in to the Remote Manager. Note
that in order to issue that command or to increase the max_logins parameter,
you must be logged in.

ACCTEXP, account is expired
Explanation: This status is returned during user login if the account
associated with the user name has expired.
User Action: Either remove or modify the account expiration.

ACMSPARFAIL, attempt to read ACMSPAR.ACM failed. See audit log for
details.
Explanation: This status is returned when the Remote Manager cannot
access the ACMSGEN parameters file ACMSPAR.ACM.
User Action: Examine the Remote Manager log file (using ACMSMGR
SHOW LOG) and correct the problem.

AUTHUPDFAIL, attempt to update the OpenVMS Authorization file failed. See
audit log for details.
Explanation: This status is returned when the Remote Manager is unable
to write to the SYSUAF during an attempt to update an OpenVMS system
parameter.
User Action: Examine the Remote Manager log file (using ACMSMGR
SHOW LOG) and correct the problem.

Remote Manager Error Messages C–1

Remote Manager Error Messages
C.1 Server Messages

BADDAY, network access is prohibited for this day of week for this account
Explanation: This status is returned during user login if the UAF record for
this user does not allow network access on this day of the week. Day-of-week
restrictions on network access are set by system administrators or security
personnel.
User Action: Either wait until an authorized day of the week to access the
Remote Manager, or modify the network access portion of the UAF for this
user.

BADHOUR, network access is prohibited for this hour for this account
Explanation: This status is returned during user login if the UAF record for
this user does not allow network access during this time of day. Time-of-day
restrictions on network access are set by system administrators or security
personnel.
User Action: Either wait until an authorized hour to access the Remote
Manager, or modify the network access portion of the UAF for this user.

CREDS_DATA_ERR, credentials file is corrupt
Explanation: The credentials file for this user has been corrupted. The file
has been opened, but the client process cannot parse the contents of the file.
User Action: The user should log in to the Remote Manager again. This will
create a new credentials file.

DISUSER, account is disusered
Explanation: This status is returned during user login if the account
associated with the user name has the DISUSER flag set.
User Action: Clear the DISUSER flag on the UAF record for the account.

DUPLICATE_ROW, table row exists
Explanation: An attempt was made to add a row to either the Trap or the
Collection table, but the row already exists.
User Action: Either modify the existing row, or add a new row with unique
data.

ERRBOTHFLAGS, both current and active flags were set. They are mutually
exclusive. No updates performed.
Explanation: This status is returned when a request is made to modify
Configuration data for an entity by setting both the current_flag (/CURRENT)
and active_flag (/ACTIVE) parameters. These flags are mutually exclusive;
the Remote Manager rejects the request.
User Action: Resubmit the RPC call or ACMSMGR SET command setting
only one flag per call or command.

ERRSTOPSNP, attempt to stop snapshot thread failed. General internal error.
Explanation: An attempt was made to stop a data snapshot thread by
setting the storage_state parameter to DISABLED or deleting a row in the
Collection table. The attempt failed due to a CMA exception.
User Action: This is a non-recoverable error. Reissue the RPC call or
ACMSMGR command. If the problem persists, restart the Remote Manager
process.

C–2 Remote Manager Error Messages

Remote Manager Error Messages
C.1 Server Messages

FLTRDBCORRUPT, the filter file database is corrupt.
Explanation: This status is returned when the Remote Manager error filter
database is non-readable.
User Action: Shut down ACMS and the Remote Manager. Delete the file
SYS$SYSTEM:ACMS$MGMT_ERROR_FILTER.DAT;*, and restart ACMS
and the Remote Manager. If you have previously saved the contents of the
error filter database (with ACMSMGR SAVE FILTER), you can restore the
database with the following command:

$ ACMSMGR ADD FILTER /FILE=file-name

where file-name is a full OpenVMS file specification
(node::device:[directory]file.ext) for the error filter file.

FLTRDBFULL, the filter database is full
Explanation: This status is returned while attempting to add an error
message filter record to a database that is at capacity.
User Action: Delete one or more error filter records using the ACMSMGR
DELETE FILTER command.

FLTRDBINIT, the filter file global section is not initialized
Explanation: This status is returned while attempting to access the error
filter database without the global section initialized.
User Action: Report this error to your HP support representative.

EVNT_MBX_FUL, event mailbox is full
Explanation: This status code has not been implemented.
User Action: No action is required.

FAIL, operation failed
Explanation: The function requested could not be performed.
User Action: The appropriate action depends on the function being called.
In general, additional information is displayed by the ACMSMGR command
in conjunction with this error code. That information should be more
indicative of the reason for failure. If this status was returned by an RPC,
the failure occurred in the Remote Manager process; a second-level error code
is returned in the output record.

INFO, operation completed with information message
Explanation: The ACMS Remote Manager service completed without error
but has logged an informational message. Informational messages are for
debugging and auditing purposes.
User Action: No action is required.

INTERNALERR, an internal error has occurred. See audit log for details
Explanation: A request was to update the runtime ACMS system, but an
unexpected error was returned by the DCL manager subsystem.
User Action: Examine the Remote Manager log for related informational
messages. If the problem persists, restart the Remote Manager process.

Remote Manager Error Messages C–3

Remote Manager Error Messages
C.1 Server Messages

INV_CLNTID, client id is invalid
Explanation: A request was made to the Remote Manager with an invalid
client id. The client id is a unique value assigned to each client and used
to verify client authorization. If the client id is not known to the Remote
Manager, it either belongs to an old log in that has expired and been purged,
or it was never valid.
User Action: The user should log in to the Remote Manager again.

INVVAR, invalid variable value was provided
Explanation: This status code is obsolete.
User Action: No action required.

LOGIN_EXPIRED, login credentials have expired, please log in again
Explanation: The credentials you used to log in to the Remote Manager
have expired. Credentials are granted when the user logs in and are valid
for a period of time equal to the value of the login_creds_lifetime parameter
at the time of login. After that time, the credentials expire and must be
re-created by logging in to the Remote Manager again.

Note that while proxy credentials also expire, they are automatically re-
created at the end of the expiration period. Therefore, this status is never
returned to proxy users.
User Action: The user must log in to the Remote Manager again.

MSGEXISTS, message already exists
Explanation: An attempt was made to add an existing error message record
to the filter database.
User Action: No action required.

NOACCFLTRDB, the filter database cannot be read or written
Explanation: The memory address returned for error filter global section is
not allowing read or write operations.
User Action: Examine the OWNER and GROUP protections on the file
SYS$SYSTEM:ACMS$MGMT_ERROR_FILTER.DAT. Check the user
accounts for the related ACMS Remote Manager processes to verify that they
have READ and WRITE access to the file. The file owner and the ACMS
accounts should be in the same group. All members of this group should have
read and write access to the file.

NOAPPLQUAL, /APPL qualifier missing
Explanation: The command ACMSMGR SET EXC requires that you use
an /APPL qualifier to specify the application for which stored values are
being set. If the /APPL qualifier is missing, the error NOAPPLQUAL will be
returned.
User Action: Re-enter the ACMSMGR SET EXC command with a /APPL
qualifier.

C–4 Remote Manager Error Messages

Remote Manager Error Messages
C.1 Server Messages

NO_CREDS_FILE, credentials file not found
Explanation: The credentials file for the user either could not be found
or could not be opened by the client process. The credentials file is created
when a user explicitly logs in to the Remote Manager (that is, when the
user supplies a user name and password). A separate credentials file is
created for each node to which a particular process logs in. The logical name
ACMS$MGMT_CREDS_DIR is used to point to the directory containing
credentials files.
User Action: Verify that the ACMS$MGMT_CREDS_DIR logical is pointing
to a valid disk and directory in which a credentials file has been created;
verify that the process has read access to the files in the directory. If
necessary, the process may have to log in to the Remote Manager again to
create a new credentials file.

NOINTERVAL, storage interval not supplied. Cannot enable a thread without
an internal. Resubmit with an interval.
Explanation: An API call was made to either the acms$mgmt_set_
collection_2 or acms$mgmt_add_collection_2 function, but no value was
specified for the storage interval.
User Action: Reissue the call making sure that a valid storage_interval is
specified prior to setting the storage_state to ENABLED.

NOMEM, memory allocation failed
Explanation: An internal memory allocation by the Remote Manager
failed. This can occur during a request for data, a call to add a record to a
table, or during server initialization while it is loading initial configuration
information. In the first two instances, the Remote Manager continues to run;
in the third, the Remote Manager exits.
User Action: Increase the amount of memory available to the Remote
Manager. If the problem is due to insufficient physical or virtual memory,
try allocating more page or swap space. If physical and virtual memory are
not exhausted, try increasing the memory quotas for the account in which
the Remote Manager is running. Be sure to check SYSGEN PQL quotas to
ensure that the quotas you grant to the Remote Manager are allowed by the
system.

After making more memory available to the Remote Manager, you must
restart the Remote Manager process.

NOMORE_DATA, no more data is available
Explanation: There is no more data that satisfies the query. This message
is provided on list RPCs that can return more than one buffer of data. If a
list RPC is called and this status is not returned, then more data is available
that satisfies the query criteria. If this status is returned, then there is no
more data to retrieve for this query.
User Action: No action is required. The query is complete.

NOMSGINTBL, message not in filter database
Explanation: An attempt was made to access an error message code that
does not currently exist in the error filter database.
User Action: Verify that the error message code is correct and that it exists
in the filter database. To display the error message codes currently being
filtered, use the ACMSMGR SHOW FILTER command.

Remote Manager Error Messages C–5

Remote Manager Error Messages
C.1 Server Messages

NONETACCESS, network access is prohibited for this account
Explanation: This status is returned during user login if the account
associated with the user name has not been granted network access. Network
access is required, even if the user is logged in to same node on which the
Remote Manager is running.
User Action: Grant network access to the account.

NO_NODELOGICAL, cannot translate logical UCX$INET_HOST to get node
name
Explanation: The logical name UCX$INET_HOST could not be translated
by the client process. This logical is used to determine the current host
name, which is used during client authentication. It is defined by the UCX
or TCP/IP layered product when it is started. If this logical is not defined,
UCX or TCP/IP is not started; either a different TCP/IP networking package
is being used, or something has gone wrong with the logical name.
User Action: Verify that the UCX or TCP/IP layered product is started. If
it is not, start it and then reissue the command. If it is started, contact your
system administrator to determine why the logical is not defined.

NOPROXY, proxy access is not enabled
Explanation: This status is returned when a user attempts to access a
Remote Manager function without explicitly logging in, and proxy access has
not been enabled on the Remote Manager node. Proxy access is enabled on
the node by defining the system logical ACMS$MGMT_ALLOW_PROXY_
ACCESS to be TRUE, true, T, t, Y, y, or 1. The translation of this logical is
cached by the Remote Manager when the RPC thread is started.
User Action: If proxy access is not supposed to be enabled, then there is no
action to perform. If proxy access is to be allowed, define the ACMS$MGMT_
ALLOW_PROXY_ACCESS system logical, with a translation value of TRUE,
true, T,t, Y, y or 1. Then restart the Remote Manager and resubmit the RPC.

NOREINIT, filter file cannot be re-initialized
Explanation: The Remote Manager attempted to reinitialize the filter
database. This is result of an internal consistency check that failed. The
error should not have occurred.
User Action: Report this error to your HP support representative.

NORIGHT, user does not hold the proper rights identifier
Explanation: Access to Remote Manager functions is restricted by a set of
rights identifiers; the account being used to access the function must have the
appropriate rights identifier. If this status code is returned, the account does
not have the appropriate rights identifier.
User Action: Grant the appropriate rights identifier to the user’s account.
If a proxy account is being used, the rights identifier must be granted to the
proxy account.

C–6 Remote Manager Error Messages

Remote Manager Error Messages
C.1 Server Messages

NOSTOP, interface cannot be used to stop itself
Explanation: An attempt was made to stop an interface by using that
interface. The Remote Manager does not allow either the RPC or the SNMP
interface to be used to stop themselves.
User Action: If you need to stop the RPC interface and cannot use
the ACMSMGR command, stop the Remote Manager either by using
the DCL command STOP/ID or by using the UCX$SNMP_REQUEST
(or TCPIP$SNMP_REQUEST) program. These programs are located in
SYS$SYSTEM; the OID to use is 1.3.6.1.4.1.36.2.18.48.4.1.3.1.

To stop the SNMP interface, you must use the ACMSMGR SET INTERFACE
command, or you must stop the Remote Manager (using either the
ACMSMGR STOP command or the DCL command STOP/ID).

NOSUCHAPPL, /APPL application does not exist
Explanation: The command ACMSMGR SET EXC requires that you use an
/APPL qualifier to specify the application for which stored values are being
set. NOSUCHAPPL is returned if the application you specify is not active.
User Action: Re-enter the ACMSMGR SET EXC command specifying an
active application in the /APPL qualifier.

NOTENABLED, cannot disable storage if it is not enabled
Explanation: An attempt was made to set the storage_state for a Collection
record to DISABLED when it already was disabled. No action was performed
by the Remote Manager.
User Action: No action is required.

NOTFILTERFILE, the file is not an error filter text file
Explanation: This status is returned when the file specified in the
ACMSMGR ADD FILTER/FILER command does not meet the format
requirements for an error filter file.
User Action: Verify that the file specification is correct. If the specification
is correct, review ACMSMGR online help for details about the formatting
requirements for an error filter file. The first line of the file must contain the
string %%ACMS Filter File V1.00. If it does not, the Remote Manager will
not consider it a valid error filter file.

NOT_FOUND, record not found
Explanation: An attempt was made to delete a row from the Collection
table, but that row does not exist.
User Action: Modify the request to include the proper identification
information for the row (entity type, class, and name).

NOT_MAPPED, ACMSMGMT global section is not available on node <node-
name>
Explanation: This status code is returned if a Remote Manager function
was requested that requires access to the ACMSMGMT global section, but the
global section does not exist. The global section is created by the ACMS ACC
during system startup. This status code indicates that the ACMS ACC is not
running or that it has not yet created the global section.
User Action: Start the ACMS run-time system in order to create the global
section. The ACMS run-time system can be started by using either the

Remote Manager Error Messages C–7

Remote Manager Error Messages
C.1 Server Messages

ACMSMGR START SYSTEM command or the ACMS/START SYSTEM
command.

NOT_VALID, entity data is stale, please resubmit query or wait until later
Explanation: The entity record in the global section is not valid. If this
status code is returned, it means that the entity has never been started on
the Remote Manager node. If the entity had been running at one time but no
longer is, a severity level of WARN is returned and the record_state is set to
INACTIVE.
User Action: No action is required. However, if the entity is started on the
Remote Manager node, the data will become available.

NO_UPD_CLS, class cannot be modified
Explanation: An attempt was made to add, delete, or modify a Collection
table record for the Id or Config class. These records cannot be modified.
User Action: No action is required. There is no way to modify the default
collection records for the Id or Config classes.

PROXY_FAILED, proxy access attempt failed
Explanation: An attempt to verify proxy information for this client failed.
A more specific message indicating why the proxy failed is written to the
Remote Manager log. Reasons for proxy authentication failure include:

• No proxy record is in the ACMSPROXY.DAT file.

• The proxy account is disusered.

• There is a problem with the network access for the account (does not have
network access allowed, is outside of the allowed network access days or
times).

• The proxy account has expired.

• An internal error occurred during processing.

User Action: First check the Remote Manager log for any additional
information related to the login attempt. Then verify that none of the
conditions listed are preventing the login from succeeding.

PWDEXP, password has expired
Explanation: The password entered by the user has expired in the UAF on
the server node.
User Action: The user must either change the password or have it unexpired
by a system or security administrator.

PWDFAIL, invalid password
Explanation: The password entered for the user during user login does not
match the one stored in the UAF for this user on the server node.
User Action: Resubmit the login request for the user with the correct
password.

C–8 Remote Manager Error Messages

Remote Manager Error Messages
C.1 Server Messages

SECCHKFAIL, security check failed. You do not hold the ACMS$MGMT_
SYSUPD rights identifier
Explanation: A request was made to modify one or more OpenVMS
SYSGEN parameters with the Remote Manager; however, the user does not
have the proper rights identifier. The request was denied.
User Action: Ask the ACMS system manager to grant the user account the
ACMS$MGMT_SYSUPD rights identifier.

SNPRUNNING, failure creating timer thread entry. Thread already running?
Explanation: A request was made to set the storage_state for a Collection
record to ENABLED; however, an internal error was raised.
User Action: Examine the Remote Manager log for additional messages that
describe the source of the problem. Reissue the command. If the problem
persists, try deleting and adding the Collection record. If the problem
remains, restart the Remote Manger process.

SUCCESS, operation completed
Explanation: The ACMS Remote Manager service completed without error.
User Action: No action is required.

TABLE_FULL, collection table is full. Non dynamic parameter total_entity_slots
controls size
Explanation: An attempt was made to add a row to the Collection table, but
there are no empty slots. The maximum number of rows in the Collection
table is determined by the nondynamic parameter total_entity_slots.
User Action: To make the table bigger, modify this parameter in the
configuration file (using the ACMSCFG command), and restart the ACMS
run-time system. The Remote Manager can be left running.

Alternatively, delete unneeded rows from the Collection table.

THREADRUNNING, inconsistent state detected. Snapshot state is disabled but
thread is running! Cannot enable running thread
Explanation: A request was made to set the storage_state for a Collection
record to ENABLED. While processing the row, the Remote Manager
discovered that a snapshot thread had already been assigned to this record.
This condition is most likely due to a previous, unsuccessful attempt to end a
snapshot operation.
User Action: Examine the Remote Manager log for additional messages that
describe the source of the problem. Reissue the command. If the problem
persists, try deleting and adding the Collection record. If the problem
remains, restart the Remote Manger process.

VRSNMISMAT, filter file version mismatch
Explanation: The Remote Manager error filter file may be corrupted, or the
format may have changed in this version of ACMS.
User Action: Shut down ACMS and the Remote Manager. Delete the file
SYS$SYSTEM:ACMS$MGMT_ERROR_FILTER.DAT;*, and restart ACMS
and the Remote Manager. If you have previously saved the contents of the
error filter database (with ACMSMGR SAVE FILTER), you can restore the
database with the following command:

$ ACMSMGR ADD FILTER /FILE=file-name

Remote Manager Error Messages C–9

Remote Manager Error Messages
C.1 Server Messages

where file-nameis a full OpenVMS file specification
(node::device:[directory]file.ext) for the error filter file.

WARN, operation completed with warning, Not all operations completed
successfully
Explanation: The ACMS Remote Manager service did not complete
successfully; some of the actions requested could not be completed. This
status is returned in the following situations:

• Multiple fields were specified on an update function, at least one of which
failed. For example, a call may have been made to the set parameters
function (acmsmgmt_set_param_1) to update more than one parameter,
and one of the values specified was invalid. For these functions, a list of
fields is returned with status codes for each field.

• A call to start or stop an ACMS process was executed, and a warning
was returned. Starting or stopping ACMS processes is performed by
ACMS OPER, which may return warning messages. In this case, a set of
messages is returned describing the cause for the warning.

• A call to display ACMS process information was made, and old (stale)
data was returned. This can occur when an ACMS process is no longer
running, and a show function requests data for that process. For instance,
if the TSC was running and then had been stopped, and the acmsmgmt_
get_tsc_1 function is called, the tsc record is returned with WARN status.

User Action: No action is required; however, the record_state field of any
record returned should be checked. The Remote Manager flags old data with
a record_state of MGMT$K_INACTIVE.

If this status is returned as the result of an ACMSMGR command, old
(inactive) records are flagged with an asterisk (*) preceding the node name.

WRONG_NODE, current node does not match node in credentials file!
Explanation: The node name stored in the credentials file does not match
the node name on which the current process created it. Either the file is
corrupt, or it has been tampered with.
User Action: The user should log in to the Remote Manager again. This will
create a new credentials file.

WRONG_PID, current pid does not match pid in credentials file!
Explanation: The PID stored in the credentials file does not match that of
the current process. Either the file is corrupt, or it has been tampered with.
User Action: The user should log in to the Remote Manager again. This will
create a new credentials file.

XLATE_FAILED, an attempt to translate a symbolic error name failed
Explanation: An attempt was made to add an error filter record using the
symbolic name for the error message. The translation of the symbolic name
to its hexadecimal value failed.
User Action: Verify that you have specified the symbolic name correctly. If
the problem persists, try entering the record using the hexadecimal value of
the error message that you want to filter.

C–10 Remote Manager Error Messages

Remote Manager Error Messages
C.2 ACMSMGR Messages

C.2 ACMSMGR Messages
The following error messages pertain to the ACMSMGR process.

2MANYCLASSES, too many class qualifiers were specified.
Explanation: Each ACMSMGR command allows either one class or all
classes to be displayed at the same time. To display all classes, do not include
a class qualifier with the command. To display a particular class, include that
qualifier with the command. You cannot specify more than one class qualifier
with a given command.
User Action: Modify the command to include a maximum of one class
qualifier, and resubmit the command. To learn more about the valid class
qualifiers for a given command verb and object, use the ACMSMGMR HELP
command.

ACTUPDINV, /active was specified for <field>, but this value is not dynamic. No
update was performed
Explanation: An attempt was made to modify Configuration class data for
an entity using ACMSMGR SET <entity> /ACTIVE command; however, one
of the specified variables does not have an active value.
User Action: Reissue the command either without the /ACTIVE qualifier or
with only variables that have an active value. For a list of variables and their
valid values, see the ACMSMGR online help.

BADTIME, invalid time <time>
Explanation: The time specification provided for the command qualifier
could not be parsed. Time specifications can include date and time, date only
or time only. The date and time should be specified as a quoted string in
the format DDMMMYYYY HH:MM:SS.hh. Partial strings are accepted (for
example, "1NOV" or "10:00").
User Action: Modify the command to include a valid time specification. To
learn more about valid time values, use the ACMSMGR HELP command.

BADVALUE, invalid qualifier, cannot interpret value <value>
Explanation: The value provided for a command qualifier is invalid. It is
either out of the range of acceptable values or is an invalid type.
User Action: Modify the command qualifier to include a valid value. To
learn more about valid values for a given qualifier, use the ACMSMGR HELP
command.

CREDSFOUND, credentials for node <node> found, they will be used
Explanation: This message is obsolete.
User Action: No action is required.

ENCRYPTFAIL, encryption routine failure on <username>
Explanation: An attempt to encrypt the user name indicated for client
authentication failed.
User Action: Make sure the user name is correct and reenter it.

Remote Manager Error Messages C–11

Remote Manager Error Messages
C.2 ACMSMGR Messages

END_TOO_SOON, end time must be greater than begin time
Explanation: While adding or modifying a row in the Collection table, an
attempt was made to specify a storage_end_time earlier than the current
storage_begin_time.
User Action: Reissue the command, ensuring that storage_end_time is later
than the storage_begin_time; or omit storage_end_time or storage_begin_time
to accept the default value.

FILEOPENERR, could not open file <filename> for write
Explanation: This message is displayed when the /OUT qualifier to
ACMSMGR command specifies an invalid or inaccessible file specification.
The reason could be an invalid disk or device name, an incorrect logical name
in the file specification, insufficient privileges for writing to the directory or
file, or a full device.
User Action: Ensure that the client process can access the directory and file
in the file specification, and resubmit the command.

HOSTNAMEFAIL, can’t translate UCX$INET_HOST name, aborting...
Explanation: The logical name UCX$INET_HOST could not be translated
by the client process. This logical is used to determine the current host name,
which is used during client authentication. The logical is defined by the UCX
or TCP/IP layered product when it is started. If the logical is not defined,
either UCX or TCP/IP is not started, a different TCP/IP networking package
is being used, or something has gone wrong with the logical name.
User Action: Verify that the UCX or TCP/IP layered product is started. If
it is not, start it and then reissue the command. If it is started, contact your
system administrator to determine why the logical is not defined.

INACTDATA, some or all data is old and may not accurately reflect the running
system
Explanation: The data being displayed may contain information about
processes that are no longer running. Old, or stale, data is displayed only
if the /ALL qualifier was included with the command. The old records are
flagged with an asterisk (*) in the first character of the node name.
User Action: No action is required. Remove the /ALL qualifier if you do not
want to see old data.

LOGIN_FAIL, login failed
Explanation: The attempt to log in failed. The reason might be an
invalid user name or password. The Remote Manager log will contain more
information about the reason for failure.
User Action: Consult the Remote Manager log on the target node for more
information about the failure (using the ACMSMGR SHOW LOG command).
Correct the problem and resubmit the login request.

NAME2BIG, username is too long, please reenter
Explanation: The user name specified exceeds the maximum allowed length
of 12 characters.
User Action: Modify the user name to be no longer than 12 characters and
reenter it.

C–12 Remote Manager Error Messages

Remote Manager Error Messages
C.2 ACMSMGR Messages

NOCLIENTS, no clients created, cannot continue
Explanation: No client attaches were successful. Previous messages will
have been displayed indicating the particular reasons that the client attaches
failed. Without attaching a client to a server, work can not be performed.
User Action: Determine and remedy the reason for the client attach failures
then resubmit the command.

NOCLNT_ATTACH, cannot create client for node <node-name>
Explanation: An attempt to attach to the server on the node indicated in
the command failed. If more than one server name was in the list to be
processed, the next server will be tried. No further attempt will be made to
submit commands to the node for which the attached client failed.
User Action: Verify that the node name is correct and that the Remote
Manager is running on the node indicated. In some networks, it may be
necessary to use a fully qualified TCP/IP node name. If the Remote Manager
is running, verify that the Portmapper is running on the node and that the
RPC interface in the Remote Manager has been started.

NOCOMPND, compound name is not allowed for this entity (only server and
group).
Explanation: An attempt was made to add a collection record using a
compound name for an entity that is not a server or group. Compound
names (that is, names that contain an application specification and a process
specification) are valid for only servers and groups.
User Action: Modify the command so it does not include a compound name.
For more help about adding collection records, use the ACMSMGR HELP
ADD COLLECTION command.

NOCREDS, could not get credentials for <node::user>
Explanation: The credentials file for the user either could not be found or
could not be opened by the client process. The credentials file is created when
a user explicitly logs in to the Remote Manager (that is, the user supplies
a user name and password). A separate credentials file is created for each
node to which a particular process logs in. The logical name ACMS$MGMT_
CREDS_DIR is used to point to the directory containing credentials files.

Note that credentials files are process-specific (PID) and node specific.
User Action: Verify that the ACMS$MGMT_CREDS_DIR logical is pointing
to a valid disk and directory in which a credentials file has been created;
verify that the process has read access to the files in the directory. The
process may have to log in to the Remote Manager again to create a new
credentials file.

NODATA, no <entity-type> data was found for <node-name>
Explanation: The request to get information about the entity type indicated
in the message returned no data. This message occurs when no instances of
the particular process are running.
User Action: No action is required. If the process had been running
previously, you may be able to see the information by resubmitting the
command with the /ALL qualifier.

Remote Manager Error Messages C–13

Remote Manager Error Messages
C.2 ACMSMGR Messages

NOFACILITY, facility must be specified when setting trace level
Explanation: This message is obsolete.
User Action: No action is required.

NONODE, node must be specified as a logical or an argument
Explanation: Each ACMSMGR command needs a node name to be specified.
The node name can be specified either as a command qualifier (for example,
/NODE=mynode) or by the logical name ACMS$MGMT_SERVER_NODE.
Multiple nodes can be specified in a comma-separated list (for example,
/NODE=node1,node2). To specify a list of nodes when defining the logical
name ACMS$MGMT_SERVER_NODE, enclose the entire list in double
quotation marks. For example:

$ DEFINE ACMS$MGMT_SERVER_NODE "NODE1,NODE2"

User Action: Modify the command to include the /NODE qualifier, or define
the logical ACMS$MGMT_SERVER_NODE to include at least one node name.

NORMAL, operation completed
Explanation: The command completed successfully.
User Action: No action is required.

NOVAL, qualifier <qualifier> requires a value string
Explanation: The qualifier indicated requires a value string, but none was
provided.
User Action: Modify the command to include a valid value string and
resubmit the command. To learn more about the valid values for a given
qualifier, use the ACMSMGR HELP command.

OLDDATA, this data is old and may not accurately reflect the running system
Explanation: The data being displayed may contain information about
processes that are no longer running. Old, or stale, data is displayed only
if the /ALL qualifier was included with the command. The old records are
flagged with an asterisk (*) in the first character of the node name.
User Action: No action is required. Remove the /ALL qualifier if you do not
want to see old data.

PARAMFAIL, parameter update failed for parameter <parameter>. ACMS is not
available or does not respond.
Explanation: A request to update an interval value failed because the
Remote Manager could not pass the changed value to the ACMS process.
User Action: Examine the Remote Manager log for additional messages that
might provide more information about the failure, and ensure that the ACMS
trace monitor is running (process ACMS$TRACE_MON). If the trace monitor
is not running, check whether the trace monitor logical ACMS$TRACE_MBX
is defined.

Also ensure that the ACMS Remote Manager has been started (ACMSMGR
START SYS). If the problem persists, restart ACMS and the Remote Manager.

C–14 Remote Manager Error Messages

Remote Manager Error Messages
C.2 ACMSMGR Messages

PASS2BIG, password is too long, please reenter
Explanation: The password specified exceeds the maximum allowed length
of 32 characters.
User Action: Modify the password to be no longer than 32 characters and
reenter it.

QUALCONFLICT, qualifier <qualifier> is not supported in combination with
other qualifier(s) on this command line
Explanation: Multiple, mutually exclusive qualifiers were provided for an
ACMSMGR command.
User Action: Review the qualifiers and determine which are mutually
exclusive. Reissue the command with the appropriate combination of
qualifiers. For a list of variables and their valid values, see the ACMSMGR
online help.

STORUPDINV, /stored was specified for <field>, but this value cannot be stored.
No update was performed
Explanation: An attempt was made to modify Configuration class data for
an entity using ACMSMGR SET <entity> /STORED command; however, one
of the specified variables does not have a stored value.
User Action: Reissue the command either without the /STORED qualifier or
with only variables that have a stored value. For a list of variables and their
valid values, see the ACMSMGR online help.

UNKCMD, unrecognized command <command>
Explanation: The command verb indicated in the message is not valid.
User Action: Modify the command to include a valid command verb. To
learn more about valid verbs, use the ACMSMGR HELP command.

UNKCMDOBJ, unrecognized object <command object> for this command
Explanation: The command object indicated in the message is not valid.
User Action: Modify the command to include a valid command object.
To learn more about valid command objects, use the ACMSMGR HELP
command.

USE_PROXY, username not supplied, proxy access will be attempted
Explanation: This message is obsolete.
User Action: No action is required.

WRONGPARAM, parameter type is not valid for this entity type, please correct
and reexecute command
Explanation: The parameter type in the command is not valid for the entity
type specified. Each parameter is valid for only a particular set of entity
types; the combination specified is not a valid pair.
User Action: Modify the command to include a valid combination of entity
type and parameter. To learn more about valid combinations, use the
ACMSMGR HELP command.

Remote Manager Error Messages C–15

Remote Manager Error Messages
C.2 ACMSMGR Messages

WRONGQUAL, qualifier <qualifier> is not supported for this verb and object,
please correct and re-execute command
Explanation: A command qualifier was specified that is not valid for the
verb/object combination specified.
User Action: Modify the command to include a valid qualifier. To learn more
about the valid qualifiers for a verb/object combination, use the ACMSMGR
HELP command.

C.3 ACMSCFG Messages
The following error messages pertain to the ACMSCFG process.

ADDREC, record does not exist, creating new record from defaults
Explanation: This message is obsolete.
User Action: No action is required.

BAD_TIME, invalid time <time>
Explanation: This status code has not been implemented yet.
User Action: No action is required.

BAD_VALUE, invalid qualifier, cannot interpret value <value>
Explanation: A null or invalid value was provided to a qualifier.
User Action: Correct the value and resubmit the command. To learn more
about ACMSCFG qualifiers and valid values, use the ACMSCFG HELP
command.

CLASS_REQ, collection class is required, please resubmit command
Explanation: This status code has not been implemented yet.
User Action: No action is required.

CONFIG_NORMAL, operation completed
Explanation: The ACMSCFG command completed successfully.
User Action: No action is required.

END_TOO_EARLY, end time must be greater than begin time
Explanation: This status code has not been implemented yet.
User Action: No action is required.

ENTITY_REQ, entity type is required, please resubmit command
Explanation: A command was issued that requires an entity type to be
specified.
User Action: Resubmit the command, including the /ENTITY=<entity_type>
qualifier and the appropriate entity type.

ERRADD, error adding record
Explanation: This message is obsolete.
User Action: No action is required.

C–16 Remote Manager Error Messages

Remote Manager Error Messages
C.3 ACMSCFG Messages

ERRDEL, error deleting record
Explanation: An error occurred while a record was being deleted. This
message is preceded by a status message returned by RMS describing the
error. The problem is usually an environmental one—for example, a locked
file, insufficient privileges, and so on.
User Action: Refer to the message immediately preceding this one that
describes the error returned from RMS.

ERROR_OPEN, could not open file <filename>
Explanation: This message is obsolete.
User Action: No action is required.

ERRUP, error updating record
Explanation: An error occurred while a record was being updated. This
message is preceded by a status message returned by RMS describing the
error. The problem is usually an environmental one—for example, a locked
file, insufficient privileges, and so on.
User Action: Refer to the message immediately preceding this one that
describes the error returned from RMS.

ID_REQ, entity name is required, please resubmit command
Explanation: This status code has not been implemented yet.
User Action: No action is required.

IF_INVAL, invalid interface <interface>
Explanation: The interface name indicated is unrecognizable.
User Action: Modify the /INTERFACE qualifier to include a valid interface
type. To learn about valid interface types, use the ACMSCFG HELP
command.

IF_REQ, interface type is required, please resubmit command
Explanation: The interface type is required in order to update the correct
record. The command that was submitted did not specify the interface type.
User Action: Modify the command to include the /INTERFACE qualifier,
along with the desired interface type. To learn more about updating
interfaces, use the ACMSCFG HELP command.

INSUF_ARGS, insufficient arguments
Explanation: An insufficient number of arguments was passed to the
ACMSCFG utility. At least one argument is required.
User Action: Modify the command to include at least one argument. Use the
ACMSCFG HELP command to learn about the various ACMSCFG commands.

INVPARAMTYPE, parameter type <parameter> is not valid for this entity type,
please correct and re-execute the command
Explanation: The parameter type indicated is not valid for the entity type
specified. Each parameter is valid for only a particular set of entity types; the
combination specified is not a valid pair.
User Action: Modify the command to include a valid combination of entity
type and parameter. To learn more about valid combinations, use the
ACMSCFG HELP command.

Remote Manager Error Messages C–17

Remote Manager Error Messages
C.3 ACMSCFG Messages

INVSTATE, invalid state <state>
Explanation: The state indicated is unrecognizable.
User Action: Modify the qualifier to include a valid state. To learn about
valid states, use the ACMSCFG HELP command.

INVVALUE, qualifier <value> contains an invalid value, please correct and
resubmit
Explanation: A qualifier was specified with an invalid value.
User Action: Modify the command to include a valid value with the qualifier.
To learn more about valid values for the qualifier, use the ACMSCFG HELP
command.

NAME_REQ, entity name is required, please resubmit command
Explanation: This message is obsolete.
User Action: No action is required.

NODEFADD, records for this class cannot be added
Explanation: An attempt was made to add a record for the Id and Config
classes, which is not allowed. New records for Id and Config classes cannot be
added.
User Action: Any attempt to add records for Id and Config classes will fail.

NODEFDELETE, this record cannot be deleted, it is a mandatory default
Explanation: An attempt was made to delete a record that cannot be
deleted. Default collection records for Id and Config classes cannot be deleted.
User Action: Any attempt to delete these records will fail.

NODEFDISABLE, collection cannot be disabled for this entity and class
Explanation: An attempt was made to modify the default Id and Config
class records, which is not allowed. Default collection records for Id and
Config classes cannot be deleted or modified.
User Action: Any attempt to modify records for Id and Config classes will
fail.

NOFILE, unable to open file <filename>
Explanation: The configuration file could not be opened. The specification
for the file to be opened is determined by the translation of the logical name
ACMS$MGMT_CONFIG, or, if the logical name is not defined, the default
file name is SYS$SYSROOT:[SYSEXE]ACMS$MGMT_CONFIG.ACM. The
ACMSCFG utility will ask you whether or not you want to create a new file.
User Action: If the file does not exist and you would like to have a new file
created with default values, respond to the prompts. If the file does exist,
investigate why it could not be opened by the ACMSCFG utility.

NO_QUAL, insufficient arguments—no qualifiers, please correct and resubmit
Explanation: A command that requires at least one qualifier was submitted
without any qualifiers.
User Action: Modify the command to contain at least one qualifier. To learn
more about ACMSCFG commands their qualifiers, use the ACMSCFG HELP
command.

C–18 Remote Manager Error Messages

Remote Manager Error Messages
C.3 ACMSCFG Messages

NORECDEL, record does not exist, no record deleted
Explanation: An attempt was made to delete a record that does not exist.
User Action: Correct the command to include the correct record identifiers.
For collection records, entity type, class name, and entity name uniquely
identify records; for trap records, entity type, entity name, and parameter
name uniquely identify records.

NORECUP, record does not exist, no record updated
Explanation: An attempt was made to update a record that does not exist.
User Action: Correct the command to include the correct record identifiers.
For collection records, entity type, class name, and entity name uniquely
identify records; for trap records, entity type, entity name, and parameter
name uniquely identify records. For interface records, interface type uniquely
identifies the record.

NOT_ADDED, no record added
Explanation: This message is obsolete.
User Action: No action is required.

NOUPDATES, no changes to make, no updates made
Explanation: A command was issued to update the parameter record, but no
parameters were specified for update. No changes were made to the record.
User Action: Modify the command to include at least one parameter to be
modified.

NULLQUAL, null qualifier <qualifier>, nothing to do
Explanation: A qualifier was provided that requires a value, but no value
was specified.
User Action: Modify the command to include a valid value with the qualifier.
To learn more about valid values for the qualifier, use the ACMSCFG HELP
command.

PARAM_INVALID, parameter <parameter name> is not valid for this entity
Explanation: This status code has not been implemented yet.
User Action: No action is required.

PARAM_REQ, parameter type is required, please resubmit command
Explanation: This status code has not been implemented yet.
User Action: No action is required.

PAST_BEGIN, begin time must be in the future
Explanation: This status code has not been implemented yet.
User Action: No action is required.

TIMERID_REQ, timer id is required, please resubmit command
Explanation: This status code has not been implemented yet.
User Action: No action is required.

Remote Manager Error Messages C–19

Remote Manager Error Messages
C.3 ACMSCFG Messages

UNKCLASS, unrecognized class <class>
Explanation: The class type indicated is unrecognizable.
User Action: Modify the /CLASS qualifier to include a valid class. To learn
about valid classes, use the ACMSCFG HELP command.

UNKENTITY, unrecognized entity <entity>
Explanation: The entity type indicated is unrecognizable.
User Action: Modify the /ENTITY qualifier to include a valid entity type. To
learn about valid entity types, use the ACMSCFG HELP command.

UNKNOWN_OBJ, unknown obj <object>
Explanation: The command object specified is not valid.
User Action: Modify the command to include a valid command object.
The valid command objects vary depending on the command verb. Use the
ACMSCFG HELP command to learn more about valid command verbs and
objects.

UNKPARAM, unrecognized param <param>
Explanation: The parameter indicated is unrecognizable.
User Action: Modify the /PARAMETER qualifier to include a valid
parameter name. To learn about valid parameters, use the ACMSCFG
HELP command.

UNKQUAL, unrecognized qualifier <qualifier>, please correct and re-execute
command
Explanation: The qualifier indicated is unrecognized.
User Action: Modify the command to include a valid qualifier. To learn more
about valid qualifiers, use the ACMSCFG HELP command.

UNKVERB, unrecognized verb <verb>, please correct and resubmit
Explanation: The verb indicated is unrecognized.
User Action: Modify the command to include a valid verb. To learn more
about valid verbs, use the ACMSCFG HELP command.

VALTOOBIG, value is too large: <value>, please correct and resubmit
Explanation: A value was provided that is greater than the allowed
maximum.
User Action: Modify the command to include a valid value with the qualifier.
To learn more about valid values for the qualifier, use the ACMSCFG HELP
command.

VALTOOSMALL, value is too small: <value>, please correct and resubmit
Explanation: A value was provided that is less than the allowed minimum.
User Action: Modify the command to include a valid value with the qualifier.
To learn more about valid values for the qualifier, use the ACMSCFG HELP
command.

C–20 Remote Manager Error Messages

Remote Manager Error Messages
C.4 ACMSSNAP Messages

C.4 ACMSSNAP Messages
The following error messages pertain to the ACMSSNAP process.

FILEISOPEN, a file is already open. Use the CLOSE command to close the
current file
Explanation: A request was made to process an ACMS data snapshot file
that is already open. Only one file can be open at a time.
User Action: No action is required.

NOFILEOPEN, no file is open. Use the OPEN command to open a file first
Explanation: A request was made to process an ACMS data snapshot file,
but no file has been opened. A data snapshot file must be open in order for
the command to be executed.
User Action: Use the ACMSSNAP OPEN command to open the file; then
reissue the command.

Remote Manager Error Messages C–21

Index

A
Access

operate, 4–7
read, 4–7
update, 4–8
write, 4–8

ACC table, 9–3
fields, 9–6 to 9–12

ACMS
starting

problems, 2–19
ACMS$MGMT_ALLOW_PROXY_ACCESS logical,

A–1
ACMS$MGMT_CONFIG logical, A–1
ACMS$MGMT_CREDS_DIR logical, A–1
ACMS$MGMT_DISABLED logical, A–1
ACMS$MGMT_ENV.COM, 2–3
ACMS$MGMT_ERR_LOG logical, A–1
ACMS$MGMT_GET_CREDS procedure, 8–24
ACMS$MGMT_LOG logical, A–1
ACMS$MGMT_SERVER_NODE logical, A–2
ACMS$MGMT_SNAPSHOT logical, A–2
ACMS$MGMT_SNAP_CP_SLOTS logical, A–2
ACMS$MGMT_SNAP_MAX_AGENTS logical,

A–2
ACMS$MGMT_SNAP_MAX_APPL logical, A–2
ACMS$MGMT_SVR process

starting, 2–4
ACMS$MGMT_TEMP logical, A–1
ACMS$MGMT_USER logical, A–2
ACMS application procedure servers

replacing, 5–17
ACMSCFG commands, 10–4

ACMSCFG ADD COLLECTION, 5–5, 10–4
ACMSCFG ADD TRAP, 10–8
ACMSCFG DELETE COLLECTION, 5–5,

10–10
ACMSCFG DELETE TRAP, 10–12
ACMSCFG HELP, 10–14
ACMSCFG SET COLLECTION, 5–5, 10–15
ACMSCFG SET INTERFACE, 10–19
ACMSCFG SET PARAMETER, 10–20
ACMSCFG SET TRAP, 10–22
ACMSCFG SHOW COLLECTION, 5–5, 10–24
ACMSCFG SHOW CONTROL, 10–25
ACMSCFG SHOW INTERFACE, 10–26

ACMSCFG commands (cont’d)
ACMSCFG SHOW PARAMETER, 10–27
ACMSCFG SHOW TRAP, 10–29
format, 10–1
objects, 10–2
qualifiers, 10–2
verbs, 10–1

ACMSCFG utility
changing values, 4–3
displaying current values, 4–3
enabling interfaces, 4–8
how to run, 4–2
modifying parameters, 4–9
overview, 10–1
using to start collections, 5–5
using to start data snapshots, 5–8

ACMS environment
preparing, 2–3

ACMSMGMT_ADD_COLLECTION_2 procedure,
8–5

ACMSMGMT_ADD_ERR_FILTER_2 procedure,
8–8

ACMSMGMT_ADD_TRAP_1 procedure, 8–11
ACMSMGMT_DELETE_COLLECTION_1

procedure, 8–14
ACMSMGMT_DELETE_ERR_FILTER_2

procedure, 8–17
ACMSMGMT_DELETE_TRAP_1 procedure, 8–19
ACMSMGMT_GET_ACC_2 procedure, 8–22
ACMSMGMT_GET_ERR_FILTER_2 procedure,

8–27
ACMSMGMT_GET_MGR_STATUS_1 procedure,

8–30
ACMSMGMT_GET_PARAM_2 procedure, 8–33
ACMSMGMT_GET_QTI_2 procedure, 8–35
ACMSMGMT_GET_TSC_2 procedure, 8–37
ACMSMGMT_GET_VERSION_2 procedure, 8–39
ACMSMGMT_LIST_AGENT_2 procedure, 8–41
ACMSMGMT_LIST_COLLECTIONS_2 procedure,

8–45
ACMSMGMT_LIST_CP_2 procedure, 8–49
ACMSMGMT_LIST_ERR_2 procedure, 8–53
ACMSMGMT_LIST_EXC_2 procedure, 8–59
ACMSMGMT_LIST_INTERFACES_1 procedure,

8–63

Index–1

ACMSMGMT_LIST_LOG_1 procedure, 8–66
ACMSMGMT_LIST_PROC_1 procedure, 8–72
ACMSMGMT_LIST_SERVER_1 procedure, 8–77
ACMSMGMT_LIST_TG_2 procedure, 8–81
ACMSMGMT_LIST_TRAP_1 procedure, 8–85
ACMSMGMT_LIST_USERS_1 procedure, 8–88
ACMSMGMT_REPLACE_SERVER_1 procedure,

8–94
ACMSMGMT_RESET_ERR_2 procedure, 8–100
ACMSMGMT_RESET_LOG_1 procedure, 8–98
ACMSMGMT_SAVE_ERR_FILTER_2 procedure,

8–102
ACMSMGMT_SET_ACC_2 procedure, 8–106
ACMSMGMT_SET_AGENT_2 procedure, 8–112
ACMSMGMT_SET_COLLECTION_2 procedure,

8–117
ACMSMGMT_SET_CP_2 procedure, 8–120
ACMSMGMT_SET_EXC_2 procedure, 8–123
ACMSMGMT_SET_INTERFACE_1 procedure,

8–128
ACMSMGMT_SET_PARAM_2 procedure, 8–131
ACMSMGMT_SET_QTI_2 procedure, 8–134
ACMSMGMT_SET_SERVER_1 procedure, 8–140
ACMSMGMT_SET_TRAP_1 procedure, 8–145
ACMSMGMT_SET_TSC_2 procedure, 8–148
ACMSMGMT_START_ACC_1 procedure, 8–154
ACMSMGMT_START_EXC_1 procedure, 8–158
ACMSMGMT_START_QTI_1 procedure, 8–162
ACMSMGMT_START_TRACE_MONITOR_1

procedure, 8–166
ACMSMGMT_START_TSC_1 procedure, 8–169
ACMSMGMT_STOP_1 procedure, 8–173
ACMSMGMT_STOP_ACC_1 procedure, 8–175
ACMSMGMT_STOP_EXC_1 procedure, 8–179
ACMSMGMT_STOP_QTI_1 procedure, 8–183
ACMSMGMT_STOP_TRACE_MONITOR_1

procedure, 8–187
ACMSMGMT_STOP_TSC_1 procedure, 8–190
ACMSMGR commands

ACMSMGR ADD COLLECTION, 11–7
ACMSMGR ADD FILTER, 5–18, 11–11
ACMSMGR ADD TRAP, 11–13
ACMSMGR DELETE COLLECTION, 5–6,

11–16
ACMSMGR DELETE FILTER, 5–19, 11–18
ACMSMGR DELETE TRAP, 11–20
ACMSMGR HELP, 11–22
ACMSMGR LOGIN, 11–23
ACMSMGR LOGOUT, 11–25
ACMSMGR REPLACE SERVER, 11–27
ACMSMGR RESET ERROR, 5–19, 11–29
ACMSMGR RESET LOG, 11–31
ACMSMGR SAVE FILTER, 5–19, 11–33
ACMSMGR SET, 5–15

example, 5–15
ACMSMGR SET ACC, 11–35
ACMSMGR SET AGENT, 11–40
ACMSMGR SET COLLECTION, 5–6, 11–42

ACMSMGR commands (cont’d)
ACMSMGR SET CP, 11–46
ACMSMGR SET EXC, 11–48
ACMSMGR SET INTERFACE, 11–51
ACMSMGR SET PARAMETER, 11–53
ACMSMGR SET QTI, 11–56
ACMSMGR SET SERVER, 11–59
ACMSMGR SET TRAP, 11–62
ACMSMGR SET TSC, 11–64
ACMSMGR SHOW

example, 5–9
ACMSMGR SHOW ACC, 11–68
ACMSMGR SHOW AGENT, 11–73
ACMSMGR SHOW COLLECTION, 5–6, 11–78
ACMSMGR SHOW CP, 11–80
ACMSMGR SHOW ERROR, 5–19, 11–83
ACMSMGR SHOW EXC, 11–86
ACMSMGR SHOW FILTER, 5–18, 11–89
ACMSMGR SHOW GROUP, 11–91
ACMSMGR SHOW INTERFACE, 11–94
ACMSMGR SHOW LOG, 11–96
ACMSMGR SHOW MANAGER, 11–101
ACMSMGR SHOW PARAMETER, 11–103
ACMSMGR SHOW PROCESS, 11–106
ACMSMGR SHOW QTI, 11–109
ACMSMGR SHOW SERVER, 11–112
ACMSMGR SHOW TRAP, 11–115
ACMSMGR SHOW TSC, 11–117
ACMSMGR SHOW USER, 11–121
ACMSMGR SHOW VERSION, 11–124
ACMSMGR START, 5–15
ACMSMGR START EXC, 11–126
ACMSMGR START QTI, 11–128
ACMSMGR START SYSTEM, 11–130
ACMSMGR START TERMINALS, 11–132
ACMSMGR START TRACE_MONITOR,

11–134
ACMSMGR STOP, 5–15
ACMSMGR STOP EXC, 11–136
ACMSMGR STOP MANAGER, 11–138
ACMSMGR STOP QTI, 11–140
ACMSMGR STOP SYSTEM, 11–142
ACMSMGR STOP TERMINALS, 11–144
ACMSMGR STOP TRACE_MONITOR, 11–146
format, 11–1
objects, 11–2
qualifiers, 11–2
verbs, 11–1

ACMSMGR utility
functions, 11–1
hangs, 2–23
logical names, A–1
modifying ACMS run-time, 5–15
modifying parameters, 4–10
NOCLNT_ATTACH messages, 2–23
problems, 2–23
starting interfaces, 4–9
stopping interfaces, 4–9

Index–2

ACMSMGR utility (cont’d)
using, 2–17
using to start collection, 5–5
using to start data snapshots, 5–8

ACMS postinstallation procedure
See Postinstallation procedure

ACMS proxies, 2–17
ACMS run-time system, 5–16

modifying, 5–15
ACMSSNAP commands, 12–4

ACMSSNAP CLOSE, 5–10, 12–4
ACMSSNAP EXIT, 5–10, 12–5
ACMSSNAP HELP, 12–6
ACMSSNAP NEXT, 12–7
ACMSSNAP OPEN, 5–10, 12–8
ACMSSNAP PREV, 12–10
ACMSSNAP QUIT, 12–11
ACMSSNAP RESET, 12–12
ACMSSNAP SHOW, 5–10, 12–13
ACMSSNAP TRACE, 12–17
format, 12–1
objects, 12–2
qualifiers, 12–2
verbs, 12–1

ACMSSNAP utility
how to run, 5–10
logical names, A–2
overview, 12–1

ACMS_POST_INSTALL.COM procedure, 2–4
Active variable, 5–14
Add procedures, 6–14

example, 6–14
table, 6–14

Agent table, 9–12
fields, 9–15 to 9–20

Architecture, 1–1
illustration, 1–1

Audit levels
parameters, 4–10
setting, 4–10
values, 4–11

Audit messages, 4–12
Authentication, 6–4

client, 4–5
explicit, 6–4
implicit, 6–4

Authorization, 4–7
Authunix_create_default function, 6–5

C
Callable procedures, 6–3
Capabilities, 1–3
Class, 5–2

configuration, 5–2
definition, 5–1
error, 5–3
identification, 5–2

Class (cont’d)
pool, 5–3
run-time, 5–3
wildcard (*), 5–3

Client authentication, 4–5
Client node

definition, 2–1
setup, 2–4

Client programs
phases

initialization, 6–4
processing, 6–4
termination, 6–4

Clnt_create function, 6–4
Collection classes

table, 8–1
Collections

displaying
using ACMSMGR SHOW command, 5–9
using ACMSSNAP utility, 5–9

saving
using ACMSCFG utility, 5–8
using ACMSMGR utility, 5–8
using SNMP, 5–9

starting
using ACMSCFG utility, 5–5
using ACMSMGR utility, 5–5
using SNMP, 5–6

Collection table, 9–21
accessing, 5–4
fields, 9–21 to 9–23
purpose, 5–1
specifying data, 5–1

Common RPC fields, 8–1
Configuration class, 5–2
Configuration file

reviewing, 2–15
updating, 2–15

Controlling data collection, 5–1
CP table, 9–23

fields, 9–26 to 9–30
Credentials

creating, 6–5

D
Data collection, 5–1

dynamic, 5–1
static, 5–1

Data collection state, 5–4
Data snapshots, 5–6

starting
using ACMSCFG, 5–8
using ACMSMGR, 5–8
using SNMP, 5–9

Data types
DisplayString, 7–5
gauge, 7–5

Index–3

Data types (cont’d)
integer, 7–5
mapping, 7–5
SNMP INTEGER, 7–5
string, 7–5
supported, 7–5

Debug tracing, 7–11
starting, 7–11
stopping, 7–12

Defining symbols, 2–5
Delete procedures, 6–13

example, 6–13
table, 6–13

Displaying audit messages, 4–12
Displaying error messages, 5–19
DisplayString data type, 7–5
Dynamic tables, 7–6

E
Enable states

table, 8–2
Entity

definition, 5–1
valid types, 5–2

Entity types
table, 8–2

Error class, 5–3
Error filters

setting, 5–17
Error Filter table, 9–30

fields, 9–31
Error log, 5–17
Error messages, 2–21 to 2–23, 5–19
eSNMP return codes, 7–12
EVENT_SEVERITY trap parameter, 7–10
EXC table, 9–31

fields, 9–34 to 9–40
EXISTS trap parameter, 7–10
Explicit authentication, 6–4

F
Facility types

table, 8–3

G
Gauge data type, 7–5
Get procedures, 6–6

example, 6–6
table, 6–6

Get requests, 7–8

H
Hang, 2–22

I
Identification class, 5–2
Identity validation, 7–4
IDL, 6–2

support, 6–2
Implicit authentication, 6–4
Initialization, 6–4

example, 6–5
Interface Definition Language

See IDL
Interfaces

controlling, 4–8
ONC RPC, 6–1
SNMP, 6–1

Interfaces table, 9–40
fields, 9–41 to 9–42

Interface types
table, 8–2

L
Linked list

illustration, 6–9
Linked lists

example, 6–8
List procedures, 6–7

limitations, 6–7
table, 6–7

Log entries
Remote Manager, 2–21

Log file
viewing, 2–4

Logging in, 4–6
Logical names

ACMS$MGMT_ALLOW_PROXY_ACCESS,
A–1

ACMS$MGMT_CONFIG, A–1
ACMS$MGMT_CREDS_DIR, A–1
ACMS$MGMT_DISABLED, A–1
ACMS$MGMT_ERR_LOG, A–1
ACMS$MGMT_LOG, A–1
ACMS$MGMT_SERVER_NODE, A–2
ACMS$MGMT_SNAPSHOT, A–2
ACMS$MGMT_SNAP_CP_SLOTS, A–2
ACMS$MGMT_SNAP_MAX_AGENTS, A–2
ACMS$MGMT_SNAP_MAX_APPL, A–2
ACMS$MGMT_TEMP, A–1
ACMS$MGMT_USER, A–2

Index–4

M
Management

overview, 4–1
Management APIs, 8–1
Management information base

See MIB
Manager Status table, 9–42

fields, 9–42
mgr: f: error, 2–21
MIB, 7–1

tables, 7–4
Modifying class variables, 5–15
mrg: f: error, 2–21

N
Name

definition, 5–1

O
Object identifiers

See OIDs
OIDs, 7–2
ONC RPC, 6–1

callable procedures, 6–3
illustration, 6–1
management APIs, 8–1
overview, 6–1
programming, 6–2

Open Network Computing Remote Procedure Call
See ONC RPC

Operate access, 4–7

P
Parameter table, 9–43

fields, 9–45 to 9–48
PATROL, 7–1
Pool class, 5–3
Portmapper

configuration
determining, 2–8
removing, 2–8

enabling, 2–3
setting up, 2–7
verifying, 2–2 to 2–3

Postinstallation procedures, 2–3
how to run, 2–4

Processing, 6–4
Process logicals

defining, 2–3, 2–15
procmon: e : error, 2–21

procmon: f : error, 2–21
Protocols, 1–1
Proxy accounts, 2–17, 4–7
Proxy files

creating, 2–17

Q
QTI table, 9–49

fields, 9–51 to 9–54

R
Read access, 4–7
Remote Manager

ACC table, 9–3
Agent table, 9–12
capabilities, 1–3
collection classes, 8–1
Collection table, 9–21
communications, 2–5, 2–17
compatibility, 9–1, 10–1, 11–1, 12–1
CP table, 9–23
data types, 7–5, 9–2
enable states, 8–2
entity types, 8–2
Error Filter table, 9–30
eSNMP return codes, 7–12
EXC table, 9–31
facility types, 8–3
getting started, 2–1 to 2–24
hanging during startup, 2–22
interfaces, 6–1

symbolic names, 8–2
Interfaces table, 9–40
maintaining, 6–1
Manager Status table, 9–42
managing, 4–1 to 4–13
Parameter table, 9–43
problems starting, 2–20
programming model, 6–4
QTI table, 9–49
reference tables, 9–1
running states, 8–3
Server table, 9–54
setup, 2–13
severity codes, 8–3
shutdown, 4–5
starting, 2–3, 2–16, 4–4
startup, 4–1

troubleshooting, 2–19
stopping, 4–4
Task Group table, 9–56
trap parameters, 8–4
Trap table, 9–58
troubleshooting, 2–20
TSC table, 9–62
Users table, 9–67

Index–5

Remote Manager (cont’d)
using to make ACMS changes, 5–14
web agent, 3–1

Remote Manager log, 4–10
Remote Manager log entries, 2–21
Remote Manager log file

managing, 4–10
Remote Manager server

logical names, A–1
Remote Manager web agent

See Web agent
Remote Procedure Calls

See RPC calls
Replace procedures, 6–15
Resetting error log, 5–19
Resetting log, 4–13
Rights identifiers, B–1
rpc: f : error, 2–22
RPC calls, 8–5

ACMSMGMT_ADD_COLLECTION_2, 8–5
ACMSMGMT_ADD_ERR_FILTER_2, 8–8
ACMSMGMT_ADD_TRAP_1, 8–11
ACMSMGMT_DELETE_COLLECTION_1,

8–14
ACMSMGMT_DELETE_ERR_FILTER_2, 8–17
ACMSMGMT_DELETE_TRAP_1, 8–19
ACMSMGMT_GET_ACC_2, 8–22
ACMSMGMT_GET_ERR_FILTER_2, 8–27
ACMSMGMT_GET_MGR_STATUS_1, 8–30
ACMSMGMT_GET_PARAM_2, 8–33
ACMSMGMT_GET_QTI_2, 8–35
ACMSMGMT_GET_TSC_2, 8–37
ACMSMGMT_GET_VERSION_2, 8–39
ACMSMGMT_LIST_AGENT_2, 8–41
ACMSMGMT_LIST_COLLECTIONS_2, 8–45
ACMSMGMT_LIST_CP_2, 8–49
ACMSMGMT_LIST_ERR_2, 8–53
ACMSMGMT_LIST_EXC_2, 8–59
ACMSMGMT_LIST_INTERFACES_1, 8–63
ACMSMGMT_LIST_LOG_1, 8–66
ACMSMGMT_LIST_PROC_1, 8–72
ACMSMGMT_LIST_SERVER_1, 8–77
ACMSMGMT_LIST_TG_2, 8–81
ACMSMGMT_LIST_TRAP_1, 8–85
ACMSMGMT_LIST_USERS_1, 8–88
ACMSMGMT_REPLACE_SERVER_1, 8–94
ACMSMGMT_RESET_ERR_2, 8–100
ACMSMGMT_RESET_LOG_1, 8–98
ACMSMGMT_SAVE_ERR_FILTER_2, 8–102
ACMSMGMT_SET_ACC_2, 8–106
ACMSMGMT_SET_AGENT_2, 8–112
ACMSMGMT_SET_COLLECTION_2, 8–117
ACMSMGMT_SET_CP_2, 8–120
ACMSMGMT_SET_EXC_2, 8–123
ACMSMGMT_SET_INTERFACE_1, 8–128
ACMSMGMT_SET_PARAM_2, 8–131
ACMSMGMT_SET_QTI_2, 8–134

RPC calls (cont’d)
ACMSMGMT_SET_SERVER_1, 8–140
ACMSMGMT_SET_TRAP_1, 8–145
ACMSMGMT_SET_TSC_2, 8–148
ACMSMGMT_START_ACC_1, 8–154
ACMSMGMT_START_EXC_1, 8–158
ACMSMGMT_START_MONITOR_1, 8–166
ACMSMGMT_START_QTI_1, 8–162
ACMSMGMT_START_TSC_1, 8–169
ACMSMGMT_STOP_1, 8–173
ACMSMGMT_STOP_ACC_1, 8–175
ACMSMGMT_STOP_EXC_1, 8–179
ACMSMGMT_STOP_QTI_1, 8–183
ACMSMGMT_STOP_TRACE_MONITOR_1,

8–187
ACMSMGMT_STOP_TSC_1, 8–190

RPC fields, 8–1
RPC interface

modifying class parameters, 5–17
RPC procedures

rights identifiers, B–1
Running states

table, 8–3
Run-time class, 5–3

S
Saving data collections, 5–6
sec: e : error, 2–22
sec: e: error, 2–22
sec: f : error, 2–22
Server group tables, 7–7
Server node

definition, 2–1
setup, 2–2

Server table, 9–54
fields, 9–55 to 9–56

Set procedures, 6–11
example, 6–12
table, 6–11

Set requests, 7–8
Setting audit levels, 4–10
Setting error filters, 5–17
Severity codes

table, 8–3
Shutdown, 4–5
Single-row tables, 7–5
SNMP, 6–1

accessing MIB, 7–1
communities, 7–3
configuration, 2–11

determining, 2–10
removing, 2–10

debug tracing, 7–11
starting, 7–11
stopping, 7–12

get requests, 7–8
illustration, 7–1

Index–6

SNMP (cont’d)
initializing, 7–3 to 7–4
OIDs, 7–2
overview, 7–1
security, 7–2
set requests, 7–8
setup, 2–9
starting ACMS processes, 5–16
stopping ACMS processes, 5–16
tables, 7–4
testing, 2–12
traps, 7–9
using to delete rows, 5–16
using to modify ACMS run-time system, 5–16
using to save collections, 5–9
using to start collections, 5–6
using to start entities, 7–9
using to stop entities, 7–9
writing your own, 7–1

snmp: e: error, 2–22
snmp: f : error, 2–22
snmp: w : error, 2–22, 2–23
SNMP get requests, 7–8
SNMP INTEGER data type, 7–5
SNMP set requests, 7–8
Starting ACMS entities, 7–9
Start procedures, 6–15

example, 6–16
Startup, 4–1, 4–4
State validation, 7–4
Static tables, 7–5
Stopping ACMS entities, 7–9
Stop procedures, 6–15
Stored variable, 5–13
Supported protocols, 1–1
Symbols

defining, 2–15

T
Tables

dynamic, 7–6
server group, 7–7
single-row, 7–5
static, 7–5
task group, 7–7

Task Group table, 7–7, 9–56
fields, 9–57 to 9–58

TCP/IP alias
defining, 2–7

TCP/IP hosts
name restriction, 2–7

TCP/IP setup, 2–6
TCP/IP support, 2–2
Temporary command procedures, 5–14
Termination, 6–4

Trap, 7–9
parameters, 7–10, 8–4

EVENT_SEVERITY, 7–10
EXISTS, 7–10

Trap maximums, 9–60
Trap minimums, 9–60
Trap table, 9–58

fields, 9–59 to 9–60
Troubleshooting, 2–20
TSC table, 9–62

fields, 9–64 to 9–67

U
Update access, 4–8
Users table, 9–68

fields, 9–68 to 9–69
Using proxy accounts, 2–17

V
Variables

active, 5–14
Configuration class, 5–13
stored, 5–13

W
Web agent

accessing the web page, 3–5
customizing the display, 3–7
issuing commands, 3–8
reporting problems, 3–12
selecting a host, 3–8
setting up, 3–2
starting, 3–5
stopping, 3–5
troubleshooting problems, 3–12

Wildcard (*), 5–3
Wildcards

example, 5–3, 5–4
Write access, 4–8

Index–7

