HP COBOL

Reference Manual

Order Number: AA-Q2GOH-TK

January 2005

This manual provides reference information and syntax for the HP
COBOL programming language on its platforms: OpenVMS Alpha,
OpenVMS Industry Standard 64, OpenVMS VAX, and Tru64 UNIX

Alpha.

Revision/Update Information:

Operating System and Version:

Software Version:

Hewlett-Packard Company
Palo Alto, California

This manual supersedes the

Compaq COBOL Reference Manual,
Version 2.8 and the VAX COBOL
Reference Manual, Version 5.4, as well
as the online-only Compaq COBOL
Reference Manual, Version 2.8 and
Version 5.7.

OpenVMS 164 Version 8.2

OpenVMS Alpha Version 6.2 or higher
OpenVMS VAX Version 6.2 or higher
Tru64 UNIX Version 5.1 or higher

HP COBOL for OpenVMS 164
Version 2.8

HP COBOL for OpenVMS Alpha
Version 2.8

HP COBOL for Tru64 UNIX
Version 2.8

HP COBOL for OpenVMS VAX
Version 5.7A

PS Conditioner
Processed on 10/22/2004

Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Motif, UNIX®, and X/Open® are trademarks of The Open Group in the U.S. and/or other countries.
All other product names mentioned herein may be trademarks of their respective companies.

Printed in the US

7ZK6296
This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Preface

Contents

1 Overview of the COBOL Language
The COBOL Character Set

1.1

Character Strings. . ..
COBOL Words . ..

User-Defined Words

System-Names

Reserved Words
Function-Names

Literals

Numeric Literals
Nonnumeric Literals
Figurative Constants
PICTURE Character-Strings00,

Separators

Source Reference Format

ANSI Format
Terminal Format .
Sample Entry Format

2 Organization of a COBOL Program

3

2.1
211
21.2
213
2.2
2.3

Program Structure . . .
Division Header . .
Section Header. . .

Paragraph, Paragraph Header, Paragraph-Name

Data Division Entries
Declaratives

Identification Division

PROGRAM-ID
AUTHOR
DATE-COMPILED . . .
OPTIONS (Alpha, I64)

Xiii

1-1
1-3
1-3
1-3
1-5
1-6
1-10
1-10
1-10
1-12
1-14
1-16
1-16
1-17
1-18
1-22
1-23

2-2
2-3
2-4
2-5
2-5
2-6

3-2
3-4
3-5
3-6

4 Environment Division

CONFIGURATION Sectionuuuuiuinnnn
SOURCE-COMPUTER. e
OBJECT-COMPUTER e

SPECIAL-NAMES e
INPUT-OUTPUT Sectiont

4.1

4.2

FILE-CONTROL
ASSIGN

BLOCK CONTAINS e

CODE-SET.

LOCK MODE (Alpha, I64) e e

ORGANIZATION

PADDING CHARACTER s
RECORD DELIMITER (OpenVMS)

RESERVE
I-O-CONTROL . .

5 Data Division

5.1

5.1.1
5.1.2
5.1.3
5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.3

Logical Concepts of Data Storage
Record Description Entries
Level-Numbers
Multiple Record Description Entries for the Same Data

Physical Concepts of Data Storage
Categories and Classesof Data
COBOL Standard Alignment Rules
Additional Alignment Rules for Record Allocation
Alpha and 164 Alignment and Padding

DATA DIVISION General Format and Rules

FD (File Description)t
SD (Sort-Merge File Description) uo....
RD (Report Description) e

Data Description

Report Group Description
Screen Description (Alpha, I164)

ACCESS MODE .

BELL
BLANK

ERASE (Alpha, I164)
EXTERNAL
FILE STATUS
FOREGROUND-COLOR (Alpha, 164) .
FULL (Alpha, 164)
GLOBAL
GROUP INDICATE
HIGHLIGHT (Alpha, I64)
JUSTIFIED
LABELRECORDS................
Level-Number
LINAGE
LINE NUMBER (Alpha, 164)
LOWLIGHT (Alpha, 164)
NEXTGROUP...................

REDEFINES
RENAMES
REPORT
REQUIRED (Alpha, 164)
REVERSE-VIDEO (Alpha, 164)
SECURE (Alpha, I64)
SIGN ...

USAGE
VALUEIS
VALUEOFID

6 Procedure Division

6.1

6.1.1
6.1.2
6.1.3
6.1.4
6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Verbs, Statements, and Sentences

Compiler-Directing Statements and Sentences
Imperative Statements and Sentences
Conditional Statements and Sentences

Scope of Statements
Uniqueness of Reference
Qualification
Subscripts and Indexes
Reference Modification
Identifiers

Ensuring Unique Condition-Names

5-64
5-65
5-67
5-68
5-69
5-70
5-71
5-73
5-74
5-75
5-76
5-78
5-82
5-85
5-86
5-88
5-92
5-96
5-108
5-111
5-113
5-117
5-119
5-120
5-121
5-122
5-123
5-126
5-127
5-130
5-132
5-137
5-138
5-150
5-156

6-1
6-4
6-5
6-5
6-6
6—7
6-7
6-10
6-13
6-15
6-15

vi

6.2.6
6.2.6.1
6.2.6.2
6.2.7
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.4.1
6.4.4.2
6.4.4.3
6.5
6.5.1
6.5.1.1
6.5.1.2
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8
6.5.9
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.10
6.6.11
6.6.12
6.7
6.8

Scope of Namest 6-15

Conventions for Resolving Program-Name References 6-17
Conventions for Resolving Other References 621
External and Internal Data 6—23
Explicit and Implicit Specifications 6—24
Explicit and Implicit Procedure Division References 624
Explicit and Implicit Control Transfers 624
Explicit and Implicit Attributes 6-25
Explicit and Implicit Scope Terminators 6-25
Arithmetic Expressions 6—26
Arithmetic Operators i 6—26
Formation and Evaluation of Arithmetic Expressions 627
Standard Arithmetic (Alpha, 164). 6—28
Native Arithmetic (Alpha, 164). 6—29
FLOAT Arithmetic (Alpha, I64) 6-29

CIT3 Arithmetic (Alpha, I164) 6-30

CIT4 Arithmetic (Alpha, I164) 6-30
Conditional EXpressions.ttt 6-31
Relation Conditions 6-31
Comparison of Numeric Operands 6-32
Comparison of Nonnumeric Operands 6-32

Class Condition 6-33
Condition-Name Condition 6-34
Switch-Status Condition 6-35
Sign Condition 6-36
Success/Failure Condition 6-36
Complex Conditions0 .. 6-38
Abbreviated Combined Relation Conditions 6-39
Condition Evaluation Rules 6-40
Common Rules and Options for Data Handling 6-41
Arithmetic Operations i, 6—41
Multiple Receiving Fields in Arithmetic Statements 642
ROUNDED Phrase. 642
ON SIZE ERROR Phrase 6-42
CORRESPONDING Phrase 6-43
ON EXCEPTION Phrase, 644
Overlapping Operands and Incompatible Data 6—45
IO Status e 6-46

AT END Phrase o e 6-50
INVALID KEY Phrase i 6-51
FROM Phrase i 6-53
INTO Phrase e 6-53
Segmentation 6-53
General Formats and Rules for Statements 6-54
ACCEPT .. 6-59
ADD .. 6-84
ALTER . . . 6-87
CALL . . 6-89
CANCEL e 6-95
CLOSE . . . 6-97
COMPUTE e e e e e e e 6-101
CONTINUE e e e e e i 6-103
DELETE 6-104

DISPLAY 6-107

DIVIDE .« . o oot e e e e 6-120
EVALUATE . . oo oot e e 6-124
1054 i A 6-130
EXIT PROGRAMo oo et 6-131
GENERATE\ oottt e 6-132
GO TO . oo e e 6-134
5 6-136
INITIALIZE . . o o oot e e e e e 6-139
INITIATE .« oo e e e e e e e 6-142
INSPECT . . o oot e 6-143
MERGE . . o oo oot 6-151
MOVE . .o oot 6-156
MULTIPLY . . . o o oot e e e e e e e e e 6-161
OPEN . . o oo e 6-164
PERFORM . . . oo oottt e e e 6-173
READ . . oo oo e e e e e 6-186
RECORD (OpenVMS OnlY) . ..o vvoee e e 6-193
RELEASE . .. oot 6-195
RETURN . . oo oot e e 6-196
REWRITE . ..ottt e e e 6-198
SEARCH . ..ottt e 6-202
SET oot 6-209
SORT . . oot 6-214
START . . o o v oo oo e e e e e e 6-222
STOP . o o oo e e 6-228
STRING . -+ v oo e e e e e e 6-229
SUBTRACT . .+ v oo e e e e e 6-234
SUPPRESS . .+ o oo e e e e 6-237
TERMINATE . . . oo ot e 6-238
UNLOCK .« . o oot 6-239
UNSTRING .« o oot e e e e e 6-244
USE & oot 6-250
WRITE . . . o oo e e e e e e e 6-254
END PROGRAMo oo ot 6-261

7 Intrinsic Functions

Intrinsic Function 7-2
ACOS . e 7-8
ANNUITY ..o e e e 7-9
ARGCOUNT (OpenVMS Only)t 7-10
ASIN .. e 7-11
AT AN 7-12
CHAR . . e 7-13
COS e 7-14
CURRENT-DATE e e 7-15

Vii

viii

DATE-OF-INTEGER e 7-17

DATE-TO-YYYYMMDD e e 7-18
DAY-OF-INTEGER 7-19
DAY-TO-YYYYDDD e e e 7-20
FACTORIAL e 7-21
INTEGER 7-22
INTEGER-OF-DATE e e 7-23
INTEGER-OF-DAY e 7-24
INTEGER-PART e 7-25
LENGTH .. 7-26
LOG . 7-27
LOGI0 .. 7-28
LOWER-CASE 7-29
M AX . 7-30
MEAN . 7-32
MEDIAN . . 7-33
MIDRANGE . . . 7-34
MIN 7-35
MOD .. 7-36
NUMVAL .o 7-37
NUMVAL-C . .. 7-38
ORD .. 7-39
ORD-MAX . . 7-40
ORD-MIN . . 7-41
PRESENT-VALUE 7-42
RANDOM . . 7-43
RANGE . . 7-44
REM .. 7-45
REVERSE . . 7-46
SIN 7-47
SQRT . 7-48
STANDARD-DEVIATION e 7-49
SUM . 7-50
TAN 7-52
TEST-DATE-YYYYMMDD e 7-53
TEST-DAY-YYYYDDD e 7-54
UPPER-CASE . . . 7-55
VARIANCE 7-56
WHEN-COMPILED e 7-57
YEAR-TO-YYYY . . .o 7-59

8 Source Text Manipulation

8.1 Text-Word Definition Rules 8-1
COPY . o 8-3
REPLACE . . . 8-21

A HP COBOL Reserved Words
B Character Sets
C File Status Values

D Report Writer Presentation Rules and Tables

D.1 Organizationt D1
D.2 LINE NUMBER Clause Notation.0...... D-2
D.3 LINE NUMBER Clause Sequence Substitutions D-2
D.4 Saved-Next-Group-Integer Description. D-2
D.5 REPORT HEADING Group Presentation Rules. D-3
D.6 PAGE HEADING Group Presentation Rules D-5
D.7 Body Group Presentation Rules D-6
D.8 PAGE FOOTING Group Presentation Rules D-11
D.9 REPORT FOOTING Group Presentation Rules D-13

E RTL Routines for Accessing the RAB and FAB Structures (OpenVMS
Alpha and 164 Only)

DCOB$RMS_CURRENT _FAB E-2
DCOB$RMS_CURRENT RAB i E-3
Glossary
Index
Examples
51 Multiple Record Definition Structure 5-5
61 Subscripting Example 6—-11
62 Indexing Example 6-13
6-3 Separately Compiled Program 1.............................. 6-18
6—4 Separately Compiled Program 2. 6-19
6-5 Separately Compiled Program 3. 6-19
6—6 Separately Compiled Program 1.............................. 6—20
67 Separately Compiled Program 2. 621
6-8 Separately Compiled Program 3. 621
69 Resolving References to Miscellaneous Names 622
81 COPY with No REPLACING Phrase 8-12
8-2 Replacing a Word with a Literal 8-12
8-3 Replacing a Word by a Literal and Pseudo-Text by Pseudo-Text 8-13

84 Matching a Nonnumeric Literal 8-13

8-5 Multiple-Line Pseudo-Text Replacement Item 8-14
8-6 Matching Pseudo-Text That Includes Separators 8-15
8—7 Command File That Creates Oracle CDD/Repository Directories and

Objects in Figure 8-1 (OpenVMS) 8-16
8-8 Using a Logical Name in a COPY Statement (OpenVMS) 8-18
8-9 Using a Full Pathname in a COPY Statement (OpenVMS) 8-19
8-10 Command File That Creates Oracle CDD/Repository Directories and

Objects in Figure 8-2 (OpenVMS) 8-20

Figures

1-1 Source Program Line 1-18
2—1 Structure of a COBOL Program 2-2
5-1 Hierarchical Record Structure 5-3
5-2 Level-Number Record Structure. 54
5-3 Record Alignment Boundaries 5-8
5-4 Effect of Boundary and Location Equivalence Rules on Sample

Record e 5-11
5-5 Storage Allocation for Sample Record 5-11
5-6 Storage Allocation Without and With Boundary Equivalence 5-12
5-7 Format 3 Clause Combinations 5-37
5-8 Control Break Levels and Their Printed Report Groups 5-59
5-9 Logical Page Areas Resulting from a LINAGE Clause 5-81
5-10 PICTURE Symbol Precedence Rules 5-107
6-1 Possible Combinations of Status Keys land 2. 647
6-2 Valid and Invalid Nested PERFORM Statements 6-177
6-3 PERFORM ... VARYING with the TEST BEFORE Phrase and One

Condition e 6-179
6-4 PERFORM ... VARYING with the TEST BEFORE Phrase and Two

Conditions e 6-180
6-5 PERFORM ... VARYING with the TEST AFTER Phrase and One

Condition e 6-181
6-6 PERFORM ... VARYING with the TEST AFTER Phrase and Two

Conditions e 6-183
8—1 Hierarchical Repository Structure (OpenVMS) 8-15
8-2 Nonbhierarchical Repository Structure (OpenVMS)................ 8-19
D-1 REPORT HEADING Group Presentation Rules. D-3
D-2 PAGE HEADING Group Presentation Rules Table D-5
D-3 Body Group Presentation Rules D-7
D-4 PAGE FOOTING Group Presentation Rules D-12
D-5 REPORT FOOTING Group Presentation Rules D-14

Tables

5-10
5-11
5-12

5-13
6—1
62
6-3
6—4
6-5
6-6

6—7

6-9

6-10
6-11
6-12
6-13
6-14

6-15

6-16

The COBOL Character Set
COBOL User-Defined Words
Special Registers
Numeric Literals
Floating-Point Literals
Nonnumeric Literals
Hexadecimal Literals
Figurative Constants
Separators e
CRT STATUS Termination Codes (Alpha, 164)..............

Required Manual Record-Locking Phrases (Hewlett-Packard
Standard)

Maximum Physical Record Size for Tape and Disk Devices . ..
Classes and Categories of Data Items
Comparison of Major-Minor and Left-Right Locations
Alpha Alignment and Padding
Color Table.
Page Regions Established by the PAGE Clause
Summary of PICTURE Clause Rules
PICTURE Clause Symbols
Using Sign Control Symbols in Fixed Insertion Editing.
Using Sign Control Symbols in Floating Insertion Editing
Positive and Negative Signs for All Numeric Digits..........

Unscaled Data Items, Allocated Storage, and Corresponding Data

TyPES oot
Scaled Data Items, Allocated Storage, and Data Types

Types and Categories of COBOL Statements
Contents of COBOL Sentences.
Relational Operators and Corresponding True Conditions
How Logical Operators Affect Evaluation of Conditions.

Combinations of Conditions, Logical Operators, and Parentheses

Expanded Equivalents for Abbreviated Combined Relation
Conditionst

Relation of GIVING Phrase to RETURN-CODE Special Register
(Alpha, I64)

Field Editing Keys for OpenVMS Systems
Field Editing Keys for Tru64 UNIX Systems
SCREEN SECTION Keys for OpenVMS Alpha and 164 Systems
SCREEN SECTION Keys for Tru64 UNIX Systems
Effects of CLOSE Statement Formats on Files by Category . ..
Valid MOVE Statements

Opening Available and Unavailable Sequential, Line Sequential
(Alpha, 164), Relative, and Indexed Files

Allowable Input-Output Statements for Sequential, Line Sequen
(Alpha, 164), Relative, and Indexed Files

Opening Available and Unavailable Report Writer Files

tial

1-2
1-3
1-7

1-11

1-12

1-13

1-14

1-15

1-16

4-15

4-41
5-6
5-7
5-9

5-15

5-41

5-95

5-97

5-98

5-103
5-104
5-124

5-141
5-146
6-2
6-4
6-32
6-38
6-39

6-40

6-57
6-73
6-74
6-77
6-78
6-98
6-159

6-166
6-167

6-171

xi

Xii

6-17
6-18
7-1
8-1

Allowable Statements for Report Writer Files 6-171
Validity of Operand Combinations in Format 1 SET Statements 6—211
Intrinsic Functions 7-4

Oracle CDD/Repository Data Types and HP COBOL Equivalents
(OpenVMS)

... 8-8
I-O File Status Values for the Default -std 85 Flag or /STANDARD=85

Qualifier Option C-1
I-O File Status Values for the V3 and 85 Options C-3

Preface

This book describes the constructs and rules of the HP COBOL programming
language, which is a Hewlett-Packard Company implementation of COBOL
(COmmon Business-Oriented Language) for the OpenVMS and Tru64 UNIX
platforms. It includes information about language syntax and semantics, as well
as information about adherence and extensions to various COBOL standards.

This documentation set also includes the HP COBOL User Manual and,
optionally, the HP COBOL DBMS Database Programming Manual.

HP COBOL is the new name for what has formerly been known as Compaq
COBOL, DEC COBOL, DIGITAL COBOL, and VAX COBOL. HP COBOL,
unmodified, refers to the following products:

HP COBOL for OpenVMS Industry Standard 64
HP COBOL for OpenVMS Alpha

HP COBOL for Tru64 UNIX

HP COBOL for OpenVMS VAX

Any references to the former names in product documentation or other

components should be construed as references to the HP COBOL names.

Intended Audience

This manual is intended for experienced applications programmers who have a
thorough understanding of the COBOL language and some familiarity with their
operating system. This is not a tutorial manual.

If you are a new COBOL user, you may need to read introductory COBOL
textbooks or take COBOL courses.

Structure of This Document
This manual is organized as follows:

e Chapter 1 presents the elements of the COBOL language, describes two
format options for a COBOL program, and explains how the remaining
chapters organize and present the COBOL general formats.

e Chapter 2 describes the organization of a COBOL program. It presents the
general format for the four COBOL divisions and introduces the concept of
contained programs. This chapter shows the relationship between a program
name and a source file name.

e Chapter 3 describes the general format and contents of the Identification
Division. It explains how to identify a COBOL program and its source listing.

¢ Chapter 4 describes the general format and contents of the Environment
Division. It explains how to describe the program’s physical environment.

xiii

e Chapter 5 describes the general format and contents of the Data Division. It
explains how to describe data the program receives, creates, manipulates, and
produces as output.

¢ Chapter 6 describes the general format and contents of the Procedure
Division. It describes COBOL verbs, which process the files and data in the
Environment and Data Divisions.

e Chapter 7 describes the general format and use of the intrinsic functions.

e Chapter 8 describes the general format of the COPY and REPLACE
statements.

e Appendix A lists the HP COBOL reserved words, which are words that cannot
be used as system names or user-defined names.

e Appendix B lists the ASCII, EBCDIC, and NATIVE character sets.

e Appendix C lists the exception condition values that can appear in File Status
data items.

e Appendix D contains individual presentation rules and tables for each type of
report group.

e Appendix E describes RTL routines for accessing the RAB and FAB structures
on OpenVMS systems.

e The Glossary contains an alphabetical listing of common HP COBOL terms
and their definitions.

e The Index indexes and references terms and concepts in this manual.

Associated Documents

Xiv

The following documents contain additional information directly related to
various topics covered in this manual:

HP COBOL User Manual

This manual describes how to use features of the HP COBOL language to develop
programs on the Tru64 UNIX operating system or the OpenVMS operating
systems on Alpha, 164, and VAX.

Release Notes

Consult the HP COBOL release notes for your installed version for late
corrections and new features.

On the OpenVMS Alpha, 164, or VAX operating system, the release notes are in:

SYS$HELP:COBOLnnn. RELEASE _NOTES (ASCII text)
SYS$HELP:COBOLnnn_RELEASE _NOTES.PS

Where nnn is the version and release number.
On the Tru64 UNIX operating system, the release notes are in:
/usr/lib/cmplrs/cobol/relnotes

Compaq COBOL for Tru64 UNIX Systems Installation Guide

This manual provides instructions for installing HP COBOL on the Tru64 UNIX
operating system.

HP COBOL for OpenVMS Alpha and 164 Systems Installation Guide

This manual provides instructions for installing HP COBOL on the OpenVMS
Alpha and OpenVMS 164 operating systems.

Compaq COBOL for OpenVMS VAX Systems Installation Guide

This manual provides instructions for installing HP COBOL on the OpenVMS
VAX operating system.

HP COBOL DBMS Database Programming Manual

This manual provides information on using HP COBOL for database
programming with Oracle CODASYL DBMS on the OpenVMS Alpha, the
OpenVMS 164, or OpenVMS VAX operating systems.

The OpenVMS Calling Standard and other manuals in the OpenVMS
Documentation Set

This set contains information about using the features of the OpenVMS 164,
OpenVMS Alpha, and OpenVMS VAX operating systems and their tools.

The Tru64 UNIX Documentation Set

This set contains introductory and detailed information about using the features
of the Tru64 UNIX operating system and its tools.

The Alpha Architecture Reference Manual
This manual is available from Digital Press.

Related Documents

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Conventions Used in This Document
The following product names may appear in this manual:
e HP OpenVMS Industry Standard 64 for Integrity servers
e OpenVMS I64
e I64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following table lists the conventions used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

¢ A diamond signals the end of a section of system-specific
information. The beginning of a system-specific section is
identified in the text or header as Alpha (meaning OpenVMS
Alpha and Tru64 UNIX Alpha, and excluding OpenVMS VAX);
or as OpenVMS (meaning both OpenVMS Alpha, OpenVMS
164 and OpenVMS VAX); or as Tru64 UNIX.

RECORD KEY IS Underlined uppercase words are required when used in a
general format. Uppercase words not underlined are optional.

XV

XVi

Convention

Meaning

sortfile

{}

format of examples

special-character words

quotation mark

apostrophe

Lowercase words used in a general format are generic terms
that indicate entries you must provide.

Braces used in a general format enclose lists from which you
must choose only one item. For example:

SEQUENTIAL
{ RANDOM }
DYNAMIC

Brackets used in a general format enclose optional items from
which you can choose none or one. For example:

RECORD
ALL RECORDS

Choice indicators, vertical lines inside a set of braces, used in a
general format enclose lists from which you must choose one or
more items, using each item chosen only once. For example:

COMMON
INITIAL

A horizontal ellipsis indicates that the item preceding the
ellipsis can be repeated. For example:

{ switch-name } ...

A vertical ellipsis indicates that not all of the statements are
shown.

Program examples are shown in terminal format, rather than
in ANSI standard format.

The following symbols, when used in a general format,
constitute required special-character words:

Plus sign (+)

Minus sign (-)

Single (=) and double (==) equal signs
Less than (<) or greater than (>) symbols
Less than or equal to (<=) and greater than or equal to
(>=) symbols

Period (.)

Colon (:)

Single (*) and double (**) asterisks

Slash (/)

Left parenthesis (() or right parenthesis ())

The term quotation mark is used to refer to the double
quotation mark character ().

The term apostrophe is used to refer to the single quotation
mark character ().

Convention Meaning

user input In examples, user input (what you enter) is shown as
monospaced text.
extensions Hewlett-Packard extensions to the 1985 ANSI COBOL

Standard are color coded in blue or gray. Note that the term
extension in this manual means a Hewlett-Packard extension
to the ANSI COBOL Standard. (Some of these extensions
are included in the X/Open® CAE Standard for the COBOL

language.)
report file Bold type indicates a new term.
italics Italic type indicates important information, complete titles

of manuals, or variables. Variables include generic terms
(lowercase variable elements in syntax) when referred to in
text; and information that varies in system output (error
number) and in command lines (BASIC file-name) in text.

full-file-name This syntax term refers to the name of a file and the device
and directory, or path, in which it is located. For example:

DISK2$: [HOME.PUBLIC |FILENAME.TXT; (OpenvMS file
specification)

/disk2/home/public/filename.txt (Tru64 UNIX
file specification)

compiler option This term refers to command-line qualifiers (OpenVMS Alpha
and 164 systems) or flags (Tru64 UNIX systems). For example:

/LIST (OpenVMS qualifier)
-list (Tru64 UNIX flag)

COBOL This term refers to language information common to ANSI-85
COBOL, HP COBOL, and HP COBOL for OpenVMS VAX.

A boxed symbol indicates that you must press a key on the
terminal; for example, indicates that you press the Enter
key.

Tab This symbol indicates a nonprinting tab character.

The symbol indicates that you hold down the key labeled
CTRL while you press another key, for example, or [Ctrl[0].

$ The dollar sign ($) represents the OpenVMS system prompt.

% The percent sign (%) represents the Tru64 UNIX system
prompt.

References

The following table shows certain references and their respective meanings in
this manual:

Reference Meaning

Alpha OpenVMS Alpha or Tru64 UNIX Alpha operating system

OpenVMS OpenVMS Alpha, OpenVMS 164, or OpenVMS VAX operating
system

Tru64 UNIX Tru64 UNIX Alpha operating system

VAX OpenVMS VAX operating system

Tru64 UNIX was formerly known as DEC OSF/1 or as DIGITAL UNIX. HP
COBOL was formerly known as Compaq COBOL, DIGITAL COBOL, or DEC

XVii

COBOL. HP COBOL for OpenVMS VAX was formerly known as Compaq COBOL
for OpenVMS VAX, VAX COBOL or as DIGITAL VAX COBOL.

Acknowledgement

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by
any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are
as follows: FLOW-MATIC (trademark of Unisys Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems, copyrighted 1958,
1959, by Unisys Corporation; IBM Commercial Translator Form No. F28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

How to Order Additional Documentation

For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Reader’s Comments

xviii

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

1

Overview of the COBOL Language

This chapter provides information about the structure and language of COBOL
source programs. It describes the elements of the COBOL language, reference
formats, and language organization.

The COBOL language consists of the following components:
e Programs

¢ Divisions

e Sections

e Paragraphs
e Sentences

e Statements
e C(Clauses

e Entries

e Words

e Characters

A separately compiled COBOL program is a program that, together with
its contained programs (if present), is compiled separately from all other
programs. Each COBOL program is divided into four parts, called divisions:
the Identification Division, Environment Division, Data Division, and Procedure
Division. Divisions can contain sections, which in turn can contain paragraphs.
Paragraphs can contain sentences, clauses, statements, or entries.

The building blocks of these language components include the COBOL character
set, character-strings, separators, punctuation, and literals.

A COBOL program is a string of characters that is syntactically correct according
to the COBOL language rules.

1.1 The COBOL Character Set

The COBOL character set, shown in Table 1-1, is used to form character-
strings and separators.

The only components of a COBOL program that can contain characters
outside this set are nonnumeric literals, comment-entries, and comment lines.
Appendix B specifies the more inclusive computer character sets these elements
can use.

Overview of the COBOL Language 1-1

Table 1-1 The COBOL Character Set

Character Meaning

0,1,...,9 digit

AB, ...,Z letter

a,b,...,z lowercase letter (equivalent to letter)
+ plus sign

- minus sign (hyphen)
* asterisk

slash (stroke, virgule)
backslash

equal sign

-~

currency sign

greater than symbol

ANV &

less than symbol
colon
underline (underscore)

space

Iy
o

horizontal tab

left parenthesis

o~

right parenthesis
, comma (decimal point)
; semicolon
period (decimal point, full stop)
" quotation mark (double quotation mark)
’ apostrophe (single quotation mark)
{ left brace
} right brace
[left bracket
] right bracket
« double left-angle brackets
» double right-angle brackets

Except in nonnumeric literals, the compiler treats lowercase letters as if they
were uppercase. Therefore, a program can contain COBOL words without regard
to case.l For example, the compiler recognizes the COBOL words in each of the
following pairs as identical:

WORKING-STORAGE Working-Storage
Input input

file-a FILE-A

INSPECT InSpect

1 On Tru64 UNIX the case sensitivity of the system affects COBOL’s case insensitivity
in a few situations. See the PROGRAM-ID paragraph in Chapter 3, and the section on
CALL in Chapter 6. Also refer to the HP COBOL User Manual for a description of the
-names lowercase, -names uppercase, and -names as_is flags.

1-2 Overview of the COBOL Language

1.2 Character Strings

A character-string is a character or a sequence of contiguous characters that
form a COBOL word, a literal, a PICTURE character-string, or a comment-entry.
Separators delimit character-strings. The following sections describe these topics
in detail.

1.2.1 COBOL Words

A COBOL word is a character-string of not more than 31 characters that forms
one of the following:

e A user-defined word
e A system-name

e A reserved word

e A function-name

A user-defined word or system-name cannot be a reserved word. However, a
program can use the same COBOL word as both a user-defined word and a
system-name. The compiler determines the word’s class from its context.

1.2.1.1 User-Defined Words

A user-defined word is a COBOL word that you must supply to satisfy the
format of a clause or statement. This word consists of characters selected from
the set A to Z, 0 to 9, the currency sign ($), underline (_), and hyphen (-).
Throughout this manual, and except where specific rules apply, the hyphen (-)
and the underline (_) are treated as the same character in a user-defined word.
The underline (_), however, can begin or end a user-defined word, and the hyphen
(-) cannot. By convention, names containing a currency sign ($) are reserved for
Hewlett-Packard.

Table 1-2 provides brief descriptions of the COBOL user-defined words.

Table 1-2 COBOL User-Defined Words

User-Defined Word Purpose

Alphabet-Name Assigns a name to a character set, collating sequence, or both. Alphabet-names

Class-Name

must be defined in the SPECIAL-NAMES paragraph. (See SPECIAL-NAMES in
Chapter 4, Environment Division.)

Relates a name to a specified set of characters listed in that clause. (See
SPECIAL-NAMES in Chapter 4, Environment Division.)

Condition-Name Assigns a name to a value, set of values, or range of values in the complete set

Data-Name

of values that a data item can have. Data items with one or more associated
condition-names are called conditional variables.

Data Division entries define condition-names. Names assigned in the SPECIAL-
NAMES paragraph to the "on" or "off" status of switches are also condition-names.

Names a data item described in a data description entry. When specified in a
general format, data-name cannot be reference modified, subscripted, indexed, or
qualified unless specifically allowed by the rules for that format.

(continued on next page)

Overview of the COBOL Language 1-3

Table 1-2 (Cont.) COBOL User-Defined Words

User-Defined Word Purpose

File-Name Names a file connector. A file connector is a storage area that contains
information about a file and is the link between:

e A file-name and a physical file
e A file-name and its associated storage area

File description entries and sort-merge file description entries describe file

connectors.
Index-Name Names an index associated with a specific table.
Level-Number Is a one- or two-digit number that describes a data item’s special properties or its

position in the structure of a record. (See Sections 5.1.1 and 5.1.2.)

Library-Name Names a COBOL library used in a source program compilation. (See the COPY
statement in Chapter 8.)

Mnemonic-Name Associates a name with a system-name, such as CONSOLE, SYSERR,
ARGUMENT-NUMBER, ENVIRONMENT-NAME, C01, OR SWITCH-8. (See
SPECIAL-NAMES in Chapter 4.)

Paragraph-Name Names a Procedure Division paragraph. (See Section 2.1.3.) Paragraph-names
are equivalent only if they are identical; that is, if they are composed of the same
sequence and number of digits and/or characters.

For example:

START-UP START-UP Equivalent
START-UP STARTUP Different
Start-up START-UP Equivalent
001-START-UP 01-START-UP Different
017 017 Equivalent
017 17 Different
Program-Name Identifies a COBOL source program. (See the PROGRAM-ID paragraph in

Chapter 3, and the section on CALL in Chapter 6, for a description of case-
sensitivity on the Tru64 UNIX operating system. Also refer to the HP COBOL
User Manual for a description of the -names lowercase, -names uppercase,
and -names as_1is flags.)

Record-Name Names a data item described with level-number 01 or 77.

Report-Name Names a report produced by the Report Writer Control System (RWCS). (See the
REPORT clause in Chapter 5.)

Screen-Name (Alpha, Names a screen item defined in the SCREEN SECTION of a program. (See the
164) Screen Description (Alpha, 164) section of Chapter 5.) ¢

Section-Name Names a Procedure Division section. Section-names are equivalent only if they
are identical; that is, when they are composed of the same sequence and number
of digits and/or characters. (See Section 2.1.2.)

Segmented-Key- Identifies a segmented key, which is a concatenation of one or more (up to

Name eight) data items (segments) within a record associated with an indexed file.
A segmented key is a form of primary or alternate key. It offers flexibility in
defining record description entries for indexed files. (Refer to the section on
segmented keys in the HP COBOL User Manual.)

Segment-Number Is a 1- or 2-digit number that classifies a Procedure Division section for
segmentation. In HP COBOL programs, segment-numbers specify independent
and fixed segments. (See Section 6.7.)

(continued on next page)

1-4 Overview of the COBOL Language

Table 1-2 (Cont.) COBOL User-Defined Words

User-Defined Word Purpose

Symbolic-Character Identifies a user-defined figurative constant.

Text-Name Identifies library text in a COBOL library. (See the COPY statement in
Chapter 8.)

Within a given program, but excluding any contained program, the user-defined
words are grouped into the following disjoint sets:

alphabet-names
class-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
report-names
screen-names
section-names
segmented-key-names
symbolic-characters
text-names

All user-defined words in a program, except segment-numbers and level-numbers,
can belong to only one of these sets. User-defined words in each set must

be unique, except as described in the rules for uniqueness of reference. (See
Section 6.2).

Except for section-names, paragraph-names, segment numbers, and level-

numbers, all user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique. Any segment-number
or level-number can be the same as any other segment-number or level-number.

1.2.1.2 System-Names
System-names are COBOL words that refer to the program’s operating
environment. The same COBOL word can be used in a program as both a
user-defined word and a system-name. The compiler determines the word’s class
from its context.

The system-names are as follows:

ALPHA

ASCII
CARD-READER
CONSOLE
CONTIGUOUS
CONTIGUOUS-BEST-TRY
Co1
DEFERRED-WRITE
EBCDIC
EXTENSION
FILL-SIZE

164

Overview of the COBOL Language 1-5

LINE-PRINTER
LOCK-HOLDING
MASS-INSERT
OPERATOR
PAPER-TAPE-PUNCH
PAPER-TAPE-READER
PREALLOCATION
PRINT-CONTROL
SWITCH

VAX

WINDOW

1.2.1.3 Reserved Words

A reserved word can be used only as specified in the general formats. It cannot
be a user-defined word. (See Appendix A for a list of reserved words.)

The three types of reserved words follow:
¢ Required words

e Optional words

e Special-purpose words

Required Word
A required word must be used when its format is used in a program.

The two types of required words are keywords and special character words.
In general formats, keywords are uppercase and underlined. Arithmetic operators
and relation characters are special character words; they are not underlined in
the general format.

In the following sample format, the keywords are COMPUTE, ROUNDED, SIZE,
ERROR, NOT, and END-COMPUTE. The equal sign (=) is a special-character
word.

COMPUTE { rsult [ROUNDED]} . . . = arithmetic-expression

[ON SIZE ERROR stment]
[NOT ON SIZE ERROR stment2 |
[END-COMPUTE |

Optional Words

In general formats, uppercase words that are not underlined are optional words.
They can make a program more human-readable, but have no semantic effect. In
the previous sample format, ON is an optional word.

Special-Purpose Words

The two types of special-purpose words are figurative constants and special
registers. Figurative constants name and refer to specific constant values and
are described in detail in Section 1.2.3. Special registers name and refer to special
storage areas that the compiler provides. The HP COBOL special registers

are primarily used to store information related to or produced by specific HP
COBOL features. Table 1-3 shows the special registers, their usage, and their
descriptions.

1-6 Overview of the COBOL Language

Table 1-3 Special Registers

Special Register

Usage—Description

RETURN-CODE (Alpha,
164)

LINAGE-COUNTER

X/OPEN—Names an HP COBOL special register that may be
used to set a return value for a calling program or to retrieve
the value returned from a called program. It is represented
by PIC S9(9) USAGE IS COMP. It is implicitly defined with
GLOBAL scope.

The RETURN-CODE register is initialized with the platform-
specific success code. On OpenVMS Alpha and OpenVMS 164,
it is initialized to one. On Tru64 UNIX it is initialized to zero.

The RETURN-CODE special register can be set by a called
program, prior to the execution of a STOP RUN or EXIT
PROGRAM statement, to pass a value to the calling program
or the execution environment. For a calling program, it can
be read, subsequent to the CALL, to obtain the value of the
RETURN-CODE set by the called program.

On Tru64 UNIX the main program sets the shell variable
status to the value of the RETURN-CODE. On OpenVMS
Alpha and OpenVMS 164 the main program sets the symbol
$STATUS to the value of the RETURN-CODE.

If you use the GIVING phrase on the CALL statement or

on the Procedure Division header, specifying a data item as

its argument, this data item (instead of RETURN-CODE)
receives the return value. Note that you can specify the special
register RETURN-CODE as the argument to GIVING, in
which case RETURN-CODE receives the return value. For
more information on the relationship between the GIVING
phrase and the RETURN-CODE special register, see Table 6-7
in Chapter 6.

Because the reserved word RETURN-CODE is one of the
X/Open reserved words, you cannot use the noxopen keyword
in the reserved words compiler option if you want to use the
RETURN-CODE “special register. <STOPPED>

For related information, see Section 6.8 for the syntax and
description of the GIVING phrase of the Procedure Divison
header; and the CALL statement for the syntax and description
of CALL GIVING. ¢

LINAGE files—A line counter that the compiler provides when
a file description entry contains a LINAGE clause. Its value
is the number of the current record within the page body.
(See the LINAGE clause in Chapter 5.) The implicit size of
LINAGE-COUNTER is nine decimal digits represented by
PIC S9(9) COMP. You can qualify LINAGE-COUNTER with
a file-name. Procedure Division statements and the SOURCE
clause of the Report Section can access the value of LINAGE-
COUNTER but cannot change its value. LINAGE-COUNTER
is global if file-name is global and external if file-name is
external.

(continued on next page)

Overview of the COBOL Language 1-7

Table 1-3 (Cont.) Special Registers

Special Register Usage—Description

PAGE-COUNTER REPORT WRITER—A page counter that the compiler provides
for each report in the Report Section of the Data Division.
You can qualify PAGE-COUNTER with a report-name. Its
value is the number of the current page within a report. The
implicit size of PAGE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer Control
System (RWCS) maintains the value of PAGE-COUNTER and
uses this value to number the pages of a report. The SOURCE
clause of the Report Section can reference PAGE-COUNTER.
The values in PAGE-COUNTER range from 1 to 999999 and
can be altered by Procedure Division statements.

LINE-COUNTER REPORT WRITER—A line counter that the compiler generates
for each report in the Report Section of the Data Division. It
may be qualified by a report-name. Its value is the number of
the current line within a page. (See PAGE-COUNTER.) The
implicit size of LINE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer Control
System (RWCS) maintains the value of LINE-COUNTER and
uses this value to determine the vertical positioning of a report.
The SOURCE clause of the Report Section can reference LINE-
COUNTER. The values in LINE-COUNTER range from 0 to
999999. Procedure Division statements can access the values
in LINE-COUNTER; however, only the RWCS can change its

value.
RMS-STS! RMS—Contains the primary RMS status value of an I/O
(OpenVMS) operation. (RMS-STV contains the secondary value.) RMS-STS

provides additional information on COBOL File Status values
resulting from I/O operations.? It is represented by PIC S9(9)
USAGE IS COMP. You must qualify RMS-STS with a file-
name. If the file-name is global, RMS-STS is also global. If the
file-name is external, RMS-STS is also external.

Before the program opens the file for the first time, the value
of RMS-STS is undefined. After your program executes an
OPEN or CLOSE statement, RMS-STS is set to the value of
the STS field in the associated file access block (FAB). After
executing a READ, WRITE, REWRITE, DELETE, START, or
UNLOCK statement, RMS-STS is set to the value of the STS
field in the associated record access block (RAB).

1Procedure Division statements can access the values or strings stored in the RMS special registers;
however, only the RMS facility can change the contents of the registers. Refer to the HP COBOL User
Manual for programming examples. For an explanation and a listing of RMS STS and STV values,
refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived
manual available on the OpenVMS Documentation CD-ROM, or the online OpenVMS Help Message
utility. Refer to the OpenVMS Record Management Services Reference Manual for information on
RMS. (RMS is on OpenVMS systems only.)

2The FILE STATUS data item (see Section 6.6.8, I-O Status) provides the primary source of status
information for the file I-O verbs, and RMS-STS and RMS-STV provide supplementary information.

(continued on next page)

1-8 Overview of the COBOL Language

Table 1-3 (Cont.) Special Registers

Special Register

Usage—Description

RMS-STV!
(OpenVMS)

RMS-FILENAME!
(OpenVMS)

RMS-CURRENT-STS!
(OpenVMS)

RMS-CURRENT-STV!
(OpenVMS)

RMS—Contains the secondary (RMS-STS is primary) RMS
status value of an I/O operation. The interpretation of this
value is dependent on the value in RMS-STS. It is represented
by PIC S9(9) USAGE IS COMP. You must qualify RMS-STV
with a file-name. If the file-name is global, RMS-STV is also
global. If the file-name is external, RMS-STV is also external.

The value in RMS-STV is undefined prior to the initial OPEN
of the file. After your program executes an OPEN or CLOSE
statement, RMS-STV is set to the value of the STV field in the
associated FAB. After executing a READ, WRITE, REWRITE,
DELETE, or START statement, RMS-STV is set to the value of
the STV field in the associated RAB.

RMS—Names the complete RMS filename. It consists of 255
alphanumeric characters represented by PIC X(255) USAGE
IS DISPLAY. You must qualify it with a file-name. If the
file-name is global, RMS-FILENAME is also global. If the
file-name is external, RMS-FILENAME is also external.

Before the program opens the file for the first time, the
value of RMS-FILENAME is undefined. For each COBOL
OPEN statement, RMS-FILENAME is set to the complete
RMS file specification string of file-name: for example,
DBB1:[COBOLIMASTER.DAT.

RMS—Names an HP COBOL exception condition register.

It contains the primary RMS status value of the most

recent RMS I/O operation, regardless of the file operated

on. (RMS-CURRENT-STV contains the secondary value.) It is
represented by PIC S9(9) USAGE IS COMP. Since this register
can contain the primary RMS status value for any file, you
must not qualify it with a file-name.

After your program executes any RMS I/O operation, it sets
RMS-CURRENT-STS to the value contained in RMS-STS for
that file.

RMS—Names an HP COBOL exception condition register. It
contains the secondary RMS status value of the most recent
RMS I/O operation, regardless of the file operated on. (RMS-
CURRENT-STS contains the primary value.) It is represented
by PIC S9(9) USAGE IS COMP. Since this register can contain
the secondary RMS status value for any file, you must not
qualify it with a file-name. After your program executes any
RMS I/0 operation, it sets RMS-CURRENT-STV to the value
contained in RMS-STV for that file.

IProcedure Division statements can access the values or strings stored in the RMS special registers;
however, only the RMS facility can change the contents of the registers. Refer to the HP COBOL User
Manual for programming examples. For an explanation and a listing of RMS STS and STV values,
refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived
manual available on the OpenVMS Documentation CD-ROM, or the online OpenVMS Help Message
utility. Refer to the OpenVMS Record Management Services Reference Manual for information on
RMS. (RMS is on OpenVMS systems only.)

(continued on next page)

Overview of the COBOL Language 1-9

Table 1-3 (Cont.) Special Registers

Special Register Usage—Description

RMS-CURRENT- RMS—Names an HP COBOL exception condition register. It
FILENAME! contains the complete RMS file specification string of the file
(OpenVMS) most recently operated on by an I/O statement. It consists

of 255 alphanumeric characters represented by PIC X(255)
USAGE IS DISPLAY. Since this register can contain the
file-name for any file, you must not qualify it with a file-name.

After your program executes any I/O operation, it sets RMS-
CURRENT-FILENAME to the string contained in RMS-
FILENAME for that file.

1Procedure Division statements can access the values or strings stored in the RMS special registers;
however, only the RMS facility can change the contents of the registers. Refer to the HP COBOL User
Manual for programming examples. For an explanation and a listing of RMS STS and STV values,
refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived
manual available on the OpenVMS Documentation CD-ROM, or the online OpenVMS Help Message
utility. Refer to the OpenVMS Record Management Services Reference Manual for information on
RMS. (RMS is on OpenVMS systems only.)

¢

1.2.1.4 Function-Names

A function-name is the name of a function as shown in Table 7-1, Intrinsic
Functions. Note that function-names are not reserved words and may appear in
a different context in a program as a user-defined word or a system-name.

1.2.2 Literals

A literal is a character-string whose value is specified by: (1) the ordered set of
characters it contains, or (2) a reserved word that is a figurative constant.

HP COBOL provides two types of literals: numeric and nonnumeric. Numeric
literals include floating-point literals and nonnumeric literals include hexadecimal
and national literals. Floating-point, hexadecimal, and national literals are
Hewlett-Packard extensions. The following two sections describe literals in
detail.

1.2.2.1 Numeric Literals

A numeric literal is a character string of 1 to 33 characters on Alpha and 164 or
1 to 20 characters on VAX, selected from the digits 0 to 9, the plus sign (+), the
minus sign (-), and the decimal point (.).

The value of a numeric literal is the algebraic quantity represented by the
characters in the literal.

Syntax Rules

1. A numeric literal must contain at least 1 digit and not more than 31 digits on
Alpha and 164 or 18 digits on VAX.

2. A numeric literal must not contain more than one sign character, which must
be the leftmost character. If the literal is unsigned, its value is positive.

3. A numeric literal must not contain more than one decimal point. The decimal
point is treated as an assumed decimal point. It can be used anywhere in the
literal except as the rightmost character.

If a numeric literal contains no decimal point, it is an integer.

1-10 Overview of the COBOL Language

4. The compiler treats a numeric literal enclosed in quotation marks as a
nonnumeric literal.

Table 1-4 provides examples of numeric literals.

Table 1-4 Numeric Literals

Literal Value

12 12

0.12000 0.12
-123456789012345678 -123456789012345678

000000003 3

-34.455445555 -34.455445555

0 0
+0.000000000001 +0.000000000001
+0000000000001 +1

Floating-Point Literals

A floating-point literal, a Hewlett-Packard extension to numeric literals, is a
character-string whose value is specified by 4 to 37 characters on Alpha and 164
or 4 to 24 characters on VAX, selected from the digits 0 to 9, the plus sign (+), the
minus sign (-), the decimal point (.), and the letter E (uppercase or lowercase).

You can use floating-point literals to achieve a wider range of numeric literal
values.

Syntax Rules

1. A floating-point literal must be between 4 and 37 (Alpha, 164) or 24 (VAX)
characters in length.

2. A floating-point literal must contain the following characters:
— At least 1 digit to the left of the E
— A decimal point to the left of the E
— An E (uppercase or lowercase)
— At least 1 digit to the right of the E

3. The maximum number of characters to the left of the E is 33 (Alpha, 164) or
20 (VAX), of which no more than 31 (18 on VAX) can be digits.

4. The maximum number of characters to the right of the E is 4 (Alpha, 164) or
3 (VAX), of which no more than 3 (2 on VAX) can be digits.

5. A floating-point literal must not contain more than two sign characters as
follows:

— The first character of the literal
— The first character following the E
6. If the first character of the literal is not a sign character, the literal is positive.

If the first character following the E is not a sign character, the value of the
numeric component following the E is positive.

Overview of the COBOL Language 1-11

8. A floating-point literal must contain only one decimal point that can appear
only to the left of the E.

9. A comma must be used in place of the decimal point, if the DECIMAL POINT
IS COMMA clause is specified.

The value of a floating-point literal is the algebraic quantity represented by the
characters in the literal that precede the E multiplied by ten raised to the power
of the algebraic quantity represented by the characters in the literal following
the E.

Table 1-5 provides a few examples of floating-point literals.

Table 1-5 Floating-Point Literals

Literal Value
1.6e5 160000.0

3.2E-3 0.0032
-l.ed -10000.0
0.002e+6 2000.0

-.8E-2 -0.008

1.2.2.2 Nonnumeric Literals

A nonnumeric literal is a character-string of 0 to 256 characters. It is delimited
on both ends by quotation marks (") or apostrophes (*). A nonnumeric literal
delimited by apostrophes is treated in the same manner as a nonnumeric literal
delimited by quotation marks.

The value of a nonnumeric literal is the value of the characters in the character-
string. It does not include the quotation marks (or apostrophes) that delimit the
character-string. All other punctuation characters in the nonnumeric literal are
part of its value.

The compiler truncates nonnumeric literals to a maximum of 256 characters.
Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (==) must immediately
precede the opening quotation mark (or apostrophe).

2. The closing quotation mark (or apostrophe) must be immediately
followed by one of the following:

e Space

e Comma

e Semicolon

e Period

¢ Right parenthesis

¢ Pseudo-text delimiter

3. If a nonnumeric literal is delimited by quotation marks ("), two consecutive
quotation mark characters in the literal represent one quotation mark
character.

1-12 Overview of the COBOL Language

4. If a nonnumeric literal is delimited by apostrophes (’), two consecutive
apostrophes in the literal represent one apostrophe (/).

Table 1-6 provides examples of nonnumeric literals. In these examples, s

represents a space character.

Table 1-6 Nonnumeric Literals

Literal Value
"ABC™ ABC
"o1" 01

"sO1" s01

"a.b" a.b
*GHI"’ GHI

r02’ 02

rs02’ s02

red’ cd
rJrrK J 'K
nJumnnRe J K
rJrrr K J 'K
nJrrKe J 'K
LM 'N” L'M'N
"L'M'N" L'M'N
'O"P"Q’ o"P"Q
"QrrPrQn 0"P"Q
‘RrnStnT RS T
"Rrmmn S Rr»Sn T
rgrrrevrerrrWe urv'w
"grrverwe u v 'w

Hexadecimal Literals

A hexadecimal literal (a Hewlett-Packard extension to nonnumeric literals) is a
character string of 2 to 256 hexadecimal digits. On the left it is delimited by the
separator X (or x) immediately followed by a quotation mark (") or apostrophe
(7); on the right it is delimited by a matching quotation mark or apostrophe. For

example:

03 HEX VAL PIC X VALUE X"00".

The character string consists only of pairs of hexadecimal digits representing a
byte value ranging from 00 to FF; hence, only the characters 0 to 9, A to F, and a

to f are valid.

Overview of the COBOL Language 1-13

The value of a hexadecimal literal is the composite value of the paired
hexadecimal representations. The compiler truncates hexadecimal literals to
a maximum of 128 hexadecimal representations (pairs of hexadecimal digits).

A hexadecimal literal can be used interchangeably wherever a nonnumeric literal
can appear in HP COBOL syntax. (Thus, hexadecimal literals cannot be used as
operands in arithmetic statements.)

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (==) must immediately
precede the opening character X (or x).

2. The closing quotation mark or apostrophe must be immediately followed by
one of the following:

e Space

e Comma

e Semicolon

e Period

e Right parenthesis

¢ Pseudo-text delimiter

Table 1-7 provides examples of hexadecimal literals.

Table 1-7 Hexadecimal Literals

Literal Value
X"00" NUL
x"0D" CR
x"2424" $$

X' 7b7a’ {z

National Literals

National literals can be from 0 to 128 2-byte characters (hence 256 bytes). The
syntax is:

VALUE N"".

National literals are made available when /INATIONALITY=JAPAN or
-nationality japan is specified.

1.2.3 Figurative Constants

Figurative constants name and refer to specific constant values generated by
the compiler. The singular and plural forms of figurative constants are equivalent
and interchangeable. Table 1-8 lists the figurative constants.

1-14 Overview of the COBOL Language

Table 1-8 Figurative Constants

Figurative Constant

Value

ZERO, ZEROS, ZEROES

SPACE, SPACES

HIGH-VALUE,
HIGH-VALUES

LOW-VALUE,
LOW-VALUES

QUOTE, QUOTES

ALL Literal

Symbolic-character

Represent the value zero, or one or more occurrences of the character 0 from
the computer character set, depending on context. In the following example, the
first use of the word ZERO represents a zero value; the second represents six 0
characters:

03 ABC PIC 9(5) VALUE ZERO.
03 DEF PIC X(6) VALUE ZERO.

Represent one or more space characters from the computer character set.

Represent one or more occurrences of the character with the highest ordinal
position in the program collating sequence. For example, HIGH-VALUE for the
native collating sequence is hexadecimal FF.

The value of HIGH-VALUE depends on the collating sequence specified by
clauses in the OBJECT-COMPUTER and SPECIAL-NAMES paragraphs.
For example, if the program collating sequence is ASCII, HIGH-VALUE
is hexadecimal 7F (hexadecimal FF for EBCDIC). For more information,
see OBJECT-COMPUTER and SPECIAL-NAMES sections in Chapter 4,
Environment Division.

Represent one or more occurrences of the character with the lowest ordinal
position in the program collating sequence (hexadecimal 00 for the native
collating sequence).

The value of LOW-VALUE depends on the program collating sequence specified
by clauses in the OBJECT-COMPUTER and SPECIAL-NAMES paragraphs.
For more information, see the OBJECT-COMPUTER and SPECIAL-NAMES
sections in Chapter 4, Environment Division.

Represent one or more occurrences of the quotation mark character. QUOTE or
QUOTES cannot be used in place of a quotation mark to bound a nonnumeric
literal. The following examples are not equivalent:

QUOTE abcd QUOTE
Ilabcdll

Represents one or more occurrences of the string of characters making up
the literal. The literal must be either nonnumeric, a symbolic-character, or a
figurative constant other than ALL literal. For a figurative constant, the word
ALL is redundant and serves only to enhance readability.!

Represents one or more occurrences of the character specified as the value
of symbolic-character. (See SPECIAL-NAMES in Chapter 4, Environment
Division.)

1The reserved word ALL, not followed by a literal, can be a subscript of an identifier that is a function argument. (The
function must allow a variable number of arguments in this argument position; see Chapter 7.)

When a figurative constant represents a string of one or more characters, the
string’s length depends on its context:

¢ The string’s length can vary for a figurative constant in a VALUE IS clause,
or for one associated with another data item (for example, when the figurative
constant is moved to or compared with another data item). Proceeding from
left to right, the compiler repeats the string of characters that represents the
figurative constant. It repeats them, character by character, until the size
of the resultant string equals that of the associated data item. This is done
before and independent of the application of any JUSTIFIED clause specified
for the data item.

Overview of the COBOL Language 1-15

e When a figurative constant is not associated with another data item
(for example, when it is in a DISPLAY, STRING, STOP, or UNSTRING
statement), the length of the string is one occurrence of the ALL literal or one
character in all other cases.

A figurative constant is valid wherever the word literal (or its abbreviation, "lit")
appears in a general format or its associated rules. However, ZERO (ZEROS or
ZEROES, plural) is the only valid figurative constant for literals restricted to
numeric characters.

The actual characters associated with HIGH-VALUE, HIGH-VALUES, LOW-
VALUE, and LOW-VALUES depend on the program collating sequence. For more
information, see OBJECT-COMPUTER and SPECIAL-NAMES in Chapter 4,
Environment Division.

1.2.4 PICTURE Character-Strings

A PICTURE character-string defines the size and category of an elementary
data item. It can consist of the currency symbol ($) and certain combinations of
characters in the COBOL character set. (See PICTURE.)

A punctuation character that is part of a PICTURE character-string is not
considered to be a punctuation character. Instead, the compiler treats it as a
symbol within the PICTURE character-string.

1.2.5 Separators

A separator delimits character-strings. It can be one character or two contiguous
characters formed according to the rules in Table 1-9.

Table 1-9 Separators

Separator Usage Rules
Space The space can be a separator or part of a separator.
e Where a space is used as a separator or part of a separator, more than one
space can be used.
e A space can immediately precede any separator except:
— As specified by the rules for reference formats (see Section 1.3)
— The closing quotation mark of a nonnumeric literal; the space is then
considered part of the nonnumeric literal rather than a separator
e A space can immediately follow any separator except the opening quotation
mark of a nonnumeric literal. After an opening quotation mark, the space
is considered part of the nonnumeric literal rather than a separator.
Comma and Semicolon The comma and semicolon are separators when they immediately precede a

space. In this case, the comma and semicolon are interchangeable with each
other and with the separator space. They can be used anywhere in a source
program that a separator space can be used.

(continued on next page)

1-16 Overview of the COBOL Language

Table 1-9 (Cont.) Separators

Separator Usage Rules

Period The period is a separator when it immediately precedes a space or a return
character. It can be used only where allowed by:
e Statement and sentence structure definitions (see Section 6.1)
e Reference format rules (see Section 1.3)

Parentheses Parentheses can be used only in balanced pairs of left and right parentheses to

Quotation Marks
Apostrophes

Horizontal Tab

Pseudo-Text
Delimiter

Colon

delimit:

e Subscripts

e Indexes

e Arithmetic expressions
e Conditions

e Reference modification
e Boolean expressions

e Intrinsic function argument lists

An opening quotation mark or apostrophe must be immediately preceded

by a separator space or a left parenthesis. A closing quotation mark (") or
apostrophe (’) must be immediately followed by one of the separators: space,
comma, semicolon, period, or right parenthesis.

The horizontal tab aligns statements or clauses on successive columns of the
source program listing. It is interchangeable with the separator space. When
the compiler detects a tab character (other than in a nonnumeric literal),

it generates one or more space characters consistent with the tab character
position in the source line. (See Section 1.3.)

The pseudo-text delimiter is two contiguous equal signs (==), both of which
must be on the same source line. A space must immediately precede an opening
pseudo-text delimiter. One of the following separators must immediately follow
a closing pseudo-text delimiter: spaces, commas, semicolons, or periods.

Pseudo-text delimiters can be used only in balanced pairs. They delimit pseudo-
text. (See Chapter 8.)

The separator colon delimits operands in reference modification. It is required
when shown in a general format. (See Section 6.2.3.)

1.3 Source Reference Format
The HP COBOL compiler recognizes two source program formats: ANSI and

terminal.

ANSI format conforms to the American National Standard COBOL reference
format.

Terminal format is a concise Hewlett-Packard specified format. It shortens
source program lines by allowing horizontal tab characters and carriage
returns. In terminal format, you do not use the ANSI format sequence
numbers or identification area.

By default, the compiler expects terminal-format source lines. The compiler
expects ANSI format only when the command line includes the ansi compiler

option.

Overview of the COBOL Language 1-17

The reference format rules for spacing take precedence over all other spacing
rules.

1.3.1 ANSI Format

The ANSI source reference format describes COBOL programs in terms of
character positions on an input line. A source program line has 80 character
positions as shown in Figure 1-1.

Figure 1-1 Source Program Line

Margin Margin Margin Margin Margin
L C A B R

[1]2]3]4[5]6|7 |8]9 |10]11]|12]13]14].. |72|73]74]75|76[77 78|79 |80
] '

~ ~
Sequence Number Indicator Area A Area B Identification Area
Area Area

VM-0581A-Al

Margin L

Immediately to the left of the leftmost character position.
Margin C

Between character positions 6 and 7.

Margin A

Between character positions 7 and 8.

Margin B

Between character positions 11 and 12.

Margin R

Between character positions 72 and 73.

Sequence Number Area

The six character positions between Margin L. and Margin C. The contents can be

any characters from the computer character set.

The compiler does not check the uniqueness of the contents. However, the
compiler does check for the ascending sequence of the contents if the compiler
command line includes the sequence compiler option.

Indicator Area

The seventh character position. The character in this position directs the
compiler to interpret the source line in one of the following ways:

Character Source Line Interpretation
space () Default. The compiler processes the line as normal COBOL text.
hyphen (-) Continuation line. The compiler processes the line as a continuation

of the previous source line.

1-18 Overview of the COBOL Language

Character Source Line Interpretation

asterisk (#) Comment line. The compiler ignores the contents of the line.
However, the source line appears on the program listing.

slash (/) New listing page. The compiler treats the line as a comment line.
However, it advances the program listing to the top of the next page
before printing the line.

A-Z, a-z Conditional compilation lines. The compiler processes the line
as normal COBOL text if you specify the DEBUGGING MODE
clause in the SOURCE-COMPUTER paragraph, or if you specify the
conditionals compiler option in the command line. If you do not
specify either, the compiler processes this line as a comment line.

Area A

The four character positions between Margin A and Margin B. Area A contains
division headers, section headers, paragraph headers, paragraph-names, level
indicators, and certain level-numbers.

Area B

The 61 character positions between Margin B and Margin R. Area B contains all
other COBOL text.

Identification Area

The eight character positions immediately following Margin R. The compiler
ignores the contents of the identification area. However, the contents appear on
the source program listing.

Line Continuation

Sentences, entries, phrases, and clauses that continue in Area B of subsequent
lines are called continuation lines. The line being continued is called the
continued line.

A hyphen in a line’s indicator area causes its first nonblank character in Area
B to be the immediate successor of the last nonblank character of the preceding
line. This continuation excludes intervening comment lines and blank lines.

However, if the continued line ends with a nonnumeric literal without a closing
quotation mark, the first nonblank character in Area B of the continuation

line must be a quotation mark. The continuation starts with the character
immediately after the quotation mark. All spaces at the end of the continued line
are part of the literal. Area A of the continuation line must be blank.

If the indicator area is blank:

¢ The compiler treats the first nonblank character on the line as if it followed a
space.

e The compiler treats the last nonblank character on the preceding line as if it
preceded a space.

Overview of the COBOL Language 1-19

ANSI Format Example

001010 01 NUMERIC-CONTINUATION.

001020 03 NUMERIC-LITERAL PIC 9(16) VALUE IS 123
001030- 4567890123456.

001040 01 NONNUMERIC-CONTINUATION.

001050 03 NONNUMERIC-LITERAL PIC X(40) VALUE IS "AB
001060- "CDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmn".

001070 PROCEDURE DIVISION.

001080 SENTENCE-CONTINUATION.

001090 IF NUMERIC-LITERAL NOT = SPACES

001100 DISPLAY "NUMERIC-LITERAL NOT = SPACES"
001110 ELSE

001120 DISPLAY NUMERIC-LITERAL.

Lines 001020 and 001030 show continuation of a numeric literal. Lines 001050
and 001060 continue a nonnumeric literal. A sentence that spans four lines
begins on line 001090.

Blank Lines

A blank line contains no characters other than spaces between Margin C and
Margin R. Blank lines can be anywhere in a source program or library text.

Comment Lines

A comment line is any source line with an asterisk (*) or slash (/) in its indicator
area. Area A and Area B can contain any characters from the computer character
set. Comment lines can be anywhere in a source program or library text.

Conditional Compilation Lines

A conditional compilation line is any source line after the OBJECT COMPUTER
paragraph that includes one of these uppercase or lowercase alphabetic characters
in its indicator area: A to Z, a to z. The compiler processes the line as normal
COBOL text if you specify the DEBUGGING MODE clause in the SOURCE
COMPUTER paragraph.

The compiler processes the line as normal COBOL text if you include the
appropriate conditionals compiler option in the command line.

If you specify neither, the compiler processes this line as a comment line.

Lines conditioned by one letter can be compiled or treated as comments
independently of other conditional compilation lines. On OpenVMS systems,

for instance, if you compile with /CONDITIONALS=(A,B), lines conditioned with
A and B compile while those conditioned by other letters are treated as comments.

See Chapter 8 for additional information on the interaction between conditional
compilation lines and the COPY statement.

Pseudo-Text

Pseudo-text character-strings and separators can start in either Area A or Area
B. However, if there is a hyphen in the indicator area of a line that follows the
opening pseudo-text delimiter, Area A of the line must be blank.

The normal rules for line continuation apply to the formation of text-words.

Pseudo-text is described in Chapter 8.

1-20 Overview of the COBOL Language

Short Lines and Tab Characters

If the source program input medium is not punched cards, carriage return and
horizontal tab characters can shorten source lines.

The compiler recognizes the end of the input line as Margin R. Tab characters,
other than those in nonnumeric literals, cause the compiler to generate enough
space characters to position the next character at the next tab stop. The
compiler’s tab stops are at character positions 8, 12, 20, 28, 36, 44, 52, 60,

68, and 76.

The following example shows how the compiler interprets carriage return and
horizontal tab characters in a source program:

Shortened ANSI Format Source Line

000100*The following record description shows the source line format|Retum]
000110 01 fabRECORD-A.
000120 [Tab][fabJ03 GROUP-A. [Return]

000130 [Tab][Tab] [fab]05 ITEM-A[ebPIC X(10) . [Retun]
000140* abThe tab character in the nonnumeric literal|Retun

000150* fabjon the next line is stored as one character|Retum]
000160 [Tab] [Tab] [fab]05

ITEM-B[fabPIC X VALUE IS " [Tap]".

000170 [Tab][fabj03 ITEM-C [Tab][TablPIC X(10) . [Retum]

000180D01 fabRECB REDEFINES RECORD-AabPIC X(21). [Retum]

Source Line as Interpreted by the Compiler

000100*The following record description shows the source line format
000110 01 RECORD-A.

000120 03 GROUP-A.

000130 05 ITEM-A PIC X(10).

000140% The tab character in the nonnumeric literal

000150% on the next line is stored as one character

000160 05 ITEM-B PIC X VALUE IS "[fab]".

000170 03 1ITEM-C PIC X(10).

000180D01 RECB REDEFINES RECORD-A PIC X(21).

Use more tab characters only when necessary. Compiler error diagnostics result
if you use tab characters beyond the permissible character positions for a COBOL
statement or entry. The following example shows how the compiler treats source
program lines 000004 and 000005. Line 000004: contains one too many tab
characters, which places paragraph-name PO out of Area A.

Shortened ANSI Format Source Line

000001 [EBIDENTIFICATION DIVISION.
000002 [rabPROGRAM-ID. ANSI-TEST.
000003 [@BPROCEDURE DIVISION.
000004 [Tap] f0]P0 «

000005 [fa] [@0)STOP RUN.

Listing File Result on OpenVMS Alpha, 164

000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. ANSI-TEST.

000003 PROCEDURE DIVISION.

000004 PO.

%$COBOL-F-UNDEFSYM, Undefined name

at line number 4 in file DISK:[DIRECTORY]ANSI.COB;1

Overview of the COBOL Language 1-21

000005 STOP RUN.
$COBOL-W-SYN6, Missing paragraph header
at line number 5 in file DISK:[DIRECTORY]ANSI.COB;l1

Listing File Result on OpenVMS VAX

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ANSI-TEST.
000003 PROCEDURE DIVISION.
000004 P0.

1
$COBOL-F-ERROR 349, (1) Undefined name

5 000005 STOP RUN.
1

%COBOL-W-ERROR 325, (1) Missing paragraph header ¢

Listing File Result on Tru64 UNIX

000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. ANSI-TEST.

000003 PROCEDURE DIVISION.

cobol: Severe: dwork/t.cob, line 4: Undefined name

000004 PO.

cobol: Warning: dwork/t.cob, line 5: Missing paragraph header
000005 STOP RUN. o

=W N

Note

The previous error messages have no additional online explanations. If a
diagnostic message has a further explanation, an asterisk (*) is displayed
(to the left of the error message). On OpenVMS Alpha and 164 systems,
the HP COBOL online help file lists and describes error messages that
have further explanations.

1.3.2 Terminal Format

The HP COBOL terminal format shortens program preparation time and
reduces storage space for source programs. This format eliminates the sequence
number and identification areas. It also combines the indicator area with Area A.
Except for the differences described in this section, the rules for ANSI format also
apply to terminal-format source programs.

In terminal format, the compiler recognizes the following valid indicator area
characters in the first character position:

(-) hyphen
(*) asterisk
(/) slash

The compiler also recognizes the following conditional compilation line characters
as valid indicator area characters in the first and second character positions:

(\x) backslash and x
where x can be any uppercase or lowercase alphabetic character.

Area A then begins in character position 2 (or 3 if using \x). Otherwise, Area A
begins in the first character position.

1-22 Overview of the COBOL Language

Area B begins four character positions to the right of the beginning of Area A. It
ends when the compiler detects a carriage return, or at Margin R.

The maximum length of a terminal-format source line is 256 characters. The
compiler’s tab stops are immediately to the right of Margin B, and every eight
character positions to the right, until the end of the line.

Note

The maximum length of the source line on the program listing is 125
characters, including the sequence field. The compiler processes the
complete source line but displays only the first 125 characters on the
listing. It also replaces all nonprintable ASCII characters with periods (or
other symbols depending on the device) in the listing file. (Refer to the
HP COBOL User Manual.)

The following example shows source lines in terminal format. It is equivalent to
the ANSI-format source line examples in the previous section.

*The following record description shows the source line format|Retun
01 [fabRECORD-A.

[abj03 GROUP-A.

[fab][fabl05 ITEM-A[abPIC X(10) . [Retum]

* [fabThe tab character in the nonnumeric literal|Retum]

*[fabjon the next line is stored as one character|Retum]

[fab)[abl05 ITEM-B[aBPIC X VALUE IS " [fab]" . [Retum]

603 ITEM-C [fab][fabPIC X(10) . [Retum]

\D01[fasRECB REDEFINES RECORD-A [bPIC X(21). [Retum]

1.4 Sample Entry Format

The following format is used to describe most entries in this manual. Each
COBOL division or major topic begins a new chapter and each entry begins on a
new page. The entries are in functional or alphabetical order.

Entry-Name
Function
The function paragraph describes the function or the effect of the entry.

General Format

A general format shows the specific arrangement of elements in the entry. If
there is more than one arrangement, the formats are numbered. All clauses
(mandatory and optional) must be used in the sequence shown in the format.
However, the syntax rules sometimes allow exceptions.

generic-term
Following the general format are definitions of its generic terms. These terms
appear in the rules in italic type.

Syntax Rules

Syntax rules define or clarify the arrangement of words or elements. They can
also impose further restrictions or relax restrictions implied by the general
format.

General Rules

General rules define or clarify the meaning (or relationship of meanings) of an
element or set of elements. They also define the semantics of an entry, describing
its effects on program compilation or execution.

Overview of the COBOL Language 1-23

Technical Notes

Technical notes describe, in system-specific terms, any system-specific behavior,
and any other HP COBOL behavior of note not described in the rules. They
define relationships between the COBOL program and the operating system and
its components.

Additional References
Additional references point to other relevant information in this manual, the HP
COBOL User Manual, and other Hewlett-Packard documentation sets.

Examples
Examples show the use of a statement, clause, or other entry. The HP COBOL
User Manual contains other examples in application contexts.

The following example shows a general format:

General Format

identification-division
[environment-division]
[data-division]
[procedure-division]
[source-program] ...
[end-program-header]

Additional References

e Chapter 3, Identification Division
e Chapter 4, Environment Division
e Chapter 5, Data Division

e Chapter 6, Procedure Division

1-24 Overview of the COBOL Language

2

Organization of a COBOL Program

A COBOL source program is a syntactically correct set of COBOL statements
that:

e Mark the beginning of the program
e Describe its physical environment

e Describe the data the program creates, receives as input, manipulates, and
produces as output

e Specify the processing of the program’s files and data
General Format
identification-division
[environment-division]
[data-division]
[procedure-division]

[source-program]...
[end-program-header |

identification-division
represents a COBOL Identification Division.

environment-division
represents a COBOL Environment Division.

data-division
represents a COBOL Data Division.

procedure-division
represents a COBOL Procedure Division.

source-program

represents a contained (nested) COBOL source program. A COBOL source
program may be nested; more than one source program may be present in a
single source file.

end-program-header
represents a COBOL END PROGRAM header.

Syntax Rule
The end-program-header must be present if either:

1. The COBOL source program contains one or more other COBOL source
programs.

2. The COBOL source program is contained within another COBOL source
program.

Organization of a COBOL Program 2-1

3. The COBOL source program precedes another separately compiled program.
General Rules
1. The appropriate division header indicates the beginning of a division.
2. The following indicates the end of a division:
Another division header

An Identification Division header that indicates the start of another
source program

c. The end-program-header
d. The physical position at which no further source lines occur
A COBOL source program may contain other COBOL source programs.

4. A COBOL source program that is directly or indirectly contained within
another program is called a contained or nested program. It may reference
certain resources in the containing program.

5. A separately compiled program has a nesting level number of 1. If this
program contains other source-programs, it is the outermost containing
program.

6. A contained program has a nesting level number greater than 1.
Additional References

e Identification Division

e KEnvironment Division

¢ Data Division

e Procedure Division

e END PROGRAM Header

2.1 Program Structure

Figure 2—1 shows the basic structure of a COBOL program, which is organized in
divisions, sections, paragraphs, sentences, and entries.

Figure 2-1 Structure of a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
AUTHOR.

INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
OPTIONS.

(continued on next page)

2-2 Organization of a COBOL Program

Figure 2-1 (Cont.) Structure of a COBOL Program

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
I-0-CONTROL.

DATA DIVISION.
SUBSCHEMA SECTION.
subschema entries and keeplist entries
FILE SECTION.
file and record description entries
report file description entries
sort-merge file and record description entries
WORKING-STORAGE SECTION.
record description entries
LINKAGE SECTION.
record description entries
REPORT SECTION.
report and report group description entries.
SCREEN SECTION. (Alpha, I64)
screen description entries (Alpha, I64)

PROCEDURE DIVISION.
DECLARATIVES.
sections
paragraphs
sentences
END DECLARATIVES.

sections
paragraphs
sentences

END PROGRAM header

2.1.1 Division Header

A division header identifies and marks the beginning of a division. It is a
specific combination of reserved words followed by a separator period. Division
headers start in Area A.

Except for the COPY and REPLACE statements, and the END PROGRAM
header (see END PROGRAM in Chapter 6), the statements, entries, paragraphs,
and sections of a COBOL source program are grouped into four divisions in this
order:

1. IDENTIFICATION DIVISION.
2. ENVIRONMENT DIVISION
3. DATA DIVISION.

4. PROCEDURE DIVISION.

Organization of a COBOL Program 2-3

The end of a COBOL source program is indicated either by the END PROGRAM
header (END PROGRAM) or by the end of that program’s Procedure Division.

Only these items can immediately follow a division header:
¢ Another division header

e A section header

e A paragraph header or paragraph-name

e A comment line

e A blank line

e A DECLARATIVES header for the USE procedure sections (after the
PROCEDURE DIVISION header only)

e A PROGRAM-ID paragraph (after the IDENTIFICATION DIVISION header
only)

Only this item can immediately follow a DECLARATIVES header:

e A section header for a USE procedure

Note

The PROCEDURE DIVISION header can contain a USING and GIVING
phrase. (See Section 6.8.)

2.1.2 Section Header

A section header identifies and marks the beginning of a section in the
Environment, Data, and Procedure Divisions. In the Environment and Data
Divisions, a section header is a specific combination of reserved words followed by
a separator period. In the Procedure Division, a section header is a user-defined
word followed by the word SECTION (and an optional segment-number). A
separator period always follows a section header. Section headers start in Area A.

The valid section headers follow for each division.
In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

SCREEN SECTION. (Alpha, 164)

In the Procedure Division:
user-name SECTION [segment-number].
Only these items can immediately follow a section header:
e A division header
¢ Another section header

e A paragraph header or paragraph-name

2-4 Organization of a COBOL Program

A comment line

A USE statement (in the DECLARATIVES part of the Procedure Division
only)

A blank line
A DATA DIVISION entry (in the Data Division)

2.1.3 Paragraph, Paragraph Header, Paragraph-Name

A paragraph consists of a paragraph header or paragraph-name (depending on
the division) followed by zero, one, or more entries (or sentences).

A paragraph header is a reserved word followed by a separator period.
Paragraph headers identify paragraphs in the Identification and Environment
Divisions.

The paragraph headers are as follows:

Identification Environment

Division Division
PROGRAM-ID. SOURCE-COMPUTER.
AUTHOR. OBJECT-COMPUTER.
INSTALLATION. SPECIAL-NAMES.
DATE-WRITTEN. FILE-CONTROL.
DATE-COMPILED. I-O-CONTROL.
SECURITY.

OPTIONS.

A paragraph-name is a user-defined word followed by a separator period.
Paragraph-names identify paragraphs in the Procedure Division.

Paragraph headers and paragraph-names start in Area A of any line after the
first line of a division or section.

The first entry or sentence of a paragraph begins either:

On the same line as the paragraph header or paragraph-name

In Area B of the next nonblank line that is not a comment line

Successive sentences or entries begin in Area B of either:

The same line as the preceding entry or sentence

The next nonblank line that is not a comment line

2.2 Data Division Entries

A Data Division entry begins with a level indicator or level-number and is
followed, in order, by:

1.

2
3.
4

A space
The name of a data item, file connector, or screen item
A sequence of independent descriptive clauses

A separator period

Organization of a COBOL Program 2-5

The level indicators are as follows:

e FD (for file description entries)

e SD (for sort-merge file description entries)

e RD (for report file description entries)

Level indicators can begin anywhere to the right of Area A.

Entries that begin with level-numbers are called either data description or screen
description entries, depending on their context. The level-number values are 01

to 49, 66, 77, and 88 for data description items and 01 to 49 for screen description
entries. Level-numbers 01 to 09 can be represented as one- or two-digit numbers.

All data description entries and screen description entries can begin anywhere
to the right of Margin A. However, indentation has no effect on level-number
magnitude; it merely enhances readability.

2.3 Declaratives

Declaratives specify USE procedures to be executed only when certain
conditions occur. You must write USE procedures at the beginning of the
Procedure Division in consecutive sections. The key word DECLARATIVES
begins the DECLARATIVES part of the Procedure Division; the pair of key words
END DECLARATIVES ends it. Each of these reserved word phrases must be on
a line by itself, starting in Area A; and be followed by a separator period. For
example:

PROCEDURE DIVISION.
DECLARATIVES.
IOERROR SECTION.
USE AFTER
PAR-1.

END DECLARATIVES.

When you specify USE procedures, you must divide the remainder of the
Procedure Division into sections.

2-6 Organization of a COBOL Program

3

Identification Division

Function
The Identification Division marks the beginning of a COBOL program. It also
identifies a program and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name

IS COMMON
INITIAL

‘ } PROGRAM

[WITH IDENT ident-string | .
[AUTHOR. [comment-entry] ...]

* [INSTALLATION. [comment-entry | . ..]
* [DATE-WRITTEN. [comment-entry] ...]
[DATE-COMPILED. [comment-entry | ...]

* [SECURITY. [comment-entry] ...]

NATIVE
[OPTIONS. [ARITHMETIC IS { STANDARD }]] (Alpha, 164)

* These paragraphs are not described in individual entries; they follow the same
format as the AUTHOR paragraph and are for documentation only.

Syntax Rules
1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the IDENTIFICATION DIVISION
header. The header consists of the reserved words IDENTIFICATION
DIVISION followed by a separator period.

3. The PROGRAM-ID paragraph must immediately follow the
IDENTIFICATION DIVISION header.

Identification Division 3-1

PROGRAM-ID Paragraph

PROGRAM-ID

3-2

Function

The PROGRAM-ID paragraph identifies a program and assigns selected program
attributes.

General Format

PROGRAM-ID. program-name

COMMON

IS ‘ INITIAL ‘ PROGRAM

[WITH IDENT ident-string | .

program-name
is a user-defined word that names the program.

Syntax Rules
1. The PROGRAM-ID paragraph must be present in every program.

2. program-name must contain 1 to 31 characters and follow the rules for
user-defined words.

3. Programs contained within a separately compiled program must have a
unique program-name.

4. The optional COMMON clause may be used only if the program is contained
within another program.

5. ident-string must be a nonnumeric literal 1 to 31 characters in length.
6. The optional IDENT clause cannot be used in a contained program.
General Rules

1. program-name is a user-defined word that identifies a COBOL program and
its source listing. It appears as the first word in the first line of every page in
the compiler source listing.

2. program-name represents the object program entry point.

3. If an executable image includes more than one separately compiled program,
each separately compiled program must have a unique program-name.

4. The COMMON clause specifies a common program. A common program is
contained within another program but may be called from programs other
than that directly containing it.

5. Files associated with a called program’s internal file connectors are not in the
open mode:

The first time the program is called

The first time the program is called after execution of a CANCEL
statement referring to the program

c. Every time the program is called, if it has the INITIAL attribute

Identification Division

PROGRAM-ID Paragraph

On all other entries, the status and positioning of files in a called program are
the same as when the program last exited.

6. The INITIAL clause specifies an initial program. Whenever the program is
called, it and any programs contained within it are placed in their initial
state, and the internal data in each program is initialized.

7. On OpenVMS, the IDENT clause specifies a literal string that is used for
identification purposes. This string is written to the object file as the "module
version."

When the /ANALYSIS_DATA qualifier is included on the COBOL command,
the string is written to the analysis data file as the module ident. ¢

8. On Tru64 UNIX systems, program-name is case-sensitive. By default,
program-name is converted to lowercase for all separately compiled program
units. Any calls from other programs (HP COBOL as well as other languages)
must specify the routine to be called in lowercase.

However, if the names option is set to uppercase on the command line, calls
from other programs must specify the routine to be called in uppercase. If the
names option is set to as_is, the effect on program-name is as if uppercase
were specified. (The as_is setting is used for calling non-COBOL programs
with mixed case.) ¢

Additional Reference
See Section 6.2.6, Scope of Names.

Examples
PROGRAM-ID. PROGA.

PROGRAM-ID. SUBR1 INITIAL.
PROGRAM-ID. COMPUTE-PAY WITH IDENT "JOB6a-V1.1". (OpenVMS)

PROGRAM-ID.
WRITEMASTERREPORT.

PROGRAM-ID. PAYROLL IS COMMON.

Identification Division 3-3

AUTHOR Paragraph

AUTHOR

Function
The AUTHOR paragraph is for documentation only.

General Format
AUTHOR. [comment-entry] . ..
comment-entry
is a user-supplied comment about the program’s author.
Syntax Rules

1. comment-entry can consist of any combination of characters from the computer
character set.

2. comment-entry can span several lines in Area B. However, they cannot be
continued by using a hyphen in the indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

Examples
AUTHOR. JOHN SMITH.

AUTHOR. This program was written by John Smith
1226 Main St.
Merrimack, NH 03054

AUTHOR.

3-4 Identification Division

DATE-COMPILED Paragraph

DATE-COMPILED

Function

The DATE-COMPILED paragraph provides the compilation date in the source
program listing file.

General Format
DATE-COMPILED. [comment-entry | . ..

comment-entry
is user-supplied information about the date compiled.

Syntax Rules

1. comment-entry can consist of any combination of characters from the computer
character set.

2. comment-entry can span several lines in Area B. However, it cannot be
continued by using a hyphen in the indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

General Rule

The paragraph-name DATE-COMPILED causes the current date to be inserted
in your source program listing during compilation. Therefore, if a DATE-
COMPILED paragraph is present in your source program, it will be replaced
with a paragraph of the following form:

DATE-COMPILED. dd-mmm-yyyy.

Identification Division 3-5

OPTIONS Paragraph

OPTIONS (Alpha, 164)

3-6

Function

The OPTIONS paragraph specifies information for use by the compiler in
generating executable code for a source unit.

General Format

OPTIONS. [arithmetic-clause] .

arithmetic-clause
specifies the method used in developing the intermediate results. The format is:

NATIVE
ARITHMETIC IS { STANDARD }

Syntax Rule

The period appearing in the general format after the arithmetic-clause may be
omitted if the arithmetic-clause is not specified.

General Rules

1. The ARITHMETIC clause in the OPTIONS paragraph applies to the source
element in which it is specified and to all source elements contained in that
source element unless overridden by an ARITHMETIC clause in an OPTIONS
paragraph in a contained source element.

2. If the NATIVE phrase is specified, the techniques used in handling arithmetic
expressions and arithmetic statements shall be those specified for native
arithmetic in the appendix on compatibility in the HP COBOL User Manual.

3. If the STANDARD phrase is specified, the techniques used in handling
arithmetic expressions and arithmetic statements shall be those specified for
standard arithmetic in the ANSI Standard for COBOL. (Refer to the appendix
on compatibility in the HP COBOL User Manual.)

4. If the ARITHMETIC clause is not specified in this source element or a
containing source element, it is as if the ARITHMETIC clause were specified
with the NATIVE phrase. ¢

Identification Division

4

Environment Division

Function

The Environment Division describes the program’s physical environment. It
also specifies input-output control and describes special control techniques and
hardware characteristics.

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.
[SOURCE-COMPUTER. [source-computer-entry] |

[OBJECT-COMPUTER. [object-computer-entry | |

[SPECIAL-NAMES. [special-names-entry] |

[INPUT-OUTPUT SECTION.

[FILE-CONTROL. { file-control-entry } ...]]

[I-O-CONTROL. [input-output-control-entry] |

The Environment Division can contain two sections:

e Configuration Section (see Section 4.1, CONFIGURATION Section)
¢ Input-Output Section (see Section 4.2, INPUT-OUTPUT Section)
Syntax Rules

1. The Environment Division follows the Identification Division.

2. The general format defines the order of appearance of Environment Division
entries.

3. A contained program cannot include a Configuration Section.

General Rule
Explicit or implicit Configuration Section entries in a program containing other
programs apply to each contained program.

Environment Division 4-1

4.1 CONFIGURATION Section
The Configuration Section can contain three paragraphs:
e SOURCE-COMPUTER paragraph (see SOURCE-COMPUTER)
e OBJECT-COMPUTER paragraph (see OBJECT-COMPUTER)
e SPECIAL-NAMES paragraph (see SPECIAL-NAMES)

The Configuration Section must not be stated in a program that is contained
within another program. If Configuration Section entries are stated in a program
that contains other programs, they apply to each contained program.

4-2 Environment Division

SOURCE-COMPUTER Paragraph

SOURCE-COMPUTER

Function
The SOURCE-COMPUTER paragraph specifies the computer on which the
source program is to be compiled.

SOURCE-COMPUTER.

ALPHA

164

VAX
computer-type

[WITH DEBUGGING MODE | .

computer-type
is a user-defined word that names the computer.
Syntax Rule

ALPHA, 164, and VAX are system-names. They are not reserved words, and are
for documentation only.

General Rules

1. If the WITH DEBUGGING MODE clause is not used, this paragraph is for
documentation only.

2. All clauses of the SOURCE-COMPUTER paragraph apply to the program
that specifies them. They also apply to any program contained within that
program.

3. If you include the WITH DEBUGGING MODE clause in a program, or if you
specify the conditionals command-line option, all conditional compilation
lines are compiled. Otherwise, the compiler treats all conditional compilation
lines as comment lines. (See Section 1.3.1 for additional information about
source line interpretation.)

Environment Division 4-3

OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER

Function
The OBJECT-COMPUTER paragraph describes the computer on which the
program is to execute.

OBJECT-COMPUTER.

ALPHA

164

VAX
computer-type

MEMORY SIZE integer { CHARACTERS

WORDS
MODULES

[PROGRAM COLLATING SEQUENCE IS alpha-name

[SEGMENT-LIMIT IS segment-number | .

computer-type
is a user-defined word that names the computer.

integer
is a numeric literal that has no digits to the right of the assumed decimal point.

alpha-name
is the name of a collating sequence defined in the ALPHABET clause of the
SPECIAL-NAMES paragraph.

segment-number
is an integer from 1 to 49.

Syntax Rule

ALPHA, 164, and VAX are system-names. They are not reserved words, and are
for documentation only.

General Rules

1. All clauses of the OBJECT-COMPUTER paragraph apply to the program
that explicitly or implicitly specifies them. They also apply to any program
contained within that program.

2. The MEMORY SIZE clause is for documentation only. It has no effect on
program execution.

3. The PROGRAM COLLATING SEQUENCE clause causes the program to

use the collating sequence of alpha-name to determine the truth value of
nonnumeric comparisons in:

e Relation conditions
e (Condition-name conditions

e Report description entries, the CONTROL clause

4-4 Environment Division

4.

6.

OBJECT-COMPUTER Paragraph

The PROGRAM COLLATING SEQUENCE clause also applies to nonnumeric
merge and sort keys. However, the COLLATING SEQUENCE phrase

in a MERGE or SORT statement takes precedence over the PROGRAM
COLLATING SEQUENCE clause.

If there is no PROGRAM COLLATING SEQUENCE clause, the program uses
the NATIVE collating sequence.

The SEGMENT-LIMIT clause is for documentation only.

Additional References

SPECIAL-NAMES Paragraph

SD (Sort-Merge File Description)
Section 6.5.1, Relation Conditions
Section 6.5.3, Condition-Name Condition

Section 6.7, Segmentation

Additionally, refer to the information on SORT and MERGE statements in the
HP COBOL User Manual.

Examples
1. Computer name only:
OBJECT-COMPUTER. Alpha.
2. No computer name (if the computer is not specified, then no other clause can
appear):
OBJECT-COMPUTER.
3. With PROGRAM COLLATING SEQUENCE clause:
OBJECT-COMPUTER. Alpha
PROGRAM COLLATING SEQUENCE IS ALPH-A.
The SPECIAL-NAMES paragraph must define ALPH-A.
4. With PROGRAM COLLATING SEQUENCE clause:

OBJECT-COMPUTER. Alpha
SEQUENCE IS EBCDIC.

The SPECIAL-NAMES paragraph must define EBCDIC.

If EBCDIC refers to the EBCDIC collating sequence, the SPECIAL-NAMES
paragraph must contain the following clause:

ALPHABET EBCDIC IS EBCDIC

Environment Division 4-5

SPECIAL-NAMES Paragraph

SPECIAL-NAMES

Function

The SPECIAL-NAMES paragraph: (1) associates compiler features and logical
names (on OpenVMS systems) or environment variables (on Tru64 UNIX
systems) with user-defined mnemonic-names, (2) provides a way to reference
command-line arguments and (on Tru64 UNIX) environment variables or

(on OpenVMS) logical names with user-defined mnemonic names, (3) defines
symbolic-characters, (4) specifies the currency sign, (5) selects the decimal point,
(6) relates alphabet-names to character sets or collating sequences, (7) relates
class-names to character sets, (8) provides for cursor positioning for an ACCEPT
(Format 5) statement, and (9) provides information on the cause of termination
of an ACCEPT (Format 5) statement.

General Format
SPECIAL-NAMES . |

CARD-READER
PAPER-TAPE-READER
CONSOLE
LINE-PRINTER
PAPER-TAPE-PUNCH
SYSIN (Alpha, 164)
SYSOUT (Alpha, 164)
SYSERR (Alpha, 164)

- ARGUMENT-NUMBER IS argument-number (Alpha, 164)
ARGUMENT-VALUE IS argument-value (Alpha, 164)
ENVIRONMENT-NAME IS environment-name (Alpha, 164)
| ENVIRONMENT-VALUE IS environment-value (Alpha, 164)

IS device-name

C01 IS top-of-page-name
SWITCH switch-num

IS switch-name
[ON STATUS IS cond-name |
[OFF STATUS IS cond-name]

IS switch-name
[OFF STATUS IS cond-name]
[ON STATUS IS cond-name |

ON STATUS IS cond-name [OFF STATUS IS cond-name]
OFF STATUS IS cond-name [ON STATUS IS cond-name]

4-6 Environment Division

SPECIAL-NAMES Paragraph

r ALPHABET alpha-name IS]
ASCII
STANDARD-t
STANDARD-2
NATIVE
EBCDIC
THRU astteral
first-literal THROUGH ast-litera
{ALSO it} ...
- SYMBOLIC CHARACTERS

{ { symbol-char} . .. { /lASRE } {charval} ... } ... [IN alpha-name]

[CLASS class-name IS
- THRU)
first-literal THROUGH last-literal

[CURRENCY SIGN IS char |

char
literal-7 [WITH PICTURE SYMBOL literal-8] } ... (Alpha, 164)

[CURRENCY SIGN IS {

[DECIMAL-POINT IS COMMA]

[CURSOR IS cursor-position] (Alpha, 164)
[CRT STATUS IS crt-status-code] (Alpha, 164) .]

device-name
is a user-defined word for a device. Only the ACCEPT and DISPLAY statements
can refer to it.

argument-number

is a user-defined word that contains the current argument position indicator
number when used with DISPLAY, or the count of command line arguments when
used with ACCEPT. Only the ACCEPT and DISPLAY statements can refer to it.

argument-value

is a user-defined word that contains the value of the current command line
argument as indicated by the current ARGUMENT-NUMBER. Only the ACCEPT
and DISPLAY statements can refer to it.

environment-name

is a user-defined word that contains the name of an environment variable or
system logical. Only the ACCEPT and DISPLAY statements can refer to it.

Environment Division 4-7

SPECIAL-NAMES Paragraph

environment-value

is a user-defined word that contains the value of the environment variable or
logical named by the current ENVIRONMENT-NAME. Only the ACCEPT and
DISPLAY statements can refer to it.

top-of-page-name
is a user-defined word for the top of a page. Only the WRITE statement can refer
to it.

switch-num
is the number of a program switch. Its value can range from 1 to 16.

switch-name
is a mnemonic-name for the program switch.

cond-name

is a condition-name for the on or off status of the switch. It always possesses the
global attribute. Its truth value is true when the STATUS phrase matches the
status of the switch, false when it does not.

alpha-name
is the user-defined word for a character set, collating sequence, or both. It always
possesses the global attribute.

first-literal
is a literal. It specifies either: (1) the value of one or more alphabet characters,
or (2) the first in a range of values.

last-literal
is a literal. It specifies the last in a range of values.

lit
is a literal. It specifies an alphabet character value.

symbol-char

is a user-defined word that names the symbolic-character. It always possesses
the global attribute. The same symbol-char cannot appear more than once in the
SYMBOLIC CHARACTERS clause.

char-val
is an integer that indicates the ordinal position of a character in the native
character set.

class-name
is the user-defined word for a class. It always possesses a global attribute.

char
is a one-character nonnumeric literal that specifies the currency symbol. It cannot
be a symbolic-character or figurative constant.

literal-7 (Alpha, 164)
is an alphanumeric literal. It cannot be a figurative constant.

literal-8 (Alpha, 164)
is an alphanumeric literal consisting of a single character. It cannot be a
figurative constant. No two occurrences of literal-8 can have the same value.

4-8 Environment Division

SPECIAL-NAMES Paragraph

cursor-position (Alpha, 164)

is a data item declared in the Working-Storage Section of the program. It is
either an elementary unsigned numeric integer either four or six characters in
length, described as USAGE IS DISPLAY, or a group item either four or six
characters in length, consisting of two elementary unsigned data items.

cri-status-code (Alpha, 164)
is a group data item three characters in length, declared in the Working-Storage
Section of the program. ¢

Syntax Rules
1. In the first-literal phrase of the ALPHABET or CLASS clauses:

e Ifalpha-name is in the PROGRAM COLLATING SEQUENCE clause, the
ALPHABET clause cannot specify any character more than once.

e If the ALSO or THRU phrase appears, first-literal must be one character
long.

e Numeric literals must be unsigned integers from 1 to 256.
e If last-literal or lit is nonnumeric, it must be one character long.
e THRU and THROUGH are equivalent.

2. If the first-literal phrase appears, alpha-name cannot be referenced in a
CODE-SET clause.

3. The following are accessible only by ACCEPT and DISPLAY statements:

argument-count
argument-value
environment-name
environment-value

General Rules

1. All clauses of the SPECIAL-NAMES paragraph apply to the program defining
them and to all programs contained within that program.

device-name Clause

2. The device-name clause associates a device with a user-defined word (device-
name).

On Tru64 UNIX, the device name is derived from an environment variable, if
that environment variable exists. Otherwise, the defaults are as follows:

Tru64 UNIX

Default File
System-Name Tru64 UNIX Environment Variable Name
CARD-READER COBOL_CARDREADER stdin
PAPER-TAPE-READER COBOL_PAPERTAPEREADER stdin
CONSOLE COBOL_CONSOLE stderr
LINE-PRINTER COBOL_LINEPRINTER stdout
PAPER-TAPE-PUNCH COBOL_PAPERTAPEPUNCH stdout
SYSIN COBOL_INPUT stdin

Environment Division 4-9

SPECIAL-NAMES Paragraph

Tru64 UNIX

Default File
System-Name Tru64 UNIX Environment Variable Name
SYSOUT COBOL_OUTPUT stdout
SYSERR COBOL_ERROR stderr

The input device for the ACCEPT statement is derived from COBOL_INPUT,
if defined, and defaults to stdin. The output device for the DISPLAY
statement is derived from COBOL_OUTPUT, if defined, and defaults to
stdout. ¢

On OpenVMS, the file-name is derived from a logical name if that logical
name exists. Otherwise, the defaults are as follows:

OpenVMS OpenVMS

System-Name Logical Name Default File Name
CARD-READER COB$CARDREADER SYS$INPUT
PAPER-TAPE-READER COB$PAPERTAPEREADER SYS$INPUT
CONSOLE COB$CONSOLE SYS$ERROR
LINE-PRINTER COBS$LINEPRINTER SYS$OUTPUT
PAPER-TAPE-PUNCH COB$PAPERTAPEPUNCH SYS$OUTPUT
SYSIN (Alpha, 164) COBS$INPUT SYS$INPUT
SYSOUT (Alpha, 164) COB$OUTPUT SYS$OUTPUT
SYSERR (Alpha, 164) COB$ERROR SYS$ERROR

The input device for the ACCEPT statement is derived from COB$INPUT, if
defined, and defaults to SYS$INPUT. The output device for the DISPLAY
statement is derived from COB$OUTPUT, if defined, and defaults to
SYS$OUTPUT. (See the ACCEPT and DISPLAY statements in Chapter 6,
Procedure Division, and refer to the HP COBOL User Manual for more
information.) ¢

top-of-page-name Clause

3. The system-name CO1 refers to the first line of a logical page. Only the
ADVANCING phrase of the WRITE statement can refer to the top-of-page-
name equated to C01. (See the WRITE statement in Chapter 6, Procedure
Division.)

SWITCH Clause

4. The ON STATUS (or OFF STATUS) phrase of the SWITCH clause associates

the status of switch-name with a corresponding cond-name. The program uses
a switch-status condition in the Procedure Division to test the switch.

Switches can also be read from the OpenVMS logical name COB$SWITCHES
or the Tru64 UNIX environment variable COBOL_SWITCHES.

The compiler interprets SWITCH n and SWITCH-n (where n represents
a number from 1 to 8) as identical clauses. For example, SWITCH 1 is
equivalent to SWITCH-1.

Refer to the HP COBOL User Manual for more information on using switches.

4-10 Environment Division

SPECIAL-NAMES Paragraph

ALPHABET Clause

5.

10.

11.

12.

The ALPHABET clause relates a name to a character code set, collating
sequence, or both.

The ALPHABET clause specifies:

e A character code set, when alpha-name is in a CODE-SET clause in the
FILE-CONTROL paragraph or file description entry.

e A collating sequence, when alpha-name is in: (1) the PROGRAM
COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph
or (2) the COLLATING SEQUENCE phrase of a SORT or MERGE
statement.

ASCII refers to the character set defined in American National Standard
X3.4-1968, “Code for Information Interchange.”

STANDARD-1 refers to the ASCII character set.

STANDARD-2 refers to the international version of the ISO 7-bit code. It
is defined in International Standard 646, “7-Bit Coded Character Set for
Information Processing Interchange.”

NATIVE refers to the native character set. It consists of 256 characters.

The lowest-valued 128 characters are the ASCII character set. The highest-
valued 128 characters are reserved for later standardization and definition by
Hewlett-Packard.

EBCDIC refers to the EBCDIC character set or collating sequence. It is
defined in Appendix B, Character Sets.

The character with the highest ordinal position in the program collating
sequence equals the figurative constant HIGH-VALUE, except when
this figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the highest position, HIGH-
VALUE is the last character you specify.

The character with the lowest ordinal position in the program collating
sequence equals the figurative constant LOW-VALUE, except when this
figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the lowest position, LOW-VALUE
is the first character you specify.

Literals in the ALPHABET Clause

13.

14.

15.

16.

The value of each numeric literal specifies the ordinal number of a character
in the native character set. For example, 66 refers to the ASCII character A.

The value of each nonnumeric literal specifies the actual character in the
native character set.

If the literal contains more than one character, the compiler interprets each
character from left to right. It assigns each a successive ascending position in
the collating sequence or character code set.

The order of appearance of literals in the ALPHABET clause specifies each
character’s ordinal number in ascending sequence. If the ALPHABET clause
defines a character code set, the ordinal number identifies the character’s
relative position in the set.

Environment Division 4-11

SPECIAL-NAMES Paragraph

17.

Any unspecified characters in the native collating sequence have higher
positions in the new collating sequence than all specified characters. The
relative order of the unspecified characters is the same as in the native
collating sequence.

For example, the following clauses are equivalent:
ALPHABET XYZ IS 2 4

ALPHABET XYZ IS 2 413567

ALPHABET XYZ IS 2 4 1

THROUGH Phrase

18.

19.

20.

21.

The THROUGH phrase specifies a set of contiguous characters in the native
character set. The first character is first-literal; the last character is last-
literal.

The compiler assigns each character in the set a successive ascending position
in the collating sequence or character code set.

The THROUGH phrase can specify the set of contiguous characters in
either ascending or descending order. For example, “L.” THRU “H” assigns
successively higher numbers to L, K, J, I, and H.

The ALSO phrase assigns first-literal and each it to the same position in the
collating sequence or character code set. For example, “A” ALSO “$” causes
the characters A and $ to be equivalent in comparisons when the associated
alpha-name is in the PROGRAM COLLATING SEQUENCE clause.

SYMBOLIC CHARACTERS Clause

22.

23.

24.

Each symbol-char corresponds to the char-val in the same relative position.
In the following example, CARRIAGE-RET corresponds to 14 and ESCAPE to
28:

SYMBOLIC CHARACTERS CARRIAGE-RET ESCAPE ARE 14 28
If the IN phrase is not specified, symbol-char represents the character, in the

native character set, that has the ordinal position specified by char-val.

Note

The ordinal position is one greater than the internal representation of
the character. For example, the character A is in ordinal position 66. Its
internal representation is decimal 65 (hexadecimal 41).

If the IN phrase is specified, char-val represents the character that has the
ordinal position specified by the IN alpha-name phrase.

CLASS Clause

25.

26.

The CLASS clause relates a name to a specified set of characters in that
clause. class-name can be referenced only in a class condition. The characters
specified by the values of the literals in this clause define the set of characters
of which this class-name consists.

The value of each numeric literal specifies the ordinal number of a character
in the native character set. This value must not exceed the value that
represents the number of characters in the native character set.

4-12 Environment Division

27.

28.

SPECIAL-NAMES Paragraph

The value of each nonnumeric literal specifies the actual character in the
native character set. If the nonnumeric literal contains multiple characters,
each character in the literal is included in the set of characters identified by
class-name.

The THROUGH phrase specifies a set of contiguous characters in the native
character set. The first character is first-literal; the last character is last-
literal. The characters specified by a given THROUGH phrase can be
specified in ascending or descending order.

CURRENCY SIGN Clause

29.

30.

31.

In the CURRENCY SIGN clause, char specifies the PICTURE clause currency
symbol. It can be any printable character from the computer character set
except:

e (through 9
e A BCD,PR,S,V,X, Z, the lowercase characters a to z, or the space

e Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.),
semicolon (;), quotation mark ("), equal sign (=), slash (/), left
parenthesis ((), or right parenthesis ())

The CURRENCY SIGN clause cannot contain a symbolic-character or
figurative constant.

If there is no CURRENCY SIGN clause, the default currency sign used for
the PICTURE clause is the "$" symbol.

On OpenVMS, if you define the logical name SYS$CURRENCY at DCL
command level prior to compilation, the quoted character string to which you
define it will be the currency string. To do this, prior to compiling the COBOL
program, issue the following DCL command:

$ DEFINE SYSSCURRENCY "quoted-character-string"

The COBOL compiler will utilize the first character of this string as the
currency symbol for the program.

Subsequently, the system default value of SYSSCURRENCY can be restored
for the process with the following DCL command:

$ DEASSIGN SYSSCURRENCY ¢

The default currency sign can also be established based on the nationality
compiler option, depending on the keyword, as follows:

US (default) The default currency sign and symbol are the
dollar sign ($), and Japanese language support
features are disabled.

JAPAN The default currency sign and symbol are the
Yen sign (¥) (which is not overridden by a
SYS$CURRENCY definition), and Japanese
language support features are enabled,
including national character user-defined-words,
data items (PIC N), and literals (N"").

Environment Division 4-13

SPECIAL-NAMES Paragraph

CURRENCY SIGN Clause (Alpha, 164)

32. To use CURRENCY SIGN IS literal-7, you must compile the program with the
/RESERVED_WORDS=200X qualifier. Without that qualifier, you can specify
only CURRENCY SIGN IS char, and specify it only once.

33. The CURRENCY SIGN IS literal-7 clause specifies a currency string that
is placed into numeric-edited data items when they are used as receiving
items and de-edited from a data item when the data item is used as a sending
item that has a numeric or numeric-edited receiving item. The clause also
determines which symbol shall be used in a picture character string to
specify the presence of this currency string. This symbol is referred to as the
currency symbol.

literal-7 represents the value of the currency string.

If the CURRENCY SIGN clause is specified with the PICTURE SYMBOL
phrase, literal-8 is the currency symbol; if the clause is specified without the
PICTURE SYMBOL phrase, literal-7 is the currency symbol, and it must be
one character in length.

If the currency symbol is a lowercase letter, it is treated as its uppercase
equivalent.

34. If the PICTURE SYMBOL phrase is not specified, literal-7 must consist of a
single character that is not one of the following:

e 0 through 9

e A B CDEN,PR,S,V, X, Z, or the lowercase equivalents; or the
space

e Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.),
semicolon (;), quotation mark ("), equal sign (=), slash (/), left
parenthesis ((), or right parenthesis ())

35. If the PICTURE SYMBOL phrase is specified, literal-7 can have any length
and:

e Must contain at least one nonspace character, and

e Can consist of any characters from the computer’s character set except
for the digits 0 through 9 and the characters asterisk (*), plus sign (+),
minus sign (-), comma (,), and period (.)

36. literal-8 can be any character from the computer’s character set except for the
following:

e 0 through 9

e A B C D E N,PR,S,V,X, Z, or the lowercase equivalents; or the
space
e Asterisk (*), plus sign (+), minus sign (-), comma (,), period (.),

semicolon (;), quotation mark ("), equal sign (=), slash (/), left
parenthesis ((), or right parenthesis ()) ¢

DECIMAL-POINT IS COMMA Clause

37. The DECIMAL-POINT IS COMMA clause exchanges the functions of the
comma and period in: (1) the PICTURE clause character-string and (2)
numeric literals.

4-14 Environment Division

SPECIAL-NAMES Paragraph

CURSOR IS Clause (Alpha, 164)

38.

39.

The CURSOR IS clause specifies the initial position of the cursor at the start
of an ACCEPT (Format 5) statement. If cursor-position is within an input or
update field on the screen, then the initial cursor position is at the start of
that field. If the CURSOR IS clause is not specified, or if cursor-position is not
within an input or update field on the screen, the cursor’s initial position is at
the start of the first input or update field of the screen. The cursor-position is
updated upon completion of the ACCEPT statement to contain the position of
the cursor when the ACCEPT terminated.

In the CURSOR IS clause, if cursor-position is four characters in length,
the first two characters represent the line number, and the second two the
column number. If cursor-position is six characters in length, the first three
characters represent the line number, and the second three the column
number.

CRT STATUS IS Clause (Alpha, 164)

40.

41.

42.

If the CRT STATUS IS clause is specified, crt-status-code is updated after
every ACCEPT (Format 5) statement. The first two characters are a
termination code that indicates the cause of the termination of the ACCEPT
operation. (The third character is currently not defined, and is reserved for
future use.) The termination codes are explained in Table 4-1.

Command Line Arguments (Alpha, 164)

The ARGUMENT-NUMBER and ARGUMENT-VALUE clauses are used to
process command line arguments. The DISPLAY statement is used to select
and modify the values, and the ACCEPT statement is used to retrieve the
values.

Environment Variables and System Logicals (Alpha, 164)

The ENVIRONMENT-NAME and ENVIRONMENT-VALUE clauses are

used to process environment variables and system logicals. The DISPLAY
statement is used to select and modify the values, and the ACCEPT statement
is used to retrieve the values.

Table 4-1 CRT STATUS Termination Codes (Alpha, 164)

First Character Second Character Meaning

‘o’ ‘o Terminator key pressed by the operator;
normal completion

‘0 T Auto-skip out of the last field; normal
completion

T x00—x1A° User-defined function key number for
F1-F20 and the Find through Next
keys!

‘9’ x00’ No items falling within the screen!

IThe second character contains a hexadecimal value. An example of how to examine this value is
given in the Examples section.

Environment Division 4-15

SPECIAL-NAMES Paragraph

Additional References

OBJECT-COMPUTER Paragraph
CODE-SET Clause

Section 6.2.6, Scope of Names

Section 6.5.4, Switch-Status Condition
ACCEPT Statement

DISPLAY Statement

SET Statement

Appendix B, Character Sets

Examples

1.

4.

device-name clause:

CARD-READER IS THE-CARDS
CONSOLE IS LOCAL-USER

On Tru64 UNIX, this example allows ACCEPT and DISPLAY statements
to use THE-CARDS to refer to the environment variable COBOL_
CARDREADER and LOCAL-USER to refer to the environment variable
COBOL_CONSOLE.

On OpenVMS, this example allows ACCEPT and DISPLAY statements to
use THE-CARDS to refer to the logical name COB$CARDREADER and
LOCAL-USER to refer to the logical name COB$CONSOLE. ¢

Top-of-page-name clause:
C01 IS STARTING-NEW-FORM

The following WRITE statement causes the line to appear on the first line of
a new page:

WRITE REPORT-REC AFTER STARTING-NEW-FORM.
SWITCH clause:

SWITCH 1 IS FIRST-SWITCH ON IS ONE-ON OFF IS ONE-OFF
SWITCH-4 ON FOUR-ON

(Procedure Division statements can use the condition-names defined in the
SWITCH clause. The SET statement can change the status of a switch.)

The following results assume that switch 1 is on and switch 4 is off:

Truth
Condition Value
IF FOUR-ON false
IF ONE-ON true
IF NOT ONE-OFF true

IF ONE-ON AND NOT FOUR-ON true

ALPHABET clause:
ALPHABET EB-CONV IS EBCDIC

4-16 Environment Division

SPECIAL-NAMES Paragraph

If a file’s SELECT clause contains a CODE-SET IS EB-CONYV clause, this
ALPHABET clause causes translation from EBCDIC to the native character
set when the program reads data from the file.

User-defined collating sequence:

ALPHABET ALPH-B IS
"A" THRU "Z"
" 9 " THRU " 0 "
non ALSO ||/|| ALSO ll\ll

non
I

This ALPHABET clause defines a collating sequence in which uppercase
letters are lower than numeric characters. The space, slash (/), and backslash
(\) characters have the same position in the collating sequence. The comma
is the next higher character. It is implicitly followed by the rest of the
character set.

The following Procedure Division conditional statements show the effect of
this ALPHABET clause when the OBJECT-COMPUTER paragraph contains
the PROGRAM COLLATING SEQUENCE IS ALPH-B clause:

Truth
Statements Value

MOVE “A” TO ITEMA.
MOVE “9” TO ITEMB.
IF ITEMA < ITEMB true

MOVE “” TO ITEMA.
MOVE “\” TO ITEMB.
IF ITEMA = ITEMB AND ITEMB > “Z” true

MOVE “1” TO ITEMA.
MOVE “9” TO ITEMB.
IF ITEMA < ITEMB false

User-defined collating sequence with numeric literals:
ALPHABET ALPH-C IS 128 THRU 1

This clause inverts the positions of the ASCII characters.

The following Procedure Division statements assume that the OBJECT-
COMPUTER paragraph contains the SEQUENCE IS ALPH-C clause:

Truth
Statements Value
MOVE “A” TO ITEMA.
MOVE “B” TO ITEMB.
IF ITEMA < ITEMB false
MOVE “9” TO ITEMA.
IF ITEMA < “2” true
MOVE “HELLO” TO ITEMA.
IF ITEMA > SPACES false

SYMBOLIC CHARACTERS clause:
SYMBOLIC CHARACTERS ESCAPE POUND DOUB-L ARE 28 36 55.

Environment Division 4-17

SPECIAL-NAMES Paragraph

The following DISPLAY statement displays the literal “Enter value” in double
width on an ANSI terminal.

DISPLAY "Enter value" ESCAPE POUND DOUB-L.
8. CURRENCY SIGN clause:

a. The following example applies to any system, and (if on Alpha or 164)
regardless of whether /RESERVED_WORDS=200X is specified when the
program is compiled:

CURRENCY SIGN "G"

01 ITEMA PIC X(5).
01 ITEMB PIC X(5).
01 ITEMC PIC GG,GG9.99.
01 ITEMD PIC 2%%.2%9,99.
01 ITEME PIC 237Z,.

The following MOVE statements show the effect of the CURRENCY SIGN
clause (the character s represents a space):

ITEMC
Statement Result
MOVE 12.34 TO ITEMC sss(G12.34
MOVE 100 TO ITEMC $s(G100.00
MOVE 1000 TO ITEMC G1,000.00

b. The following example applies only on Alpha and 164 and only if
/RESERVED_WORDS=200X is specified when the program is compiled:

CURRENCY SIGN IS "G"
CURRENCY SIGN IS "USD" WITH PICTURE SYMBOL "U"
CURRENCY SIGN IS "DM" WITH PICTURE SYMBOL "D"
CURRENCY SIGN IS "M".

01 ITEMA PIC GG,GG9.99.
01 ITEMB PIC U,UUU,UU9.99.
01 ITEMC PIC DD,DD9.99.
01 ITEMD PIC MMM,MM9.99.

Statement Result

MOVE 12.34 TO ITEMA ITEMA = sssG12.34
MOVE 1000 TO ITEMB ITEMB = USD1,000.00
MOVE 12.34 TO ITEMC ITEMC = ssDM12.34
MOVE 1000 TO ITEMD ITEMD = sM1,000.00

9. DECIMAL-POINT IS COMMA clause:

01 ITEMA PIC X(5).
01 ITEMB PIC X(5).
01 ITEMC PIC GG,GG9.99.
01 ITEMD PIC %%%.2%9,99.
01 ITEME PIC Z%7,.

4-18 Environment Division

10.

11.

SPECIAL-NAMES Paragraph

The following MOVE statements show the effect of the DECIMAL-POINT IS
COMMA clause (the character s represents a space):

ITEMD
Statement Result
MOVE 1 TO ITEMD ITEMD = ssssss1,00
MOVE 1000 TO ITEMD ITEMD = ss1.000,00
MOVE 1,1 TO ITEMD ITEMD = ssssss1,10
MOVE 12 TO ITEME ITEME = s12,

CURSOR IS clause (Alpha, 164):

SPECIAL-NAMES.
CURSOR IS CURSOR-POSITION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 CURSOR-POSITION.
02 CURSOR-LINE PIC 99.
02 CURSOR-COL PIC 99.

In this example, the cursor’s position is defined by data items containing
a two-digit line number (CURSOR-LINE) and a two-digit column number
(CURSOR-COL).

CRT STATUS IS clause (Alpha, 164):

SPECIAL-NAMES.

SYMBOLIC CHARACTERS
FKEY-10-VAL
ARE 11

CRT STATUS IS CRT-STATUS.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 CRT-STATUS.

03 KEY1 PIC 9.
03 KEY2 PIC X.
88 FKEY-10 VALUE FKEY-10-VAL.

03 FILLER PIC X.

ACCEPT MENU-SCREEN.

IF KEY1 EQUAL "0"
PERFORM OPTION_ CHOSEN

ELSE IF KEY1l EQUAL "1" AND FKEY-10
DISPLAY "You pressed the F10 key; exiting..." LINE 22.

The first two characters (KEY1 and KEY2) constitute the code that shows the
cause of termination of an ACCEPT operation. (See Table 4-1.) Note that the
SPECIAL-NAMES paragraph provides for the capturing of the F10 function
key. o

Environment Division 4-19

4.2 INPUT-OUTPUT Section
The INPUT-OUTPUT Section can contain two paragraphs:
e FILE-CONTROL paragraph (see FILE-CONTROL)
e I-O-CONTROL paragraph (see I-O-CONTROL)
The FILE-CONTROL paragraph can contain the following clauses:
e ACCESS MODE clause
e ASSIGN clause
e BLOCK CONTAINS clause
e CODE-SET clause
e LOCK MODE clause (Alpha, 164)
e ORGANIZATION clause
e PADDING CHARACTER clause
e RECORD DELIMITER clause
e RESERVE clause
The I-O-CONTROL paragraph can contain the following clauses:
e APPLY clause
e SAME AREA clause
¢ RERUN clause
e MULTIPLE FILE clause

This section first describes the FILE-CONTROL paragraph and its clauses, then
it describes the I-O-CONTROL paragraph.

4-20 Environment Division

FILE-CONTROL Paragraph

FILE-CONTROL

Function
The FILE-CONTROL paragraph declares the program’s data files.

General Format
FILE-CONTROL.

Format 1

- SELECT [OPTIONAL] file-name

EXTERNAL (Alpha, 164)

ASSIGN TO [DYNAMIC (Alpha, 164)

] file-spec (OpenVMS)
data-name
[EXTERNAL] literal
DYNAMIC DISK
PRINTER

ASSIGN TO

REEL
ASSIGN TO [MULTIPLE] { UNIT } [FILE] (Tru64 UNIX)

RESERVE reserve-num [22528] l

[ORGANIZATION IS] SEQUENTIAL]

CHARACTERS

* | BLOCK CONTAINS [smallestblock TO. | bocksize { FECOMDS l

* [CODE-SET IS alpha-name |
[PADDING CHARACTER IS pad-char |

[RECORD DELIMITER IS STANDARD-1 |
* [ACCESS MODE IS SEQUENTIAL |

AUTOMATIC | WITH LOCK ON RECORD |
EXCLUSIVE

LOCK MODE IS { } (Alpha, 164)

* [FILE STATUS IS file-stat | .

Environment Division

4-21

FILE-CONTROL Paragraph

Format 2 (Alpha, 164)
- SELECT [OPTIONAL] file-name

EXTERNAL (Alpha, 164)

ASSIGN TO [DYNAMIC (Alpha, 164)

] file-spec (OpenVMS)

data-name

[EXTERNAL] literal

DYNAMIC DISK
PRINTER

ASSIGN TO

AREAS

l RESERVE reserve-num [AREA] l

[ORGANIZATION IS] LINE SEQUENTIAL

‘ [BLOCK CONTAINS | smallst-block TO. | blocksize { F-C0n0

*

| CODE-SET IS alpha-name |
| PADDING CHARACTER IS pad-char]
[RECORD DELIMITER IS STANDARD-1]

* | ACCESS MODE IS SEQUENTIAL]

LOCK MODE IS
EXCLUSIVE

* [FILE STATUS IS file-stat |. o

4-22 Environment Division

CHARACTERS

]

AUTOMATIC | WITH LOCK ON RECORD | } (Aha, 164

FILE-CONTROL Paragraph

Format 3

[SELECT [OPTIONAL | file-name]

EXTERNAL (Alpha, 164) 7 .
ASSIGN TO [DYNAMIC ‘Noba, 164]me-spec (OpenVMS)
data-name
EXTERNAL 1 | literal
ASSIGN TO [DYNAMIC] DISK (Alpha, 164)
PRINTER

[RESERVE reserve-num [ﬁggﬁs] l

[ORGANIZATION IS | RELATIVE

. lBLOCKCONTAINS[smallest-block@ | blocksize { SECORDS l

[RECORD DELIMITER IS STANDARD-1 |

SEQUENTIAL [RELATIVE KEY IS rel-key |

* ACCESS MODE IS { RANDOM

DYNAMIC } RELATIVE KEY IS rel-key

MANUAL WITH LOCK ON MULTIPLE RECORDS
LOCK MODE IS { AUTOMATIC [WITH LOCK ON RECORD | (Alpha, 164)
EXCLUSIVE

* [FILE STATUS IS file-stat |

Environment Division 4-23

FILE-CONTROL Paragraph

Format 4
- SELECT [OPTIONAL] file-name

EXTERNAL (Alpha, 164) 1,
ASSIGN TO [DYNAMIC (Alpha, 164)] file-spec (OpenVMS)
data-name
EXTERNAL literal
ASSIGN TO [DYNAMlC] DISK (Alpha, 164)
PRINTER

lRESERVE reserve-num [ﬁggﬁs]]

[ORGANIZATION IS] INDEXED

‘ [BLOCK CONTAINS [smallst-olock TO. | bocksize { AECOMDS) l

[RECORD DELIMITER IS STANDARD-1 |

SEQUENTIAL
* | ACCESS MODE IS { RANDOM }
DYNAMIC

rec-key

| RECORDKEY 1S { CH _ or) .

}[WITH DUPLICATES | [E\)ggggﬁg\:ﬁe] }

alt-key

* | ALTERNATE RECORD KEY IS { seg-key = [seq)

DESCENDING

}[WITH DUPLICATES | [ASCEND'NG] }

MANUAL WITH LOCK ON MULTIPLE RECORDS

LOCK MODE IS { AUTOMATIC | WITH LOCK ON RECORD | (Alpha, 164)
EXCLUSIVE

* [FILE STATUS IS file-stat | .

4-24 Environment Division

Format 5
- SELECT file-name

EXTERNAL (Alpha, 164)
ASSIGN TO [DYNAMIC (Alpha, 164)

data-name

EXTERNAL literal

ASSIGNTO | [hvabie] 1 Disk
PRINTER

Format 6
- SELECT file-name

EXTERNAL (Alpha, 164)
ASSIGN TO [DYNAMIC (Alpha, 164)

data-name
EXTERNAL literal
ASSIGNTO [G e | 4 Disk
PRINTER

RESERVE reserve-num [QEEQS

]

[ORGANIZATION IS | SEQUENTIAL]

* | BLOCK CONTAINS [smallest-block TO] blocksize {

* [CODE-SET IS alpha-name |
| PADDING CHARACTER IS pad-char]
[RECORD DELIMITER IS STANDARD-1 |

* [ACCESS MODE IS SEQUENTIAL |

* [FILE STATUS IS file-stat | .

Note

] file-spec (OpenVMS)

] file-spec (OpenVMS)

(Alpha, 164)

RECORDS
CHARACTERS

FILE-CONTROL Paragraph

(Alpha, 164)

]

Clauses marked with an asterisk () can be in either the SELECT clause
of the Environment Division or the file description entry of the Data
Division. They cannot be in both places for the same file.

file-name

is the internal name of a file connector. Each file-name must have a file
description (or Sort-Merge File Description) entry in the Data Division. The
same file-name cannot appear more than once in the FILE-CONTROL paragraph.

Environment Division 4-25

FILE-CONTROL Paragraph

Syntax Rules
All Formats

1. SELECT is optional in the FILE-CONTROL paragraph.

2. If SELECT is used in the FILE-CONTROL paragraph, it must be the first
clause. Other clauses may follow it in any order.

3. Each file described in the Data Division must be specified only once in the
FILE-CONTROL paragraph.

4. On OpenVMS for every format, the first form of ASSIGN TO (marked
"OpenVMS ONLY") is available only on the OpenVMS Alpha and OpenVMS
164 operating systems and only if the default /STANDARD=NOXOPEN
qualifier is in effect.

The second form of ASSIGN TO is available on the OpenVMS Alpha and
OpenVMS 164 systems if the /STANDARD=XOPEN qualifier is in effect. ¢

Format 6—Report Files

5. Each SELECT clause specifying a Report File must have a file description
entry containing a REPORT clause in the Data Division of the same program.

General Rules
Formats 1, 2, 3, and 4—Sequential, Line Sequential, Relative, or Indexed Files

1. You must specify an OPTIONAL phrase for files opened in INPUT, I-O, or
EXTEND mode that need not be present when the program runs.

2. The rules for the OPEN statement describe the effects of the OPTIONAL
phrase.

3. If the file connector referenced by file-name is an external file connector, all
file control entries in the run unit that reference this file connector must have
the following characteristics:

¢ The same specification for the OPTIONAL phrase
e A consistent full-file-name
e The same values for reserve-num, smallest-block, and blocksize
¢ The same organization
Format 6—Report Files

4. If the file connector referenced by file-name is an external file connector, all
file control entries in the run unit that reference this file connector must have
the following characteristics:

e A consistent full-file-name
e The same value for reserve-num
e Sequential organization

e The same CODE-SET clause

4-26 Environment Division

FILE-CONTROL Paragraph

Additional References

OPEN statement in Chapter 6, Procedure Division
BLOCK CONTAINS and CODE-SET clauses in this chapter

FILE STATUS, ACCESS MODE, RECORD KEY, and ALTERNATE RECORD
KEY clauses in Chapter 5, Data Division

Examples

The following examples assume that the VALUE OF ID clause is not in any
associated file description entry.

1.

Sequential file:

SELECT FILE-A
ASSIGN TO "INFILE".

This example refers to a file with sequential organization. The word INFILE
is equivalent to the nonnumeric literal “INFILE”. If there is no VALUE OF ID
clause, the program accesses a file named INFILE.DAT on OpenVMS Alpha
and 164 systems, or a file named INFILE on Tru64 UNIX systems.

Indexed file:

SELECT OPTIONAL FILE-A
ASSIGN TO "INFILE"
ORGANIZATION INDEXED.

In this example, the SELECT clause specifies that the indexed file need not
be present when the program opens it for INPUT, I-O, or EXTEND.

Sort or merge file:

SELECT SORT-FILE
ASSIGN TO "SDFILE".

Report file:

SELECT SUMMARY-REPORT
ASSIGN TO "OUTFIL"
FILE STATUS IS REPORT-ERRORS.

Environment Division 4-27

FILE-CONTROL Paragraph: ASSIGN Clause

ASSIGN

Function
The ASSIGN clause associates a file with a partial or complete file specification.

Format 1 (OpenVMS)

EXTERNAL
DYNAMIC

Format 2 (Alpha, 164)

ASSIGN TO [] file-spec #

data-name
literal
DISK
PRINTER

ASSIGN TO

Format 3 (Tru64 UNIX)

REEL
ASSIGN TO | MULTIPLE] { UNIT } [FILE | ¢

file-spec

on OpenVMS is either a nonnumeric literal or a COBOL word formed according
to the rules for user-defined names. It represents a partial or complete file
specification. It must conform to the rules for file specifications as defined by
RMS. o

data-name
is the name of a COBOL data item that contains a partial or complete file
specification.

literal
is a nonnumeric literal containing a partial or complete file specification.

DISK (Alpha, 164)

uses the file specification declared in the optional VALUE OF ID clause as the file
name. If the VALUE OF ID clause is not present, file-name-1 is used as the file
name in the current directory.

PRINTER (Alpha, 164)

creates a print file as if the PRINT-CONTROL phrase of the APPLY clause
were specified in the I-O CONTROL paragraph. A print file should contain only
printable characters and line and page advancing information written using the
ADVANCING clause of the WRITE verb.

REEL or UNIT (Tru64 UNIX)

creates the file on a magnetic tape using the ANSI standard format as defined
by American National Standard X3.27-1978 (Level 3), Magnetic Tape Labels and
File Structure for Information Interchange.

4-28 Environment Division

FILE-CONTROL Paragraph: ASSIGN Clause

Syntax Rules

1.
2.

data-name cannot be DISK or PRINTER.

EXTERNAL and DYNAMIC are allowed for syntax compatibility with other
COBOL vendors. They are treated as documentation only.

Format 1 is available only on the OpenVMS operating system and only if the
default STANDARD=NOXOPEN qualifier is in effect. ¢

Format 2 is available on Alpha and 164 if the /STANDARD=XOPEN qualifier
is in effect. ¢

On Tru64 UNIX, format 2 is the default. ¢

General Rules

1.

If there is no VALUE OF ID clause in the file description entry, or that clause
contains no file specification, the file specification in the ASSIGN clause is the
file specification.

If there is a file specification in an associated VALUE OF ID clause, the
ASSIGN clause contains the default file specification. File specification

components in the VALUE OF ID clause override those in the ASSIGN

clause.

On OpenVMS, if file-spec is not a literal, the compiler:

e Translates hyphens in the COBOL word to underline characters
e Treats the word as if it were enclosed in quotation marks
file-spec may contain a logical name. ¢

If you specify ASSIGN TO unquoted string, you need not specify this name in
the WORKING-STORAGE section. For example:

ASSIGN TO TEST1

This assignment would use "TEST1.DAT" on OpenVMS Alpha and 164. ¢
On Tru64 UNIX systems, you would specify:

ASSIGN TO "TEST1.DAT"

or:

ASSIGN TO TEST1

WORKING-STORAGE SECTION.
01 TEST1 PIC X(9) VALUE IS "TEST1.DAT".

The file specification derived from one or both of the ASSIGN and VALUE OF
ID clauses might refer to an environment variable.

On Tru64 UNIX systems, "" is not a valid file specification. o

On all platforms, file-spec must conform to the rules of the operating system
where the run-time I-O occurs.

For indexed files, file-spec must conform to the rules of the ISAM package
being used. Some older versions of ISAM on Tru64 UNIX may have a 10-
character maximum for file-spec length. ¢

Environment Division 4-29

FILE-CONTROL Paragraph: ASSIGN Clause

Format 3
For files assigned to magnetic tape using ASSIGN TO REEL clause:

9.

10.

If the length of the file name exceeds 17 characters, it is truncated. Any
lowercase characters in a file name are uppercased and others outside the
ANSI-"a" character set are converted to 'Z’.

An "a" character is one of the set of the digits 0,1..9, the uppercase letters
A,B..Z, and the following special characters:

SP!" % &’ ()*+,-./:;<=>7

Magnetic tape files must be ORGANIZATION SEQUENTIAL and either fixed
or variable length record format.

Technical Notes

On all platforms, leading and trailing spaces and tabs are removed from file
specifications before the OPEN statement executes.

When a COBOL OPEN statement executes on an OpenVMS system, the RMS
facility:

— Removes spaces and tab characters from the file specification

— Translates lowercase letters in the file specification to uppercase

— Performs logical name translation

.DAT is the default file type if one is not specified on an OpenVMS system. ¢

On Tru64 UNIX, the suffixes added to indexed file names on a Tru64 UNIX
system are .idx and .dat. ¢

On Tru64 UNIX, file specifications are case sensitive.

Embedded spaces are allowed in file specifications on Tru64 UNIX systems.
Thus "file name a" and "Monthly Report" are valid file specifications.

When a COBOL OPEN statement executes on a Tru64 UNIX system, HP
COBOL attempts to match the file specification against an environment
variable with the same spelling declared in the current login environment. If
an exact match is found, the value of the matching environment variable
becomes the file specification. Otherwise, the file specification remains
unchanged. ¢

Additional Reference

See VALUE OF ID clause in Chapter 5, Data Division. For information on
defining a file connector, refer to the Processing Files and Records chapter in the
HP COBOL User Manual.

4-30 Environment Division

FILE-CONTROL Paragraph: BLOCK CONTAINS Clause

BLOCK CONTAINS

Function
On OpenVMS systems, the BLOCK CONTAINS clause specifies the size of a
physical record. o

On Tru64 UNIX systems, block size for INDEXED organization is for
documentation purposes only. ¢

General Format

BLOCK CONTAINS [smallest-block TO] blocksize { A=°0R0> 1

CHARACTERS

smallest-block
is an integer literal. It specifies the minimum physical record size.

blocksize
is an integer literal. It specifies the exact or maximum physical record size.
Syntax Rule

The BLOCK CONTAINS clause can be in the file’s Data Division file description
entry. However, it cannot be in both the SELECT clause and the file description
entry for the same file.

General Rules
1. The BLOCK CONTAINS clause specifies physical record size.
2. The compiler ignores smallest-block.

3. The RECORDS phrase specifies physical record size in terms of logical
records.

e For a fixed-length record magnetic tape file, each physical record except
the last contains blocksize records.

e For a variable-length record magnetic tape file, the compiler computes the
physical record size. It equals the size of the largest logical record, plus
any overhead bytes, multiplied by blocksize.

4. The CHARACTERS phrase specifies physical record size in terms of
characters.

The physical record size is the maximum of: (1) blocksize bytes, and (2) the
size of the largest logical record; plus any overhead bytes for variable-length
records.

5. If there is no BLOCK CONTAINS clause, physical record size assumes a
default value.
The physical record size is the size of the largest record plus any overhead
bytes.

6. The size of physical records (in characters) must be a multiple of four.
Otherwise, the I/O system rounds up the physical record size to the next
multiple of four.

Environment Division 4-31

FILE-CONTROL Paragraph: CODE-SET Clause

CODE-SET

Function
The CODE-SET clause specifies the representation of data on external media.

General Format
CODE-SET IS alpha-name

alpha-name
is the name of a character set defined in the SPECIAL-NAMES paragraph. It
cannot be described with literals in the ALPHABET clause.

Syntax Rules

1. The CODE-SET clause can be in the file’s Data Division file description entry.
However, it cannot be in both the SELECT clause and the file description
entry for the same file.

2. The CODE-SET clause applies only to files with sequential organization.
General Rules

1. The CODE-SET clause identifies alpha-name as the character set used to
represent the file data externally.

2. alpha-name specifies how to convert character codes in the file to and from
native character codes.

3. Code conversion occurs during execution of an input or output operation.
Conversion occurs as if the data were USAGE DISPLAY.

4. Successful OPEN statement execution establishes the character set for
code conversion. The set used is the one specified by alpha-name in the
FILE-CONTROL paragraph implied by the OPEN statement.

5. If there is no CODE-SET clause, no character conversion occurs during
input-output operations. The native character set is the default.

Additional Reference
See the SPECIAL-NAMES paragraph.

Example

In this example, the CODE-SET clause specifies that the data in INFILE is coded
in the EBCDIC character code set as specified by an alphabet named EB. The
SPECIAL-NAMES paragraph defines EB as the EBCDIC character set.

SPECIAL-NAMES.

ALPHABET EB IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO INFILE

CODE-SET IS EB.

4-32 Environment Division

FILE-CONTROL Paragraph: LOCK MODE Clause

LOCK MODE (Alpha, 164)

Function

The LOCK MODE clause specifies a locking technique to use for a file. LOCK
MODE is part of the X/Open COBOL standard.

General Format

MANUAL WITH LOCK ON MULTIPLE RECORDS

LOCK MODE IS { AUTOMATIC

WITH { LOCK ON RECORD }]

ROLLBACK

EXCLUSIVE

Syntax Rules

1. X/Open standard and Hewlett-Packard standard syntax cannot both be
specified for the same file connector. Hence, if LOCK MODE is specified, the
ALLOWING, APPLY LOCK-HOLDING, and REGARDLESS phrases cannot
be specified for that file.

2. The WITH LOCK ON RECORD clause is for documentation purposes only.

3. The LOCK MODE IS MANUAL clause is not available for sequential or line
sequential files.

General Rules

1. When you specify LOCK MODE IS AUTOMATIC or LOCK MODE IS
MANUAL, an OPEN statement (without the WITH LOCK phrase) opens
the file in shareable mode. The LOCK MODE clause can be overridden by the
WITH LOCK phrase of the OPEN statement.

2. When you specify LOCK MODE IS EXCLUSIVE, a successful OPEN
statement opens the file in exclusive mode. The OPEN statement cannot
override LOCK MODE IS EXCLUSIVE.

3. If you omit the LOCK MODE clause, opening the file causes it to become
exclusive, unless you open it for INPUT, in which case the file becomes
shareable.

4. When you specify LOCK MODE IS AUTOMATIC for a file, a record lock is
acquired by the successful execution of the READ statement and released on
the successful execution of a subsequent I/O statement.

If you specify LOCK MODE IS MANUAL, a record lock is acquired by the
READ WITH LOCK statement.

5. On Tru64 UNIX, the ROLLBACK phrase is used by ACMSxp applications to
specify a recoverable file. You must compile with the -tps option to specify a
recoverable file.

6. A file that is opened in exclusive mode cannot be opened by any other access
stream.

7. A file that is in shareable mode can be opened by any number of access
streams that do not require exclusive use.

8. A file that does not reside on a mass storage device cannot be opened in
shareable mode. ¢

Environment Division 4-33

FILE-CONTROL Paragraph: ORGANIZATION Clause

ORGANIZATION

Function
The ORGANIZATION clause specifies a file’s logical structure.

On Alpha and 164 systems, the ORGANIZATION IS LINE SEQUENTIAL clause
specifies a variant of sequential files compatible with the system text editor. ¢

General Format

SEQUENTIAL
LINE SEQUENTIAL (Alpha, 164)
RELATIVE

INDEXED

[ORGANIZATION IS]

General Rules

1. File organization is established when the file is created. It cannot be
subsequently changed.

2. If there is no ORGANIZATION clause, the default is SEQUENTIAL.

3. On Alpha and Itanium systems, when LINE SEQUENTIAL organization is
specified, the file is treated as consisting of variable length records, with each
record containing one line of data. A line is a sequence of characters ending
with a record terminator (\n or x’0A’). The terminator is not counted in the
length of the record.

4. On Alpha and Itanium systems, a file with LINE SEQUENTIAL organization
should only contain printable characters and the record terminator.

5. On Alpha and Itanium systems, a file with LINE SEQUENTIAL organization
may not be opened in I-O mode. ¢

6. All programs that open an existing file must specify the same organization
with which the file was created.
Note

On Tru64 UNIX, a third-party product is required for INDEXED run-time
support. Refer to the Release Notes for the latest details on how to obtain
the INDEXED run-time support. ¢

4-34 Environment Division

FILE-CONTROL Paragraph: PADDING CHARACTER Clause

PADDING CHARACTER

Function
The PADDING CHARACTER clause specifies the character to be used to pad
blocks in sequential files.

General Format
PADDING CHARACTER IS pad-char
pad-char

is a one-character nonnumeric literal or the data-name of a one-character data
item. The data-name can be qualified.

General Rule
The PADDING CHARACTER clause is for documentation only.

Environment Division 4-35

FILE-CONTROL Paragraph: RECORD DELIMITER Clause

RECORD DELIMITER (OpenVMS)

Function

The RECORD DELIMITER clause indicates the method of determining the length
of a variable record on the external medium. It is for documentation only.

General Format

RECORD DELIMITER IS STANDARD-1

General Rule

On OpenVMS, STANDARD-1 is the I/O system (OpenVMS Record Management
System [RMS]) default for tape files. It is the method used for determining the
length of a variable-length record. This method is specified in the American
National Standard X3.27-1978, “Magnetic Tape Labels and File Structure for
Information Interchange,” and International Standard 1001 1979, “Magnetic Tape
Labels and File Structure for Information Interchange.”

Additional Reference

For OpenVMS systems, refer to the OpenVMS Record Management Services
Reference Manual for more information. ¢

4-36 Environment Division

FILE-CONTROL Paragraph: RESERVE Clause

RESERVE

Function

On OpenVMS systems, the RESERVE clause specifies the number of input-output
buffers for a file. ¢

On Tru64 UNIX systems, RESERVE is for documentation purposes only. ¢
General Format

RESERVE reserve-num [QEEQS]

reserve-num
is an integer literal from 1 to 127. It specifies the number of input-output areas

for the file.

General Rule

On OpenVMS systems, if there is no RESERVE clause, the number of input-
output areas equals the I/O system default.

Technical Note

For OpenVMS systems, two DCL commands change and display the defaults for
block count: SET RMS DEFAULT and SHOW RMS DEFAULT. The number of
areas is stored in the MBF field of the RAB.

Additional References
Refer to the RMS documentation for field RAB$B_MBF. «

Environment Division 4-37

I-O-CONTROL Paragraph

I-O-CONTROL

Function
The I-O-CONTROL paragraph specifies the input-output techniques to use for a
file.

On Tru64 UNIX systems, a number of the elements in the I-O-CONTROL
paragraph are for documentation only. See the Technical Notes for more
information. e

General Format

-0-CONTROL. [

[APPLY]

DEFERRED-WRITE
EXTENSION extend-amt
FILL-SIZE
LOCK-HOLDING
MASS-INSERT

ON { file-name } . ..

CONTIGUOUS -
CONTIGUOUS-BEST-TRY

PREALLOCATION preall-amt
PRINT-CONTROL
WINDOW window-ptrs

- SAME

RECORD
l SORT l AREA FOR {same-area-file} {same-area-file} . . .
SORT-MERGE

- RERUN T

[ON file-name] EVERY

REEL
[@OF]{M } OF file-name

rec-count RECORDS

clock-count CLOCK-UNITS
condition-name

[MULTIPLE FILE TAPE CONTAINS
{ multiple-file [POSITION pos-integer] } ... l :

4-38 Environment Division

I-O-CONTROL Paragraph

extend-amt

is an integer from 0 to 65,535. It specifies the number of blocks in each extension
of a disk file.

file-name

is the internal name of a file connector. Each file-name must have a file
description (or Sort-Merge File Description) entry in the Data Division. The
same file-name cannot appear more than once in the FILE-CONTROL paragraph.

preall-amt
is an integer from 0 to 4,294,967,295. It specifies the number of blocks to initially
allocate when the program creates a disk file.

window-ptrs
is an integer from 0 to 127. Its value can also be 255. It specifies the number of
retrieval pointers in the window that maps the disk file.

same-area-file
names a file described in a Data Division file description entry to share storage
areas with every other same-area-file.

rec-count
is an integer specifying the number of records to process before writing the rerun
information.

clock-count
is an integer specifying an interval of time to elapse before writing the rerun
information.

condition-name

names a switch status which, when set, causes the rerun information to be
written. The switch is defined in the SPECIAL-NAMES paragraph of Section 4.1,
CONFIGURATION Section.

multiple-file

is a file described in a Data Division file description. It specifies that the file
shares storage on a reel/unit device with other files. No more than 255 files can
be specified.

pos-integer
is an integer from 1 to 255. It specifies the relative location of a file on a tape
that contains multiple files.

Syntax Rules
1. The I-O-CONTROL clauses can appear in any order.

2. As the following table shows, each phrase of the APPLY clause can refer only
to some file types.

Phrase File Type
EXTENSION Disk file
FILL-SIZE Indexed organization
LOCK-HOLDING Disk file

Environment Division 4-39

I-O-CONTROL Paragraph

Phrase File Type
MASS-INSERT Indexed organization
PREALLOCATION Disk file
PRINT-CONTROL Sequential organization
WINDOW Disk file

More than one APPLY clause can refer to the same file-name.

4. The phrases of the APPLY clause can appear in any order. However, each
phrase can be used only once for each file-name.

5. You can specify the LOCK-HOLDING phrase only if you specify the
ALLOWING option of the OPEN statement.

6. The RERUN and MULTIPLE FILE clauses cannot refer to a sort or merge
file.

7. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

8. If same-area-file refers to a sort or merge file, you must use the SORT,
SORT-MERGE, or RECORD phrase.

9. A program can contain more than one SAME clause. However, the following
conditions apply:

e A same-area-file cannot be in more than one SAME RECORD AREA
clause.

* A same-area-file that refers to a sort or merge file cannot be in more than
one SAME SORT AREA or SAME SORT-MERGE AREA clause.

same-area-files cannot have the global or the external attribute if the
program specifies the SAME RECORD AREA phrase.

10. Files specified in a MULTIPLE FILE TAPE clause must be sequential.

11. A file cannot be specified in more than one MULTIPLE FILE TAPE clause.

General Rules
APPLY Clause

1. An APPLY clause remains active for a file-name until the image terminates.

2. If the file connector referenced by file-name is an external file connector, all
file control entries in the run unit that reference this file must have the same
APPLY clause.

3. The DEFERRED-WRITE phrase causes a physical write operation to occur
only when the input-output buffer for file-name is full. If there is no
DEFERRED-WRITE phrase, a physical write occurs each time an output
statement executes for file-name.

4. The EXTENSION phrase specifies the number of disk blocks to be added each
time a file is extended. The I/O system extends a file when it needs more file
space to add a record.

If extend-amt equals zero, the I/O system extends the file by its default value.
5. The FILL-SIZE phrase causes the I/O system to use the fill size specified
when an indexed file is created to fill the file’s buckets. If there is no FILL-

SIZE phrase, the I/O system fills buckets completely. The FILL-SIZE phrase
applies only to indexed files.

4-40 Environment Division

I-O-CONTROL Paragraph

The LOCK-HOLDING phrase declares the Hewlett-Packard standard manual
record-locking attribute for a sequential, relative, or indexed file in a file-
sharing environment on disk.

Once a record is manually locked (see the READ, REWRITE, START, and
WRITE statements in Chapter 6, Procedure Division), it remains locked until
one of the following occurs:

e An UNLOCK statement executes.
e A CLOSE statement executes for the subject file.

e The image terminates.

Usage of the APPLY LOCK-HOLDING option requires additional syntax
for the OPEN, READ, REWRITE, START, and WRITE verbs. Table 4-2
summarizes the additional syntax required for Procedure Division I/O
statements accessing a file possessing the manual record-locking attribute.

X/Open standard and Hewlett-Packard standard syntax cannot both be
specified for the same file connector. Hence, APPLY LOCK-HOLDING
cannot be specified if LOCK MODE was specified for that file in the SELECT
statement.

Table 4-2 Required Manual Record-Locking Phrases (Hewlett-Packard

Standard)

Procedure Division Options Required by the Manual Record-
Locking Facility (Hewlett-Packard Standard)

/0 *REGARDLESS OF
Operation ALLOWING ... LOCK
OPEN X N/A
READ X X
REWRITE X N/A
START X X
WRITE X N/A
Legend:
X—Required
N/A—Not Applicable
*—If the ALLOWING option is not specified
8. The MASS-INSERT phrase is for documentation only. It has no effect on

program execution.

On OpenVMS the PREALLOCATION phrase causes the I/0 system to allocate
preall-amt disk blocks when it creates the file.

e The CONTIGUOUS phrase specifies that the preallocated disk blocks
must be contiguous. If the I/O system cannot find preall-amt contiguous
disk blocks, the OPEN operation fails.

e The CONTIGUOUS-BEST-TRY phrase causes the I/O system to try to
preallocate disk blocks contiguously. If the I/O system cannot find preall-
amt contiguous disk blocks, it preallocates disk blocks in the largest
possible contiguous areas.

Environment Division 4-41

I-O-CONTROL Paragraph

10.

11.

The PRINT-CONTROL phrase specifies that the file has print file format.
Additionally, the PRINT-CONTROL phrase applies only to sequentially
organized files.

The PRINT-CONTROL phrase is redundant if:
e The file description entry contains a LINAGE clause

e The program contains a WRITE statement with the ADVANCING phrase
for the file

e The Report Writer Control System is in effect

The WINDOW phrase causes the I/O system to use window-ptrs number of
retrieval pointers in mapping the files. window-ptrs must fall in the range
of 0 to 127 inclusive or be equal to 255. If window-ptrs is 255, then the I/O
system attempts to map the entire file. o

SAME AREA Clause

12.

The SAME AREA clause is for documentation only.

SAME RECORD AREA Clause

13.

14.

15.

The SAME RECORD AREA clause causes two or more files named by same-
area-file to share the same memory area for the current logical records.

If you specify the SAME RECORD AREA clause, more than one same-area-file
(or all of them) can be open at the same time.

Any record in the shared area becomes the current logical record of:

e Each same-area-file of the SAME RECORD AREA clause open in
OUTPUT mode

¢ The most recently read same-area-file of the SAME RECORD AREA
clause open in INPUT mode

The logical records start with the same leftmost character position. Thus, the
SAME RECORD AREA clause is equivalent to an implicit redefinition of the
shared area.

SAME SORT (SORT-MERGE) AREA Clause

16.

The SAME SORT (SORT-MERGE) AREA clause is for documentation only.

RERUN Clause

17.

The RERUN clause is for documentation only. It has no effect on program
execution.

MULTIPLE FILE TAPE Clause

18.

19.

The MULTIPLE FILE TAPE clause specifies the location of a file or files on a
reel/unit device. The location of the file or files can be specified as a relative

location by providing a multiple-file series. The specific file location can be
specified by the POSITION phrase.

The MULTIPLE FILE TAPE clause specifies the location of a file or files
when more than one file shares the same physical reel of tape. If the files
in the multiple-file sequence are listed in consecutive order, the POSITION
phrase is not required. If the files in the multiple-file sequence are not listed
in consecutive order, the position of the file or files (relative to the beginning
of the tape) must be specified in the POSITION phrase.

4-42 Environment Division

20.

21.

22.

23.

I-O-CONTROL Paragraph

Only those multiple-files referenced by the program need to be specified in a
MULTIPLE FILE TAPE clause.

If a file is specified with a POSITION phrase of a MULTIPLE FILE TAPE
clause, subsequent files listed in that MULTIPLE FILE TAPE clause which
are not specified with a POSITION phrase are assumed to be in the next
higher position.

Only one file listed in a MULTIPLE FILE TAPE clause sequence can be open
at any one time.

If, at run-time, the run-time system determines that the files referenced are
not located on a reel device, the MULTIPLE FILE TAPE clause is ignored.

Technical Notes

On Tru64 UNIX systems, many elements of the I-O-CONTROL paragraph
are for documentation only. They are accepted and ignored by the compiler.
These elements are as follows:

DEFERRED-WRITE
EXTENSION

FILL-SIZE

CONTIGUOUS
CONTIGUOUS-BEST-TRY
PREALLOCATION
PRINT-CONTROL
WINDOW o

On OpenVMS, the following notes describe the effects of APPLY clause
phrases on parameters in the RMS file access block (FAB) and RMS record
access block (RAB) associated with file-name on OpenVMS Alpha and 164
systems. The FAB and RAB fields are described in the OpenVMS Record
Management Services Reference Manual.

— The DEFERRED-WRITE phrase sets the DFW bit in the FOP field of the
FAB.

— The EXTENSION phrase stores extend-amt in the DEQ field of the FAB.
— The FILL-SIZE phrase sets the LOA bit in the ROP field of the RAB.

— The LOCK-HOLDING phrase sets the ULK bit in the ROP field of the
RAB.

— The PREALLOCATION phrase stores preall-amt in the ALQ field of the
FAB.

— The CONTIGUOUS phrase sets the CTG bit in the FOP field of the FAB.

— The CONTIGUOUS-BEST-TRY phrase sets the CBT bit in the FOP field
of the FAB.

— The PRINT-CONTROL phrase sets bits in two FAB fields:
* The PRN bit in the RAT field
* The VFC bit in the RFM field
— The WINDOW phrase stores window-ptrs in the RTV field of the FAB. ¢

Environment Division 4-43

I-O-CONTROL Paragraph

Additional References

e RESERVE clause

e Technical Notes for the DELETE statement in Chapter 6, Procedure Division
e OPEN statement in Chapter 6, Procedure Division

e READ statement in Chapter 6, Procedure Division

e REWRITE statement in Chapter 6, Procedure Division

e START statement in Chapter 6, Procedure Division

e TUNLOCK statement in Chapter 6, Procedure Division

e WRITE statement in Chapter 6, Procedure Division

Additionally, refer to the HP COBOL User Manual for more information.

4-44 Environment Division

O

Data Division

This chapter describes the logical and physical concepts that apply to the Data
Division. In addition, this chapter presents the general formats for all Data
Division entries and clauses, describes their basic elements, and lists rules of use.

The Data Division defines the data processed by your COBOL program in both
physical and logical terms. It also specifies whether the data is contained in files,
a database, Oracle CDD/Repository, or is developed only for local use in your
program.

The File and Report Sections of your program define data contained in files. A
file description, sort-merge file description, or report file description entry creates
a logical structure, or file connector, that refers to the physical file. It also can
contain clauses that define physical file characteristics. A file description or
sort-merge file description entry must be associated with at least one record
description entry. A record description entry is a set of one or more data
description entries, organized in a hierarchical structure which logically defines
a set of related data within the file. The data description entries specify all
the data used in your program. You logically define the record hierarchy by

the level numbers you use for the data description entries (or entry) within the
record description entry. Your logical link to a record or to a field in a record is
the data-name you assign in a corresponding data description entry. The clauses
in a data description entry also specify physical data attributes, such as storage
format and initial values.

A report description entry must be associated with a report group description,
which specifies both the logical hierarchy of data in the report and the data’s
physical attributes.

A screen description entry describes a video form or a portion of a video form.

The Working-Storage and Linkage Sections also contain data description entries,
which describe characteristics of data developed for use in your program.

The following sections explain in more detail how a COBOL program specifies
physical and logical characteristics. Additionally, the following sections describe
how record descriptions impose logical structures on data, and how the physical
attributes of data affect the way data is stored and manipulated.

5.1 Logical Concepts of Data Storage

Because a record description is a logical, rather than a physical structure, a
program can define more than one record description for the same data. However,
this redefinition does not mean that the physical data changes in any way.
Multiple record descriptions for the same data all apply to one physical data unit
on the file medium.

Data Division 5-1

I-O-CONTROL Paragraph

When you refer to a data-name in a Procedure Division statement, you are
referring to a logical unit, either a logical record or a logical subset of that
record. When your COBOL source statements execute, the logical units to which
they refer are mapped to physical units on media. The logical units are then
manipulated according to their physical attributes.

The correspondence between a logical record and a physical record is not
necessarily a one-to-one correspondence. The term physical record applies to a
data unit that is media dependent and defined by the I/O system. On OpenVMS
systems, the I/O system is called OpenVMS Record Management Services (RMS).
A logical record may correspond to one physical record, either alone or grouped
with other logical records. Or, on disk, a logical record may need more than one
physical record to contain it.

Several COBOL clauses (in the Environment and Data Divisions) describe the
relationships between logical records and physical records. Programs can then
access data as logical entities with little regard to the physical data definitions
that the I/O system requires.

During program execution, data transfer between the program and a physical
record can involve translation if the SELECT clause contains a CODE-SET
clause.

5.1.1 Record Description Entries

Logical records do not have to be subdivided; however, they often are. Subdivision
can continue for each of the record’s parts, allowing progressively more detailed
data definition.

The basic subdivision of a record is the elementary data item (or elementary
item), which you define by specifying a PICTURE clause (except for COMP-1 or
COMP-2). As the term implies, elementary items are never subdivided. A logical
record consists of one or more sets of elementary items, or is itself an elementary
item.

A group data item (or group item) is a data set within a record that contains
other subordinate data items. The lowest-level group item is always a named
sequence of one or more elementary items. Group items can combine to form
more inclusive group items. Therefore, an elementary item can be subordinate to
more than one group item in the record.

Figure 5-1 represents a personnel record that illustrates how elementary

and group items can be related in a record hierarchy. The record contains

three group items directly subordinate to the top level: Identification Data,
History, and Payroll Data. The first group item, Identification Data, directly
contains two elementary items, Name and Job Title, and two other group items,
Employee Number and Address. The group item, Employee Number, contains
two elementary items: Department Code and Badge Number. The group item,
Address, contains four elementary items: Street, City, State, and ZIP Code. The
elementary item, City, belongs to three group items. It is subordinate to Address,
Identification Data, and Personnel Record. The second group item, History,
directly contains three elementary items: Hire Date, Last Promotion Date, and
Termination Date. The third group item, Payroll Data, also directly contains two
elementary items: Current Salary and Previous Salary.

5-2 Data Division

I-O-CONTROL Paragraph

Figure 5-1 Hierarchical Record Structure

Personnel Record (record level group item)
Identification Data (group item)
Employee Number (group item)
Department Code (elementary item)
Badge Number (elementary item)
Name (elementary item)
Address (group item)
Street (elementary item)
City (elementary item)
State (elementary item)
ZIP Code (elementary item)
Job Title (elementary item)
History (group item)
Hire Date (elementary item)
Last Promotion Date (elementary item)
Termination Date (elementary item)
Payroll Data (group item)
Current Salary (elementary item)
Previous Salary (elementary item)
VM-0583A-Al

5.1.2 Level-Numbers

Record description entries use a system of level-numbers to specify the
hierarchical organization of elementary and group items. Level-numbers that
specify hierarchical structure can range from 01 to 49.

The record is the most inclusive data item; that is, there is no hierarchical
relationship between one record description entry and any other. However, there
is a hierarchical relationship between a group item and its subordinate group or
elementary items. The level-number for records is 01. Less inclusive data items
have greater (although not necessarily consecutive) level-numbers.

All items subordinate to a group item must have level-numbers greater than the
group’s level-number. In a record description, a group item is delimited by the
next level-number that is less than or equal to that group’s level number.

Figure 5-2 shows how level-numbers specify hierarchical structure and how

the presence of the PICTURE clause defines an elementary item. Although line

indentation can make record descriptions easier to read, it does not affect record
structure; only the level-number values specify the hierarchy. The ellipsis (...)
indicates that parts of the program line have been omitted.

Data Division 5-3

I-O-CONTROL Paragraph

Figure 5-2 Level-Number Record Structure

01 PERSONNEL-RECORD. (record)
03 IDENTIFICATION-DATA. (group item)
05 EMPLOYEE-NUMBER. (group item)
07 DEPARTMENT-CODE PIC ... (elementary item)
07 BADGE-NUMBER PIC ... (elementary item)
05 NAME PIC ... (elementary item)
05 ADDRESS. (group item)
07 STREET PIC ... (elementary item)
07 CITY PIC ... (elementary item)
07 STATE PIC ... (elementary item)
07 ZIP-CODE PIC ... (elementary item)
05 JOB-TITLE PIC ... (elementary item)
03 HISTORY. (group item)
04 HIRE-DATE PIC ... (elementary item)
04 LAST-PROMOTION-DATE PIC ... (elementary item)
04 TERMINATION-DATE PIC ... (elementary item)
03 PAYROLL-DATA. (group item)
05 CURRENT-SALARY PIC ... (elementary item)
05 PREVIOUS-SALARY PIC ... (elementary item)
VM-0584A-Al

Three special level-numbers—66, 77, and 88—neither specify hierarchical
structure nor actually indicate level. Rather, they define special types of data
entries:

e Level-number 66 identifies RENAMES items, which regroup other data items.
See the RENAMES clause for more information.

e Level-number 77 specifies noncontiguous (elementary) items in the Working-
Storage and Linkage Sections. These data items are not subdivisions of other
items and cannot be subdivided. For all other purposes, they are identical to
level 01 elementary entries.

e Level-number 88 associates condition-names with values of a corresponding
data item (the conditional variable).

See Chapter 1, Overview of the COBOL Language, for more information on
condition-names.

5.1.3 Multiple Record Description Entries for the Same Data

Example 5-1 shows a sample file description entry (FD) that contains three
record description entries. The three record description entries define three
logical templates the program can impose on a record to access data from it.

The three record description entries in Example 5-1, T1, T2, and RECORD-
TYPE, each define a fixed-length record of 30 characters. Once the program reads
a record, it can use the last two characters (REC-TYPE) to determine which
record description entry to use.

5-4 Data Division

I-O-CONTROL Paragraph

Example 5-1 Multiple Record Definition Structure

FD MASTER-FILE.

01 T1.
02 T1-ACCOUNT-NO PIC 9(6).
02 T1-TRAN-CODE PIC 99.
02 T1-NAME PIC X(13).
02 T1-BALANCE PIC 9(5)V99.
02 REC-TYPE PIC XX.
01 T2.
02 T2-ACCOUNT-NO PIC 9(6).
02 T2-ADDRESS.
03 T2-STREET PIC X(15).
03 T2-CITY PIC X(7).
02 REC-TYPE PIC XX.
01 RECORD-TYPE.
02 PIC X(28).
02 REC-TYPE PIC XX.

5.2 Physical Concepts of Data Storage

COBOL programs describe files and data in physical terms for storage on
input-output media. The physical description of data includes the following
information:

¢ The mapping and grouping of logical records within the structure of the file
storage medium

e The unit used to transfer records to and from your program
¢ The size and storage format of an elementary data item

The size of a physical record and the way it is recorded depend on the hardware
device involved in an input or output operation. For example, tape and disk
media store physical records differently. On tape, a physical record is written
between interrecord gaps. On disk, a physical record is written in multiple units
of a fixed number of bytes, which is determined by the hardware and operating
system involved.

On OpenVMS systems, the term used for a physical record differs according

to file organization. A physical record in a sequential file is called a block. A
physical record in a relative or indexed file is called a bucket. A block or bucket
corresponds to the unit used by the I/O system software to transfer records from
a file to your program (and vice versa). The number of records (in logical terms)
actually transferred by an input-output operation depends on the following:

e The block size specified by the BLOCK CONTAINS clause (tape files only)
¢ The number of logical records contained in a physical record

The maximum physical record size depends on file organization and device. On
OpenVMS systems, the maximum physical record sizes for sequential files on
tape devices and for sequential, indexed, and relative files on disk are shown in
terms of number of bytes in Table 5-1.

Data Division 5-5

I-O-CONTROL Paragraph

Table 5-1 Maximum Physical Record Size for Tape and Disk Devices

Type of File Magnetic Tape Devices Disk

Sequential 65,535 bytes 65,024 bytes

Indexed N/A 32,234 bytes

Relative N/A 32,255 bytes ¢
Note

A compile-time informational diagnostic appears if the physical record
size exceeds 65,024 bytes for a sequential file. However, HP COBOL
programs are device-independent. Therefore, a fatal run-time error can
also occur if the file is assigned to disk when the program runs.

5.2.1 Categories and Classes of Data

The size and storage format of an elementary data item depend upon what class
and category of data it represents and how that data can be used. A data item’s
PICTURE clause determines its class and category. The item’s PICTURE clause
and USAGE clause, in combination, specify its size and storage format. See the
PICTURE and USAGE clauses for more information.

When an arithmetic or data-movement statement transfers data into an
elementary item, the category of the item affects the way the data is positioned
in storage. The COBOL Standard Alignment Rules (see Section 5.2.2) specify the
relationship between category and positioning.

Depending on the symbols contained in its PICTURE clause, every elementary
item belongs to one of the classes and categories of data items shown in Table 5-2.
COMP-1, COMP-2, index data items, and index-names do not have PICTURE
clauses; the format of these elementary items is specified by the compiler and
they belong to the numeric category.

The class of a group item is treated as alphanumeric regardless of the class of
elementary items subordinate to it. Therefore, your program statements should
not specify a group item when a numeric item is expected or required.

5-6 Data Division

I-O-CONTROL Paragraph

Table 5-2 Classes and Categories of Data ltems

Level Class Category
Alphabetic Alphabetic
Elementary Numeric Numeric

Numeric Edited
Alphanumeric Alphanumeric Edited
Alphanumeric

Alphabetic
Numeric

Group Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

5.2.2 COBOL Standard Alignment Rules

The COBOL Standard Alignment Rules specify how characters are positioned in
an elementary data item. Positioning depends on the item’s category:

1. For a numeric receiving data item:

e The data is aligned by decimal point. It is moved to the receiving
character positions with zero fill or truncation, if necessary.

e When an assumed decimal point is not explicitly specified, the data item
is treated as if it had an assumed decimal point immediately after its
rightmost character. It is then aligned by decimal point as described in
the preceding list item.

2. For a numeric edited receiving data item, the data is aligned by decimal point
with zero fill or truncation, if necessary. Editing requirements can replace
leading zeros with some other symbol.

3. For receiving data items that are alphabetic, alphanumeric edited, or
alphanumeric (without editing), the data is aligned at the leftmost character
position in the data item, with space fill or truncation to the right, if
necessary.

If the JUSTIFIED clause applies to the receiving item, the rules for the
JUSTIFIED clause override rule 3. See the JUSTIFIED clause for more
information.

5.2.3 Additional Alignment Rules for Record Allocation

As stated in Section 5.2.2, the COBOL Standard Alignment Rules specify
data positioning only within elementary data items. Hewlett-Packard defines
additional alignment rules that affect the positioning of:

e Records on the file media
¢ Group items within a record

e Elementary items within a group item

Data Division 5-7

I-O-CONTROL Paragraph

On Alpha and 164 systems, HP COBOL offers the option of allocating subordinate
record items along performance-optimal boundaries through the use of the
alignment compiler option or directives (or the SYNCHRONIZED clause). If you
select one of these options, subordinate data items will be aligned automatically
along optimal boundaries for their data type. The compiler may have to skip one
or more bytes before assigning a location to the next data item. These skipped
bytes, called fill bytes, are spaces between one data item and the next. Refer

to the HP COBOL User Manual for information on using alignment compiler
options and directives.

If you do not select one of these Alpha- and 164-only alignment options, the HP
COBOL compiler will locate the data item at the next unassigned byte location.

The presence of fill bytes can make a record’s structure different from what you
might expect. In particular, if a record contains many items requiring alignment,
its size can increase significantly. If, unaware of the fill bytes, you tried to move a
group item containing fill bytes to a single data item, right-end truncation would
occur. You would not have this problem, however, if you moved the record into
another identically defined group item. The method the compiler uses to allocate
storage ensures that identically described group items have the same structure,
even when their subordinate items are aligned on their required boundaries.

Figure 5-3 shows alignment boundaries for a record. The boundary is the
leftmost location of the 1-, 2-, 4-, or 8-byte area. All boundaries are relative to the
beginning of the record as byte number 0.

Figure 5-3 Record Alignment Boundaries

000000O0O0O0OO0T1T 1111111112222
0123456 7890123456 782901 2 3
B|s|[s|B|s|B|B|B|B|B|B|B|B|B|B[B|B|B|B[B|B|B[B]|B
2-byte |2-byte |2-byte |2-byte |2-byte |2-byte |2-byte |2-byte |2-byte |2-byte | 2-byte (2-byte
4-byte 4-byte 4-byte 4-byte 4-byte 4-byte
8-byte 8-byte 8-byte

VM-0585-Al

The HP COBOL compiler allocates storage for data items within records
according to the rules of the major-minor equivalence technique. The major-
minor equivalence technique ensures that identically defined group items have
the same structure, even when their subordinate items are aligned. Therefore,

group moves always produce predictable results. This technique is based on the
following two rules:

e Location Equivalence—The leftmost location of a group item is the same as
the leftmost location of its first subordinate item.

e Boundary Equivalence—The HP COBOL compiler aligns a group item on a
boundary that is as large as the largest boundary for any aligned data item
within its scope.

5-8 Data Division

I-O-CONTROL Paragraph

Location Equivalence

Location equivalence forces a group (major) item to the same storage location as
its first subordinate (minor) item. This forced positioning occurs regardless of the
boundary alignment of either the group or subordinate item.

Refer to the HP COBOL User Manual chapter on aligning binary data for
information on how location equivalence allocates storage.

The following example results in the major-minor location format:

01 ITEM-A.
03 ITEM-B.
05 ITEM-C PIC 9(4) COMP SYNCHRONIZED.
03 FILLER PIC X.
03 ITEM-D.
05 ITEM-E PIC 9(4) COMP SYNCHRONIZED.
03 ITEM-F PIC X.

The following example (omitting SYNCHRONIZED) results in the left-right
location format:

01 ITEM-A.
03 ITEM-B.
05 ITEM-C PIC 9(4) COMP.
03 FILLER PIC X.
03 ITEM-D.
05 ITEM-E PIC 9(4) COMP.
03 ITEM-F PIC X.

Table 5—3 compares the major-minor technique of storage allocation with the
left-to-right technique that assigns locations to a group item before its subsidiary
items. Note that major-minor storage allocation adds a fill byte before ITEM-D.
This forces location equivalence with ITEM-E, which is explicitly aligned by the
SYNCHRONIZED clause.

Table 5-3 Comparison of Major-Minor and Left-Right Locations

Major-Minor Left-Right

Data Item Location Location
ITEM-A 00 00
ITEM-B 00 00
ITEM-C 00 00
FILLER 02 02
ITEM-D 04 03
ITEM-E 04 03
ITEM-F 06 05

The following diagram also shows the storage allocation for the record ITEM-A
in Table 5-3 using both techniques. A hyphen (-) represents fill bytes caused by
explicit alignment; an asterisk (*) represents the FILLER data item.

Data Division 5-9

I-O-CONTROL Paragraph

Major-Minor Location Left-Right Location
0123456 012345
AlAIA|AIAA|A AlAA|AIA|A
B(B|*|-|D|D|F B|B|*|D|D|F
C|C E|E C|C| |E|E
VM-0612A-Al

Regardless of the record allocation technique, an elementary move always
produces the expected result. For example:

MOVE ITEM-C TO ITEM-E

Effect on Group Moves

A group move may produce an unexpected result, as in the following two
situations:

e IfITEM-A of the major-minor location format is moved to ITEM-A of the left-
right location format, the fill byte of the major-minor location format overlays
the first byte of ITEM-E in the left-right location format; then the first byte
of ITEM-E in the major-minor location format overlays the second byte of
ITEM-E in the left-right location format, and the second byte of ITEM-E in
the major-minor location format overlays ITEM-F in the left-right location
format. Finally, ITEM-F in the major-minor location format is truncated.

e A different set of unexpected results occurs if a group move is done in the
reverse direction. If ITEM-A of the left-right location format is moved to
ITEM-A of the major-minor location format, the first byte of ITEM-D of the
left-right location format is moved to the fill byte of the major-minor location
format. Then the second byte of ITEM-E in the left-right location format is
moved to the first byte of ITEM-E in the major-minor location format, and
ITEM-F of the left-right location format is moved to the second byte of ITEM-
E in the major-minor location format. Finally, ITEM-F is filled with a space
because of the padding rule.

Boundary Equivalence

Boundary equivalence forces a group item to a boundary determined by the
alignment of its subordinate items.

Within a record, a group item aligns on a boundary as large as the forced
alignment boundary of any data item that:

e Is subordinate to the group
e Redefines the group
e Is subordinate to a data item that redefines the group

Refer to the HP COBOL User Manual chapter on alignment for more information
about boundary equivalence.

Figure 5-4 shows how the compiler determines the boundary where each item
begins when you specify the no-alignment compiler option.

5-10 Data Division

I-O-CONTROL Paragraph

Figure 5-4 Effect of Boundary and Location Equivalence Rules on Sample

Record
Boundary Reason
01 ITEM-A. - 01-level item
03 ITEM-B. 8-byte Contains ITEM-J
05 ITEM-C PIC X. byte Default alignment
05 ITEM-D. 4-byte Contains ITEM-F
07 ITEM-E PIC 9(4) COMP SYNC. 2-byte Explicit SYNC clause
07 ITEM-F. 4-byte Contains ITEM-I
09 ITEM-G PIC X. byte Default alignment
09 ITEM-H PIC 9(4) COMP. byte Default alignment
09 ITEM-I PIC 9(8) COMP SYNC. 4-byte Explicit SYNC clause
05 ITEM-J. 8-byte Redefined by ITEM-M
which contains ITEM-N
07 ITEM-K PIC 9(1) COMP SYNC. 2-byte Explicit SYNC clause
07 ITEM-L PIC X(7). byte Default alignment
05 ITEM-M REDEFINES ITEM-J. 8-byte Contains ITEM-N
07 ITEM-N PIC 9(15) COMP SYNC. 8-byte Explicit SYNC clause
07 ITEM-O PIC X. byte Default alignment
05 ITEM-P. 8-byte Redefined by ITEM-S
07 ITEM-Q PIC 9(5) COMP. byte Default alignment
07 ITEM-R PIC 9(7) COMP. byte Default alignment
05 ITEM-S REDEFINES ITEM-P 8-byte Explicit SYNC clause
PIC 9(15) COMP SYNC.
VM-0586A-Al

Figure 5-5 graphically represents Figure 5-4. It shows the result of location and
boundary equivalence applied to the description of record ITEM-A. A hyphen (-)
indicates fill bytes.

Figure 5-5 Storage Allocation for Sample Record

0 0 0 1 1 2 2 2 3 3 3
0 4 8 2 6 0 4 8 2 6 9

AA
BBBBBBBBBBBBBBBBEBBBBEBBBBBBBBBBBBBBBBBBBB

c[- - -[ppppDDDDDDDDUIIIIIIIIF - PPPPPPPP
EE -[FFFFFFFFkkLLLLLLL QQQQRRRR
GHH[-[1 11 T [MMMMMMMMM $SSSSSSS

N NNNN NN N[O

VM-0587A-Al

Note the location of ITEM-D. Location equivalence requires only that it have the
same location as ITEM-E, its first subordinate item. ITEM-E requires only 2-byte
boundary alignment. However, another of ITEM-D’s subordinate items, ITEM-

F, contains ITEM-I, which must be aligned on a 4-byte boundary. Therefore,
boundary equivalence forces ITEM-D to a 4-byte boundary as well, causing two
fill bytes between ITEM-E and ITEM-F.

Data Division 5-11

I-O-CONTROL Paragraph

This example shows how boundary equivalence helps make group moves
predictable:

01 ITEM-A.
03 ITEM-B.
05 ITEM-C PIC X.
05 ITEM-D PIC 9(8) COMP SYNC.
03 ITEM-E PIC X.
03 ITEM-F.
05 ITEM-G PIC X.
05 ITEM-H PIC 9(8) COMP SYNC.
03 ITEM-I PIC XX.

The descriptions of ITEM-B and ITEM-F are equivalent. Therefore, you would
not expect the following sentence to change the values of ITEM-C and ITEM-D:

MOVE ITEM-B TO ITEM-F
MOVE ITEM-F TO ITEM-B.

Figure 5-6 shows how storage for the record would be allocated without and
with boundary equivalence. A hyphen (-) indicates fill bytes caused by the
SYNCHRONIZED clause. A plus sign (+) represents fill bytes resulting from
boundary equivalence.

Figure 5-6 Storage Allocation Without and With Boundary Equivalence

Without Boundary Equivalence With Boundary Equivalence
0 0 0 1 11 0 0 0 1 1 22
0 4 8 2 6 7 0 4 8 2 6 01
AAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAA
BBBBBBBBIEIFFFFFFF|I I BBBBBBBB|E+ ++FFFFFFFF|I I
cl- - -jpppo| 6] -[HHHH cl - -|pbDD Gl- - -[HHHH
VM-0588A-Al

Without boundary equivalence, ITEM-B occupies 8 bytes, and ITEM-F occupies
7 bytes. Moving the contents of ITEM-B to ITEM-F truncates the last byte

of ITEM-D. Moving the contents of ITEM-F to ITEM-B pads the last byte of
ITEM-D with a space character.

In contrast, boundary equivalence eliminates this unforeseen result. The
elementary items occupy the same relative positions in each group. Therefore, the
structures of ITEM-B and ITEM-F are the same, and the results of both group
and elementary moves are predictable.

5-12 Data Division

Examples

I-O-CONTROL Paragraph

The following series of examples show major-minor storage allocation. The notes
after each example indicate its significant features. A hyphen (-) represents fill

bytes.
Example 1
WORKING-STORAGE SECTION.
01 ITEM-A.
03 ITEM-B PIC X.
03 ITEM-C.
05 ITEM-D.
07 ITEM-E PIC 999 COMP SYNC.
07 ITEM-F PIC X(10).
05 ITEM-G REDEFINES ITEM-D.
07 ITEM-H PIC 9(14) COMP SYNC.
07 ITEM-I PIC XXXX.
01 ITEM-J.
03 ITEM-K.
05 ITEM-L PIC 999 COMP SYNC.
05 ITEM-M PIC X(10).
03 ITEM-N REDEFINES ITEM-K.
05 ITEM-0 PIC 9(14) COMP SYNC.
05 ITEM-P PIC XXXX.
0 0 0 1 1 1 0 0 0 1
0 4 8 2 6 9 0 4 8 1
AAAAAAAAAAAAAAAAAAAA JJJJJJIJIJJJId
Bl-------|jccccceccccccc KKKKKKKKKKKK

DDDDDDDDDDDD

LLMMMMMMMMMM

EEFFFFFFFFFF

NNNNNNNNNNNN

GGGGGGGGGGGG

0O0O0OO0O0O0OO0OO0OPPPP

HHHHHHHH[1 11 |

In this example:

VM-0589A-Al

e The relative locations of records (01-level items) in the Working-Storage and
Linkage Sections are neither defined nor predictable.

e The structures of ITEM-J (a record) and ITEM-C (a group item within a

record) are identical.

Example 2
WORKING-STORAGE SECTION.
01 ITEM-A.
03 ITEM-B PIC X.
03 ITEM-C.
05 ITEM-D OCCURS 3 TIMES.
07 ITEM-E PIC X.
07 ITEM-F PIC 9999 COMP SYNC.
07 ITEM-G PIC X.
03 ITEM-H PIC X.

Data Division 5-13

I-O-CONTROL Paragraph

0 0 0 1 1 2
0 4 8 2 6 0

AAAAAAAAAAAAAAAAAAAAA
B[-[cccccccccccccccccclH
DDDDD|-DDDDD|-[DDDDD|-
E[-|F Fla[[E]-|F Fla| |E]-|F Flo

VM-0590A-Al

In this example:

e A fill byte is added after each occurrence of ITEM-D to maintain 2-byte
boundary alignment of the next occurrence.

e ITEM-D is 5 bytes long. The fill byte following ITEM-D is not included in its
length.

e ITEM-C is 18 bytes long. Its length includes the fill bytes associated with its
subordinate items.

e The record ITEM-A is 21 bytes long.

Example 3
WORKING-STORAGE SECTION.
01 ITEM-A.
03 ITEM-B PIC X.
03 ITEM-C.
05 ITEM-D OCCURS 3 TIMES.
07 ITEM-E PIC X.
07 ITEM-F PIC 9999 COMP SYNC.

03 ITEM-H PIC X.
0 0 0 11
0 4 8 2 4

AAAAAAAAAAAAAAA
Bl-lcccccccccccclH
DDDD|DDDD[DDDD
El-|FFle[-|[FFlE[-[F F

VM-0591A-Al

In this example:
e ITEM-G is omitted.

e ITEM-D is 4 bytes long. No fill bytes are added, since the next occurrence is
already aligned on a 2-byte boundary.

e ITEM-C is 12 bytes long.
e The record ITEM-A is 15 bytes long.

5-14 Data Division

I-O-CONTROL Paragraph

5.2.4 Alpha and 164 Alignment and Padding

The Hewlett-Packard OpenVMS Calling Standard for the Tru64 UNIX, OpenVMS
Alpha, and OpenVMS 164 systems specify Alpha natural data alignment and
padding. You invoke this alignment by adding the alignment padding compiler
option to the compile command line, or by using pad align directives in your
source code. (Refer to the HP COBOL User Manual for additional information on
the command.)

The Alpha natural alignments and field sizes that apply to elementary COBOL
data fields are shown in Table 5—4.

Table 5-4 Alpha Alignment and Padding

Data Types Alignment Starting Position Pictures Usages
8-bit character string Byte boundary A X9, Display
Edited

16-bit integer Word boundary, multiple of 2 9(4) COMP
32-bit integer Longword boundary, multiple of 4 9(8) COMP
Single-precision real COMP-1
64-bit integer Quadword boundary, multiple of 8 9(16) COMP
Double-precision real COMP-2

These alignments and field sizes apply to elementary data items. However, they
are extended to group data items at all level numbers by requiring that the
alignment of the group data item conforms to the alignment of the largest natural
alignment of any elementary data item that is subordinate to the group-item.
Every intermediate group data item in HP COBOL is a candidate for Alpha
natural alignment and padding. Every higher-level data item is padded to be
the smallest multiple of the largest natural alignment of any of its subordinate
elementary data items that contains the data structure. The alignment and
padding can be determined in all cases by following the tree structure through as
many levels as required until the elementary data item with the largest natural
alignment is found. All elementary data items are aligned and sized within their
data structures according to Table 5-4.

Data Division 5-15

I-O-CONTROL Paragraph

5.3 DATA DIVISION General Format and Rules

Function

The Data Division describes data the program creates, receives as input,
manipulates, and produces as output.

General Format
DATA DIVISION.

[FILE SECTION. 1
[file-description-entry { record-description-entry } . ..]
[report-file-description-entry | . ..

[sort-merge-file-description-entry { record-description-entry } . ..]

WORKING-STORAGE SECTION. | record-description-entry | .. .]

LINKAGE SECTION. [record-description-entry | . ..]

REPORT SECTION. | report-description-entry { report-group-description-entry } ...]]

SCREEN SECTION. | screen-description-entry | ...] (Alpha, 164)

Syntax Rules
1. The Data Division follows the Environment Division.

2. The reserved words DATA DIVISION, followed by a period (.) separator
character identify and begin the Data Division.

General Rules

1. The Data Division is subdivided into sections. These sections must be in the
following order:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

REPORT SECTION.

SCREEN SECTION. (Alpha, 164)

File Section

2. The File Section defines the structure of data files. It begins with the File
Section header containing the reserved words FILE SECTION, followed by a
period (.) separator character.

3. File description entries and sort-merge file description entries follow the File
Section header. They can be in any order.

5-16 Data Division

10.

11.

I-O-CONTROL Paragraph

The file description entry consists of a level indicator (FD), a file-name, and a
series of independent clauses.

The FD clause specifies the following:

e How the file records data

e The sizes of logical and physical records

e The names of data records (except for report files)
e The number of lines on a logical printer page

An FD entry, followed by one or more record description entries, defines
a sequential, relative, or indexed file. Record description entries must
immediately follow the associated FD entry.

No record description entries may follow the report file description entry.

The sort-merge file description entry consists of a level indicator (SD), a
file-name, and a series of independent clauses.

An SD clause specifies the following:

e How the file records data

e The sizes of logical and physical records
e The names of data records

An SD entry specifies the sizes and names of data records for a sort-merge file
referred to by SORT and MERGE statements.

An SD entry, followed by one or more record description entries, defines a file.
Record description entries must immediately follow the associated SD entry.

Working-Storage Section

12.

13.

14.

15.

16.

17.

18.

The Working-Storage Section describes records and subordinate data items.
These records are not parts of files; rather, the program develops and
processes them internally.

The Working-Storage Section also describes data items assigned values by the
source program.

The Working-Storage Section consists of a section header, followed by record
description entries.

The section header consists of the reserved words WORKING-STORAGE
SECTION, followed by a period (.) separator character.

A record description entry groups data items that bear a hierarchical
relationship to each other. Unrelated data items in the Working-Storage
Section can be described as records that are individual elementary items.

Record description clauses can be used in the File Section, the Working-
Storage Section, or the Linkage Section.

The VALUE IS clause can specify the initial value of any item in the Working-
Storage Section except index data items (described by the USAGE IS INDEX
clause) and index-names (described by the INDEXED BY phrase of the
OCCURS clause).

Data Division 5-17

I-O-CONTROL Paragraph

19.

If the VALUE IS clause does not specify an initial value, the default initial
value for an item depends on the type of data item:

Data Item Type Default Initial Value
Numeric Zero

Index-name Occurrence number one
Index data item Undefined

Tables Undefined

All others Spaces

Linkage Section

20.
21.

22.

23.

The Linkage Section is used only in a called program.

The Linkage Section describes data available through the calling program,;
both the calling and called programs can access this data.

To access calling program data items through the Linkage Section, the called
program must have a Procedure Division header USING phrase.

The structure of the Linkage Section is the same as that of the Working-
Storage Section. It consists of a section header followed by record description
entries. The section header consists of the reserved words LINKAGE
SECTION followed by a period (.) separator character.

Report Section

24.

25.
26.

27.

28.

29.

The Report Section defines report files. It begins with the Report Section
header: the reserved words REPORT SECTION, followed by a period (.)
separator character.

Report description entries follow the Report Section header.

The report description entry consists of a level indicator (RD), a report name,
and a series of independent clauses.

An RD clause specifies the following:

¢ Identifying characters to be prefixed to each print line in a report
¢ The physical structure and organization of a report

e The name of the report

An RD entry, followed by one or more report group description entries, defines
a report. Report group description entries must immediately follow the
associated report description entry.

A report group description entry defines a report group. It specifies the
characteristics of a report group and the individual items within a report

group.

Screen Section (Alpha, 164)

30.

5-18 Data Division

The Screen Section describes a video form and specifies the attributes,
behavior, size, and location of each screen item within the video form. The
Screen Section is for use with ACCEPT and DISPLAY statements.

I-O-CONTROL Paragraph

Additional References

e VALUE IS clause

e CALL statement in Chapter 6

e User-defined words in Section 1.2.1, COBOL Words

e REPORT clause

e Refer to the chapter describing alignment in the HP COBOL User Manual.

Data Division 5-19

FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

FD (File Description)—Sequential, Line Sequential(Alpha, 164),
Relative, Indexed, and Report File
Descriptions

Function

A file description entry describes the physical structure, identification, record
names, and names for sequential, line sequential (Alpha, 164), relative, indexed,
and report files. It also specifies the internal or external attributes of a file
connector and the local or global attributes of a file-name.

General Formats
Format 1—Sequential or Line Sequential (Alpha, 164) Files

FD file-name

[1S EXTERNAL |
[1S GLOBAL |

| BLOCK CONTAINS | smalest-block TO | biocksize { ~=Cor0> -} l

CHARACTERS

CONTAINS | shortest-rec TO] longest-rec CHARACTERS
IS VARYING IN SIZE

RECORD [FROM shortest-rec] [TO longest-rec | CHARACTERS

| DEPENDING ON depending-item |

RECORDS ARE STANDARD
_LABEL{ms }{m }]

VALUE OF ID IS { quoted-literal-string } l

data-name

RECORD IS

DATA { RECORDS ARE } { rec-name } ...]

[LINAGE IS page-size LINES
[WITH FOOTING AT footing-line |

[LINES AT TOP top-lines |
[LINES AT BOTTOM bottom-lines]

CODE-SET IS alpha-name]

*

* | ACCESS MODE IS | SEQUENTIAL

5-20 Data Division

FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

* [FILE STATUS IS file-stat |.

Data Division 5-21

FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

Format 2—Relative Files

FD file-name

[1S EXTERNAL |
[IS GLOBAL |

* | BLOCK CONTAINS | smallesttlock TO | bocksize { FECORDS | l

CONTAINS [shortest-rec TO | longest-rec CHARACTERS
IS VARYING IN SIZE

[FROM shortest-rec | [TO longest-rec | CHARACTERS
[DEPENDING ON depending-item |

RECORD

LABEL {

RECORDS ARE STANDARD
RECORD IS OMITTED

s o 1 A1)

RECORD IS

DATA { RECORDS ARE } {rec-name} ...]

SEQUENTIAL [RELATIVE KEY IS rel-key |

" | [ACCESSMODEIS |3 ¢ ranDOM
{ DYNAMIC }M KEY IS rel-key

* [FILE STATUS IS file-stat],

Format 3—Indexed Files

FD file-name

[1S EXTERNAL |
[1S GLOBAL |

* | BLOCK CONTAINS | smallesttlock TO | bocksize { FECORDS) l

5-22 Data Division

FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

CONTAINS [shortest-rec TO | longest-rec CHARACTERS
IS VARYING IN SIZE

[FROM shortest-rec | [TO longest-rec | CHARACTERS

RECORD

[DEPENDING ON depending-item |

RECORDS ARE STANDARD
_LABEL{WS }{m }]

e e 1 A1)

RECORD IS

DATA{ RECORDS ARE } { rec-name } ...]

SEQUENTIAL
* | [ACCESS MODEIS | { RANDOM }
DYNAMIC
. rec-key ASCENDING
RECORD KEY IS { seg-key = {seg) . .. } [WITH DUPLICATES [DESCENDING]]
. alt-key ASCENDING
ALTERNATE RECORD KEY IS { seg-key = {seq) .. . } [WITH DUPLICATES] [DESCENDING]] e
* | FILE STATUS IS file-stat |.
Format 4—Report Files
FD file-name
[IS EXTERNAL |
[1S GLOBAL |
* | BLOCK CONTAINS [smallesttlock TO | bocksize { RECOMDS | l

CONTAINS [shortest-rec TO | longest-rec CHARACTERS
IS VARYING IN SIZE

RECORD

[FROM shortest-rec | [TO longest-rec | CHARACTERS

[DEPENDING ON depending-item |

Data Division 5-23

FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

LABEL {

RECORD IS OMITTED

RECORDS ARE }{STANDARD }]

data-name

VALUE OF ID IS { quoted-literal-string } l

* [[ACCESS MODE IS |SEQUENTIAL]

REPORT IS
REPORTS ARE { report-name } ...

* | CODE-SET IS alpha-name |
* [FILE STATUS IS file-stat | .

Clauses marked with an asterisk () can be in either the SELECT clause of the
Environment Division or the file description entry of the Data Division. They
cannot be in both places for the same file.

Syntax Rules
Formats 1, 2, 3, and 4—All Files

1.

The level indicator FD identifies the start of a file description entry. It must
precede file-name.

The clauses following file-name can appear in any order.
A period (.) separator character must terminate a file description entry.

On OpenVMS, the file name written to disk (see the ASSIGN clause in
Chapter 4) has the file type .DAT added if no other file type is specified in the
corresponding file specification. ¢

Format 1—Sequential or Line Sequential (Alpha, 164) Files

5.
6.

file-name can refer only to a sequential file.

One or more record description entries must follow the file description entry.

Format 2—Relative Files

7.
8.

9.

file-name can refer only to a relative file.

If a START statement refers to file-name, the file description must include the
RELATIVE KEY phrase within the ACCESS MODE clause.

One or more record description entries must follow the file description entry.

Format 3—Indexed Files

10.
11.

12.

13.

5-24 Data Division

file-name can refer only to an indexed file.

On Tru64 UNIX, for information on file-names for indexed files, see the
ASSIGN clause in Chapter 4.+

alt-key cannot have the same leftmost character position as that of rec-key or
any other alt-key for the same file.

One or more record description entries must follow the file description entry.

FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

Format 4—Report Files
14. file-name can refer only to a report file.

15. No record description entries may follow the file description entry for a report
file.

16. Only the CLOSE statement and the OPEN statement with the OUTPUT or
EXTEND phrase may reference this file description entry.

General Rules
Formats 1, 2, 3, and 4—All Files
1. A file description entry associates file-name with a file connector.

2. On OpenVMS, if the file description entry contains the EXTERNAL clause,
the RMS special registers RMS-STS, RMS-STV, and RMS-FILENAME are
external registers.

3. If the file description entry contains the GLOBAL clause, the RMS special
registers RMS-STS, RMS-STV, and RMS-FILENAME are global registers. ¢

Format 1—Sequential and Line Sequential (Alpha, 164) Files

4. If the file description entry contains the LINAGE clause and the EXTERNAL
clause, the LINAGE-COUNTER special register is an external data item.

5. If the file description entry contains the LINAGE clause and the GLOBAL
clause, the special register LINAGE-COUNTER is a global name.

Format 3—Indexed Files

6. If the file description entry contains the EXTERNAL clause, the segmented
key seg-key has the external attribute.

7. 1If the file description entry contains the GLOBAL clause, the segmented key
seg-key is a global name.

Refer to the HP COBOL User Manual for examples of the file description entry
formats.

Data Division 5-25

SD: Sort-Merge File Description Entry

SD (Sort-Merge File Description)

Function
A sort-merge file description entry describes a sort or merge file’s physical
structure, identification, and record names.

General Format

SD file-name

CONTAINS [shortest-rec TO | longest-rec CHARACTERS
IS VARYING IN SIZE

[FROM shortest-rec | [TO longest-rec | CHARACTERS

RECORD

[DEPENDING ON depending-item |

RECORDS ARE
[DATA { RECORD 1S } { rec-name } ...] :

Syntax Rules

1. The level indicator SD identifies the start of a sort-merge file description. It
must precede file-name.

2. The clauses following file-name can appear in any order.

A period (.) separator character must terminate a sort-merge file description
entry.

4. One or more record description entries must follow the sort-merge file
description entry.

General Rule

No input-output statements can refer to a file-name in a sort-merge file

description.

Examples

Refer to the HP COBOL User Manual for examples of the sort-merge file
description entry.

5-26 Data Division

RD: Report File Description Entry

RD (Report Description)

Function

The Report Description names a report, specifies any identifying characters to be
prefixed to each print line in the report, and describes the physical structure and
organization of that report. It also determines whether a report-name is a local
name or global name.

General Format

RD report-name

[1S GLOBAL]

| CODE report-code |
CONTROL IS { control-name } . ..
CONTROLS ARE FINAL [control-name] . ..

LIMIT IS [LINE
PAGE [LIMITS ARE] page-size [Ws]

[HEADING heading-line |
[FIRST DETAIL first-detail-line |
[LAST DETAIL last-detail-line]

[FOOTING footing-line |

Syntax Rules

1.
2.

report-name must appear in one and only one REPORT clause.

The clauses following report-name may appear in any order. report-name is
the highest permissible qualifier that can be specified for LINE-COUNTER,
PAGE-COUNTER, and all data-names in the Report Section.

General Rules

1.

If the Report Description entry contains the GLOBAL clause, report-name
and the special registers LINE-COUNTER and PAGE-COUNTER are global

names.

The reserved word PAGE-COUNTER references a special register that the
compiler creates for each report in the Report Section.

In the Report Section, a reference to PAGE-COUNTER can appear only in a
SOURCE clause. In the Procedure Division, PAGE-COUNTER can be used
anywhere an integer data item can appear.

If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER
must be qualified by a report-name wherever it is referenced in the Procedure
Division.

In the Report Section, an unqualified reference to PAGE-COUNTER is
qualified implicitly by the name of the report containing the reference.
Whenever the PAGE-COUNTER of a different report is referenced, PAGE-
COUNTER must be explicitly qualified by the other report’s report-name.

Data Division 5-27

RD: Report File Description Entry

10.

11.

12.

13.

The INITIATE statement causes the Report Writer Control System to set the
PAGE-COUNTER of the referenced report to one.

PAGE-COUNTER is automatically incremented by one each time the Report
Writer Control System executes a page advance.

Procedure Division statements may alter the contents of PAGE-COUNTER.

The reserved word LINE-COUNTER references a special register that the
compiler creates for each report in the Report Section.

In the Report Section, a reference to LINE-COUNTER can appear only in a
SOURCE clause. In the Procedure Division, LINE-COUNTER can be used
anywhere a data item with an integer value can appear. However, only the
Report Writer Control System can change the contents of LINE-COUNTER.

If there is more than one LINE-COUNTER in a program, Procedure Division
references to LINE-COUNTER must be qualified by a report-name.

In the Report Section, an unqualified reference to LINE-COUNTER is
qualified implicitly by the name of the report containing the reference.
Whenever the LINE-COUNTER of a different report is referenced, LINE-
COUNTER must be explicitly qualified by the other report’s report-name.

The INITIATE statement causes the Report Writer Control System to set
the LINE-COUNTER of the referenced report to zero. The Report Writer
Control System also automatically resets LINE-COUNTER to zero each time
it executes a page advance.

The execution of SUPPRESS statements and the processing of nonprintable
report groups do not change the value of LINE-COUNTER.

At the time each print line is presented, the value of LINE-COUNTER
represents the line number on which the print line is presented. After the
presentation of the report group, the value of LINE-COUNTER is governed
by the Report Writer Presentation Rules and Tables.

Additional References

LINE NUMBER (Alpha, 164) clause

REPORT clause

FD (File Description)

Appendix D, Report Writer Presentation Rules and Tables

Example
The following is an example of a global Report Description entry:

FILE SECTION.

FD

WEEKLY-REPORTS . . .
REPORTS ARE PAYROLL-REPORT
PAYROLL-IRS.

REPORT SECTION.

5-28 Data Division

RD: Report File Description Entry

RD PAYROLL-REPORT

IS GLOBAL

CODE "AA"

CONTROL GRAND-TOT
SITE-TOT
DEPT-TOT
GROUP-TOT

PAGE LIMITS ARE 60 LINES
HEADING 2
FIRST DETAIL 9
LAST DETAIL 55
FOOTING 58.

RD PAYROLL-IRS
CODE "BB" . . .

The previous example uses the CODE clause to flag PAYROLL-REPORT records
from other records (see PAYROLL-IRS) included in the same file (WEEKLY-
REPORTS). The entry defines four control totals. GRAND-TOT is the most
major control total; it will be printed only at the end of the report. SITE-TOT,
DEPT-TOT, and GROUP-TOT are major, intermediate, and minor control totals,
respectively. These totals are printed whenever the Report Writer Control System
(RWCS) processes a control break. The entry also defines a report page with 60
lines. On each page the RWCS is to print PAYROLL-REPORT headings beginning
on line 2, detail lines from lines 9 to 55, and footings beginning on line 58.

Data Division 5-29

Data Description Entry

Data Description

Function
A data description entry specifies the characteristics of a data item.

General Formats
Format 1

data-name
level-number [FILLER]
[REDEFINES other-data-item |
[1S EXTERNAL |
| 1S GLOBAL |
PICTURE
{ i E }IS character-string]
[BINARY -
BINARY.CHAR (A, 164 { nsicnep |
BINARY-SHORT (Alpha, 164) { ONSIGNED }
IGNED
BINARY-LONG (Alpha, 164) { LSJI\?SIGNED }
BINARY-DOUBLE (Alpha, 164) { Sﬁsl\:ngD }
COMPUTATIONAL
COMP
COMPUTATIONAL-1
[USAGE I5] { COMP-1
— COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3

COMPUTATIONAL-5 (Alpha, 164)
COMP-5 (Alpha, 164)
COMPUTATIONAL-X (Alpha, 164)
COMP-X (Alpha, 164)

DISPLAY

FLOAT-SHORT (Alpha, 164)
FLOAT-LONG (Alpha, 164)
FLOAT-EXTENDED (Alpha, 164)
INDEX

PACKED-DECIMAL

POINTER

POINTER-64 (Alpha, 164)

5-30 Data Division

[SIGN IS]{ LEADING

- OCCURS table-size TIMES

[ASCENDING
DESCENDING

INDEXED BY { ind-name } ...]
occu

ASCENDING
DESCENDING

INDEXED BY { ind-name } ...]

{ SYNCHRONIZED

LEFT
SYNC RIGHT

JUSTIFIED
{ ST } RIGHT]

[BLANK WHEN ZERO]
[it
VALUE IS { EXTERNAL external-name }
- REFERENCE data-name
Format 2

TRAILING }[w CHARACTER]]

}KEYIS{key-name}...]

RS min-times TO max-times TIMES DEPENDING ON depending-item

}KEYIS{key-name}...]

THRU
66 new-name RENAMES rename-start [{ THROUGH }rename-end] .
Format 3

88 condition-name

VALUE IS
VALUES ARE

Data Division

Data Description Entry

5-31

Data Description Entry

REFERENCE data-name

{ EXTERNAL external-name }
low-val

EXTERNAL external-name

THRU —A =
{W)UGH } { BEFERENCE data-name }
S high-val

Syntax Rules

1.
2.

level-number in Format 1 can be any number from 01 to 49, or 77.
Data description clauses can appear in any order, with two exceptions:

¢ The optional data-name or FILLER clause must immediately follow
level-number.

¢ The optional REDEFINES clause must immediately follow the optional
data-name or FILLER clause.

The EXTERNAL clause can appear in a level 01 or 77 data description entry
in the Working-Storage Section.

The GLOBAL clause can appear in a level 01 or 77 data description entry in
the Working-Storage Section, or in a level 01 data description entry in the
File Section.

The EXTERNAL and REDEFINES clauses cannot be in the same data
description entry.

data-name must appear in any Format 1 entry that contains the EXTERNAL
clause or GLOBAL clause, or in the record descriptions of a file description
entry that contains the EXTERNAL or GLOBAL clause.

There must be a PICTURE clause for all elementary items except the
following:

* An index data item

e A COMP-1 or COMP-2 data item

¢ The subject of a RENAMES clause

e A POINTER data item

In these cases, there must be no PICTURE clause.
The words THRU and THROUGH are equivalent.

The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO
clauses can appear only in Data Description entries for elementary items.

General Rules

1.

5-32 Data Division

Each condition-name requires a separate Format 3 entry. The level 88 entry
associates one or more values, or ranges of values, with condition-name.

All condition-name entries for an associated data item (the conditional
variable) must immediately follow that item’s data description entry.

Any condition-name associated with a global conditional variable is global.

A condition-name can be associated with a data item at any level except:

e Another condition-name

Data Description Entry

e A level 66 item

e A group that contains items with JUSTIFIED, SYNCHRONIZED, or
USAGE (other than USAGE IS DISPLAY) clauses

e An index data item

2. Multiple level 01 data description entries subordinate to an FD or SD entry
implicitly redefine the same area.

Data Division 5-33

Report Group Description Entry

Report Group Description

Function
The report group description entry specifies the characteristics of a report group
and of the individual items within a report group.

General Formats
Format 1

01 [group-data-name |

LINE NUMBER 1S { jine-num [ON NEXT PAGE | }

PLUS line-num-plus

next-group-line-num
NEXT GROUP IS { PLUS next-group-line-num-plus }
NEXT PAGE

REPORT HEADING }
RH

PAGE HEADING }

-

|OO
o

NTROL HEADING control-head-name
FINAL

ONTROL FOOTING } { control-foot-name }

TYPEIS

|UU
m|m

FINAL

|OO

o
{
{
Lo
{o
e

AGE FOOTING }
P

REPORT FOOTING
RF

[[USAGE IS | DISPLAY] .

Format 2

level-number | group-data-name |

line-num [ON NEXT PAGE] }]

[LINE NUMBER IS { PLUS line-num-plus

[[USAGE IS] DISPLAY] .

5-34 Data Division

Report Group Description Entry

Format 3

level number | group-data-name |

[BLANK WHEN ZERO |

[COLUMN NUMBER IS column-num
[GROUP INDICATE |

{ JUSTIFIED } RIGHT]

JUST

LINE NUMBER 1S { fine-num [ON NEXT PAGE | }

PLUS line-num-plus

{ E:gTURE } IS character-string
[SIGNIS | { #Eﬁll:l)_lll;l\l% } SEPARATE CHARACTER]

SOURCE IS source-name
VALUE IS lit

{ SUM { sum-name } ... [UPON { detail-report-group-name } ...] }

control-foot-name
[RESET on { 000 }]

[[USAGE IS | DISPLAY] .

Syntax Rules

All Formats

1. The report group description entry can appear only in the Report Section.

2. Except for the group-data-name clause, which when present must
immediately follow level-number, the clauses may be in any sequence.

3. The description of a report group may consist of one, two, or three hierarchical

levels:

The first entry that describes a report group must be a Format 1 entry.

Both Format 2 and Format 3 entries may be immediately subordinate to

a Format 1 entry.

c. At least one Format 3 entry must be immediately subordinate to a Format

2 entry.

d. Format 3 entries must define elementary data items.

Data Division 5-35

Report Group Description Entry

4. In the Report Section, the USAGE clause is used only to declare the usage of
printable items.
a. If the USAGE clause appears in a Format 1 or Format 2 entry, at least
one subordinate entry must define a printable item.
b. In Format 3, the USAGE clause must define a printable item.
5. An entry containing a LINE NUMBER clause must not have a subordinate
entry that also contains a LINE NUMBER clause.
Format 1
6. group-data-name is required only when:
a. A GENERATE statement references a DETAIL report group.
b. An UPON phrase of a SUM clause references a DETAIL report group.
c. A USE BEFORE REPORTING sentence references a DETAIL report
group.
d. The name of a CONTROL FOOTING report group qualifies a reference to
a sum counter.
If specified, group-data-name can be used as a sum counter qualifier and can
be referenced only by:
e GENERATE statements
e UPON phrases of the SUM clause
e USE BEFORE REPORTING declaratives
Format 2
7. level-number can be any integer from 02 to 48 inclusive.
8. A Format 2 entry must contain at least one optional clause.
9. In a Format 2 entry, group-data-name is optional. It can only qualify a sum
counter reference.
Format 3
10. [level-number can be any integer from 02 to 49 inclusive.
11. A GROUP INDICATE clause can appear only in a DETAIL report group.
12. A SUM clause can appear only in a CONTROL FOOTING report group.
13. An entry containing a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry containing a LINE NUMBER clause.
14. group-data-name is optional but can be specified in any entry. group-data-
name can be referenced only if the entry defines a sum counter.
15. A LINE NUMBER clause must not be the only clause specified. Refer to
Syntax Rule 3d.
16. An entry containing a VALUE clause must also have a COLUMN NUMBER
clause.
17. A printable item is a data item whose size and content are specified by an
elementary report entry.
18. An elementary report entry contains a COLUMN NUMBER clause, a

5-36 Data Division

PICTURE clause, and a SOURCE, SUM, or VALUE clause.

Report Group Description Entry

19. Figure 5-7 shows all permissible clause combinations for Format 3. You read
the table from left to right along the selected row.

Figure 5-7 Format 3 Clause Combinations

BLANK | GROUP
PIC | COLUMN | SOURCE |SUM | VALUE | JUST | WHEN | INDICATE | USAGE | SIGN | LINE
ZERO
M - M - P P
M M M - P P P P
M P M P - P P P P
M P M - P P P P P
M M M P P P P P
Legend:
M Mandatory

P Permitted but not required

- Not permitted
VM-0592A-Al

General Rules

1. Format 1 is the Report Group entry. The report group is defined by the
contents of this entry and all of its subordinate entries.

2. The BLANK WHEN ZERO clause, the JUSTIFIED clause, and the PICTURE
clause for Report Writer are the same as those in the Data Description
Section.

Examples

The HP COBOL User Manual contains examples of each report group description
entry format.

Data Division 5-37

Screen Description Entry

Screen Description (Alpha, 164)

Function

A screen description entry describes a video form or a portion of a video form and
specifies the attributes, behavior, size, and location of screen items within the
video form. The screen description entry is referenced in the Procedure Division
by the ACCEPT and DISPLAY statements.

General Formats

Format 1 (Group Screen ltem)

screen-name
level-number []

FILLER

[BLANK SCREEN]

| FOREGROUND-COLOR IS color-num-1 |
| BACKGROUND-COLOR IS color-num-2 |
[AUTO |

[SECURE |
[REQUIRED |

[[USAGE IS | DISPLAY]

[[SIGNIS | { LA } | SEPARATE CHARACTER |

[FULL |,

Format 2 (Elementary Screen ltem)

FILLER

LINE
[W{ SCREEN }]

[BELL |

screen-name
level-number []

| BLINK |

EOL
[ERASE { @ }]
HIGHLIGHT
LOWLIGHT

[REVERSE-VIDEO |
[UNDERLINE |

5-38 Data Division

Screen Description Entry

e s (2225 |

[MNUMBER |S[M]{ :ﬁ?e”gtﬁ'f;z } l

| FOREGROUND-COLOR IS color-num-1 |

[BACKGROUND-COLOR IS color-num-2]

VALUE IS literal-1 .

Format 3 (Elementary Screen Item)

screen-name
FILLER]

LINE
[W{ SCREEN }]

| BELL |

level-number [

| BLINK |

EOL
[ERASE { @ } }
HIGHLIGHT
LOWLIGHT

[REVERSE-VIDEO |
[UNDERLINE |

l%NUMBER |S[LUS]{ :ﬂf;;ﬁ'f? } l

lMNUMBER IS [PLUS]{ identifier-2 } l

integer-2

[FOREGROUND-COLOR IS color-num-1]
[BACKGROUND-COLOR IS color-num-2]

PICTURE
{ Plg v } IS picture-string-1

USING identifier-3

FROM {

identifier-4 }
literal-1

TO identifier-5

Data Division 5-39

Screen Description Entry

| USAGE IS]DISPLAY]

| BLANK WHEN ZERO |
JUSTIFIED

{ ST }RIGHT]

[SIGN IS]{#Eﬂml% }[SEPARATE CHARACTER |
[AUTO |
[SECURE |
| REQUIRED |
[FULL).

Syntax Rules

All Formats

1. level-number can be any number from 01 to 49.

2. Each elementary screen description entry must contain at least one of the
following clauses:

BELL
BLANK
COLUMN
LINE
PICTURE
VALUE

3. If the FOREGROUND-COLOR, BACKGROUND-COLOR, or SIGN clauses
are specified in both the group screen description entry and the subordinate
description entry for a screen item, then the subordinate screen description
entry’s clauses will take effect.

4. screen-name assigns a name to the screen item described in the screen
description entry and must conform to the rules for user-defined names. If
either the optional screen-name or the key word FILLER is specified, it must
be the first word following the level number in each screen description entry.

5. If both screen-name and FILLER are omitted, the screen item being described
is treated as though FILLER had been specified, and cannot be referenced in
an ACCEPT or DISPLAY statement.

6. Each level 01 item must have a screen name.

7. A screen item can be referenced only in an ACCEPT or DISPLAY statement.

8. color-num-1 and color-num-2 are integers in the range 0-7. color-num-1 and

5-40 Data Division

color-num-2 represent specific colors as described in Table 5-5:

Screen Description Entry

Table 5-5 Color Table

Color Color Value Color Color Value
Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7
9. The USING phrase is equivalent to the combination of FROM and TO
phrases, each specifying the same identifier.
10. identifier-3, identifier-4 and identifier-5 must be defined in the File, Working-
Storage, or Linkage Section.
11. identifier-1 and identifier-2 must be described as elementary unsigned
numeric integer data items.
12. literal-1 must be a nonnumeric literal.
13. For a description of picture-string-1, see the PICTURE Clause section of this

chapter.

General Rules
All Formats

1.

2
3
4.
5

An input screen item is one whose description contains a TO clause.

An output screen item is one whose description contains a FROM clause.
A literal screen item is one whose description contains a VALUE clause.
An update screen item is one whose description contains a USING clause.

An input-output screen item is one whose description contains both a FROM
phrase and a TO phrase that may or may not reference the same identifier.
The rules for update screen items also apply to input-output screen items.

The LINE and COLUMN clauses should not be specified within a screen
description entry in such a way that fields overlap on the screen or fall
beyond the screen boundaries.

Format 1

10.

11.

Format 1 is used for group screen items.

All clauses within a group screen description entry are inherited by
subordinate screen description entries with the exception of the BLANK
SCREEN clause.

If the SECURE clause is specified, it applies to each subordinate input screen
item.

If the AUTO, FULL, or REQUIRED clauses are specified, they apply to each
subordinate input and update screen item.

If the BACKGROUND-COLOR, FOREGROUND-COLOR, or SIGN clauses
are specified, they apply to each subordinate input, output, and update screen
item.

Data Division 5-41

Screen Description Entry

Format 2
12. Format 2 is used to describe a literal screen item.
Format 3

13. Format 3 is used to describe input, output, or update screen items. ¢

5-42 Data Division

ACCESS MODE Clause

ACCESS MODE

Function
The ACCESS MODE clause specifies the order of access for a file’s records.

General Format

Format 1—Sequential File

| ACCESS MODE IS | SEQUENTIAL

Format 2—Relative File

SEQUENTIAL [RELATIVE KEY IS rebkey |
[ACCESS MODE IS | RANDOM
{ DYNAMIC } RELATIVE KEY IS rel-key

Format 3—Indexed File

SEQUENTIAL
[ACCESS MODE IS | { RANDOM }
DYNAWMIC

rel-key
is the file’'s RELATIVE KEY data item.

Syntax Rules

1. rel-key must be the data-name of an unsigned integer data item whose
description does not contain a PICTURE symbol (P). It can be qualified but
cannot be in a record description entry for the same file-name.

2. The ACCESS MODE clause can be in the file’s SELECT clause. However, it
cannot be in both the SELECT clause and file description entry for the same
file.

3. If the USING or GIVING phrases of a SORT or MERGE statement contain
the name of the file, the ACCESS MODE RANDOM clause cannot be used for
the file.

4. If rel-key is associated with an external file connector, rel-key must reference
the same data item in every program in the run unit.

5. If a START statement references a relative file, the program must specify the
RELATIVE KEY phrase for that file.

General Rules
All Formats

1. If there is no ACCESS MODE clause, the access mode is sequential.

2. For sequential access, the sequence in which the program accesses the records
depends on the organization of the file, as follows:

e Sequential files—The sequence is the same as that established by the
execution of WRITE statements that created or extended the file.

Data Division 5-43

ACCESS MODE Clause

e Relative files—The sequence is the order of ascending relative record
numbers of the file’s existing records.

e Indexed files—The sequence is the sort order (ascending or descending) of
record key values in the established Key of Reference.

Formats 2 and 3

3. For random access, the value of rel-key (for relative files) or a Record Key
data item (for indexed files) indicates the record to be accessed.

4. For dynamic access, the program can access records sequentially and
randomly.

Format 2

5. Relative record numbers uniquely identify records in relative files. A record’s
relative record number identifies its ordinal position in the file. The first
record in the file has a relative record number of 1. Subsequent records have
consecutively higher relative record numbers.

6. The Relative Key data item associated with the execution of an

5-44 Data Division

Input/Output statement is rel-key in the file description entry (or SELECT
clause) associated with the statement.

ALTERNATE RECORD KEY Clause

ALTERNATE RECORD KEY

Function

The ALTERNATE RECORD KEY clause specifies an alternate access path to
indexed file records.

General Format

alt-key

ALTERNATE RECORD KEY 1S { seq-key = (seq]

} [WITH DUPLICATES |

ASCENDING
DESCENDING

alt-key

is the Record Key for the file. It is the data-name of a data item in a record
description entry for the file. It can be qualified, but it cannot be a group item
that contains a variable-occurrence data item. The data item must be described
as one of the following:

e Alphanumeric item

e Alphabetic item

e Group item

e Unsigned numeric display item
e (COMP-3 integer

e COMP integer

seg-key

is a segmented-key name that represents the concatenation of one or more (up to
eight) occurrences of seg.

seg

is the data-name of a data item in a record description entry for the file. It can be
qualified, but it cannot be a group item that contains a variable-occurrence data
item. The data item must be described as one of the following:

e Alphanumeric item

¢ Alphabetic item

e Group item

¢ Unsigned numeric display item
Syntax Rules

1. The ALTERNATE RECORD KEY clause can be in the file’s SELECT clause.
However, for the same file, it cannot be in both the SELECT clause and file
description entry.

2. alt-key or the segments of seg-key cannot have the same leftmost character
position as that of the Prime Record Key data item or any other alt-key or
segment of seg-key for the same file.

Data Division 5-45

ALTERNATE RECORD KEY Clause

General Rules

1.

5-46 Data Division

seg-key is the concatenation of all specified key segments in the order
specified.

seg-key can be referenced only in a READ (Format 3) or START statement.

When a program creates an indexed file with one or more ALTERNATE
RECORD KEY clauses, each subsequent program referencing this indexed file
must:

e Use the same data description for alt-key or the segments of seg-key.

e Define the same relative location in the record as alt-key or the segments
of seg-key.

e Specify the same number (or less) of ALTERNATE RECORD KEY clauses.

On Tru64 UNIX systems, you can specify a different number of keys than
was specified when the file was created, if the relaxed key check option
(-relax_key checking) is used. ¢

e Maintain the same order of ALTERNATE RECORD KEY clauses.

e Specify the same order of keys (ASCENDING or DESCENDING) in each
ALTERNATE RECORD KEY clause as the order used when the file was
created.

The DUPLICATES phrase specifies that two or more records in the file can
have duplicate values in the same alt-key or the segments of seg-key. If
there is no DUPLICATES phrase, two records cannot have the same value in
corresponding Alternate Record Keys.

On OpenVMS, if the program was compiled with the /CHECK=DUPLICATE_
KEYS qualifier on the command line, and the duplicate key specification on a
file’s FD (in other words, specified in the WITH DUPLICATES phrase) does
not match that of the actual file, a run-time diagnostic will be issued when an
attempt is made to open the file with an OPEN statement.

The /CHECK=DUPLICATE_KEYS qualifier is not supported for remotely
accessed files. Duplicate keys, key length, and number of keys are not
checked for remote files, that is, files accessed over the network. ¢

On Tru64 UNIX systems, DUPLICATES must match the specification for
DUPLICATES when the file was created, unless the relaxed key check option
is used. ¢

If a file has more than one record description entry, only one of these record
description entries must describe alt-key or the segments of seg-key. The
character positions referenced by alt-key or the segments of seg-key in that
record description are implicitly referenced in all other record description
entries for the file.

A file can have up to 254 Alternate Record Keys.

If the associated file connector is an external file connector, all File
Description entries in the run unit that are associated with the file connector
must define the same data description entry for alt-key or the segments of
seg-key, with the same relative location within the record.

ALTERNATE RECORD KEY Clause

8. Each key can be specified as ASCENDING or DESCENDING (ASCENDING
is the default). In an ASCENDING key, lower key values occur toward the
beginning of the sorted file. In a DESCENDING key, higher key values occur
toward the beginning of the sorted file.

Additional Reference

e RECORD KEY clause

e SORT statement in Chapter 6

e MERGE statement in Chapter 6

Data Division 5-47

AUTO Clause

AUTO

Function

In the context of ACCEPT, the AUTO clause moves the cursor to the next field
when the last character of an input or update field that was defined with the
AUTO clause is entered.

General Format

AUTO

Syntax Rule
The AUTO clause cannot be specified in the description of a literal screen item.

General Rules

1. If the AUTO clause is specified at group level, it applies to each input and
update screen item in that group.

2. The AUTO clause is significant in the context of an ACCEPT.
The AUTO clause is ignored in the description of an output screen item.

4. If there is only one field to input, or if the field is the last one of the screen,
the ACCEPT statement is completed when the last character of the field is
entered.

Additional Reference
ACCEPT statement in Chapter 6

5-48 Data Division

BACKGROUND-COLOR Clause

BACKGROUND-COLOR (Alpha, 164)

Function

The BACKGROUND-COLOR clause specifies the background color for the screen
item.

General Format

BACKGROUND-COLOR IS color-num

color-num
is an integer in the range 0-7 specifying a color as follows:

Color Color Value Color Color Value
Black 0 Red 4

Blue 1 Magenta 5

Green 2 Yellow/Brown 6

Cyan 3 White 7

Syntax Rule

The BACKGROUND-COLOR clause can be specified in any screen description
entry.

General Rules
1. The BACKGROUND-COLOR clause is effective only with color screens.

2. If the BACKGROUND-COLOR clause is omitted, the initial default
background color is black.

3. If the clause is specified at group level, it applies to all subordinate screen
items.

4. If the BLANK SCREEN clause is specified and the BACKGROUND-COLOR
clause is specified or inherited, then when a DISPLAY statement displays
the screen item, the specified color becomes the default background color.

It remains the default background color until another screen item with this
combination of options is displayed (whether in the same DISPLAY statement
or in another).

Technical Note

The colors in the list above are supported only on terminals and workstations

that support the ANSI Standard color sequences. !

Additional References

e ACCEPT statement in Chapter 6

e DISPLAY statement in Chapter 6 ¢

L This does not include the VT100, VT200, VT300, and VT400 series terminals. On
workstations that emulate these terminal types, this restriction may not apply.

Data Division 5-49

BELL Clause

BELL

Function
The BELL clause sounds the workstation or terminal audio tone.

General Format
BELL
Syntax Rule
The BELL clause can be specified only for elementary screen description entries.

General Rule
The audio tone sounds when a DISPLAY statement displays a screen item whose
description contains a BELL clause.

Additional Reference
DISPLAY statement in Chapter 6

5-50 Data Division

BLANK Clause

BLANK

Function
The BLANK clause clears a screen line or clears the whole screen before
displaying the screen item.

General Format

LINE
BLANK { SCREEN }

Syntax Rules
1. The BLANK SCREEN clause can be specified for any screen description entry.

2. The BLANK LINE clause can be specified only for elementary screen
description entries.

General Rules

1. The BLANK SCREEN clause executes before a screen item displays, no
matter where it appears in the screen item’s description. When the BLANK
SCREEN clause is specified, the screen is cleared and the cursor is placed at
line 1, column 1.

2. When BLANK LINE is specified in an elementary screen item’s description,
blanking begins at column 1 of the specified line and continues through to the
end of the line.

3. If neither the BLANK clause nor the ERASE clause (Alpha, 164) is specified,
only the particular character positions corresponding to the screen item are
modified when the item is displayed. The remainder of the screen content is
not changed.

4. The BLANK SCREEN clause returns the screen to the initial defaults
for background and foreground color if the BACKGROUND-COLOR and
FOREGROUND-COLOR clauses are not specified, respectively.

5. The BLANK clause is ignored in an ACCEPT statement.

Additional Reference
DISPLAY statement in Chapter 6

Data Division 5-51

BLANK WHEN ZERO Clause

BLANK WHEN ZERO

Function

The BLANK WHEN ZERO clause replaces zeros with spaces when a data item’s
value is zero. In the context of the Screen Section, it displays spaces when the
value of a screen item to be displayed on the screen is zero.

General Format

ZERO
BLANK WHEN { ZEROES }
ZEROS

Syntax Rules

1. The BLANK WHEN ZERO clause can be used only for a numeric or numeric
edited elementary item.

2. A data item or screen item containing the BLANK WHEN ZERO clause must
be implicitly or explicitly described with DISPLAY usage.

3. The syntax for a data item allows the spelling ZERO or ZEROES or ZEROS.
The syntax for a screen item allows the spelling ZERO only.

General Rules

1. The BLANK WHEN ZERO clause causes a data item or screen item to contain
spaces when its value is zero.

2. When the data item or screen item has a numeric PICTURE string, the
BLANK WHEN ZERO clause makes the item’s category numeric edited.

3. The BLANK WHEN ZERO clause is ignored in the description of an input
screen item.

Additional Reference
DISPLAY statement in Chapter 6

5-52 Data Division

BLINK Clause

BLINK (Alpha, 164)

Function

The BLINK clause displays characters on the screen with the blink on character
attribute.

General Format

BLINK

Syntax Rule

The BLINK clause can be specified only in an elementary screen description
entry.

General Rule
Blinking is only detectable when any of the following conditions are true:

e Nonspace characters are displayed.

¢ The underline and/or reverse-video attributes are specified.
¢ The terminal screen is set to light background.

Additional References

e DISPLAY statement in Chapter 6

e ACCEPT statement in Chapter 6 ¢

Data Division 5-53

CODE Clause

CODE

Function
The CODE clause specifies a two-character literal that identifies each print line
as belonging to a specific report.

General Format
CODE report-code

report-code
must be a two-character nonnumeric literal.

Syntax Rule

If the CODE clause is specified for any report in a file, it must be specified for all
reports in that file.

General Rules

1. When the CODE clause is specified, report-code is automatically placed in the
first two character positions of each Report Writer logical record.

2. The positions occupied by report-code are not included in the description of
the print line, but are included in the logical record size.

Additional Reference
RD (Report Description)

Example
The following file contains three reports:

FILE SECTION.
FD REPORT-FILE
LABEL RECORDS ARE STANDARD
REPORTS ARE REPORT1
REPORT?2
REPORT3.
REPORT SECTION.
RD REPORT1
CODE "AA".

RD REPORT2 . ..
CODE "BB".

RD REPORT3 . ..
CODE "CC".

5-54 Data Division

COLUMN NUMBER Clause

COLUMN NUMBER

Function

In a report group description, the COLUMN NUMBER clause identifies a
printable item and specifies the position of the item on a print line. In a screen
description, the COLUMN NUMBER clause specifies the horizontal screen
coordinate for a screen item.

General Formats

Format 1 (Report Description)
COLUMN NUMBER IS column-num

Format 2 (Screen Description)

identifier-1 }

COLUMN NUMBER IS [PLUS]{ integer-1

column-num
is a positive integer greater than zero.

identifier-1
is an elementary unsigned numeric integer data item. It cannot be subscripted.

integer-1
is an unsigned integer value.
Syntax Rules (Report Description)

1. The COLUMN NUMBER clause can be specified only at the elementary level
within a report group. The COLUMN NUMBER clause, if present, must
appear in a Format 3 Report Group Description entry, or be subordinate to
an entry that contains a LINE NUMBER clause in a Format 2 Report Group
Description entry.

2. A printable item is a data item whose size and content is specified by an
elementary report entry.

3. An elementary report entry contains a COLUMN NUMBER clause, a
PICTURE clause, and a SOURCE, SUM, or VALUE clause.

4. Each printable item within a given print line must be defined in ascending
column number order such that each printable item occupies a unique
sequence of contiguous character positions.

Syntax Rules (Screen Description)

1. The COLUMN clause can be specified only in an elementary screen
description entry.

2. identifier-1 cannot be subscripted.
General Rules (Report Description)

1. The presence of a COLUMN NUMBER clause indicates that these items, if
present, are to be presented on the print line:

e The object of a SOURCE clause
e The object of a VALUE clause

Data Division 5-55

COLUMN NUMBER Clause

e The sum counter in a SUM clause

The absence of a COLUMN NUMBER clause indicates that the entry is not
printable.

Column number 1 is the leftmost position of the print line.

column-num specifies the column number of the leftmost character position of
the printable item.

The Report Writer Control System supplies space characters for all positions
of a print line not occupied by printable items.

General Rules (Screen Description)

1.

The COLUMN clause, in conjunction with the LINE clause, establishes the
starting position for a screen item. This position is an offset from the starting
screen coordinates specified in the ACCEPT or DISPLAY statement. The
COLUMN clause specifies the horizontal coordinate.

The COLUMN clause without the PLUS phrase specifies the absolute column
position of the screen item.

The COLUMN clause with the PLUS phrase specifies a column number
relative to that at which the preceding item ends, regardless of whether or
not the ACCEPT or DISPLAY statement displays the preceding item on the
screen.

A setting of COLUMN 1 is assumed in screen description entries that specify
the LINE clause but omit the COLUMN clause.

If both the LINE clause and the COLUMN clause are omitted, the following

apply:

e If no previous elementary screen item is defined, LINE 1 COLUMN 1 is
assumed.

e If a previous screen item is defined, the ending line of that previous
item and COLUMN PLUS 1 is assumed. The screen item then starts
immediately following the preceding screen item.

Additional References

Report Group Description

LINE NUMBER (Alpha, 164) clause
ACCEPT statement in Chapter 6
DISPLAY statement in Chapter 6

Examples (Report Description)

1.

5-56 Data Division

The following is an example of the COLUMN NUMBER clause in a LINE
NUMBER clause:

02 LINE 10 COLUMN 1 PIC X(11) VALUE "TOTAL ITEMS".

1 2 3 4
column: 1234567890123456789012345678901234567890

TOTAL ITEMS

COLUMN NUMBER Clause

2. The following is an example of the COLUMN NUMBER clause subordinate to
a LINE NUMBER clause:

02 LINE 5 ON NEXT PAGE.

03 COLUMN 1 PIC X(10) VALUE "(Id Number".
03 COLUMN 12 PIC 9999 VALUE 1234.

03 COLUMN 16 PIC X VALUE ")".

03 COLUMN 18 PIC X(11) VALUE "TOTAL SALES".
03 TSAL COLUMN 30 PIC $$$$,$585.99- VALUE 123456.78.

1 2 3 4
column: 123456789012345678901234567890123456789012345

(Id Number 1234) TOTAL SALES $123,456.78

Data Division 5-57

CONTROL Clause

CONTROL

Function
The CONTROL clause establishes the levels of the control hierarchy for the
report.

General Format

CONTROL IS { control-name } ...
{ CONTROLS ARE }

FINAL [control-name | ...

control-name
is any data-name in the Subschema, File, Working-Storage, or Linkage Section.

Syntax Rules

1. control-name can be qualified.

2. Each occurrence of control-name must identify a different data item.

3. control-name must not have a variable-occurrence data item subordinate to it.
4

If the associated report file connector is an external file connector, control-
name must reference the same external data item in all programs in the run
unit.

General Rules

1. The word FINAL specifies the most major control item. From here, the
hierarchy descends to control-name, which is the major control; to the next
recurrence of control-name, which is an intermediate control; and so forth to
the last recurrence of control-name, which is the minor control.

2. A control break is a change in the value of a control-name.

3. FINAL is used when the most inclusive control group in the report is not
associated with a control-name.

4. The first time a GENERATE statement is executed, the Report Writer Control
System (RWCS) saves the values of all control data items associated with
that report. After that, every time a GENERATE statement is executed, the
RWCS tests those control data items to see if their values have changed. If
so, a control break occurs. This control break is associated with the highest
level control item whose value has changed.

5. Control breaks cause the RWCS to present appropriate CONTROL HEADER
and CONTROL FOOTING report groups for printing. Figure 5-8 shows
the report groups the RWCS processes (X) when you define FINAL, major,
intermediate, or minor control-name in a CONTROL HEADING or CONTROL
FOOTING phrase in a Report Group Description entry. For example, if
the value in a major control-name changes, the RWCS processes all major,
intermediate, and minor control groups specified in CONTROL HEADING
and CONTROL FOOTING report groups.

5-58 Data Division

CONTROL Clause

Figure 5-8 Control Break Levels and Their Printed Report Groups

Control CONTROL HEADING
Groups to
Process CONTROL FOOTING
Control
Break Level FINAL | Major | Intermediate | Minor
FINAL X X
Major X
Intermediate X X
Minor X
VM-0593A-Al

6. The RWCS tests for a control break by comparing the contents of each control

data item with the prior contents of each control data item that were saved
when the previous GENERATE statement for the same report was executed.
The RWCS applies the inequality relation test as follows:

e If the control data item is a numeric data item, the relation test is for the
comparison of two numeric operands.

e If the control data item is an index data item, the relation test is for the
comparison of two index data items.

e If the control data item is other than as described in Figure 5-8, the
relation test is for the comparison of two nonnumeric operands.

Additional References

Report Group Description
Section 6.5.1, Relation Conditions

Examples

1.

This example prints a total record count from TOTAL-LINE at the end of the
report because control is FINAL. It is a major control break and prints only
once.

WORKING-STORAGE SECTION.

01 RECORD-COUNT PIC 9(9) VALUE 0.
REPORT SECTION.
RD MASTER-REPORT . . .
CONTROL IS FINAL.
01 DETAIL-LINE TYPE IS DETAIL . ..

Data Division 5-59

CONTROL Clause

5-60 Data Division

01 TOTAL-LINE TYPE IS CONTROL FOOTING FINAL.
02 COLUMN 20 PIC X(17) VALUE "TOTAL RECORDS: ".
02 COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SOURCE RECORD-COUNT.
PROCEDURE DIVISION.
BEGIN.
OPEN INPUT . . .
OPEN OUTPUT . . .
INITIATE MASTER-REPORT.
010-READ-FILE.
READ . . . AT END GO TO 999-EOJ.
GENERATE DETAIL-LINE.
ADD 1 TO RECORD-COUNT.
GO TO 010-READ-FILE.
999-E0J.
TERMINATE MASTER-REPORT.
CLOSE . . .
STOP RUN.

In the following example, a report defines four control totals in the control
clause. The source of these control totals is in an input file—INPUT-

FILE. The file is presorted in ascending sequence by MAJOR-CONTROL,
INTERMEDIATE-CONTROL, and MINOR-CONTROL. The RWCS will
monitor these fields in the input file for any changes. If a new record contains
data different from the previous record read, the RWCS triggers a control
break.

In this example, if the value in MINOR-CONTROL changes, a break

occurs and the RWCS processes the minor control report group CONTROL
FOOTING MINOR-CONTROL. If the value in INTERMEDIATE-CONTROL
changes, a break occurs and the RWCS processes the intermediate and
minor control report groups CONTROL FOOTING INTERMEDIATE-
CONTROL and CONTROL FOOTING MINOR-CONTROL. If the value in
MAJOR-CONTROL changes, a break occurs and the RWCS processes the
major, intermediate, and minor control report groups CONTROL FOOTING
MAJOR-CONTROL, CONTROL FOOTING INTERMEDIATE-CONTROL, and
CONTROL FOOTING MINOR-CONTROL.

FILE SECTION.

FD INPUT-FILE . . .

01 INPUT-RECORD.
02 MAJOR-CONTROL PIC ...
02 e
02 MINOR-CONTROL PIC ...
02 e
02 INTERMEDIATE-CONTROL PIC ...
02 e

FD REPORT-FILE . . .

REPORT IS SUMMARY-REPORT.
REPORT SECTION.
RD SUMMARY-REPORT . . .
CONTROLS ARE FINAL
MAJOR-CONTROL
INTERMEDIATE-CONTROL
MINOR-CONTROL.

01 DETAIL-LINE TYPE IS DETAIL ...

01 TYPE IS CONTROL FOOTING FINAL . .

01 TYPE IS CONTROL FOOTING MINOR-CONTROL . . .

01 TYPE IS CONTROL FOOTING MAJOR-CONTROL . . .

01 TYPE IS CONTROL FOOTING INTERMEDIATE-CONTROL . . .

Data-Name

Data-Name

Function

data-name specifies a data item that your program can explicitly reference.
FILLER specifies an item that cannot be explicitly referenced.

General Format
[data-name]
FILLER

data-name

Syntax Rules

1. In the File, Working-Storage, and Linkage Sections, data-name or the key
word FILLER (if present) must be the first word after the level-number in
each data description entry.

2. In the Report Section, data-name need not appear in a report group
description entry and the key word FILLER must not be used.

General Rules

1. If there is no data-name or FILLER clause, the compiler treats the data item
as a FILLER item.

2. The key word FILLER can name a data item. However, a program cannot
explicitly refer to FILLER items.

3. The key word FILLER can name a conditional variable. A program cannot
refer to the conditional variable. However, it can refer to the value of the
conditional variable by referring to its associated condition-names.

4. In the Report Section, data-name must be used when:

a. data-name represents a report group to be referred to by a GENERATE or
a USE statement in the Procedure Division.

b. Reference will be made to the sum counter in the Procedure Division or
Report Section.

c¢. The UPON phrase of the SUM clause references a DETAIL report group.
d. data-name provides sum counter qualification.

5. If this clause is omitted, the Report Writer Control System does not allow
explicit references to the data item.

Examples
1. Elementary FILLER items:
In this example, the program can refer only to the group item, ITEMA.

01 ITEMA.
03 FILLER PIC X(10) VALUE SPACES.
03 PIC X(2) VALUE "AB".
03 PIC 9 VALUE 6.

Data Division 5-61

Data-Name

2.

5-62 Data Division

Group FILLER items:

In this example, the program can refer to any elementary item. However,
it cannot refer to the record or to the group item that contains ITEMC and
ITEMD.

01 FILLER.
03 ITEMA PIC X(4).
03 ITEMB PIC 9(7).
03 FILLER.

05 ITEMC PIC X.
05 ITEMD PIC 9(8)V99.
03 ITEME PIC X.

Report Writer items:

In this Report Writer example, the program can refer to DL-NAME and
DETAIL-LINE, but not to the data beginning in LINE 10, COLUMN 25. Note
that FILLER cannot be used in place of a Report Writer data-name.

01 DETAIL-LINE TYPE IS DETAIL.

02 LINE 10.
03 DL-NAME COLUMN 1 SOURCE INPUT-NAME.
03 COLUMN 25 SOURCE INPUT-ADDRESS.

DATA RECORDS Clause

DATA RECORDS

Function
The DATA RECORDS clause documents the names of a file’s record description
entries.

General Format

RECORD IS
DATA { RECORDS ARE } { rec-name } ...

rec-name
is the name of a data record. It must be defined by a level 01 data description
entry subordinate to the file description entry.

Syntax Rule
The order of appearance of multiple rec-name entries is not significant.

General Rule
The DATA RECORDS clause is for documentation only.

Data Division 5-63

ERASE Clause

ERASE (Alpha, 164)

Function
The ERASE clause clears from the starting cursor position to the end of either
the line or the screen.

General Format

EOL
ERASE { @ }

Syntax Rule

The ERASE clause can be specified only for elementary screen description
entries.

General Rules

1. Blanking begins at the starting position of the screen item in whose
description the ERASE EOL clause is included, and continues to the end
of the line.

2. Blanking begins at the starting position of the screen item in whose
description the ERASE EOS clause is included, and continues through to
the end of the screen.

3. If you specify neither the BLANK nor the ERASE clause, only the particular
character positions corresponding to the screen item are modified when the
element is displayed. The rest of the screen content remains the same.

4. The ERASE clause is ignored in an ACCEPT statement.

Additional References
DISPLAY statement in Chapter 6

5-64 Data Division

EXTERNAL Clause

EXTERNAL

Function

The EXTERNAL clause specifies that a data item or a file connector in a defining
program is common to other programs in the run unit if the program defines it
identically. The group and elementary data items of an external data record and
files associated with an external file connector are available to every program in
the image that describes them.

General Format

IS EXTERNAL

Syntax Rules

1.

6.

The EXTERNAL clause can appear only in file description entries or in record
description entries in the Working-Storage Section.

In a record description entry, only level numbers 01 and 77 can specify the
EXTERNAL clause.

A program and any program it contains, cannot define identical data-names
if their data description entries or file description entries have EXTERNAL
clauses.

The VALUE clause or the REDEFINES clause cannot be in a data description
entry that contains or is subordinate to, an entry that contains the
EXTERNAL clause.

When using the SAME RECORD AREA clause for several files, the Record
Description entries or the file description entries for these files must not
include the EXTERNAL clause.

Entries that contain the EXTERNAL clause must be named.

General Rules

1.

Data in a record either subordinate to an external FD, or named by the
subject of the EXTERNAL clause, is external. Any program in the image that
describes and optionally redefines this data may access and process this data
subject to the following general rules.

If two or more programs in the image describe the same external data record,
the associated data description entries (except the GLOBAL clause) must be
identical. All subordinate data-names, data items, and redefinitions must also
be identical.

A program that describes an external data record can contain a Data
Description entry that redefines the complete external record. This
redefinition need not be the same in other programs in the image.

Use of the EXTERNAL clause does not imply that the associated file-name or
data-name is a global name.

The file connector associated with a file description entry is an external file
connector.

If two or more programs in an image describe the same external file connector,
the clauses associated with the description of that file must be functionally
identical and any data items referenced by those clauses must be external.

Data Division 5-65

EXTERNAL Clause

Technical Notes
e Each external sequential file becomes a print format file.

e FEach external data record becomes a PSECT (on OpenVMS systems) or a
global (on Tru64 UNIX systems), whose name is the 01-level record.

Each file connector for external files becomes a PSECT (on OpenVMS
systems) or a global (on Tru64 UNIX systems), whose name is the name
of the file. The records associated with this file become external data records.

External record items and files are implemented as overlayable shared
PSECTs (on OpenVMS systems) or globals (on Tru64 UNIX systems).
Therefore, the same storage area is shared among all separately compiled
programs for that named external record or file. The PSECT or global is
created for compatibility with BASIC COMMON/MAP and FORTRAN labeled
COMMON.

On OpenVMS, for more information on overlayable PSECTs, refer to the
LINK documentation in the OpenVMS documentation set. o

On Tru64 UNIX, for more information on globals, refer to the 1d
documentation in the Tru64 UNIX documentation set. ¢

e On Tru64 UNIX systems, an external data item is case-sensitive. By default,
an external data item is converted to lowercase for all separately compiled
program units. Other programs (HP COBOL as well as other languages)
must specify the data item in lowercase.

However, if the names option is set to uppercase on the command line, other
programs must specify the data item in uppercase. If the names option is set
to as_is, the effect on an external data item is as if uppercase were specified.
(The as_1is setting is used for calling non-COBOL programs with mixed case.)
.

Additional References
e GLOBAL clause
e REDEFINES clause

Examples

In the following Working-Storage entries, the data items in RECORD-A are
available to any program in the run unit that also describes RECORD-A and its
data items. RECORD-B and the data items in it are not available to any other
program.

01 RECORD-A EXTERNAL.
03 ITEMA PIC X.
03 ITEMB PIC X(22).
03 ITEMC PIC 999.
01 RECORD-B.
03 ITEMA PIC X(12).
03 ITEMD PIC X.
03 ITEME PIC 9(18).

5-66 Data Division

FILE STATUS Clause

FILE STATUS

Function

The FILE STATUS clause specifies a data item to contain the status of an
input/output operation.

General Format
FILE STATUS IS file-stat

file-stat
is the data-name of a two-character alphanumeric Working-Storage Section, or
Linkage Section data item. file-stat is the file’s FILE STATUS data item.

Syntax Rules
1. file-stat can be qualified.

2. The FILE STATUS clause can be in the file’s SELECT clause or in its file
description entry. However, it cannot be in both the SELECT clause and the
file description entry for the same file.

3. If the FILE STATUS clause is associated with an external file connector,
file-stat must reference the same data item in all programs in the run unit.

General Rule

After the execution of every I-O statement that refers to the specified file, a value
is moved to file-stat. This value indicates the file’s I-O status after the execution
of the I-O statement.

Additional References
e Appendix C, File Status Values
e Section 6.6.8, I-O Status

Data Division 5-67

FOREGROUND-COLOR Clause

FOREGROUND-COLOR (Alpha, 164)

Function

The FOREGROUND-COLOR clause specifies the foreground color for a screen
item.

General Format

FOREGROUND-COLOR IS color-num

color-num
is an integer in the range 0-7 specifying a color as follows:

Color Color Value Color Color Value
Black 0 Red 4

Blue 1 Magenta 5

Green 2 Yellow/Brown 6

Cyan 3 White 7

Syntax Rule

The FOREGROUND-COLOR clause can be specified in any screen description
entry.

General Rules
1. The FOREGROUND-COLOR clause is effective only with color screens.

2. If the FOREGROUND-COLOR clause is omitted, the initial default
foreground color is white.

3. If the clause is specified at group level, it applies to all subordinate screen
items.

4. If the BLANK SCREEN clause is specified and the FOREGROUND-COLOR
clause is specified or inherited, then when a DISPLAY statement displays
the screen item, the specified color becomes the default foreground color.

It remains the default foreground color until another screen item with this
combination of options is displayed (whether in the same DISPLAY statement
or in another).

5. If the HIGHLIGHT clause is also specified, foreground and background colors
are brightened and lightened; for example, black may become grey and brown
may become yellow.

Technical Note

The colors in the list above are supported only on terminals and workstations
that support the ANSI Standard color sequences. 1

Additional References
e ACCEPT in Chapter 6
e DISPLAY in Chapter 6 ¢

1 This does not include the VT'100, VT200, VT300, and VT400 series terminals. On
workstations that emulate these terminal types, this restriction may not apply.

5-68 Data Division

FULL Clause

FULL (Alpha, 164)

Function

The FULL clause specifies that a screen item must be left either completely
empty or it must be entirely filled with data.

General Format

FULL

Syntax Rules

1. If the FULL clause is specified in a screen description entry, the JUSTIFIED
clause cannot be specified.

2. The FULL clause is valid only in the description of an input or update screen
item.

General Rules

1. If the FULL clause is specified at group level, it applies to all subordinate
input or update screen items.

2. The FULL clause is effective during the execution of any ACCEPT statement
when the cursor enters the screen item. Until this clause is satisfied, the
operator cannot leave the field and normal terminator keystrokes are rejected.

3. To satisfy the FULL clause for an alphanumeric screen item, either the field
must contain all spaces, or both the first and last character positions must
contain nonspace characters.

4. To satisfy the FULL clause for a numeric or numeric edited screen item,
either the value must be zero or there must be no digit position in which zero
suppression has taken effect.

5. For update fields, the FULL clause can be satisfied by the contents of
the identifier or literal referenced in the FROM or USING phrase of the
PICTURE clause, as well as by operator-keyed data.

6. The FULL clause is not effective if a function key terminates the accept
operation.

7. Specifying the FULL and REQUIRED clauses together requires that the user
must always entirely fill the field.

8. The FULL clause is ignored for an elementary output field.

Additional Reference
ACCEPT statement in Chapter 6

Data Division 5-69

GLOBAL Clause

GLOBAL

Function

The GLOBAL clause specifies that data-name, file-name, or report-name is
available to every program contained within the program that declares it.

General Format

IS GLOBAL

Syntax Rules

1.

4.

The GLOBAL clause can appear only in file description entries, Report
Description entries, a data description entry whose level number is 01, in
the File or Working-Storage Section, or a data description entry whose level
number is 77, in the Working-Storage Section.

In the same Data Division, the GLOBAL clause must not appear in Data
Description entries that contain identical data-names.

If you use the SAME RECORD AREA clause for several files, the Record
Description entries or the file description entries for these files must not
include the GLOBAL clause.

Entries that contain the GLOBAL clause must be named.

General Rules

1.

Any data-name, file-name, or report-name specifying the GLOBAL clause is a
global name. All data items subordinate to a global data-name or file-name
are global names. All condition-names associated with a global name are
global names.

A statement in a program contained directly or indirectly within a program
that describes a global name may reference the name without describing it
again.

If the GLOBAL clause is used in a data description entry that contains the
REDEFINES clause, the global attribute applies only to the subject of the
REDEFINES clause.

Technical Note
Each global sequential file becomes a print format file.

Additional Reference
Section 6.2.6, Scope of Names

5-70 Data Division

GROUP INDICATE Clause

GROUP INDICATE

Function

The GROUP INDICATE clause specifies that the associated printable item is
presented only on the first occurrence of its DETAIL report group after a control
break or page advance.

General Format
GROUP INDICATE

Syntax Rule

The GROUP INDICATE clause must be specified only in a DETAIL report group
entry that defines a printable item.

General Rules

1. If the program contains a GROUP INDICATE clause, the compiler suppresses
printing of the printable item and supplies spaces, except:

a. On the first presentation of the DETAIL report group

b. On the first presentation of the DETAIL report group after every page
advance

¢. On the first presentation of the DETAIL report group after every control
break

2. If the program specifies neither the PAGE clause nor the CONTROL clause
in a Report Description entry, then the first time a DETAIL report group is
presented a GROUP INDICATE printable item is also presented. Thereafter,
spaces are supplied for indicated items with SOURCE or VALUE clauses.

Additional Reference
Appendix D, Report Writer Presentation Rules and Tables

Example

The following example shows the effect of the GROUP INDICATE clause on a
printable item (SOURCE I-NAME).

Data Division 5-71

GROUP INDICATE Clause

Sample Program

Without the With the
GROUP INDICATE GROUP INDICATE
Clause Clause

01 DETAIL-LINE TYPE IS DETAIL | 01 DETAIL-LINE TYPE IS DETAIL
LINE IS PLUS 1. LINE IS PLUS 1.
02 COLUMN 1 PIC X(15) 02 COLUMN 1 PIC X(15)

kkkkkkkkkkkkkkkhkhkhkkkkkkkkkhkhkhkhkkkkkk
*

GROUP INDICATE

*
Fedededede ek dede ke de ko dede ke ek g e ke ke ok ok |

SOURCE I-NAME. SOURCE I-NAME.
02 COLUMN 20 PIC 9(6) 02 COLUMN 20 PIC 9(6)
SOURCE I-INV-NO. SOURCE I-INV-NO.
Sample Report
Without the With the
GROUP INDICATE GROUP INDICATE
Clause Clause
1 2 3 1 2 3
123456789012345678901234567890 | 123456789012345678901234567890
Name Invoice Name Invoice
Number Number
Hendrexon B. 123456 Hendrexon B. 123456
Hendrexon B. 123456 123456
Hendrexon B. 123456 123456
Blare R. 123456 Blare R. 123456
Blare R. 123456 123456
Blare R. 123456 123456
Blare R. 123456 123456
Provinchet R. 123456 Provinchet R. 123456
Provinchet R. 123456 123456
Provinchet R. 123456 123456
Provinchet R. 123456 123456
Provinchet R. 123456 123456
ZK-6150-GE

5-72 Data Division

HIGHLIGHT Clause

HIGHLIGHT (Alpha, 164)

Function
The HIGHLIGHT clause specifies that the field is to appear on the screen with
the highest intensity.

General Format

HIGHLIGHT

Syntax Rule
The HIGHLIGHT clause can be specified only for an elementary screen
description entry.

Additional References
e ACCEPT in Chapter 6
e DISPLAY in Chapter 6 ¢

Data Division 5-73

JUSTIFIED Clause

JUSTIFIED

5-74 Data Divisi

Function

The JUSTIFIED clause specifies nonstandard data positioning in a screen item or
another receiving item.

General Format

{ JUSTIFIED

JUST } RIGHT

Syntax Rules

1. The JUSTIFIED clause can be used only for elementary items and
alphanumeric data items. It cannot be used for index data items, numeric
data items, or edited data items.

2. JUST is the abbreviated form of JUSTIFIED.
General Rules

1. If a COBOL statement transfers data to a receiving item whose data
description contains the JUSTIFIED clause, the Run-Time System:

e Truncates the excess leftmost characters if the sending item is larger than
the receiving item.

e Aligns the data at the rightmost character position of the receiving item
if the sending item is smaller than the receiving item. (Spaces fill the
excess leftmost character positions.)

2. If there is no JUSTIFIED clause, data movement follows the rules for aligning
data in elementary items (Standard Alignment Rules).

Additional References
e MOVE statement in Chapter 6
e Section 5.2.2, COBOL Standard Alignment Rules

Examples

The Procedure Division entry for the MOVE statement contains examples using
this clause.

on

LABEL RECORDS Clause

LABEL RECORDS

Function
The LABEL RECORDS clause specifies the presence or absence of labels.

General Format

RECORDS ARE STANDARD
_LABEL{ms }{m }

General Rule
The LABEL RECORDS clause is for documentation only.

Data Division 5-75

Level-Number

Level-Number

Function

The level-number shows the position of a data item or screen item within the
hierarchical structure of a logical record or a report group or a screen description.
It also identifies entries for condition-names and the RENAMES clause.

General Format
level-number
Syntax Rules

1. The level-number must be the first element in a data description entry or a
screen description entry.

2. Data description entries that are subordinate to a file description (FD) entry
have level-numbers 01 to 49, 66, or 88.

3. Data description entries in the Working-Storage and Linkage Sections have
level-numbers 01 to 49, 66, 77, or 88.

4. Report group description entries in the Report Section have level-numbers 01
to 49 only. See the Report Group Description entry for additional rules for
Report Writer level-numbers.

5. Screen description entries in the Screen Section have level-numbers 01 to 49
only. See the Screen Description (Alpha, 164) entry for additional rules for
Screen Section level-numbers.

General Rules

1. The level-number 01 identifies the first entry in a record description, report
group description, or screen description entry.

2. Multiple level 01 entries subordinate to a file description entry represent
implicit redefinitions of the same area.

3. Multiple level 01 entries subordinate to a report description entry do not
represent implicit redefinitions of the same area.

4. Level-number 66 identifies a RENAMES entry. It can be used only in a
Format 2 data description entry.

5. Level-number 77 identifies a noncontiguous data item entry in the Working-
Storage and Linkage Sections. The level 77 entry can have no subordinate
data description entries except level 88 items.

6. Level-number 88 defines a condition-name associated with a conditional
variable. It can be used only in a Format 3 data description entry.

7. Level-numbers 66, 77, and 88 do not imply a hierarchical position.

5-76 Data Division

Additional References

e RD (Report Description) entry

¢ Data Description entry

e Report Group Description entry

e RENAMES clause

e Section 1.2.1.1 in Section 1.2.1, COBOL Words
e Section 5.1.1, Record Description Entries

e Screen Description (Alpha, 164) entry

Level-Number

Data Division 5-77

LINAGE Clause

LINAGE

Function

The LINAGE clause specifies the number of lines on a logical page. It can also
specify the size of the logical page’s top and bottom margins and the line where
the footing area begins in the page body.

General Format
LINAGE IS page-lines LINES

[WITH FOOTING AT footing-line |
[LINES AT TOP top-lines |
[LINES AT BOTTOM bottom-lines |

page-lines

is a positive integer or the data-name of an elementary unsigned integer numeric
data item. Its value must be greater than zero. It specifies the number of lines
that can be written or spaced on the logical page. If page-lines is a data-name, it
can be qualified.

footing-line

is a positive integer or the data-name of an elementary unsigned integer numeric
data item. Its value must be greater than zero, but cannot be greater than page-
lines. footing-line specifies the line number where the footing area begins in the

page body. If footing-line is a data-name, it can be qualified.

top-lines

is an integer or the data-name of an elementary unsigned integer numeric data
item. Its value can be zero. top-lines specifies the number of lines in the top
margin of the logical page. If top-lines is a data-name, it can be qualified.

bottom-lines

is an integer or the data-name of an elementary unsigned integer numeric data
item. Its value can be zero. bottom-lines specifies the number of lines in the
bottom margin of the logical page. If bottom-lines is a data-name, it can be
qualified.

General Rules
1. The LINAGE clause specifies the number of lines on a logical page.

2. Logical page size is the sum of the values specified in all phrases except
FOOTING. If there is no LINES AT TOP or LINES AT BOTTOM phrase,
the default value of top-lines or bottom-lines is zero. If there is no FOOTING
phrase, the default value of footing-line equals the value of page-lines.

Logical and physical page sizes are not necessarily the same.

4. The page body is the logical page area in which the program can write or
space lines. Its size equals the value of page-lines.

5. The footing area is the area of the logical page between footing-line and
page-lines, inclusive.

5-78 Data Division

6.

10.

11.

12.

13.

14.

15.

LINAGE Clause

When the program opens the file by executing an OPEN statement with the
OUTPUT phrase, it uses the values of page-lines, top-lines, and bottom-lines
to define the logical page sections. When these values are integers, they apply
to all logical pages the program writes to the file during its execution.

When page-lines, top-lines, and bottom-lines are data-names, their values
affect OPEN and WRITE statement execution as follows:

e When the program executes an OPEN statement with the OUTPUT
phrase for the file, the values specify the number of lines in each of the
associated sections of the first logical page.

e When the program executes a WRITE statement with the ADVANCING
PAGE phrase, or when a page overflow condition occurs, the values specify
the number of lines in each of the associated sections of the next logical
page.

The value of footing-line defines the footing area for the first logical page
when the program executes an OPEN statement with the OUTPUT phrase
for the file. The value defines the footing area for the next logical page when:
(a) the program executes a WRITE statement with the ADVANCING PAGE
phrase or, (b) a page overflow condition occurs.

For each file with a LINAGE clause, the program has a corresponding special
register called LINAGE-COUNTER. At any time, the value in LINAGE-
COUNTER is the line number in the current page body at which the device is
positioned. Other open modes (Input, I-O, and Extend) are not permitted and
have unpredictable results.

LINAGE-COUNTER is global if a file description entry specifies the GLOBAL
clause and the LINAGE clause.

LINAGE-COUNTER is a 9-digit numeric special register. Procedure Division
statements can refer to LINAGE-COUNTER but cannot change its value.

If the program has more than one LINAGE-COUNTER, all Procedure
Division references to it must be qualified by file-name.

Execution of a WRITE statement for a file with the LINAGE clause changes
the value of the associated LINAGE-COUNTER:

e [Ifthe WRITE statement has the ADVANCING PAGE phrase, its execution
resets LINAGE-COUNTER to one. (The resetting operation implicitly
increments the value of LINAGE-COUNTER to exceed the value of
page-lines.)

e If the WRITE statement has the ADVANCING LINES phrase,
its execution increments LINAGE-COUNTER by the value in the
ADVANCING phrase.

e If the WRITE statement does not have the ADVANCING phrase, it
increments LINAGE-COUNTER by one.

Execution of an OPEN statement for the file sets its LINAGE-COUNTER to
one.

Each logical page follows the preceding logical page with no spacing between
them.

Data Division 5-79

LINAGE Clause

16. If the file connector associated with this file description entry is an external
file connector, all file description entries in the run unit associated with this
file connector must have the following features:

e A LINAGE clause, if any file description entry has a LINAGE clause

e The same corresponding integer values for page-lines, footing-lines,
top-lines, and bottom-lines

e The same corresponding external data items referenced by page-lines,
footing-lines, top-lines, and bottom-lines

Technical Notes

¢ On OpenVMS, the LINAGE clause causes a file to be in print-file format.
When a WRITE statement positions the file to the top of the next logical
page, device positioning occurs by line spacing rather than by page ejection or
form feed.

The default DCL PRINT command causes the insertion of a form-feed
character when a form nears the end of a page. Therefore, when the default
PRINT command refers to a LINAGE file, unexpected page spacing can result.

The /NOFEED compiler option to the PRINT command suppresses the
insertion of form-feed characters and prints LINAGE files correctly. For
example:

$ PRINT/NOFEED full-file-name

e The /NOVFC compiler option can be used on OpenVMS Alpha and 164 to
produce a Stream_LF record-formatted print file. The default (/VFC) behavior
is to produce a VFC record-formatted file. ¢

e HP COBOL on Tru64 UNIX systems writes LINAGE files with blank lines
to simulate WRITE ADVANCING behavior. These blank lines would not be
produced on an OpenVMS Alpha or 164 system. When you input a LINAGE
file, you must compensate for the difference. For example, use an extra initial
READ statement (on Tru64 UNIX systems) to skip over the leading blank line
in the LINAGE file.

Additional References

e GLOBAL clause

e WRITE statement in Chapter 6

Example

The following example specifies a logical page whose size is 26 lines:

FD PRINT-FILE
VALUE OF ID IS "REPORT1.LIS"
LINAGE IS 16 LINES WITH FOOTING AT 13
LINES AT TOP 4 LINES AT BOTTOM 6.

In this example, the first line to which the page can be positioned is the fifth line.
The end-of-page condition occurs when a WRITE statement causes the LINAGE-

COUNTER value to be in the range 13 to 16. The page overflow condition occurs
when a WRITE statement causes the LINAGE-COUNTER value to exceed 16.

5-80 Data Division

LINAGE Clause

Figure 5-9 shows the logical page areas resulting from the example.

Figure 5-9 Logical Page Areas Resulting from a LINAGE Clause

[T

T2 Top
T3 Margin
T4

[1

- O —Q O I
oQ o T
©oOo~NOOOGA~WN

10

12

13

14 Footing
15 Area

< oo

o©Q @ T

B1
B2
B3 Bottom
B4 Margin
B5

VM-0594A-Al

Data Division 5-81

LINE NUMBER Clause

LINE NUMBER (Alpha, 164)

Function

The LINE NUMBER clause specifies vertical positioning information for a report
group, or specifies the vertical screen coordinate for a screen item.

General Formats

Format 1 (Report Description)

LINE NUMBER 1S { fine-num | ON NEXT PAGE | }

PLUS line-num-plus

Format 2 (Screen Description)

LINE NUMBER IS [PLUS]{ identifier-1 }

integer-1

line-num
is a nonnegative integer. line-num represents an absolute line number on a
logical page and establishes a print line for a Report Writer report group.

line-num-plus
is a positive integer. line-num-plus represents a relative line number on a logical
page and establishes a print line for a Report Writer report group.

identifier-1
is an elementary unsigned numeric integer data item. It cannot be subscripted.

integer-1
is an unsigned integer value.

Syntax Rules (Report Description)

1. Neither line-num nor line-num-plus can exceed three significant digits.

The PAGE clause defines the length of a logical page and the vertical
subdivisions within which each report group is presented. Neither /ine-
num nor line-num-plus may specify a line outside of the PAGE clause limits.
See PAGE clause for more information.

2. Within a given Report Group Description, an entry containing a LINE
NUMBER clause must not contain a subordinate entry that also contains
a LINE NUMBER clause.

3. Within a given Report Group Description, all absolute LINE NUMBER
clauses must precede all relative LINE NUMBER clauses.

4. Within a given Report Group Description, successive absolute LINE
NUMBER clauses must specify integers in ascending order. The integers
need not be consecutive.

5. 1If a given Report Description (RD) does not contain a PAGE clause, the
program may specify only relative LINE NUMBER clauses in any Report
Group Description within that report.

6. Within a given Report Group Description, a NEXT PAGE phrase may appear
only once. If present, it must be the first LINE NUMBER clause in that
Report Group Description.

5-82 Data Division

10.

LINE NUMBER Clause

A LINE NUMBER clause with the NEXT PAGE phrase may appear only in
the description of a CONTROL HEADING, DETAIL, CONTROL FOOTING,
or REPORT FOOTING report group.

Every entry defining a printable item must either contain a LINE NUMBER
clause or be subordinate to an entry that contains a LINE NUMBER clause.
See the COLUMN NUMBER clause for more information.

The first LINE NUMBER clause in a PAGE FOOTING report group must
define an absolute line-num value.

line-num-plus may be zero. If line-num-plus is zero, the line will be printed
on the same line as the previous print line (overprint); however, line-num-plus
cannot be zero for the first print line of a report group.

Syntax Rules (Screen Description)

1.

2.

The LINE clause can be specified only in an elementary screen description
entry.

identifier-1 cannot be subscripted.

General Rules (Report Description)

1.

To establish each print line for a report group, a program must specify the
LINE NUMBER clause.

Before presenting the print line, the Report Writer Control System (RWCS)
causes line positioning as specified by a LINE NUMBER clause.

The NEXT PAGE phrase defines the line number of a new page on which to
present the report group.

For a complete specification on how to determine the first print line for a
report group, see Appendix D, Report Writer Presentation Rules and Tables.
A partial summary of these rules follows:

If a relative clause is not the first LINE NUMBER clause in a report group,
then the line number on which its print line is presented is determined by the
sum of the following:

¢ The line number from the previous print line of the report group

e [ine-num-plus of the relative LINE NUMBER clause

If the first LINE NUMBER clause in the Report Group Description entry
is relative and a PAGE clause is specified, the first print line for the report
group is determined as follows. See the PAGE clause for the definitions of
page-size, heading-line, first-detail-line, last-detail-line, and footing-line.

a. REPORT HEADING

The RWCS presents this group on a line number whose value is the sum
of line-num of the first LINE NUMBER clause and heading-line minus 1.

b. PAGE HEADING

If a REPORT HEADING report group has been presented on the page
on which this report group is to appear, the RWCS presents the PAGE
HEADING relative to the final LINE-COUNTER setting of the REPORT
HEADING.

If no REPORT HEADING has been presented on the page, the RWCS
presents this report group on the line number whose value is the sum of
line-num of the first LINE NUMBER clause and heading-line minus 1.

Data Division 5-83

LINE NUMBER Clause

c. DETAIL, CONTROL HEADING, or CONTROL FOOTING

If the value in LINE-COUNTER is less than first-detail-line, the RWCS
presents the report group on first-detail-line.

If the value in LINE-COUNTER is greater than or equal to first-detail-
line and if this is the first body group to print on the page, the RWCS
presents the report group on the line corresponding to the value in
LINE-COUNTER.

If the value in LINE-COUNTER is greater than or equal to first-detail-
line and if this is not the first body group to print on the page, the RWCS
presents the report group on the line whose value is the sum of LINE-
COUNTER and line-num of the first LINE NUMBER clause of the current
CONTROL HEADING, DETAIL, or CONTROL FOOTING report group.

d. PAGE FOOTING

Not applicable. The first LINE NUMBER clause of a PAGE FOOTING
report group must contain an absolute line number reference.

e. REPORT FOOTING

If a PAGE FOOTING report group has been presented on the current
page, the RWCS presents the REPORT FOOTING report group on the
line whose value is the sum of the current value in LINE-COUNTER and
line-num of the first LINE NUMBER clause of the REPORT FOOTING
report group.

If no PAGE FOOTING report group has been presented on the current
page, the RWCS presents the REPORT FOOTING report group on the

line whose value is the sum of footing-line and line-num of the first LINE
NUMBER clause of the REPORT FOOTING report group.

General Rules (Screen Description)

1.

The LINE clause, in conjunction with the COLUMN clause, establishes the
starting position for a screen item. This position is an offset from the starting
screen coordinates specified in the ACCEPT or DISPLAY statement. The
LINE clause specifies the vertical coordinate.

The LINE clause without the PLUS phrase specifies the absolute line number.

The LINE clause with the PLUS phrase specifies a line number relative
to that at which the preceding item ends, regardless of whether or not the
ACCEPT or DISPLAY statement displays the preceding item on the screen.

If the LINE clause is omitted, the following apply:
e If no previous screen item is defined, LINE 1 is assumed.

e If a previous screen item is defined, the ending line of that previous item
is assumed.

Additional References

5-84 Data Division

COLUMN NUMBER clause

PAGE clause

Appendix D, Report Writer Presentation Rules and Tables
ACCEPT statement in Chapter 6

DISPLAY statement in Chapter 6

LOWLIGHT Clause

LOWLIGHT (Alpha, 164)

Function

The LOWLIGHT clause specifies that the field is to appear on the screen with the
lowest intensity. When only two levels of intensity are available, normal intensity
and LOWLIGHT will be the same.

General Format

LOWLIGHT

Syntax Rule
The LOWLIGHT clause can be specified only for an elementary screen description
entry.

Additional Reference
e ACCEPT in Chapter 6
e DISPLAY in Chapter 6

Data Division 5-85

NEXT GROUP Clause

NEXT GROUP

Function

The NEXT GROUP clause specifies information for the vertical positioning of the
next report group on a logical page following the presentation of the last line of a
report group.

General Format

next-group-line-num
NEXT GROUP IS { PLUS next-group-line-num-plus }
NEXT PAGE

next-group-line-num

is a positive, 1- to 3-digit integer value greater than zero. It represents an
absolute line number on a logical page and establishes a print line for the next
Report Writer report group.

next-group-line-num-plus
is a positive, 1- to 3-digit integer value. It represents a relative line number on a
logical page and establishes a print line for the next Report Writer report group.

Syntax Rules

1. A Report Group entry must not contain a NEXT GROUP clause unless the
description of that Report Group contains at least one LINE NUMBER clause.

2. next-group-line-num and next-group-line-num-plus must not exceed three
significant digits.

3. If a Report Description entry omits the PAGE clause, all Report Group
Description entries within that report can specify a relative NEXT GROUP
clause only.

4. A PAGE FOOTING Report Group must not specify the NEXT PAGE phrase of
the NEXT GROUP clause.

5. A PAGE HEADING and REPORT FOOTING Report Group must not specify
the NEXT GROUP clause.

General Rules

1. Page positioning occurs after the presentation of the Report Group in which
the NEXT GROUP clause appears.

2. To determine a new value for LINE-COUNTER, the Report Writer Control
System (RWCS) uses the vertical positioning information from the NEXT
GROUP clause along with information from the TYPE and PAGE clauses, and
the value in LINE-COUNTER. See Appendix D, Report Writer Presentation
Rules and Tables.

3. The RWCS ignores the NEXT GROUP clause on a CONTROL FOOTING
Report group when it detects a control break at a level other than the highest
level.

4. The NEXT GROUP clause of a CONTROL HEADING, DETAIL, and
CONTROL FOOTING report group refers to the next CONTROL HEADING,
DETAIL, and CONTROL FOOTING to be presented, and therefore can
affect the location at which the next CONTROL HEADING, DETAIL, and
CONTROL FOOTING report group is presented. See Appendix D.

5-86 Data Division

NEXT GROUP Clause

5. The NEXT GROUP clause of a REPORT HEADING report group can affect
the location at which the PAGE HEADING report group is presented. See
Appendix D.

6. The NEXT GROUP clause of a PAGE FOOTING report group can affect the
location at which the REPORT FOOTING report group is presented. See
Appendix D.

Additional References

e General Rules (Report Description) (General Rule 4) of the LINE NUMBER
(Alpha, 164) clause

e Appendix D, Report Writer Presentation Rules and Tables

Data Division 5-87

OCCURS Clause

OCCURS

Function

The OCCURS clause defines tables and provides the basis for subscripting and
indexing. It eliminates the need for separate entries for repeated data items.

General Format
Format 1

OCCURS table-size TIMES

ASCENDING
[{ DESCENDING }KEYIS{ key-name } ...]

[INDEXED BY { ind-name } ...]

Format 2
OCCURS min-times TO max-times TIMES DEPENDING ON depending-item

ASCENDING
[{@ }KEYIS{ key-name } ...]

[INDEXED BY { ind-name } ...]

table-size
is an integer that specifies the exact number of occurrences of a table element.

min-times
is an integer that specifies the minimum number of occurrences of a table
element. Its value must be greater than or equal to zero.

max-times
is an integer that specifies the maximum number of occurrences of a table
element. Its value must be greater than min-times.

key-name

is the data-name of an entry that contains the OCCURS clause or an entry
subordinate to it. key-name can be qualified. Each key-name after the first must
name an entry subordinate to the entry that contains the OCCURS clause.

The values in each key-name are the basis of the ascending or descending
arrangement of the table’s repeated data.

ind-name
is an index-name. It associates an index with the table and allows indexing in
table element references.

depending-item
is the data-name of an elementary unsigned integer data item. Its value specifies
the current number of occurrences. depending-item can be qualified.

5-88 Data Division

OCCURS Clause

Syntax Rules

1.
2.

10.
11.

12.

The subject of the entry is the data-name that contains the OCCURS clause.

A key-name cannot contain an OCCURS clause. However, this rule does not
apply to the first key-name if it is the subject of the entry.

There can be no OCCURS clauses between the data description entries for
key-names and the subject of the entry.

In the OCCURS clause of the data description entry, key-name cannot be
subscripted or indexed.

There must be an INDEXED BY phrase if any Procedure Division statements
contain indexed references to the subject of the entry or to any of its
subordinates.

The INDEXED BY phrase implicitly defines ind-name. The program cannot
define ind-name elsewhere.

The subject of a Format 2 OCCURS clause can be followed, in the same record
description, only by data description entries subordinate to it.

The OCCURS clause cannot be used in a data description entry that has the
following:

¢ A level-number of 01, 66, 77, or 88
e A subordinate variable occurrence data item (Format 2 OCCURS clause)

The data item defined by depending-item cannot occupy any character position
in the range delimited by the following:

e The character position defined by the subject of the OCCURS clause

e The last character position defined by the record description entry
containing the OCCURS clause

Each ind-name must be a unique word in the program.

If the OCCURS clause is in a record description entry containing the
GLOBAL clause, depending-item must refer to a global item described in
the same Data Division.

If the OCCURS clause is in a record description entry containing the
EXTERNAL clause, depending-item must refer to an external item described
in the same Data Division.

General Rules

1.

The OCCURS clause defines tables and provides the basis for subscripting
and indexing.

Except for the OCCURS clause itself, all data description clauses associated
with the subject of the OCCURS clause apply to each occurrence of the item.

Format 1 specifies that the subject of the entry has a fixed number of
occurrences.

Format 2 specifies that the subject of the entry has a variable number of
occurrences. min-times and max-times specify the minimum and maximum
number of occurrences. Only the number of the subject’s occurrences is
variable; its size is fixed.

The value of depending-item must fall in the range min-times to max-times.

Data Division 5-89

OCCURS Clause

The contents of data items with occurrence numbers exceeding the current
value of depending-item are unpredictable.

5. If a group item with a subordinate entry that has a Format 2 OCCURS clause
is a sending item, the operation uses only the part of the table area specified
by depending-item at the start of the operation.

If the group is a receiving item, the part of the table used is determined by
the location of depending-item. If depending-item is included in the group,
then the operation uses the maximum length of the group. If depending-item

is not included in the group, then the operation uses only the part of the table
area specified by depending-item.

6. The KEY IS phrase indicates that the repeated data is arranged in ascending
or descending order according to the values in the data items named by
key-name. The rules for operand comparison determine the ascending or
descending order. The position of each key-name in the list determines its
significance. The first is the most significant, and the last is least significant.

7. If a Format 2 OCCURS clause is in a record description entry and the
associated file description entry has the VARYING phrase of the RECORD
clause, the records are variable length.

If the RECORD clause does not have the DEPENDING ON phrase, the
program must set the OCCURS clause depending-item to the number of
occurrences before executing a RELEASE, REWRITE, or WRITE statement.
The depending-item value determines the length of the record to be written.

Technical Note

If the subject of the OCCURS clause (or any of its subordinates) has the
SYNCHRONIZED clause, the length of the subject of the OCCURS clause, or
the group containing it, could increase. SYNCHRONIZED clause alignment can
add fill bytes to the group containing the subject of the OCCURS clause and to
the subject itself.

Additional References

e SEARCH statement in Chapter 6

e Section 5.2.3, Additional Alignment Rules for Record Allocation

e Section 6.5.1.1, Comparison of Numeric Operands section in Chapter 6

e Section 6.5.1.2, Comparison of Nonnumeric Operands section in Chapter 6
Examples

1. One-dimensional table:

This record description entry describes a 20-character record. The record
contains 10 occurrences of ITEMB, a 2-character data item.

01 ITEMA.
03 ITEMB OCCURS 10 TIMES PIC XX.

2. Two-dimensional table:

This record description entry describes a 320-character record. The record
contains 8 occurrences of ITEMB, a 40-character data item. ITEMB contains
10 occurrences of ITEMC, a 4-character data item. Each ITEMC contains 2
data items: ITEMD and ITEME.

5-90 Data Division

OCCURS Clause

01 ITEMA.

03

ITEMB OCCURS 8 TIMES.
05 TITEMC OCCURS 10 TIMES.

07 ITEMD PIC X.
07 ITEME PIC XXX.

ITEMB (1) refers to a 40-character data item, the first 10 occurrences of
ITEMC. Similarly, ITEMB (5) refers to the fifth group of 10 occurrences of

ITEMC.

ITEME (3,4) refers to ITEME in the fourth occurrence of ITEMC in the third
occurrence of ITEMB:

ITEMB
ITEMB
ITEMB
ITEMB
ITEMB
ITEMB
ITEMB
ITEMB

P A A P

CONAUTWN -
——

DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE

ZK-1422A-GE

3. Variable occurrence data item:

When ITEMA is a receiving item, its size is 2128 characters. When it is a
sending item, its size can vary from 70 to 2128 characters, depending on the
value in ITEMC.

Each ITEME is 42 characters long. Its size cannot change. The only effect of
the value of ITEMC is to determine the number of ITEME occurrences.

There are 10 occurrences of ITEMH and ITEMI in each occurrence of ITEME.

01 ITEMA.
03 ITEMB PIC X(6).
03 ITEMC PIC 99.
03 ITEMD PIC X(20).

ITEME OCCURS 1 TO 50 TIMES DEPENDING ON ITEMC.
05 ITEMF PIC XX.
05 ITEMG OCCURS 10 TIMES.

07 ITEMH PIC X.

07 ITEMI PIC XXX.

Data Division 5-91

PAGE Clause

PAGE

Function

The PAGE clause defines the length of a logical page and the vertical subdivisions
within which report groups are presented.

General Format

LIMIT IS

[LINE
PAGE | LiMITs ARE] page-size [Ws]

[HEADING heading-line]

| FIRST DETAIL first-detail-line |
[LAST DETAIL last-detail-line |
[FOOTING footing-line]

page-size
is a 1- to 3-digit integer. It defines the number of lines available on a logical page.

heading-line
is a 1- to 3-digit integer. It defines the first line number for a REPORT HEADING
or PAGE HEADING report group on the logical page.

first-detail-line
is a 1- to 3-digit integer. It defines the first line number for a CONTROL
HEADING, DETAIL, and CONTROL FOOTING report group on the logical

page.

last-detail-line
is a 1- to 3-digit integer. It defines the last line number for a CONTROL
HEADING or DETAIL report group on the logical page.

footing-line

is a 1- to 3-digit integer. It defines the last line number for a CONTROL
FOOTING report group and the first line number for the PAGE FOOTING
report group on the logical page.

Syntax Rules

1. The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may
be written in any order.

2. page-size must not exceed three significant digits and must be greater than or
equal to footing-line.

heading-line must be greater than or equal to one.
first-detail-line must be greater than or equal to heading-line.
last-detail-line must be greater than or equal to first-detail-line.

footing-line must be greater than or equal to last-detail-line.

NS oe W

The rules in Table 5—6 summarize the rules presented in Appendix D, Report
Writer Presentation Rules and Tables. They indicate the vertical subdivision

5-92 Data Division

PAGE Clause

of the page in which each type of report group may appear when the PAGE
clause is specified.

a. To present a REPORT HEADING report group on a page by itself (NEXT
GROUP NEXT PAGE), define the REPORT HEADING clause to be in the
vertical subdivision of the page extending from heading-line to page-size,
inclusive.

To present a REPORT HEADING report group on a page with other
report groups, define the REPORT HEADING clause to be in the vertical
subdivision of the page extending from heading-line to first-detail-line
minus one, inclusive.

b. A PAGE HEADING clause must be defined in the vertical subdivision
of the page extending from heading-line to first-detail-line minus one,
inclusive.

c. A CONTROL HEADING or DETAIL clause must be defined in the vertical
subdivision of the page extending from first-detail-line to last-detail-line,
inclusive.

d. A CONTROL FOOTING clause must be defined in the vertical subdivision
of the page extending from first-detail-line to footing-line, inclusive.

e. A PAGE FOOTING clause must be defined in the vertical subdivision of
the page extending from footing-line plus one to page-size, inclusive.

f. To present a REPORT FOOTING report group on a page by itself, define
the REPORT FOOTING clause in the vertical subdivision of the page
extending from heading-line to page-size, inclusive.

To present a REPORT FOOTING report group on a page with other report

groups, define the REPORT FOOTING clause in the vertical subdivision
of the page extending from footing-line plus one to page-size.

All report groups must be defined such that they can be presented on one
logical page. The Report Writer Control System (RWCS) never splits a
multiline report group across logical page boundaries.

General Rules

1.

REPORT HEADING and PAGE HEADING report groups may not be
presented on or beyond the first-detail-line.

PAGE FOOTING and REPORT FOOTING report groups must follow the
footing-line.

If the PAGE clause is specified, the following implicit default values are
assumed for any omitted phrases:

If the HEADING phrase is omitted, heading-line equals one.

If the FIRST DETAIL phrase is omitted, first-detail-line equals heading-
line.

c. If the LAST DETAIL and FOOTING phrases are both omitted, last-detail-
line and footing-line equal page-size.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is
omitted, last-detail-line equals footing-line.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is
omitted, footing-line equals last-detail-line.

Data Division 5-93

PAGE Clause

4. If the PAGE clause is omitted, the report consists of a single page of infinite
length with relative line numbering.

5. If a REPORT HEADER report group is to appear on a page with other report

groups, the first line following the heading report groups (REPORT HEADER
and PAGE HEADER) must be blank.

6. If a REPORT FOOTING report group is to appear on a page with other report

groups, the first line preceding the footing report groups (PAGE FOOTING
and REPORT FOOTING) must be blank.

Additional References

e General Rules (Report Description) (General Rule 4) of the LINE NUMBER
(Alpha, 164) clause

e Appendix D, Report Writer Presentation Rules and Tables
Table 5—6 shows the page regions established by the PAGE clause.

5-94 Data Division

Table 5-6 Page Regions Established by the PAGE Clause

PAGE Clause

Report Groups that
Can Be Presented in a
Region

Region Boundaries

First Line Number
of the Region

Last Line Number
of the Region

Line Positioning for the First
Report Group Within the Region

Report Heading
Described with NEXT
GROUP NEXT PAGE

Report Footing
Described with LINE
line-num NEXT PAGE

heading-line

page-size

LINE-NUMBER
plus
heading-line minus 1

Page Heading

Report Heading Not
Described with NEXT
GROUP NEXT PAGE

heading-line

first-detail-line
minus 1

LINE-NUMBER
plus
heading-line minus 1

Control Heading

Detail

first-detail-line

last-detail-line

If LINE-COUNTER is greater
than or equal to first-detail-
line, position on LINE-
COUNTER plus 1

If LINE-COUNTER is less
than first-detail-line, position
on first-detail-line

Control Footing

first-detail-line

footing-line

Same as preceding

Page Footing

Report Footing Not
Described with LINE
line-num NEXT PAGE

footing line

plus 1

page-size

LINE-NUMBER
plus footing-line

Data Division 5-95

PICTURE Clause

PICTURE

Function

The PICTURE clause specifies the general characteristics and editing
requirements of an elementary item, including an elementary screen item.

General Formats

Format 1

PICTURE
{ é v } IS character-string

Format 2 (Screen Section)

USING identifier-3

PICTURE) identifier-4
{ PIC } IS character-string FROM { ltoral-1 }

TO identifier-5

Syntax Rules (Both Formats)
1. You can use the PICTURE clause only for an elementary item.

2. character-string contains allowable combinations of characters in the COBOL
character set. These characters are called the symbols of the PICTURE
character-string.

character-string can contain from 1 to 255 symbols.
4. PIC is an abbreviation for PICTURE.

The asterisk (*), when used as a zero suppression symbol, and the BLANK
WHEN ZERO clause cannot be used in the same entry.

Syntax Rule (Format 1)

6. The PICTURE clause is required for every elementary item except an item
specified by the USAGE IS BINARY-CHAR, BINARY-SHORT, BINARY-
LONG, BINARY-DOUBLE, COMP-1, COMP-2, FLOAT-SHORT, FLOAT-
LONG, FLOAT-EXTENDED, POINTER, or INDEX clause and the subject of
a RENAMES clause. Data description entries for these items cannot contain
a PICTURE clause.

Syntax Rules (Format 2)

7. The PICTURE clause for a numeric screen item must either define a numeric
edited item or must contain only “9”s and an optional “S”.

8. Each PICTURE clause in a screen description entry must contain a FROM or
a TO phrase, or both, or a USING phrase.

9. In a screen description entry, if the PICTURE clause is specified, the VALUE
clause cannot be specified.

10. identifier-3, identifier-4, and identifier-5 must be defined in the File, Working-
Storage, or Linkage Section.

5-96 Data Division

General Rules (Both Formats)

1.

PICTURE Clause

The PICTURE clause categorizes a data item or screen item and determines
what the item can contain. In the case of a PICTURE clause containing

all Xs, the USAGE clause determines whether the item is alphanumeric

or numeric. Table 5-7 shows the valid contents of both character-string
and the item itself for each category. The general rules following this table
supplement the information it contains.

Table 5-7 Summary of PICTURE Clause Rules

Category of

Valid Contents of

Receiving ltem PICTURE of Receiving Item Sending Item Examples
Alphabetic Must contain one or more As. One or more alphabetic AA
characters. A(9)
Numeric Must contain at least one 9. One or more numeric S9(4)V99
May contain P’s, one S, and characters. IPPP
one V. If USAGE IS COMP-5 SPP9
or USAGE IS COMP-X, may
contain all Xs.
Alphanumeric Must contain combinations of =~ One or more characters XX99XX
As, Xs, and 9s. Can be all Xs. in computer character AAXA(4)
Cannot be all As or all 9s. set.
Alphanumeric = Must contain at least one A or One or more characters XXBXXB9(4)
Edited X. Must also contain at least in computer character XX/99/00
one B, 0, or /. Can contain one set. 9(6)/X
or more 9s.
Numeric Must contain at least one 0, One or more numeric w R
Edited B,/, Z, *, +, (comma), ., —, CR, characters. 712.,777/9(4)
DB, or cs. Can contain Ps, $$,$$$DB
9s, and one V. Must describe $9,999CR
1 to 31 digit positions, which 77Z7CR

can be represented by 9s, zero

suppression symbols (Z, *), and

floating insertion symbols (+,
—, €8).

ke skek

Note

COMP-1 and COMP-2 data items are numeric. However, their data
description entries cannot have a PICTURE clause.

In an alphanumeric item definition, each character position is treated as if it
were represented by an X, even though A or 9 may be specified.

Some PICTURE symbols represent character positions and some do not.

An item’s size is determined by adding up all the symbols that represent a
character position. For example, a numeric item with a PICTURE of 999V99
has a size of five characters. The symbol V does not count toward the item’s

size.

Data Division 5-97

PICTURE Clause

character-string can contain a repeat count to represent consecutive
occurrences of the following symbols: A, the comma (,), X, 9, P, Z, *,

B, /, 0, +, —, and the currency symbol (cs). The repeat count must be an
unsigned, nonzero integer enclosed in parentheses. For example, S9(6)V9(4)
is equivalent to S999999V9999. However, character-string can contain no
more than one of the following symbols: S, V, a period (.), CR, and DB.

The PICTURE clause symbols and their functions appear in Table 5-8.

Table 5-8 PICTURE Clause Symbols

Picture Clause
Symbol

Function

A

Represents a character position that can contain only an alphabetic character.
An alphabetic character belongs to the set of characters: A to Z, a to z, and the
space.

Can occur more than once.

Counts toward the size of the item.

Represents a character position into which a space is inserted.
Can occur more than once.

Counts toward the size of the item.

For USAGE IS DISPLAY, represents a character position that can contain
any 2-byte character from the national character set. This is available only if
/NATIONALITY=JAPAN or -nationality japan is specified.

Specifies an assumed decimal scaling position, defining the location of the
decimal point when one is not specified in character-string.

Can occur more than once, but only as a contiguous string of Ps at either the
leftmost or rightmost end (not both) of character-string. The assumed decimal
point character (V) is redundant when specified. However, when it is specified,
V can appear to the left of the leftmost P or to the right of the rightmost P.
Does not count toward the size of the item. However, each P counts toward the
maximum number of digit positions (31) in a numeric or numeric edited item.

Cannot be used if an explicit decimal point (.) appears in character-string.

(continued on next page)

5-98 Data Division

PICTURE Clause

Table 5-8 (Cont.) PICTURE Clause Symbols

Picture Clause
Symbol

Function

In certain operations that refer to an item with P characters in character-
string, the compiler treats each P position as if it contained the value zero. For
example, an item with PICTURE 99PPP can have 100 unique values that range

from 0 to 99,000 (0, 1000, 2000, ..., 99,000). An item with PICTURE PP9 can
have 10 unique values (0, .001, .002,009). These operations are any of the
following:

¢ Any operation requiring a numeric sending operand

e A MOVE statement where the sending operand is
numeric and its PICTURE character-string contains the
symbol P

e A MOVE statement where the sending operand is
numeric edited and its PICTURE character-string
contains the symbol P, and the receiving operand is
numeric or numeric edited

e A comparison operation where both operands are
numeric

In all other operations, the compiler ignores the digit positions specified with
the symbol P and does not count them toward the size of the operand.

Indicates the presence of an operational sign, but does not specify the sign
representation or position.

Can occur only once, as the leftmost character in character-string.

Does not count toward the size of the item unless the data or screen description
entry contains a SIGN IS SEPARATE clause. If the SIGN clause does not
appear in the item’s data description, S is equivalent to SIGN IS TRAILING.

Specifies the location of the assumed decimal point.

Can occur only once.

Does not count toward the size of the item.

Cannot be used if an explicit decimal point (.) appears in the PICTURE.

For USAGE IS DISPLAY, represents a character position that can contain any
character from the computer character set. For USAGE IS COMP-5 or USAGE
IS COMP-X, represents a byte of computer storage.

Can occur more than once.
Counts toward the size of the item.

Represents a leading digit position that is replaced by a space when its value
and the value of the digits to its left are zero.

Can occur more than once.
Counts toward the size of the item.

Use of Z excludes the use of the asterisk (*) for zero suppression and
replacement.

Represents a digit position that can contain only the digits 0 to 9.

(continued on next page)

Data Division 5-99

PICTURE Clause

Table 5-8 (Cont.) PICTURE Clause Symbols

Picture Clause
Symbol Function

Can occur more than once.
Counts toward the size of the item.
0 Represents a character position into which 0 is inserted.
Can occur more than once.
Counts toward the size of the item.
/ Represents a character position into which a slash (/) is inserted.
Can occur more than once.
Counts toward the size of the item.
, Represents a character position into which a comma (,) is inserted. T
Can occur more than once.
Counts toward the size of the item.

Represents a character position into which a decimal point (.) is inserted. It
also represents the decimal point for alignment purposes. T

Can occur only once.
Counts toward the size of the item.
Cannot be used if V or P appears in character-string.
+— Represents the editing sign control symbols, the plus sign (+) and minus sign
(-).
Each can occur more than once.
Each counts as one character toward the size of the item.

character-string can contain either a plus sign (+) or minus (-), but not both.
Also, the use of either character excludes the use of both CR and DB.

CR DB Represents the editing sign control symbols, credit (CR) and debit (DB).
Each can occur only once, as the two rightmost character positions.
Each counts as two characters toward the size of the item.

character-string can contain either CR or DB, but not both. Also, the use
of either excludes the use of the plus sign (+) and minus sign (-) as fixed
insertion characters.

* Represents a leading digit position that is replaced by an asterisk (*) when its
value and the values of all digit positions to its left are zero.

Can occur more than once.
Counts toward the size of the item.

Use of an asterisk (*) excludes the use of Z for zero suppression and
replacement.

tWhen a program contains the DECIMAL POINT IS COMMA clause, the functions and rules for the period (.) and
comma (,) are exchanged. In other words, the rules that apply to the period apply to the comma, and vice versa.

(continued on next page)

5-100 Data Division

PICTURE Clause

Table 5-8 (Cont.) PICTURE Clause Symbols

Picture Clause
Symbol

Function

Ccs

Represents a character position into which the currency symbol is inserted.
This symbol is either the currency sign ($) or the character specified in

the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph or (on
OpenVMS) the character specified at DCL command level in the definition of
the SYS$CURRENCY logical name.

Can occur more than once.
Counts as one character toward the size of the item.

General Rules (Format 2)

6.

10.

11.

12.

13.

The USING, FROM, and TO phrases have meaning only when the screen
item’s name or a screen name in its hierarchy, is specified in an ACCEPT or
DISPLAY statement.

When data is to be transferred to the screen from one data item, possibly
edited, and stored in a different data item, both the FROM and TO phrases
must be used in the PICTURE clause of the screen item.

When data is to be transferred to the screen, possibly modified, and stored in
the same data item (as when reading, modifying, and rewriting records of a
file), the USING phrase must be used in the PICTURE clause of the screen
item.

identifier-3, identifier-4, identifier-5, and literal-1 need not be the same length
as the screen item containing the PICTURE clause.

Transfers between identifier-3, identifier-4, identifier-5, and literal-1, on the
one hand, and the screen item are made in accordance with the rules of the
MOVE statement. (See the MOVE Statement in Chapter 6.)

When the FROM phrase is specified:

a. On DISPLAY statement execution, data is transferred from identifier-4
or literal-1, after being edited in accordance with character-string, and
displayed on the screen. The display begins at the screen position defined
either implicitly or explicitly by the LINE and COLUMN clauses and the
starting screen coordinates specified in the DISPLAY statement.

b. The FROM phrase has no meaning in the execution of an ACCEPT
statement.

When the TO phrase is specified:

a. At ACCEPT statement completion, the data entered into the field on the
screen is transferred to identifier-5, after being edited in accordance with
the picture string specified for identifier-5.

b. The TO phrase has no meaning in the execution of a DISPLAY
statement.

When the USING phrase, or the FROM and TO phrases are specified:

a. On DISPLAY statement execution, data is transferred from identifier-3,
identifier-4, or literal-1 as described in rule 11a above.

Data Division 5-101

PICTURE Clause

b. On ACCEPT statement execution, data is transferred from identifier-
3, identifier-4, or literal-1 as described in rule 11a above. At ACCEPT
statement completion, the data entered into the screen item is transferred
to identifier-3 or identifier-5 as described in rule 12a above.

Editing Rules

1.

There are two PICTURE clause editing methods: insertion editing and
suppression and replacement editing. Each method has the following
variations:

Editing Method Variations in Each Method

Insertion Simple insertion editing, special insertion
editing, fixed insertion editing, or floating
insertion editing

Suppression and Zero suppression and replacement with

Replacement spaces, or zero suppression and replacement
with asterisks

The types of editing that a program can perform on an item depend on the
item’s category:

Valid Editing
Category Types of Editing Characters
Alphabetic None None
Numeric None None
Alphanumeric None None

Alphanumeric Edited Simple insertion 0, B, and /
Numeric Edited All All, subject to Editing Rule 3

Floating insertion editing and editing by zero suppression and replacement
are mutually exclusive. That is, a PICTURE clause can use one type of
editing or the other, but not both.

Furthermore, a PICTURE clause can use only one type of replacement symbol
for zero suppression. The space (Z) and asterisk (*) symbols cannot appear
in the same PICTURE clause.

Simple Insertion Editing

4.

5-102 Data Division

A comma (,) space (B), zero (0), and slash (/) are symbols you can use
in simple insertion editing. They indicate an item position to contain the
character they represent. These symbols count toward the size of the item.

If the comma is the last symbol in character-string, the PICTURE clause must
be the last clause of the data description entry. In this case, a comma followed
by a period (,.) are the last two characters of the data description entry.
However, if the DECIMAL-POINT IS COMMA clause is in the SPECIAL-
NAMES paragraph, the data description entry ends with two consecutive
periods.

PICTURE Clause

Special Insertion Editing

5.

The period (.) is the only symbol used in special insertion editing. It
represents the item position to contain the actual decimal point; however,

it also represents the decimal point for alignment purposes. Therefore, the
assumed decimal point (V) and the actual decimal point (.) cannot be used in
the same character-string. The period counts toward the size of the item.

If the period is the last symbol in character-string, the PICTURE clause
must be the last clause of the data description entry. In this case, the data
description entry ends with two periods. However, if the DECIMAL-POINT
IS COMMA clause is in the SPECIAL-NAMES paragraph, a comma followed
by period (,.) are the last two characters of the data description entry.

Fixed Insertion Editing

6.

The currency symbol (cs) and the editing sign control symbols (+, —, CR, and
DB) are the symbols used in fixed insertion editing. character-string can
contain only one currency symbol and only one of the editing sign control
symbols as fixed insertion characters.

CR and DB each represent two character positions, which must be the two
rightmost positions.

The plus sign (+) and minus sign (-) must be either the leftmost or rightmost
character position that counts toward the size of the item.

The currency symbol (cs) must be the leftmost character position that counts
toward the size of the item; however, a plus sign (+) or minus sign (-) can
precede it.

Fixed insertion editing causes the insertion symbol to occupy the same
position in the edited item as in character-string. Table 5-9 shows that the
results of using editing sign control symbols depend on the item’s value.

Table 5-9 Using Sign Control Symbols in Fixed Insertion Editing

Result
Editing Symbol in ltem ltem
PICTURE Character-String Positive or Zero Negative
+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

7.

The currency symbol (cs), the plus sign (+), and the minus sign (-) are
the symbols used in floating insertion editing. They are mutually exclusive
in character-string. That is, if any floating insertion symbol appears in
character-string, no other floating insertion symbol can appear.

To indicate floating insertion editing, you must use a string of at least two
floating insertion symbols. You can include simple insertion symbols either
within the floating string or immediately to the right of the floating string.
These simple insertion symbols are treated as part of the floating string. That
is, they appear in results only when the value of the item is large enough to
include the position occupied by the simple insertion symbol. You can append

Data Division 5-103

PICTURE Clause

the fixed insertion symbols CR or DB immediately to the right of a floating
string.

The leftmost symbol of the floating insertion string represents the leftmost
position in which a floating insertion character can appear. This character
position cannot be filled by a digit.

The second floating symbol from the left represents the leftmost limit of the
numeric data the item can store. Nonzero numeric characters can replace all
symbols at or to the right of this limit.

You can use the floating insertion symbol in only two ways. It can represent
the following:

a.

b.

Any or all leading numeric character positions to the left of the decimal
point

In this case, run-time results show a single insertion character in the
position immediately preceding either the first nonzero digit in the item or
the decimal point, whichever appears leftmost in the data. For example,
an item whose PICTURE is $$$.99 and whose value is zero appears as
$.00.

All numeric character positions in the PICTURE character-string

In this case, you must specify at least one insertion symbol to the left
of the decimal point. When the item has a nonzero value, run-time
results are the same as when all the insertion symbols are to the left of
the decimal point. However, when the item has a zero value, run-time
results show neither a floating insertion character nor the decimal point.
For example, a item whose PICTURE is $$$.$$ and whose value is zero
appears as spaces.

If the floating insertion symbol is a plus sign (+) or minus sign (-), the
actual character inserted depends on the value of the item. Table 5-10
shows the possible results of using editing sign control symbols in floating
insertion editing.

Table 5-10 Using Sign Control Symbols in Floating Insertion Editing

Result
Editing Symbol in ltem Item
PICTURE Character-String Positive or Zero Negative
+ + -
— space —

5-104 Data Division

To avoid truncation, the minimum size of character-string must be the sum

of:

The number of characters in the sending item

The number of simple, special, or fixed insertion characters edited into
the receiving item

One, for the floating insertion character

PICTURE Clause

Zero Suppression and Replacement Editing

8.

One or more occurrences of the space symbol (Z) or the asterisk (*) define
a floating suppression string, which can suppress leading zeros in numeric
character positions. The space symbol (Z) causes spaces to replace the zeros;
an asterisk (*) causes asterisks to replace the zeros.

The suppression symbols are mutually exclusive. That is, character-string can
contain either the space symbol (Z) or the asterisk (*), but not both.

Each suppression symbol counts toward the size of the item.

You can include simple insertion symbols either within the floating string or
immediately to its right. These simple insertion symbols are treated as part
of the floating string. That is, they appear in results only when the value of
the item is large enough to include a position occupied by a simple insertion
symbol.

You can use zero suppression symbols to represent either:

e Any or all leading numeric character positions to the left of the decimal
point

e All numeric character positions on both sides of the decimal point

For example, both ZZ79.99 and ZZ.ZZ are valid character-strings, but
777.79 is not.

The following actions occur if the suppression symbols represent any or all
leading numeric character positions to the left of the decimal point:

e The replacement character replaces any leading zero in the data that
corresponds to a suppression symbol in the string.

e Suppression ends at either the first nonzero digit in the data represented
by the suppression string or at the decimal point, whichever appears first
in the data.

The following events occur if the suppression symbols represent all numeric
positions in character-string:

e If the value of the data is not zero, the result is the same as if all
suppression symbols were to the left of the decimal point. That is, zeros
to the right of the decimal point are not suppressed.

e If the value is zero and the suppression symbol is a Z, all character
positions in the edited item (including any editing characters) contain
spaces.

e If the value is zero and the suppression symbol is an asterisk (*), all
character positions in the edited item (including any insertion editing
characters other than the decimal point) contain asterisks. The decimal
point appears in the item.

The plus sign (+), minus sign (-), asterisk (*), space (Z), and currency symbol
(cs) are mutually exclusive when they are used as floating replacement
characters. That is, if any one of these symbols appears as a floating
replacement character, none of the other symbols can appear as a floating
replacement character in the same PICTURE clause.

Data Division 5-105

PICTURE Clause

PICTURE Symbol Precedence Rules

1.

5-106 Data Division

character-string must contain either:

At least one of the symbols A, X, Z, 9, or asterisk (*)

At least two of the symbols plus sign (+), minus sign (-), or currency
symbol (cs)

Figure 5-10 summarizes the rules for combining symbols to form character-
strings more complex than the basic possibilities listed in rule 1. The table
shows that the use of one symbol in a character-string excludes the use of
certain others before or after it.

The table uses the following conventions:

A'Y at an intersection means the symbols at the top of the column (First
Symbol) can precede the symbols at the left of the row (Second Symbol).

Braces ({ }) enclose symbols that are mutually exclusive.
The currency symbol appears as cs.

Symbols appear twice in a column or row when their rules of use depend
upon their location in a character-string. These double entry symbols are
as follows:

— Fixed insertion symbols (+ and —)

— Floating symbols Z, asterisk (*), plus sign (+), minus sign (-), and
currency symbol (cs)
- P

The uppermost entry in a column (or the leftmost entry in a row)
represents symbol use left of the actual or implied decimal point position.
The second entry represents symbol use to the right of the decimal point.

Figure 5-10 PICTURE Symbol Precedence Rules

PICTURE Clause

Additional References
e SIGN clause

e MOVE statement in Chapter 6
e ACCEPT statement in Chapter 6
e DISPLAY statement in Chapter 6

Examples

First Nonfloating Floating Other
Symbol Insertion Symbols Insertion Symbols Symbols
Second {+} {+} {CR} (ARVARC B A
Symbol B O / , {yy{ycs | {y{r{r{ircscs |9 SV P
{} -} {DB} {<} {} {-} 3 X
B YYYYYY Y YYYYYY |YY Y Y
O YYYYYY Y YYYYYY |YY Y Y
Non- / YYYYYY Y YYYYYY |YY Y Y
floating |, YYYYYY Y YYYYYY|Y Y Y
Insertion | . Y Y Y'Y Y Y Y Y Y Y
Symbols | {+-}
{+-} Y Y Y Y'Y Y Y'Y Y Y |Y Y Y
{CRDB}|Y Y Y Y Y Y Y'Y Y Y |Y Y Y
CS Y
{Z+ Y'Y YY Y Y Y
Floating | {Z+} YYYYYY Y Y'Y Y Y
Insertion | {+ -} Y Y Y'Y Y Y
Symbols | {+ -} Y YY YY Y Y'Y Y Y
CSs Y'Y YY Y Y
Cs YYYYYY Y'Y Y Y
9 YYYYYY Y Y Y Y Y Y YY Y
AX Y Y Y Y'Y
Other S
Symbols | V Y Y YY Y Y Y Y Y Y Y Y
P Y Y YY Y Y Y Y Y Y Y Y
P Y Y Y Y Y
VM-0595A-Al

The Procedure Division entry for the MOVE statement contains examples that
illustrate this clause.

Data Division 5-107

RECORD Clause

RECORD

Function

The RECORD clause specifies the number of character positions in either a fixed-
or variable-length record. If the number of character positions does not vary,
the RECORD clause specifies the minimum and maximum number of character
positions in a variable-length record.

General Format
Format 1
RECORD CONTAINS | shortest-rec TO | longest-rec CHARACTERS

Format 2
RECORD IS VARYING IN SIZE

[FROM shortest-rec | [TO longest-rec | CHARACTERS
[DEPENDING ON depending-item |

shortest-rec
is an integer that specifies the minimum number of character positions in a
variable-length record. Its value must be greater than or equal to zero.

longest-rec
is an integer greater than shortest-rec. It specifies the maximum number of
character positions in a variable-length record or the size of a fixed-length record.

depending-item

is the data-name of an elementary unsigned integer data item in the Working-
Storage or Linkage Section. It specifies the number of character positions for

an output operation, and it contains the number of character positions after a
successful input operation.

Syntax Rules

1. No record description entry for a file can specify the following:
e Fewer character positions than shortest-rec
e More character positions than longest-rec

2. In a sort-merge file description entry, the first shortest-rec character positions
of the record must be large enough to include all keys specified in any SORT
or MERGE statement for the sort or merge file.

3. For an indexed file, the first shortest-rec character positions of the record
must be large enough to include all record keys.

4. If the DEPENDING ON phrase is present and if the associated file connector
is an external file connector, depending-item must have the external attribute
and must specify the same data-name in all file description entries associated
with the external file connector.

5-108 Data Division

RECORD Clause

General Rules
Both Formats

1.

The absence of a RECORD clause is the same as a Format 1 RECORD clause
with no shortest-rec phrase and with longest-rec equal to the greatest number
of character positions described for any of the file’s records.

The number of characters described by a record description entry is the sum
of both of the following:

e The number of character positions in all elementary items excluding
redefinitions and renamings

e The number of fill bytes added because of alignment requirements

If the record description entry contains a table definition, the sum includes
the number of character positions in the maximum number of table elements.

If the associated file connector is an external file connector, all file description
entries in the run unit associated with that file connector must define the
same values for shortest-rec and longest-rec. If the RECORD clause is not
specified, all record description entries associated with this file connector
must be the same length.

Format 1

4.

If there is no shortest-rec phrase, Format 1 specifies fixed-length records.
longest-rec then specifies the number of character positions in each record of
the file.

If there is a shortest-rec phrase, Format 1 specifies variable-length records,
the same as Format 2 without the DEPENDING phrase.

For variable-length records:

e The maximum record size for a READ or RETURN operation is the
number of character positions described in the largest record description
entry for the file.

¢ During execution of a RELEASE, REWRITE, or WRITE statement, the
number of character positions in a record equals the number of character
positions in the record description entry referred to by the statement.

e If all record description entries for the file describe records of the same
size, RELEASE, REWRITE, and WRITE statements for the file transfer
fixed-length records in variable-length format.

Format 2

7.
8.

10.

Format 2 specifies variable-length records.

If the clause does not contain shortest-rec, the minimum number of character
positions in any of the file’s records is the least number of character positions
described by a record description entry for the file.

If the clause does not contain longest-rec, the maximum number of character
positions in any of the file’s records is the greatest number of character
positions described by a record description entry for the file.

If there is a DEPENDING phrase, the program must set depending-item to
the number of character positions in the record before executing a RELEASE,
REWRITE, or WRITE statement for the file.

Data Division 5-109

RECORD Clause

11.

12.

13.

After successful execution of a READ or RETURN statement for the file, the
value of depending-item indicates the number of character positions in the
accessed record.

The depending-item value is not changed by executions of:
e DELETE and START statements
e Unsuccessful READ and RETURN statements

For RELEASE, REWRITE, and WRITE statement execution, determining
the number of character positions in the record depends partly upon whether
or not the record contains a variable occurrence item (an item described by
the OCCURS clause or one that is subordinate to another item so described).
During execution of these statements, three rules determine the number of
character positions in the record:

e If there is a depending-item, its value specifies the number of character
positions.

e If there is no depending-item and the record does not contain a variable
occurrence item, the number of character positions described by the record
description entry specifies the number of character positions.

e If there is no depending-item and the record contains a variable
occurrence item, the number of character positions is the sum of the
character positions in the fixed part of the record and the table elements
specified by the OCCURS clause depending-item when the output
statement executes.

Additional References

5-110 Data Division

EXTERNAL clause
SYNCHRONIZED clause
USAGE clause

Data Description

RECORD KEY Clause

RECORD KEY

Function

The RECORD KEY clause specifies the Prime Record Key access path to indexed
file records.

General Format

seg-key = {seg} . ..

DESCENDING

RECORD KEY IS { rec-key } | WITH DUPLICATES | [ASCENDING]

rec-key

is the Record Key for the file. It is the data-name of a data item in a record
description entry for the file. It can be qualified, but it cannot be a group item
that contains a variable-occurrence data item. The data item must be described
as one of the following:

e Alphanumeric item

¢ Alphabetic item

e Group item

¢ Unsigned numeric display item
e (COMP-3 integer

e COMP integer

seg-key

is a segmented-key name that represents the concatenation of one or more (up to
eight) occurrences of seg.

seg

is the data-name of a data item in a record description entry for the file. It can be
qualified, but it cannot be a group item that contains a variable-occurrence data
item. The data item must be described as one of the following:

e Alphanumeric item

¢ Alphabetic item

e Group item

¢ Unsigned numeric display item

Syntax Rule

The RECORD KEY clause is required for indexed files. It can be in either the file
description entry or in the file’s Environment Division SELECT clause. However,
it cannot be in both the SELECT clause and the file description entry for the
same file.

General Rules

1. seg-key is the concatenation of all specified key segments in the order
specified.

2. seg-key can be referenced only in a READ (Format 3) or START statement.
The RECORD KEY clause specifies the Prime Record Key for a file.

4. The order of keys, whether ASCENDING or DESCENDING, must be the
same as the order used when the file was created.

Data Division 5-111

RECORD KEY Clause

Each key can be specified as ASCENDING or DESCENDING (ASCENDING
is the default). In an ASCENDING key, lower key values occur toward the
beginning of the sorted file. In a DESCENDING key, higher key values occur
toward the beginning of the sorted file.

The data description of rec-key, or the segments of seg-key, and their relative
locations in the record, must be the same as those used when the file was
created.

Only one record description entry for the file must describe rec-key or the
segments of seg-key. The Prime Record Key has the same character positions
in every record of the file.

If the associated file connector is an external file connector, all File
Description entries in the run unit that are associated with that file connector
must define the same data description entry for rec-key or the segments of
seg-key with the same relative location within the record.

The DUPLICATES phrase specifies that two or more records in the file can
have duplicate values in the same rec-key or the segments of seg-key. If
there is no DUPLICATES phrase, two records cannot have the same value in
corresponding Prime Record Key.

On OpenVMS, if the program was compiled with the /CHECK=DUPLICATE_
KEYS qualifier on the command line, and the duplicate key specification on a
file’s FD (in other words, specified in the WITH DUPLICATES phrase) does
not match that of the actual file, a run-time diagnostic will be issued when an
attempt is made to open the file with an OPEN statement. ¢

On Tru64 UNIX systems, DUPLICATES must match the specification for
DUPLICATES when the file is created, unless the relaxed key check option is
used. ¢

Additional Reference

5-112 Data Division

ALTERNATE RECORD KEY

REDEFINES Clause

REDEFINES

Function

The REDEFINES clause allows different data description entries to describe the
same storage area.

General Format

data-name

level-number [FILLER

] REDEFINES other-data-item

other-data-item
is a data-name. It identifies the data description entry that first defines the
storage area.

Note

Level-number, data-name, and FILLER are not part of the REDEFINES
clause. They are included in the general format only to clarify the relative
position of the clause.

Syntax Rules

1. The subject of the REDEFINES clause is the data-name or FILLER in a
Format 1 data description entry.

2. The REDEFINES clause must immediately follow its subject.

3. The level-numbers of the subject of the REDEFINES clause and other-data-
item must be the same. However, they cannot be either 66 or 88.

4. The REDEFINES clause cannot be used in a level 01 entry in the File Section.

The data description entry for other-data-item cannot contain an OCCURS
clause. However, other-data-item can be subordinate to an item whose data
description entry contains an OCCURS clause. In that case, the reference to
other-data-item in the REDEFINES clause cannot be subscripted or indexed.

6. Neither the original definition nor the redefinition can contain a variable
occurrence data item.

7. 1If other-data-item is either an external record or anything other than a level
01 entry, the number of character positions it contains must be greater than
or equal to the number in the subject of the REDEFINES clause. If other-
data-item is a level 01 entry, and is not an external record, its description
need not follow this rule; that is, other-data-item can contain fewer character
positions than the subject of the REDEFINES clause.

8. Other-data-item cannot be qualified even if it is not unique. The reference to
other-data-item is unique without qualification because of the placement of
the REDEFINES clause.

9. A program can have multiple redefinitions of the same character positions.
However, they must all refer to other-data-item, the data-name that originally
defined the area.

10. The redefining entries cannot contain VALUE clauses except in condition-
name entries.

Data Division 5-113

REDEFINES Clause

11. No entry with a level-number lower than that of other-data-item can occur
between the data description entry for other-data-item and the redefinition.

12. The entries redefining the storage area must immediately follow those
that originally defined it. There can be no intervening entries that define
additional storage areas.

General Rules

1. Storage allocation starts at the location of other-data-item. Storage allocation
continues until it defines the number of character positions in the data item
referred to by the subject of the REDEFINES clause.

2. If more than one data description entry defines the same character position,
the program can refer to the character position using the data-name
associated with any of those data description entries.

Additional References
e Data Description entry
e Section 5.2.3, Additional Alignment Rules for Record Allocation

Example
This example shows the following:

e A sample program containing multiple redefinitions of the same area
¢ The results of the sample program statements

e The allowable subscripts and the contents for each data item in the program

5-114 Data Division

i el
CIBWNROWVOJAUTIEWN

REDEFINES Clause

IDENTIFICATION DIVISION.
PROGRAM-ID. REDEFINES-TEST.
DATA DIVISION.
WORKING-STORAGE SECTION.

01

01
01

ITEMA.

03 FILLER PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".

03 FILLER PIC X(10) VALUE "0123456789".
REDEFINES ITEMA.
03 ITEMB OCCURS 36 TIMES PIC X.
REDEFINES ITEMA.
03 ITEMC.
05 ITEMD OCCURS 26 TIMES PIC X.
03 REDEFINES ITEMC.
05 ITEME OCCURS 13 TIMES.
07 ITEMF PIC XX.
07 REDEFINES ITEMF.
09 ITEMG PIC X.
09 ITEMH PIC X.

03 TITEMI.
05 ITEMJ OCCURS 5 TIMES PIC XX.
PROCEDURE DIVISION.

XXX.
RESULTS
DISPLAY ITEMA. ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
DISPLAY ITEMB(1). A
DISPLAY ITEMB(26). z
DISPLAY ITEMB(27). 0
DISPLAY ITEMB(36). 9
DISPLAY ITEMC. ABCDEFGHIJKLMNOPQRSTUVWXYZ
DISPLAY ITEMD(1). A
DISPLAY ITEMD(26). z
DISPLAY ITEME(1). AB
DISPLAY ITEME(13). YZ
DISPLAY ITEMF(1). AB
DISPLAY ITEMF(13). YZ
DISPLAY ITEMG(1). A
DISPLAY ITEMG(13). Y
DISPLAY ITEMH(1). B
DISPLAY ITEMH(13). z
DISPLAY ITEMI. 0123456789
DISPLAY ITEMJ(1). 01
DISPLAY ITEMJ(5). 89
STOP RUN.

ZK-1425A-GE

Data Division 5-115

REDEFINES Clause

Name Item Contents and Subscript Range

ITEMA [ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

111111111122222222223333333
12345678901234567890123456789012345¢6
ITEMB |A|B|C|D|E(F|G[H|I[J|K|L|MIN|O|P|Q|R|S|T[U[V[W|X|Y|Z]|0]|1]|2]|3|4|5|6|7|8(9
ITEMC |ABCDEFGHIUKLMNOPQRSTUVWXYZ *
11111111 112222222
1234567890123456789012345¢6
ITEMD |A|B|C|D(E|F|G[H|I |J|K|LIM[N[O|P|Q|R|S|T|U|V[W|X]|Y|Z
1 2 3 4 5 6 7 8 9 10 11 12 13
ITEME |AB|CD|EF|GH]| IJ |KL [MN|OP|QR|ST |UV|WX|YZ
1 2 3 4 5 6 7 8 9 10 11 12 13
ITEMF |AB|CD|EF|GH| IJ |KL IMN|OP|QR|ST |UV|WX|YZ
1111
1234567890123
ITEMG |A|C|E|G|I |KIM|O|Q[S|U|W]Y
1111
1234567890123
ITEMH |BID|FIH[J|LIN[P|R[T|V|X|Z
ITEMI |0123456789| ~
1 2 3 4 5
ITEMJ |[01]|23]|45|67 |89
* Subscript Not Applicable
ZK-6153-GE

5-116 Data Division

RENAMES Clause

RENAMES

Function

The RENAMES clause groups elementary items in alternative or overlapping
ways.

General Format

THRU
66 new-name RENAMES rename-start { THROUGH } rename-end

new-name
is the data-name of the item being described. It identifies an alternate grouping
of one or more items in a record.

rename-start
is the data-name of the leftmost data item in the area. It can be qualified.

rename-end
is the data-name of the rightmost data item in the area. It can be qualified.

Note

Level-number 66 and new-name are not part of the RENAMES clause.
They are in the general format only to clarify the relationship.

Syntax Rules
1. A logical record can have any number of RENAMES entries.

2. All RENAMES entries referring to data items in a logical record must
immediately follow the last data description entry of the record description
entry.

The program cannot qualify data-names with new-name.

4. The program can qualify new-name only by the names of the associated level
01, FD, or SD entries.

5. The data description entries for rename-start and rename-end:
e (Cannot have an OCCURS clause

e (Cannot be subordinate to an item whose data description entry has an
OCCURS clause

6. rename-start and rename-end must be the names of elementary items or
groups of elementary items in the same logical record. They cannot be the
same data-name.

7. Alevel 66 entry cannot rename another level 66 entry. Nor can it rename a
level 88, level 01, or level 77 entry.

8. None of the items in the range, including rename-start and rename-end, can
be variable occurrence data items.

9. The words THRU and THROUGH are equivalent.

Data Division 5-117

RENAMES Clause

10. rename-end cannot be subordinate to rename-start. The beginning of rename-
end cannot be to the left of the beginning of rename-start. The end of
rename-end must be to the right of the end of rename-start.

General Rules
1. If rename-end is used, new-name includes all elementary items:

e Starting with rename-start, if rename-start is an elementary item or the
first elementary item in rename-start, or if rename-start is a group item

e Ending with rename-end, if rename-end is an elementary item or the last
elementary item in rename-end, or if rename-end is a group item

2. If rename-end is not used, all data attributes for rename-start become data
attributes for new-name. In this case, you are renaming a single data item. If
that item is a group item, new-name is also treated as a group item. If that
item is an elementary item, new-name is also treated as an elementary item.

Additional Reference
Data Description

Example

In the following example, the box RESULTS displays the values given when using
the RENAMES clause:

WORKING-STORAGE SECTION.

01 AA.
02 BB PIC XX VALUE "$$".
02 F PIC X VALUE "=".
66 B-CODE RENAMES BB.

01 A.
02 B PIC XX VALUE "1-".
02 C PIC XX VALUE "2-".
02 D PIC XX VALUE "3-".
02 E PIC X(9) VALUE "Blast Off".
66 F RENAMES B THROUGH E.
PROCEDURE DIVISION. RESULTS
000-BEGIN.
DISPLAY BB. $$
DISPLAY B-CODE. $$
DISPLAY B. 1-
DISPLAY C. 2-
DISPLAY D. 3-
DISPLAY E. Blast Off
DISPLAY F OF A. 1-2-3-Blast Off
STOP RUN.

ZK-1424A-GE

5-118 Data Division

REPORT Clause

REPORT

Function

The REPORT clause in a file description entry (FD) specifies the Report
Description (RD) report names that comprise a report file.

General Format

{ REPORT IS

REPORTS ARE } { report-name } ...

Syntax Rules

1. Each report-name in the REPORT clause must be the subject of a Report
Description entry (RD) in the Report Section of the same program. report-
name can appear in only one REPORT clause.

2. report-names can appear in any order.

3. The file-name in a file description entry for a Report File can be referenced
only by the OPEN statement with the OUTPUT or EXTEND phrase or by the
CLOSE statement.

General Rules

1. More than one report-name in a REPORT clause indicates that the file
contains more than one report.

2. After executing an INITIATE statement and before executing a TERMINATE
statement for the same report file, the report file is under the control of the
Report Writer Control System (RWCS). While a report file is under control of
the RWCS, no input/output statement may reference that report file.

3. If the associated file connector is an external file connector, every file
description entry in the run unit associated with that file connector must
describe it as a report file.

Technical Note

On OpenVMS, the DCL PRINT command inserts a form-feed character when a
form is within four lines from the bottom. This positions the report to the top of
the next logical page.

Report Writer files are written in print format. Line spacing positions the report
to the top of the next logical page.

Therefore, use the PRINT/NOFEED command to suppress the insertion of form-
feed characters and to print your Report Writer files correctly. For example:

$ PRINT/NOFEED full-file-name ¢
Additional References

e FD (File Description)
e RD (Report Description)

Data Division 5-119

REQUIRED Clause

REQUIRED (Alpha, 164)

Function
The REQUIRED clause specifies that in the context of an ACCEPT statement,

the

user must enter at least one character in the input or update field.

General Format

REQUIRED

Syntax Rule
The REQUIRED clause cannot be specified in the description of a literal screen
item.

General Rules

1.

7.

If the REQUIRED clause is specified at group level, it applies to each input
and update screen item in that group.

The REQUIRED clause takes effect during the execution of any ACCEPT
statement when the cursor enters the screen item. Until this clause

is satisfied, the operator cannot leave the field and normal terminator
keystrokes are rejected.

To satisfy this clause, alphanumeric screen items must contain at least one
nonspace character, and numeric screen items must have a nonzero value.

For update fields, the REQUIRED clause can be satisfied by the contents
of the identifier or literal referenced in the FROM or USING phrase of the
PICTURE clause, as well as by operator-keyed data.

The REQUIRED clause is not effective if a function key is used to terminate
the accept operation.

The specification of the FULL and REQUIRED clauses together requires that
the field must always be filled entirely by the user.

The REQUIRED clause is ignored for an output field.

Additional Reference
ACCEPT statement in Chapter 6 ¢

5-120 Data Division

REVERSE-VIDEO Clause

REVERSE-VIDEO (Alpha, 164)

Function

The REVERSE-VIDEO clause specifies that the field is displayed with the default
or specified foreground and background colors exchanged.

General Format

REVERSE-VIDEO
Syntax Rule
The REVERSE-VIDEO clause can be specified only for elementary screen items.
Additional Reference
e ACCEPT statement in Chapter 6
e DISPLAY statement in Chapter 6 ¢

Data Division 5-121

SECURE Clause

SECURE (Alpha, 164)

Function
The SECURE clause suppresses the display of input characters on the screen.

General Format

SECURE

Syntax Rule
The SECURE clause can only be specified for an input screen item.

General Rules

1. If the SECURE clause is specified at group level, it applies to each input
screen item in that group.

2. When the SECURE clause is used, characters introduced for the input field
do not appear on the screen, yet the cursor moves as usual.

Additional Reference
ACCEPT statement in Chapter 6 ¢

5-122 Data Division

SIGN Clause

SIGN

Function

The SIGN clause specifies the operational sign’s position and type of
representation.

For screen description entries, the SIGN clause specifies the position of the sign
character in the field. The sign character always occupies a separate position in
the field, regardless of whether or not you specify SEPARATE.

General Formats

Format 1 (Data Description and Screen Description Entries)

LEADING
TRAILING

[SIGN IS]{ }[SEPARATE CHARACTER |

Format 2 (Report Group Description Entries)

[SIGNIS] { %’E{':ﬁ_lli;l\l% } SEPARATE CHARACTER

Syntax Rules
Format 1

1. The SIGN clause can be used only in a numeric data description entry or
screen description entry whose PICTURE contains the S symbol, or for a
group item containing such entries.

2. The data items to which the SIGN clause applies must have display usage.

3. If a file description entry has a CODE-SET clause, all signed numeric data
description entries associated with the file description entry must contain the
SIGN IS SEPARATE clause.

General Rules
Both Formats

1. The SIGN clause specifies the operational sign’s position and type of
representation. It applies to a numeric data description entry or screen
description entry or to each numeric data description entry or screen
description entry subordinate to a group.

2. The SIGN clause applies only to numeric data description entries or screen
description entries whose PICTURE clause contains the S symbol. S indicates
the presence of an operational sign. However, S does not specify the sign’s
representation or, necessarily, its position.

3. If you specify the SIGN clause for both a group item and a group item
subordinate to it, the SIGN clause for the subordinate group overrides the
group item SIGN clause.

4. If you specify the SIGN clause for both a group item and an elementary
numeric item subordinate to it, the SIGN clause for the elementary item
overrides the group item SIGN clause.

Data Division 5-123

SIGN Clause

A numeric data description entry or screen description entry to which no
optional SIGN clause applies, but whose PICTURE contains an S symbol, has
an operational sign.

The numeric data description entry is equivalent to an entry that contains
the SIGN IS TRAILING clause without the SEPARATE CHARACTER
phrase.

The screen description entry is equivalent to an entry that contains the
SIGN IS TRAILING with the SEPARATE CHARACTER phrase.

If you specify the SEPARATE CHARACTER phrase (or it is implied):

The operational sign is the leading (or trailing) character of the
elementary numeric data item. The sign does not share this position
with a digit.

The S symbol in the PICTURE counts toward data or screen item size.
That is, it represents a character position.

The operational sign for positive is the plus sign (+).

The operational sign for negative is the minus sign (-).

Every numeric data item whose PICTURE contains the S symbol is a signed
numeric data item. If you specify the SIGN clause for such an item, necessary
conversions for computations or comparisons occur automatically.

Format 1 (Data Description)
If you do not specify the SEPARATE CHARACTER phrase:

8.

The operational sign is associated with the leading (or trailing) digit
position of the elementary numeric item. The sign shares this character
position with a digit.

The S symbol in the PICTURE does not count toward the size of the item.
That is, it does not represent a character position.

The character in the operational sign position represents both a numeric
digit and the item’s algebraic sign. Table 5—-11 shows the characters
representing positive and negative signs for all numeric digits. Where
more than one character appears, the first is the character generated as
the result of machine operations.

Table 5-11 Positive and Negative Signs for All Numeric Digits

Digit Values Positive Sign Negative Sign

S O W N = O

5-124 Data Division

L[L?2, 0or0
Aorl
Bor 2
Cor3
Dor4
Eor5
For6

——

, 1,5, or!

oczZzzgtER™

(continued on next page)

SIGN Clause

Table 5-11 (Cont.) Positive and Negative Signs for All Numeric Digits

Digit Values Positive Sign Negative Sign
7 Gor7 P
8 Hor 8 Q
9 Tor9 R

Data Division 5-125

SOURCE Clause

SOURCE

Function

The SOURCE clause identifies a data item to be sent to an associated printable
item defined within a Report Group Description entry.

General Format
SOURCE IS source-id

source-id

names an elementary item in the Data Division.

Syntax Rules

1. If source-id is a Report Section item it must be either:
e A PAGE-COUNTER
e A LINE-COUNTER

¢ A sum counter that is part of the report within which the SOURCE clause
appears

2. The Report Writer Control System (RWCS) moves the contents of source-id to
the printable item. source-id definitions must conform to the rules for sending
items in the MOVE statement.

General Rule

The RWCS executes implicit MOVE statements specified by the SOURCE clauses
when it formats the print lines (just before it presents them).

Additional References

e COLUMN NUMBER clause (printable item)
e TYPE clause

e MOVE statement in Chapter 6

5-126 Data Division

SUM Clause

SUM

Function

The SUM clause establishes a Report Writer sum counter and names the data
items to be summed.

General Format
SUM { sum-name } ... [UPON [detail-report-group-name | ...

RESET ON { control-foot-name }

FINAL

sum-name

names a numeric data item with an optional sign in the Subschema, File,
Working-Storage, or Linkage Sections, or another sum counter in the Report
Section.

detail-report-group-name
names a DETAIL report group.

control-foot-name
must reference a control-name in the report’s CONTROL clause.

Syntax Rules
1. A SUM clause can appear only in the description of a CONTROL FOOTING
report group.

2. If there is no UPON phrase, any sum-name in the SUM clause that is itself
a sum counter must be defined either in the same report group that contains
this SUM clause or in a report group at a lower level in the control hierarchy
of this report.

If there is an UPON phrase, sum-name must not reference a sum counter.
3. If the associated report file connector is an external file connector and if
sum-name references a numeric data item in the Subschema, File, Working-

Storage, or Linkage Sections, then sum-name must reference the same
external data item in all programs in the run unit.

4. detail-report-group-name must be a control-name in a CONTROL clause and
must be the name of a DETAIL report group described in the same report as
the CONTROL FOOTING report group in which the SUM clause appears.

5. detail-report-group-name may be qualified by a report-name.

6. control-foot-name must not be at a lower control level than the associated
control level for the report group in which the RESET phrase appears.

If FINAL appears in the RESET phrase, FINAL must also appear in the
CONTROL clause for this report.

7. The highest permissible qualifier for sum-name is the report-name.

Data Division 5-127

SUM Clause

General Rules

1.

10.

The SUM clause establishes a sum counter. At run time, the Report Writer
Control System (RWCS) adds the value in each sum-name to the sum counter.
This addition is consistent with the rules for arithmetic statements.

The UPON phrase provides for selective subtotalling. Subtotalling occurs
each time the RWCS processes the DETAIL report group referenced by
detail-report-group-name.

If there is a RESET phrase, the RWCS will set the sum counter to zero when
the RWCS is processing the designated level of control hierarchy. If there

is no RESET phrase, the RWCS will set the sum counter in the CONTROL
FOOTING report group to zero when the RWCS processes that report group.

The RWCS initially sets sum counters to zero during the execution of the
INITIATE statement for the report containing the sum counter.

The size of the sum counter is equal to the number of receiving character
positions defined in the PICTURE clause that accompanies the SUM clause in
the description of the elementary item.

Only one sum counter exists for an elementary report entry, regardless of the
number of SUM clauses specified in the elementary report entry.

If the elementary report entry for a printable item contains a SUM clause,
the sum counter serves as a source data item. On a control break, the RWCS
moves the data from the sum counter to the printable item for presentation
according to the rules of the MOVE statement.

If a data-name appears as the subject of an elementary report entry that
contains a SUM clause, the data-name is the name of the sum counter; the
data-name is not the name of a printable item that the entry may also define.

Procedure Division statements can alter the contents of sum counters.

During the execution of GENERATE and TERMINATE statements, the
RWCS adds the values in sum-name to a sum counter.

The RWCS adds each individual sum-name into the sum counter when it
processes the CONTROL FOOTING report group defining the sum counter.

Technical Notes

5-128 Data Division

The three categories of sum counter accumulation are as follows:
— Subtotalling
— Crossfooting

— Rolling forward

Subtotalling occurs only during execution of GENERATE statements and
after any control break processing but before processing of the DETAIL
report group. Crossfooting and rolling forward occur during the processing of
CONTROL FOOTING report groups.

Subtotalling accumulates numeric data fields (sum-names) into a sum counter.
sum-name must not reference a sum counter when subtotalling. If the

SUM clause contains the UPON phrase, sum-names are subtotalled when

a GENERATE statement executes for a DETAIL report group. If there is no
UPON phrase, sum-names are subtotalled when any GENERATE data-name
statement is executed for the report in which the SUM clause appears.

SUM Clause

¢ Crossfooting accumulates sum counters (sum-name) from the same CONTROL
FOOTING report group into another sum counter. It is a horizontal sum of
sums.

Crossfooting occurs when a control break takes place and when the
CONTROL FOOTING report group is processed.

Crossfooting is performed according to the sequence in which sum counters
are defined within the CONTROL FOOTING report group. That is, all
crossfooting into the first sum counter defined in the CONTROL FOOTING
report group is completed, and then all crossfooting into the second sum
counter defined in the CONTROL FOOTING report group is completed. This
procedure repeats until all crossfooting operations are completed.

When one of the sum-names is the sum counter defined by the Data
Description entry in which that sum clause appears, the initial value of
that sum counter is used in the summing operation.

¢ Rolling forward accumulates sum counters (sum-name) defined in lower level
CONTROL FOOTING report groups into another sum counter. It is a vertical
sum of sums. A sum counter in a lower level CONTROL FOOTING report
group is rolled forward when a control break occurs and at the time the lower
level CONTROL FOOTING report group is processed.

e If two or more sum-names specify the same sum counter, then the sum
counter is added as many times as the sum counter is referenced in the SUM
clause. It is permissible for two or more of the sum-names to specify the same
DETAIL report group. When a GENERATE data-name statement for such a
DETAIL report group is given, the incrementing occurs repeatedly, as many
times as the sum-name appears in the UPON phrase.

Additional References

e GENERATE statement in Chapter 6

e TYPE clause

e Section 6.6.1, Arithmetic Operations

e Section 6.6.7, Overlapping Operands and Incompatible Data

Data Division 5-129

SYNCHRONIZED Clause

SYNCHRONIZED

Function

The SYNCHRONIZED clause specifies elementary item alignment on word
boundary offsets relative to a record’s beginning. These offsets are related to the
size and usage of the item being stored.

General Format

SYNCHRONIZED LEFT
SYNC RIGHT

Syntax Rules

1. SYNC is an abbreviation for SYNCHRONIZED.

2. The SYNCHRONIZED clause can be used only for an elementary item.
General Rules

1. The SYNCHRONIZED clause aligns a data item in a record so that no other
data item occupies any character positions between the required boundaries
to the left and right of the data item.

2. If the number of character positions needed to store the data item is less than
the number of positions between the required boundaries, no other data items
occupy the unused positions.

However, the unused character positions are included in the size of those
group items:

e To which the elementary item belongs

e In which the elementary item is not the first subordinate item

The first elementary item in a group item always aligns on the same
boundary as the group item. In this case, any unused character positions
do not affect the size of that group item.

3. The size of a SYNCHRONIZED data item equals the number of character
positions between its natural boundaries. Therefore, the LEFT and RIGHT
phrases have the same effect; they are equivalent to each other, and to the
SYNCHRONIZED clause with neither the LEFT nor RIGHT phrases.

4. The SYNCHRONIZED clause does not change the size or operational sign
position of the data item it specifies.

5. Each occurrence of the data item is synchronized if the clause applies to a
data item whose data description entry also has an OCCURS clause, or to a
data item subordinate to another data item whose data description entry has
an OCCURS clause.

Technical Notes

e The SYNCHRONIZED clause does not affect the alignment of DISPLAY data
items.

e The SYNCHRONIZED clause explicitly aligns COMP, COMP-1, COMP-2,
POINTER, and INDEX data items on boundaries that are related to the size
of the item.

5-130 Data Division

SYNCHRONIZED Clause

One word COMP items are aligned on 2-byte boundaries, longword items on
4-byte boundaries, and quadword items on 8-byte boundaries. All boundaries
are relative to the beginning of the record containing the data item.

e The following table shows the alignment for each data type that the
SYNCHRONIZED clause affects:

Data Type Boundary

COMP (1 to 4 digits) 2-byte

COMP (5 to 9 digits) 4-byte

COMP (10 to 18 digits) 8-byte

COMP (19 to 31 digits) 16-byte

COMP-1 4-byte

COMP-2 8-byte

INDEX 4-byte

POINTER 4-byte (OpenVMS)
POINTER 8-byte (Tru64 UNIX)

Additional Reference

Section 5.2.3, Additional Alignment Rules for Record Allocation

Data Division 5-131

TYPE Clause

TYPE

Function

The TYPE clause identifies the report group type and indicates when the Report
Writer Control System (RWCS) is to process it.

General Format

REPORT HEADING
RH

PAGE HEADING
m

CONTROL HEADING control-head-name
CH FINAL

TAIL }

ONTROL FOOTING control-foot-name
F FINAL

TYPE IS

c
CF

PAGE FOOTING
E

—N N N
|U‘U
mjm

REPORT FOOTING
RF

control-head-name
names a control-name in the CONTROL clause.

control-foot-name
names a control-name in the CONTROL clause.
Syntax Rules

1. RH is an abbreviation for REPORT HEADING.
PH is an abbreviation for PAGE HEADING.
CH is an abbreviation for CONTROL HEADING.
DE is an abbreviation for DETAIL.
CF is an abbreviation for CONTROL FOOTING.
PF is an abbreviation for PAGE FOOTING.
RF is an abbreviation for REPORT FOOTING.

2. These report groups may appear no more than once in the description of a
report:

e REPORT HEADING

e PAGE HEADING

e CONTROL HEADING FINAL
e CONTROL FOOTING FINAL
e PAGE FOOTING

e REPORT FOOTING

5-132 Data Division

TYPE Clause

The TYPE DETAIL report group may appear more than once in the
description of a report.

If the TYPE clause specifies a CONTROL HEADING or CONTROL FOOTING
report group, the control-head-name, control-foot-name, or FINAL entries
must be specified in the CONTROL clause of the corresponding Report
Description entry. For each control-name or FINAL phrase in the CONTROL
clause of a Report Description entry, you can specify one CONTROL
HEADING report group and one CONTROL FOOTING report group.
However, the RWCS does not require either a CONTROL HEADING report
group or a CONTROL FOOTING report group for each control-name or
FINAL phrase in the CONTROL clause of a Report Description.

PAGE HEADING and PAGE FOOTING report groups may appear only if the
corresponding Report Description entry specifies a PAGE clause.

In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT
FOOTING report groups, SOURCE clauses and USE statements must not
reference any of the following:

e Formats 2 and 3 Report Group Description data items containing a control
data item

e Data items subordinate to a control data item

e A redefinition or renaming of any part of a control data item

In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses
and USE statements must not reference either control-head-name or control-
foot-name.

When the Procedure Division specifies a GENERATE report-name statement,
the corresponding Report Description entry must define no more than

one DETAIL report group. If there are no GENERATE group-data-name
statements in the Procedure Division, the RWCS does not require a DETAIL
report group. If there are multiple TYPE DETAIL report groups in the report,
the GENERATE group-data-name statement must be used.

General Rules

1.

The Report Writer Control System (RWCS) processes DETAIL report groups

as a direct result of the GENERATE statement. If a report group specified in
the GENERATE statement is not a TYPE DETAIL report group, a summary

report is produced. If a report group specified in the GENERATE statement

is a TYPE DETAIL report group, a detailed report is produced.

The RWCS executes the following procedures (a to f) when it processes a
DETAIL report group in response to a GENERATE statement.

When the description of a report includes exactly one DETAIL report group,
the detail-related processing that the RWCS executes in response to a
GENERATE report-name statement is described in procedures a to d. The
RWCS performs these procedures as though a GENERATE group-data-name
statement were being executed.

When the description of a report includes no DETAIL report groups,

the detail-related processing that the RWCS executes in response to a
GENERATE report-name statement is described in procedures a and b. These
procedures are performed as though the description of the report included

Data Division 5-133

TYPE Clause

5-134 Data Division

exactly one DETAIL report group, and a GENERATE detail-report-group
statement were being executed.

The RWCS performs any control break processing.

The RWCS performs any subtotalling that has been designated for the
DETAIL report group.

If there is a USE BEFORE REPORTING procedure referring to the
data-name of the report group, the RWCS executes the USE procedure.

If a SUPPRESS statement has been executed, or if the report group is not
printable, no further processing is done for the report group.

If the RWCS processes a DETAIL report group as a consequence of the
GENERATE report-name statement, no further processing is done for the
report group.

If neither procedure d nor procedure e applies, the RWCS formats the
print lines and presents the DETAIL report group.

To detect and trigger control breaks for a specific report, the RWCS:

a.

e.

Establishes the initial values of control data items as the prior values
when the INITIATE statement executes.

Compares the prior values to the current values of control data items
when a GENERATE statement executes. If the current values do not
compare to the prior values, a control break occurs. If a control break
occurs, the current values are saved as prior values and steps ¢, d, and e
are performed.

Presents the CONTROL FOOTING and CONTROL HEADING report
groups associated with the control break. The CONTROL FOOTING
report groups presented are at a less major level than the level at which
the control break occurred. The CONTROL HEADING report groups
presented are in the order of major level to break level.

Processes any PAGE HEADING and PAGE FOOTING report groups when
it must start a new page to present a CONTROL HEADING, DETAIL, or
CONTROL FOOTING.

Repeats steps b, ¢, and d until the last control break is processed.

The prior values (refer to General Rule 3) may be referenced by the program:

During the control break processing of a CONTROL FOOTING report
group. Any references to control data items in a USE procedure or
SOURCE clause associated with that CONTROL FOOTING report group
are supplied with prior values.

When a TERMINATE statement executes. The RWCS makes the prior
values available to the SOURCE clause or the USE procedure references
in CONTROL FOOTING report groups as though the control break had
been detected in the highest control data-name.

At the time the RWCS processes the report group. All other data item
references within report groups and their USE procedures access the
current values contained within the data items.

The RWCS presents the REPORT HEADING report group only once for each
report, as the first report group of that report. It is processed when the first
GENERATE statement is executed.

10.

11.

TYPE Clause

The RWCS presents the PAGE HEADING report group as the first report
group on each page of the report, except for the following conditions:

e A page containing only a REPORT HEADING report group.
e A page containing only a REPORT FOOTING report group.

e A page containing a REPORT HEADING report group that is not the only
report group on the page. In this case, the PAGE HEADING report group
is the second report group on the page.

The RWCS processes the CONTROL HEADING report group at the end of a
control break for a specific control-head-name.

The CONTROL HEADING FINAL report group is presented only once for
each report, as the first body group (CONTROL HEADING, DETAIL, and
CONTROL FOOTING) of that report. Other CONTROL HEADING report
groups are presented when the RWCS detects a control break on the control-
head-name during the execution of GENERATE statements. Control break
processing for any CONTROL HEADING report group occurs with the highest
control level of the break and includes all lower levels.

The RWCS presents CONTROL FOOTING report group at the beginning of a
control break for a specific control-foot-name.

The CONTROL FOOTING FINAL report group is presented only once

for each report, as the last body group (CONTROL HEADING, DETAIL,

and CONTROL FOOTING) of that report. If, during the execution of a
GENERATE statement, the RWCS detects a control break, control break
processing for any CONTROL FOOTING report group occurs with the highest
control level of the break and includes all lower levels. Upon execution of
the TERMINATE statement, the RWCS processes all CONTROL FOOTING
report groups if the GENERATE statement has executed at least once.

The RWCS processes the PAGE FOOTING report group as the last report
group on each page of the report, except for the following conditions:

e A page containing only a REPORT HEADING report group.
e A page containing only a REPORT FOOTING report group.

e A page containing a REPORT FOOTING report group that is not to be the
only report group on the page. In this case, the PAGE FOOTING report
group is the second to the last report group on the page.

The RWCS processes the REPORT FOOTING report group, if defined,
only once per report and as the last report group of that report. During
the execution of a TERMINATE statement, the RWCS processes the
corresponding REPORT FOOTING report group if at least one GENERATE
statement is executed for the report.

The RWCS checks for these three conditions before it processes a REPORT
HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or a
REPORT FOOTING report group:

e [If there is a USE BEFORE REPORTING procedure referencing the
data-name of the report group, the USE procedure executes.

e If a SUPPRESS statement has been executed, or if the report group is not
printable, there is no further processing for the report group.

Data Division 5-135

TYPE Clause

12.

e If a SUPPRESS statement has not been executed and the report group
is printable, the RWCS formats the print lines and presents the report
group according to the presentation rules for that type of report group.

The RWCS executes the following procedures when it processes a CONTROL
FOOTING report group.

Control breaks occur during the processing of a GENERATE statement. The
GENERATE rules specify that the RWCS produces the CONTROL FOOTING
report groups beginning at the minor level, and proceeding upwards, through
and including the highest control level. Although no CONTROL FOOTING
report group has been defined for a given control data-name, the RWCS

will still have to execute procedure 12f if a RESET phrase within the report
description specifies that control data-name.

a. Sum counters are crossfooted. All sum counters defined in this report
group that are operands of SUM clauses in the same report group are
added to their sum counters.

b. Sum counters are rolled forward. All sum counters defined in the report
group that are operands of SUM clauses in higher level CONTROL
FOOTING report groups are added to the higher level sum counters.

c. If there is a USE BEFORE REPORTING group-data-name declarative
procedure, the RWCS executes the USE procedure.

d. If a SUPPRESS statement has been executed, or if the report group is not
printable, the RWCS executes procedure 12f.

e. If a suppress statement has not been executed and the report group is
printable, the RWCS formats the print lines and presents the report
group according to the presentation rules for CONTROL FOOTING report
groups.

f. The RWCS resets those sum counters that are to be reset when the RWCS
processes this level in the control hierarchy.

Additional References

5-136 Data Division

CONTROL clause

Data-Name

LINE NUMBER (Alpha, 164) clause (General Rule 4)
SUM clause

TERMINATE statement in Chapter 6

Appendix D, Report Writer Presentation Rules and Tables

UNDERLINE Clause

UNDERLINE

Function
The UNDERLINE clause specifies that each character of the field is underlined

when it is displayed on the screen.
General Format

UNDERLINE

Syntax Rule
The UNDERLINE clause may be specified only for elementary screen items.

Data Division 5-137

USAGE Clause

USAGE

Function
The USAGE clause specifies the internal format of a data item or screen item.

General Format

BINARY
BINARY-CHAR (Alpha, 164) { SIISIESI\:EIE\)IED }
BINARY-SHORT (A, 14) { {pgiGneD |
BINARY-LONG (Alpha, I64) { ONSIGNED }
BINARY-DOUBLE (Alpha, 164) { Sll\?sr\llgﬁED }
COMPUTATIONAL
COMP
COMPUTATIONAL:f

| USAGE IS | { COMP-1

| COMPUTATIONAL-2

COMP-2
COMPUTATIONAL-3
COMP-3

COMPUTATIONAL-5 (Alpha, 164)
COMP-5 (Alpha, 164)
COMPUTATIONAL-X (Alpha, 164)
COMP-X (Alpha, 164)

DISPLAY

FLOAT-SHORT (Alpha, 164)
FLOAT-LONG (Alpha, 164)
FLOAT-EXTENDED (Alpha, 164)
INDEX

PACKED-DECIMAL

POINTER

POINTER-64 (Alpha, 164)

Syntax Rules

1.

o os w o

5-138 Data Division

BINARY is a synonym for COMPUTATIONAL and COMP.

On Alpha and 164 systems, except for restrictions on the PICTURE
clause, COMPUTATIONAL-5 and COMPUTATIONAL-X are synonyms for
COMPUTATIONAL and COMP. ¢

COMP is an abbreviation for COMPUTATIONAL.

COMP-1 is an abbreviation for COMPUTATIONAL-1.

COMP-2 is an abbreviation for COMPUTATIONAL-2.

COMP-3 is an abbreviation for COMPUTATIONAL-3.
PACKED-DECIMAL is a synonym for COMPUTATIONAL-3 and COMP-3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

USAGE Clause

On Alpha and 164 systems, COMP-5 is an abbreviation for
COMPUTATIONAL-5.

On Alpha and 164 systems, COMP-X is an abbreviation for
COMPUTATIONAL-X.

On Alpha and 164 systems, FLOAT-SHORT is a synonym for
COMPUTATIONAL-1.

On Alpha and 164 systems, FLOAT-LONG and FLOAT-EXTENDED are
synonyms for COMPUTATIONAL-2. ¢

You can use the USAGE clause in any data description entry with a level-
number other than 66 or 88.

If the USAGE clause is in the data description for a group item, it can also
be in data description entries for subordinate elementary and group items.
However, the usage of a subordinate item must be the same as that in the
group item data description entry.

The PICTURE character-string of a COMP or COMP-3 item can contain only
the following symbols:

e 9
e S
e V
e P

On Alpha and 164 systems, the PICTURE character-string of a COMP-5 or
COMP-X item can contain only the following symbols:

e 9

e S

e X (but not in combination with 9 or S) ¢

An index data item reference can appear in only:

e A SEARCH or SET statement

e A relation condition

e The USING phrase of the Procedure Division header
e The USING phrase of the CALL statement

A report description entry or a screen description entry can only specify
USAGE IS DISPLAY.

The data description entry for a USAGE IS INDEX data item cannot contain
any of the following clauses:

e BLANK WHEN ZERO
e JUSTIFIED

e PICTURE

e VALUE IS

An elementary item with the USAGE IS INDEX clause cannot be a
conditional variable; that is, the elementary item’s value cannot be specified
by level 88 items.

Data Division 5-139

USAGE Clause

19.

20.

The data description entry of a BINARY-CHAR, BINARY-SHORT, BINARY-
LONG, BINARY-DOUBLE, COMP-1, COMP-2, POINTER, or POINTER-64
item cannot have a PICTURE clause. However, they are numeric and signed.

The subject of a data description entry containing the USAGE IS POINTER
clause must not include any of the following clauses:

e BLANK WHEN ZERO
e JUSTIFIED
e PICTURE

General Rules

1.

10.

5-140 Data Division

You can specify the USAGE clause in the data description entry for a group
item. In this case, it applies to each elementary item in the group. However,
you cannot reference the group item in any operations that do not permit
alphanumeric operands. See rules 4 and 8 for more information.

The USAGE clause specifies the representation of an elementary data item in
storage. It does not affect the way that the program uses the item. However,
the rules for some Procedure Division statements restrict the USAGE clause
of statement operands.

A BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE,
COMP, COMP-1, COMP-2, COMP-3, COMP-5, COMP-X, FLOAT-SHORT,
FLOAT-LONG, or FLOAT-EXTENDED item can represent a value used in
computations. The PICTURE clauses for COMP and COMP-3 items must
be numeric. The PICTURE clauses for COMP-5 and COMP-X items may be
numeric or X.

A POINTER data item can represent an address value used in computations.
The compiler internally treats this item as a binary integer. References to

a POINTER item are allowed in the same context as references to a COMP
integer.

If the data description entry for a group item specifies BINARY-CHAR,
BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE, COMP, COMP-1,
COMP-2, COMP-3, COMP-5, COMP-X, FLOAT-SHORT, FLOAT-LONG,
FLOAT-EXTENDED, POINTER, or POINTER-64 usage, the usage applies to
elementary items in the group. It does not apply to the group itself; and the
program cannot use the group item in computations.

The USAGE IS DISPLAY clause specifies that the data item is in Standard
Data Format.

If no USAGE clause applies to an elementary item, its usage is DISPLAY.

If the USAGE IS INDEX clause applies to an elementary item, the
elementary item is called an index data item. It contains a value that must
correspond to an occurrence number of a table element.

If the data description entry for a group item specifies USAGE IS INDEX,
all elementary items in the group are index data items. However, the group
itself is not an index data item.

When a MOVE or input-output statement refers to a group that contains
an index data item, the index data item is not converted to another format
during the operation. Conversion will occur when the CONVERSION option
is specified on ACCEPT or DISPLAY.

12.

11.

USAGE Clause

The USAGE IS POINTER clause can be used only in a File, Working-Storage,
or Linkage Section data description entry.

On OpenVMS Alpha and 164 systems, the USAGE IS POINTER-64 clause
is provided for limited use in interfacing with applications in languages
requiring a 64-bit pointer. See Technical Notes. o

Technical Notes

1.

The way a data item is represented in the Data Division of a COBOL program
determines whether it will be stored as an integer, floating-point, packed
decimal, display numeric, or character string (text) data type. Tables 5-12
and 5-13 show the following:

e (COBOL data description entries and their corresponding data types

e The allocated storage in bytes for each entry; allocated storage is the same
on Tru64 UNIX and OpenVMS Alpha and 164 (except for POINTER)

Table 5-12 gives the corresponding data types for unscaled data items, and
Table 5-13 gives the data types for scaled data items.

For example, a data item described as PIC S9(4) USAGE IS DISPLAY SIGN
IS TRAILING is stored in 4 bytes of storage as a right overpunch value.

Note

The default USAGE for a data item is DISPLAY. Therefore, you do not
need to specify the USAGE clause for display numeric, alphabetic, and
alphanumeric data items.

Table 5-12 Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause

Allocated
Storage Standard
USAGE Clause SIGN Clause in Bytes Data Type

PIC S9(n)

[n <= 31
(Alpha, 164) or
18 (VAX)]

DISPLAY n Right (trailing) overpunch

PIC S9(n)

[n <= 31
(Alpha, 164) or
18 (VAX)]

DISPLAY TRAILING n Right (trailing) overpunch

PIC S9(n)

[n <= 31
(Alpha, 164) or
18 (VAX)]

DISPLAY LEADING n Left (leading) overpunch

(continued on next page)

Data Division 5-141

USAGE Clause

Table 5-12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

Allocated

PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC S9(n) DISPLAY TRAILING n+1 Right (trailing) separate
[n <= 31 SEPARATE
(Alpha, 164) or
18 (VAX)]
PIC S9(n) DISPLAY LEADING n+1 Left (leading) separate
[n <= 31 SEPARATE
(Alpha, 164) or
18 (VAX)]
PIC 9(n) DISPLAY n Unsigned numeric
[n <= 31
(Alpha, 164) or
18 (VAX)]
PIC 9(n) COMP 2 Word integer!
[n <= 4] COMP-5

(Alpha, 164)

COMP-X

(Alpha, 164)
PIC 9(n) COMP 4 Longword integer!
[6<=n<=9] COMP-5

(Alpha, 164)

COMP-X

(Alpha, 164)
PIC 9(n) COMP 8 Quadword integer!
[10 <= n <= COMP-5
18] (Alpha, 164)

COMP-X

(Alpha, 164)

IThe generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

5-142 Data Division

(continued on next page)

USAGE Clause

Table 5-12 (Cont.) Unscaled Data Iltems, Allocated Storage, and Corresponding Data Types

Allocated

PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC 9(n) COMP 16 Octaword integer! (Alpha, 164)
[19 <=n <= COMP-5
31] (Alpha, COMP-X
164)
PIC S9(n) COMP 2 Word integer
[n <= 4] COMP-5

(Alpha, 164)

COMP-X

(Alpha, 164)
PIC S9(n) COMP 4 Longword integer
[6<=n<=9] COMP-5

(Alpha, 164)

COMP-X

(Alpha, 164)
PIC S9(n) COMP 8 Quadword integer
[10 <= n <= COMP-5
18] (Alpha, 164)

COMP-X

(Alpha, 164)
PIC S9(n) COMP 16 Octaword integer (Alpha, 164)
[19 <=n <= COMP-5
31] (Alpha, COMP-X
164)
PIC X(n) COMP-5 2 Word integer! (Alpha, 164)
[n <= 2] COMP-X
(Alpha, 164)
PIC X(n) COMP-5 4 Longword integer! (Alpha, 164)
[3 <=n <= 4] COMP-X

(Alpha, 164)

1The generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

(continued on next page)

Data Division 5-143

USAGE Clause

Table 5-12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

Allocated
PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC X(n) COMP-5 8 Quadword integer! (Alpha, 164)
[6 <=n <= §] COMP-X
(Alpha, 164)
Not applicable INDEX 4 Longword integer
Not applicable POINTER 4 Longword integer (OpenVMS)
POINTER 8 Quadword integer (Tru64
UNIX)
POINTER-64 8 Quadword integer (OpenVMS
(Alpha, 164) Alpha, 164)
Not applicable BINARY- 2 Word integer ! (Alpha, 164)
CHAR
UNSIGNED
(Alpha, 164)
Not applicable BINARY- 2 Word integer ! (Alpha, 164)
SHORT
UNSIGNED
(Alpha, 164)
Not applicable = BINARY- 4 Longword integer ! (Alpha, 164)
LONG
UNSIGNED
(Alpha, 164)
Not applicable = BINARY- 8 Quadword integer ! (Alpha,
DOUBLE 164)
UNSIGNED

(Alpha, 164)

IThe generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

5-144 Data Division

(continued on next page)

USAGE Clause

Table 5-12 (Cont.) Unscaled Data Iltems, Allocated Storage, and Corresponding Data Types

PICTURE
Clause

USAGE Clause

SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

Not applicable

BINARY-
CHAR
SIGNED
(Alpha, 164)
BINARY-
CHAR (Alpha,
164)

2

Word integer (Alpha, 164)

Not applicable

BINARY-
SHORT
SIGNED
(Alpha, 164)
BINARY-
SHORT
(Alpha, T64)

Word integer (Alpha, 164)

Not applicable

BINARY-
LONG
SIGNED
(Alpha, 164)
BINARY-
LONG (Alpha,
164)

Longword integer (Alpha, 164)

Not applicable

BINARY-
DOUBLE
SIGNED
(Alpha, 164)
BINARY-
DOUBLE
(Alpha, 164)

Quadword integer (Alpha, 164)

Not applicable

COMP-1

F_floating
S_format? (Alpha, 164)

Not applicable

COMP-2

D_floating
G_floating (Alpha, 164)
T format? (Alpha, 164)

20n OpenVMS Alpha and 164 systems, the data type depends on the /FLOAT qualifier. On Tru64 UNIX systems, it is
always S format for COMP-1, and always T format for COMP-2. Refer to the HP COBOL User Manual Appendix B,
describing compatibility with HP COBOL for OpenVMS VAX for information on the /FLOAT=IEEE qualifier.

(continued on next page)

Data Division 5-145

USAGE Clause

Table 5-12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

Allocated
PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC 9(n) COMP-3 (n+1)/2 Packed decimall
[n <= 31 rounded
(Alpha, 164) or up
18 (VAX)]
PIC S9(n) COMP-3 (n+1)/2 Packed decimal
[n <= 31 rounded
(Alpha, 164) or up
18 (VAX)]
PIC X(n) DISPLAY n
[n <= ASCII text
268,435,455]
PIC A(n) DISPLAY n
[n <= ASCII text

268,435,455]

IThe generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

Table 5-13 Scaled Data Items, Allocated Storage, and Data Types

Allocated
PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC S9(n)V9(s) DISPLAY n+s Right (trailing)
[(n+s) <= 31 overpunch
(Alpha, 164) or
18 (VAX)]
PIC S9(n)V9(s) DISPLAY TRAILING n+s Right (trailing)
[(n+s) <= 31 overpunch
(Alpha, 164) or
18 (VAX)]

5-146 Data Division

(continued on next page)

USAGE Clause

Table 5-13 (Cont.) Scaled Data Items, Allocated Storage, and Data Types

Allocated
PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC S9(n)V9(s) DISPLAY LEADING n+s Left (leading)
[(n+s) <= 31 overpunch
(Alpha, 164) or
18 (VAX)]
PIC S9(n)V9(s) DISPLAY TRAILING n+s+1 Right (trailing)
[(n+s) <= 31 SEPARATE separate
(Alpha, 164) or
18 (VAX)]
PIC S9(n)V9(s) DISPLAY LEADING n+s+1 Left (leading)
[(n+s) <= 31 SEPARATE separate
(Alpha, 164) or
18 (VAX)]
PIC 9(n)V9(s) DISPLAY n+s Unsigned numeric
[(n+s) <= 31
(Alpha, 164) or
18 (VAX)]
PIC 9(n)V9(s) COMP 2 Word integer!
[(n+s) <= 4]
PIC 9(n)V9(s) COMP 4 Longword integer!
[6 <= (n+s) <=
9]
PIC 9(n)V9(s) COMP 8 Quadword integer!
[10 <= (n+s)
<= 18]
PIC 9(n)VI(s) COMP 16 Octaword integer! (Alpha, 164)

[19<= (n+s)
<= 31] (Alpha,
164)

1The generated code treats this data type as a positive operand in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the data type.

(continued on next page)

Data Division 5-147

USAGE Clause

Table 5-13 (Cont.) Scaled Data Items, Allocated Storage, and Data Types

Allocated
PICTURE Storage Standard
Clause USAGE Clause SIGN Clause in Bytes Data Type
PIC S9(n)V9(s) COMP 2 Word integer
[(n+s) <= 4]
PIC S9(n)V9(s) COMP 4 Longword integer
[6 <= (n+s) <=
9]
PIC S9(n)V9(s) COMP 8 Quadword integer
[10 <= (n+s)
<= 18]
PIC S9(n)V9(s) COMP 16 Octaword integer (Alpha, 164)
[19 <= (n+s)
<= 31]
PIC 9(n)VI(s) COMP-3 (n+s+1)/2 Packed decimall
[(n+s) <= 31 rounded
(Alpha, 164) or up
18 (VAX)]
PIC S9(n)V9(s) COMP-3 (n+s+1)/2 Packed decimal
[(n+s) <= 31 rounded
(Alpha, 164) or up
18 (VAX)]

IThe generated code treats this data type as a positive operand in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the data type.

The OpenVMS Alpha operating system (as of Version 7.0) and OpenVMS 164
can dynamically allocate data in 64-bit address space. HP COBOL does not
support data in 64-bit address space, but limited use of it may be made with
the USAGE IS POINTER-64 clause on OpenVMS Alpha and 164. You might
need to describe a data item as USAGE IS POINTER-64 if your program
interfaces with an application in another language that requires a 64-bit
pointer. Then you would use the SET statement or a VALUE clause to assign
the address of a static COBOL variable to the pointer variable. The pointer
variable can be passed to a routine whose interface definition requires a 64-bit
pointer.

You can also use an appropriate system service or the Run-Time Library
routine LIB$GET_VM_64 to allocate data and store the address in the pointer
variable. Because COBOL does not support dynamic allocation, there is no
way to dereference the pointer and access the allocated data. However, you
can pass the pointer to other languages that require a 64-bit pointer in 64-bit
address space. ¢

5-148 Data Division

USAGE Clause

Additional References
e PICTURE clause

e VALUE IS clause (Format 3) Alpha Architecture Reference Manual, available
from Digital Press.

Data Division 5-149

VALUE IS Clause

VALUE IS

Function

The VALUE IS clause defines the values associated with condition-names, the
initial value of Working-Storage Section data items, the value of Report Section
printable items, the compile-time initialization of variables to the address of data,
external constants, and the constant values of literal screen items.

General Format
Format 1

VALUE IS lit
Format 2

88 condition-name
VALUE IS
VALUES ARE

EXTERNAL external-name
{ REFERENCE data-name }
low-val

THRU EXTERNAL external-name
{ THROUGH } { REFERENCE data-name }
EE— high-val
Format 3
REFERENCE data-name
VALUE IS { numeric-integer-lit }
Format 4

VALUE IS EXTERNAL external-name

lit
is a numeric or nonnumeric literal. In a screen description entry, it is a
nonnumeric literal.

external-name
names a COBOL link-time bound constant. It must define a word or longword
integer value. See Technical Notes for more information.

data-name
names a data item in the File or Working-Storage or Subschema Section. data-
name may be qualified.

low-val
is a numeric or nonnumeric literal. It is the lowest value in a range of values
associated with a condition-name in a level 88 data description entry.

high-val

is a numeric or nonnumeric literal. It is the highest value in a range of values
associated with a condition-name in a level 88 data description entry.

5-150 Data Division

VALUE IS Clause

numeric-integer-lit
is a positive numeric integer literal.

Syntax Rules

1.
2.

The words THRU and THROUGH are equivalent.

You must associate a signed numeric literal with either of the following:
a. A data item that has a signed numeric PICTURE character-string
b. A COMP-1 or COMP-2 data item

If you specify a numeric literal value:

a. It must fall in the range of values defined by the data item’s PICTURE
clause.

b. It must not require truncation of nonzero digits; that is, it cannot have
nonzero digits in positions represented by Ps in the item’s PICTURE
clause.

If you specify a nonnumeric literal value, it must not exceed the size defined
by the data item’s PICTURE clause.

The Format 1, 3, and 4 VALUE IS clause cannot be used in any entry that is
part of the description or redefinition of an external data record.

The Format 3 VALUE IS clause is allowed only for an item containing the
USAGE IS POINTER phrase.

The subject of the associated data description entry in a Format 4 VALUE IS
clause must define a word or longword data item.

In a screen description entry, the VALUE clause can be specified only at the
elementary level.

General Rules

1.

The VALUE IS clause must be consistent with other clauses in the data
description of both the item and all subordinate items. The following rules

apply:

e If the category of the item is numeric, all literals in the VALUE IS clause
must be numeric. /it is aligned in the data item according to Standard
Alignment Rule 1.

e If the category of the item is alphabetic, alphanumeric, alphanumeric
edited, or numeric edited, all VALUE IS clause literals must be
nonnumeric. /it is aligned in the data item as if the data item were
defined as alphanumeric. Editing characters in the PICTURE clause
count toward data item size but have no effect on initialization. Therefore,
if lit applies to an edited item, it must be in an edited form; Standard
Alignment Rule 3 applies.

e The BLANK WHEN ZERO clause does not directly affect initialization.
However, the BLANK WHEN ZERO clause can change the category of the
data item. If the category of the data item changes, the rules that apply
change accordingly.

e The JUSTIFIED clause does not affect initialization.

Data Division 5-151

VALUE IS Clause

2.

In the File Section, the VALUE IS clause can apply only to condition-name
entries. That is, you can use the clause only for level 88 data items. In the
Linkage Section, VALUE IS produces a warning for the other 88 data items.

Format 2 applies only to condition-name entries.

If a VALUE IS clause is specified in a data description entry that contains
an OCCURS clause with a DEPENDING ON phrase, every occurrence of the
associated data item is set to the maximum value.

A data item is associated with a variable occurrence data item in any of the
following cases:
e It is a group data item that contains a variable occurrence data item.

e Tt is a variable occurrence data item.

e It is subordinate to a variable occurrence data item.

If a VALUE IS clause is associated with the data item referenced by a
DEPENDING ON phrase, that value is considered to be placed in the data
item after the variable occurrence data item is initialized.

If a VALUE IS clause is specified in a data description entry that contains an
OCCURS clause, or in an entry that is subordinate to an OCCURS clause,
every occurrence of the associated data item is assigned the specified value.
(This applies to General Formats 1, 3, and 4.)

Condition-Name Rules for Format 2

6.

10.

The VALUE IS clause is required in a condition-name entry. The condition-
name entry can contain only the condition-name itself and the VALUE IS
clause.

The characteristics of a condition-name are implicitly the same as those of its
conditional variable.

When using the EXTERNAL option, the associated conditional variable must
be a word or longword COMP data item.

When using the REFERENCE option, the associated conditional variable
must be POINTER usage.

If the THRU phrase is used, each low-val, external-name, and data-name
must be less than the corresponding high-val, external-name, and data-name.

Rules for Other Data Description Entries

11.

12.
13.

5-152 Data Division

A Working-Storage Section VALUE IS clause takes effect only when the
program enters its initial state.

The VALUE IS clause initializes the data item to the value of lit.

If a data item’s data description entry does not have a VALUE IS clause, the
initial contents of the data item are the following:

e Zero, for numeric items

¢ Undefined, for index data items, and data items whose descriptions
include or are subordinate to an OCCURS clause

e Spaces, for all other items

14.

15.

16.

17.

18.

19.

20.

21.

VALUE IS Clause

In the Report Section, if an elementary report entry contains a VALUE IS
clause but does not contain a GROUP INDICATE clause, the printable item
assumes the specified value each time the Report Writer Control System
(RWCS) prints the Report Group. However, if the entry contains the GROUP
INDICATE clause, the RWCS presents the specified value only when certain
run-time conditions exist. See the description of the GROUP INDICATE
clause for more information.

The VALUE IS clause cannot be used in a data description entry that has
a REDEFINES clause or is subordinate to a data description entry with a
REDEFINES clause.

The VALUE IS clause can be in a data description entry for a group item. In
this case:

e [it must be a figurative constant or nonnumeric literal.

e The group area is initialized as if the group were an elementary
alphanumeric data item.

e Initialization of group items is not affected by the characteristics of the
group’s subordinate group or elementary items.

e The VALUE IS clause cannot be used in data description entries for the
group’s subordinate group or elementary items.

The VALUE IS clause cannot be used in the data description entry for a group
that contains subordinate items with any of the following clauses:

e JUSTIFIED
e SYNCHRONIZED
e USAGE (other than USAGE IS DISPLAY)

The VALUE IS clause cannot be used in the report group description entry for
a group that contains subordinate items with a JUSTIFIED clause.

The Format 3 VALUE IS clause results in the compile-time initialization of its
data description entry to the address of data-name or to numeric-integer-lit.
Use this clause to pass arguments to non-COBOL procedures requiring an
address rather than a user-defined word.

In Format 4, external-name must be the name of an external symbol (a symbol
in another program unit) that is known to the linker when the program is
linked.

The Format 4 VALUE IS clause results in the linker storing the value of
external-name at the storage location defined by the data description entry
containing the VALUE IS EXTERNAL clause.

Technical Notes

external-name is a COBOL word formed according to the rules for user-defined
names. The compiler translates hyphens in the COBOL word to underscore
characters.

external-name names a constant whose value is unknown at compile time but
known at link time.

Data Division 5-153

VALUE IS Clause

Although the VALUE IS clause is not valid in the LINKAGE SECTION, the
compiler allows such a specification, as a Hewlett-Packard extension. The
clause, when specified in the LINKAGE SECTION, has no effect on program
execution, and is flagged with an informational Hewlett-Packard extension
diagnostic.

Additional References

PROGRAM-ID paragraph in Chapter 3
PICTURE clause

USAGE clause

Section 1.2.1.1 in Section 1.2.1

Section 5.2.2, COBOL Standard Alignment Rules

Examples

1.

5-154 Data Division

The following is an example of initializing alphanumeric data items:

01 TITEMA PIC X(20) VALUE IS "12345678901234567890".
01 ITEMB PIC XX VALUE IS "NH".

The following is an example of initializing numeric data items:

01 ITEMX PIC S9999 VALUE IS -39.
01 ITEMZ PIC 9 VALUE ZERO.

The following is an example of assigning condition-name values:

01 TITEMC PIC 99.

88 VALl VALUE IS 4.

88 VAL2 VALUE IS 5 THRU 9 12.

88 VAL3 VALUES ARE 10 14 THRU 23 27 29 30.
88 VAL4 VALUES ARE 0 THRU 49, 51 THRU 99.
88 VAL5 VALUES ARE 0 10 20 30 40 50.

The VALUE IS EXTERNAL clause allows a COBOL program to equate a
mnemonic system constant to a value representing a return status code
rather than the numeric equivalent. The following are some examples of this
clause:

On OpenVMS

WORKING-STORAGE SECTION.

*

* System Services
*

01 BADHEADER PIC S9(9) COMP

VALUE IS EXTERNAL SS$ BADFILHDR.
01 BADNAME PIC S9(9) COMP -

VALUE IS EXTERNAL SS$ BADFILENAME.
01 NORMAL PIC S9(9) COMP -

VALUE IS EXTERNAL SS$_NORMAL.
*

* Record Management Services
*
01 RMSDEV PIC S9(9) comp
VALUE IS EXTERNAL RMS$ DEV.

*

VALUE IS Clause

* Database
*
01 DBMDBBUSY PIC S9(9) CoMP
VALUE IS EXTERNAL DBM$_DBBUSY.
01 DBMEND PIC S9(9) CoMP

*

VALUE IS EXTERNAL DBM$_END.

* Run-Time Library

*

01 LIBINVARG PIC S9(9) COMP

VALUE IS EXTERNAL LIB$ INVARG.

01 LIBINVSCRPOS PIC S9(9) COMP

VALUE IS EXTERNAL LIB$ INVSCRPOS.

PROCEDURE DIVISION.

OPEN . . .
IF RMS-STS = BADHEADER PERFORM . . .
IF RMS-STS = BADNAME PERFORM 100-FIX-NAME.

The following example shows the VALUE IS REFERENCE clause:

DATA DIVISION.
WORKING-STORAGE SECTION.
ITEM-LIST.

01

02

02

02

02

02

ITEM-PROCESS-NAME.

03 PIC S9(4) COMP VALUE 15.

03 PIC S9(4) COMP VALUE EXTERNAL JPI$ PRCNAM.
03 POINTER VALUE REFERENCE PROCESS-NAME.

03 POINTER VALUE REFERENCE PROCESS-NAME-LENGTH.
ITEM-USER-NAME.

03 PIC S9(4) COMP VALUE 12.

03 PIC S9(4) COMP VALUE EXTERNAL JPI$ USERNAME.
03 POINTER VALUE REFERENCE USER-NAME.

03 PIC S9(9) COMP VALUE 0.

ITEM-CPU-TIME.

03 PIC S9(4) COMP VALUE 4.

03 PIC S9(4) COMP VALUE EXTERNAL JPI$ CPUTIM.
03 POINTER VALUE REFERENCE CPU-TIME.

03 PIC S9(9) COMP VALUE 0.

ITEM-TURMINAL.

03 PIC S9(4) COMP VALUE 7.

03 PIC S9(4) COMP VALUE EXTERNAL JPI$ TERMINAL.
03 POINTER VALUE REFERENCE TURMINAL.

03 POINTER VALUE REFERENCE TURMINAL-LENGTH.
TERMINATOR-ENTRY PIC S9(9) COMP VALUE 0.

PROCESS-NAME PIC X(15) VALUE SPACES.
PROCESS-NAME-LENGTH PIC S9(4) COMP VALUE 0.
USER-NAME PIC X(12) VALUE SPACES.
CPU-TIME PIC S9(9) COMP VALUE 0.
TURMINAL PIC X(7) VALUE SPACES.
TURMINAL-LENGTH PIC S9(4) COMP VALUE 0. ¢

Data Division 5-155

VALUE OF ID Clause

VALUE OF ID

Function
The VALUE OF ID clause specifies, replaces, or completes a file specification.

General Format

ID file-name
M%{ FILE-D }'S{ daaname |

file-name
is a nonnumeric literal. It contains the full or partial file specification.

data-name
is the data-name of an alphanumeric Working-Storage Section data item. It
contains the full or partial file specification.

General Rules

1. Each file specification field in file-name augments the specification in the
ASSIGN clause of the SELECT statement.

2. A file specification field in the VALUE OF ID clause overrides the
corresponding field in the SELECT statement. If a file specification field
is either in the SELECT statement or in the VALUE OF ID clause (but not in
both), it becomes part of the file specification.

3. On Tru64 UNIX systems, if you specify a VALUE OF ID clause with which
you specified an OpenVMS logical, you must use an environment variable, as
follows:

VALUE OF ID "DISK1"
Define the environment variable using one of the following:

% setenv DISKI1
% setenv DISK1 /usr/data/
% setenv DISK1 /usr/data/testl.dat 3

4. The number of bytes in the string making up file-name or data-name must
not exceed 255.

Technical Notes

e file-name is a complete or partial file specification. The resultant file
specification must adhere to the rules for file specifications as defined by
the file system.

e If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must define
the same file specification. For a data-name it must be external and reference
the same data item in all programs defining the file.

Additional References
e ASSIGN
e HP COBOL User Manual, on exception condition handling

e On OpenVMS, OpenVMS Record Management Services Reference Manual in
the OpenVMS documentation set ¢

5-156 Data Division

6

6.1 Verbs,

Procedure Division

This chapter includes the general formats for all Procedure Division statements,
describes their basic elements, and explains how to use them.

Statements, and Sentences

A COBOL verb is a reserved word that expresses an action to be taken by the
compiler or the object program. A verb and its operands make up a COBOL
statement. One or more statements terminated by a separator period form a
COBOL sentence.

At the statement level, actions can be further differentiated: actions taken by
the object program can be conditional or unconditional. In some cases, the verb
in the statement defines whether the action is conditional or unconditional. One
verb, IF, always defines a conditional action. Other verbs, such as READ, can
define conditional action when you use phrases with them that make the action
conditional. PERFORM and MOVE are examples of verbs that always define
unconditional action. Most often, however, whether an action is conditional or
unconditional depends on not only which verb, but also which phrases you use in
the statement.

There are four types of COBOL statements:

e Compiler-directing statements specify an action taken by the compiler
during compilation. See Section 6.1.1 for more information.

e Imperative statements specify an unconditional action taken by the object
program at run time. See Section 6.1.2 for more information.

¢ Conditional statements specify a conditional action taken by the object
program at run time. See Section 6.1.3 for more information.

¢ Delimited-scope statements specify their explicit scope terminator. See
Section 6.1.4 for more information.

Table 6-1 shows the four types of COBOL statements. It also shows that the
imperative statements are further subdivided into nine categories and specifies
the verbs that each category includes. When associated phrases are not specified,
the verb alone defines the category. For compiler-directing and conditional
statements, type and category are synonymous.

Procedure Division 6-1

VALUE OF ID Clause

Table 6-1 Types and Categories of COBOL Statements

Type Category Verb

Compiler-Directing Compiler-Directing COPY
REPLACE
USE
RECORD

Conditional

Conditional

ACCEPT (INOT] AT END or
[NOT] ON EXCEPTION)
ADD ([INOT] ON SIZE ERROR)
CALL ([NOT] ON EXCEPTION or
[NOT] ON OVERFLOW)
COMPUTE (INOT] ON SIZE ERROR)
DELETE ([NOT] INVALID KEY)
DISPLAY ([INOT] ON EXCEPTION)
DIVIDE ([NOT] ON SIZE ERROR)
EVALUATE
IF
MULTIPLY (INOT] ON SIZE ERROR)
READ ([NOT] AT END or
[NOT] INVALID KEY)
RETURN(INOT] AT END)
REWRITE ([NOT] INVALID KEY)
SEARCH(AT END)
START ([INOT] INVALID KEY)
STRING ([NOT] ON OVERFLOW)
SUBTRACT (INOT] ON SIZE ERROR)
UNSTRING ([NOT] ON OVERFLOW)
WRITE ([INOT] INVALID KEY or
[NOT] END-OF-PAGE)

Imperative

6-2 Procedure Division

Arithmetic

ADD (1)

COMPUTE (1)
DIVIDE (1)

INSPECT (TALLYING)
MULTIPLY (1)
SUBTRACT (1)

Data-Movement

ACCEPT (DATE, DAY, DAY-OF-WEEK or TIME)
INITIALIZE

INSPECT (REPLACING or CONVERTING)
MOVE

SET (TO TRUE)

STRING (5)

UNSTRING (5)

Ending

STOP

(continued on next page)

VALUE OF ID Clause

Table 6-1 (Cont.) Types and Categories of COBOL Statements

Type Category

Verb

Imperative Input-Output

ACCEPT (identifier or CONTROL KEY IN
identifier)

CLOSE

DELETE (3)

DISPLAY

OPEN

READ (4)

REWRITE (3)

SET (TO ON or TO OFF)
START (3)

STOP (literal)

UNLOCK

WRITE (6)

Inter-Program
Communications

CALL (2)
CANCEL

Procedure-Branching

ALTER
CALL
CONTINUE
EXIT

GO TO
PERFORM

Table-Handling

SEARCH
SET (TO, UP BY, or DOWN BY)
SORT

Ordering

MERGE
RELEASE
RETURN
SORT

Report Writing

GENERATE
INITIATE
SUPPRESS
TERMINATE

(continued on next page)

Procedure Division 6-3

VALUE OF ID Clause

Table 6-1 (Cont.) Types and Categories of COBOL Statements
Type Category Verb

Delimited-Scope Delimited-Scope ACCEPT (END-ACCEPT)
ADD (END-ADD)
CALL (END-CALL)
COMPUTE (END-COMPUTE)
DELETE (END-DELETE)
DIVIDE (END-DIVIDE)
EVALUATE (END-EVALUATE)
IF (END-IF)
MULTIPLY (END-MULTIPLY)
PERFORM (END-PERFORM)
READ (END-READ)
RETURN (END-RETURN)
REWRITE (END-REWRITE)
SEARCH (END-SEARCH)
START (END-START)
STRING (END-STRING)
SUBTRACT (END-SUBTRACT)
UNSTRING (END-UNSTRING)
WRITE (END-WRITE)

Legend:

(1) Without the optional [NOT] ON SIZE ERROR phrase

(2) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
(3) Without the optional [NOT] INVALID KEY phrase

(4) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase

(5) Without the optional [NOT] ON OVERFLOW phrase

(6) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

Like statements, COBOL sentences also can be compiler-directing, imperative,
or conditional. Sentence type depends upon the types of statements the sentence
contains. Table 6-2 summarizes the contents of the three types of COBOL
sentences. The remaining text in this section describes each type of statement
and sentence in greater detail.

Table 6—-2 Contents of COBOL Sentences

Type Contents of Sentence

Imperative One or more consecutive imperative statements ending with a
period

Conditional One or more conditional statements, optionally preceded by an

imperative statement, terminated by the separator period

Compiler-Directing Only one compiler-directing statement ending with a period

6.1.1 Compiler-Directing Statements and Sentences

A compiler-directing statement causes the compiler to take an action during
compilation. The verbs COPY, REPLACE, RECORD, and USE define compiler-
directing statements. A compiler-directing sentence can contain other statements
but it must contain only one compiler-directing statement. The compiler-directing
statement must be the last statement in the sentence and must be followed
immediately by a period.

6-4 Procedure Division

VALUE OF ID Clause

6.1.2 Imperative Statements and Sentences

An imperative statement specifies an unconditional action for the program. It
must contain a verb and the verb’s operands, and cannot contain any conditional
phrases. For example, the following statements are imperative:

OPEN INPUT FILE-A
COMPUTE C = A + B

However, the following statement is not imperative because it contains the
phrase, ON SIZE ERROR, which makes the program’s action conditional:

COMPUTE C = A + B ON SIZE ERROR PERFORM NUM-TOO-BIG.

In the Procedure Division rules, an imperative statement can be a sequence

of consecutive imperative statements. The sequence must end with: (1) a
separator period or (2) any phrase associated with a statement that contains the
imperative statement. For example, the following sentence contains a sequence of
two imperative statements following the AT END phrase.

READ FILE-A AT END PERFORM NO-MORE-RECS
DISPLAY "No more records." END-READ.

An imperative sentence contains only imperative statements and ends with a
separator period.

6.1.3 Conditional Statements and Sentences

A conditional statement determines a condition’s truth value. (A truth value is
either a yes or no answer to the question, “Is the condition true?”.) The statement
uses the truth value generated by the program to determine subsequent program
action.

Conditional statements are as follows:
e An EVALUATE, IF, RETURN, or SEARCH statement

e An ACCEPT statement with the [NOT] AT END or [NOT] ON EXCEPTION
phrase

e A DISPLAY statement with the [NOT] ON EXCEPTION phrase
e A READ statement with the [NOT] AT END or [NOT] INVALID KEY phrase

e A WRITE statement with the [NOT] INVALID KEY or [NOT] END-OF-PAGE
phrase

e A DELETE, REWRITE, or START statement with the [NOT] INVALID KEY
phrase

® An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) with the [NOT] ON SIZE ERROR phrase

e A STRING or UNSTRING statement with the [NOT] ON OVERFLOW phrase

e A CALL statement with the [NOT] ON EXCEPTION or [NOT] ON
OVERFLOW phrase

A conditional sentence is a conditional statement that ends with a separator
period. It can include an optional preceding imperative statement. For example,
the following sentence is conditional even though it contains the imperative
statement, GO TO PROC-A:

READ FILEA AT END GO TO PROC-A.

Procedure Division 6-5

VALUE OF ID Clause

The program interprets this sentence to mean “If not at the end of the file, read
the next record; otherwise, go to PROC-A.”

6.1.4 Scope of Statements
Scope terminators delimit the scope of some Procedure Division statements.
The scope of statements contained (nested) in other statements can also terminate

implicitly. When statements are contained in other statements, a separator period
(that terminates the sentence) terminates all nested statements as well.

In the following example, the separator period terminates the IF, MOVE, and
PERFORM statements:

IF ITEMA = ITEMB
MOVE ITEMC TO ITEMB
PERFORM PROCA.

In the following example, the ELSE phrase of the IF statement terminates the
scope of the READ and the first MOVE statements:

IF ITEMA = ITEMB
READ FILEA
AT END MOVE ITEMC TO ITEMB
ELSE
MOVE ITEMD TO ITEME.

A delimited-scope statement is a special category of statement used in
structured programming. A delimited-scope statement is any statement that
includes its explicit scope terminator. See Section 6.3.4 for a list of explicit scope
terminators.

A delimited-scope statement can be nested in another delimited-scope statement
with the same verb. Then, each explicit scope terminator terminates the
statement that begins with the closest unpaired preceding occurrence of the
verb.

In the following example, the END-IF after the ADD statements (line 8)
terminates the IF on line 5. The END-IF after the SUBTRACT (line 10)
terminates the IF on line 3. The scope of the first IF statement (line 1) is
terminated by the separator period on line 11.

IF ITEMA = ITEMB
MULTIPLY ITEMH BY ITEMI
IF ITEMI > 18
MOVE ITEMC TO ITEMD

1

2

3

4

5. IF ITEMD > ITEME
6 ADD ITEME TO ITEMF
7 ADD ITEMG TO ITEMH
8 END-IF

9 SUBTRACT 6 FROM ITEMH
10. END-IF

11. PERFORM PROCA.

6-6 Procedure Division

VALUE OF ID Clause

6.2 Uniqueness of Reference

Every user-defined name in a COBOL program names a resource. (See the
section on User-Defined Words in Section 1.2.1.) To use a resource, however, a
statement in a COBOL program must contain a reference that uniquely identifies
that resource. Qualification, reference modification, and subscripting or indexing
allow unique and unambiguous references to that resource. Qualified procedure-
names allow uniqueness of reference to procedures, and qualified condition-names
allow uniqueness of reference to condition-names.

When you assign the same name in separate (contained) programs to two or
more occurrences of a resource, certain conventions apply that limit the scope of
names. Name scoping and scope of names are COBOL language terms that
describe the methods for resolving references to user-defined words in a contained
program environment. (See Section 6.2.6, Scope of Names.)

Some user-defined words can be made available to every program in the run unit.
(See the EXTERNAL clause in Chapter 5.) These words are called external data.
Other user-defined words can be made available to programs contained within
the program that defines that resource. (See the GLOBAL clause in Chapter 5.)
These words are called global data.

6.2.1 Qualification

A reference to a user-defined word is unique if one or more of the following
conditions exists:

e No other name has the same spelling, including hyphenation.

e It is part of a REDEFINES clause. (The reference following the word
REDEFINES is unique because of the placement of the REDEFINES clause.)
See the Syntax Rules for the REDEFINES clause.

e Scoping rules make it unique. (See Section 6.2.6, Scope of Names.)

A nonunique name within a hierarchy of names can be used in more than one
place in your program. Unless you are redefining it, you must refer to this
nonunique name using one or more higher-level names in the hierarchy. These
higher-level names are called qualifiers. Using them to achieve uniqueness of
reference is called qualification.

To make your reference unique, you need not specify all available qualifiers for a
name, only those necessary to eliminate ambiguity.

Consider the following two record descriptions:

01 RECI.

05 ITEMA PIC XX.

05 ITEMB PIC X(20).
01 REC2.

05 GROUPI.

10 ITEMA PIC 9(5).
10 ITEMB PIC X(3).
05 GROUP2.
10 ITEMC PIC X(4).
10 ITEMD PIC X(8).

ITEMA and ITEMB appear in both record descriptions. Therefore, you must
use qualifiers when you refer to these items in Procedure Division statements.
For example, all of the following references to ITEMA are unique: ITEMA OF
GROUP1, ITEMA OF REC1, ITEMA IN GROUP1 OF REC2.

Procedure Division 6-7

VALUE OF ID Clause

Regardless of the preceding, you cannot use the same data-name as:

¢ The name of an external record and as the name of any other external data
item in any program contained within or containing the program describing
the external data record

e The name of an item possessing the global attribute and as the name of any
other data item in the program describing the global data item

When a program is contained within a program or contains another program,
specific conventions apply. (See Section 6.2.6.)

The general formats for qualification are as follows:

}data-name-Z } [{ % }file-name]

} file-name

Format 1

Q1=

o 1|11

condition-name

|1QI=

Format 2
IN .
paragraph-name OF section-name
Format 3
N lib
text-name OF ibrary-name
Format 4

LINAGE-COUNTER { loﬁF } file-name

Format 5
PAGE-COUNTER IN
LINE-COUNTER OF [feport:name
Format 6
N N
OF data-name-4 OF report-name
data-name-3
IN
{ OF } report-name
Format 7

IN
screen-name-1 { { @ }screen-name-Z }

6-8 Procedure Division

VALUE OF ID Clause

Format 8 (OpenVMS)

{ RMS-STS

RMS-STV } { g: }file-name
RMS-FILENAME —

¢
The following syntax rules apply to qualification:

1. Each reference to a nonunique, user-defined name must use a sequence of
qualifiers that eliminates ambiguity from the reference.

2. A name can be qualified even if it does not need qualification. If more than
one set of qualifiers ensures uniqueness, any set can be used.

IN and OF are equivalent.

4. In Format 1, each qualifier must be either the name associated with a
level indicator, the name of a group to which the item being qualified is
subordinate, or the name of a condition variable with which the condition-
name being qualified is associated. (See Section 6.2.5.) Qualifiers must be
ordered from least- to most-inclusive levels in the hierarchy.

5. In Format 7, each qualifier must be the name of a group to which the item
being qualified is subordinate. Qualifiers must be ordered from least- to
most-inclusive levels in the hierarchy.

6. In Format 1, data-name-2 can be a record-name.

7. 1If the program contains explicit references to a paragraph-name, the
paragraph-name cannot appear more than once in the same section. When a
section-name qualifies a paragraph-name, the word SECTION cannot appear.
A paragraph-name need not be qualified in a reference from within the same
section. You cannot reference a paragraph-name or section-name from any
other program.

8. On OpenVMS, in Format 3, a COPY statement that accesses an OpenVMS
Librarian library-record must qualify text-name with library-name. ¢

9. In Format 3, on Tru64 UNIX systems, the library-name for the COPY
statement will direct COPY to access the text-name file from the library-name
subdirectory. o

See Chapter 8 for information on the COPY statement.

10. If the program has more than one file description entry with a LINAGE
clause, every reference to LINAGE-COUNTER must be qualified.

11. If the program has more than one report description entry, every Procedure
Division reference to LINE-COUNTER must be qualified.

12. In the Report Section, an unqualified reference to LINE-COUNTER is
qualified implicitly by the name of the report in whose report description
entry the reference is made. Whenever the LINE-COUNTER of a different
report is referenced, LINE-COUNTER must be qualified explicitly by the
report name associated with the different report.

13. If the program has more than one report description entry, every Procedure
Division reference to PAGE-COUNTER must be qualified.

Procedure Division 6-9

VALUE OF ID Clause

14. In the Report Section, an unqualified reference to PAGE-COUNTER is
qualified implicitly by the name of the report in whose report description
entry the reference is made. Whenever the PAGE-COUNTER of a different
report is referenced, PAGE-COUNTER must be qualified explicitly by the
report name associated with the different report.

15. On OpenVMS, if the program has more than one file description entry, every
reference to RMS-STS, RMS-STV, and RMS-FILENAME must be qualified. ¢

6.2.2 Subscripts and Indexes

Occurrences of a table are not individually named. You refer to them by using
a subscript or index to specify their location relative to the table’s beginning.
Subscripting is a general operation; indexing is a special form of subscripting.

Unless otherwise specified by the rules for a statement, subscripts and indexes
are evaluated once, at the beginning of a statement. If a statement contains rules
describing the evaluation of subscripts, those rules also apply to the evaluation of
indexes.

Subscripting

Subscripts can appear only in references to individual elements in a list, or table,
of like elements that do not have individual data-names. (See the OCCURS
clause in Chapter 5.)

The general format for subscripting is as follows:
Format 1

{ data-name

condition-name } ({ arithmetic-expression} . . .)

Format 2

ALL

integer-1

data-name [{+]-}integer-2]
index-name [{+|-} integer-3]

argument (

All restrictions in the rules for subscripting also apply to indexing (See
the following subsection describing Indexing.) The following rules apply to
subscripting:

1. A subscript can be represented by any arithmetic expression.

2. In Format 2, argument is an intrinsic function argument that is allowed to
be repeated a variable number of times. Note that Format 1 also applies to
intrinsic function arguments, but not with ALL subscripts. When ALL is
specified as a subscript, the effect is as if each table element associated with
that subscript position were specified. (For a list of the intrinsic functions
that permit arguments with ALL subscripts, and for more information, see
Chapter 7.) Also in Format 2, data-name is the data-name of a numeric
integer elementary item.

3. Identifiers in subscript arithmetic expressions must refer to elementary
numeric data items.

4. The lowest valid subscript value is 1. This value points to the first element of
the table. Subscript values 2, 3, and so on, point to the next consecutive table
elements.

6-10 Procedure Division

10.
11.

12.

VALUE OF ID Clause

The highest valid subscript value is the maximum number of occurrences of
the item specified in the OCCURS clause.

The subscript or set of subscripts that identifies the table element is delimited
by a balanced pair of left and right parentheses.

Each table element reference must include subscripting. However, the
reference cannot include subscripting when it is one of the following:

e The subject of a SEARCH statement
e In a REDEFINES clause
e In the KEY IS phrase of an OCCURS clause

The subscript or set of subscripts follows the table element’s data-name. The
data-name is then called a subscripted data-name or an identifier.

The number of subscripts following a table element reference must equal the
number of dimensions in the table; that is, there must be a subscript for each
OCCURS clause in the hierarchy that contains the table element and one for
the table element itself.

A data-name can have up to 48 subscripts.

Subscripts must appear in the order of successively less inclusive dimensions
of the table.

An arithmetic expression in a subscript cannot begin with a left parenthesis
if the preceding arithmetic expression ends with a data-name.

Note

Use the check compiler option with the bounds keyword for run-time
upper- and lower-bound subscript range verification. The default action is
not to check. For more information, refer to the COBOL online help file
for your particular platform.

In the following examples, references to ITEME require two subscripts. The
first subscript refers to the occurrence number of the most inclusive dimension,
ITEMD (that contains ITEME).

Example 6-1 Subscripting Example

WORKING-STORAGE SECTION.

01 ITEMA PIC 99 COMP VALUE IS 3.
01 TITEMB PIC 99 COMP VALUE IS 5.
01 ITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX".
03 ITEMD OCCURS 4 TIMES.
05 ITEME OCCURS 6 TIMES PIC X.
IDENTIFIER VALUE
ITEME (4,3) U

ITEME (ITEMA,ITEMB)
ITEME (ITEMA * 2 - 4, ITEMB - 2)
ITEME (ITEMA * ITEMB / 15, ITEMA + ITEMB) / 4)

o B -3

Procedure Division 6-11

VALUE OF ID Clause

Indexing

Indexing is a special subscripting procedure. In indexing, you use the INDEXED
BY phrase of the OCCURS clause to assign an index-name to each table level.
You then refer to a table element using the index-name as a subscript.

The general format for indexing follows:

{ data-name } (, index-name [{ i } literal-2 l)

condition-name
, literal-1

All the restrictions in the rules for subscripting apply to indexing. (See
Subscripting.) The following rules apply only to indexing:

1. You must give index-name an initial value before using it. You can do this
in:

e A SET statement
e A SEARCH statement with the ALL phrase
e A PERFORM statement with the VARYING phrase

Furthermore, only the statements in the previous list can change the value of
index-name.

2. Indexing can be either direct or relative. Direct indexing means that the
value of index-name or literal-1 is the occurrence number. Relative indexing
means that the occurrence number is the value of index-name plus or minus
literal-2. literal-2 must be an unsigned integer.

Note

Use the check compiler option with the bounds keyword for run-time
upper- and lower-bound index range verification. The default is not to
check. For more information, refer to the COBOL online help file for your
particular platform.

6-12 Procedure Division

VALUE OF ID Clause

Example 6-2 is similar to Example 6-1 that illustrates subscripting. However,
this example shows the use of index-names in references to the table, initializing
indexes with the SET statement, and storing index-name values in index data
items.

Example 6—2 Indexing Example

WORKING-STORAGE SECTION.
01 TITEMA USAGE IS INDEX.
01 ITEMB USAGE IS INDEX.
01 TITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX".
03 ITEMD OCCURS 4 TIMES
INDEXED BY DX.
05 ITEME OCCURS 6 TIMES
INDEXED BY EX PIC X.

PROCEDURE DIVISION.

PARA.
SET DX TO 4.
SET EX TO 1.
DISPIAY ITEMD (DX). (1
DISPLAY ITEME (DX, EX). (2]
DISPIAY ITEME (DX - 3, EX) ©

SET ITEMA TO DX.
SET ITEMB TO EX.

This example produces the following results:

QO : STUVWX
(2 S
0 : A

6.2.3 Reference Modification

Reference modification defines a subset of a data item by specifying its leftmost
character and length.

General Format

data-name lef h ition : I lenath
FUNCTION function-name [({argument} ...)] (leftmost-character-position : [length])

data-name must refer to a data item whose usage is DISPLAY.
function-name must refer to an alphanumeric function.

The specifications for leftmost-character-position and length must be arithmetic
expressions.

Each character of a data item has an ordinal number corresponding to its
position. The leftmost position is number 1; successive positions to the right
are numbered 2, 3, 4, and so on. If the data-name’s data description entry has a
SIGN IS SEPARATE clause, the sign position is assigned an ordinal number in
the data item.

For a data item defined as numeric, numeric edited, alphanumeric, alphabetic,
or alphanumeric edited, reference modification operates as if the data item were
redefined as an alphanumeric data item the same size as that referred to by
data-name.

Procedure Division 6-13

VALUE OF ID Clause

Unless otherwise specified by the rules for a statement, reference modification
is evaluated only once, at the beginning of a statement. Reference modification
is evaluated immediately after subscripting or indexing evaluation. Rules that
describe the evaluation of subscripting for the various statements also apply to
the evaluation of reference modification.

The components of reference modification define the data item as follows:

e The evaluation of leftmost-character-position specifies the ordinal position of
the data item’s leftmost character. This position is relative to the leftmost
character of the data item referred to by data-name. Evaluation of leftmost-
character-position must result in an integer that is not less than 1, or greater
than the number of characters in the data item referred to by data-name.

e The evaluation of length specifies the size of the unique data item. The
evaluation must result in a positive integer. The sum of leftmost-character-
position and length minus the value 1 must not exceed the number of
characters in the data item referred to by data-name.

e Ifthere is no length, the data item extends:

— From and including the character identified by leftmost-character-position
of the data item referred to by data-name

— To and including the rightmost character of the data item referred to by
data-name

The resulting unique data item is treated as an elementary item without

the JUSTIFIED clause. It has the same class and category as the data item
referred to by data-name. However, the categories numeric, numeric edited, and
alphanumeric edited are considered category alphanumeric.

Reference modification is valid anywhere an alphanumeric identifier is allowed
unless specific rules for a general format prohibit it.

Note

Use the check compiler option with the bounds keyword for run-time
upper- and lower-bound reference modification range verification. The
default is not to check. For more information, refer to the COBOL online
help file for your particular platform.

Examples

WORKING-STORAGE SECTION.

01 ITEMA PIC X(15) VALUE IS "ABCDEFGHIJKLMNO".
01 ITEMB PIC 99 VALUE IS 10.

IDENTIFIER VALUE
ITEMA (2:3) BCD
ITEMA (ITEMB:2) JK
ITEMA (ITEMB / 2.ITEMB - 6) EFGH
ITEMA (ITEMB:) JKLMNO

6-14 Procedure Division

VALUE OF ID Clause

6.2.4 ldentifiers

In Procedure Division rules, the term identifier means the complete specification
of a data item. The term refers to all words required to make your reference to
the item unique.

To reference a data item that is a function, a function-identifier is used. For
information on functions, see Chapter 7.

The general formats for identifiers are as follows:
Format 1
data-name [qualification] [subscripting] [reference modification |
Format 2
data-name [qualification] [indexing] [reference modification]
Format 3
FUNCTION function-name [({argument} . ..)] [reference modification]

For more information on the methods of uniquely specifying data items, see the
following:

e Section 6.2.1, Qualification
e Section 6.2.2, Subscripts and Indexes
e Section 6.2.3, Reference Modification

e Section 6.2.6, Scope of Names

6.2.5 Ensuring Unique Condition-Names

If the name you use as a condition-name appears in more than one place in your
program, it can be made unique through qualification, indexing, or subscripting.
Your condition-name also is unique when the scope of names conventions by
themselves ensure this as described in Section 6.2.6, Scope of Names.

The first qualifier for a condition-name can be the name of the item with which
it is associated (the conditional variable). When qualifying condition-names, you
must use the name of the conditional variable itself or the names of items that

contain it.

References to a condition-name must have the same combination of subscripting
or indexing that you use for the conditional variable.

The formats you use to ensure unique condition-names are the same as those
used for an identifier, except condition-name replaces data-name.

In Procedure Division rules, the term condition-name refers to a condition-
name along with any qualification and subscripting or indexing needed to avoid
ambiguity.

6.2.6 Scope of Names

A contained COBOL program can refer to a user-defined word in its containing
program if the user-defined word has the global attribute. (See Section 1.2.1.1 in
Section 1.2.1.) Some user-defined words always have the global attribute, some
never have the attribute (that is, they are local), and some might or might not,
depending on the use of the GLOBAL clause. The following rules explain how to
use different kinds of user-defined words and what kinds of local and global name
scoping to expect.

Procedure Division 6-15

VALUE OF ID Clause

1. The following types of user-defined words are always local and can be
referenced only by statements and entries in the program declaring them:

e Paragraph-name
e Section-name

2. These user-defined words are always local when you define them in the
Report Section. Only those statements and entries in the program containing
the entries can reference them.

e (Condition-name
e Data-name
e Record-name

3. The following user-defined word is always local when you define it in the
Screen Section. Only those statements and entries in the program containing
the entries can reference it.

e Screen-name

4. Because you cannot specify a Configuration Section for a program contained
within another program, the following types of user-defined words are always
global when declared in the Configuration Section. You can reference them
only by statements and entries either in the program that contains the
Configuration Section or in any program contained within that program.

e Alphabet-name

¢ Condition-name (declared in the Special Names paragraph)
¢ Mnemonic-name

e Symbolic-character-name

e Switch-name

¢ (Class-name

5. The following user-defined words are global if you specify the GLOBAL
clause:

* Condition-name (declared in the Data Division)
e Data-name

¢ File-name

e Index-name

¢ Record-name

¢ Report-name

e Segmented-key-name (if you specify the GLOBAL clause on the
corresponding file-name)

Specific conventions for declarations and references apply to these types of
user-defined words whenever the previous conditions do not apply.

6-16 Procedure Division

VALUE OF ID Clause

Whenever duplicate names exist, a program always references the resource in its
own program. If the resource is not in the referencing program, the following two
conventions are used:

e Conventions for resolving program-name references
e Conventions for resolving other references

The next two sections describe these conventions.

6.2.6.1 Conventions for Resolving Program-Name References
The PROGRAM-ID paragraph of the Identification Division declares the program-
name; a user-defined word to identify the program. Only the CALL and CANCEL
statements and the END PROGRAM header can reference a program-name.

A run unit can contain multiple programs with duplicated program-names.
However, when two programs have duplicate program-names, one of the two
programs must directly or indirectly be contained within a separately compiled
program that does not contain the program with the duplicated program-name.

The following rules regulate the scope of program-name:

1. Within a run unit, any separately compiled program can reference any other
separately compiled program.

2. If a program-name does not have the COMMON attribute and it is contained
directly within another program, the contained program can be referenced
only by statements included in the directly containing program.

For example, in the run unit consisting of the three separately compiled
programs illustrated in Example 6-3, Example 6-4, and Example 6-5:

¢ MAIN-PROGRAM (See @ in Example 6-3) directly contains program
PROG-NAME-A © and indirectly contains PROG-NAME-B @, PROG-
NAME-C O, PROG-NAME-D @, and PROG-NAME-F ©.

¢ PROG-NAME-B (See ® in Example 6—4.)

¢ PROG-NAME-E (See ® in Example 6-5.)

The CALL “PROG-NAME-B” statement in PROG-NAME-A (See @ in
Example 6-3.) references PROG-NAME-B @ in the same separately compiled
program (MAIN-PROGRAM) because PROG-NAME-B @ is directly contained
in PROG-NAME-A. All other CALL “PROG-NAME-B” statements (@ and @
and @ in Example 6-3 and ® in Example 6-5) all reference PROG-NAME-B
® in Example 64, the second separately compiled program.

Procedure Division 6-17

VALUE OF ID Clause

Example 6-3 Separately Compiled Program 1

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM. @

CALL "PROG-NAME-B". @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A.

CALL "PROG-NAME-B". @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-D. @

CALL "PROG-NAME-B". @

END PROGRAM PROG-NAME-D.
END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-F. ©

CALL "PROG-NAME-B". @

END PROGRAM PROG-NAME-F.
END PROGRAM PROG-NAME-A.
END PROGRAM MAIN-PROGRAM.

6-18 Procedure Division

VALUE OF ID Clause

Example 6-4 Separately Compiled Program 2

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. @

Example 6-5 Separately Compiled Program 3

3.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-E. B

CALL "PROG-NAME-B". @®

If a program-name has the COMMON attribute and it is contained directly
within another program, the contained program can be referenced only by the
following:

e Statements in the directly containing program

e Statements in any programs, directly or indirectly contained within the
directly containing program, except statements in the program with the
COMMON attribute and in any program it directly or indirectly contains

For example, in the run unit consisting of the three separately compiled
programs illustrated in Example 6-6, Example 6-7, and Example 6-8:

e MAIN-PROGRAM (see @ in Example 6-6) directly contains PROG-
NAME-A @, and indirectly contains PROG-NAME-B (IS COMMON) @,
PROG-NAME-C ®, PROG-NAME-D @, PROG-NAME-F @, and PROG-
NAME-G ®.

¢ PROG-NAME-B (See ® in Example 6-7.)

¢ PROG-NAME-E (See ® in Example 6-8.)

The CALL “PROG-NAME-B” statement in PROG-NAME-A (See @ in
Example 6-6) references PROG-NAME-B IS COMMON @ because it is
directly contained in PROG-NAME-A. The CALL “PROG-NAME-B” statement
in PROG-NAME-F (See @ in Example 6-6) references PROG-NAME-B

IS COMMON @ because PROG-NAME-F is directly contained in PROG-
NAME-A. The CALL “PROG-NAME-B” statement in PROG-NAME-G (See
® in Example 6-6) references PROG-NAME-B IS COMMON @ because
PROG-NAME-G is indirectly contained in PROG-NAME-A. The remaining
CALL “PROG-NAME-B” statements (@ and @ in MAIN-PROGRAM and ®
in PROG-NAME-E) all reference the separately compiled program, PROG-
NAME-B ®.

Procedure Division 6-19

VALUE OF ID Clause

Example 6-6 Separately Compiled Program 1

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM. @

CALL "PROG-NAME-B". @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. ©

CALL "PROG-NAME-B". @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B IS COMMON. @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-D.

CALL "PROG-NAME-B". @

END PROGRAM PROG-NAME-D.
END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-F. ©

CALL "PROG-NAME-B". @

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-G. @

CALL "PROG-NAME-B". @

(continued on next page)

6-20 Procedure Division

VALUE OF ID Clause

Example 6-6 (Cont.) Separately Compiled Program 1

END PROGRAM PROG-NAME-G.
END PROGRAM PROG-NAME-F.
END PROGRAM PROG-NAME-A.
END PROGRAM MAIN-PROGRAM.

Example 6-7 Separately Compiled Program 2

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. @®

Example 6-8 Separately Compiled Program 3

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-E. @

CALL "PROG-NAME-B". (®

6.2.6.2 Conventions for Resolving Other References

When a source program declares condition-names, data-names, file-names,
record-names, report-names, and segmented-key-names, only the declaring source
program can reference these names. The only exception is when names have the
GLOBAL attribute and the program contains other programs.

For example, when a program such as PROG-NAME-A (See @ in Example 6-9)
contains other programs (PROG-NAME-B ® and PROG-NAME-C @), each
program can define the same user-defined word. When such duplicated names
are referenced, the rules for qualification of names (see Section 6.2.1) apply; and,
if necessary, the following three hierarchical rules resolve any ambiguity:

1. References in a program to names defined in that program are resolved within
the program. For example:

¢ The following names: @, ©, @, and @ are both defined and referenced
within PROG-NAME-A.

¢ The following names: ®, ®, ®, ®, and ® are both defined and referenced
within PROG-NAME-B.

¢ The following names: @ and @ are both defined and referenced within
PROG-NAME-C.

2. A program cannot reference any condition-name, data-name, file-name,
record-name, or report-name defined in a program it contains. For example,
statements in PROG-NAME-A (See O, @, O, and @) cannot reference items
in either PROG-NAME-B or PROG-NAME-C. Statements in PROG-NAME-B
(see @ through @) cannot reference items in PROG-NAME-C.

Procedure Division 6-21

VALUE OF ID Clause

3. If a program contains another program, any GLOBAL names defined in the
containing program can be referenced by the following:

e Statements in a directly contained program, provided that the directly
containing program does not declare the same user-defined word, in
which case, rule 1 applies. For example, compare the Procedure Division
statement MOVE EXAMPLEL1 . .. @ with MOVE EXAMPLE2 ... @ in
the same contained program.

e Statements in an indirectly contained program, provided that neither
the indirectly containing program nor any program in between declare
the same name as a GLOBAL name. For example, compare the
Procedure Division statement MOVE EXAMPLES . .. ® with MOVE
EXAMPLE?2 . .. @ in the same contained program.

Example 6-9 Resolving References to Miscellaneous Names

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. (1)
DATA DIVISION.

FILE SECTION.

FD FILE-NAME . .. (2]

01 RECORD-NAME (3)

FD GLOBAL-FILE-NAME ... IS GLOBAL ...
WORKING-STORAGE SECTION.

01 EXAMPLEl ... IS GLOBAL...

01 EXAMPLE2 ... IS GLOBAL .

01 EXAMPLE3 ... IS GLOBAL...

01 SWITCH-STATUS.
88 ON VALUE IS "1".
88 OFF VALUE IS "0".
01 DATA-NAME
PROCEDURE DIVISION.
MOVE DATA-NAME TO
IF SWITCH-STATUS IS ON
MOVE RECORD-NAME TO
OPEN INPUT FILE-NAME

o)

(continued on next page)

6-22 Procedure Division

VALUE OF ID Clause

Example 6-9 (Cont.) Resolving References to Miscellaneous Names

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. (10]
DATA DIVISION.
FILE SECTION.
FD FILE-NAME (11)
0l RECORD-NAME ... @
WORKING-STORAGE SECTION.
01 SWITCH-STATUS.
88 ON VALUE IS "1".
88 OFF VALUE IS "0".
01 DATA-NAME

01 EXAMPLE2 ... ®
01 EXAMPLE3 ... IS GLOBAL ...
01 EXAMPLE4 ... IS GLOBAL...

PROCEDURE DIVISION.
MOVE DATA-NAME TO
IF SWITCH-STATUS IS ON
MOVE RECORD-NAME TO
OPEN INPUT FILE-NAME
OPEN OUTPUT GLOBAL-FILE-NAME.
MOVE EXAMPLE1
MOVE EXAMPLE2
MOVE EXAMPLE3
MOVE EXAMPLE4

0008 686686

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. @D
WORKING-STORAGE SECTION.
01 EXAMPLE2
0l EXAMPLE4 ... @
PROCEDURE DIVISION.
OPEN OUTPUT GLOBAL-FILE-NAME.
MOVE EXAMPLEl . . .
MOVE EXAMPLE2 ... @@
MOVE EXAMPLE3 ... @
MOVE EXAMPLE4

END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.
END PROGRAM PROG-NAME-A.

If a data item possesses either or both the EXTERNAL or GLOBAL attributes
and includes a table defining an index-name, that index-name also possesses
either or both attributes.

If the file associated with a segmented key possesses either or both the
EXTERNAL or GLOBAL attributes, that segmented key also possesses either
or both attributes.

6.2.7 External and Internal Data

External data is associated with a run unit. Any program in the run unit
describing the external data can reference that data. (See the EXTERNAL clause
in Chapter 5.) There is only one representation of an external data object.

Internal data is associated with a specific program.

External and internal data can have global names. (See the GLOBAL clause in
Chapter 5.)

Procedure Division 6-23

VALUE OF ID Clause

6.3 Explicit and Implicit Specifications
The four types of explicit and implicit specifications follow:
e Procedure Division references
e Control transfers
e Attributes

e Scope terminators

6.3.1 Explicit and Implicit Procedure Division References

A source program can refer to data items explicitly or implicitly in Procedure
Division statements.

An explicit reference occurs when the name of the item is in a Procedure Division
statement or copied into the Procedure Division by a COPY statement.

An implicit reference occurs under the following conditions:

e When a Procedure Division statement refers to an item whose name does not
appear in the statement.

¢ During PERFORM statement execution. The PERFORM statement’s control
mechanism can initialize, change, and evaluate an index or data item referred
to in the VARYING, AFTER, and UNTIL phrases. These implicit references
occur only if the PERFORM statement execution involves the data item.

6.3.2 Explicit and Implicit Control Transfers

The mechanism that controls program flow implicitly transfers control from one

statement to another in the order in which the statements appear in the source

program. The transfer occurs in this sequence unless an explicit control transfer
overrides it, or there is no next executable statement.

A program can contain both explicit and implicit changes to the control transfer
mechanism.

Implicit control transfer can also occur when normal program flow changes
without executing a procedure-branching statement. For example:

e A paragraph can execute under the control of another COBOL statement
(such as PERFORM, USE, SORT, and MERGE). If the paragraph is the last
in the controlling statement’s range, an implied control transfer occurs from
the last statement in the paragraph to the controlling statement’s control
mechanism.

An implicit control transfer occurs between the control mechanism of a
PERFORM statement that causes iterative execution and the first paragraph
in its range. The transfer occurs for each iterative execution of the paragraph.

e When a SORT or MERGE statement executes, an implicit control transfer
occurs to associated input or output procedures.

e When the execution of a statement causes the execution of a Declaratives
Section, the control transfer is implicit. Another implicit control transfer
occurs after execution of the Declaratives Section.

6-24 Procedure Division

VALUE OF ID Clause

e If the Procedure Division does not have any Declaratives Sections, the
program’s first executable statement is the first executable statement in the
Procedure Division. Otherwise, the program’s first executable statement is
the first executable statement after the declaratives part of the Procedure
Division.

An explicit control transfer is a change to the implicit control transfer mechanism

caused only by execution of either:

e A procedure-branching statement

¢ A conditional statement

The EXIT procedure-branching statement causes an explicit control transfer only
when it has the PROGRAM phrase.

The Procedure Branching statement ALTER does not cause an explicit control
transfer. However, it affects the explicit control transfer of the associated GO TO
statement.

The term next executable statement refers to the next COBOL statement to
which control transfers according to these rules and those associated with each
language element.

There is no next executable statement when the program has no Procedure
Division. This is also the case after:

¢ The last statement in a Declaratives Section, when the paragraph in which it
appears is not executing under the control of another COBOL statement

¢ The last statement in a program, when the paragraph in which it appears is
not executing under the control of another COBOL statement

e A STOP RUN or EXIT PROGRAM statement, when execution control
transfers outside of the COBOL program containing the statement

e An END PROGRAM header

When there is no next executable statement and control does not transfer out of
the program, program control flow is undefined. However, an EXIT PROGRAM

statement implicitly executes when the program is under the control of a CALL

statement.

6.3.3 Explicit and Implicit Attributes

An explicit attribute is an attribute the program explicitly specifies. If the
program does not explicitly specify an attribute, the attribute assumes a default;
it is then an implicit attribute.

For example, a program need not specify USAGE for a data item. If it does not,
the data item’s implicit usage is DISPLAY.

6.3.4 Explicit and Implicit Scope Terminators

Scope terminators delimit the scope of some Procedure Division statements as
described in Section 6.1.4.

The following are explicit scope terminators:

END-ACCEPT END-ADD END-CALL
END-COMPUTE END-DELETE END-DIVIDE

Procedure Division 6-25

VALUE OF ID Clause

END-EVALUATE END-IF END-MULTIPLY
END-PERFORM END-READ END-RETURN
END-REWRITE END-SEARCH END-START
END-STRING END-SUBTRACT END-UNSTRING
END-WRITE

The following are implicit scope terminators:

e At the end of a sentence the separator period terminates the scope of all
previously unterminated statements.

e In a statement containing another statement the next phrase of the
containing statement after the end of the contained statement terminates
the scope of all unterminated contained statements. Examples are ELSE and
WHEN.

6.4 Arithmetic Expressions

Whenever the term arithmetic expression appears in Procedure Division rules,
it refers to one of the following:

e An identifier of a numeric elementary item

e A numeric literal

e A figurative constant ZERO (ZEROS, ZEROES)

e Two or more of the above separated by arithmetic operators

e Two or more arithmetic expressions separated by arithmetic operators
e An arithmetic expression enclosed in parentheses

A unary operator (a sign) can precede any arithmetic expression.

The identifiers and literals in an arithmetic expression must represent either of
the following:

e Numeric elementary items
e Numeric literals on which arithmetic can be performed

Evaluation rules for arithmetic expressions depend on whether the mode of
arithmetic in effect is native or standard.

6.4.1 Arithmetic Operators

Arithmetic expressions can use five binary and two unary arithmetic operators.
A space must precede each operator and follow each binary operator.

The operators are as follows:

Binary Arithmetic Operator Meaning

+ Addition

- Subtraction

* Multiplication
/ Division

6-26 Procedure Division

VALUE OF ID Clause

Binary Arithmetic Operator Meaning

ok Exponentiation

Unary Arithmetic Operator Meaning

+ The effect of multiplication by +1

- The effect of multiplication by -1

6.4.2 Formation and Evaluation of Arithmetic Expressions
The following rules apply regardless of the mode of arithmetic that is in effect.

Parentheses can be used to specify the order in which elements in an arithmetic
expression are evaluated. Expressions within parentheses are evaluated first.
If you nest sets of parentheses, evaluation starts with the innermost set of
parentheses and proceeds to the outermost set.

If the arithmetic expression contains no parentheses, the compiler evaluates
arithmetic operators in the following hierarchical order:

First Unary plus and minus
Second Exponentiation

Third Multiplication and division
Fourth Addition and subtraction

This order also applies within a single set of parentheses.

If two or more operators are at the same hierarchical level, and parentheses do
not specify the sequence of operations, evaluation proceeds from left to right.

Parentheses can eliminate ambiguities in logic when there are consecutive
operations at the same hierarchical level, or change the normal hierarchical
sequence of evaluation.

Consider the following expression:

(3 * ITEMA - 2) / ((4 + ITEMB) * -ITEMA - ITEMC ** 2)
The order of evaluation is as follows:

4 + ITEMB

-ITEMA

3 * ITEMA

(The results of step 3) - 2

ITEMC ** 2

(The results of step 1) * (the results of step 2)
(The results of step 6) - (the results of step 5)
(The results of step 4) / (the results of step 7)

S o R

Each left parenthesis in an arithmetic expression must have a matching right
parenthesis, and each right parenthesis must have a matching left parenthesis.

Procedure Division 6-27

VALUE OF ID Clause

If the first operator in an arithmetic expression is a unary operator, a left
parenthesis (() must immediately precede it when the arithmetic expression
immediately follows an identifier or another arithmetic expression. For example:

CALL "OTHERPROG" USING ITEMA (-ITEMB) ITEMC.
The following rules apply to the evaluation of exponentiation:

1. If the value of an expression to be raised to a power is zero, the exponent
value must be greater than zero. Otherwise, the size error condition exists.
(See Section 6.6.4.)

2. If the evaluation yields both a positive and negative real number, the positive
number is the result.

3. If the evaluation yields no real number, the size error condition exists.

If the evaluation of the arithmetic expression results in an attempted division by
zero, the size error condition exists.

When a statement with an arithmetic expression does not refer to a resultant
identifier, the compiler stores the results of the arithmetic expression in an
intermediate data item. (See Section 6.6.1.)

6.4.3 Standard Arithmetic (Alpha, 164)

When a floating-point data item is an operand in an arithmetic expression or an
arithmetic statement, the rules for evaluation are described in Section 6.4.4.1.1

When standard arithmetic is in effect, the following rules apply:

1. Any operand of an arithmetic expression that is not already contained in a
standard intermediate data item is converted into a standard intermediate
data item.

2. The size error condition is raised if the value is too large or too small to be
contained in a standard intermediate data item.

A standard intermediate data item is of the class numeric and the category
numeric. It is the unique value zero or an abstract, signed, normalized decimal
floating-point temporary data item.

A standard intermediate data item has the unique value of zero or a

value whose magnitude is in the range 10%*-100 through 10%%99 - 10**%67,

that is, (.100 000 000 000 000 000 000 000 000 000 00E-99) through

(.999 999 999 999 999 999 999 999 999 999 99E+99)2 inclusive, with a precision
of 32 decimal digits.

When the value of a standard intermediate data item is not zero, the fraction
contains no digits to the left of the decimal point and contains a digit other than
zero to the immediate right of the decimal point.

A standard intermediate data item is rounded to 31 digits in the situations listed
below.

1. When a standard intermediate data item is compared.

A floating-point data item has one of these usages: COMP-1, COMP-2, FLOAT-SHORT,
FLOAT-LONG, or FLOAT-EXTENDED.

2 The blanks are added for readability.

6-28 Procedure Division

VALUE OF ID Clause

2. When a standard intermediate data argument is the argument of a function
and there is no equivalent arithmetic expression defined for the rules of
the function, unless otherwise specified in the rules for a function or unless
situation 1, above, applies.

3. When a standard intermediate data item is being moved to a resultant-
identifier for which the ROUNDED phrase has not been specified. Rounding
of a standard intermediate data item may cause the size error condition to be
raised.?

When a standard intermediate data item is being moved to a resultant-identifier
for which the ROUNDED phrase is specified, the number of digits to which
rounding occurs is as specified in the ROUNDED phrase.

When arithmetic expressions using addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result

is truncated to 32 significant digits, normalized, and stored in a standard
intermediate data item.

6.4.4 Native Arithmetic (Alpha, 164)

When a floating-point data item is an operand in an arithmetic expression
or an arithmetic statement, the rules for evaluation are those described in
Section 6.4.4.1.

When native arithmetic is in effect, the following rules apply:

1. If the result of an arithmetic expression can be represented without loss
of significance in 38 decimal digits or less, then decimal or computational
operations are used to evaluate the expression.

2. When it is possible for an expression to produce more than 38 decimal digits,
an intermediate data item is selected based on the MATH_INTERMEDIATE
qualifier.

The compiler assumes that all possible digit positions of a variable are
significant.

6.4.4.1 FLOAT Arithmetic (Alpha, 164)

A double-precision binary floating-point intermediate data item is selected when
/MATH_INTERMEDIATE=FLOAT is specified. On OpenVMS Alpha and 164 this
is a G_floating or T_floating data item; on Tru64 UNIX, this is a T floating data
item. Refer to the Alpha Architecture Reference Manual for more information on
floating-point data types and operations.

A G_floating data item has a sign bit, an 11-bit binary exponent, and a
normalized 53-bit fraction with the redundant most significant fraction bit not
represented. The magnitude of a G_floating data item is in the approximate
range 0.56 * 10**-308 through 0.9 * 10**308. The precision of a G_floating data
item is approximately one part in 2**52, typically 15 decimal digits.

A T_floating data item has a sign bit, an 11-bit binary exponent, and a 52-bit
fraction. HP COBOL generates code that uses the finite, normalized, floating-
point range capabilities of T_floating. The magnitude of a T floating data item is
in the approximate range 2.2 * 10%*-308 through 1.8 * 10¥*308. The precision of
a T floating data item is approximately one part in 2**52, typically 15 decimal
digits.

3 These rules are intended to eliminate excessive rounding and to ensure that rounding

occurs once at the end of the evaluation of nested arithmetic expressions.

Procedure Division 6-29

VALUE OF ID Clause

When the destination of an arithmetic statement is a floating-point data item,
normal rounding takes place.

When an arithmetic expression references a floating-point operand, floating-point
operations are used to evaluate the expression, and the result is represented in
a floating-point intermediate data item. Floating-point operations use normal
rounding; implicit conversions to integer are chopped. HP COBOL provides
support for finite (normalized) floating-point values only.

When arithmetic expressions using addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result

is truncated to 53 significant bits, normalized, and stored in a floating-point
intermediate data item.

6.4.4.2 CIT3 Arithmetic (Alpha, 164)

A decimal floating-point intermediate data item is selected when the qualifier
/MATH_INTERMEDIATE=CITS is specified.

A CIT3 intermediate data item has the unique value of zero or a value
whose magnitude is in the range 10%*-100 through 10%¥99 - 10%#81, that
is, (.100 000 000 000 000 000E-99) through (.999 999 999 999 999 999E+99)*
inclusive, with a precision of 18 decimal digits.

When a CIT3 intermediate data item is being moved to a resultant-identifier for
which the ROUNDED phrase is specified, the number of digits to which rounding
occurs is as specified in the ROUNDED phrase; when the ROUNDED phrase is
not present, no rounding takes place.

When arithmetic expressions addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result is
truncated to 18 significant digits, normalized, and stored in a CIT3 intermediate
data item.

6.4.4.3 CIT4 Arithmetic (Alpha, 164)

A decimal floating-point intermediate data item is selected when /MATH_
INTERMEDIATE=CIT4 is specified.

A CIT4 intermediate data item has the unique value of zero or a value

whose magnitude is in the range 10%*-100 through 10%**99 - 10%**67,

that is, (.100 000 000 000 000 000 000 000 000 000 00E-99) through

(.999 999 999 999 999 999 999 999 999 999 99E+99)! inclusive, with a precision
of 32 decimal digits.

Rounding rules for CIT4 arithmetic are the same as those described in
Section 6.4.3.

When arithmetic expressions using addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result is
truncated to 32 significant digits, normalized, and stored in a CIT4 intermediate
data item. o

4 The blanks are added for readability.

6-30 Procedure Division

VALUE OF ID Clause

6.5 Conditional Expressions

A conditional expression specifies a condition the program must evaluate to
determine the path of program flow. If the condition is true, the program takes
one path; if it is false, the program takes another path. The IF, EVALUATE,
PERFORM UNTIL, PERFORM VARYING, and SEARCH statements use
conditional expressions. Any statement that can contain another imperative
statement can contain a conditional expression.

A conditional expression can be either a simple or a complex condition. The types
of simple conditions are the relation, class, condition-name, switch-status, sign,
and success/failure conditions. Complex conditions are formed by using logical
operators (AND, OR, NOT) with simple conditions. You can enclose conditions
within any number of paired parentheses. However, embedding conditions this
way has no effect on whether they are considered simple or complex.

6.5.1 Relation Conditions

{

Subject

identifier-1
literal-1
arithmetic-e

A relation condition states a relation between two operands. The program
compares the operands to determine whether the stated relation is true or false.
The first operand is called the condition’s subject. The second operand is called its
object. Either operand can be an identifier, a literal, or the value of an arithmetic
expression. The set of words that specifies the type of comparison is called the
relational operator.

The format for a relation condition is as follows:

Relational Operator Object
IS [NOT] GREATER THAN
IS[NOT]>
IS [NOT] LESS THAN
IS[NOT] <
IS[NOT] EQUAL TO identifier-2
} { literal-2 }
Xpression-1 IS[NOT] = arithmetic-expression-2

IS GREATER THAN OR EQUAL TO
IS >=

IS LESS THAN OR EQUAL TO

IS <=

You can compare two numeric operands regardless of their USAGE. However, if
one or both of the operands are not numeric, they must have the same USAGE.
If either operand is a group item, then the comparison is treated as nonnumeric,
since group items are always considered alphanumeric.

You must refer to at least one variable in a relation condition; you cannot refer
only to literals.

Procedure Division 6-31

VALUE OF ID Clause

A space must precede and follow each word in the relational operator. However,
NOT and the key word or relation character that follows NOT are treated as a
unit.

The following relational operators are equivalent:
e IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO
e IS NOT LESS THAN is equivalent to IS GREATER THAN OR EQUAL TO

Table 6-3 specifies valid true conditions that correspond to each relational
operator.

Table 6-3 Relational Operators and Corresponding True Conditions

Relational Operator True Condition

IS GREATER THAN Subject is greater than object.

IS > THAN

IS NOT GREATER THAN Subject is either less than or equal to object.

IS NOT > THAN

IS LESS THAN Subject is less than object.

IS < THAN

IS NOT LESS THAN Subject is either greater than or equal to object.
IS NOT < THAN

IS EQUAL TO Subject is equal to object.

IS = TO

IS NOT EQUAL TO Subject is either greater than or less than object.
IS NOT = TO

IS GREATER THAN OR EQUAL Subject is greater than or equal to object.

TO

IS >=

IS LESS THAN OR EQUAL TO Subject is less than or equal to object.

IS <=

The following two sections specify the rules that apply to numeric and
nonnumeric comparisons in relation conditions.

6.5.1.1 Comparison of Numeric Operands

When both operands are numeric, their algebraic values are compared. The
program performs the necessary conversion if the data descriptions of the
operands specify different USAGE. When you use operands that are literals or
arithmetic expressions, their length (in terms of the number of digits represented)
is not significant.

Unsigned numeric operands are assumed to be positive for comparison. A zero
value is always treated the same way, whether or not the operand contains a
sign.

6.5.1.2 Comparison of Nonnumeric Operands

When one (or both) of the operands is nonnumeric, each operand is considered
a string of alphanumeric characters. Therefore, the operands are compared
according to the program’s collating sequence. (See the OBJECT-COMPUTER
paragraph in Chapter 4.)

6-32 Procedure Division

VALUE OF ID Clause

If one of the operands is numeric, it must be either an integer literal or a data
item described as an integer. The data item must be implicitly or explicitly
described with USAGE DISPLAY. The treatment of the numeric data item is
further affected by the following:

e If the nonnumeric operand is an elementary data item or a nonnumeric
literal, the numeric data item is treated as though it were moved to an
elementary alphanumeric data item of the same size. The content of this
alphanumeric data item is then compared to the nonnumeric operand.

e If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size. The content of this
group item is then compared to the nonnumeric operand.

¢ When a numeric operand contains a sign, its sign is part of the string only if
the other operand is a group item. Otherwise, the sign is removed and is not
part of the comparison.

The two operands are compared character by character, beginning at the left end
of each string. When the operation finds an unequal character pair, it uses that
pair to evaluate the comparison. The greater operand is the one that contains
the character with the higher collating sequence position. If the operands are of
unequal size, the shorter operand is treated as if it were extended on the right
with spaces to make it the same size as the other. Therefore, ABCD is greater
than ABC (unless the program’s collating sequence dictates otherwise).

Comparisons of Index-Names or Index Data ltems
A program can compare the following:

e Two index-names

¢ One index-name and one literal or data item (other than an index data item)
¢ One index-name and one index data item

e Two index data items

6.5.2 Class Condition

The class condition tests whether the contents of an operand are numeric or
alphabetic. It also determines if an alphabetic operand contains only uppercase
characters, only lowercase characters, or if an operand is in conformance with
class-name. The general format is as follows:

NUMERIC
ALPHABETIC

identifier IS [NOT] < ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

The identifier must reference a data item whose usage is explicitly or implicitly
DISPLAY or COMP-3. If the identifier is a function-identifier, it must reference
an alphanumeric function.

Procedure Division 6-33

VALUE OF ID Clause

The following rules apply to the NUMERIC test:

1. The test is true when the operand contains only the characters 0 to 9 and the
operational sign (subject to the next rule); otherwise, it is false.

2. The operand must contain an operational sign if its PICTURE clause specifies
a sign. If the PICTURE clause does not specify a sign, the operand must not
contain one. If the operand contains a sign that is not specified, or if a sign is
specified and the operand does not contain one, the NUMERIC test is false.

3. You cannot use the test for an operand described as alphabetic or a group
item containing signed elementary items.

The following rules apply to the ALPHABETIC test:

1. The test is true when the operand contains only the characters A to Z, a to z,
and the space; otherwise, it is false.

2. You cannot use the ALPHABETIC test for an operand described as numeric.

The ALPHABETIC-LOWERCASE test is true when the operand contains only the
characters a to z, and the space; otherwise, it is false.

The ALPHABETIC-UPPERCASE test is true when the operand contains only the
characters A to Z, and the space; otherwise, it is false.

The class-name test is true when the operand consists entirely of the characters
listed in the definition of class-name in the SPECIAL-NAMES paragraph. The
class-name test must not be used with an item whose data description describes
the item as numeric.

NOT and the key word following it are treated as a unit. For example, NOT
NUMERIC is a test for determining that the operand is nonnumeric.

6.5.3 Condition-Name Condition

The condition-name condition determines if a data item contains a value
assigned to one of that item’s condition-names. The term conditional variable
refers to the data item. condition-name refers to a level 88 entry associated with
that item.

The general format for this condition is:
condition-name

The condition is true if one of the values corresponding to condition-name equals
the value of the associated conditional variable. The data description for a
variable can associate condition-name with one or more ranges of values. In
this case, the condition tests to determine if the value of the variable falls in the
specified range (end values included).

The following example illustrates testing condition-names associated with both
one value and a range of values:

6-34 Procedure Division

WORKING-STORAGE SECTION.

01 STUDENT-REC.
05 YEAR-ID
88 FRESHMAN
88 SOPHOMORE
88 JUNIOR
88 SENIOR
88 GRADUATE

PROCEDURE DIVISION.

IF FRESHMAN
IF SOPHOMORE
IF JUNIOR
IF SENIOR
IF GRADUATE

PIC 99.

VALUE OF ID Clause

VALUE IS 1.
VALUE IS 2.
VALUE IS 3.
VALUE IS 4.
VALUE IS 5 THRU 10.

Test Is True When the Value of the

Condition-Name Conditional Variable YEAR-ID Equals:
FRESHMAN 1

SOPHOMORE 2

JUNIOR 3

SENIOR 4

GRADUATE 5,6,7,8,9,or 10

When your program evaluates a conditional variable and its condition-name,
the procedure is the same as the one used with the relation condition. (See

Section 6.5.1.)
6.5.4 Switch-Status Condition

The switch-status condition tests the on or off setting of an external logical
program switch. Its general format is as follows:

condition-name

You use the SWITCH clause of the SPECIAL-NAMES paragraph to associate
condition-name with a logical switch setting. (See the SPECIAL-NAMES
paragraph in Chapter 4.) The condition is true if the switch setting in effect
during program execution is the same one assigned to condition-name.

Note

The translated value of the OpenVMS Alpha or 164 logical name
COB$SWITCHES or the Tru64 UNIX environment variable COBOL_
SWITCHES specifies logical program switch settings. (Refer to the
description of program switches in the HP COBOL User Manual.)

Procedure Division 6-35

VALUE OF ID Clause

6.5.5 Sign Condition

The sign condition determines if the algebraic value of an arithmetic expression
is less than, greater than, or equal to zero.

Its general format is as follows:

POSITIVE
arithmetic-expression IS [NOT] ¢ NEGATIVE

ZERO

An operand is defined as:
e POSITIVE, if its value is greater than zero
e NEGATIVE, if its value is less than zero
e ZERO, if its value equals zero
arithmetic-expression must contain at least one reference to a variable.
NOT and the key word following it are treated as a unit. For example, NOT
ZERO tests for a nonzero condition.
6.5.6 Success/Failure Condition

The success/failure condition tests the return status codes of COBOL and
non-COBOL procedures for success or failure conditions.

General Format

SUCCESS }

status-code-id IS {
FAILURE

status-code-id
must be a COMP integer represented by PIC 9(1 to 9) COMP or PIC S9(1 to 9)
COMP.

You can use the SET statement to initialize or alter the status of status-code-id.

The SUCCESS class condition is true if you specify status-code-id IS SUCCESS
and status-code-id is in a SUCCESS state. Otherwise, the SUCCESS class
condition is false.

The FAILURE class condition is true if you specify status-code-id IS FAILURE
and status-code-id is in a FAILURE state. Otherwise, the FAILURE class
condition is false.

status-code-id is in the SUCCESS state when the low-order bit of status-code-id is
1. It is in the FAILURE state when its low-order bit is 0.

6-36 Procedure Division

VALUE OF ID Clause

Examples

1.

On OpenVMS, calling a non-COBOL procedure:

WORKING-STORAGE SECTION.

01 RMS-EOF PIC S9(9) COMP VALUE EXTERNAL RMS$ EOF.
01 RETURN-STATUS PIC S9(9) COMP.

PROCEDURE DIVISION.

A000-BEGIN.

CALL "LIBSGET SCREEN"
USING BY DESCRIPTOR INPUT-TEXT, PROMPT,
BY REFERENCE OUT-LEN,
GIVING RETURN-STATUS.
IF RETURN-STATUS = RMS-EOF PERFORM CTRL-Z-TRAP-ROUTINE.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.

Calling a COBOL procedure:

IDENTIFICATION DIVISION.

PROGRAM-ID. MAIN-PROGRAM.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 RETURN-STATUS PIC S9(9) cowmP.
PROCEDURE DIVISION.

CALL "SUB" GIVING RETURN-STATUS.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.

IDENTIFICATION DIVISION.
PROGRAM-ID. SUB.

WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) cowmP.
PROCEDURE DIVISION GIVING RETURN-STATUS.

IFA=B
SET RETURN-STATUS TO SUCCESS
ELSE
SET RETURN-STATUS TO FAILURE.

EXIT PROGRAM.
END PROGRAM SUB.
END PROGRAM MAIN-PROGRAM.

Procedure Division 6-37

VALUE OF ID Clause

6.5.7 Complex Conditions

You form complex conditions by combining or negating other conditions. The
conditions being combined or negated can be either simple or complex.

The logical operators AND and OR combine conditions. The logical operator NOT
negates conditions. A space must precede and follow each logical operator in your
program.

The truth value of a complex condition depends upon the following:
e The truth value of each condition it contains
e The effect of the logical operators

Table 6—4 shows the effect of each logical operator in complex conditions.

Table 6-4 How Logical Operators Affect Evaluation of Conditions

Logical

Operator Meaning and Effect

AND Logical conjunction. The truth value is true if both connected conditions
are true. It is false if one or both connected conditions are false.

OR Logical inclusive OR. The truth value is true if one or both connected
conditions are true. It is false if both conditions are false.

NOT Logical negation or reversal of truth value. The truth value is true if the

original condition is false. It is false if the original condition is true.

Negated Simple Conditions

The logical operator NOT negates a simple condition. The truth value of a
negated simple condition is the opposite of the simple condition’s truth value.
Thus, the truth value of a negated simple condition is true only if the simple
condition’s truth value is false. It is false only if the simple condition’s truth
value is true.

The format for a negated simple condition is as follows:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the logical
operators AND or OR.

The general format is as follows:

AND
condition { } condition
OR

In the general format, condition can be one of the following:
e A simple condition

¢ A negated simple condition

¢ A combined condition

e A negated combined condition; that is, NOT followed by a combined
condition enclosed in parentheses

6-38 Procedure Division

VALUE OF ID Clause

e Valid combinations of the preceding conditions (see Table 6-5)

You can use matched pairs of parentheses in a combined condition. You do not
need to write parentheses if the condition combines two or more conditions with
the same logical operator (either AND or OR). In this case, the parentheses
have no effect on the condition’s evaluation. However, you might have to use
parentheses if you use a mixture of AND, OR, and NOT logical operators. In this
case, the parentheses can affect the condition’s evaluation.

When the relevant parentheses are missing from a complex condition, the
evaluation order of the logical operators determines the conditions to which the
specified logical operators apply and implies the equivalent parentheses. The
evaluation order is NOT, AND, OR. Thus, specifying:

a OR NOT b AND c¢

implies and is equivalent to specifying:
a OR ((NOT b) AND c)

(See also Section 6.5.9.)

Table 6-5 shows the permissible combinations of conditions, logical operators, and
parentheses.

Table 6-5 Combinations of Conditions, Logical Operators, and Parentheses

In a Conditional

Expression In a Left-to-Right Element Sequence
Can Can Element, When Not
Element Element First, Can Immediately Element, When Not Last, Can
Element Be First? Be Last? Follow Immediately Precede
simple- Yes Yes OR, NOT, AND, (OR, AND,)
condition
OR or AND No No simple-condition,) simple-condition, NOT, (
NOT Yes No OR, AND, (simple-condition, (
(Yes No OR, NOT, AND, (simple-condition, NOT, (
) No Yes simple-condition,) OR, AND,)

For example, Table 6-5 shows whether or not the following element pairs can
occur in your program:

Element

Pair Permitted?
OR NOT Yes

NOT OR No

NOT (Yes

NOT NOT No

6.5.8 Abbreviated Combined Relation Conditions

When you combine simple or negated simple conditions in a consecutive sequence,
you can abbreviate any of the relation conditions except the first. You do this by
either:

¢ Omitting the subject of the relation condition

Procedure Division 6-39

VALUE OF ID Clause

e Omitting both the subject and the relational operator of the condition

e Ensuring that a relation condition in the consecutive sequence contains a
subject (or subject and relational operator) that is common with the preceding
relation condition

e Ensuring that there are no parentheses in the consecutive sequence

The general format for abbreviated combined relation conditions is as
follows:

AND
relation-condition { } [NOT | [relational-operator | object
OR

The evaluation of a sequence of combined relation conditions proceeds as if
the last preceding subject appears in place of the omitted subject and the last
preceding relational operator appears in place of the omitted relational operator.
The result of these substitutions must form a valid condition. (See Table 6-5.)

When the word NOT appears in a sequence of abbreviated conditions, its
treatment depends upon the word that follows it. NOT is considered part of
the relational operator when immediately followed by: GREATER, >, LESS, <,
EQUAL, or =. Otherwise, NOT is considered a logical operator that negates the
relation condition.

Table 6-6 shows abbreviated combined (and negated combined) relation
conditions and their expanded equivalents:

Table 6-6 Expanded Equivalents for Abbreviated Combined Relation Conditions

Abbreviated Combined
Relation Condition Expanded Equivalent

a>bAND NOT <cOR d ((a>b) AND (a NOT < ¢)) OR (a NOT < d)

aNOT=bORc
NOTa=bORc

(a NOT =b) OR (a NOT = ¢)
(NOT (a=b)) OR (a = ¢)

NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < ¢))
a/b NOT =c AND NOT d ((a/b) NOT = ¢) AND (NOT ((a/b) NOT = d))
NOT (a NOT > b AND ¢ AND NOT d) NOT ((((a NOT > b) AND (a NOT > ¢)) AND (NOT (a NOT >

)

6.5.9 Condition Evaluation Rules

Parentheses can specify the evaluation order in complex conditions. Conditions in
parentheses are evaluated first. In nested parentheses, evaluation starts with the
innermost set of parentheses. It proceeds to the outermost set.

Conditions are evaluated in a hierarchical order when there are no parentheses
in a complex condition. This same order applies when all sets of parentheses are
at the same level (none are nested). The hierarchy is shown in the following list:

1. Values for arithmetic expressions

2. Truth values for simple conditions, in this order:
a. Relation
b. Class

6-40 Procedure Division

VALUE OF ID Clause

c¢. Condition-name
d. Switch-status
e. Sign
f. Success/failure
Truth values for negated simple conditions
4. Truth values for combined conditions, in this order:
a. AND logical operators
b. OR logical operators
5. Truth values for negated combined conditions
In the absence of parentheses, the order of evaluation of consecutive operations at
the same hierarchical level is from left to right.
6.6 Common Rules and Options for Data Handling

This section describes the rules and options that apply when statements handle
data. Data handling includes the following:

e Arithmetic operations

e Multiple receiving fields in arithmetic statements
e The ROUNDED phrase

e The ON SIZE ERROR phrase

e The CORRESPONDING phrase

e The ON EXCEPTION phrase

e Overlapping operands and incompatible data
e /O status

e The INVALID KEY phrase

e The AT END phrase

e The FROM phrase

e The INTO phrase

6.6.1 Arithmetic Operations

The arithmetic statements begin with the verbs ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT. When an operand in these statements is a data
item, its PICTURE must be numeric and specify no more than 31 digit positions
on Alpha or 164 (18 on VAX). However, operands do not have to be the same size,
nor must they have the same USAGE. Conversion and decimal point alignment
occur throughout the calculation.

When you write an arithmetic statement, you specify one or more data items

to receive the results of the operation. These data items are called resultant
identifiers. However, the evaluation of each arithmetic statement can also use
an intermediate data item. An intermediate data item is a compiler-supplied
signed numeric data item that the program cannot access. It stores the results
of intermediate steps in the arithmetic operation before moving the final value to
the resultant identifiers.

Procedure Division 6-41

VALUE OF ID Clause

When the final value of an arithmetic operation is moved to the resultant
identifiers, it is transferred according to MOVE statement rules. Rounding and
size error condition checking occur just before this final move. (See the MOVE
statement, Section 6.6.4, ON SIZE ERROR Phrase, and Section 6.6.3, ROUNDED
Phrase.)

6.6.2 Multiple Receiving Fields in Arithmetic Statements

An arithmetic statement can move its final result to more than one data item.
In this case, the statement is said to have multiple receiving fields (or
multiple results). The statement operates as if it had been written as a series
of statements. The following example illustrates these steps. The first statement
in the example is equivalent to the four that follow it. (Temp is an intermediate
data item.)

ADD a, b, c TO ¢, d (c), e

ADD a, b, c GIVING temp
ADD temp TO c

ADD temp TO d (c)

ADD temp TO e

6.6.3 ROUNDED Phrase

The ROUNDED phrase allows you to specify rounding at the end of an arithmetic
operation. The rounding operation adds 1 to the absolute value of the low-order
digit of the resultant identifier if the absolute value of the next least significant
(lower-valued) digit of the intermediate data item is greater than or equal to 5.

When the PICTURE string of the resultant identifier represents the low-order
digit positions with the P character, rounding or truncation is relative to the
rightmost integer position for which the compiler allocates storage. Therefore,
when PIC 999PPP describes the item, the value 346711 is rounded to 347000.

If you do not use the ROUNDED phrase, any excess low-order digits in the
arithmetic result are truncated when the result is moved to the resultant
identifiers.

6.6.4 ON SIZE ERROR Phrase

The ON SIZE ERROR phrase allows you to specify an action for your program to
take when a size error condition exists.

The NOT ON SIZE ERROR phrase allows you to specify an action for your
program to take when a size error condition does not exist.

The format is as follows:
[NOT] ON SIZE ERROR stment

stment is an imperative statement.

Size error checking occurs after decimal point alignment. Rounding occurs before
size error checking. Also, truncation of rightmost digits occurs before size error
checking.

A size error condition is caused by the following:

e Division by zero or invalid evaluation of exponentiation (see Section 6.4.2).
Both actions terminate the arithmetic operation.

e The absolute value of an arithmetic operation’s result exceeds the value that
is specified by the PICTURE clause of one or more of the resultant identifiers.

6-42 Procedure Division

VALUE OF ID Clause

e Evaluation of an arithmetic expression would cause the new value to be
outside the allowed range for the intermediate data item.

In the second case above, the size error condition affects the contents of only those
resultant identifiers for which the size error exists.

When a size error condition occurs and the statement contains an ON SIZE
ERROR phrase:

1. When standard arithmetic is in effect, the values of those resultant identifiers
for which the size error exists are the same as before the operation began;
when native arithmetic is in effect, those values are undefined.

2. The values of those resultant identifiers for which no size error exists are the
same as they would have been if the size error condition had not occurred for
any of the resultant identifiers.

The imperative statement in the ON SIZE ERROR phrase executes.
4. The NOT ON SIZE ERROR phrase, if specified, is ignored.

Control is transferred to the end of the arithmetic statement unless control
has been transferred by executing the imperative statement of the ON SIZE
ERROR phrase.

6. When a size error occurs in any arithmetic statement with multiple results,
your program must analyze the results to determine where the size error
occurred.

When a size error condition occurs and the statement does not contain an ON
SIZE ERROR phrase:

1. The values of those resultant identifiers for which the size error exists are
undefined.

2. The NOT ON SIZE ERROR phrase, if specified, is ignored.

3. Control is transferred to the end of the arithmetic statement.
When a size error condition does not occur:

1. The ON SIZE ERROR phrase, if specified, is ignored.

2. The imperative-statement in the NOT ON SIZE ERROR phrase, if specified,
is executed.

3. Control is transferred to the end of the arithmetic statement unless control
has been transferred by executing the imperative statement of the NOT ON
SIZE ERROR phrase.

If you use the ADD or SUBTRACT statements with the CORRESPONDING
phrase, any individual operation can cause a size error condition. In this
instance, the imperative statement in the ON SIZE ERROR phrase executes
after all the individual additions or subtractions are complete.

6.6.5 CORRESPONDING Phrase

The CORRESPONDING phrase allows you to specify group items as operands in
order to use their corresponding subordinate items in an operation. See the ADD
, SUBTRACT, and MOVE statements.

The following rules apply to the identifiers of operands in a statement containing
the CORRESPONDING phrase:

1. All identifiers must refer to group items.

Procedure Division 6-43

VALUE OF ID Clause

2. The data description entries of these identifiers can contain a REDEFINES or
OCCURS clause.

3. Identifiers can be subordinate to a data description entry that has a
REDEFINES or OCCURS clause.

4. You cannot specify identifiers with level-number 66, 77 or 88, or the USAGE
IS INDEX clause.

5. Identifiers cannot be reference-modified.

The following rules describe the requirements for correspondence between data
items subordinate to the identifiers. In these rules, identifier-1 refers to the
sending group item and identifier-2 refers to the group in which results of the
operation are stored.

1. Data items subordinate to both identifier-1 and identifier-2 must have the
same data-name.

2. All possible qualifiers for a data item contained in identifier-1 (up to but
not including identifier-1), must be identical to all possible qualifiers for the
matching item in identifier-2 (up to but not including identifier-2).

3. In an ADD or SUBTRACT statement, the CORRESPONDING phrase affects
only elementary numeric data items. Other data items do not take part in
the operation.

4. In a MOVE statement, either the sending or receiving subordinate item can
be a group item, but both cannot be. The classes of the data items in any
corresponding pair can be different, but the resulting move must be legal
according to the MOVE statement rules