HP ACMS for OpenVMS

Remote Systems Management
Guide

Order Number: AA-RJXRC-TE

January 2006

The Remote Manager is a process for remotely managing HP ACMS for
OpenVMS systems. This manual describes the features of the Remote
Manager, how to use those features, and how to manage the Remote
Manager.

Revision/Update Information: This document supersedes the HP
ACMS for OpenVMS Remote Systems
Management Guide, Version 4.5A.

Operating System: OpenVMS Alpha Version 8.2
OpenVMS 164 Version 8.2-1
Software Version: HP ACMS for OpenVMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors, or omissions contained herein.

Motif is a registered trademark of The Open Group.
Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Oracle CODASYL DBMS, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rdb, Oracle
SQL/Services, Oracle Trace, and Oracle Trace Collector are registered US trademarks of Oracle
Corporation, Redwood City, California.

Printed in the US

Preface

Contents

Part| Introduction

1 Overview of Remote Management

1.1
1.2

Architecture and Implementation
Remote Management Capabilities

2 Getting Started with the ACMS Remote Manager

2.1
211
21.141
21.1.2
21.1.3
2114
2115
21.2
21.21
21.2.2
213
2.2
2.2.1
222
2221
2222
2223
2.2.3
2.2.3.1
2232
2.2.3.3
2234
2.3
2.3.1
23.2
2.3.3
234
2.3.5
2.3.5.1
2.35.2
2.4

2.5

Running the ACMS Remote Manager
Server Node Setup
Verify Portmapper (RPC) Setup
Run the ACMS Postinstallation Procedure
Define Process Logicals and Symbols
Prepare the ACMS Environment
Start the ACMS Remote Manager
Client Node Setup
Run ACMS_POST_INSTALL.COM uun...
Copy Files and Define Symbols
Communicate with the Remote Manager
TCP/IP Setup . .. oottt e e e e e e e e
Review TCP/IP Host Names.,
Set Up the Portmapper (RPC)
Determine the Current Portmapper Configuration
Remove the Existing Portmapper Configuration
Configure the Portmapper
Set Up SNMP e
Determine the Current SNMP Configuration.................
Remove the Existing SNMP Configuration
Configure SNMP e
Test SNMP
Remote Manager Setup
Run the Postinstallation Procedure
Define Process Logicals and Symbols
Review and Update the Configuration File
Start the Remote Manager.
Communicate with the Remote Manager
Using ACMSMGR and Logging In Explicitly
Using ACMSMGR and a Proxy Account.....................
Monitoring the HP TP Desktop Connector Server or HP TP Web
Connector Gatewayt e e
Troubleshooting the ACMS Remote Manager Startup

Xiii

2-1
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-6
2—-7
2—7
2-8
2-8
2-8
2-9
2-10
2-10
2-11
2-12
2-13
2-13
2-15
2-15
2-16
2-17
2-17
2-17

2.5.1 Problems Starting ACMS

252 Problems Starting the ACMS Remote Manager
2521 ACMSS$SMGMT_SERVER.OUT MesSages evnnnnn...
2522 Remote Manager Log Entries.
253 Problems with the ACMSMGR Utility
2.5.3.1 ACMSMGMT-W-NOCLNT_ATTACH Messages
2532 ACMSMGR Hangs e

3 Using the ACMS Remote Manager Web Agent

3.1 Overview of the Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup
3.2.1 Install the Remote Manager Web Agent Software
3.2.2 Install the HP Management Agents for OpenVMS Software
3.2.3 Assign Additional Rights Identifiers
3.24 Start the Remote Manager Web Agent Process
3.2.5 Enable Access to Remote Manager Hosts.
3.2.6 Stop the Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent
3.3.1 Accessing the ACMS Remote Management Web Page
3.3.2 Conventions ittt
3.3.3 Customizing the Display
3.34 Selecting the Remote Manager Host
3.4 Issuing Remote Manager Commands
3.4.1 Using Show Commands
3.4.2 Using Set Commands. e,
3.4.3 Using Start and Stop Commands.
3.4.4 Using Add and Delete Commands
3.5 Troubleshooting the Remote Manager Web Agent
3.5.1 Reporting Problems

4 Managing the Remote Manager

4.1 OVeIVIBW . ottt et e e e e e
4.2 Configuring Remote Manager Startup
421 How to Run the ACMSCFG Utility
422 Displaying Current Values
423 Changing Values
4.3 Starting and Stopping the Remote Manager
4.3.1 Remote Manager Startup.............
4.3.2 Remote Manager Shutdown
4.4 Logging In to the Remote Manager
4.4 Authentication e
4411 Logging In
441.2 Proxy Accounts
442 Authorization e
4421 Read Access (ACMSSMGMT READ)t
4422 Operate Access (ACMS$SMGMT OPER)covinn..
4423 Write Access (ACMS$MGMT WRITE)
4424 Update Access (ACMS$MGMT SYSUPD)
4.5 Starting and Stopping Interfaces
451 Using ACMSCFG to Enable or Disable Interfaces
452 Using ACMSMGR to Start or Stop Interfaces
4.6 Modifying Management Parameters

2-19
2-20
2-20
2-21
2-23
2-23
2-23

3-1
3-2
3-2
34
34
3-5
3-5
3-5
3-5
3-5
3—7
3-7
3-8
3-8
3-8
3-9
3-10
3-11
3-12
3-12

4-1
4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-6
4-7
4-7
4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9

4.6.1
46.2
4.7

4.71
4.7.2
4.7.3

Using ACMSCFG to Modify Management Parameters.
Using ACMSMGR to Modify Management Parameters
Managing the Remote Manager Log File

Setting Audit Levels ..

Displaying Audit Messagesiiiiiiiiuinnenn..

Resetting the Log

5 Using the Remote Manager to Manage ACMS

5.1
5.1.1
51.2
5.1.2.1
5122
5.1.2.3
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.2.1
5322
5.3.2.3
53.2.4
5.3.3
5.4
5.4.1
54.11
54.1.2
5.4.2
54.3
54.4
54.41
54.4.2
5.4.4.3
5.4.5
5.5
5.5.1
5.5.1.1
5.5.1.2
5.5.1.3
5.5.1.4
5.5.2
5.5.3

Managing Data Collection .

Entities, Classes, Names, and Collections
Starting and Stopping Collections
Using ACMSCFG to Start or Stop Collections
Using ACMSMGR to Start or Stop Collections
Using SNMP to Start or Stop Collections

Saving Collected Data

Using ACMSCFG to Start or Stop Data Snapshots
Using ACMSMGR to Start or Stop Data Snapshots...............
Using SNMP to Start or Stop Data Snapshots...................

Displaying Collected Data .

Using ACMSMGR to Display Collected Data
Using ACMSSNAP to Display Collected Data
How to Run the ACMSSNAP Utility
Opening and Closing a Data Snapshot File
Navigating and Displaying Snapshot Record Data.............
Sample ACMSSNAP Sessionccuiiiiiinennn..
Managing Data Snapshot Files
Managing ACMS Using the Remote Manager

Types of Variables
Stored Variables . . .
Active Variables . . .

How the Remote Manager Makes Changes
Using ACMSMGR to Modify the ACMS Run-Time System
Using SNMP to Modify the ACMS Run-Time System
Starting and Stopping Processes Using SNMP
Adding and Deleting Rows Using SNMP
Replacing Application Procedure Servers Using SNMP
Using ONC RPC to Modify the ACMS Run-Time System

Working with Error Logs . .
Setting Error Filters ..

Creating Error Filter Records
Displaying Error Filter Records
Saving Error Filter Recordstoa File.......................
Deleting Error Filter Records.
Displaying Error Messages,

Resetting the Error Log

4-9
4-10
4-10
4-10
4-12
4-13

5-1
5-2
5-4
5-5
5-5
5-6
5-6
5-8
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-10
5-11
5-13
5-13
5-13
5-13
5-14
5-14
5-15
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-19
5-19
5-19
5-19

6 Management Programming Using ONC RPC

ONC RPC OVEIVIEW . . . v vt e
Building Multithreaded Clients

6.1
6.2
6.3
6.4
6.4.1
6.5
6.5.1
6.6
6.6.1
6.7
6.7.1
6.8
6.8.1
6.9
6.9.1
6.10
6.10.1

API Overview

Initialization and Security e
Initialization Example

Get Procedures . . .
Get Example .
List Procedures . .

Linked List Example

Set Procedures . . .
Set Example. .

Delete Procedures
Delete Example

Add Procedures . .
Add Example .

Start, Stop, and Replace Procedures

Start Example

7 Management Programming Using SNMP

Part Il

71
7.2
7.3
7.4
7.4
7.4.2
7.4.3
7.4.4
7.4.5
7.5
7.6
7.7
7.8
7.8.1
7.8.2
7.9
7.9.1
7.9.2
7.10

SNMP Overview . .
SNMP Security ..

Initializing the SNMP Interface

SNMP Tables ...

Data Type Mappingco it
Single-Row Tables

Static Tables .

Dynamic Tables
Servers and Task Groups,
SNMP GET Operationsc. it
SNMP SET Operationsc..iiiniinienennann..
Using SNMP to Start and Stop ACMS Entities

SNMP Traps
EXISTS Traps

EVENT_SEVERITY Traps . . .« oot e e e e e e e e e e e
SNMP Debug Tracing i

Starting SNMP

Debug Tracing,

Stopping SNMP Debug Tracingc0iiiiinne....
Remote Manager eSNMP Return Codes.

8 Management APIs

Common RPC Fields i
Collection Classest ittt

vi

8.1

8.1.1
8.1.2
8.1.3
8.14
8.1.5
8.1.6
8.1.7

Interface Types
Enable States .
Entity Types. .
Facility Types .
Running States
Severity Codes

Reference Information

OO WOWON—_LONOOOOOGORADD-=

0303@(?030303
G G U G QT G Y

7-1
7-2
7-3
7-4
7-5
7-5
7-5
7-6
-7
7-8
7-8
7-9
7-9
7-10
7-10
7-11
7-11
7-12
7-12

ooooooooclaooooooo

[
WWWNMNN = =

8.1.8 Trap Parameters 84

8.2 Thread-Safe and Non-Thread Safe Clients 84
8.3 ACMSMGMT_ADD_COLLECTION_2 i 8-5
8.4 ACMSMGMT_ADD_ERR_FILTER_2 8-8
8.5 ACMSMGMT_ADD_TRAP_1 e 8-11
8.6 ACMSMGMT_DELETE_COLLECTION_1o ... 8-14
8.7 ACMSMGMT DELETE_ERR_FILTER 2. 8-17
8.8 ACMSMGMT DELETE_TRAP_1..... 8-19
8.9 ACMSMGMT_GET_ACC_2 e 8-22
8.10 ACMSSMGMT GET CREDS e e e e 8-24
8.11 ACMSMGMT GET_ERR_FILTER_2 0. .. 8-27
8.12 ACMSMGMT GET MGR_STATUS_ 1 i, 8-30
8.13 ACMSMGMT GET PARAM 2. e 8-33
8.14 ACMSMGMT GET QTI_2 i 8-35
8.15 ACMSMGMT GET TSC_2. e 8-37
8.16 ACMSMGMT GET VERSION_2 8-39
8.17 ACMSMGMT LIST AGENT 2 i 8—41
8.18 ACMSMGMT LIST _COLLECTIONS 2 8-45
8.19 ACMSMGMT LIST_CP_2 e 8-49
8.20 ACMSMGMT LIST ERR_2 i 8-53
8.21 ACMSMGMT LIST EXC_2 e e e 8-59
8.22 ACMSMGMT _LIST_INTERFACES_1 8-63
8.23 ACMSMGMT LIST LOG_1 e e 8—-66
8.24 ACMSMGMT LIST PROC_1. e 8-72
8.25 ACMSMGMT LIST_ SERVER_1....... 8-77
826 ACMSMGMT LIST TG 2 e e 8-81
8.27 ACMSMGMT _LIST_TRAP_1 e 8-85
8.28 ACMSMGMT LIST USERS 1. i 8-88
8.29 ACMSMGMT REPLACE_SERVER_1 8-94
8.30 ACMSMGMT RESET LOG_1 8-98
8.31 ACMSMGMT RESET ERR_2 8-100
8.32 ACMSMGMT SAVE_ERR_FILTER_2 8-102
8.33 ACMSMGMT _SET ACC_2. e 8-106
8.34 ACMSMGMT SET AGENT 2 i 8-112
8.35 ACMSMGMT SET COLLECTION_2....... 8-117
8.36 ACMSMGMT SET _CP_2 e 8-120
8.37 ACMSMGMT SET _EXC_2. e 8-123
8.38 ACMSMGMT SET_INTERFACE_1 0. .. 8-128
8.39 ACMSMGMT SET PARAM 2 i 8-131
8.40 ACMSMGMT_SET QTI_2 i 8-134
8.41 ACMSMGMT SET_SERVER_1 8-140
8.42 ACMSMGMT _SET_TRAP_1 i 8-145
8.43 ACMSMGMT SET_TSC_2 e 8-148
8.44 ACMSMGMT START ACC_1 e 8-154
8.45 ACMSMGMT START EXC_1 i 8-158
8.46 ACMSMGMT START QTI_1...... 8-162
8.47 ACMSMGMT _START TRACE_MONITOR_1....................... 8-166
8.48 ACMSMGMT START TSC_1. e 8-169
8.49 ACMSMGMT STOP _1 e 8-173
850 ACMSMGMT STOP_ACC_1 e 8-175
8.51 ACMSMGMT STOP_EXC_1 e 8-179
8.52 ACMSMGMT STOP_QTI_1 e 8-183
8.53 ACMSMGMT _STOP_TRACE_MONITOR_1........................ 8-187
8.54 ACMSMGMT STOP_TSC_1. e 8-190

Vii

9 Remote Manager Reference Tables

9.1 Data Types . . . oo e 9-2
9.2 ACC Tableo 9-3
9.2.1 Field Descriptions, 9-6
9.3 Agent Table 9-12
9.3.1 Field Descriptions, 9-15
9.4 Collection Table e 9-21
9.4.1 Field Descriptions, 9-21
9.5 CP Table e e e 9-23
9.5.1 Field Descriptions, 9-26
9.6 Error Filter Table. e 9-30
9.6.1 Field Descriptions, 9-31
9.7 EXC Table e e e 9-31
9.7.1 Field Descriptionsty 9-34
9.8 Interfaces Table 9-40
9.8.1 Field Descriptions, 941
9.9 Manager Status Table 9-42
9.9.1 Field Descriptions 9-42
9.10 Parameter Table 9-43
9.10.1 Field Descriptionst 9-45
911 QTITable. e 9-49
9.11.1 Field Descriptions 9-51
9.12 Server Table. e 9-54
9.12.1 Field Descriptionsty 9-55
9.183 Task Group Table. e 9-56
9.13.1 Field Descriptions, 9-57
9.14 Trap Table 9-58
9.14.1 Field Descriptions, 9-59
9.14.2 Valid Trap Minimums and Maximums 9-60
9.14.3 SNMP Trap Format 9-61
9.15 TSCTable e e 9-62
9.15.1 Field Descriptions, 9-64
9.16 Users Table e 9-67
9.16.1 Field Descriptions 9-68
10 ACMSCFG Commands
10.1 ACMSCEFG OVervIiewottt et e e e e et e e 10-1
10.1.1 Command Format 10-1
10.1.2 Command Objects and Qualifiers 10-2
10.2 ACMSCFG ADD COLLECTION i, 10-4
10.3 ACMSCFG ADD TRAP ... e 10-8
10.4 ACMSCFG DELETE COLLECTION i, 10-10
10.5 ACMSCFG DELETE TRAP e 10-12
10.6 ACMSCFG HELP e e 10-14
10.7 ACMSCFG SET COLLECTION 10-15
10.8 ACMSCFG SET INTERFACE i 10-19
10.9 ACMSCFG SET PARAMETER 10-20
10.10 ACMSCFG SET TRAP o i e e e 10-22
10.11 ACMSCFG SHOW COLLECTION 10-24
10.12 ACMSCFG SHOW CONTROL 10-25
10.13 ACMSCFG SHOW INTERFACE 10-26
10.14 ACMSCFG SHOW PARAMETER 10-27
10.15 ACMSCFG SHOW TRAP e 10-29

viii

11 ACMSMGR Commands

ACMSMGR OVErvIEW . . . o v vttt e et e e e 11-1
Command Format 11-1
Command Objects and Qualifiers 11-2

ACMSMGR ADD COLLECTION e 11-7

ACMSMGR ADD FILTERZE e 11-11

ACMSMGR ADD TRAPo e e 11-13

ACMSMGR DELETE COLLECTION 11-16

ACMSMGR DELETE FILTERE e 11-18

ACMSMGR DELETE TRAP. e 11-20

ACMSMGR HELP e 11-22

ACMSMGR LOGIN e e e 11-23

ACMSMGR LOGOUT e e e e 11-25

ACMSMGR REPLACE SERVER 11-27

ACMSMGR RESET ERROR:o 11-29

ACMSMGR RESET LOG e 11-31

ACMSMGR SAVE FILTER: e 11-33

ACMSMGR SET ACC e e 11-35

ACMSMGR SET AGENT e e 11-40

ACMSMGR SET COLLECTION 11-42

ACMSMGR SET CP . . oot e e e 11-46

ACMSMGR SET EXC e 11-48

ACMSMGR SET INTERFACE i 11-51

ACMSMGR SET PARAMETER 11-53

ACMSMGR SET QTo e e 11-56

ACMSMGR SET SERVER e 11-59

ACMSMGR SET TRAP i 11-62

ACMSMGR SET TSC.o e e e 11-64

ACMSMGR SHOW ACC e e 11-68

ACMSMGR SHOW AGENT e 11-73

ACMSMGR SHOW COLLECTION 11-78

ACMSMGR SHOW CP. e i 11-80

ACMSMGR SHOW ERRORE 11-83

ACMSMGR SHOW EXC e 11-86

ACMSMGR SHOW FILTERZ e e 11-89

ACMSMGR SHOW GROUP e 11-91

ACMSMGR SHOW INTERFACE e 11-94

ACMSMGR SHOW LOG e e 11-96

ACMSMGR SHOW MANAGER e 11-101

ACMSMGR SHOW PARAMETER 11-103

ACMSMGR SHOW PROCESS e 11-106

ACMSMGR SHOW QTI e 11-109

ACMSMGR SHOW SERVER 11-112

ACMSMGR SHOW TRAP e 11-115

ACMSMGR SHOW TSC. e e e 11-117

ACMSMGR SHOW USER e 11-121

ACMSMGR SHOW VERSIONZ e 11-124

ACMSMGR START EXC e 11-126

ACMSMGR START QTI. e 11-128

ACMSMGR START SYSTEM. 11-130

ACMSMGR START TERMINALS 11-132

ACMSMGR START TRACE_MONITOR 11-134

ACMSMGR STOP EXC . ..o et e 11-136

ACMSMGR STOP MANAGER i 11-138

11.52
11.53
11.54
11.55

ACMSMGR STOP QTI. 11-140
ACMSMGR STOP SYSTEM. i 11-142
ACMSMGR STOP TERMINALS i 11-144
ACMSMGR STOP TRACE_MONITOR 11-146

12 ACMSSNAP Commands

12.1

12.1.1
12.1.2

12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

ACMSSNAP OVervIeW . . .ottt et 12—1
Command Format 12—1
Command Objects and Qualifiers. 12-2

ACMSSNAP CLOSE 12—4

ACMSSNAP EXIT 12-5

ACMSSNAP HELP e 12-6

ACMSSNAP NEXT e e 12-7

ACMSSNAP OPEN e 12-8

ACMSSNAP PREV e 12-10

ACMSSNAP QUIT 12-11

ACMSSNAP RESET e 12-12

ACMSSNAP SHOW 12-13

ACMSSNAP TRACE e 12-17

A Remote Manager Logical Names

A1
A2
A3

Remote Manager Server. A-1
Remote Manager Client (ACMSMGR) Utility A-1
Remote Manager Data Snapshot (ACMSSNAP) Utility A-2

B RPC Procedures and Corresponding Rights Identifiers

C Remote Manager Error Messages

CA1
C.2
C.3
C.4

Index

Figures

1-1
3-1
3-2
3-3
3-4
3-5
6-1
6-2
6-3
7-1

Server MeSSages C—1
ACMSMGR MeSSagesvv ittt ittt et et e et e e C-11
ACMSCEFG MeSSages . . o oot i ettt it ettt et e et e e e e e C-16
ACMSSNAP MeESSAZES -« v vttt ettt e it e et e et e et C-21
ACMS Remote Manager Architecture 1-2
Remote Manager Web Agent Page 3-6
Select Host o e 3-8
Show TSC e 3-9
Set ACC . ..o 3-10
Add Error Filter. 3-11
ONC RPC Interface Overviewouineernnnnn .. 62
ONC RPC Programming OVerviewc.uuuueunen.. 6-2
Linked List: Return Structure and Construction................. 6-10
SNMP Program Interface with Remote Manager 7-2

Tables

3-1 Remote Manager Web Agent Conventions 3-7
4-1 Audit Level Parameters 4-11
4-2 Auditing Levels and Their Values 4-11
4-3 Auditing Level Combinations and Their Values 4-12
5-1 Example 1: Collection with Wildcards 5-3
5-2 Example 2: Collection with Wildcards 5-4
6-1 Procedures for Accessing Remote Manager Functions 6-3
62 Get Procedures. e 6—6
6-3 List Procedures 6—7
6—4 Set Procedures e 6—11
6-5 Delete Procedures 6-13
6-6 Add Proceduresiiii e 6-14
6—7 Start, Stop, and Replace Procedures 6-16
7-1 Static Tables 7-6
7-2 EXC Table (OID 1.3.6.1.4.1.36.2.18.48.13)cvvu.... 7-7
7-3 Server Table (OID 1.3.6.1.4.1.36.2.18.48.13) 7-7
7-4 Task Group Table (OID 1.3.6.1.4.1.36.2.18.48.13). 7-8
7-5 Remote Manager eSNMP Routines Return Codes 7-12
8-1 Collection Classesi it 82
8-2 Interface Typest e 82
8-3 Enable States 82
84 Entity Types. . ..o e e 8-2
8-5 Facility Types. . .. oo e e e e e e 8-3
8-6 Running States 8-3
8-7 Severity Codeso e 84
8-8 Trap Parameters 84
91 ACC Table 9-3
9-2 Agent Table 9-12
9-3 Collection Table i i 9-21
9-4 CP Table e e 9-23
9-5 Error Filter Table. 9-30
9-6 EXCTable e e e 9-31
9-7 Interfaces Table 9-40
9-8 Manager Status Table 9-42
9-9 Parameter Table 9-43
9-10 QTITable. e e e 9-49
9-11 Server Table. 9-54
9-12 Task Group Table. i 9-56
9-13 Trap Table e 9-58
9-14 Trap Minimums and Maximumsc0uuuernen... 9-61
9-15 TSC Table e e e 9-62
9-16 Users Table e 9-68
10-1 ACMSCFG Command Objects and Qualifiers 10-2
11-1 ACMSMGR Command Objects and Qualifiers 11-2
12-1 ACMSSNAP Command Objects and Qualifiers 12-2

xi

Xii

B-1

RPC Procedures and Corresponding Rights Identifiers

Preface

This manual explains how to use the Remote Manager to manage local and
remote systems running HP ACMS for OpenVMS (ACMS) software. The manual
describes the features of the Remote Manager and explains how to use those
features to manage ACMS systems as well as the Remote Manager itself. It also
provides reference information for the utilities and commands you use in working
with the Remote Manager.

Intended Audience

This manual is intended for ACMS system managers.

Operating System Information

Information about the versions of the OpenVMS operating system and other
software compatible with this version of ACMS is included in HP ACMS Version
5.0 for OpenVMS Installation Guide.

For additional information on the compatibility of other optional software
products with this version of ACMS, refer to the HP ACMS for OpenVMS
Software Product Description (SPD 25.50.xx).

Document Structure

The chapters in this manual are grouped into two main sections (parts). The
first part describes the installation, configuration, and use of the Remote
Manager application (through the supported interfaces) and the Remote Manager
web agent. The second part contains associated API and command reference

information.

Part 1 Introduction

Chapter 1 Introduces the architecture, implementation, and capabilities of ACMS
remote management.

Chapter 2 Describes how to get started using the Remote Manager including

preparation and startup of the server and client nodes; setting up
TCP/IP; setting up SNMP; and troubleshooting the Remote Manager.

Chapter 3 Describes how to get started using the Remote Manager web agent
including installation of the web agent and associated software,
overview of the browser interface, and general troubleshooting tips.

Chapter 4 Describes how to manage the ACMS Remote Manager including
configuring startup; starting, stopping, and logging in to the Remote
Manager; starting and stopping interfaces; and modifying management
parameters and log files.

Chapter 5 Describes how to use the Remote Manager to manage ACMS, including
managing data collection, displaying collected data, and modifying
ACMS systems.

xiii

Chapter 6

Chapter 7

Part I1
Chapter 8
Chapter 9

Chapter 10

Chapter 11
Chapter 12
Appendixes
Appendix A
Appendix B

Appendix C

ACMS Help

ACMS and its components provide extensive online help.

e DCL level help

Enter HELP ACMS at the DCL prompt for complete help about the ACMS
command and qualifiers, and for other elements of ACMS for which
independent help systems do not exist. DCL level help also provides

brief help messages for elements of ACMS that contain independent help
systems (such as the ACMS utilities) and for related products used by ACMS
(such as HP DECforms or Oracle CDD/Repository).

e ACMS utilities help
Each of the following ACMS utilities has an online help system:

ACMS Debugger

ACMSGEN Utility

ACMS Remote Manager Configuration Utility (ACMSCFG)
ACMS Remote Manager Client (ACMSMGR)

ACMS Remote Manager Data Snapshot Utility (ACMSSNAP)
ACMS Queue Manager (ACMSQUEMGR)

Application Definition Utility (ADU)

Application Authorization Utility (AAU)

Device Definition Utility (DDU)

User Definition Utility (UDU)

Audit Trail Report Utility (ATR)

Software Event Log Utility Program (SWLUP)

Xiv

Describes how programmers can use the Open Network Computing
(ONC) remote procedure call (RPC) interface to the ACMS Remote
Manager to develop their own programs for managing ACMS systems.

Describes how programmers can use the Simple Network Management
Protocol (SNMP) interface to the ACMS Remote Manager to develop
their own programs for managing ACMS systems.

Reference Information

Provides reference information about the ACMS remote management
APIs, which are procedures that are intended to be called from ONC
RPC clients.

Provides reference information about data types and tables for the
ACMS Remote Manager.

Provides reference information about the commands of the ACMSCFG
utility for performing operations on the Remote Manager configuration
file.

Provides reference information about the commands of the ACMSMGR
utility for performing operations on running ACMS systems.

Provides reference information about the commands of the ACMSSNAP
utility for performing operations on Remote Manager data snapshot
files.

Contains information about the logical names used by the Remote
Manager server and the Remote Manager client (ACMSMGR utility).

Contains information providing cross-references of remote procedure
call (RPC) procedures to rights identifiers.

Lists all error messages related to the Remote Manager server process,
as well as the ACMSCFG, ACMSMGR, and ACMSSNAP utilities.

The two ways to get utility-specific help are:
— Run the utility and type HELP at the utility prompt.

— Use the DCL HELP command. At the “Topic?” prompt, type @ followed by
the name of the utility. Use the ACMS prefix, even if the utility does not
have an ACMS prefix (except for SWLUP). For example:

Topic? @ACMSQUEMGR
Topic? @ACMSADU

However, do not use the ACMS prefix with SWLUP:
Topic? @SWLUP

Note that if you run the ACMS Debugger Utility and then type HELP, you
must specify a file. If you ask for help from the DCL level with @, you do not
need to specify a file.

e ACMSPARAM.COM and ACMSEXCPAR.COM help

Help for the command procedures that set parameters and quotas is a subset
of the DCL level help. You have access to this help from the DCL prompt, or
from within the command procedures.

e LSE help

ACMS provides ACMS-specific help within the LSE templates that assist
in the creation of applications, tasks, task groups, and menus. The ACMS-
specific LSE help is a subset of the ADU help system. Within the LSE
templates, this help is context-sensitive. Type HELP/IND (PF1-PF2) at any
placeholder for which you want help.

e Error help

ACMS and each of its utilities provide error message help. Use HELP ACMS
ERRORS from the DCL prompt for ACMS error message help. Use HELP
ERRORS from the individual utility prompts for error message help for that
utility.

e Terminal user help

At each menu within an ACMS application, ACMS provides help about
terminal user commands, special key mappings, and general information
about menus and how to select tasks from menus.

e Forms help

For complete help for HP DECforms or HP TDMS, use the help systems for
these products.
Related Documents

The following table lists the books in the HP ACMS for OpenVMS documentation
set.

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS Information about the latest release of the software
Release NotesT

TAvailable online only.

XV

ACMS Information

Description

HP ACMS Version 5.0 for OpenVMS
Installation Guide

HP ACMS for OpenVMS Getting
Started

HP ACMS for OpenVMS Concepts
and Design Guidelines

HP ACMS for OpenVMS Writing
Applications

HP ACMS for OpenVMS Writing
Server Procedures

HP ACMS for OpenVMS Systems
Interface Programming

HP ACMS for OpenVMS ADU
Reference Manual

HP ACMS for OpenVMS Quick
Reference

HP ACMS for OpenVMS Managing
Applications

HP ACMS for OpenVMS Remote
Systems Management Guide

Online helpt

Description of installation requirements, the installation
procedure, and postinstallation tasks.

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS application.
Description of the AVERTZ sample application.

Description of how to design an ACMS application.

Description of how to write task, task group, application, and
menu definitions using the Application Definition Utility.
Description of how to write and migrate ACMS applications on
an OpenVMS Alpha system.

Description of how to write programs to use with tasks and
how to debug tasks and programs.

Description of how ACMS works with the APPC/LUG6.2
programming interface to communicate with IBM CICS
applications.

Description of how ACMS works with third-party database
managers, with ORACLE used as an example.

Description of using Systems Interface (SI) Services to submit
tasks to an ACMS system.

Reference information about the ADU commands, phrases,
and clauses.

List of ACMS syntax with brief descriptions.

Description of authorizing, running, and managing ACMS
applications, and controlling the ACMS system.

Description of the features of the Remote Manager for
managing ACMS systems, how to use the features, and how to
manage the Remote Manager.

Online help about ACMS and its utilities.

fAvailable online only.

For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product

Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG)
products and services, access the following OpenVMS World Wide Web address:

http://h71000.www7.hp.com/openvms

Reader’s Comments
HP welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and

XVi

send us your comments by:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation

Use the following World Wide Web address for information about how to order
additional documentation:

http://www.hp.com/go/openvms/doc
To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
1-800—ATCOMPA.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must press and
hold the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets rather than a box.

A horizontal ellipsis in examples indicates one of the following
possibilities:

e Additional optional arguments in a statement have been
omitted.

e The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names

of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

In the HTML version of this document, this text style may
appear as italics.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Xvii

bold text

italic text

UPPERCASE

UPPERCASE

lowercase

<lowercase>

O

Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HMTL version of this document, this text style may
appear as italics.

Italic text indicates important information, complete titles

of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Uppercase text indicates the name of a routine, the name of a
file, the name of a file protection code, or the abbreviation for a
system privilege.

In command format descriptions, uppercase text is an optional
keyword.

In command format descriptions, uppercase text that is
underlined is a required. You must include it in the statement
if the clause is used.

In command format descriptions, a lowercase word indicates a
required element.

In command format descriptions, lowercase text in angle
brackets indicates a required clause or phrase.

In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets must be included, however, in the syntax of a
directory name in an OpenVMS file specification or in

the syntax of a substring specification in an assignment
statement.)

In command format descriptions, vertical bars separating items
inside brackets indicate that you choose one, none, several, or
all of the options.

In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

In command format descriptions, vertical bars within square
brackets indicate that you can choose any combination of the
enclosed options, but you can choose each option only once.

In command format descriptions, vertical bars within braces
indicate that you must choose one of the options listed, but you
can use each option only once.

References to Products

The ACMS documentation set to which this manual belongs often refers to certain
products by abbreviated names:

Xviii

Abbreviation

Product

ACMS
Ada

BASIC

HP ACMS for OpenVMS Alpha, and HP ACMS for OpenVMS 164

HP Ada for OpenVMS Alpha Systems, and HP Ada for OpenVMS 164
Systems

HP BASIC for OpenVMS

Abbreviation

Product

C
CDD
COBOL

DATATRIEVE

DBMS
DECforms
FORTRAN

OpenVMS

Pascal
Rdb
SQL

HP C for OpenVMS Alpha Systems, and HP C for OpenVMS 164 Systems
Oracle CDD/Administrator, and Oracle CDD/Repository

HP COBOL for OpenVMS Alpha Systems, and HP COBOL for OpenVMS
164 Systems

HP DATATRIEVE for OpenVMS Alpha, and HP DATATRIEVE for
OpenVMS 164

Oracle CODASYL DBMS
HP DECforms

HP Fortran for OpenVMS Alpha Systems, and HP Fortran for OpenVMS
164 Systems

The OpenVMS Alpha operating system, and the OpenVMS 164 operating
system

HP Pascal for OpenVMS Alpha, and HP Pascal for OpenVMS 164
Oracle Rdb
The SQL interface to Oracle Rdb

Xix

Partl

Introduction

Part I contains information about configuring and using the remote management
features of ACMS. It contains an overview of the Remote Manager as well as
information on how it is managed and operates.

Chapter 2 and Chapter 3 describe how to install and configure both the Remote
Manager and the Remote Manager web agent. Chapter 4 and Chapter 5 explain
how to manage data collection and how to use the Remote Manager to modify a
running ACMS system.

Finally, Chapter 6 and Chapter 7 show you how to write programs that perform
remote management using RPC and SNMP.

1

Overview of Remote Management

This chapter provides an overview of ACMS remote management.

1.1 Architecture and Implementation

The ACMS Remote Manager provides system managers with the capability

of monitoring and managing their ACMS application environment across a
network. The facilities that comprise the Remote Manager are based on a
client/server architecture. Two protocols are supported for accessing the ACMS
remote management server: Open Network Computing Remote Procedure Call
(ONC RPCO), which is used by command line utilities (provided with the remote
management option) and can be called directly from user-written programs;
and Simple Network Management Protocol (SNMP), for use with third-party
management consoles.

As Figure 1-1 shows, users communicate with the ACMS Remote Manager over a
TCP/IP network using one of the supported interfaces:

e The SNMP interface provides network access to ACMS management
information using the industry-standard SNMP protocol. This protocol is
supported by most leading system management packages (including PATROL
from BMC).

e The RPC interface provides local or remote access to ACMS management
information and is used by the ACMSMGR command line utility, the Remote
Manager web agent, and user-written programs to access ACMS management
information.

ACMSMGR provides command line access to management information as
well as control of the Remote Manager process. This utility can be run from
any OpenVMS node that has TCP/IP network connectivity to the ACMS node.
For more information about the ACMSMGR and its commands, see Chapter 5
and Chapter 11.

The Remote Manager provides web-based access to management and
process information via the Remote Manager Hyper-Media Management
Object (ACMS$MGMT_HMMO). Integrated into HP’s web-based enterprise
management (WBEM) architecture, this server-based object communicates
with the WBEM$SERVER management agent, which handles all
communication to and from the client web browser. For more information
about the Remote Manager web agent, see Chapter 3. For information about
the WBEM architecture, visit the OpenVMS system management page:

http://h71000.www7.hp.com/openvms/products/mgmt_agents/intro.html

Overview of Remote Management 1-1

Overview of Remote Management

1.1 Architecture and Implementation

Figure 1-1 ACMS Remote Manager Architecture

Web-Based Client (Remote)

Web
Browser

http://managed-element-URL

Windows Client (Remote)

Elm SNMP SNMP| WBEM$CPQNIC PATROL
API . Console
WBEM$SERVER ACC.KM
Port : TSC.KM
23%1 WBEM$CPQHOST CP.KM
EXC.KM
UDP/TCP SER KM
GRP.KM
RM.KM
PATROL ¥
Eim | ACMSSMGMT_HMMO | ONC Agent
RPC SNMP
TCP/IP Services for OpenVMS
[RPC | snwP o
RPC | SNMP
ACMS Remote Manager
ACMSMGR TCP/IP
Command MIB
Browser
DCL Client Global
(Local or Remote) Section TCP/IP MIB Client
(Local or Remote)
DCL ACMS
Subprocess Process
ACMSGEN | [ACMS OPER

Remote Manager Server

VM-0804A-Al

Using SNMP or RPC commands, ACMS system managers can configure and
control the system data being collected, automatic variable monitoring, and
operation of the interfaces themselves.

Communications between the ACMS Remote Manager and the ACMS run-time
system are transparent. Users may be on the same or a different node than the
Remote Manager, but the Remote Manager must be running on the same node as
the ACMS run-time system it is monitoring or accessing.

1-2 Overview of Remote Management

Overview of Remote Management
1.1 Architecture and Implementation

The Remote Manager obtains initial configuration information during process
startup from a user-maintained configuration file (described in Chapter 4). Once
started, the Remote Manager provides ACMS system managers remote access to
their ACMS application environment through the interfaces.

1.2 Remote Management Capabilities
The Remote Manager provides ACMS system managers with the ability to:

Configure and enable the Remote Manager web agent for browser-based
access to remote ACMS information (Chapter 3)

Remotely manage the Remote Manager and set standard configuration
options (Chapter 4)

Remotely manage data collection and error reporting (Chapter 5), including:

Remotely view ACMS and OpenVMS system management information
online

Remotely save and view snapshots of collected data
Remotely generate and view run-time error logs

Remotely configure SNMP traps

Remotely modify ACMS run-time systems (Chapter 5)

Write programs that remotely access management information online using
ONC RPC (Chapter 6) and SNMP (Chapter 7)

Overview of Remote Management 1-3

2

Getting Started with the ACMS Remote
Manager

This chapter describes how to prepare and run the ACMS Remote Manager
software on a node where HP ACMS for OpenVMS, Version 5.0 has been installed.
This chapter does not describe the actual installation. For information about
installing HP ACMS for OpenVMS, Version 5.0, refer to the HP ACMS Version 5.0
for OpenVMS Installation Guide.

Note

The procedures in this chapter assume HP TCP/IP Services Version 5.0A
for OpenVMS (TCP/IP) or higher is installed. The image and process
names changed in Version 5.0 from UCX* to TCPIP*. If you are using a
machine with an older version of TCP/IP Services installed, you should
substitute UCX wherever you see TCPIP in the instructions in this
chapter.

Terminology
The following terms are used in this chapter:

e Server node

A node on which ACMS Version 5.0 has been installed and on which the
ACMS Remote Manager server will run. Server nodes can be either ACMS
application or submitter nodes, and can be managed either locally or remotely
using one of the supported interfaces (RPC or SNMP). Server nodes are
automatically client nodes, but not all client nodes are server nodes.

e (lient node

A node on which ACMS Version 5.0 may or may not be installed. Client nodes
can get information from and perform operations on server nodes. However,
users cannot obtain ACMS system management information from or perform
system management functions on nodes that are client nodes only.

2.1 Running the ACMS Remote Manager

The following sections outline the steps required to get the ACMS Remote
Manager running on an OpenVMS system. If you are an inexperienced user of
ACMS, you should first read Section 2.2 and Section 2.3 for detailed information
about how to set up a node for ACMS remote management.

This section describes setup for both client and server nodes. Server nodes
automatically support all client functions; once a node is set up as a server, it
can function as a client and a server without additional work. Client nodes can
function only as clients.

Getting Started with the ACMS Remote Manager 2-1

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

When you complete the following procedures, the ACMS Remote Manager will be
running on your system and you can access it using the ACMSMGR command
line utility, the Remote Manager web agent, or a third-party or user-written client
that uses one of the supported interfaces.

Note that the Remote Manager web agent requires some configuration before
use. See Chapter 3 for detailed configuration instructions as well as for a brief
overview of the browser interface.

2.1.1 Server Node Setup

Before you begin, you must have already installed the ACMS Version 5.0 kit

on your system. Also ensure that you have the minimum supported version of
TCP/TIP (as described in the ACMS Software Product Description [SPD 25.50.xx])
installed on your node, and that it is operational. (If TCP/IP is not installed and
operational, the ACMS Remote Manager will not run.) For information about
TCP/IP setup, see Section 2.2.

Once you have installed the ACMS and TCP/IP software, perform the following
steps to set up a Remote Manager server node:

Verify Portmapper (RPC) setup (see Section 2.1.1.1)
Run the ACMS postinstallation procedure (see Section 2.1.1.2)

Prepare the ACMS environment (see Section 2.1.1.4)

1

2

3. Define process logicals and symbols (see Section 2.1.1.3)
4

5. Start the ACMS Remote Manager (see Section 2.1.1.5)

Server nodes are automatically client nodes. Therefore, you do not need to
perform the tasks in Section 2.1.2 for nodes that you set up as server nodes.

2.1.1.1 Verify Portmapper (RPC) Setup

Before you attempt to start the Remote Manager, ensure that the proper TCP/IP
support is in place. This section provides an overview of the Portmapper (RPC)
verification process. If you need more detailed information, or if you will be using
third-party tools or writing your own SNMP management tools, see Section 2.2.

1. Look for the process TCPIP$PORTM (UCX$PORTM on older versions):
$ SHOW SYSTEM/PROCESS=TCPIP*

If you find the TCPIP$PORTM process, RPC is running and you can skip to
Section 2.1.1.2. Otherwise, go to step 2.

2. See whether the Portmapper service is enabled:

$ TCPIP

TCPIP> SHOW SERVICE PORTMAPPER

Service Port Proto Process Address State
PORTMAPPER 111 TCP,UDP TCPIPSPORTM 0.0.0.0 Enabled

The Portmapper should have both the TCP and UDP protocols defined. If it
does not, you may need to configure the Portmapper (see Section 2.2.2). If the
Portmapper state is Enabled, skip to Section 2.1.1.2. Otherwise, go to step 3.

2-2 (Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

To enable the Portmapper, enter the following commands:

$ TCPIP

TCPIP> ENABLE SERVICE PORTMAPPER

TCPIP> SET CONFIGURATION ENABLE SERVICE PORTMAPPER
TCPIP> EXIT

Then restart TCP/IP. The Portmapper process does not automatically start
when TCP/IP starts, so you may not see the TCPIP$PORTM process. The
process starts the first time the Portmapper is accessed.

2.1.1.2 Run the ACMS Postinstallation Procedure

If you did not run the postinstallation procedure when you installed the ACMS
Version 5.0 kit, do so now. For details, see Section 2.3.

1.

3.

Run the postinstallation procedure as follows:
$ @SYSSSTARTUP:ACMS_POST_INSTALL

When you are asked whether you want to configure the ACMS Remote
Manager, answer YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]? YES

Answer the questions according to the needs of your organization.

2.1.1.3 Define Process Logicals and Symbols

The ACMS$MGMT_ENV.COM command procedure is provided to define some
symbols that make using the ACMSMGR utility simpler. For more information,
see Section 2.3.2, or run the procedure now by entering the following command:

$ @SYSSSTARTUP:ACMSSMGMT ENV.COM

2.1.1.4 Prepare the ACMS Environment

You are now ready to start the Remote Manager. If you need more information
about this procedure, see Section 2.3.3. Then follow these steps:

1.

Ensure that the ACMSTART.COM procedure has been run by entering the
following command:

$ ACMS/SHOW SYSTEM

If you get the following error, you must invoke the
SYS$STARTUP:ACMSTART.COM procedure described in step 2:

$DCL-W-ACTIMAGE, error activating image ACMSHR

If you get a message indicating that the ACMS system is stopped, or if some
information about the ACMS system is displayed, go to Section 2.1.1.5.

Invoke the ACMSTART command procedure:

$ @SYSSSTARTUP:ACMSTART

2.1.1.5 Start the ACMS Remote Manager
To start the ACMS Remote Manager, follow these steps:

1.

Enter the following command:

$ STARTMGR

Getting Started with the ACMS Remote Manager 2-3

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

2. Check that the Remote Manager processes (ACMS$MGMT_SVR,
ACMS$TRACE_MON, and ACMS$MGMT_DCL) are started by entering
the following command:

$ SHOW SYSTEM/PROCESS=ACMSS*

3. If the processes are running, you should be able to communicate with them
using ACMSMGR commands (see Section 2.1.3).

If any of the process are not running, you can look for information in the
following places:

e Type out the SYSSERRORLOG:ACMS$MGMT_SERVER.OUT text file:
$ TYPE/PAGE SYSSERRORLOG:ACMSS$SMGMT_SERVER.OUT

e View the Remote Manager log file by using the following command:
$ ACMSMGR SHOW LOG/LOCAL

For more information about these sources, refer to Section 2.5.2.1 and
Section 2.5.2.2.

2.1.2 Client Node Setup

All ACMS Remote Manager client nodes require that TCP/IP be installed and
operational. (For information about TCP/IP setup, refer to Section 2.2.) Other
than TCP/IP connectivity to the server node, no additional TCP/IP setup is
required. (The Portmapper does not need to be running on the client node.)

The following sections describe how to set up an ACMS Remote Manager client
node. You can skip these sections if you are installing the ACMS Remote
Mangement server; server nodes are automatically client nodes.

If the client node will not be used as an ACMS submitter node, the ACMS Remote
Option kit does not need to be installed. How you set up the client node depends
upon whether the ACMS Remote Option kit has been installed.

e If the ACMS Remote Option kit has been installed, simply run the
ACMS_POST_INSTALL.COM command procedure (see Section 2.1.2.1).

e If the ACMS Remote Option kit has not been installed, you must copy some
files and define several symbols before you can use the ACMSMGR utility on
a client node (see Section 2.1.2.2).

Once you have completed these tasks, you can try to communicate with a Remote
Manager on a server node using the procedure in Section 2.1.3.

Note that you cannot obtain ACMS system management information or perform
system management functions on nodes that are client nodes only. Client nodes
can get information from and perform operations on server nodes only.

2.1.2.1 Run ACMS_POST _INSTALL.COM
Follow these steps to run the ACMS_POST_INSTALL.COM command procedure:

1. Run the postinstallation procedure as follows:
$ @SYSSSTARTUP:ACMS_POST_INSTALL

2. When you are asked whether you want to configure the ACMS Remote System
Manager, answer YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]? YES

3. Answer the questions according to the needs of your organization.

2-4 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

4. Now execute the ACMS$MGMT_ENV.COM command procedure to define

some symbols that make using the ACMSMGR utility simpler:

$ @SYSSSTARTUP:ACMSSMGMT_ENV.COM

2.1.2.2 Copy Files and Define Symbols

If you did not install the ACMS Remote Option kit (that is, if this node will not
be an ACMS submitter node), follow this procedure. You will need access to a
node with one of the ACMS Version 5.0 Run-Time Kkits installed.

1.

Copy the ACMSMGR executable to your node from SYS$SYSTEM on the node
that has ACMS Version 5.0 installed. Which executable to copy depends on
the version of HP TCP/IP Services for OpenVMS (TCP/IP) you have installed:

e If you are running Version 4.2 of TCP/IP, copy the ACMS$MGMT_CMD_
UCX.EXE file to SYS$SYSTEM on your node.

e If you are running TCP/IP Version 5.0 or higher, copy the ACMS$MGMT_
CMD_TCPIP.EXE file to SYS$SYSTEM on your node.

Copy ACMS$MGMT_ENV.COM to your node and run it. This file is
located in SYS$STARTUP of a node where ACMS Version 5.0 is installed.
ACMS$MGMT_ENV.COM defines some symbols that make using the
ACMSMGR utility simpler. Execute the command procedure as follows:

$ @SYSSSTARTUP:ACMSSMGMT_ENV.COM

2.1.3 Communicate with the Remote Manager

Before you issue any ACMSMGR commands, you must either log in to the
Remote Manager (see step 1) or use an ACMS proxy (see step 2). For detailed
information, see Section 2.3.5.

1.

To log in to the Remote Manager, you must have a valid user account

and password on the node on which the Remote Manager is running. The
following example commands log in to the Remote Manager on node SERVER,
using account MYACCT and password MYPASS. (For more details, see
Section 2.3.5.1.)

$ DEFINE ACMS$MGMT_SERVER_NODE SERVER
$ DEFINE ACMSSMGMT_USER MYACCT
$ ACMSMGR LOGIN

ACMS Remote Management -- Command line utility
Password:MYPASS

If the login succeeds, no messages are displayed. Go to step 3.
If the login fails, check the following possible reasons:
¢ You typed in an invalid user name or password.

* You defined the ACMS$MGMT_SERVER_NODE logical incorrectly (wrong
or misspelled node name).

* You defined the ACMS$MGMT_USER logical incorrectly (wrong or
misspelled account name).

e The Remote Manager is not running on the node you specified.

Refer to Section 2.5 for more help.

Getting Started with the ACMS Remote Manager 2-5

Getting Started with the ACMS Remote Manager
2.1 Running the ACMS Remote Manager

2. If you will be using ACMS proxies to access the Remote Manager, and you
already know that you have a valid proxy account, go to step 3. If you have
not set up proxies but would like to use them, create a proxy file on the
node on which the Remote Manager will run. (For more information, see
Section 2.3.5.2.)

$ SET DEFAULT SYS$SYSTEM
$ MCR ACMSUDU
UDU> CREATE/PROXY

Now you can add a proxy. To add a proxy, you need to know the following
information:

¢ The nodes and accounts from which you will access the Remote Manager

¢ The account on the Remote Manager node you will use

For example, assume you will be on node CLIENT using account MYACCT,
and you will be accessing node SERVER using account SRVACCT. Enter the
following command on node SERVER:

UDU> ADD/PROXY CLIENT::MYACCT SRVACCT
3. You can now enter any of the ACMSMGR commands. For example:
$ ACMSMGR SHOW INTERFACES

This command results in output similar to the following:

ACMS Remote Management -- Command line utility

ACMS V4.4-0 Interfaces Display Time: 18-APR-2001 13:59:15.51
Enabled Running Get Set Alarms Time Last

Node Interface State State Requests Requests Sent Alarm Sent

SERVER rpc enabled started 987 0 0 17-NOV-1858 00:00:00.00

SERVER snmp enabled started 0 0 0 17-NOV-1858 00:00:00.00

If you get error messages instead, refer to Section 2.5.

2.2 TCP/IP Setup
There are three components to the TCP/IP setup for the ACMS Remote Manager:

¢ Reviewing the TCP/IP host names (see Section 2.2.1)

In order for ACMS to parse and display node names consistently, ACMS
TCP/IP and DECnet host names should be identical, following the DECnet
Phase IV naming conventions. If the TCP/IP host name for a potential
ACMS client or server system differs from this convention, you must define a
six-character alias for that system in the hosts database.

e Portmapper (RPC) setup (see Section 2.2.2)

Portmapper setup is required if you will be using the DCL command line
utility ACMSMGR for remote management, or if you intend to write your own
programs using the RPC API.

e SNMP setup (see Section 2.2.3)

SNMP setup is required if you will be using third-party tools (such as
PATROL from BMC) for remote system management, or if you will be writing
your own SNMP management tools.

2-6 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

The information in the following sections applies mainly to server nodes on which
the ACMS Remote Manager will run. Section 2.2.2 and Section 2.2.3 do not apply
to ACMS Remote Manager client nodes.

2.2.1 Review TCP/IP Host Names

For consistent handling and display of commands that use the ACMSMGR
/NODE qualifier and the ACMS$MGMT_SERVER_NODE logical, all potential
ACMS systems should have a TCP/IP host name (or alias) that matches the
current six-character DECnet host name.

To determine whether potential ACMS hosts are named appropriately, use the
following command to list the contents of the TCP/IP hosts database:

$ TCPIP
TCPIP> SHOW HOST

You will see a display similar to the following, where SPARKS.ACMS.HP.COM is
the host name and SPARKS a system alias:

Host address Host name

i60.113.95.52 SPARKS.ACMS.HP.COM, SPARKS
Review this list and do one of the following for each potential ACMS host:

e If the host name (or alias) matches the current DECnet name in length and
case, no further action is required for that host.

e If the host name (or alias) does not match the DECnet host name, define an
alias as follows, where NAME is the name of the host system for which you
want to define an alias, FirstAlias represents an existing alias, and SYSTEM
represents the new alias you are assigning:

$ TCPIP
TCPIP> SET HOST NAME -
_TCPIP> /ALIAS=("FirstAlias", "SYSTEM")

If you have defined any new aliases, restart TCP/IP to apply the changes made in
the host database.

2.2.2 Set Up the Portmapper (RPC)

Perform this task if the Portmapper has not previously been set up on the node
you are using, or if it has been set up incorrectly.

The procedure described here may require a restart of TCP/IP on the node you
are using.

Note

When you configure RPC, you are providing network access to the node.
This may have significant security implications. Be sure you understand
these implications before you configure SNMP. If you are in doubt, consult
your network or security administrator.

Getting Started with the ACMS Remote Manager 2-7

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

2.2.2.1 Determine the Current Portmapper Configuration
To determine whether the Portmapper is configured, use the following commands:

$ TCPIP
TCPIP> SHOW SERVICE PORTMAPPER

If the Portmapper is configured, you will see a display similar to the following:

Service Port Proto Process Address State

PORTMAPPER 111 TCP,UDP TCPIP$PORTM 0.0.0.0 Enabled

If you get an error message indicating that the record is not found, or if both
protocols are shown but the state is not Enabled, go to Section 2.2.2.3.

If the service is displayed, make sure that both TCP and UDP are shown in the
"Proto" column and that the state is Enabled. If both protocols are not shown or
if you suspect that the Portmapper is not working correctly, go to Section 2.2.2.2.

If both protocols are shown and the state is Enabled, then the Portmapper is
configured on this node and no additional work must be performed.

2.2.2.2 Remove the Existing Portmapper Configuration

Perform this task if you suspect the Portmapper is not working correctly, or if you
were directed here from Section 2.2.2.1.

Enter the following commands:

$ TCPIP
TCPIP> SET NOSERVICE PORTMAPPER

Enter Y at the "Remove? [N]:" prompt, and then exit the utility.
Now shut down and restart TCP/IP on this node:

$ @SYSSSTARTUP:TCPIPS$SHUTDOWN
$ @SYSSSTARTUP:TCPIPSSTARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after
the first command executes. You may have to reboot the machine in order
to log in and complete the procedure. To avoid this problem, put the
shutdown and startup commands into a command procedure, and submit
the procedure to a batch queue that is guaranteed to run on this node.

2.2.2.3 Configure the Portmapper

To configure the Portmapper, run the SYSSMANAGER:TCPIP$CONFIG
command procedure. Select option 3 (Server components) and then option 8
(PORTMAPPER). Select the option to "Enable service on this node." For example:

$ @SYSSMANAGER:TCPIPSCONFIG
HP TCP/IP Services for OpenVMS Configuration Menu
Configuration options:

- Core environment

- Client components

- Server components

Optional components

- Shutdown HP TCP/IP Services for OpenVMS
- Startup HP TCP/IP Services for OpenvMS
- Run tests

~ o\ Ul WD
|

2-8 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

A - Configure options 1 - 4
[E] - Exit configuration procedure

Enter configuration option: 3

HP TCP/IP Services for OpenVMS SERVER Components Configuration Menu

Configuration options:

1 - BIND Disabled Stopped
2 - BOOTP Disabled Stopped
3 - DHCP Disabled Stopped
4 - FINGER Disabled Stopped
5 - FTP Enabled Started
6 - 1IMAP Disabled Stopped
7 - LBROKER Disabled Stopped
8 - LPR/LPD Disabled Stopped
9 - METRIC Disabled Stopped
10 - NFS Disabled Stopped
11 - LOCKD/STATD Disabled Stopped
A - Configure options 1 - 22

[E] - Exit menu

Enter configuration option: 15

PORTMAPPER SERVER configuration options:

1 - Enable service on all nodes
2 - Enable service on this node
E - Exit PORTMAPPER configuration

Enter configuration option:2

To exit from the command procedure, enter E thrice.

Now shut down and restart TCP/IP on this node:

$ @SYSS$STARTUP: TCPIPSSHUTDOWN
$ @SYSSSTARTUP:TCPIPSSTARTUP

Note

12
13
14
15
16

NTP
PC-NFS
POP
PORTMAPPER
RLOGIN
RMT
SNMP
SSH
TELNET
TFTP
XDM

Disabled
Disabled
Disabled
Enabled
Enabled
Disabled
Enabled
Disabled
Enabled
Disabled
Disabled

Stopped
Stopped
Stopped
Started
Started
Stopped
Started
Stopped
Started
Stopped
Stopped

If you logged in to this node using TCP/IP, you will lose connectivity after
the first command executes. You may have to reboot the machine in order
to log in and complete the procedure. To avoid this problem, put the
shutdown and startup commands into a command procedure, and submit
the procedure to a batch queue that is guaranteed to run on this node.

After TCP/IP starts up, the Portmapper should be ready to use. The Portmapper
process itself does not start until it is needed, but you should make sure it is

defined as described in Section 2.2.2.1.

You can test RPC access to the Remote Manager by using ACMSMGR commands.
But you will need to get the ACMSMGR running first (see Section 2.3).

2.2.3 Set Up SNMP

Perform this task if SNMP is not set up on the node you are using, or if SNMP is

set up incorrectly.

Getting Started with the ACMS Remote Manager 2-9

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

This procedure may require that you restart TCP/IP on the node you are using.

Note

When you configure SNMP, you must configure the SNMP communities to
which the node will belong. SNMP communities govern SNMP network
access to the node, which may have significant security implications. Be
sure you understand these implications before you configure SNMP. If
you are in doubt, consult your network or security administrator. If the
SNMP communities are not configured properly, you may be unable to
access the ACMS Remote Manager.

2.2.3.1 Determine the Current SNMP Configuration
To determine whether SNMP is configured, enter the following commands:

$ TCPIP
TCPIP> SHOW SERVICES

If SNMP is configured, you will see a display similar to the following:

Service Port Proto Process Address State
ESNMP 242 UDP ESNMP 0.0.0.0 Disabled
SNMP 161 UDP TCPIPSSNMP 0.0.0.0 Enabled

If you do not see both of these services, proceed to Section 2.2.3.3. If both services
are displayed, SNMP is configured on this node. If you suspect that SNMP is
not working correctly, you can proceed to Section 2.2.3.2. Otherwise, there is

no additional work to be performed. (Note: It is fine if ESNMP has a state of
Disabled.)

2.2.3.2 Remove the Existing SNMP Configuration

Perform this step if you suspect SNMP is not working correctly or if you were
directed here from Section 2.2.3.1.

Enter the following commands:

$ TCPIP
TCPIP> SET NOSERVICE SNMP

Enter Y at the "Remove? [N]:" prompt, and then enter:

TCPIP> SET NOSERVICE ESNMP

Enter Y again at the "Remove? [N]:" prompt, and then exit the utility.
Now shut down and restart TCP/IP on this node:

$ @SYSSSTARTUP:TCPIPS$SNMP_SHUTDOWN
$ @SYSSSTARTUP:TCPIP$SNMP_STARTUP

2-10 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager

2.2.3.3 Configure SNMP

2.2 TCP/IP Setup

To configure SNMP, run the SYS$MANAGER:TCPIP$CONFIG command
procedure. Select option 3 (Server components) and then option 10 (SNMP

Configuration). Select the option to "Enable service
the prompts as shown in the following example.

Note

on this node", and respond to

Configuring SNMP communities must be coordinated among all nodes
that will participate. If you are unsure which SNMP communities to

configure, contact your network administrator.

$ @SYSSMANAGER:TCPIPSCONFIG

HP TCP/IP Services for OpenVMS Configuration Menu

Configuration options:

- Core environment

- Client components

- Server components

- Optional components

- Run tests

- Configure options 1 - 4
- Exit configuration procedure

E:w o\ U W DN
1

Enter configuration option: 3

HP TCP/IP Services for OpenVMS SERVER Components

Configuration options:

1 - BIND Disabled Stopped 12
2 - BOOTP Disabled Stopped 13
3 - DHCP Disabled Stopped 14
4 - FINGER Disabled Stopped 15
5 - FTP Enabled Started 16
6 - IMAP Disabled Stopped 17
7 - LBROKER Disabled Stopped 18
8 - LPR/LPD Disabled Stopped 19
9 - METRIC Disabled Stopped 20
10 - NFS Disabled Stopped 21
11 - LOCKD/STATD Disabled Stopped 22
A - Configure options 1 - 22

[E] - Exit menu

Enter configuration option: 18
SNMP Configuration

Service is defined in the SYSUAF.
Service is defined in the TCPIPSSERVICE database.

- Shutdown HP TCP/IP Services for OpenVMS
Startup HP TCP/IP Services for OpenVMS

Configuration Menu

- NTP Disabled Stopped
- PC-NFS Disabled Stopped
- POP Disabled Stopped
- PORTMAPPER Enabled Started
- RLOGIN Enabled Started
- RMT Disabled Stopped
- SNMP Enabled Started
- SSH Disabled Stopped
- TELNET Enabled Started
- TFTP Disabled Stopped
- XDM Disabled Stopped

Configuration is defined in the TCPIPSCONFIGURATION database.

Service is enabled on cluster nodes.
Service is stopped.
SNMP configuration options:

1 - Enable service on this node
2 - Disable service on all nodes

3 - Enable & Start service on this node

[E] - Exit SNMP configuration

Getting Started with the ACMS Remote Manager 2-11

Getting Started with the ACMS Remote Manager
2.2 TCP/IP Setup

Enter configuration option: 3

Do you want to provide the public community [Y]: <site dependent>
Do you want to provide another community [N]: <site dependent>
Enter contact person(s): <site administrator>

Enter the location of the system: <site location>

To exit from the command procedure, enter E twice.

After exiting from the procedure, you may need to modify the public communities
you just specified to allow SNMP reads, writes, or traps. The following example
shows how to do so. (Community names are case sensitive. Also note the use

of double quotes.) To allow SNMP writes to occur on the node, you also need to
enable the set flag, as follows:

$ TCPIP

TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=WRITE
TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=TRAP
TCPIP> SET CONFIG SNMP/FLAGS=SETS

Now exit the TCP/IP utility and restart TCP/IP on this node:

$ @QSYSSSTARTUP:TCPIP$SHUTDOWN
$ @SYSSSTARTUP:TCPIPSSTARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after
the first command executes. You may have to reboot the machine in order
to log in and complete the procedure. To avoid this problem, put the
shutdown and startup commands into a command procedure, and submit
the procedure to a batch queue that is guaranteed to run on this node.

After TCP/IP starts, SNMP should be ready to use. The following SNMP
processes should be running:

TCPIP$ESNMP
TCPIP$OS_MIBS

2.2.3.4 Test SNMP

2-12

TCP/IP includes a DCL command line utility that can be used to issue SNMP
commands to SNMP agents on OpenVMS. To use this utility, define the following
foreign commands:

$ SNMPGET :== $SYSSSYSTEM:TCPIPSSNMP_REQUEST <your node name> PUBLIC GET -W 20
$ SNMPSET :== $SYSSSYSTEM:TCPIP$SSNMP_REQUEST <your node name> PUBLIC SET -W 20

Then, after starting the ACMS Remote Manager (see Section 2.3), test access to
SNMP:

$ SNMPGET 1.3.6.1.4.1.36.2.18.48.5.1.10.1
1.3.6.1.4.1.36.2.18.48.5.1.10 = 14

$ SNMPSET 1.3.6.1.4.1.36.2.18.48.5.1.10.1 -I 15
1.3.6.1.4.1.36.2.18.48.5.1.10 = 15

In this example, the first command issues an SNMP GET to get the value
of the parameter mgr_audit_level (the audit level of the main thread). The
second command sets the value of the mgr_audit_level parameter to 15 (log all
messages). Following each command, the current value of the field is returned.

If these commands fail to return the expected results, refer to Section 2.5.

Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

2.3 Remote Manager Setup

Setting up the Remote Manager primarily involves preparing the OpenVMS
environment to start the Remote Manager. While many of the steps in this
procedure can be performed without having previously configured TCP/IP, it is
strongly suggested that you perform TCP/IP setup tasks described in Section 2.2
before you attempt to start and access the Remote Manager.

Most of what you need to know to set up the ACMS Remote Manager is covered
in Chapter 4. Please read that chapter before you set up the ACMS Remote
Manager.

2.3.1 Run the Postinstallation Procedure

The postinstallation procedure creates two important command procedures:
e ACMS$MGMT_SETUP.COM
e ACMS$MGMT_ENV.COM

Both of these procedures are required to start and run the ACMS Remote
Manager successfully.

In addition, the postinstallation procedure modifies ACMSTART.COM to execute
ACMS$MGMT_SETUP.COM to ensure that important logicals are defined
whenever the ACMS run-time system is started.

Run the ACMS_POST_INSTALL.COM command procedure as follows:

$ @SYSSSTARTUP:ACMS_POST_INSTALL

Respond appropriately to all prompts until you reach the following prompt:
Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?

Be sure to respond YES (the default) to this prompt. Several more questions are
posed. The procedure continues with the following questions. Your responses are
stored in the ACMS$MGMT SETUP.COM file.

Do you want to allow Proxy Authorization [Y]?

All clients must be authenticated and authorized to access the ACMS Remote
Manager. Proxy access allows ACMS proxies to be used for this purpose. Proxy
access is described in detail in Section 4.4.1.2.

Enter Y to enable proxy authentication and authorization when the Remote
Manager is started.

(ACMSSMGMT_CONFIG) Enter the file specification for the configuration
file used by the ACMS Remote Manager
Equivalence string [SYSSSPECIFIC:[SYSEXE]ACMSSMGMT_CONFIG.ACM]:

The configuration file contains the default startup configuration for both

ACMS data collections and the Remote Manager. Section 4.2 describes how

to use the ACMSCFG utility to manage this file. The default location is
SYS$SPECIFIC:[SYSEXE]ACMS$MGMT_CONFIG.ACM. The information in
this file is not node dependent; however, you may choose to configure the nodes
in your cluster differently. If you configure all nodes in the cluster the same, you
can put this file in the cluster common root. Otherwise, the default value places
it in the node-specific root.

Getting Started with the ACMS Remote Manager 2-13

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

Either press Return to accept the default, or type the file specification you want
to use.

(ACMSSMGMT_TEMP) Enter the directory where the temp command procedures
will be created
Equivalence string [SYSSSPECIFIC: [SYSMGR]]:

The Remote Manager uses temporary command procedures (see Section 5.4.2)
to update the ACMS run-time system. The default location of the command
procedures is SYSSMANAGER. This directory should not be a cluster common
directory.

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

(ACMSSMGMT_LOG) Enter the directory for the ACMS Remote Manager’s Log file
Equivalence string [SYSSSPECIFIC:[ACMS_RM.LOG] 1:

The Remote Manager log file (described in Section 4.7) contains a variety of
messages generated by the Remote Manager at run time. The default location
of the log is SYS$SPECIFIC:[ACMS_RM.LOGIACMS$MGMT_LOG.LOG. If you
choose to place this log in a cluster common directory, be sure that the file name
is different for each node.

Either press Return to accept the default, or type the file specification you want
to use.

(ACMSSMGMT_CREDS_DIR) Enter the directory for the ACMS Remote Manager
Credential’s Equivalence string [SYSSSPECIFIC: [ACMS_RM.CREDS]]:

Client credential files (described in Section 4.4.1.1) contain encrypted client
identity information used for client authorization. The default location for these
files is SYS$SPECIFIC:[ACMS_RM.CREDS]. Credential files are created with
unique names and can be safely placed in a cluster common directory.

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

(ACMSSMGMT_SNAPSHOT) Enter the directory where the snapshot data will be stored
Equivalence string [SYSSSPECIFIC:[ACMS_RM.SNAPSHOT]]:

Data snapshot files (described in Section 5.2) contain ACMS system management
information (parameter and process quota settings) for one or more ACMS
systems. The default location for these files is SYS$SPECIFIC:[ACMS_
RM.SNAPSHOTJACMS$MGMT_SNAPSHOT.DAT. If you choose to place this

log in a cluster common directory, be sure that the file name is different for each
node.

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

(ACMSSMGMT_ERR_LOG) Enter the directory where the Error Log data will be stored
Equivalence string [SYSSSPECIFIC:[ACMS_RM.ERR_LOG]]:

Error log files (described in Section 5.5) contain errors generated by ACMS run-
time processes. The default location for these files is SYS$SPECIFIC:[ACMS_
RM.ERR_LOGJACMS$MGMT_LOG.LOG. If you choose to place this log in a
cluster common directory, be sure that the file name is different for each node.

2-14 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

Either press Return to accept the default, or type the directory specification you
want to use. If the directory does not exist, the command procedure creates it for
you.

Please enter the UIC for the ACMSSSNMP account, in the form [ggggg,nnnnnn]
UIC:

This account is used to control SNMP access to ACMS system management
information and functions. Section 4.4.1 and Section 7.2 describe the uses of this
account. In general, if you will be using an SNMP-based management console to
access ACMS, you should create this account.

Please enter a password of at least 8 characters, using only
the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789S_

Password:

The password for this account is never used. Enter any combination of the
characters shown. However, keep in mind that you will be prompted to verify
whatever you type.

After you run the postinstallation procedure, you should rerun
SYS$STARTUP:ACMSTART.COM to ensure that the newly created
ACMS$MGMT_SETUP.COM is run.

2.3.2 Define Process Logicals and Symbols
The following symbols are defined in the ACMS$MGMT_ENV.COM procedure:

e ACMSCFG: Used to invoke the ACMSCFG utility, which allows the Remote
Manager configuration file to be managed. The ACMSCFG utility is described
in detail in Chapter 10.

e ACMSMGR: Used to invoke the ACMSMGR utility, which provides remote
access to the ACMS Remote Manager. The ACMSMGR utility is described in
detail in Chapter 11.

e ACMSSNAP (and ACMSNAP): Used to invoke the ACMSSNAP utility, which
enables users to view ACMS Remote Manager data snapshot files. This
utility and its use is described in detail in Chapter 12.

e STARTMGR: Used to invoke the Remote Manager startup procedure.

e SNMPGET and SNMPSET: Used to issue SNMP get and set commands to
the Remote Manager. Requires knowledge of ACMS MIB OIDs, which are
listed in the file MIB_OID.LIS available from the directory ACMS$RM_
EXAMPLES.

Before you attempt to run any of these utilities, run the
ACMS$MGMT_ENV.COM procedure:

$ @SYSSSTARTUP:ACMSSMGMT_ENV.COM

2.3.3 Review and Update the Configuration File

The ACMS$MGMT_CONFIG system logical points to the configuration file.
This logical is defined in the ACMS$MGMT_SETUP.COM procedure, which is
executed by the ACMSTART.COM procedure. If this logical is not defined, the
ACMSCFG utility will not be able to locate the file. If you have not already run
ACMSTART.COM, do so before issuing any ACMSCFG commands.

During the initial installation of the Remote Manager, the ACMS_POST _
INSTALL.COM procedure creates a configuration file with default values in
SYS$SPECIFIC:[SYSEXEJACMS$MGMT_CONFIG.ACM.

Getting Started with the ACMS Remote Manager 2-15

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

The configuration file contains the startup configuration for ACMS data
collections and provides many defaults for the Remote Manager. Section 4.2
describes how to use the ACMSCFG utility to manage this file.

In particular, consider the following:

e Interfaces

By default, both RPC and SNMP interfaces are enabled. The RPC interface
must be enabled if you intend to use the ACMSMGR command line utility, or
if you will be writing programs that use the RPC API. The SNMP interface is
required only if you will use a third-party SNMP management tool to manage
ACMS. The following command disables the SNMP interface:

$ ACMSCFG SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED

e Data collections

By default, only ID and CONFIG class data is collected by all ACMS
processes. If you intend to use the Remote Manager to monitor run-time,
pool, or error data, you must enable data collection for those classes. The
following commands enable run-time, pool, and error data collection for all
processes:

$ ACMSCFG ADD COLL/ENT=*/CLASS=RUNTIME/COLL_STATE=ENABLED
$ ACMSCFG ADD COLL/ENT=*/CLASS=POOL/COLL_STATE=ENABLED
$ ACMSCFG ADD COLL/ENT=*/CLASS=ERROR/COLL_STATE=ENABLED

e Traps

Configuring traps is optional. Traps are used only if your SNMP management
console listens for traps. Section 7.8 discusses traps in more detail. If you are
unsure about whether you need to configure traps, use the defaults.

e Parameters

The parameters in the configuration file control various aspects of the
Remote Manager. In general, use the default values unless you have a
particular reason to modify them. Refer to Section 9.10 includes a table with
descriptions of each parameter.

2.3.4 Start the Remote Manager

At this point, you can start the Remote Manager. You can start the Remote
Manager before or after you start the ACMS run-time system. Start the Remote
Manager by entering the following command:

$ STARTMGR
If you prefer, you can run the startup procedure directly:
$ @SYSSSTARTUP:ACMSSMGMT_STARTUP

Once this command completes, you should be able to see the Remote Manager
process running by issuing the following command:

$ SHOW SYSTEM/PROCESS=ACMSS$SMGMT_SVR

If this process is not running, refer to Section 2.5.

2-16 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

2.3.5 Communicate with the Remote Manager

If the ACMS$MGMT_SVR process is running and you have enabled both the RPC
interface and proxy access, you should be able to communicate with the Remote
Manager. The exact commands you will use depends on the interfaces you have
enabled and the mode of authentication you want to use. This section shows two
examples of communicating with the Remote Manager:

e Using ACMSMGR and logging in explicitly
e Using ACMSMGR and a proxy account

2.3.5.1 Using ACMSMGR and Logging In Explicitly

If you will not be using proxy accounts, or if you have not set them up yet, you
can log in directly to the Remote Manager and communicate with it. To reduce
typing, define the process logicals ACMS$MGMT_USER to be the user account

you will log in with, and ACMS$MGMT_SERVER_NODE to be the node on which
the Remote Manager is running:

$ DEFINE ACMSS$SMGMT_USER MYNAME
$ DEFINE ACMS$MGMT_SERVER_NODE NODE_SERVER_RUNS_ON

Then you can log in as follows (the ACMSMGR utility will prompt you for your
password):

$ ACMSMGR LOGIN
Password: MYPASSWORD

If no error messages are returned, you have successfully logged in to the Remote
Manager. You can now issue ACMSMGR commands from this process. Try the
following command:

$ ACMSMGR SHOW USERS

2.3.5.2 Using ACMSMGR and a Proxy Account

If you will be using proxy accounts, you must set them up prior to issuing any
ACMSMGR commands. If you have already set them up, you can skip to the
example ACMSMGR command.

If you have not set up your proxies, you start by running the ACMSUDU utility.
It is best to run this from the SYS$SYSTEM directory, since that is where
ACMSUDU expects to find the file in which it stores proxies.

Start ACMSUDU as follows:

$ SET DEFAULT SYSS$SYSTEM
$ MCR ACMSUDU
UbU>

If you have never set up an ACMS proxy before, create the proxy file now. Use
the following command:

UDU> CREATE/PROXY

Now you need to define the proxy acounts. Proxy accounts have three
components: the remote node, the remote account, and the local account.

The remote node is the node from which you will be accessing this node. You can
either specify a node name or use the asterisk wildcard (*). Be aware that the
Remote Manager treats every access as a remote access. This means that even
if you access the Remote Manager only from the same node it runs on, you must
create a proxy. In that case, the remote and local nodes are the same.

Getting Started with the ACMS Remote Manager 2-17

Getting Started with the ACMS Remote Manager
2.3 Remote Manager Setup

The remote account is the account on the remote node that will be accessing the
Remote Manager. This is the user name on the remote node.

The local account is the account on the local node that will be used for
authorization. It must be a valid account on the local node.

To add the proxy record, use the following command:
UDU> ADD/PROXY remote-node::remote-account local-account

Once the proxy record has been added, you can attempt to access the Remote
Manager. Using a proxy does not require a separate login; you just issue the
command. Also, do not define the ACMS$MGMT_USER logical. If it is defined,
the ACMSMGR utility will look for login information and will not attempt proxy
access.

Try this command:
$ AMCMSGR SHOW USERS/NODE=remote-manager-node

If no error messages are returned, a list of users logged in to the Remote Manager
will be displayed. To reduce typing when issuing more commands, define the
process logical ACMS$MGMT_SERVER_NODE to be the name of the node

you want to access; this eliminates the need for using the /NODE qualifier in
ACMSMGR commands.

If an error is returned, refer to Section 2.5.

2.4 Monitoring the HP TP Desktop Connector Server or HP TP Web
Connector Gateway

HP TP Desktop Connector

The Remote Manager may be used to monitor user-written and HP supplied
agents.

To allow the ACMS Remote Manager to monitor the HP TP Desktop Connector
(ACMSDI$SERVER), the file SYS$STARTUP:ACMSDI$STARTUP.COM needs to
be modified as follows:

Edit SYS$STARTUP:ACMSDI$STARTUP.COM and search for the lines:

$ 1f _server name .nes. ""

$ then
$ write tmpstartup "$ define/process ACMSDISSERVER_NAME ", _server_name
$ endif
Insert the following before the lines above:
$ write tmpstartup "$ define/process ACMSSRM_AGENT INIT ", "T"
$ write tmpstartup "$ define/process ACMSSRM_AGENT_KEEP ", "T"

The ACMSDISSERVER must be restarted after the changes are made.

You should save a copy of this file. If you re-install or update the HP TP Desktop
Connector, the installation procedure will replace the file that you have edited.

2-18 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.4 Monitoring the HP TP Desktop Connector Server or HP TP Web Connector Gateway

TP Web Connector

To allow the ACMS Remote Manager to monitor the TP Web Connector
(ACMSDA$GATEWAY), the file SYS$STARTUP:ACMSDAS$STARTUP.COM needs
to be modifed as follows:

Edit SYS$STARTUP:ACMSDAS$STARTUP.COM and search for the lines:

$ write tmpstartup "$ define/process ACMSDISACMS_ERROR_MSG ", _acms_error_msg

$ write tmpstartup "$ define/process ACMSDISPASSWORD_EXP ", _password_exp

$ write tmpstartup "$ define/process ACMSDISINTEGRITY CHECK ", _integrity_check
Inserver the following after the lines above:

$ write tmpstartup "$ define/process ACMSSRM_AGENT INIT ", "T"

$ write tmpstartup "$ define/process ACMSSRM_AGENT_KEEP ", "T"

The ACMSDA$GATEWAY must be restarted after the changes are made.

You should save a copy of this file. If you re-install or update the TP Web
Connector, the installation procedure will replace the file that you have edited.

2.5 Troubleshooting the ACMS Remote Manager Startup

The following sections provide troubleshooting information for the following
problems:

¢ Problems starting ACMS (Section 2.5.1)
e Problems starting the ACMS Remote Manager (Section 2.5.2)
¢ Problems with ACMSMGR (Section 2.5.3)

2.5.1 Problems Starting ACMS

The following message is displayed when the ACMS run-time system is being
started and the ACMS Central Controller (ACC) cannot open the Remote
Manager configuration file:

$ACMSMGMT-I-CFGNOTOPEN, Unable to open management config file, using defaults
Possible reasons for this message include:

e The logical name ACMS$MGMT_CONFIG is not defined.

Solution: This logical is typically defined in the file
SYS$STARTUP:ACMS$MGMT_SETUP.COM, which is created

by the SYS$STARTUP:ACMS_POST_INSTALL.COM command

procedure. If the ACMS$MGMT _SETUP.COM file does not exist, run
ACMS_POST _INSTALL.COM. If it does exist, edit it and add the
definition of ACMS$MGMT _ CONFIG. In either case make sure to run
ACMS$MGMT_SETUP.COM, and then run the ACMSCFG utility to create a
new, default file.

Getting Started with the ACMS Remote Manager 2-19

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

e The logical name ACMS$MGMT_CONFIG does not point to the configuration
file, or the file has not been created.

Solution: Ensure that the logical is defined properly (see the first bullet). If
it is, you can create a new file by running the ACMSCFG utility. ACMSCFG
will ask whether you want to create a new file. Answer yes, and then review
the default settings.

e The ACC process does not have read access to the file pointed to by the logical
name ACMS$MGMT_ CONFIG.

Solution: Modify the permissions on the file and restart ACMS.
¢ The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS
Remote Manager. See the first bullet for more information.

2.5.2 Problems Starting the ACMS Remote Manager

During startup, the Remote Manager writes error messages to two locations. If
you are experiencing problems with the Remote Manager, check both locations for
messages.

e SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT (see Section 2.5.2.1)

e Remote Manager log, pointed to by logical ACMS$MGMT_LOG (see
Section 2.5.2.2)

2.5.2.1 ACMSSMGMT_SERVER.OUT Messages

This is an ASCII text file that contains the redirected SYS$OUTPUT from the
Remote Manager process. In general, messages appear in this log only if the
Remote Manager is unable to write to its log file. The following conditions are
exceptions:

e The literal "log_to_sysout" is passed to the Remote Manager startup procedure
as P1 (for example, @SYS$STARTUP:ACMS$MGMT_STARTUP.COM log_to_
sysout). Except for rare debugging circumstances, the "log_to_sysout" literal
should not be passed to the Remote Manager startup procedure as P1.

e The Remote Manager experiences an access violation or other nontrapped
fatal error.

Under these circumstances, OpenVMS exception output is written to
ACMS$MGMT_SERVER.OUT.

If you experience problems with SNMP, refer to Section 7.9 for information about
obtaining SNMP debug output.

LOG: Could not open file acms$mgmt_log

This message indicates that the Remote Manager could not open the file pointed
to by the logical ACMS$MGMT_LOG. Possible reasons for this include:

e The logical is not defined, or is improperly defined.

Solution: This logical is typically defined in the file
SYS$STARTUP:ACMS$SMGMT_SETUP.COM, which is created by the
SYS$STARTUP:ACMS_POST _INSTALL.COM command procedure.

If the ACMS$MGMT _SETUP.COM file does not exist, run ACMS_
POST_INSTALL.COM. If it does exist, edit it and add the definition of
ACMS$MGMT _LOG. In either case, make sure to run ACMS$MGMT _
SETUP.COM, and then start the Remote Manager again.

2-20 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

e The device is full.

Solution: If there is insufficient space for the log file, either redefine the
logical to point to another device or make room on the device.

e The Remote Manager does not have write access to the file.

Solution: Modify the permissions on the file or directory to which the
ACMS$MGMT_LOG logical points.

¢ The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS
Remote Manager. See the first bullet for more information.

2.5.2.2 Remote Manager Log Entries

The messages written to the Remote Manager log are determined by Remote
Manager parameter settings (for example, mgr_audit_level, rpc_audit_level, and
so on). Changing the parameter values results in either more or fewer messages
appearing in the Remote Manager log. By default, messages with a severity of
warning (w), error (e), or fatal (f) are written to the Remote Manager log. The log
is pointed to by logical ACMS$MGMT_LOG.

You can use the ACMSMGR SHOW LOG command to display messages in the
Remote Manager log. If the Remote Manager is not running, use the /[LOCAL
qualifier to read the log file directly. You must be logged in to a node with direct
access to the log file in order to use the /[LOCAL switch. For instance:

$ ACMSMGR SHOW LOG/LOCAL

See Section 4.7 for detailed information about the log file maintained by the
ACMS Remote Manager.

mgr: f : Failure opening config file

The Remote Manager could not open the configuration file. See the discussion in
Section 2.5.2.1.

mgr: f : No Interfaces were enabled. Process will shutdown

At least one interface must be enabled when the Remote Manager is started.
Otherwise, it is impossible to communicate with the Remote Manager. If both
interfaces are disabled, the Remote Manager will not start.

Solution: Issue the following command to see the current interface settings in
the configuration file:

$ ACMSCFG SHOW INTERFACE

Enable at least one of the interfaces as follows (substitute SNMP for RPC if you
want to enable the SNMP interface instead of the RPC interface):

$ ACMSCFG SET INTERFACE/INTERFACE=RPC/STATE=ENABLED
Now restart the Remote Manager.

procmon: e : Failure obtaining current collection states. Bypassingqti

This message can safely be ignored. It is generated when an ACMS entity is not
started and the Remote Manager is parsing the collection table.

procmon: f : Failure waiting on mgmt$x_proc_mon_cond_var

This message can safely be ignored. It is generated when the process monitor
thread is unexpectedly interrupted, generally during Remote Manager shutdown.

Getting Started with the ACMS Remote Manager 2-21

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

Remote Manager hangs during process startup

Most Remote Manager hangs during process startup are due to problems with the
Portmapper. Verify that the Portmapper is functioning properly, and restart the
Remote Manager.

rpc: f: Unable to initialize security. Aborting
The Remote Manager was unable to find a rights identifier in the UAF.

Solution: Create the rights identifier.

sec: e : Failure obtaining uaf info for ACMS$SNMP

If the SNMP interface is enabled, the ACMS$SNMP account must exits.
Otherwise, it can perform no operations. If the account exists, it must be
granted at least one of the following rights identifiers: ACMS$MGMT_READ,
ACMS$MGMT_WRITE, ACMS$MGMT_OPER.

Solution: Either disable the SNMP interface (${ACMSCFG,ACMSMGR]
SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED), or create the
ACMS$SNMP account and grant it one of the rights.

sec: e : MGMT$SL_ACMSSMGMT_READ Rights identifier not found in rights db!
The Remote Manager was unable to find the rights identifier in the UAF.

Solution: Create the rights identifier.

sec: f : ACMS$SNMP user has been granted no rights.

If the SNMP interface is enabled, the ACMS$SNMP account must be

granted at least one of the following rights identifiers: ACMS$MGMT_READ,
ACMS$MGMT _WRITE, ACMS$MGMT_OPER. Otherwise, the account cannot
perform any operations. If it is not granted any rights identifiers, the thread will
not start.

Solution: Either disable the SNMP interface (${ACMSCFG,ACMSMGR] SET
INTERFACE/INTERFACE=SNMP/STATE=DISABLED), or grant one of the
rights to the ACMS$SNMP account.

snmp: e : Terminating....

This is a general error that simply reports that the thread is exiting. Look in the
log file for the reason the thread is exiting. If there are no other error messages,
look in SYSSERRORLOG:ACMS$MGMT_SERVER.OUT.

snmp: f: Internal Initialization failed, exiting...

This is a general error that simply reports that the thread is exiting. Look in the
log file for the reason the thread is exiting. If there are no other error messages,
look in SYSSERRORLOG:ACMS$MGMT_SERVER.OUT.

snmp: w : An esnmp error has occurred: -1

This message, if followed by termination of the SNMP thread, usually indicates
that SNMP has not been set up properly on the node.

Solution: Configure and enable the SNMP interface. Restart TCP/IP and then
restart the Remote Manager.

If this message is received, but is not followed by termination of the SNMP
thread, the SNMP interface was able to recover from this error and there is no
action that must be taken.

2-22 Getting Started with the ACMS Remote Manager

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

snmp: w : An esnmp error has occurred: -5

This is a warning message that refers to a problem communicating with the
SNMP master agent. These errors usually are recoverable and the SNMP
interface continues to work. In general, you can ignore this message.

However, frequent occurrences of this error may be attributable to a busy system
and may indicate a need to modify one or more of the following parameters:
snmp_agent_time_out, snmp_are_you_there, snmp_sel_time_out.

2.5.3 Problems with the ACMSMGR Utility
ACMSMGR problems typically fall into two categories:
e ACMSMGMT-W-NOCLNT_ATTACH messages (see Section 2.5.3.1)
e ACMSMGR hangs (see Section 2.5.3.2)

2.5.3.1 ACMSMGMT-W-NOCLNT_ATTACH Messages
ACMSMGR can display the following message:
$ACMSMGMT-W-NOCLNT_ATTACH, Cannot create client for node NODE\NOCLNT_ ATTACH
This message usually is followed by these messages:

$ACMSMGMT-E-NOCLIENTS, No clients created, cannot continue
$ACMSMGMT-E-FAIL, Operation failed

These messages usually are returned when the Remote Manager is not running
on the target node. Possible reasons for this include:

e The Remote Manager is not started.

Solution: Start the Remote Manager as follows:
$ @SYSSSTARTUP:ACMSSMGMT_STARTUP

e The Remote Manager is not fully initialized. Complete initialization of the
Remote Manager may take several seconds.

Solution: Wait several seconds and then reissue the command that resulted
in this error.
e The node name is incorrect.
Solution: Double-check the spelling of the node name in the /NODE qualifier
or in the ACMS$MGMT_SERVER_NODE logical.
2.5.3.2 ACMSMGR Hangs

ACMSMGR hangs are generally the result of a problem with the Portmapper or
the Remote Manager. To verify that the Remote Manager has connected to the
Portmapper, issue the following commands on the node on which the Remote
Manager is running:

$ TCPIP
TCPIP> SHOW PORTMAPPER

If the Remote Manager has connected, you will see a display similar to the

following:

Program Number Version Protocol Port-number Process Service-name
000186A0 (100000) 2 TCP 111 20407ES5E PORTMAPPER
000186A0 (100000) 2 UDP 111 20407E5E PORTMAPPER
20000099 (536871065) 1 UDP 1023 20408675
20000099 (536871065) 1 TCP 1023 20408675

Getting Started with the ACMS Remote Manager 2-23

Getting Started with the ACMS Remote Manager
2.5 Troubleshooting the ACMS Remote Manager Startup

If the bottom two lines are missing (program number 20000099, version 1), then
the Remote Manager is not connected to the Portmapper. Either the Remote
Manager is not started or has terminated, or the RPC interface is not enabled.

If no lines are displayed (that is, if a “record not found” message is displayed), the
Portmapper is not started. Refer to Section 2.2 for more information.

Solution: Correct the problem with the Remote Manager or the Portmapper.

2-24 Getting Started with the ACMS Remote Manager

3

Using the ACMS Remote Manager Web Agent

This chapter describes how to prepare and run the ACMS Remote Manager web
agent.

3.1 Overview of the Remote Manager Web Agent

With the Remote Manager web agent, system managers can use their web
browser to monitor and tune remote ACMS systems. The ACMS for OpenVMS
Alpha Development and Run-time kits include the Remote Manager Hyper-
Media Management Object (HMMO), which is integrated into the HP web-based
enterprise management (WBEM) environment. Known as the Remote Manager
web agent, this object functions as a Remote Manager client through the ONC
RPC interface.

Note

ACMS HMMO will work only with Insight Management Agents using
the ELM HTTP/HTTPS server. It will not work with versions of Insight
Management Agent using the System Management Homepage as the
HTTP/HTTPS server.

The Remote Manager web agent environment consists of the following host
systems:

e Web client — One or more local systems running a web browser that
supports Java plug-ins, JavaScript, and Cascading Style Sheets (CSS).

e Web server — An OpenVMS Alpha system where the web agent
(ACMS$MGMT_HMMO) and WBEM management server (WBEM$SERVER)
processes are running. This system serves the ACMS Remote Management
web page and handles all communication between the web client and Remote
Manager server systems.

e Remote Manager server — One or more OpenVMS Alpha or 164 systems
where Remote Manager server processes (ACMS$MGMT_SVR) are running.
The ACMS information displayed on the web agent home page is a result of
executing ACMSMGR commands on the Remote Manager servers.

As shown in Figure 1-1, the Remote Manager web agent (ACMS$MGMT_HMMO)
relies on the WBEM management server (WBEM$SERVER) to relay data to and
from the web browser. The web agent uses its internal web server to connect

to the ACMS Remote Management page. All command input is then relayed to
Remote Manager server through the HMMO.

Using the ACMS Remote Manager Web Agent 3-1

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

3.2 Remote Manager Web Agent Setup

Before you begin, you must have already installed OpenVMS Alpha Version 8.2
on the web server system. Also, ensure that all web client systems are running
one of the currently supported web browsers. See the HP ACMS for OpenVMS
Software Product Description (SPD 25.50.xx) for a list of the currently supported
web browsers.

Once the OpenVMS Alpha software is installed, perform the following steps to set
up the Remote Manager web agent on the web server system:

1. Install the Remote Manager web agent software (Section 3.2.1)

2. Install the HP Management Agents for OpenVMS software (Section 3.2.2)
3. Assign additional rights identifiers (Section 3.2.3)

4. Start the web agent (Section 3.2.4)

5. Enable access to Remote Manager hosts (Section 3.2.5)

3.2.1 Install the Remote Manager Web Agent Software

The Remote Manager web agent software is bundled with the ACMS for
OpenVMS Alpha Run-time and Development kits. To install the web agent
software, choose to install the WBEM-related files component of either kit.

This section contains excerpts from an ACMS Development kit installation.
Refer to the HP ACMS Version 5.0 for OpenVMS Installation Guide for detailed
information about the entire ACMS installation procedure.

1. Run the HP ACMS for OpenVMS Alpha 5.0 installation procedure for either
the ACMS Run-time or Development kit, in as described in Section 3.2.1 of
the HP ACMS Version 5.0 for OpenVMS Installation Guide. For example:

$ @SYSSUPDATE:VMSINSTAL ACMSDEVA_050 MTAO: OPTIONS N, AWD=DISK1
OpenVMS AXP Software Product Installation Procedure V8.2

It is 22-JUN-2001 at 11:00.
Enter a question mark (?) at any time for help.
2. A series of product-specific questions are displayed that prompt you to

choose the appropriate installation options. Answer the following prompts
accordingly:

* Do you want the full ACMS installation [NO]? N

* Do you want to install the ACMS component software [YES]? N

* Do you want to install the WBEM-related files for ACMS [YES]? Y
* Do you want to update the LSE environment for ACMS [YES]? N

The installation procedure then checks for prerequisite software and adequate
disk space and lists a summary of the components to be installed, as follows:

CHECKING INSTALLATION PREREQUISITES

(required and optional software checked)
(product licenses checked)
(disk space checked)

ACMS PREVIOUS INSTALLATION

(previous installation of ACMS is compatible with current installation)

3-2 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

ACMS WBEM CHECK

The following steps will be taken to complete this installation:
o WBEM environment will be updated for ACMS
The rest of the installation will take approximately 7 minutes.

Note that this time is heavily dependent your system load, hardware
and kit media. The time mentioned was measured on a stand-alone
DEC 3000 (Alpha) system with a disk-resident kit. Your time may vary.

When prompted to continue the installation, answer YES. The procedure
enters the ACMS WBEM Setup phase.

The WBEM setup procedure (SYS$STARTUP:ACMS$WBEM_SETUP.COM)
is then invoked, which creates or updates the ACMS$WBEM account and
creates the necessary directories and web agent files.

Do one of the following:

e If the account does not exist, you are prompted to supply a UIC and
password for the account, as follows:

The ACMSSWBEM account used to execute ACMSMGR WBEM commands is not available.
You must supply a UIC and password for this account so that it can be created.
Please enter the UIC for the ACMSSWBEM account, in the form [ggggg,nnnnnn]
UIC: [320,525]

Please enter a password of at least 8 characters, using only

the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_
Password:

Verification:

Enter the appropriate UIC and password. The ACMS$WBEM account is
then created and assigned the ACMS$MGMT_READ rights identifier.

e If the account already exists, a list of the rights identifiers currently
assigned to the account are displayed, as follows:

khkkkkkhkhhkhkhkhhhhkhkhdhrhrhkhhrhkhhhhxhhhhkhxhhhhkhxhkhhkhxhkrhxk

* ACMS WBEM Setup *

khkkkkkhkhhkhkhkhhrhkhkhhrhkhkhhrhkhhhhxhhhhkhxhhhhkhxhkhhkhxhkrhxk

Checking for user account ACMSSWBEM

Identifier for ACMSSMGMT READ exists in RIGHTSLIST
Identifier for ACMSSMGMT WRITE exists in RIGHTSLIST
Identifier for ACMSSMGMT OPER exists in RIGHTSLIST
Identifier for ACMSSMGMT_SYSUPD exists in RIGHTSLIST

The account ACMSSWBEM exists.
The identifiers on the account ACMSSWBEM are

Identifier Value Attributes
ACMSSMGMT_READ %X8001012E
ACMSSMGMT_WRITE %X8001012F
ACMSSMGMT_OPER %$X80010130
ACMSSMGMT_SYSUPD %X800101DB

Do you wish to reset the account ACMSSWBEM to the default values [N] ? y

You can choose to reset the identifiers at this time by answering YES.

Using the ACMS Remote Manager Web Agent 3-3

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

The setup procedure then completes by creating the following directories and
files on the web server system:

The ACMS WBEM setup has completed.
The following files were copied:

To SYS$SYSROOT: [WBEM]
ACMSSMGMT_HMMO . EXE
RUN_ACMS_HMMO . COM
STOP_ACMS_HMMO . COM

To SYSSSYSROOT: [WBEM.WEB.IM.ACMSHMMO.ENG]
ACMS.CSS
ACMSHMMO.JS
ACMSMENUTREE.JAR
ACMS_BANNER.HTML
ACMS_INDEX.HTML
ACMS_MENU. HTML
ACMS_OUTPUT . HTML

To SYSSSYSROOT: [WBEM.WEB.IM.ACMSHMMO. IMAGES]
ACMSHMMO.GIF
HPLOGO.GIF
WEBBUM.GIF

To SYSSCOMMON: [SYSLIB]
ACMSSTRACE_SHR.EXE

You may wish to purge these directories.

Once the ACMS installation is complete, download and install the HP
Management Agent for OpenVMS software, as described in Section 3.2.2.

3.2.2 Install the HP Management Agents for OpenVMS Software

If you have not already installed the HP Management Agents for OpenVMS
software, do so now. You can download this software from the web page listed in
Section 3.1.

Follow the associated instructions to copy, unpack, and install the appropriate HP
Management Agents for OpenVMS PCSI kit. Once the software is installed, issue
the following command to start the management agent process:

$ SET DEFAULT SYS$SPECIFIC:[WBEM]
$ @WBEMSRUN_WEBSERVER.COM

Note that the WBEM server (WBEM$SERVER) is the only process started by
this procedure. None of the other Management Information Base (MIB) processes
included in the WBEM kit (such as, WBEM$CPQHOST) are used by the Remote
Manager agent. If you plan to use software on this system that relies on the MIB
processes, run the WBEM$STARTUP.COM procedure, as described in the WBEM
installation material.

3.2.3 Assign Additional Rights Identifiers

The installation procedure automatically grants the ACMS$MGMT_READ rights
identifier to the ACMS$WBEM account when it is created. This enables all
SHOW commands to be executed from the web agent. In order to enable all
other non-read operations (such as SAVE, SET, START, STOP, RESET, ADD,
and DELETE), grant one or more of the following rights identifiers to the
ACMS$WBEM account:

e ACMS$MGMT_WRITE
e ACMS$MGMT_OPER

3-4 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.2 Remote Manager Web Agent Setup

e ACMS$MGMT _SYSUPD

See Section 4.4.2 for more information on the use of rights identifiers.

3.2.4 Start the Remote Manager Web Agent Process

Enter the following command to start the Remote Manager web agent process:

$ SUBMIT/NOTIFY/LOG=SYS$SSYSROOT: [WBEM] /QUEUE=queue-name -
_S /USER=ACMSSWBEM SYSSSPECIFIC:[WBEM]RUN_ACMS_HMMO.COM

where queue-name is a valid OpenVMS batch queue. If the process is already
running, this command restarts the process.

3.2.5 Enable Access to Remote Manager Hosts

In order for the Remote Manager web agent to access a Remote Manager server
system, the logical ACMS$MGMT _ALLOW_PROXY_ACCESS on the host system
must be set to a value of 1, which enables proxy access.

Also, an ACMS proxy entry for the ACMS$WBEM account is required. For
example, the following proxy entry grants the user ACMS$WBEM access to the
local host from any known system:

$ MCR ACMSUDU

UDU>SHOW /PROXY *::ACMSSWBEM
Remote User: *::ACMSSWBEM Local User: ACMSSWBEM

The rights identifiers on the local ACMS$WBEM account control the level of
access allowed on the host system.

Note

Even if the Remote Manager is running on the same node as the web
agent, it is still considered a remote host and the requirements above still

apply.

3.2.6 Stop the Remote Manager Web Agent

Use the following command to stop the web agent process:
$ @SYSSSPECIFIC:[WBEM]STOP_ACMS_HMMO.COM
If you also want to stop the WBEM server process, enter the following command:

$ @SYSSSPECIFIC: [WBEM]WBEMSSTOP_WEBSERVER.COM

3.3 Using the Remote Manager Web Agent

The following sections describe how to access and use the Remote Manager web
agent interface.

3.3.1 Accessing the ACMS Remote Management Web Page

From a browser on the web client system, enter the following URL to connect to
the web server system:

http://server-host:2301/acmshmmo/eng/acms_index.html

where server-host represents the address of the OpenVMS Alpha system on which
the web agent software is running. This address can be expressed in any of the
following forms:

Using the ACMS Remote Manager Web Agent 3-5

Using the ACMS Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent

node (node name)
node.company.com (URL)
165.112.94.78 (IP address)

The ACMS Remote Management page is displayed, similar to Figure 3-1.

Figure 3-1 Remote Manager Web Agent Page

T MALRD - ACMS Remote Management Home Page - Microsalt internet [xplorer pravided by He... o [0/

ACMS Remote Management
Command Output

ACMS Web Server Host Banner

macto et e net
ACKS BN Haost:

L _) Femots Marnsgar

&=] Eror Managemsnd .
Command Selection

Output

‘_1'.1.. T

This page consists of the following frames:

e Banner frame
Displays the application name as well as the name of the web server system.
This frame also contains a link that you can use to send feedback about the
web agent directly to HP.

e Command Selection frame
Displays a tree that contains selections representing the various ACMSMGR
commands. The items in this tree are grouped by common command verbs
(such as, SHOW and SET) or by object (such, as Remote Manager). This
frame also contains a series of links to pertinent HP WBEM and ACMS
information, such as to the HTML version of this guide.

3-6 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent

e Output frame
Displays the results of the selected command. Brief instructions on how to
interact with the data in this frame are displayed along with the related
output and status messages (if any).

3.3.2 Conventions

The web agent uses color and font highlighting to indicate the different states
and types of data displayed in the output frame. The default conventions are
described in Table 3—1. Note, however, that you can change these conventions as
described in the following section.

Table 3-1 Remote Manager Web Agent Conventions

Text appearing

in... Indicates...

White with Active and stored values that can be changed. To set a value, single
teal or blue click on the item. (Set commands)

background

Teal italics Dynamic configuration fields. (Show commands)

Gray Inactive data; old process data that is still available will be displayed.

The node name is also prefixed with an asterisk, similar to ACMSMGR
displays. (Show commands)

Red Warning or error messages. (All)

Blue Disabled collection state. Data displayed for the related class may not
be current. (Show commands)

3.3.3 Customizing the Display

The Remote Management web page relies on a cascading style sheet (CSS) to
manage its formatting. Based on the CSS level 2 specification (CSS2) from the
World Wide Web Consortium (W3C), the ACMS.CSS file functions as a template
for information displayed in the output frame.

If you are familiar with CSS files, you can customize the formatting of
information in the output frame by editing the file ACMS.CSS located in
SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.ENG].

For example, to remove the background image in the output frame, open the CSS
file and search for the following statement:

BODY {background-color: white; background-image:
url (/acmshmmo/images/webbum.gif); color: black;}

Replace this statement with the following:
BODY {background-color: white; color: black;}

To learn more about CSS files or the CSS2 specification, visit the W3C web site
for the latest information and resource listings:

http://www.w3.org/Style/CSS

Note

Each browser may interpret style sheet properties differently. Be aware
that slight variations in format may occur depending upon the browser
that you use.

Using the ACMS Remote Manager Web Agent 3-7

Using the ACMS Remote Manager Web Agent
3.3 Using the Remote Manager Web Agent

3.3.4 Selecting the Remote Manager Host

When you first access the ACMS Remote Management web page, the name of the
web server is displayed as the Remote Manager host.

To choose a different Remote Manager host, click the Change button in the
command selection frame. The Select Host popup window is displayed, similar
to Figure 3-2.

Figure 3-2 Select Host

3 Hemole Manager Hozt Selecion E

o FPlease Enber R HOst b0 Conme! 10

Moerow
| Ok, | Cannﬂl

[Java Applat windoe

Enter the name of the Remote Manager host, and click OK. Note that if you
enter a URL or IP address, only the short form of the name is displayed in the
command selection frame.

3.4 Issuing Remote Manager Commands

The Remote Manager web agent interface provides detailed usage instructions on
each page displayed within the output frame. Therefore, the following sections
are only intended to provide a brief overview of issuing the most common Remote
Manager commands with the web agent.

The Remote Manager web agent interface provides you with much of the same
capability as ACMSMGR in managing ACMS systems. The main functional
differences are that with the web agent:

e You cannot view TRAP information.

e There is no equivalent to the SHOW LOG/LOCAL and SHOW
ERROR/LOCAL commands.

¢ You can only connect to one Remote Manager host system per window.

You can quickly reissue any web agent command using the Refresh (or Reload)
option of your browser to reload the page in the output frame. To save frequently
issued commands, bookmark the page in the output frame.

For detailed information about the function of each command, see Chapter 11.
3.4.1 Using Show Commands
To display information about an ACMS entity or object:

1. In the command selection frame, click Show to expand the list of valid
entities and Remote Manager objects.

3-8 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.4 Issuing Remote Manager Commands

2. Click on the appropriate entity (such as, TSC) or object (such as, Process). If
you selected an entity, click on the appropriate type of information to display
(such as, Config), and choose the scope of display (such as, Brief/Stored).

The results of the command are displayed in the output frame, similar to
Figure 3-3. Note that all dynamic data is displayed in italics.

Figure 3-3 Show TSC

EIEl

A MACRD - ACMS Ermale Management Home Pape - Microsalt Intermet Expliorer provided by Hewlen-Packard

I

R ik Favpries Tods Hep [
ACMS Web Host VED TSC Table Display 4-TAN- MG
1926006
AUAS Weh S H Maz
e — - a5 Cosfig Rum o CP Max TTs Pers Mis
macTa il el . Class Siate . Slots Logins Per CPs CPls|
AUMNS BEM Hesi: P
Change Hlasl: MALIE MACRO A enohled serted SYSTEM 3 B i | | 2
__'lH.'lCHl:l
=+
= o PTOIE GRS
_JAcc
== _JTHEC
il Ci s e
Pﬂ: Full i &l
1
Briaf AL
Biriaf | Glreed
Briat AN 7 A v
HP WHEN Lagl= (ET Rl
Himne Pags I . . L H]
SEWESODME. VOISO
] i e 2, g by P D 38 LB v e ST e T T Dm0y B T 1 N Lsosl mibarEL

3.4.2 Using Set Commands

To change information related to an ACMS entity or Remote Manager object:

1. In the command selection frame, click Set to expand the list of valid entities
and Remote Manager objects.

2. Click on the appropriate entity (such as, ACC) or object (such as, Remote
Manager > Collection). If you selected an entity, click on the appropriate
type of information you want to change (such as, ACMSGEN).

The available values are displayed in the output frame, similar to Figure 3—4.
Note that any active and stored data that can be changed is displayed reverse
highlight.

Using the ACMS Remote Manager Web Agent 3-9

Using the ACMS Remote Manager Web Agent
3.4 Issuing Remote Manager Commands

Figure 3-4 Set ACC

h MACRD - ACMS Bemote Manasgemen] Home Page - Bicrosaft Intermet Frplorer provided by Hewlett-Packard r._|E|F|
_ T

AUMNS Weh Server Hosd: ACC Prioeiny el

mscro shgalinciaw pel
ACNS R He

= g e

et ACC on MACROD

Chck oo either the [P o NINTE, vakss to st it

Comseand Cualifier Active Stored

Max Appl 10
MSS Max Orby 00
KR5S Mlaxdof (byies)

| smremrTines

HF WEBEM Lmk=

Himne Mag

-E| TES & el s, O L=l

Srelem Aud Sisle
ACWSCEN
WS Gunhas

FFEGEHN Farameder:

_JTEC
ot el il ACC Usermams
Agari VME Cuolas U semzeme Diefauk (I
+ _JENC

i o LALHCE

it 3 B3] v e IHOS T mbl O R0 i D i d_ BT Bl | scsl miwacet

[+

[0 |

[__swo |
MSE Poolsire (pagelets) “
MSS Process Pool {pageless) m
KES Net Betry Timer (DN (sac) L
WE Poolsize (pageleis)

WEC Poclsize {pagelets)
TWE Poolsize (pagelets)
TWEL Poolsice (pagelets

MNode MName [ACMSGEN) (DECnet node)
Hairesh

4.

Move the cursor over the value you want to change until the link cursor
appears, and then click on the value. A popup window is displayed prompting
you for a new value.

Enter the new value in the popup window, and click OK.

Note that you can update the values displayed in the output frame at any time
by clicking the Refresh button.

3.4.3 Using Start and Stop Commands
To start or stop an ACMS object, such as an application (EXC):

1.

In the command selection frame, click Start or Stop to expand the list of
objects.

Click on the appropriate object (such as, Remote Manager > Collection).

Except for System, the command is executed as soon as it is selected. If you
chose Start or Stop System, additional choices are displayed in the output
frame.

Click on the appropriate check boxes to set or unset one or more values, and
click the Start SYSTEM or Stop SYSTEM button.

3-10 Using the ACMS Remote Manager Web Agent

Using the ACMS Remote Manager Web Agent
3.4 Issuing Remote Manager Commands

3.4.4 Using Add and Delete Commands

To add or delete a Remote Manager object, such as an error filter:

1. In the command selection frame, click on the appropriate entry, either Error
Management or Remote Manager.

2. Click on the subentries until you reach the item you want to add or delete
(such as, Add Filter).

A form with related parameter information is displayed, similar to
Figure 3-5.

Figure 3-5 Add Error Filter

FPlense choose n filker imput method, enter the required
information to add a filker on host MACRO, and then click
" Add Filter™:

Use a Hexadersmal code (=x. *sx3000ABCD) or decimal integer (&

11345678

)y Add Fiker ‘code =

O nse 2 cods name (ex. ACMSACC. W ALDEVSSTARTS
Add Fiker ‘nasses =

Uy land & b#t ol hlkers brom & hlRer Ble. (e |'H.I||I_II.-I,|IIF'§||“"'| (111

Add Fileer ke =
Fk] Famniin Wanapsr | A Fillar
=L _J Enor Haragement
Acnive Filers:
{ HEX Codde) MAME
il There are no Fiters
B Fille
+ Dieledte Fifler
Barda Filses 4o Tt Fila
HPF WEBEM Lmk=
Lores Prpme 1} -
] e 2, g by, P 2 38 B e e ST w4 A Mg ke _fing N Lsonl mibarEL

3. Complete form and click Add or Delete.

Using the ACMS Remote Manager Web Agent 3-11

Using the ACMS Remote Manager Web Agent
3.5 Troubleshooting the Remote Manager Web Agent

3.5 Troubleshooting the Remote Manager Web Agent

e WBEM Home Page does not display the ACMS Icon

ACMS HMMO is not registered with the WBEM$SERVER process. After
starting the WBEM server with the following command:

$ @SYSSSPECIFIC: [WBEM]WBEMSRUN_WEBSERVER.COM

You may need to delay starting the ACMS HMMO until the
WBEMS$SERVER process is in the HIB state. If the ACMS HMMO is
started too soon it may not register with the WBEM$SERVER. The
SYS$SPECIFIC:[WBEMIWBEM$RUN_WEBSERVER.COM must be run
prior to running SYS$SPECIFIC:[WBEM]RUN_ACMS_HMMO.COM.

e WBEM Home Page does not display

If you access the WBEM Home Page at http:/host_name:2301/, and the page
does not display, it may be that the WBEM$SERVER is not started. Another
possibility is that the ACMS$MGMT_HMMO process was started prior to the
WBEMS$SERVER process. To ensure proper startup, stop both processes and
then restart them in the correct order.

¢ Remote Manager web page displays, but remote commands fail.

This indicates that the Remote Manager web agent cannot connect to the
specified Remote Manager server host. If all commands fail, ensure that

the Remote Manager server process is running on the host system and that
access to it has been properly setup (as described in Section 3.2.5. If some
commands work and others fail, the ACMS$WBEM account may not have the
required rights identifier; see Section 3.2.3.

e Page Refresh or Reload does not update the output frame.

This behavior is browser dependent. To refresh the information displayed in
the output frame, move the cursor inside the frame to specifically refresh or
reload the information within it.

3.5.1 Reporting Problems

If the ACMS$MGMT_HMMO process crashes, the following files will contain any
error information that was available: SYS$SPECIFIC:[WBEM]ACMS$MGMT
HMMO.LOG;* SYS$SPECIFIC:[WBEMJACMS$MGMT_HMMO.ERR;*.

If there are any new dump files you may want to examine the file to locate the
problem source. SYS$SPECIFIC:[WBEM]*.DMP;*

If the problem is with WBEM$SERVER process, send the dump file to your
HP support representative. If the problem is with the ACMS HMMO process,
please have the following files ready for analysis in addition to a procedure that
reproduces the situation:

SYS$SPECIFIC:[WBEMJACMS$MGMT _HMMO.LOG;*
SYS$SPECIFIC:[WBEMJACMS$MGMT_HMMO.ERR;*
SYS$SPECIFIC:[WBEM]* html;*
SYS$SPECIFIC:[WBEM]*.txt;*
SYS$SPECIFIC:[WBEMISYS$OUTPUT.*;
SYS$SPECIFIC:[WBEM]*.DMP;*

3-12 Using the ACMS Remote Manager Web Agent

4

Managing the Remote Manager

This chapter describes how to manage the ACMS Remote Manager.

4.1 Overview

The ACMS Remote Manager runs on the same node as the ACMS run-time
system but runs independently of it. The Remote Manager may be started and
stopped at any time without affecting the ACMS run-time system. Similarly,
the ACMS system can be started and stopped at any time without affecting the
Remote Manager process. Remote management can be performed only on nodes
where the Remote Manager has been started.

ACMS system managers configure the Remote Manager process (for example,
which interfaces are enabled, what alarms to send) using a combination of

the ACMSCFG utility (which provides initial configuration settings at process
startup) and the ACMSMGR utility (to change settings once the process has
started). Management consoles that support SNMP can also be used to configure
and manage the Remote Manager.

Before the Remote Manager process can communicate with external entities,
either SNMP or RPC must be configured and running on the appropriate nodes.
See the HP ACMS Version 5.0 for OpenVMS Installation Guide for information
about configuring and starting SNMP and RPC.

4.2 Configuring Remote Manager Startup

Before the Remote Manager is started, the configuration file should contain the
appropriate settings. Both the ACMS run-time system and the Remote Manager
read the configuration file during startup. If the ACMS Central Controller (ACC)
process cannot read the configuration file when starting up, it uses default values.
If the Remote Manager cannot read the configuration file when starting up, it
logs an error and exits.

By default, the configuration file is stored in SYS$SPECIFIC:ACMS$MGMT_
CONFIG.ACM. This location can be changed using the systemwide logical
ACMS$MGMT_CONFIG. Use the ACMSCFG utility to change values in this file.
The ACMSCFG utility allows ACMS system managers to set:

e The interfaces to be started
e Data collection and snapshot options

¢ Remote Manager run-time parameters

e SNMP traps

Managing the Remote Manager 4-1

Managing the Remote Manager
4.2 Configuring Remote Manager Startup

The configuration file is created during postinstallation with a set of default
values. ACMS system managers should review these settings prior to starting
the Remote Manager to determine whether the settings are appropriate for the
node on which the process will run. Use the ACMSCFG SHOW commands as
follows to display the settings:

$ ACMSCFG SHOW INTERFACE
$ ACMSCFG SHOW COLLECTION
$ ACMSCFG SHOW PARAMETER
$ ACMSCFG SHOW TRAP

Note

Changes made to the ACMSCFG file are not automatically reflected in
the running system. The ACMSCFG file is read during Remote Manager
and ACMS system startup only. The Remote Manager process must

be restarted in order for configuration file changes to the Parameter,
Interface, and Trap tables to become active. The ACMS run-time system
must be restarted in order for configuration file changes to the Collection
table to become active. After the Remote Manager process has been
started, you can use the ACMSMGR utility to make dynamic changes to
the active system.

4.2.1 How to Run the ACMSCFG Utility

The ACMSCFG utility is a DCL command line tool that is invoked using a foreign
command. The ACMSCFG utility accepts a number of command line arguments

that determine what operations it should perform. The basic syntax for running
the ACMSCFG utility is as follows:

ACMSCFG verb object qualifier

For example, to display the current data collection settings, you would use the
following command:

$ ACMSCFG SHOW COLLECTION

You can get help on the available ACMSCFG commands and their syntax using
the following command:

$ ACMSCFG HELP
You can define your own foreign command by using the following DCL command:
$ MYCOMMAND :== $SYSSSYSTEM:ACMSSMGMT_CONFIG_CMD

If you do this, you would substitute MYCOMMAND for ACMSCFG in the
preceding examples.

When the ACMSCFG utility is started, it attempts to locate the ACMS$MGMT_
CONFIG.ACM file by translating the logical name ACMS$MGMT_CONFIG. If
that attempt fails, it looks in the default location, SYS$SYSTEM:ACMS$MGMT_
CONFIG. If that lookup fails, ACMSCFG asks the user whether to create a new
file. New files are created with default values in the directory that the logical
name ACMS$MGMT_CONFIG translates to. If the logical name is not defined
or does not include a directory specification, the default directory location is the
current directory.

4-2 Managing the Remote Manager

Managing the Remote Manager
4.2 Configuring Remote Manager Startup

4.2.2 Displaying Current Values

Current ACMSCFG values can be displayed using the SHOW command, as
follows:

ACMSCFG SHOW object
Valid SHOW objects are:

Collection
Control
Interface
Parameter

Trap

The values for each object type correspond directly to fields in management
configuration tables. These tables are discussed in Chapter 9.

The following is an example SHOW command and its output:

SPARKS> ACMSCFG SHOW COLLECTION

Entity Collect Collect Storage Storage
Type Entity Name Class State Storage Location State Interval
* id enabled acmsSmgmt_snapshot enabled 3600
* config enabled acms$mgmt_snapshot disabled 3600
* error enabled acmsSmgmt_snapshot disabled 300

4.2.3 Changing Values
ACMSCFG values can be changed using one of three verbs:

ADD
The ADD verb is used to add rows for the following objects:
— Collection
— Trap
Example:
$ ACMSCFG ADD COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME
DELETE
The DELETE verb is used to delete rows for the following objects:
— Collection
— Trap
Example:
$ ACMSCFG DELETE COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME

SET
The SET verb is used to add rows for the following objects:

— Collection

— Interface

Managing the Remote Manager 4-3

Managing the Remote Manager
4.2 Configuring Remote Manager Startup

— Parameter
— Trap
Example:
$ ACMSCFG SET COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME/COLL_STATE=ENABLED

Each object has unique qualifiers that determine which values are to change.
Qualifiers are either mandatory or optional. Mandatory qualifiers have no
default and must be specified by the user. Optional qualifiers have default
values and do not have to be specified. See Chapter 10 for a complete description
of the syntax for each command and the qualifiers they support.

4.3 Starting and Stopping the Remote Manager

The following information discusses starting and stopping the ACMS Remote
Manager.

4.3.1 Remote Manager Startup

The Remote Manager is started as a detached process using the command
procedure SYS$STARTUP:ACMS$MGMT_STARTUP, as follows:

$ @SYSSSTARTUP:ACMSSMGMT_STARTUP

You should run this file from the SYSTEM account during system startup. You
can run the file either before or after the ACMS run-time system has been
started. Alternatively, you can run it at any time from a privileged account.

During process startup, the Remote Manager reads the ACMSCFG file (located
in SYS$SYSTEM:ACMS$MGMT_CONFIG.ACM or wherever the ACMS$MGMT _
CONFIG logical points). If the file cannot be found and opened, the Remote
Manager will not start.

The Remote Manager writes errors to the ACMS$MGMT _LOG file. This is a
binary file that can be displayed using the ACMSMGR utility, as follows:

$ ACMSMGR SHOW LOG

The ACMSMGR utility generally performs operations on remote nodes. If the
Remote Manager fails to start, it will not be accessible remotely. You will need to
log in to the node on which it failed to start, and issue the following command:

$ ACMSMGR SHOW LOG/LOCAL

This command instructs the ACMSMGR utility to read the log file directly,
bypassing the Remote Manager. See Chapter 11 for a complete description of the
ACMSMGR utility, commands, and command syntax.

In addition to writing messages to the ACMS$MGMT_LOG file, the Remote
Manager writes messages to SYS$OUTPUT if it cannot access the log file.
You can have all messages written to SYS$OUTPUT by invoking the startup
procedure with the LOG_TO_SYSOUT parameter, as follows:

$ @SYSSSTARTUP:ACMSSMGMT_STARTUP LOG_TO_SYSOUT

The ACMS$MGMT_STARTUP procedure redirects SYS$OUTPUT for the Remote
Manager to a file called ACMS$MGMT_SERVER.OUT in the SYS$ERRORLOG
directory.

4-4 Managing the Remote Manager

Managing the Remote Manager
4.3 Starting and Stopping the Remote Manager

4.3.2 Remote Manager Shutdown

The Remote Manager is stopped using the ACMSMGR STOP MANAGER
command, which has the following syntax:

ACMSMGR STOP MANAGER /NODE=node-name

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE logical
is defined. If the /NODE qualifier is provided, it overrides the ACMS$MGMT _
SERVER_NODE logical.

The Remote Manager can be stopped independently of the ACMS run-time
system. Stopping the Remote Manager has no effect on the running ACMS
system. Note, however, that simply stopping the Remote Manager does not

stop any active data collections. Data collections can be stopped only by using
ACMSMGR commands or from an SNMP management console that has access to
the Remote Manager.

Note also that prior to issuing this command, the user must either have logged
in to the Remote Manager, or the user must have a valid proxy (and proxy access
must have been enabled). Regardless of how access is gained, the user must hold
the ACMS$MGMT_OPER rights identifier on the node the Remote Manager is
running in order to stop it. See Section 4.4 for a description of how to log in to
the Remote Manager.

The ACMSMGR STOP MANAGER command executes asynchronously of the
actual shutdown. That is, the command will complete (control will return to the
user) before the shutdown has completed.

If the Remote Manager fails to shut down, it can be stopped by using the DCL
command STOP/ID, which has the following syntax:

STOP/ID=pid

Determine the PID of the Remote Manager using the DCL command SHOW
SYSTEM, and then look for the process named ACMS$MGMT_SVR.

4.4 Logging In to the Remote Manager

The Remote Manager requires that each client is authenticated and that each
access attempt is authorized.

4.4.1 Authentication

Authentication can be performed in one of two ways: either through an explicit
login (using a valid OpenVMS user name and password) or through a valid ACMS
proxy account.

The exception to this rule is SNMP access, which is controlled by the presence
of the ACMS$SNMP account in the local rights database. Authentication for
external entities that communicate with the Remote Manager through the
SNMP protocol is allowed only when a valid OpenVMS account exists for

the user ACMS$SNMP. If this account exists and has the appropriate rights
identifier, the user ACMS$SNMP is considered to be an authenticated SNMP
user. Authorization for SNMP users is treated the same as for any other user
— by OpenVMS rights identifier. See Section 4.4.2 for more information about
authorization.

All access for an interface can be disabled by disabling the interface itself, either
through the ACMSCFG utility prior to management startup, or through the
ACMSMGR utility after Remote Manager startup.

Managing the Remote Manager 4-5

Managing the Remote Manager
4.4 Logging In to the Remote Manager

The total number of users that can be simultaneously logged in to the Remote
Manager (regardless of authentication mechanism) is controlled by the Remote
Manager parameter MAX_LOGINS, which can be modified by the Remote
Manager. (This parameter is not the same as the MAX_LOGINS ACMS system
parameter in ACMSGEN.) When the number of users currently logged in is
equal to the value of this parameter, new logins are rejected until some users
have logged out, or until their credentials have expired. You can set the initial
value of MAX_LOGINS with the ACMSCFG utility. You can change the value of
MAX_LOGINS dynamically (but nondurably) with the ACMSMGR utility.

Attempts to log in to the Remote Manager are recorded in the Remote Manager
log file if the SECURITY_AUDIT_LEVEL parameter is set for informational
level logging (any odd value, up to and including F). By default, informational
messages are not logged. See Section 4.7.1 for more information.

Use the SHOW USER command of the ACMSMGR utility to display a list of
users currently logged in to the Remote Manager:

$ ACMSMGR SHOW USER

Note
You must be authenticated in order to issue the SHOW USER command.

4.41.1 Logging In

Login is performed using the ACMSMGR LOGIN command, which has the
following syntax:

ACMSMGR LOGIN /USER=user-name /PASSWORD=password /NODE=node-name

The /USER qualifier can be omitted if the ACMS$MGMT_USER logical is defined.
If the qualifier is provided, it overrides the ACMS$MGMT_USER logical. If
neither the logical nor the qualifier is present, the ACMSMGR utility prompts the
user for the user name.

If the /PASSWORD qualifier is not present, the ACMSMGR utility prompts the
user for the password. There is no logical name for the password.

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE
logical is defined. If it is provided, it overrides the ACMS$MGMT_SERVER_
NODE logical. If neither the qualifier nor the logical name is provided, no login
is attempted.

For each node to which a user logs in, a credentials file is created, either

in the current directory or in the directory pointed to by the logical name
ACMS$MGMT_CREDS_DIR. The credentials file contains encrypted security
information (password is not stored in the file) and can be used by subsequent
executions of the ACMSMGR utility. Credentials are specific to the process that
created them and cannot be used by other processes. Prior to creating a new
credentials file, any old credential files for the process are deleted.

Once a user has logged in to the Remote Manager, the user’s credentials are valid
for the duration of the credentials lifetime period, as specified by the parameter
LOGIN_CREDS_LIFETIME. You can set the initial value of LOGIN_CREDS
LIFETIME with the ACMSCFG utility. You can change the value of LOGIN_
CREDS_LIFETIME dynamically (but nondurably) with the ACMSMGR utility.

Once a user’s credentials have expired, the user must log in to the server again.

4-6 Managing the Remote Manager

Managing the Remote Manager
4.4 Logging In to the Remote Manager

4.4.1.2 Proxy Accounts

Proxy access to the management server is supported if the logical name
ACMS$MGMT_ALLOW_PROXY_ACCESS is defined on the Remote Manager
node. The valid values for this logical name are: 1, T, t, Y, y, TRUE, and true. If
the name is defined to be any other value or if the logical name is not defined,
proxy access is disabled.

When proxy access is allowed, users do not need to explicitly log in to the Remote
Manager with a user name and password, and no credentials file is created. See
Section 4.4.1.1 for a description of how to log in with user name and password.

In order for a user to be granted proxy access, there must be an entry in the
ACMSPROXY.DAT for the combination of node and user attempting access. See
HP ACMS for OpenVMS Managing Applications for more information. The first
time a user attempts to access a management function without having first logged
in using user name and password, the Remote Manager looks for a valid ACMS
proxy. If one is found, the OpenVMS account specified by the proxy is used for
authorization.

The Remote Manager maintains a cache of users who have been logged in by
proxy. Records remain in the cache for the duration of the proxy credentials’
lifetime, as specified by the PROXY_CREDS_LIFETIME parameter. You can set
the initial value of PROXY_CREDS_LIFETIME with the ACMSCFG utility.
You can change the value of PROXY_CREDS_LIFETIME dynamically (but
nondurably) with the ACMSMGR utility. Proxy credentials are automatically
refreshed when they expire.

4.4.2 Authorization

Authorization consists of ensuring that the user attempting access holds the
appropriate rights identifier on the node they are attempting to access. There are
four levels of access, each with its own identifier, as described in the following
sections.

4.4.21 Read Access (ACMSSMGMT_READ)
Read access allows users to perform the following functions:

e Login
e Log out
e Issue all SHOW commands

4.4.2.2 Operate Access (ACMSSMGMT_OPER)
Operate access allows users to issue the following commands:

e REPLACE SERVER

e SET ACC, CP, EXC, QTI, SERVER, TSC

e START EXC, QTI, SYSTEM, TERMINALS, TRACE_MONITOR

e STOP EXC, MANAGER, QTI, SYSTEM, TERMINALS, TRACE_MONITOR

Managing the Remote Manager 4-7

Managing the Remote Manager
4.4 Logging In to the Remote Manager

4.42.3 Write Access (ACMS$SMGMT_WRITE)
Write access allows users to issue the following commands:

e ADD COLLECTION, FILTER

e ADD TRAP

e DELETE COLLECTION, FILTER, TRAP

e RESET ERROR, LOG

e SAVE FILTER

e SET COLLECTION, INTERFACE, PARAMETER, TRAP

4.4.2.4 Update Access (ACMSSMGMT_SYSUPD)

Needed in addition to operate access, update access allows users to update specific
OpenVMS system parameters by issuing the following command:

e SET ACC /system-parameter

where system-parameter is CHANNELCNT, GBLPAGES, GBLPAGFIL, or
GBLSECTIONS.

4.5 Starting and Stopping Interfaces

You can control which interfaces are started or stopped by using either the
ACMSCFG utility prior to Remote Manager startup or the ACMSMGR utility
after Remote Manager startup. The Remote Manager supports two interfaces:

e RPC

The RPC interface is used by the ACMSMGR utility, Remote Manager web
agent, and also by any user-written programs based on the Remote Manager
API. Most users will enable the RPC interface.

e SNMP

The SNMP interface is used by third-party system management packages to
access ACMS management information. If no SNMP enabled packages are
being used, this interface can be safely disabled.

Note

Either the RPC or SNMP interface should always be enabled. If both are
disabled, there is no way to communicate with the Remote Manager.

For a more complete discussion of the available interfaces and their attributes,
see Section 9.8.

4.5.1 Using ACMSCFG to Enable or Disable Interfaces

Use the ACMSCFG utility to configure which interfaces should be enabled or
disabled when the Remote Manager starts up.

Use the ACMSCFG SET INTERFACE command to enable or disable an interface.
This command has the following syntax:

ACMSCFG SET INTERFACE /INTERFACE=interface-name /STATE=state
In this format:

® interface-name is one of the supported interfaces (SNMP or RPC).

4-8 Managing the Remote Manager

Managing the Remote Manager
4.5 Starting and Stopping Interfaces

® state is one of the following states: ENABLED or DISABLED.

Use the ACMSCFG SHOW INTERFACE command to determine the state of an
interface in the configuration file:

$ ACMSCFG SHOW INTERFACE

4.5.2 Using ACMSMGR to Start or Stop Interfaces

Use the ACMSMGR utility to dynamically enable or disable an interface after the
Remote Manager has already been started. Changes made with the ACMSMGR
interface are not stored in the ACMSCFG file and are lost when the Remote
Manager is stopped. Use the ACMSCFG utility to save changes to the ACMSCFG
file.

An interface cannot disable itself. Since the ACMSMGR utility uses the RPC
interface, it cannot be used to disable the RPC interface. To disable the RPC
interface, either use the ACMSCFG utility and restart the Remote Manager, or
use the SNMP interface.

Use the ACMSMGR SET INTERFACE command to disable the SNMP interface.
The command has the following syntax:

ACMSMGR SET INTERFACE /INTERFACE=interface-name /STATE=state

In this format:

e interface-name must be SNMP.

e state is one of the following states: ENABLED or DISABLED.

Use the ACMSMGR SHOW INTERFACE command to determine the state of an
interface:

$ ACMSMGR SHOW INTERFACE

4.6 Modifying Management Parameters

There are a large number of ACMS and OpenVMS system parameters that affect
the internal processing of the ACMS Remote Manager. In general, most of these
parameters will not need to be changed. However, you may need to alter some
of these parameters in order to tune the Remote Manager system to make it
operate more efficiently or to meet your computing needs. You can modify these
parameters using both the ACMSCFG and the ACMSMGR utilities.

For a more complete discussion of the available management parameters and
their functions, see Section 9.10.

4.6.1 Using ACMSCFG to Modify Management Parameters

Use the ACMSCFG utility to set the values of management parameters when the
Remote Manager starts up.

Use the ACMSCFG SET PARAMETER command to modify the value of a
parameter. The command has the following syntax:

ACMSCFG SET PARAMETER /parameter-name=value
In this format:
e parameter-name is one of the management parameters listed in Section 9.10.

® value is the new value for the parameter.

Managing the Remote Manager 4-9

Managing the Remote Manager
4.6 Modifying Management Parameters

Use the ACMSCFG SHOW PARAMETER command to determine the current
value of the parameter in the configuration file:

$ ACMSCFG SHOW PARAMETER

4.6.2 Using ACMSMGR to Modify Management Parameters

Use the ACMSMGR utility to dynamically modify a management parameter
after the Remote Manager has already been started. Not all parameters can be
modified dynamically. Also, changes made with the ACMSMGR interface are not
stored in the ACMSCFG file and are lost when the Remote Manager is stopped.

Use the ACMSMGR SET PARAMETER command to modify the value of a
parameter. The command has the following syntax:

ACMSMGR SET PARAMETER /parameter-name=value
In this format:

e parameter-name is one of the dynamic management parameters listed in
Section 9.10.

e value is the new value for the parameter.

Use the ACMSMGR SHOW PARAMETER command to determine the current
value of the parameter in the configuration file:

$ ACMSMGR SHOW PARAMETER

4.7 Managing the Remote Manager Log File

The ACMS Remote Manager maintains a Remote Manager log that contains
status messages about all Remote Manager transactions. The audit log is stored
in a location determined by the logical name ACMS$MGMT_LOG. If this logical
is not defined, the default location is in the default directory for the account
under which the Remote Manager process runs.

Depending on the audit tracing levels, the size of this file can vary. It is strongly
suggested that ACMS system managers monitor this file to ensure that it does
not grow too large.

If the Remote Manager is unable to write to the log file, it prints a message to
file SYS$ERRORLOG:ACMS$MGMT SERVER.OUT and terminates. This can
occur if a logical name is defined incorrectly, if the output device is full, or if the
Remote Manager does not have sufficient privilege to write to the file.

4.7.1 Setting Audit Levels

Facilities within the Remote Manager write audit messages based on the
parameter settings, as shown in Table 4-1.

4-10 Managing the Remote Manager

Table 4-1 Audit Level Parameters

Managing the Remote Manager

4.7 Managing the Remote Manager Log File

Parameter

Function

DCL_AUDIT_LEVEL

MGR_AUDIT_LEVEL

MSG_PROC_AUDIT_LEVEL

PROC_MON_AUDIT_LEVEL
RPC_AUDIT_LEVEL
SECURITY_AUDIT_LEVEL

SNAP_AUDIT LEVEL
SNMP_AUDIT_LEVEL
TIMER_AUDIT_LEVEL
TRAP_AUDIT _LEVEL

Controls auditing for the DCL subprocess (used
internally to modify the ACMS run-time system).

Controls auditing for the main Remote Manager
process.

Controls auditing for the message processing
thread (used internally to handle communications
from ACMS processes).

Controls auditing for the process monitor.
Controls auditing for the RPC interface.

Controls auditing for security access (authorization
and authentication).

Controls auditing for data snapshot threads.
Controls auditing for the SNMP interface.
Controls auditing for the timer thread.

Controls auditing for the trap thread.

The value of each parameter determines what level of information is stored in the
Remote Manager log. Table 4-2 shows the four levels of auditing and the integer

value for each.

Table 4-2 Auditing Levels and Their Values

Auditing Level

Integer Value

Informational
Warning
Error

Fatal

1

2
4
8

Auditing values can be combined by logically ORing the integer values in order to
have multiple levels of auditing in effect for a given facility. Table 4-3 shows the

valid auditing values.

Managing the Remote Manager 4-11

Managing the Remote Manager
4.7 Managing the Remote Manager Log File

Table 4-3 Auditing Level Combinations and Their Values

Auditing Level Value

None

Info

Warn

Info, Warn

Error

Info, Error
Warn, Error
Info, Warn, Error
Fatal

Info, Fatal

Warn, Fatal

Info, Warn, Fatal
Error, Fatal

Info, Error, Fatal
Warn, Error, Fatal
All

H H O QW P> © 0 90 ok w N RO

Parameter settings are stored in the ACMSCFG file and can also be modified
dynamically using the ACMSMGR utility. For example, in order to specify that
all messages and events generated by the security routines should be stored in
the log, use the following command:

$ ACMSCFG SET PARAMETER/SECURITY_AUDIT LEVEL=F

Alternatively, to dynamically modify an auditing level, use the following
ACMSMGR utility command:

$ ACMSMGR SET PARAMETER/SECURITY_AUDIT LEVEL=F

4.7.2 Displaying Audit Messages

Use the SHOW LOG command in the ACMSMGR utility to display Remote
Manager audit messages. This command accepts a number of qualifiers, including
a qualifier that identifies the node from which to get audit messages (/NODE) and
a qualifier that specifies the beginning time of messages to display (/SINCE).

The following example shows how to display audit messages from the node
SPARKS:

$ ACMSMGR SHOW LOG/NODE=SPARKS

You can display audit messages from a node other than the current node only if
the Remote Manager is running on the target node. If the Remote Manager is
not running on the target node, you must first log in to the target node, and then
issue the SHOW LOG command using the /[LOCAL qualifier.

The following example shows how to display audit messages on the current node
when the Remote Manager process is not running:

$ ACMSMGR SHOW LOG/LOCAL

4-12 Managing the Remote Manager

Managing the Remote Manager
4.7 Managing the Remote Manager Log File

For a complete description of the ACMSMGR commands and qualifiers, see
Chapter 11.

4.7.3 Resetting the Log

Use the ACMSMGR RESET LOG command to close the current Remote Manager
log file and open a new version. You may want to reset the log if it has grown too
large.

The following example shows how to reset the log on node SPARKS:

$ ACMSMGR RESET LOG/NODE=SPARKS

Managing the Remote Manager 4-13

O

Using the Remote Manager to Manage ACMS

This chapter describes how to use the Remote Manager to monitor and manage
ACMS run-time processes.

5.1 Managing Data Collection

Data collection is the mechanism by which ACMS run-time data is made
available to the ACMS Remote Manager and, consequently, to other processes.
Data collections themselves do not involve disk or network read/write operations.
All data collection is performed in memory on the local node. However, system
managers can choose to save collected data at periodic intervals and write that
data to a snapshot file (see Section 5.2).

ACMS system managers control what data is collected by manipulating entries in
the Collection table. In the Collection table, the data to be collected is specified
by a combination of entity, class, and name.

e Entity refers to an ACMS run-time process type, such as ACC, EXC, or CP.
¢ Class refers to the class of data to be collected (see Section 5.1.1).

e Name refers to a process or application name that uniquely identifies a
particular ACMS run-time process.

Using the combination of entity, class, and name gives ACMS system managers a
great deal of flexibility in configuring the data to be collected.

Data collection can be managed either statically, through the ACMSCFG file, or
dynamically, using one of the supported interfaces. For example, the ACMSMGR
SET COLLECTION command can be used to dynamically enable or disable data
collection on a local or remote node. Similarly, SNMP management tools can
issue SNMP SET commands to dynamically modify entries in the Collection
table. Users can also write their own programs and use the remote procedure
call acmsmgmt_set_collection_1 (see Chapter 8) to dynamically manage data
collection.

In general, management information is not collected unless an ACMS system
manager has specifically enabled it. The exceptions are identification and
configuration information (ID and CONFIG). By default, these two classes of data
are enabled for all ACMS entities. Having these classes enabled by default is

an optimization that imposes little run-time overhead and ensures that process
startup information is available. HP recommends that you leave these classes
enabled.

Using the Remote Manager to Manage ACMS 5-1

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

Data collection for other entities and classes is not enabled by default. When the
ACMS system is started, the ACMS processes read either the configuration file (if
the Remote Manager is not already running) or the Collection table to determine
which classes of data to collect. Thereafter, external processes use the SNMP or
RPC management interfaces to enable or disable data collection for a given entity,
class, and name.

For each entity and class for which collection is enabled, a table of data values
is populated by the appropriate ACMS processes (determined by name) and can
be accessed by external entities using one of the data access interfaces (SNMP or
RPC).

ACMS entities that collect data do so continuously when collection has been
enabled for that entity/class/name combination. With the exception of event
notifications (generated as the result of ACMS process startup or shutdown) and
POOL, ERROR, and snapshot information (which is updated based on timer
intervals), collection data is modified when it changes.

5.1.1 Entities, Classes, Names, and Collections

ACMS system managers control data collection by modifying entries in the
Collection table. The Collection table is keyed to entity, class, and name.

An entity is an ACMS run-time process or object. The valid ACMS entities are:

e ACC

e CP

e EXC

e QTI

e SERVER

e TASK GROUP
e TSC

e *(all)

The asterisk (*) wildcard value is valid and specifies all entities. When specifying
an entity, you are specifying its process type.

A class is a set of run-time data values that entities set. Referring to data by
class is a convenient method of referring to a set of related data values. However,
the actual values contained in a class are entity specific. The following are valid
classes:

e Configuration (CONFIG)

This class is a set of values that can be changed for the process and that
controls some fundamental aspects of the execution. Configuration values
are entity specific. An example of a Configuration class value for ACC is the
maximum number of applications that may be running. An example value for
a Server is the maximum number of instances.

e Identification (ID)

This class is a set of values that do not change for the process as long as it is
running and that help identify the process. Examples of Identification class
values are process name, PID, and version.

5-2 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

e Pool (POOL)

This class is a set of values related to the current or historical MSS or
workspace pool processing for the process. MSS pool values are the same
for all entities except ACC. An example of a Pool class value for ACC is the
current free amount in the MSS shared pool. An example value for other
processes is the current free amount in the MSS process pool.

¢ Run-time (RUNTIME)

This class is a set of values that reflect either current or historical run-time
processing for the process. Run-time values are also entity specific. An
example of a Run-time class value for ACC is current number of applications.
An example value for an EXC is the current number of executing tasks.

e Error (ERROR)

This class is a set of values pertaining to a specific error reported by a
process. Error values are the same for all entities. An example of an Error
class value is the date and time when an error occurred.

Y %
The asterisk is a wildcard value that specifies all classes.

A name specifies one or more specific processes of an entity type. The name
field is entity specific. An example name for EXCs is the application name. An
example name for CPs is process name. The asterisk (*) wildcard value is also
supported and matches all names.

Entity, class, and name are used in combination to determine which processes
will collect which values. Duplicate rows (that is, rows with the same entity,
class, and name) are not allowed, but it is possible to have overlapping entries in
the Collection table if the asterisk wildcard value is used. Consider the example
in Table 5-1.

Table 5-1 Example 1: Collection with Wildcards

Name Entity Class

* ACC *
* ACC Runtime

In respect to typical data collections, the entries in this example overlap but are
not duplicates. This is allowed because the attributes of each collection may be
different.

In respect to data snapshots, the entries in this example would result in separate
snapshot threads if the storage state were enabled for both collections. Each
thread would write ACC run-time information, which may or may not be intended
result. Therefore, users should be cautious when using wildcards to avoid
redundant processing.

When more than one row applies to a data collection, the most specific row will
be used, based on the column precedence of name, then entity, and then class.
Within a particular column, wildcards are the least specific. In Table 5-1, both
rows are equivalent in name and entity, but the second row is more specific in
class. In this case, the values from the first row will be used for all classes except
the Runtime class. The values from the second row will be used for the Runtime
class.

Using the Remote Manager to Manage ACMS 5-3

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

Consider the example in Table 5-2.

Table 5-2 Example 2: Collection with Wildcards

Name Entity Class Collection State
* * Runtime Enabled
* EXC Runtime Disabled
VR_APPL EXC Runtime Enabled

In this example, the first row enables run-time data collection for all entities. The
second row disables it for all EXCs. The third row enables it for the VR_APPL.
As a result, among applications, only the VR_APPL will collect run-time data.

To help identify which row is the most specific and therefore will apply to a given
process, the ACMSMGR command SHOW COLLECTIONS includes a column that
represents the weight of a given row. A row with higher weight overrides a row
with lower weight when they apply to the same class and process. Consider the
following example, which is the same as the example in Table 5—2 but includes
the weights (in the column labelled "Wt") of each row.

Note

Weighting does not apply to data snapshot collections. Data is written for
each row in the Collection table that is eligible for snapshots (with both
storage_state and coll_state ENABLED).

SPARKS> ACMSMGR SHOW COLLECTION

ACMS Remote Management -- Command line utility
ACMS V5.0 Entity/Collection Table Display Time: 19-APR-2001 11:46:36.49
Node Wt Entity Collect Collect Storage Storage
Type Entity Name Class State Storage Location State Interval
SPARKS 2 0% * runtime enabled acms$mgmt_snapshot enabled 3600
SPARKS 4 exc * runtime disabled acms$mgmt_snapshot disabled 10
SPARKS 8 exc VR_APPL runtime enabled acms$mgmt_snapshot disabled 10

In this example, the last row has the highest weight, and will override the other
two rows for the RUNTIME class for the VR_APPL.

5.1.2 Starting and Stopping Collections

Users start and stop data collections by modifying the collection state (coll_state)
field in the Collection table. The Collection table is accessed through either the
ACMSCFG utility prior to management startup or through the ACMSMGR utility
after Remote Manager startup.

By default, the ACMSCFG file includes entries to enable collection for the
Identification and Configuration classes for all processes. Unless specific action
has been taken to disable these collections, identification and configuration
information is always available for all running processes.

Before a collection can be modified, it must be added to the entity collection table.
By default, if the collection state is not specified when a collection is added, the
collection state is DISABLED. Otherwise, the collection state is whatever was
specified.

5-4 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

When the data collection state is set to ENABLED, the Remote Manager sends
messages to the appropriate ACMS processes (based on the entity and name
fields in the Collection table row) to begin collection for the class. When the data
collection state is set to DISABLED, a similar message is sent to stop collection
for the class. Once collection has started, it continues until the data collection
state is set to DISABLED.

The requesting user must have ACMS$MGMT _WRITE privilege in order to start
or stop a collection.

5.1.2.1 Using ACMSCFG to Start or Stop Collections

Use the ACMSCFG utility to set the state for a collection when the Remote
Manager starts up. Some ACMSCFG commands are described here; for details on
all ACMSCFG commands, see Chapter 10.

Use the ACMSCFG ADD COLLECTION command to create a new collection
record. The command has the following syntax:

ACMSCFG ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Use the ACMSCFG SET COLLECTION command to modify the state of an
existing collection record in the configuration file. The command has the following
syntax:

ACMSCFG SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Use the ACMSCFG DELETE COLLECTION command to delete a collection. The
command has the following syntax:

ACMSCFG DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a
process because collections are disabled by default. The collection state for a
process becomes disabled when no collections remain to specifically enable the
class.

Use the ACMSCFG SHOW COLLECTION command to determine which
collections already exist and their collection states. The command has the
following syntax:

ACMSCFG SHOW COLLECTION

Note

You cannot use the ACMSCFG utility to add, delete, or modify Collection
and Identification class records.

5.1.2.2 Using ACMSMGR to Start or Stop Collections

Use the ACMSMGR utility to dynamically modify the state of a collection after
the Remote Manager has already been started. Note that changes made with the
ACMSMGR interface are not automatically stored in the ACMSCFG file and are
lost when the Remote Manager is stopped.

Use the ACMSMGR ADD COLLECTION command to create a new collection
record. The command has the following syntax:

ACMSMGR ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Using the Remote Manager to Manage ACMS 5-5

Using the Remote Manager to Manage ACMS
5.1 Managing Data Collection

Use the ACMSMGR SET COLLECTION command to modify the state of an
existing collection. The command has the following syntax:

ACMSMGR SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state

Use the ACMSMGR DELETE COLLECTION command to delete a collection. The
command has the following syntax:

ACMSMGR DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a
process because collections are disabled by default. The collection state for a
process becomes disabled when no collections remain to specifically enable the
class.

Use the ACMSMGR SHOW COLLECTION command to determine which
collections already exist and their collection states. The command has the
following syntax:

ACMSMGR SHOW COLLECTION

5.1.2.3 Using SNMP to Start or Stop Collections

Use the SNMP interface to dynamically modify the state of a collection after
the Remote Manager has already been started. Note that changes made with
the SNMP interface are not stored in the ACMSCFG file and are lost when the
remote Remote Manager is stopped.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An
SNMP console issues an SNMP SET command to the Remote Manager to modify
the Collection table.

The SNMP OID (object ID) for the collection state columns are listed in in the
file MIB_OID.LIS in ACMS$RM_EXAMPLES. The data type for the field is
INTEGER. Possible settings for this field have the following meanings:

e (0 = Collection is disabled.
e 1 = Collection is enabled.
e 9 = Collection record is deleted.

You cannot add a collection record using the SNMP interface.

5.2 Saving Collected Data

Users can save collection data at predetermined intervals and direct that data to
a data snapshot file for later analysis and review. The data snapshot file lists
collected class data as it existed at the time when the information was saved.

Data snapshots are enabled per entity and are managed using the following fields
in the Collection table: storage_begin_time, storage_end_time, storage_interval,
storage_location, coll_state, and storage_state.

In order for data to be written, the following conditions must be met:

1. The specified entity must be valid and running.
The specified entity must have a valid record in the Collection table (entity,
class, and name) and be running on the node on which the Remote Manager
is running.

5-6 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.2 Saving Collected Data

2. The collection state and storage state for the entity must be enabled.
To activate the data snapshot, both the coll_state and storage_state fields
in the Collection table must be ENABLED. The coll_state field enables the
data collection; the storage_state field directs the Remote Manager to write
the collection data to the snapshot file. Once both states are ENABLED, the
Remote Manager writes data to the snapshot file until it reaches the end of
specified time period or until the storage state is DISABLED.

3. The current time must fall between the specified start and end time.
Each collection record entity can have its own snapshot interval and can be
scheduled to begin and end at a specific time. By default, both the start and
end time for a snapshot are set to 17-NOV-1858 00:00:00.00, which equates to
begin immediately (NOW) and run indefinitely (NEVER).

Data is written to the file at set intervals determined by value of the storage_
interval field. Note that the storage_interval value should be a multiple of the
timer_interval value. The timer_interval value determines the minimum elapsed
time for many Remote Manager parameters, including the storage interval
setting. The relationship of the values in these two fields determine how often
data snapshots are performed, for example:

e If the timer_interval value is greater, its value is used by default. For
instance, if the timer_interval is 10 and the storage_interval is 5, snapshots
will be written at 10 second intervals.

e If the storage_interval value is greater and is a multiple of the timer_interval,
the storage_interval value is used. For example, if the timer_interval is
10 and the storage_interval is 30, snapshots will be written at 30 second
intervals.

e If the storage_interval value is greater and is not a multiple of the timer_
interval, the next multiple of the timer_interval value is used. For example,
if the timer_interval is 10 and the storage_interval is 15, snapshots will be
written at 20 second intervals.

Multiple collection records can share the same data snapshot file or write data
to separate files.The location of the data snapshot file is specified by the storage_
location field in the Collection table. The file is typically stored in the location
specified by the logical name ACMS$MGMT_SNAPSHOT. If this logical is not
defined, the default location is in the default directory for the account under
which the Remote Manager process runs.

Similar to starting and stopping data collections, the requesting user must

have ACMS$MGMT _WRITE privilege in order to start or stop a data snapshot.
Also, both the ACMSCFG and ACMSMGR utilities can be used to configure
snapshots, as described in the following sections. Once configured and active, the
ACMSSNAP utility can be used to display and analyze the contents of the data
snapshot file (see Section 5.3.2).

Note

If the Remote Manager is unable to write to the data snapshot file,

it writes a message to the Remote Manager log (ACMS$MGMT _
SERVER.OUT). This can occur if a logical name is defined incorrectly,
if the output device is full, or if the Remote Manager does not have
sufficient privilege to write to the file. No further attempts are made to

Using the Remote Manager to Manage ACMS 5-7

Using the Remote Manager to Manage ACMS
5.2 Saving Collected Data

write snapshot data until the storage state value for the related collection
is manually reset (DISABLED then ENABLED).

5.2.1 Using ACMSCFG to Start or Stop Data Snapshots

Use the ACMSCFG utility to configure data snapshots for a collection prior to
starting the management process.

To determine which collections already exist and their collection states, use the
ACMSCFG SHOW COLLECTION command as described in Section 5.1.2.1.

Use the ACMSCFG SET COLLECTION command to modify the state of an
existing collection record in the configuration file. This command has the
following syntax:

ACMSCFG SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state
/STORAGE_STATE=state /STORAGE_INTERVAL=interval /STORAGE_BEGIN_TIME=time
/STORAGE_END_TIME=time /STORAGE_LOCATION=location

To stop a data snapshot from occurring when starting the management process,
use the /SSTORAGE_STATE=DISABLED qualifier with the SET COLLECTION
command to modify the collection record in the configuration file. Note that
using ACMSCFG to disable the storage state, only changes the configuration file

settings; it does not affect any snapshots currently running. To do this, use the
ACMSMGR utility.

5.2.2 Using ACMSMGR to Start or Stop Data Snapshots

Use the ACMSMGR utility to dynamically modify the state of a collection record
after the Remote Manager has already been started. Note that changes made
with the ACMSMGR interface are not automatically stored in the ACMSCFG file
and are lost when the Remote Manager is stopped.

To determine which collections already exist and their collection states, use the
ACMSMGR SHOW COLLECTION command as described in Section 5.1.2.2.

Use the ACMSMGR SET COLLECTION command to modify the state of an
existing collection record in the configuration file. This command has the
following syntax:

ACMSMGR SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /COLL_STATE=state
/STORAGE_STATE=state /STORAGE_INTERVAL=interval /STORAGE_BEGIN_TIME=time
/STORAGE_END_TIME=time /STORAGE_LOCATION=location

You can also use this command to change current snapshot values. Changes to
the storage interval and storage state values are applied immediately; changes to
the storage location and storage end time are processed the next time snapshot
data is written.

To stop a data snapshot, use the /STORAGE_STATE=DISABLED qualifier with
the SET COLLECTION command to modify the collection record for this process.

5-8 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.2 Saving Collected Data

5.2.3 Using SNMP to Start or Stop Data Snapshots

Use the SNMP interface to dynamically modify the state of a collection after
the Remote Manager has already been started. Note that changes made with
the SNMP interface are not stored in the ACMSCFG file and are lost when the
remote Remote Manager is stopped.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An
SNMP console issues an SNMP SET command to the Remote Manager to modify
the Collection table.

The SNMP OID (object ID) for the storage columns are listed in in the file MIB_
OID.LIS in ACMS$RM_EXAMPLES.

5.3 Displaying Collected Data

The method used to display collected management data depends on whether the
data was simply collected or collected and saved to a data snapshot file.

To display collected data online, use the ACMSMGR utility or one of the
programming interfaces (SNMP or ONC RPC). (Section 5.3.1)

To display the contents of a data snapshot file, use the ACMSSNAP utility.
(Section 5.3.2)

5.3.1 Using ACMSMGR to Display Collected Data

Use the ACMSMGR SHOW command to display collected data. See Chapter 11
for a description of each command.

The following ACMSMGR command displays ACC data:
$ ACMSMGR SHOW ACC /NODE=SPARKS /ID

The following example shows output from this command:

ACMS Remote Management Option -- Command line utility
ACMS V5.0 ACC Table Display Time: 19-APR-2001 11:59:09.56
ID
Node Class PID Process Name Start Time UserName Version
sparks enabled 2020C8BB ACMS01ACC001000 18-APR-2001 14:44:47.29 SYSTEM V5.0

5.3.2 Using ACMSSNAP to Display Collected Data

Use the ACMSSNAP utility to display the contents of a data snapshot file. Data
is written to a snapshot file as a series of RMS records. Each data snapshot
record contains all Remote Manager information collected for a single ACMS
entity at a particular storage interval. All records are indexed by entity and
stored chronologically by collection date. The ACMSSNAP utility enables you
to open a data snapshot file and quickly scan through the snapshot records to
identify system activity related to a specific ACMS entity.

As you navigate through the file, ACMSSNAP scans the snapshot records and
loads them into tables in local memory. Only the last read record for each
entity is kept resident in memory. Each record that you choose to read (using
the SHOW, NEXT, or PREV command) overlays the previous record read for
the entity. These tables persist in memory until you reset the buffer, close the
snapshot file, or exit the ACMSSNAP utility.

See Chapter 12 for detailed descriptions of the ACMSSNAP commands used when
working with data snapshot records and files.

Using the Remote Manager to Manage ACMS 5-9

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

5.3.2.1 How to Run the ACMSSNAP Utility

The ACMSSNAP utility runs as an interactive DCL command line utility.
You start ACMSSNAP using the following command (which is defined in
SYS$STARTUP:ACMS$MGMT_ENV.COM):

$ ACMSSNAP
ACMSSNAP>

At the utility prompt, you can then enter any of the commands described in
Chapter 12. To recall previously entered commands, press the up arrow key or

Ctrl/B.

Once you are through viewing snapshot data, exit from the ACMSSNAP utility
using either the EXIT or QUIT command, as follows:

ACMSSNAP> EXIT

5.3.2.2 Opening and Closing a Data Snapshot File
To open a file and quickly scan all snapshot records, invoke ACMSSNAP and
enter the following command:

$ ACMSSNAP
ACMSSNAP> OPEN file-name /SUMMARY

where file-name is an OpenVMS file specification or logical for the data snapshot
file.

The /SUMMARY qualifier is optional but is considered useful when first opening
a data snapshot file. This qualifier generates a report that provides a general
breakdown of the file’s content such as, the total number of records written (per
entity and file) and the types of records written (per entity).

When you are finished with the data in the current file, close the file, as follows:
ACMSSNAP> CLOSE

5.3.2.3 Navigating and Displaying Snapshot Record Data

Once a data snapshot file is open, you can navigate through the snapshot records
sequentially or by timeframe. In general, navigating by timeframe is easier,
especially if you have opened the file with the OPEN/SUMMARY command. To
navigate by timeframe, use the SHOW/AT command, as follows:

ACMSSNAP> SHOW entity/class-name/AT=date-time

The /AT qualifier locates the entity record closest to the specified time and
displays the requested data from that record. The timestamp for the record is
also enclosed in brackets ([]) in the last column on the right.

You can either continue displaying other views of the data in this record (using
the SHOW command without the /AT qualifier), or move sequentially through one
or more records for this entity using the /NEXT or /PREV qualifiers, as follows:

ACMSSNAP> SHOW entity/class-name/ [NEXT, PREV]=number

If you want to navigate through the entire file sequentially, use the NEXT or
PREV command, as follows:

ACMSSNAP> [NEXT, PREV] number

These commands move through the specified number of records. You can then use
the SHOW command, as described above, to display data for one or more records.

5-10 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

5.3.2.4 Sample ACMSSNAP Session

$ ACMSSNAP

The following example illustrates how a user might review snapshot data to
analyze how much process pool is being consumed by ACMS on node SPARKS
during peak system use.

First, ACMSSNAP is invoked, the data snapshot file SPARKS_SNAP.DAT is
opened 1, and all records are scanned 2.

To determine when peak system use occurred, the run-time values for ACC are
displayed 3, which shows both the maximum value for each parameter as well as
the date and time when that value was reached.

Since the majority of maximum values were set at around 14:21 on the June, 7,
2001, the record closest that time is located 4. The pool values for ACC at this
point in time are then displayed 5.

ACMSSNAP> OPEN SPARKS_SNAP.DAT/SUMMARY 1

ACMS Remote Management -- Snapshot utility
Compiling summary statics ...

Entity # Recs

* 0
acc 42
tsc 42
qti 0

cp 184
exc 204
server 6496
group 3032
ngr 0

First Record Last Record All Id Cfg Rt Pool Error

0 0 0 0 0 0
7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 42 0 0 0 0 0
7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 42 0 0 0 0 0

0 0 0 0 0 0
7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 184 0 0 0 0 0
7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 204 0 0 0 0 0
7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 6496 0 0 0 0 0
7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 3032 0 0 0 0 0

0 0 0 0 0 0

10000 Records Read

MAX_APPL = 10 (use /MAX_APPL on OPEN or define ACMSSMGMT SNAP_MAX_APPL to change)

CP_SLOTS

10 (use /CP_SLOTS on OPEN or define ACMSSMGMT_SNAP_CP_SLOTS to change)

ACMSSNAP> NEXT 10000 2
ACMS Remote Management -- Snapshot utility
YRMS-E-EOF, end of file detected

ACMSSNAP> SHOW ACC/RUNTIME/FULL 3
ACMS Remote Management -- Snapshot utility

Node RUNTIME

sparks Runtime Class Collection State enabled
DECnet Object started
Gauges Current Max Limit Max Time
Users: Total 99 100 7-JUN-2001 14:19:10.82
Users: Local 99 100 7-JUN-2001 14:19:10.82
Users: Remote 0 0 (null)
Applications 5 5 10 7-JUN-2001 14:01:44.51
Number of application starts 5

Using the Remote Manager to Manage ACMS 5-11

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

Process Quotas Current Max Limit Max Time
Working Set Size 17936 17936 786432 7-JUN-2001 14:21:26.00
AST Limit 6 (2%) 6 (2%) 274 7-JUN-2001 14:21:26.00
Byte Limit 3840 (3%) 3840 (3%) 97632 7-JUN-2001 14:21:26.00
Direct I/0 Limit 0 (0%) 0 (0%) 150 7-JUN-2001 14:21:26.00
Buffered I/0 Limit 3(2%) 3(2%) 150 7-JUN-2001 14:21:26.00
Enqueue Limit 19 (0%) 19 (0%) 2000 7-JUN-2001 14:21:26.00
File Limit 5 (0%) 5 (09%) 1600 7-JUN-2001 14:21:26.00
Page File Quota 8544 (13%) 8544 (13%) 65536 7-JUN-2001 14:21:26.00
Timer Queue Limit 3 (15%) 3 (15%) 20 7-JUN-2001 14:21:26.00
Channel Count 31 (12%) 31 (12%) 256 7-JUN-2001 14:21:26.00

ACMSSNAP> SHOW ACC/RUNTIME/AT="7-JUN-2001 14:21" 4

ACMS Remote Management -- Snapshot utility
Runtime DECnet ----- Users ----- - Applications -- Application

Node Class Object Current Maximum Current Maximum Starts
sparks enabled started 97 100 5 5 5 [7-JUN-2001 14:20:31.98]

ACMSSNAP> SHOW ACC/POOL/FULL 5

ACMS Remote Management -- Snapshot utility

Node POOL

sparks Pool Class Collection State enabled

MSS Gauge Current Max Time
MSS Objects 1859 1881 7-JUN-2001 14:19:12.45
MSS Maxbuf Message Counters Current Time
MSS Msg Size 0 to 1024 bytes 13927
MSS Msg Size 1025 to 2048 bytes 94
MSS Msg Size 2049 to 4096 bytes 15
MSS Msg Size 4097 to 8192 bytes 41
MSS Msg Size 8193 to 16384 bytes 0
MSS Msg Size 16385 to 32768 bytes 0
MSS Msg Size 32769 to 65536 bytes 0
MSS Message Counter Overflow Resets 0 (null)
MSS Process Pool Pct Time
Pool Size (bytes) 524288
Current Free (bytes) 516688 (98%)
Minimum Free (bytes) 515664 (98%) 7-JUN-2001 14:18:16.00
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 7-JUN-2001 14:20:56.00
Allocation Failures 0
Garbage Collections 0
MSS Shared Pool Pct Time
Pool Size (bytes) 33792000
Current Free (bytes) 33624344 (99%)
Minimum Free (bytes) 33620712 (99%) 7-JUN-2001 14:14:25.98
Largest Current Free Block (bytes) 65536
Minimum Largest Free Block (bytes) 65536 7-JUN-2001 14:20:56.00
Allocation Failures 0
Garbage Collections 0
WS/TWS Pools (for all EXCs) Current Max Time
TWS Pool Size Total (pagelets) 562800 562800 7-JUN-2001 14:20:55.99
TWSC Pool Size Total (pagelets) 22500 22500 7-JUN-2001 14:20:55.99
WS Pool Largest Used (bytes) 536 536 7-JUN-2001 14:20:55.99
WSC Pool Largest Used (bytes) 848 848 7-JUN-2001 14:20:55.99
TWS Pool Largest Used (bytes) 73728 73728 7-JUN-2001 14:20:55.99
TWSC Pool Largest Used (bytes) 1792 1792 7-JUN-2001 14:20:55.99

5-12 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.3 Displaying Collected Data

WS/TWS Pools (for all EXCs) Current Min Time

WS Pool Minimum Free (bytes) 130536 130536 7-JUN-2001 14:20:55.99
WSC Pool Minimum Free (bytes) 64688 64688 7-JUN-2001 14:20:55.99
TWS Pool Minimum Free (bytes) 3809280 3809280 7-JUN-2001 14:20:55.99
TWSC Pool Minimum Free (bytes) 152704 152704 7-JUN-2001 14:20:55.99

5.3.3 Managing Data Snapshot Files

Data snapshot files grow in proportion to the data that is written to them. The
more collection information that is being stored, and the more entities and classes
that are part of those collections, the larger the files will grow. As a result, it

is important for systems managers to periodically check the size of the data
snapshot files to ensure that there is sufficient disk space.

Data snapshot files are indexed RMS files, and when closed, you can manage
them using standard OpenVMS file utilities and commands. However, while
they are open (either being written to by active snapshots or being read by the
ACMSSNAP utility) you cannot copy, rename, move, or delete the files.

To close an open snapshot file, you must stop all Remote Manager snapshot
threads and ACMSSNAP utility processes that are accessing the file. To stop
a snapshot thread, either set the storage_state field to DISABLED or delete
the related row in the Collection table. Note that setting the coll_state field to
DISABLED prevents data from being written to the snapshot file but does not
stop the snapshot thread nor close the file.

5.4 Managing ACMS Using the Remote Manager

The ACMS Remote Manager provides the ability to modify the running
ACMS system using either the SNMP or the RPC interface. In general, only
Configuration class variables can be modified at run time. However, not all
Configuration class variables can be modified. Chapter 9 lists all Configuration
class variables by entity and indicates which ones can be modified.

5.4.1 Types of Variables

Many Configuration class variables can have the following two forms:
e Stored variable (see Section 5.4.1.1)
e Active variable (see Section 5.4.1.2)

The programming interfaces expose stored and active values as separate
variables.

5.4.1.1 Stored Variables

Stored variables are maintained by the ACMS run-time system on disk, either in
the ACMSGEN file or as part of an ADB or TDB file. For example, mss_maxobj
is a run-time variable that is stored in the ACMSGEN file. The auditing state
for a particular application is a run-time variable that is stored in the application
database (ADB).

As you might expect, the ACMS Remote Manager allows ACMSGEN stored
values to be modified, but it does not allow modifications to values that are stored
in application executables.

Changes to stored values are durable but not dynamic. That is, if the stored
value of a variable is modified, the value survives the restart of the ACMS run-
time system. However, changes to stored values do not take effect immediately.
Some or all of the ACMS run-time system needs to be restarted before the new
value takes effect.

Using the Remote Manager to Manage ACMS 5-13

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

For example, to change the value of the mss_net_retry_timer parameter in the
ACMSGEN file using ACMSMGR, use the following command:

$ ACMSMGR SET ACC/MSS_NET RETRY_TIMER=50/STORED

To change the value in ACMSGEN file using the RPC interface, set the mss_net_
retry_timer_stored field in the acc_config_rec using the ACMSMGMT_SET_ACC
procedure. To change the same value using an SNMP console, set the acc_mss_
net_retry_timer_stored field in the ACC Table.

Note that none of these changes would effect the running system. To effect the
running system, you must change the active value (see Section 5.4.1.2.)

5.4.1.2 Active Variables

Active variables are maintained in memory by the ACMS run-time system. All
Configuration class variables are active because they have an in-memory value.
Although the ACMS Remote Manager allows most active values to be modified,
not all changes to active values are dynamic. Refer to Chapter 9 to determine
whether a particular active value is dynamic. Changes to nondynamic active
variables are essentially useless.

Changes to active values are never durable; that is, they never survive a restart
of the system.

For example, to change the active value of the mss_net_retry_timer using
ACMSMGR, use the following command:

$ ACMSMGR SET ACC/MSS_NET_RETRY_TIMER=50/ACTIVE

To change the value using the RPC interface, set the mss_net_retry_timer_active
field in the acc_config_rec using the ACMSMGMT_SET_ACC procedure. To
change the same value using an SNMP console, set the acc_mss_net_retry_timer_
active field in the ACC table.

Note that none of these changes would survive a system restart. To change a
value and have it survive a system restart, you have to change the stored value
(see Section 5.4.1.1.)

5.4.2 How the Remote Manager Makes Changes

The ACMS Remote Manager applies changes to the ACMS run-time system either
by using the ACMSGEN parameter file and utility, or through the ACMSOPER
utility. In either case, the ACMS Remote Manager server applies updates to the
running system by creating temporary command procedures that are executed by
a spawned DCL subprocess (process name ACMS$MGMT_DCL).

The temporary command procedures are written to and read from the directory
pointed to by the logical name ACMS$MGMT_TEMP. If this logical is not
defined when the Remote Manager starts, it will define the logical to point to
SYS$MANAGER.

Temporary command procedures are given names unique to the procedure
instance that creates them, but the names are not unique across nodes. These
names are deleted after they have been executed.

If the Remote Manager server does not have access to the directory pointed to
by ACMS$MGMT _TEMP, all update attempts fail. However, the definition of the
logical can be changed without restarting the Remote Manager. Changing the
definition at run time should be done cautiously. One or more updates could fail
if the logical is changed in the middle of an update operation.

5-14 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

If the ACMSMGR or RPC interface is used, any errors that occur during the
system update are returned to the user and are written to the Remote Manager
log file.! Depending on the current setting of the dcl_audit_level parameter, some
messages may not be written to the log.

User accounts (including proxy accounts and the ACMS$SNMP account, if SNMP
is being used) must be granted the ACMS$MGMT_WRITE or ACMS$MGMT_
OPERATE rights identifier in order to modify Configuration class values. See
Section 4.4.2 for a list of functions and the rights identifier required for each.

5.4.3 Using ACMSMGR to Modify the ACMS Run-Time System

The ACMSMGR utility can be used to dynamically modify Configuration class
parameters for ACMS run-time entities. More than one value can be modified
at once, on one or more nodes. The command executes synchronously; that is,
it does not complete until an attempt has been made to update all parameters.
Multiple node updates are processed serially; all updates are performed on one
node before any updates are attempted on subsequent nodes.

Use the ACMSMGR SET command to modify a Configuration class variable. The
syntax of the command is as follows:

ACMSMGR SET entity [/parameter=value,...]

For example, the following command disables ACMS auditing on the node
specified by ACC:

$ ACMSMGR SET ACC /AUDIT_STATE=DISABLED

Two qualifiers are provided to control whether the active (/ACTIVE) or stored
(/STORED) value of a variable is to be modified. One qualifier can be specified
in a single command. For example, to modify both the active and stored values
of the ACC Configuration class variable node_name, separate commands must be
issued, as follows:

$ ACMSMGR SET ACC/NODE_NAME=SPARKS/ACTIVE
$ ACMSMGR SET ACC/NODE_NAME=SPARKS/STORED

If a specified qualifier does not apply (for example, /ACTIVE is specified for a
nondynamic variable), a warning message is displayed. For a complete list of
Configuration class variables, see Chapter 9.

The ACMSMGR START and STOP commands can be used to dynamically start
and stop the following processes:

e ACC (starts or stops the entire ACMS run-time system)

e EXC
¢ MANAGER (Remote Manager; stop only)
e QTI

e TRACE_MONITOR
e TSC (starts or stops the TSC and any CPs)

In addition, ACMS procedure servers can be replaced (stopped and restarted)
using the ACMSMGR REPLACE command. Different qualifiers are available for
each command and process. For more information about ACMSMGR commands,
refer to Chapter 11.

1 Log file entries are filtered by trace level, which is configured using the audit level

parameters in the Remote Manager Parameter table (see Section 4.7).

Using the Remote Manager to Manage ACMS 5-15

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

5.4.4 Using SNMP to Modify the ACMS Run-Time System

The SNMP interface can be used to dynamically modify Configuration class
parameters for ACMS run-time entities. Updates to Configuration class
parameters are synchronous; the SNMP command does not complete until an
attempt has been made to update the parameter.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An
SNMP console issues an SNMP SET command to the Remote Manager to modify
Configuration class parameters.

There are both active and stored values for many of the Configuration class
variables. In the ACMS MIB, each value is given a separate variable (OID).

Because the SNMP protocol offers only GET and SET commands, the SNMP
interface handles the following operations differently from the RPC interface in
order to perform the full range of management activities:

e Starting and stopping processes (see Section 5.4.4.1)
¢ Adding and deleting table rows (Section 5.4.4.2)
¢ Replacing servers (Section 5.4.4.3)

Not all operations that can be performed by the RPC interface can be performed
by the SNMP interface. The following sections indicate which operations are not
available in the SNMP interface.

5.4.4.1 Starting and Stopping Processes Using SNMP
To start or stop the following ACMS processes, issue an SNMP SET command on
the Configuration class variable acms_state, and specify the state as either 1 (to
start the process) or 0 (to stop the process).

e ACC
e QTI
e TSC

You cannot start or stop CP processes.

To start an ACMS application, issue an SNMP SET command on the exc-appl-
name field in the excTable, specifying a row that is not currently in use and that
is less than the value of the acc-max-appl-active field in the accTable.

To stop an ACMS application, issue an SNMP SET command on the exc-acms-
state field, specifying a value of 0.

You cannot start or stop application procedure servers or task groups.

5.4.4.2 Adding and Deleting Rows Using SNMP
Currently, no tables allow rows to be added using SNMP.

The Collection, Error Filter, and Trap tables allow rows to be deleted using
SNMP.

e To delete rows from the Collection table, set the collection-state field to 9. (A
value of 1 enables the collection; a value of 0 disables the collection; a value
of 9 deletes the collection.)

e To delete rows from the Error Filter table, set the err-delete field to 1. This is
the only value allowed for this field.

5-16 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.4 Managing ACMS Using the Remote Manager

e To delete rows from the Trap table, set the trap-delete field to 1. This is the
only value allowed for this field.

5.4.4.3 Replacing Application Procedure Servers Using SNMP

To replace an ACMS application procedure server, issue an SNMP SET command
on the ser-replace-flag field in the Server table, specifying a nonzero value.

5.4.5 Using ONC RPC to Modify the ACMS Run-Time System

The RPC interface can be used to dynamically modify Configuration class
parameters for ACMS run-time entities. Configuration class parameter updates
are synchronous; the RPC command does not complete until an attempt has been
made to update the parameter.

There are both active and stored values for many of the Configuration class
variables. In the ACMSMGMT_RPC.X IDL file, each value is given a separate
variable.

Separate RPC commands for each entity type are provided for modifying
Configuration class variables. In addition, RPC commands are provided to
perform start, stop, add, delete, replace, and reset functions. Chapter 8 provides
details about all of the RPC commands.

5.5 Working with Error Logs

The Remote Manager collects, consolidates, and stores informational messages
generated by all ACMS processes in an error log. This log assists in
troubleshooting and system management by providing a single, comprehensive
view of error information across multiple ACMS nodes.

The error log contains all messages generated by ACMS processes and
applications at run-time. The log is stored in a location determined by the
logical name ACMS$MGMT_ERR_LOG. If this logical is not defined, the default
location is in the default directory for the account under which the Remote
Manager process runs.

The ACMSMGR utility enables you to filter the entries written to this log, as well
as display and manage the current contents of the log.

5.5.1 Setting Error Filters

Error filters are used to limit the amount of error messages that are sent to
the Remote Manager. If an ACMS run-time process generates an error contained
in an error filter record, the message is not sent to the Remote Manager or
subsequently written to the error log.

Error filter records are durably stored by the ACMS run-time system on the
target server node. Once specified, the filter records remain in place until
explicity deleted (using the ACMSMGR DELETE FILTER command).

Stored in the Error Filter table, each error filter record consists of the target
server node, name of the Remote Manager user, and one of the following:

e Symbolic name of the error message in the format facility-name-severity-ident
(such as, ACMSACC-W-QTI_STOPPING)

e Hexadecimal or decimal code equivalent of the error message (such as,
%xFDBCT78)

e Complete OpenVMS specification for an error filter file that contains a list of
symbolic names or error code equivalents

Using the Remote Manager to Manage ACMS 5-17

Using the Remote Manager to Manage ACMS
5.5 Working with Error Logs

5.5.1.1 Creating Error Filter Records

Use the ACMSMGR ADD FILTER command to insert single records in the Error
Filter table or create multiple records using an error filter file. The following
example shows how to add a single error filter record for the node SPARKS:

$ ACMSMGR ADD FILTER/NAME="ACMSACC-I-QTI_STOPPING"/NODE=SPARKS

To load multiple records with an error filter file, create an ASCII file that contains
a one-column list of symbolic names, code equivalents, or a combination of both
preceded with the filter file header string. For example:

$%ACMS Filter File V1.00

ACMSEXC-E-NO_TDB

ACMSACC-I-QTI_STOPPING
$xFDBC78

You can then use the ACMSMGR ADD FILTER command to load the error filter
file entries, as follows:

$ ACMSMGR ADD FILTER/FILE=DISKS$S1:[ACMS.ERROR]FILTER.DAT/NODE=SPARKS

Note

The Remote Manager process on the server node must have access to the
error filter file in order for the file to be loaded into the Remote Manager
tables.

Certain system messages, such as event flags (ACMSACC-I-EVENT), often
spawn further status messages indicating the cause of the event (ACMSACC-W-
FORCEOUT). Error filtering is explicit; that is, only the specified messages are
suppressed. If you want to filter the initial and subsequent system messages, you
must add each message to the Error Filter table.

5.5.1.2 Displaying Error Filter Records
To display existing filter records, use the ACMSMGR SHOW FILTER command.
This command lists all the filter records for a particular node and displays both

their symbolic name and code equivalent. The following example shows all the
filter records for node SPARKS:

$ ACMSMGR SHOW FILTER/NODE=SPARKS

ACMS Remote Management -- Command line utility
ACMS V5.0 ACMS Error Filter Table Display Time: 20-APR-2001 11:39:31.13
Node Filtered Message Name (Code)

sparks ACMSACC-W-AUDSYSSTARTS (FD8748)

sparks SYSTEM-W-TOOMUCHDATA (298)

sparks SYSTEM-W-NOMOREREG (AES)

5-18 Using the Remote Manager to Manage ACMS

Using the Remote Manager to Manage ACMS
5.5 Working with Error Logs

5.5.1.3 Saving Error Filter Records to a File

You can create an error filter file from existing records using the ACMSMGR
SAVE FILTER command. This feature can be used to distribute the same set

of error filters across separate nodes in a cluster. For example, the following
command saves the current set of error filter records on node SPARKS to a file on
node VLCROW:

$ ACMSMGR SAVE FILTER/FILE=VLCROW::DISKS$1:[ACMS.ERROR]FILTER.DAT/NODE=SPARKS

5.5.1.4 Deleting Error Filter Records

Error filter records remain in effect until deleted. Use the ACMSMGR to delete
an error filter record, as follows:

$ ACMSMGR DELETE FILTER/CODE="$%xFDBC78"/NODE=SPARKS

5.5.2 Displaying Error Messages

Use the ACMSMGR SHOW ERROR command to display messages from the error
log. This command accepts a number of qualifiers, including a qualifier that
identifies the node from which to get error messages (/NODE) and a qualifier that
specifies the beginning time of messages to display (/SINCE).

The following example shows how to display error messages from the node
SPARKS:

$ ACMSMGR SHOW ERROR/NODE=SPARKS

You can display error messages from a node other than the current node only if
the Remote Manager is running on the target node. If the Remote Manager is
not running on the target node, you must first log in to the target node, and then
issue the SHOW ERROR command using the /[LOCAL qualifier.

The following example shows how to display error messages on the current node
when the Remote Manager process is not running:

$ ACMSMGR SHOW ERROR/LOCAL

For a complete description of the ACMSMGR commands and qualifiers, see
Chapter 11.

5.5.3 Resetting the Error Log

Use the ACMSMGR RESET ERROR command to close the current error log file
and open a new version. You may want to reset the log if it has grown too large.

The following example shows how to reset the log on node SPARKS:

$ ACMSMGR RESET ERROR/NODE=SPARKS

Using the Remote Manager to Manage ACMS 5-19

6

Management Programming Using ONC RPC

Programmers who want to access and maintain the ACMS Remote Manager from
their own programs can use the following two interfaces:

e Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management
packages such as PATROL® from BMC® and Tivoli from IBM®. For more
information, see Chapter 7.

¢ Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers
who want to write custom tools and applications that access the ACMS
Remote Manager.

This chapter describes the ONC RPC interface. Programmers who are familiar
with the C programming language and RPC mechanisms can use this information
when coding and building their own client programs. For a more complete
discussion of ONC RPC programming, see Power Programming with RPC by
John Bloomer, published by O’Reilly & Associates, Inc., Sebastopol, CA.

6.1 ONC RPC Overview

ONC RPC is a widely used and supported remote procedure call (RPC)
mechanism. Similar to other RPC mechanisms, the ONC RPC protocol supports
a request/response model, in which client applications make requests of servers
and receive responses. Clients typically make synchronous calls to remote servers
over a network. The RPC mechanism hides the network operations from the
programmer, making each remote procedure call appear to be a local function
invocation.

Unlike the SNMP interface, which connects to the ACMS Remote Manager using
the SNMP master agent, access through ONC RPC is directly to the ACMS
Remote Manager.

Figure 6-1 provides a graphical overview of the ONC RPC interface.

Management Programming Using ONC RPC 6-1

Management Programming Using ONC RPC
6.1 ONC RPC Overview

Figure 6-1 ONC RPC Interface Overview

Remote Manager ACMS Remote ACMS
clients (ONC RP:C> Manager () i ¢
(user-written programs) (RPC listener) run-time system

VM-0425A-Al

Programming for ONC RPC is based on interface definitions coded in Interface
Definition Language (IDL). Functions and their arguments are described in IDL
source files, which are precompiled using an IDL compiler. The outputs from
the IDL compiler are a set of C source and header files that are then compiled
and linked with client and server programs to form run-time executables. (For
Remote Manger client development, server stub files are not needed and can be
discarded.)

Figure 6-2 provides a graphical overview of programming for ONC RPC.

Figure 6-2 ONC RPC Programming Overview

Client stub

ACMSMGMT_RPC_CLNT.C

Data
:> conversion
routines
Function and ACMSMGMT_RPC_XDR.C
argument [=———=)| IDL compiler
definitions (IDL)
ACMSMGMT_RPC.X $RPCGEN
ACMSMGMT_RPC.X [=——=)| Headerfile

ACMSMGMT_RPC.H

ACMSMGMT_RPC_SVC.C

VM-0328A-Al

The IDL that describes the procedures supported by the ACMS Remote Manager
is provided with the ACMS Remote Manager installation and provides the
basis for ACMS management programming. Users write their own client
programs, calling the functions described in the ACMS Remote Manager IDL
file ACMSMGMT_RPC.X). They precompile the IDL file with the precompiler
provided by their TCP/IP package, and then compile and link their client

6-2 Management Programming Using ONC RPC

Management Programming Using ONC RPC

6.1 ONC RPC Overview

programs. No compilation or linking is required for the Remote Manager; it
contains all the support required by ONC RPC client programs.

The ACMS Remote Manager provides several types of procedures that are
callable through the ONC RPC interface. These procedures provide read and
write access to each table maintained by the Remote Manager, as well as
command routines (such as start and stop). Table 6-1 summarizes the types of
procedures available.

Table 6-1 Procedures for Accessing Remote Manager Functions

Procedure
Type Table or Object Description
Add Collection, Error Filter, Allows entries to be added to configuration
Trap tables.

Delete Collection, Error Filter, Allows entries to be removed from
Trap configuration tables.

Get ACC, Error Filter, Returns all columns in the table.
Manager (MGR) Status,
Parameters, QTI, TSC,
Version

List Collection, CP, Error Returns a linked list of records based on
Data, EXC, Interfaces, selection criteria. All columns in the table
Log, Process, Server, Task are returned with each row.
Group, Trap, Users

Replace Server Allows an application server to be replaced.

Reset Error Data, Log Allows the current version of the Remote
Manager log or error log to be closed and a
new version to be opened.

Save Error Filter Saves the current error filter records for a
specific node and writes them to an error
filter file.

Set ACC, Collection, CP, EXC, Allows modifications to the table. For

Interfaces, Parameters, configuration tables, set functions allow

QTI, Server, Trap, TSC rows to be added to tables. (Entity rows can
only be added by starting the appropriate
process.)

Start ACC, EXC, QTI, Trace Allows ACMS processes to be started.

Monitor, TSC
Stop Manager, ACC, EXC, QTI, Allows ACMS processes to be stopped.

TSC, Trace Monitor

The procedure names and arguments for each procedure type are similar — all
get calls have similar names and arguments; set calls have similar names and
arguments, and so on.

The sections that follow describe in more detail how to write programs that access
these functions.

Management Programming Using ONC RPC 6-3

Management Programming Using ONC RPC
6.2 Building Multithreaded Clients

6.2 Building Multithreaded Clients

The file ACMS$SMGMT _EXAMPLES BUILD.COM describes how to use the
client stub provided with the Remote Manager when compiling and linking your
application. The sample procedures provided in ACMS$MGMT_EXAMPLES.C
are designed to use the thread-safe client stub, and as a result, each procedure
contains one or more "free" calls (to prevent memory leaks).

To implement a non-thread safe client using the RPC-generated stub, omit the
"free" calls. See ACMS$MGMT_EXAMPLES_BUILD.COM for detailed build
instructions.

6.3 API Overview

Remote management client programs follow a typical programming model that
involves the following phases:

e Initialization

During the initialization phase, client programs establish connections
with the Remote Managers they will be calling. As part of this phase, the
programs select a security mode (explicit or implicit). Once this phase is
complete, the Remote Managers have been verified to be available, and
the client authentication has been verified. This phase involves using a
combination of ONC RPC function calls and an ACMS Remote Manager
function call (if explicit authentication is being used).

e Processing

During the processing phase, client programs make procedure calls to the
Remote Managers. During this phase, clients obtain or modify management
information. This phase involves the use of the functions defined in the
ACMS$RM_EXAMPLES:ACMSMGMT_RPC.X IDL file.

e Termination

During the termination phase, clients halt execution. There is no API
support or programming requirement for this phase.

6.4 Initialization and Security

In order to perform initialization, ACMS remote client programs must first
determine the type of authentication (explicit or implicit) they will use. The type
of authentication determines whether or not the client program must obtain
credentials.

The Remote Manager performs authentication either explicitly, using a
valid OpenVMS account name and password, or implicitly, using ACMS
proxies. Implicit authentication is allowed only if it has been enabled on the
Remote Manager node, and does not require the use of credentials. Explicit
authentication requires the use of credentials and also requires that the client
process execute a separate login using the ACMSMGR utility.

See Section 4.4 for a discussion of the various security modes and how to log in
using ACMSMGR.

Once the authentication mode has been determined, remote management clients
perform the following tasks:

e Establish an RPC connection with the Remote Manager on the target node.

The clnt_create function call establishes RPC client connections.

6-4 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.4 Initialization and Security

e Establish the security context and, optionally, populate it with credentials
information.

The security context is established by calling the authunix_create_default
function. As a result of this call, client process-identity information is
passed to the server on each procedure call. The Remote Manager uses this
information to authorize the user for each function.

The default security context is not sufficient if explicit authentication is
being used. Clients that need to support explicit authentication call the
acms$mgmt_get_credentials function to obtain a client ID, which was
previously issued for the client process by executing a login through the
ACMSMGR utility. This client ID is used on subsequent RPC calls.

Note

In order for credentials information to be created, the client process must
first execute the login command of the ACMSMGR utility. The only way
to create credentials files is by using the ACMSMGR utility.

6.4.1 Initialization Example

The following example code shows a client program that establishes an RPC
connection with the Remote Manager, establishes the security context, and then
populates it with credentials information if a logical name (ACMS$MGMT _USER)
has been defined.

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;

char sname[] = "sparks";

char *username_p, username[13] = "";
int client id;

int status;

int acms$mgmt_get_creds();

int main ()

{

/* if the logical is defined, credential information will be used */
username_p = getenv ("ACMSSMGMT_USER") ;
if (username_p)

strcpy (username, username_p) ;

/* establish an rpc connection to the server */
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

/* if the connection was established */
if (¢l != NULL) {

/* create a security context */
cl->cl_auth = authunix create_default();
client_id = 0;

/* optionally, get credentials for this user & server */
if (strlen(username))
status = acmsSmgmt_get_creds (sname,username, &client_id);

}

return(l);

}

Management Programming Using ONC RPC 6-5

Management Programming Using ONC RPC
6.5 Get Procedures

6.5 Get Procedures

Get procedures are available for all ACMS Remote Manager tables. Get
procedures return all columns from a single table row.

As Table 6-2 shows, a separate get procedure is available for each entity and
table.

Input arguments to get procedures are client_id. See Chapter 8 for details about
each call.

Table 6-2 Get Procedures

Procedure Description

acmsmgmt_get_acc_2 No keys; only 1 ACC per node.
acmsmgmt_get_err_filter_2 No keys; only 1 Error Filter per node.
acmsmgmt_get_mgr_status_1 No keys; only one row in the Manager Status table.
acmsmgmt_get_param_2 No keys; only one row in the Parameter table.
acmsmgmt_get_qti_2 No keys; only 1 QTI per node.
acmsmgmt_get_tsc_2 No keys; only 1 TSC per node.
acmsmgmt_get_version_2 No keys; only 1 version per node.

6.5.1 Get Example

The following example code shows how a client program calls the acmsmgmt_get_
param_2 procedure and displays the current value of a parameter.

int get_param_data(int client_id,CLIENT *cl)
{

int x = 0;
int y = 0;
param_rec?2 *params;

param_rec_out2 *param_rec;
static struct sub_id_ struct sub_rec;
int status;

sub_rec.client_id = client_id;
param_rec = acmsmgmt_get_param_2 (&sub_rec,cl);

if (!param_rec) {
printf("\n RPC Call to get Parameter data failed");
return (MGMT_FAIL) ;

if (param_rec->status != MGMT_SUCCESS) ({
printf("\n Call to get Parameter data failed, returning status code %d",
param_rec->status) ;
status = param_rec->status;
xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec) ;
return(status) ;

}
params = ¶m_rec->param_rec_out2_u.data;

printf("\n Maximum logins allowed is %d",params->max_logins);
xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec) ;

return(0);

6—-6 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.6 List Procedures

6.6 List Procedures

List procedures operate on all rows in a table. Procedures are available for each
entity and each configuration table with more than one row. There are no list
procedures for the following tables, since they contain only one row:

e ACC table
e Parameter table
e QTT table
e TSC table

As Table 6-3 shows, separate list procedures are provided for the remainder of
the management information and configuration tables. Input to a list procedure
is a selection criteria record, which varies depending on the table being accessed.
Some key values in the selection criteria records support wildcards (¥, %).

Table 6-3 List Procedures

Procedure Description

acmsmgmt_list_agent_2 Key value is table index.

acmsmgmt_list_collections_2 Key value is table index.

acmsmgmt_list_cp_2 No keys.

acmsmgmt_list_err_2 No keys.

acmsmgmt_list_err_filter_2 No keys.

acmsmgmt_list_exc_2 Key value is application name or table index.

acmsmgmt_list_interfaces_1 No keys.

acmsmgmt_list_log 1 No keys; selection criteria is before_time, since_time,
file_name, facility, severity.

acmsmgmt_list_proc_1 No keys.

acmsmgmt_list_server_1 Key value is application name, server name, or table
index.

acmsmgmt_list_tg 2 Key value is application name, task group name, or
table index.

acmsmgmt_list_trap_1 No keys.

acmsmgmt_list_users_1 No keys.

For all list procedures, only entire rows (that is, all columns in the row) are
returned. Data is returned in a linked list. The number of nodes in the list is
determined by the systemwide parameter table field max_rpc_return_recs. When
the number of rows to be returned exceeds the value of max_rpc_return_recs, the
caller must reissue the call, providing the appropriate key values to fetch the
next set of rows. The call returns status MGMT_NO_MORE_ROWS if there are
no more rows available. Procedures with no keys return all rows in the table on
the first call, regardless of the value of the max_rpc_return_recs field.

Management Programming Using ONC RPC 6-7

Management Programming Using ONC RPC
6.6 List Procedures

6.6.1 Linked List Example

Data from list calls is returned in a linked list. The example in this section uses
the acmsmgmt_list_log_1 procedure to illustrate how linked list processing works.

The call to the acmsmgmt_list_log_1 procedure requires the following input
structure:

struct log_sel_struct {

int client 1d;

string before time<TIME SIZE A>;
string since_time<TIME_SIZE_ A>;
string file_name<STORAGE_LOC_SIZE>;
int dup_count;

int facility;

int severity;

}i
In the code example that follows, the lines of code beginning with log_rec initialize
the fields in this structure as follows:

e (lient_id is set to 0 to select proxy authentication.

e Before_time is set to a NULL string to specify no end date for viewing log
entries. Note that you cannot provide a NULL pointer.

e Since_time is set to the 1st of January 1998. Log entries from this date and
later will be viewed.

e File_name is set to an empty string, which causes the active log file to be
used.

e Dup_count is set to -1. This field is used to uniquely identify log records with
identical times.

e Facility is set to -1, which causes entries for all facilities to be returned.
e Severity is set to -1, which causes entries of all severity levels to be returned.

The following example code shows the initialization of the client and the call to
the acmsmgmt_list_log_1 procedure:

#include <rpc/rpc.h>
#include <stdio.h>
#include string

#include "acmsmgmt_rpc.h"

CLIENT *cl;

int main ()

{
int skip_rec = 0;

char null_time_str[24] = "";

char first_of_jan[24] = "01-JAN-1998 00:00:00.00";

char file_spec[] = ""; /* use default, i.e. active log file */
char time_cache[MGMT S TIME A+1];

static struct log_sel_struct log_rec;

log_data_list *log;

log_link *nl;

/* Initialize client connection; if that fails, exit*/

cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");
if (tcl)
return (MGMT_FAIL) ;

/* Create a default security context */

6-8 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.6 List Procedures

cl->cl_auth = authunix_create_default();
/* So far so good. Initialize log selection data */

0;

null time_str;

first_of_jan;

file_spec;

_1;

-1; /* don’'t match on facility */
-1; /* don’t match on severity */

log_rec.client_id
log_rec.before_time
log_rec.since_time
log_rec.file_name
log_rec.dup_count
log_rec.facility
log_rec.severity

top:
/* Now make RPC */
log = acmsmgmt_list_log_1(&log_rec,cl);

The return value from the calls to all list procedures (including acmsmgmt_list_
log 1) is a pointer to a union. If the pointer returned is NULL, the call has failed.
RPC error checking must be used to determine the cause of the error. If a valid
pointer has been returned, it will point to a structure containing a union with the
following structure:

struct log data_list {
int status;
union {
log_list list;
int rc;
} log _data_list_u;
b

The status field determines which structure is being returned. If the status is
equal to MGMT_FAIL, the rc field is returned. The rc field contains a status code
indicating the reason for failure.

If the status field is not equal to MGMT_FAIL, a pointer to a linked list has been
returned.

The log_list field is defined as a pointer to linked list node, as follows:
typedef struct log_link *log_list;
The linked list node has the following structure:

struct log_link {
logging_rec log_data;
log_list pNext;

}i

In this structure, log_data is of type logging_rec, which is a record structure
containing the log data. The pNext field is a pointer to the next node in the
linked list (which is of type log_link).

Figure 6-3 illustrates the return structure and how the linked list is constructed.

Management Programming Using ONC RPC 6-9

Management Programming Using ONC RPC
6.6 List Procedures

Figure 6-3 Linked List: Return Structure and Construction

myptr = acmsmgmt_list_log(myrec);

[myptr J=)| struct log_data_list {
int status;

union {

[Llog_list list, £) struct log_link {

logging_rec log_data;
int rc; 99'n9 9-

} log_data_list_u; | log_list pNext; |

struct log_link {
logging_rec log_data;

|Iog_ﬁstpNext

struct log_link {
logging_rec log_data;

N log_list pNext;
}

VM-0329A-Al

The following example code shows how to check whether the call completed
successfully, and how to traverse the linked list to display the data:

/* if a NULL pointer was returned, the RPC failed */
if (!log)
return (MGMT_FAIL) ;

/* if bad status was returned, something failed in our call.
log->log_data_list_u.rc contains the status */

if (log->status == MGMT_FAIL)
return(log->log_data_list_u.rc);

/* while more data in the list, display the data */
for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (skip_rec)
skip_rec = 0;
else
printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);

/* save last time received to use as next time to read forward from */
memcpy (&time_cache[0],nl->log_data.log_msg,23);

log_rec.dup_count = nl->log_data.dup_count;

log_rec.since_time = time_cache;

}
if (log->status == MGMT_NOMORE_DATA)
printf("\n *** End of data **");

else {
skip_rec = 1;
goto top;

}

return(l);

}

In this example, the returned pointer is checked for whether data has been
returned (log is not NULL). Then the status code is checked for whether the call
completed successfully.

6-10 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.6 List Procedures

If the call completed successfully, the code drops into a FOR loop and starts
printing the data. For this particular call, the client prints all the records
the very first time the RPC is called; on subsequent calls, the first record is a
duplicate of the last one from the previous call and is not printed.

After printing a record, the key data is saved to be used again on a subsequent
call. Remember that only max_rpc_return_recs is returned in each call to the
acmsmgmt_list_log_data_1 procedure. There may be more log records than can
be sent at once. It is the responsibility of the client to initialize the call properly
to get the next set of records.

Once all the returned records have been returned, the code will call the
acmsmgmt_list_log_data_1 procedure again if the status code from the call
was not MGMT_NOMORE_DATA. In this way, all the records are retrieved.

6.7 Set Procedures

Set procedures are available for many of the ACMS Remote Manager tables. Set
procedures allow you to modify ACMS entity and Remote Manager configuration
information. As Table 6—4 shows, a separate set procedure is available for each
entity and table.

Table 6—-4 Set Procedures

Procedure

Description

acmsmgmt_set_acc_2 No keys; only 1 ACC per node.

acmsmgmt_set_agent_2 Key value is PID of the agent.
acmsmgmt_set_coll_2 Key value is entity, ID, and class.
acmsmgmt_set_cp_2 No keys; only 1 CP per node.

acmsmgmt_set_exc_2 Key value is application name.

acmsmgmt_set_interface_1
acmsmgmt_set_param_2
acmsmgmt_set_qti_2
acmsmgmt_set_server_1

acmsmgmt_set_trap_1

Key value is interface name.

No keys; only one row in the parameter table.
No keys; only 1 QTI per node.

Key value is application name and server name.

Key value is entity, ID, and parameter.

acmsmgmt_set_tsc_2 No keys; only 1 TSC per node.

For Entity tables, set procedures allow fields to be modified for a particular entry.
A unique key value must be provided to identify the particular table row to be
updated for tables with more than one row. Only configuration class fields can be
modified in entity tables.

For the Trap and Collection tables, add and delete procedures (described in
Section 6.8 and Section 6.9) are available along with set procedures. Each
procedure requires a unique key value.

For all tables, some or all fields in a row can be modified in a single call. The
Remote Manager scans the input record for uninitialized fields (that is, fields
that are not set to the default value of -1); if a field contains an initialized value,
the Remote Manager attempts to apply the update. The corresponding field in
the return record is updated with the completion status of the update. Updates
are applied serially, but the Remote Manager attempts to update all initialized
fields regardless of the outcome of any individual update. The exception to this
processing is if an internal error occurs, in which case processing is aborted.

Management Programming Using ONC RPC 6-11

Management Programming Using ONC RPC
6.7 Set Procedures

All calls are synchronous.

See Chapter 8 for details about each call.
6.7.1 Set Example

The following example code shows how a client program calls the acmsmgmt_set_
param_2 procedure to change the values of the proc_mon_interval and mss_coll_
interval parameters.

This example assumes client initialization has been performed as described in
Section 6.4.

int set_param_data(int client_id,CLIENT *cl)
{
0

int x ;
0;

int y

static param_config rec2 set_struct;
param_status_rec2 *ret_struct;
static int *status;

/* initialize input argument; values < 0 are not processed
by the server */
memset (&set_struct,-1,sizeof (set_struct));

/* establish the client id */
set_struct.client_id = client_id;
set_struct.params.proc_mon_interval
set_struct.params.mss_coll_interval

60;
60;

ret_struct = acmsmgmt_set_param_ 2 (&set_struct,cl);

if (!ret_struct) {
printf("\nCall to modify parameters failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to modify parameters failed, returning %d",
ret_struct->status);
status=ret_struct->status;
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);
return (MGMT_FAIL);
}

if (ret_struct->param_status_rec_u.data.proc_mon_interval != MGMT_SUCCESS)
printf("\n Call to modify proc_mon_interval failed");
if (ret_struct->param_status_rec_u.data.mss_coll_interval != MGMT_SUCCESS)
printf("\n Call to modify mss_coll_interval failed");
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}
else
printf("\n Call to update parameters successful");
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);
return(0);

}

In this example, note that the input argument (set_struct) is initialized to
negative values prior to the call. The Remote Manager will attempt to apply
updates for any positive values found; negative values are ignored.

6-12 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.7 Set Procedures

Following the call to the update routine, the return record pointer is tested to
ensure that it is not NULL (that is, that the call completed). Then individual
return codes are tested to determine the status of the updates. The first status
check (ret_rec->status) determines the overall call status. For instance, security
violations will be recorded in this field. If that status field contains a failure
code, no updates were attempted. If that status field contains MGMT_SUCCESS,
updates were attempted for the two fields. The subsequent status checks in the
return record determine the outcome of those updates.

6.8 Delete Procedures

Delete procedures are available for the Collection, Error Filter, and Trap tables.
Delete procedures allow you to remove rows from the corresponding table. As
Table 6-5 shows, a separate delete procedure is available for each of these tables.

The delete procedures require an input record with key data to be passed by the
caller. A simple status code is returned indicating the success or failure of the
operation.

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6-5 Delete Procedures

Procedure Description
acmsmgmt_delete_collection_1 Key value is entity, ID, and class.
acmsmgmt_delete_err_filter_2 Key value is message code.
acmsmgmt_delete_trap_1 Key value is entity, ID, and parameter.

6.8.1 Delete Example

The following example code shows how a client program calls the acmsmgmt_
delete_collection_1 procedure to remove a collection row.

This example assumes that client initialization has been performed as described
in Section 6.4.

int del _coll data(int client_id,CLIENT *cl)
{

static int *status;
static coll_del_rec set_struct;
static char ent_name[MGMT_S_ENTITY NAME];

set_struct.client_id = client_id;
set_struct.entity_type = MGMT_ACC;
strcpy (ent_name, "*");

set_struct.entity_name = ent_name;
set_struct.collection_class = MGMT_CLASS_ALL;

status = acmsmgmt_delete_collection_1 (&set_struct,cl);

if (!status) {
printf("\n Call to delete collection failed");
return (MGMT_FAIL) ;

}

Management Programming Using ONC RPC 6-13

Management Programming Using ONC RPC
6.8 Delete Procedures

if (*status != MGMT_SUCCESS) {
printf("\nCall to delete collection failed with status %d", *status);
return (MGMT_FAIL) ;
}
else
printf("\nCall to delete collection was executed");
free(status)
return(0) ;

}

In this example, the input record is prepared with key information, and then
the call to delete the row is performed. Following the call to the delete routine,
the value pointed by status is checked for success or failure. In either event, a
message is printed out indicating the completion status of the call.

6.9 Add Procedures

Add procedures are available for the Collection, Error Filter, and Trap tables.
Add procedures provide the ability to add rows to the corresponding table. As
shown in Table 6-6, a separate add procedure is available for each of these tables.

The add procedures require an input record with an entire table row, including
unique key data to be passed by the caller. The Remote Manager validates the
input fields before adding the record, including checking for duplicate keys. A
record is returned with an overall status code indicating the success or failure
of the operation, and with individual status codes for each field indicating which
fields are invalid.

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6—-6 Add Procedures

Procedure Description
acmsmgmt_add_collection_2 Key value is entity, ID, and class.
acmsmgmt_add_err_filter_2 Key value is node and message code.
acmsmgmt_add_trap_1 Key value is entity, ID, and parameter.

6.9.1 Add Example

The following example code shows how a client program calls the acmsmgmt_
add_collection_2 procedure to add a collection row.

This example assumes client initialization has been performed as described in
Section 6.4.

int add_collection_ data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = nkn,

static coll_config_rec_2 set_struct;

struct coll_status_rec_2 *status_rec;

set_struct.client_id client_id;
set_struct.coll.entity_type MGMT_ACC;
set_struct.coll.entity_name c_name_all;

set_struct.coll.collection_class
set_struct.coll.collection_ state

MGMT_CLASS_ALL;
MGMT_STATE_ENABLED;

status_rec = acmsmgmt_add_collection_2 (&set_struct,cl);

6-14 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.9 Add Procedures

if (!status_rec) {
printf("\n Call to add collection record failed");
return (MGMT_FAIL) ;

}

if (status_rec->status == MGMT_WARN) {
printf ("\nThe following fields are invalid: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type == MGMT_FAIL)

printf("\n entity_type");
if (status_rec->coll_status_rec_2_u.data_warn.collection_class
== MGMT_FAIL)
printf("\n collection_class");
1f (status_rec->coll status_rec_2 u.data warn.collection_state
== MGMT_FAIL)
printf ("\n coll state");
return(0);

else if (status_rec->status != MGMT_SUCCESS) ({
printf("\nCall to add collection failed with status",
status_rec->coll_status_rec_2 u.rc);
xdr_free(xdr_coll_status_rec_2,status_rec);
free(status_rec);
return(0) ;

else
printf("\nCall to add collection was executed");
xdr_free(xdr_coll_status_rec_2,status_rec);
free(status_rec);
return(l);

}

In this example, the input record is prepared with key and data values, and then
the call to add the row is performed.

Following the call to the add routine, the return record pointer is tested to ensure
that it is not NULL (that is, that the call completed). Then the overall status
code (status_rec->status) is checked to determine whether the add was performed.

A status value of MGMT_WARN indicates that some fields were in error, so
individual return codes are tested to determine which fields were invalid.

A status value other than MGMT_WARN or MGMT_SUCCESS means a general
error occurred. A value of MGMT _SUCCESS means the record was added.

6.10 Start, Stop, and Replace Procedures

These three types of procedures are similar in the way they are called and in
the data that is returned to them, even though they do very different operations.
Start and stop procedures are used to start or stop various ACMS processes; the
replace procedure is used to replace a running procedure server in an application.

An exception is the call to the acmsmgmt_stop_1 procedure, which requests the
Remote Manager to shut down. For more information about the acmsmgmt_stop_
1 procedure, see Chapter 8.

For the rest of the start, stop, and replace procedures, an input record, which
contains key data or startup or shutdown qualifier flags, is provided by the caller;
the return data contains a status code and a linked list of status messages.
Status messages are generated by ACMSOPER and are returned in their entirety.
(Linked-list processing is illustrated in Section 6.6.1.)

All calls are synchronous.

Management Programming Using ONC RPC 6-15

Management Programming Using ONC RPC
6.10 Start, Stop, and Replace Procedures

See Chapter 8 for details about each call.

Table 6-7 Start, Stop, and Replace Procedures

Procedure Description

acmsmgmt_replace_server_1 Key is application name and server name.

acmsmgmt_start_acc_1 No keys; specify auditing, QTI, and terminal disposition.
acmsmgmt_start_exc_1 Key is application name; no startup qualifiers.
acmsmgmt_start_qti_1 No keys or qualifiers.

acmsmgmt_start_trace_ No keys or qualifiers.

monitor_1

acmsmgmt_start_tsc_1 No keys or qualifiers.

acmsmgmt_stop_1 No keys or qualifiers.

acmsmgmt_stop_acc_1 No keys; specify cancel disposition.
acmsmgmt_stop_exc_1 Key is application name; specify cancel disposition.
acmsmgmt_stop_qti_1 No keys or qualifiers.

acmsmgmt_stop_trace_ No keys or qualifiers.

monitor_1

acmsmgmt_stop_tsc_1 No keys or qualifiers.

6.10.1 Start Example

The following example code shows how a client program calls the acmsmgmt_
start_acc_1 procedure to start ACMS on a remote node. In this example, the QTI
and TSC are started along with the system, and system auditing is enabled.

This example assumes client initialization has been performed as described in
Section 6.4.

int start_acc(int client_id,CLIENT *cl)
{
decl_link *nl;
static acc_startup_rec start_struct;
static cmd_output_rec *ret_struct;

start_struct.client id = client_id;
start_struct.audit_sw = 1;
start_struct.qgti_sw = 1;
start_struct.terminals_sw = 1;

ret_struct = acmsmgmt_start_acc_l(&start_struct,cl);

if (!ret_struct) {
printf ("\n Call to start ACMS system failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf ("\nCall to start ACMS system failed with status %d",
ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0) ;

}

printf("\n Call to start ACMS system completed with warnings or
errors");

6-16 Management Programming Using ONC RPC

Management Programming Using ONC RPC
6.10 Start, Stop, and Replace Procedures

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}

else {
printf("\nCall to start ACMS system was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0) ;

}

In this example, the input record is prepared with qualifier data, and then the
call to start the system is performed. Auditing is enabled, and QTI and TSC will
be started with the sytem.

The return value from the calls to the start, stop (except acmsmgmt_stop_1), and
replace procedures is a pointer to a union. If the pointer returned is NULL, the
call has failed. RPC error checking must be used to determine the cause of the
error. If a valid pointer is returned, it points to a structure containing a union
with the following structure:

union cmd_output_rec switch (int status) {
case MGMT_WARN:
cmd_rec data_warn;
case MGMT_SUCCESS:
cmd_rec data;
case MGMT_FAIL:
int rc;
default:
void;

bi

The status field determines which structure is being returned. If the status is
equal to MGMT_FAIL, the rc field is returned. The rc field contains a status code
indicating the reason for failure.

If the status field is not equal to MGMT_WARN or MGMT_SUCCESS, a pointer
to a linked list has been returned. The linked list contains a text field and a
forward pointer. By following the forward pointers, all the records in the list can
be retrieved. Section 6.6.1 illustrates how to follow the linked list.

In either case, the example code prints out the contents of all the strings in the
linked list. These strings are status messages returned by ACMSOPER.

Management Programming Using ONC RPC 6-17

7

Management Programming Using SNMP

Programmers who want to access and maintain the ACMS Remote Manager from
their own programs can use the following two interfaces:

e Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers
who want to write custom tools and applications that access the ACMS
Remote Manager. For more information, see Chapter 6.

e Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management
packages such as PATROL® from BMC® and Tivoli from IBM®.

This chapter discusses the SNMP interface. Programmers who are familiar with
SNMP console programming can use this information when writing routines

that interact with the ACMS Remote Manager using the SNMP protocol. The
information in this chapter is also useful for programmers who are integrating
the ACMS Remote Manager with other enterprise management packages through
the SNMP protocol.

The ACMS Remote Manager implements the management information base
(MIB) for SNMP. To access ACMS MIB information through SNMP, you must
have an SNMP-enabled console (such as PATROL® from BMC®) or you can use
an SNMP MIB browser such as the one provided by HP TCP/IP Services for
OpenVMS, which includes the TCPIP$SNMP_REQUEST.EXE utility.

Alternatively, you can write your own SNMP interface. For more information
about programming SNMP, refer to Windows NT SNMP by James D. Murray,
published by O’Reilly & Associates, Inc., Sebastopol, CA.

7.1 SNMP Overview

The ACMS Remote Manager implements a MIB for ACMS. When the SNMP
interface is enabled, either during or after Remote Manager process startup, it
registers the ACMS subtree with the local SNMP master agent. SNMP console
requests go first to the SNMP master agent (provided by the installed TCP/IP
software, such as HP TCP/IP Services for OpenVMS), which in turn delivers them
to the ACMS Remote Manager. Figure 7-1 illustrates the SNMP interface with
the ACMS Remote Manager.

Communications between the SNMP interface and the master agent use the
eSNMP protocol. This protocol is transparent to SNMP consoles.

Management Programming Using SNMP 71

Management Programming Using SNMP
7.1 SNMP Overview

Figure 7-1 SNMP Program Interface with Remote Manager

SNMP management

consoles

7.2 SNMP

ACMS Remote
SNMP m?ster s <:> t_ACMS t
agen (SNMP Subagent) run-time system

VM-0330A-Al

The ACMS Remote Manager provides management information to SNMP
management platforms in response to snmp_get and snmp_getnext messages.
Management platforms can modify many management data elements by sending
the appropriate snmp_set message. If any traps have been configured, the ACMS
Remote Manager will generate SNMP traps when the Remote Manager detects a
trap condition (for example, when an ACMS process starts or stops).

All Management table fields are available to SNMP management applications
through get operations, but not all fields can be set. In general, the fields that
can be set are Configuration class fields (in ACMS entity tables) and nearly all
Manager configuration table fields. See Chapter 9 for a list of all tables and
fields.

Object identifier (OID) values are documented in the file MIB_OID.LIS available
from the directory ACMS$RM_EXAMPLES. This file presents a list of the
ACMS MIB fields and their corresponding SNMP OIDs, as generated from the
files MGMTMIB.MY and RFC1155.MY. The MGMTMIB.MY file is found in the
ACMS$RM_EXAMPLES. For information about RFC1155, visit the Internet
Engineering Task Force (IETF) web site at http:/www.ietf.org/.

The information in this list is presented in the form of a table that identifies the
name, object identifier, data type, access privilege associated with each ACMS
MIB field.

Note

The MIB list is subject to change with each release of ACMS. To obtain
the most current information, consult the source document (ACMS$RM_
EXAMPLES:MGMTMIB.MY), or regenerate the file, as follows:

$ MIBCOMP MGMTMIB.MY,RFC1155.MY "ACMS" /PRINT

Security

Security for the SNMP interface is enforced first by the SNMP master agent
(not the ACMS MIB). SNMP supports the concept of communities, which are
essentially node inclusion lists. Whoever installs and configures the SNMP
software package (typically the network manager) sets up SNMP communities.

7-2 Management Programming Using SNMP

Management Programming Using SNMP
7.2 SNMP Security

Nodes that are part of the SNMP community to which the subagent belongs can
connect to the master agent; any node that can connect to the master agent can
connect and interact with the subagent. All SNMP communities are allowed
any combination of read, write, and trap access. Nodes that are not part of the
community do not have access to the master agent.

Note that communities work at the node level only. It is not possible to restrict
the access of individual user accounts on the node, although it may be possible to
restrict access to the SNMP console software on a per-user basis. Note also that
node authentication itself is relatively weak and provides no safeguards against
masquerades or other forms of network deception.

As a second level of security, the ACMS Remote Manager requires that a special
OpenVMS account (ACMS$SNMP) be created for the SNMP interface on nodes
on which the Remote Manager runs. The account must be granted OpenVMS
rights for read, write, operate access, or update (or some combination of these)

to Remote Manager data and functions. This allows ACMS system managers to
grant read access, for instance, through the SNMP interface, but to prevent write,
operate, or update access. See Section 4.4 for a discussion of how to configure
Remote Manager authentication and authorization for the SNMP interface.

7.3 Initializing the SNMP Interface

In order for SNMP consoles to communicate with the ACMS Remote Manager
through SNMP, the Remote Manager SNMP interface must have been started.
The SNMP interface runs as a separate thread in the Remote Manager and can
be started or stopped at any time without restarting the Remote Manager.

The SNMP interface is started using the SET INTERFACE command. The
current state of the interface can be determined using the SHOW INTERFACE
command. Refer to Section 4.5 for more information about using ACMSCFG and
ACMSMGR to start and stop interfaces.

During startup, the SNMP interface first performs some housekeeping tasks and
then attempts to register with the SNMP master agent.

In order for the SNMP interface to initialize successfully, the following conditions
must be met:

e The ACMS$SNMP account on the Remote Manager node must exist.

e The ACMS$MGMT_READ, ACMS$MGMT_WRITE, ACMS$MGMT_OPER,
and ACMS$MGMT_SYSUPD rights identifiers must exist. At least one of
these identifiers must be granted to the ACMS$SNMP account.

e The SNMP master agent must be running on the Remote Manager node.

If any of the initialization tasks fail, or if registration fails, the SNMP interface
writes error messages to the Remote Manager log and the thread exits. In this
case, users should check the Remote Manager log for messages, correct the
problem, and restart the interface.

During initialization, the Remote Manager establishes a timeout that the master
agent will use when communicating with it. The timeout is based on the value of
the Remote Manager parameter SNMP_AGENT_TIME_OUT.

If initialization is successful, the SNMP interface thread waits for incoming
SNMP requests. The wait times out periodically (based on the Remote Manager
parameters SNMP_SEL_TIME_OUT and SNMP_ARE_YOU_THERE stored in
the Parameter table), and checks to make sure the SNMP master agent is still

Management Programming Using SNMP 7-3

Management Programming Using SNMP
7.3 Initializing the SNMP Interface

running by sending an “are you there” message to the master agent. If the
master agent responds, the Remote Manager continues to wait for incoming
messages. If the master agent does not respond, the SNMP interface thread
attempts to restart the connection. If the restart fails, the SNMP thread exits.

7.4 SNMP Tables

The tables in Chapter 9 and the tables defined in the ACMS MIB map to each
other on a one-to-one basis. However, data types are slightly different between
SNMP and RPC, most significantly in the use of the gauge structure type.
Section 7.4.1 describes data type mapping.

When accessing any of the ACMS MIB tables, it is important to keep in mind the
dynamic nature of the ACMS run-time system. ACMS entities may be stopped
and restarted; collection states for the entities may change dynamically; new
processes (especially EXC and CPs) may be created. It is also important to
understand that the size of some ACMS MIB tables may change when either the
ACMS run-time system is restarted, or even as certain processes are started and
stopped.

If the proper access strategies are not used when getting or setting ACMS MIB
data, unpredictable and erroneous results can occur.

Different access strategies must be used for different types of tables. In the
ACMS MIB, there are three types of tables. Specific access strategies for each
table type are discussed in separate sections, as follows:

e Single-row tables (see Section 7.4.2)
e Static tables (see Section 7.4.3)
¢ Dynamic tables (see Section 7.4.4)

Also refer to Section 7.4.5 for a discussion of how the Server and Task Group
tables are indexed.

Regardless of the type of table, identity and state validation should be performed
for all ACMS entity tables (ACC, T'SC, CP, QTI, EXC, server, task group).

Identity validation is performed by storing the PID field of the process occupying
the row the first time the row is accessed. Then, when revisiting the table, get
the PID along with the data values. Then check that the PID has not changed. If
it has, the data refers to a new process.

Note that the process name is not a good means of identifying a process, because
process names can be reused between entity executions.

Also note PID is not an ID class field for servers and task groups. For these two
entity types, the EXC PID should be used.

State validation is performed by checking the collection state for the class that
contains the field. For instance, if the exc-current-waiting-tasks-num (in the EXC
run-time class) is being monitored, ensure that the exc-rt-coll-state is enabled
(equal to 1). Otherwise, the value in that field is no longer being updated by the
EXC, and is no longer accurate.

7-4 Management Programming Using SNMP

Management Programming Using SNMP
7.4 SNMP Tables

7.4.1 Data Type Mapping

The ACMS Remote Manager implements three data types:

e Integer
e String
e Gauge

The integer and string data types map directly to the SNMP INTEGER and
DisplayString data types.

The gauge data type defined for the Remote Manager is not the same as the
SNMP Gauge type. In order to avoid confusion, the Remote Manager SNMP
interface maps the Remote Manager gauge fields to SNMP INTEGER and
DisplayString data types. So for each Remote Manager gauge data type, three
fields are defined in the MIB: the current field value, the maximum (or minimum)
field value, and the maximum (or minimum) field value time.

For example, consider the ACC run-time field current_appls. This is defined as
a Remote Manager gauge data type in Section 9.2. In the MIB, three fields are
defined:

acc-current-appls-num INTEGER,
acc-current-appls-max INTEGER,
acc-current-appls-time DisplayString

This is the case for all Remote Manager gauge data types. For Remote Manager
min gauge data types, there is a -min field instead of a -max field. For both gauge
data types, time is expressed in the form DD-MMM-YYYY HH:MM:SS.hh.

7.4.2 Single-Row Tables

7.4.3 Static

Access to single-row tables is straightforward, because only a single row is ever
accessed. The following are single-row tables:

e ACC table
e QTI table
e TSC table

e Parameter table

e Remote Manager table

Bounds checking need not be performed. However, for Entity tables (ACC, QTI,
TSC), both identity and state validation must be performed.

Tables

Static tables are sized when the parent process starts and do not change as long
as the parent process is running. For each static table, there is a field in the
table of the parent process that indicates the upper bound of the static table.

Table 7-1 shows the static tables, their parent process, and the field that
indicates the upper bound of the table.

Management Programming Using SNMP 7-5

Management Programming Using SNMP
7.4 SNMP Tables

Table 7-1 Static Tables

Table Parent Process Upper Bound (field and table)

CP TSC tsc-cp-slots-active in the T'SC table
EXC ACC acc-max-appl-active in the ACC table
Server EXC exc-server-types in the EXC table
Task Group EXC exc-task-groups in the EXC table
Interfaces Remote Manager rmIfCt in the Remote Manager table
Collection Remote Manager totl-entity-slots in the Parameter table

In static tables, table data is not always contiguous and table rows can be reused.
The PID field should be used to establish process identity.

For example, consider the following CP table. Assume that the first CP is
permanent, and the second two are not.

Table Row CP process name CP PID

1 ACMS01CP001000 2040013D
2 ACMS01CP002000 2040013E
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially would find all three CP
instances; access to table row 4 would return an error. However, if the users
attached to the CP in table row 2 log out, the CP terminates and the table now
looks like this:

Table Row CP process name CP PID

1 ACMS01CP001000 2040013D
2
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially and stopping when the

first error is returned would find only the first CP. Access to the second row
would return an error. Therefore, when scanning static tables, it is important to
examine all rows of the table before terminating the scan; that is, perform a loop
based on the tsc-cp-slots-active field in the TSC table.

Finally, consider what happens if a new CP now starts. The table would look as
follows:

Table Row CP process name CP PID

1 ACMS01CP001000 2040013D
2 ACMS01CP002000 20400140
3 ACMS01CP003000 2040013F

Table row 2 is now valid again, but a different process occupies it. Therefore, any
cached information for table row 2 is invalid and must be refreshed with the data
from the new process.

7.4.4 Dynamic Tables

Dynamic tables do not have a fixed upper bound; they grow and shrink as entries
are added and removed. However, data in dynamic tables is always contiguous,
so there are never invalid rows stored between valid rows. When a row becomes
invalid because it is empty or unoccupied, it is removed from the table and the
remaining rows are renumbered.

The following are dynamic tables:

e User table

7-6 Management Programming Using SNMP

Management Programming Using SNMP
7.4 SNMP Tables

e Log table
e Trap table

To see how a dynamic table changes when a table row is removed, assume that a
user table has the following contents:

Table row User Name Client Id

1 Userl 1
2 User2 2
3 User3 3
4 Userd 4

If User2 logs out, the contents of the table would change as follows:

Table row User Name Client Id

1 Userl 1
2 User3 3
3 Userd 4

As with static tables, you must ensure that the table row being accessed has not
been reused or renumbered. Among dynamic tables, only the Trap and Error
Filter tables allow updates. Note that entries are never deleted or modified in the
Log table; new entries are always appended to the end.

7.4.5 Servers and Task Groups

The Servers and Task Group tables are indexed by a compound index. For both
tables, the first key value is the table row of the owning EXC; the second key
value is the Server or Task Group row. When fetching or setting Server or Task
Group rows, you must first determine the EXC (application) they belong to, and
then determine the particular server or task group.

For example, assume the EXC table has a total of four rows. Application Appll
occupies row 1, and has two servers (ServerA and ServerB) and one task group
(TaskGroupA). Application Appl2 occupies row 3 and has two servers (ServerC
and ServerD) and two task groups (TaskGroupB, TaskGroupC). EXC table rows 2
and 4 are unused. Table 7-2 and Table 7-3 list the contents of each table.

Table 7-2 EXC Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Row Contents
1 Appll

2 (unused)
3 Appl2

4 (unused)

Table 7-3 Server Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Server) Contents
1 1 ServerA
1 2 ServerB
3 1 ServerC
3 2 ServerD

Management Programming Using SNMP ~ 7-7

Management Programming Using SNMP
7.4 SNMP Tables

Table 7-4 Task Group Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Task Group) Contents

1 1 TaskGroupA
3 1 TaskGroupB
3 2 TaskGroupC

In order to access the ser-server-name field for ServerA in application Appll, the
OID would be 1.3.6.1.4.1.36.2.18.48.14.1.3.1.1 To access the same field for ServerD
in Appl2, the OID would be 1.3.6.1.4.1.36.2.18.48.14.1.3.3.2.

You can always determine from the OID which application a server or task group
belongs to because ACMS requires that each server be given a unique name
within the application.

7.5 SNMP GET Operations

SNMP get requests are satisfied at the time they are received by the subagent.
Get requests can take one of three forms: get, get next, and get bulk.

e Get operations are simple requests for single data items.
e Get next requests are iterative requests for logically sequential information.
e Get bulk requests obtain a logical sequence of information in a single request.

The SNMP subagent for ACMS supports only the first operation. SNMP “walks”,
if performed, return unpredictable results.

OIDs for ACMS Management tables are documented in the file MIB_OID.LIS
available from the directory ACMS$RM_EXAMPLES. The MIB definition for
the ACMS subtree is also provided in ACMS$RM_EXAMPLES, in the file
MGMTMIB.MY.

In order for SNMP get requests to complete successfully, the following conditions
must be met:

e The ACMS$SNMP account on the Remote Manager node must be granted the
ACMS$MGMT _READ identifier.

e The SNMP interface must already be started.

¢ The ACMS run-time system must already be started (to access ACMS entity
information).

General eSNMP return codes are returned from the Remote Manager for SNMP
get requests (see Section 7.10). For details about a specific error, refer to the
Remote Manager log.

7.6 SNMP SET Operations

SNMP set requests are executed at the time they are received by the subagent
and are applied to the running system. However, not all fields that can be set
are dynamic; the actual implementation of modification may not occur until the
affected entities are restarted.

For more discussion about updates that modify the ACMS run-time system, see
Section 5.4.

7-8 Management Programming Using SNMP

Management Programming Using SNMP
7.6 SNMP SET Operations

OIDs for ACMS Management tables are documented in the file MIB_OID.LIS
available from the directory ACMS$RM_EXAMPLES. The MIB definition for
the ACMS subtree is also provided in ACMS$RM_EXAMPLES, in the file
MGMTMIB.MY.

In order for SNMP set requests to complete successfully, the following conditions
must be met:

e Depending on the operation being performed, the ACMS$SNMP account
on the Remote Manager node must be granted one or more of the following
identifiers: ACMS$MGMT_WRITE, ACMS$MGMT_OPER, ACMS$MGMT _
OPER, or ACMS$MGMT_SYSUPD (see Appendix B).

e The SNMP interface must already be started.

e The ACMS run-time system must already be started (to update ACMS entity
information).

General eSNMP return codes for SNMP get requests are returned from the
Remote Manager (see Section 7.10). For details about a specific error, refer to the
Remote Manager log.

7.7 Using SNMP to Start and Stop ACMS Entities

To start and stop ACMS entities (or to stop the Remote Manager), the Remote
Manager allows SNMP users to modify the ID class field running_state. In
general, ID class fields are read only. However, since SNMP does not support a
START or STOP command, the SET command must be used.

Modifications to the running_state fields are not performed directly by the
Remote Manager. Instead, the Remote Manager uses ACMSOPER commands to
request the shutdown or startup of the ACMS entity. The ACMS entities update
the running_state field when they start or stop.

For instance, to start the ACMS run-time system, an SNMP console program
issues an SNMP SET command for the ACC running_state OID, specifying the
value “started”. The Remote Manager interprets this message as an attempt to
start the system and issues the appropriate ACMSOPER command.

The SNMP set call is synchronous. That is, it does not complete until the ACMS
operation has completed.

Failure messages related to start or stop requests are written to the Remote
Manager log.

7.8 SNMP Traps

SNMP traps provide a means of automatically notifying the system support team
when a warning or error condition exists. Users configure SNMP traps in the
SNMP trap table; when a matching condition or event occurs, an SNMP trap is
generated. SNMP management consoles listen for SNMP traps and then respond
in a console-dependent (and usually user-configurable) manner.

See Section 9.14 for a discussion of the Trap table and the format of trap
messages.

At run time, SNMP traps can be generated as the result of either an ACMS
process starting or stopping, or an event that occurred within the Remote
Manager (for example, a failure in communications with ACMS).

Management Programming Using SNMP ~ 7-9

Management Programming Using SNMP
7.8 SNMP Traps

ACMS system managers configure traps by modifying the Trap table, either by
using the ACMSCFG utility prior to Remote Manager startup or by using the
ACMSMGR utility after the Remote Manager has been started. Changes made
using ACMSCFG do not affect the running system until the Remote Manager
is restarted; changes made using ACMSMGR are not saved when the Remote
Manager stops.

The configuration process is the same with either utility. You use the ADD TRAP
command to add new traps, use the DELETE TRAP command to remove traps,
and use the SET TRAP command to modify traps.

Keep in mind that although you can add, delete, or modify entries in the trap
table at almost any time, traps will not be generated unless the SNMP interface
is started. In addition, traps are not queued if the SNMP interface is disabled.

The combination of entity, name, and parameter uniquely identify a trap in the
Trap table. For each trap, a minimum and a maximum value can be specified,
along with a severity. Minimum and maximum trap values specify thresholds
that trigger traps when the associated parameter is either greater than or less
than the threshold. Minimum and maximum trap values are parameter specific.

A special value of -1 is used as a placeholder when creating a trap for which a
minimum or maximum does not apply. In many situations, only the minimum
or maximum value setting is meaningful. In this instance, set the desired field
(minimum or maximum) to the threshold value, and set the other to -1.

Two trap parameters are supported:
e EXISTS (see Section 7.8.1)
e FEVENT SEVERITY (see Section 7.8.2)

7.8.1 EXISTS Traps

The trap parameter EXISTS allows traps to be generated based on whether an
ACMS process starts or stops.

Specifying a minimum trap value of 1 for a process specifies, in effect, that a
trap should be generated whenever the process stops — that is, when the process
existence is less than 1.

Specifying a maximum value of 0 specifies that a trap should be generated
whenever the process starts — that is, when the processes existence is greater
than 0.

A minimum value of 0 or a maximum value of 1, while valid, is basically useless,
since the EXISTS parameter is never greater than 1 or less than 0.

7.8.2 EVENT_SEVERITY Traps

The trap parameter EVENT_SEVERITY allows traps to be generated based on
the facility and severity of events being logged to the Remote Manager log. For
example, an EVENT SEVERITY trap can be configured for Remote Manager
SNMP events with severity higher than WARNING (such as ERROR or FATAL).
Any time a Remote Manager SNMP operation fails with a severity higher than
WARNING, an SNMP trap is generated.

Other facilities that can be monitored are:
e *(all)

¢ MGR (Remote Manager main process)

7-10 Management Programming Using SNMP

Management Programming Using SNMP
7.8 SNMP Traps

¢ PROCMON (process monitor thread)

e RPC (RPC interface thread)

e SNAP (data snapshot thread)

e SNMP (SNMP interface thread)

e SEC (security routines)

e LOG (event logging thread)

e TIMER (internal timer thread)

e DCL (DCL subprocess management thread)

e MSG_PROC (processes incoming ACMS errors)
e TRAP (trap sender thread)

Use care when you configure traps so that you do not create unnecessary
traps. In general, traps are intended to be used to signal significant events.
For instance, specifying a minimum severity of FATAL or ERROR causes all
informational and warning messages to generate traps. This is probably not a
good use of network or console resources.

7.9 SNMP Debug Tracing

In addition to the normal logging the Remote Manager performs, it is possible

to enable debug-level SNMP tracing. This level of tracing is performed by the
eSNMP TCP/IP code layer and may not be available for all TCP/IP products. The
HP TCP/IP Services for OpenVMS product supports debug-level SNMP tracing. If
you use a third-party TCP/IP product, check with that vendor regarding support
for this option.

Debug-level tracing of the Remote Manager SNMP interface can be valuable for
developing SNMP console applications or for trying to debug a particular SNMP
environmental problem. However, it is relatively resource intensive and should

be performed in a controlled environment for short durations.

To enable debug-level SNMP tracing, the Remote Manager must be started with
the command line argument LOG_TO_SYSOUT, as follows:

@sysS$startup:acms$mgmt_startup LOG_TO_SYSOUT

The SNMP_AUDIT_LEVEL parameter must be greater than 0. When

the SNMP interface is started, it will enable debug-level tracing in the
eSNMP code layer. All output is directed to SYS$OUTPUT for the Remote
Manager process, which is redirected by the startup command procedure to
SYS$ERRRORLOG:ACMS$MGMT_SERVER.OUT.

7.9.1 Starting SNMP Debug Tracing

To start the Remote Manager with debug-level SNMP tracing, run the startup
command procedure SYS$STARTUP:ACMS$MGMT_STARTUP, specifying
LOG_TO_SYSOUT as the only parameter to the command procedure, as follows:

$ @SYSSSTARTUP:ACMSSMGMT STARTUP LOG_TO_SYSOUT

Once the Remote Manager has been started and the SNMP interface has been
enabled, make sure that the SNMP_AUDIT_LEVEL parameter is greater than 0.
To do this, use the following ACMSMGR command:

$ ACMSMGR SET PARAM/SNMP_AUDIT LEVEL=F

Management Programming Using SNMP ~ 7-11

Management Programming Using SNMP
7.9 SNMP Debug Tracing

The SNMP debug output is written to SYSSERRORLOG:ACMS$MGMT _
SERVER.OUT, which is an ASCII file that can be typed or edited.

7.9.2 Stopping SNMP Debug Tracing

To stop debug-level SNMP tracing, either restart the Remote Manager (without
the LOG_TO_SYSOUT parameter), or use the following command to set the

SNMP_AUDIT_LEVEL parameter to 0:

$ ACMSMGR SET PARAM/SNMP_AUDIT LEVEL=0

7.10 Remote Manager eSNMP Return Codes
Table 7-5 describes the return codes returned by the Remote Manager eSNMP

routines.

Table 7-5 Remote Manager eSNMP Routines Return Codes

Return Code

Description

ESNMP_MTHD_ commitFailed

ESNMP_MTHD_genErr

ESNMP_MTHD_noCreation

ESNMP_MTHD_noError
ESNMP_MTHD_noSuchlnstance

ESNMP_MTHD_noSuchObject
ESNMP_MTHD_notWritable

ESNMP_MTHD_resourceUnavailable

ESNMP_MTHD_wrongValue

An attempt to apply an update failed. This
is also returned from a start or stop attempt
that fails. Refer to the Remote Manager log
for details.

An internal error occurred. This could be
due to security violations, a failure updating
a particular field, or an internal processing
error. Refer to the Remote Manager log for
details.

The table does not allow new rows to be
created. The OID specified for the set
operation indicates a table row that does
not exist, and the table does not allow new
rows to be created.

The set operation was successful.

A request was made for a variable that does
not exist. Either the OID is invalid, or the
particular table row does not exist (is out of

bounds).
The column specified does not exist.

An attempt was made to set a variable that
is read only.

The table row exists (is within the bounds of
the table) but is currently unused (empty).

An attempt was made to update a field with
an invalid value.

7-12 Management Programming Using SNMP

Part

Reference Information

Part II contains reference information for the ACMS Remote Manager.

8

Management APIs

The Management APIs are intended to be called from Open Network Computing
(ONC) Remote Procedure Call (RPC) clients. ONC RPC Interface Definition
Language (IDL) for all procedures is contained in the file ACMS$RM_
EXAMPLES:ACMSMGMT_RPC.X.

Programmers who write client programs are strongly urged to become familiar
with the contents of this file. Many programming questions can be answered by
looking at the actual RPC definitions. All structure definitions, for example, are
contained within this file.

The procedures documented in this chapter are based on the most current record
and field data available with Version 4.4 of the Remote Manager. Procedures
names with _2 indicate new or modified API functions that take advantage of
this new data. These procedures should only be called from a Remote Manager
Version 4.4 server system.

To ensure backwards compatibility, the _I version of all calls is still available and
provided with the Remote Manager Version 4.4 software.

Note

The acms$mgmt_get_creds procedure is not included in the ACMSMGMT_
RPC.X IDL because it is not a remote procedure call. It is a statically
linked, locally executed function for those clients performing explicit
authentication. The ACMS$MGMT_GET_CREDENTIALS.OBJ object
module is located in the ACMS$RM_EXAMPLES directory.

The acms$mgmt_get_creds procedure is for use by ONC RPC clients only.

8.1 Common RPC Fields

The tables in this section list commonly used fields and their values.

8.1.1 Collection Classes

Table 8-1 shows the symbolic names for Remote Manager collection classes.

Management APIls 8-1

Management APls
8.1 Common RPC Fields

Table 8-1 Collection Classes

Symbolic Name

Description

MGMT_CLASS_ALL
MGMT_CLASS_CFG
MGMT_CLASS_ERROR
MGMT_CLASS_ID
MGMT_CLASS_POOL
MGMT_CLASS_RT

All classes
Config class
Error class
ID class
Pool class

Runtime class

8.1.2 Interface Types

Table 8-2 shows the symbolic names for Remote Manager interfaces.

Table 8-2 Interface Types

Symbolic Name

Description

MGMT_IF_RPC
MGMT_IF_SNMP

Remote Procedure Call (RPC) interface

Simple Network Management Protocol (SNMP) interface

8.1.3 Enable States

Table 8-3 shows the symbolic names for Remote Manager enable states.

Table 8-3 Enable States

Symbolic Name Description
MGMT_STATE_DISABLED Disabled
MGMT_STATE_ENABLED Enabled

8.1.4 Entity Types

Table 8—4 shows the symbolic names for Remote Manager entity types.

Table 8-4 Entity Types

Symbolic Name

Description

MGMT_ACC
MGMT_AGENT
MGMT_ALL
MGMT_CP
MGMT_EXC
MGMT_MGR
MGMT_QTI
MGMT_SER
MGMT TG
MGMT_TSC
MGMT _UNSUPPORTED

Application Central Controller (ACC) process
User-written agents

All entities

Command Process (CP) process

Application Execution Controller (EXC) process
Remote Manager process

Queued Task Initiator (QTI) process

Procedure server types

Task groups

Terminal Subsystem Controller (TSC) process

Null value

8-2 Management APIs

8.1.5 Facility Types

Management APls
8.1 Common RPC Fields

Table 8-5 shows the symbolic names for Remote Manager facility types.

Table 8-5 Facility Types

Symbolic Name

Description

MGMT_FAC_ALL
MGMT_FAC_DCL

MGMT_FAC_LOG
MGMT_FAC_MGR
MGMT_FAC_MSGPROC

MGMT_FAC_PROCMON
MGMT_FAC_RPC
MGMT_FAC_SEC
MGMT_FAC_SNAP
MGMT_FAC_SNMP

MGMT_FAC_TIMER
MGMT_FAC_TRAP

Any facility type.

A thread that manages a spawned DCL process. The DCL
process is used to execute ACMSOPER commands.

The event log writer thread.
The mainline Remote Manager process.

A thread that handles messages coming in from ACMS
processes.

A thread dedicated to monitoring processes.

The RPC interface thread (listener and procedures).
Security routines in the Remote Manager.

A thread dedicated to performing data snapshots.

The SNMP interface thread (message loop and
procedures).

A thread that controls timers for the Remote Manager.
A thread that sends out SNMP traps.

8.1.6 Running States

Table 8-6 shows the symbolic names for Remote Manager running states.

Table 8-6 Running States

Symbolic Name

Description

MGMT_STATE_INITED
MGMT_STATE_INITING

MGMT_STATE_LOAD_
DONE

MGMT_STATE_LOADING
MGMT_STATE_STARTED
MGMT_STATE_STARTING
MGMT_STATE_STOPPED

Process or object has initialized.
Process or object is initializing.

Process or object has finished loading.

Process or object is loading itself.
Process or object has started and is ready to run.
Process or object is starting the mainline.

Process or object is stopped.

8.1.7 Severity Codes

Table 8-7 shows the symbolic names for Remote Manager severities.

Severities are generally reported as simple severities (informational, warning,
error, fatal) but may be combined by logically ORing the values when used as
selection criteria (such as for selecting log records).

Management APIls 8-3

Management APls
8.1 Common RPC Fields

Table 8-7 Severity Codes

Symbolic Name Description
MGMT _SEV_ERR Error
MGMT_SEV_FATAL Fatal
MGMT_SEV_INFO Informational
MGMT_SEV_NONE Null value
MGMT_SEV_WARN Warning

8.1.8 Trap Parameters

Table 8-8 shows the symbolic names for Remote Manager trap parameters.

Table 8-8 Trap Parameters

Symbolic Name Description
MGMT _EXISTS Existence traps
MGMT_SEVERITY Remote Manager severity traps

8.2 Thread-Safe and Non-Thread Safe Clients

Each of the procedures documented in this chapter (and those in ACMS$MGMT_
EXAMPLES.C) are designed to use the thread-safe client stub provided with

the Remote Manager, as described in the file ACMS$MGMT_EXAMPLES_
BUILD.COM. As a result, each procedure contains one or more "free" calls that
prevent memory leaks in multithreaded client implementations.

If you intend to build a multithreaded client, you must modify any existing,
customized API functions to include these calls, then recompile them along with
the thread-safe client stub.

If you want to implement a non-thread safe client using the RPC-generated stub,
omit the "free" calls. See ACMS$MGMT EXAMPLES BUILD.COM for detailed
build instructions.

8-4 Management APIs

ACMSMGMT_ADD_COLLECTION_2

8.3 ACMSMGMT_ADD_COLLECTION_2

Format

Parameters

This procedure adds entries to the Remote Manager Collection table. Collection
table entries can also be modified (see Section 8.35) and deleted (see Section 8.6).

coll_status_rec_2 *acmsmgmt_add_collection_2(coll_config_rec_2 *set_struct,CLIENT *cl)

set_struct

Type:
Access:
Mechanism:
Usage:

cl

Type:
Access:

Mechanism:
Usage:

Coll_config_rec_2

Read

By reference

Structure that contains the following client identification and
Collection table fields.

client_id

Type:

Access:

Mechanism:

Usage:

coll

Type:

Access:

Mechanism:

Usage:

CLIENT *
Read
By value

Integer

Read

By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Coll_update_rec_r_2
Read
By value

Structure containing a Collection table record.
Collection table fields are described in Section 9.4.
See the Description section for information on
how to initialize this record.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Management APIls 8-5

ACMSMGMT_ADD_COLLECTION_2

Return Value

Description

Type: Coll_status_rec_2

Access: write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type coll_update_rec_r_2, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

status

Type: Integer

Access: write

Mechanism: By value

Usage: Failure return code.

data_warn

Type: Coll_output_rec_r_2

Access: write

Mechanism: By value

Usage: Structure containing a Collection table record.

The entries in this field contain status codes
corresponding to the fields in the coll structure.
See the Description section for a discussion of
how to determine the update status for any field.

This procedure adds a row to the Collection table (see Section 9.4).

Additions to this table are not durable; that is, they do not survive a restart of
the Remote Manager. To make nondynamic, permanent updates to the Collection
table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_
class. The combination of these fields must be unique within the collection table
for the row to be added. Table 8—4 and Table 8—1 contain symbolic values used to
populate the entity_type and collection_class fields; entity_name is specified as a
null-terminated string.

ID and Config class rows cannot be added. By default, these classes are always
enabled for all ACMS processes.

The Collection table contains a fixed number of rows, which is determined by the
Remote Manager parameter total_entity_slots. This is a nondynamic parameter
and requires a restart of the ACMS system in order to be changed. The default is
20 rows.

Additions to the Collection table are processed immediately, and may affect more
than one ACMS process. See Section 5.1 for a discussion of how the Collection
table affects ACMS data collection.

8-6 Management APIs

Example

ACMSMGMT_ADD_COLLECTION_2

int add_collection_ data(int client_id,CLIENT *cl)

{

}

static char c_name_all[] = "*";

static coll_config_rec_2 set_struct;

struct coll _status_rec_2 *status_rec;
set_struct.client_id client_id;
set_struct.coll.entity_type MGMT_ALL;
set_struct.coll.entity_name c_name_all;

set_struct.coll.collection_class
set_struct.coll.collection_state

st
if

if

}

MGMT_CLASS_RT;
MGMT_STATE_DISABLED;

atus_rec = acmsmgmt_add_collection_2 (&set_struct,cl);

(!status_rec) {
printf("\n Call to add collection failed");
return (MGMT_FAIL) ;

(status_rec->status == MGMT_WARN) {
printf("\nThe following updates failed: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type == MGMT_FAIL)
printf("\n entity type invalid");
if (status_rec->coll_status_rec_2_u.data_warn.collection_state
== MGMT_FAIL)
printf ("\n coll_state invalid");
if (status_rec->coll_status_rec_2_u.data_warn.storage_state == MGMT_FAIL)
printf ("\n storage_state invalid");
if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
== MGMT_FAIL)
printf("\n storage_interval invalid");

}

else if (status_rec->status != MGMT SUCCESS) ({

printf("\nCall to add collection with status %d",
status_rec->coll_status_rec_2 u.rc);
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);
return (MGMT_FAIL);

else

printf("\nCall to add collection was executed");
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);

return(0) ;

In the preceding example, the ACMSMGMT_ADD_COLLECTION_2 procedure is
called to add a row to the Collection table. The row added is for entity type of *
(all), entity name of * (all), and collection class RUNTIME. The collection state is
set to DISABLED. If the call succeeds, a Collection table row is added, and the
RUNTIME collection state for some processes may be disabled. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

Management APIls 8-7

ACMSMGMT_ADD_ERR_FILTER_2

8.4 ACMSMGMT_ADD_ERR_FILTER_2

Format

Parameters

This procedure adds entries to the ACMS Error Filter table. Error Filter table
entries can also be deleted (see Section 8.7.

error_filter_config_rec_r_2 *acmsmgmt_add_err_filter_2(err_filter_config_rec_r_2 *err_filter_cfg_rec,CLIENT *cl2)

err_filter_cfg_rec

Type:
Access:
Mechanism:
Usage:

cl2

Type:
Access:

Mechanism:

Usage:

8-8 Management APIs

Err_filter_config_rec_r_2

Read
By reference

Structure that contains the following client identification and
Error Filter table fields.

client_id
Type:
Access:
Mechanism:
Usage:

error_code
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

Integer
Read
By value

Structure containing an Error Filter table
record. Error Filter table fields are described
in Section 9.6. See the Description section for
information on how to initialize this record.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Return Value

Description

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_ADD_ERR_FILTER_2

Err filter status_rec

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type err_filter_update_rec_r, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

status

Type:

Access:

Mechanism:

Usage:

data_warn

Type:

Access:

Mechanism:

Usage:

Integer

Write

By value

Failure return code.

Err_filter_update_rec_r
Write
By value

Structure containing an Error Filter table record.
The entries in this field contain status codes
corresponding to the fields in the err_filter_entry
structure. See the Description section for a
discussion of how to determine the update status
for any field.

This procedure adds a row to the Error Filter table (see Section 9.6).

Additions to this table are durable; that is, they do survive a restart of the
Remote Manager.

Calls to this procedure must specify a valid message_code for the row to be added.

The Error Filter table is dynamic and does not have a fixed upper boundary. The
size of the table fluctuates as entries are added and deleted. When a row becomes
empty or unoccupied, it is removed and the remaining rows are renumbered.

Additions to the Error Filter table are processed immediately, and may affect
more than one ACMS process. See Section 5.1 for a discussion of how the Error
Filter table affects ACMS error logging.

Management APIls 8-9

ACMSMGMT_ADD_ERR_FILTER_2

Example

int add_err filter(int client_id,CLIENT *cl2)

}

int *status;
err_filter config_rec_r_2 set struct;

set_struct.client_id = client_id;
set_struct.err_code = 16637820;

status = acmsmgmt_add_err_ filter_ 2 (&set_struct,cl2);

if (!status) {
printf("\n Call to add filter failed");
return (MGMT_FAIL) ;

}

if (*status != MGMT_SUCCESS) {
printf("\nCall to add error filter failed with status %d", *status);
free(status);
return (MGMT_FAIL) ;

}
else {
printf ("\nCall to add error filter was executed");
}
free(status);
return(0);

In the preceding example, the acmsmgmt_add_err_filter_2 procedure is called
to add a row to the Error Filter table. If the call succeeds, the filter is added to
the Error Filter table. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8-10 Management APIs

ACMSMGMT_ADD_TRAP_1

8.5 ACMSMGMT_ADD_TRAP_1

Format

Parameters

This procedure adds entries to the Remote Manager Trap table. Trap table
entries can also be modified (see Section 8.42) and deleted (see Section 8.8).

trap_status_rec *acmsmgmt_add_trap_1(trap_config_rec *set_struct, CLIENT *cl)

set_struct

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Trap_config_rec

Read

By reference

Structure that contains the following client identification and
Trap table fields.

client_id
Type:
Access:
Mechanism:
Usage:

trap_entry
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

Trap_update_rec_r
Read
By value

Structure containing a Trap table record. Trap
table fields are described in Section 9.14. See
the Description section for information on how to
initialize this record.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APIs 8-11

ACMSMGMT_ADD_TRAP_1

Return Value

Type:

Access:

Mechanism:

Usage:

Description

Trap_status_rec

Write

By reference

Pointer to a record that contains a union consisting of either

a failure code or a structure of type trap_update_rec_r, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

status

Type:

Access:

Mechanism:

Usage:

data_warn

Type:

Access:

Mechanism:

Usage:

Integer

Write

By value

Failure return code.

Trap_update_rec_r
Write
By value

Structure containing a Trap table record.

The entries in this field contain status codes
corresponding to the fields in the trap_entry
structure. See the Description section for a
discussion of how to determine the update status
for any field.

This procedure adds a row to the Trap table (see Section 9.14).

Additions to this table are not durable; that is, they do not survive a restart
of the Remote Manager. To make nondynamic, permanent updates to the Trap
table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_
trap. The combination of these fields must be unique within the Trap table for
the row to be added. Table 8-1 and Table 8—4 contain symbolic values used
to populate the collection_class and entity_type fields; symbolic values to the
param_to_trap field are described in Table 8-8.

Setting fields trap_min, trap_max and/or severity to -1 causes them to be
ignored when trap conditions are evaluated at run time; see Section 7.8 for more
discussion. Otherwise, they must contain valid values for the row to be added
(trap_min and trap_max must be position numbers; severity must be one of the
valid severities listed in Table 8-7).

Additions to the Trap table are processed immediately, and may affect more than
one ACMS process. See Section 7.8 for a discussion of how to set SNMP traps.

The size of the Trap table is unbounded.

8-12 Management APIs

Example

int add_trap_

{

static cha
static tra
struct tra

set_struct.
set_struct.

set_struct

set_struct.
set_struct.
set_struct.
set_struct.

status_rec

if (!statu
printf (

ACMSMGMT_ADD_TRAP_1

data(int client_id,CLIENT *cl)

r c_name_all[2] = "*";

p_config_rec set_struct;

p_status_rec *status_rec;
client_id client_id;
trap_entry.entity_type MGMT_ACC;

.trap_entry.entity_name c_name_all;

trap_entry.param_to_trap MGMT_EXISTS;
trap_entry.min -1;
trap_entry.max 0;
trap_entry.severity MGMT_SEV_ERR;
= acmsmgmt_add_trap_1 (&set_struct,cl);
s_rec) |

"\n Call to add trap failed");

return (MGMT_FAIL) ;

if (status
printf (
if (sta
pri
if (sta
pri
if (sta
pri
if (sta
pri
if (sta
pri

}
else if (s

printf(

xdr_f
free(

_rec->status == MGMT_WARN) {

"\nThe following fields are invalid: ");
tus_rec->trap_status_rec_u.data_warn.entity_type == MGMT_FAIL)
ntf("\n entity_type not found or invalid");
tus_rec->trap_status_rec_u.data_warn.param_to_trap == MGMT_FAIL)
ntf("\n param not found or invalid");
tus_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)
ntf("\n min invalid");
tus_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)
ntf("\n max invalid");
tus_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)
ntf("\n severity invalid");

tatus_rec->status != MGMT_SUCCESS) ({
"\nCall to add trap failed with status %d",
status_rec->trap_status_rec_u.rc);
ree(xdr_trap_status_rec, status_rec);
status_rec);

return (MGMT_FAIL) ;

}
else
printf (
xdr_f
free(
return(0)

}
In the preced

"\nCall to add trap was executed");
ree(xdr_trap_status_rec, status_rec);
status_rec);

’

ing example, the ACMSMGMT_ADD_TRAP_1 procedure is called to

add a row to the Trap table. The new row will contain an entity type of ACC, an
entity name of * (all), and a trap parameter of EXISTS. The value of the trap_
min field is -1 (ignored), and the value of the trap_max field is 0. The severity
of the trap will be error. The effect of this addition is to cause an error-level
trap to be generated whenever the ACC is started on the target node. If the call

succeeds, the

trap is added to the Trap table. Otherwise, an error message is

displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

Management APls 8-13

ACMSMGMT_DELETE_COLLECTION_1

8.6 ACMSMGMT_DELETE_COLLECTION_1

Format

Parameters

This procedure deletes entries from the Remote Manager Collection table.
Collection table entries can also be added (see Section 8.3) and updated (see

Section 8.35).

int *acmsmgmt_delete_collection_1(coll_del_rec *set_struct,CLIENT *cl)

set_struct

Type:

Access:

Mechanism:

Usage:

8-14 Management APIs

Coll_del rec
Read
By reference

Structure that contains the following client identification and
Collection table fields.

client_id
Type:
Access:
Mechanism:
Usage:

entity_type
Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Integer
Read
By value

The type of ACMS entity the process is. Entity
types are listed in Table 8—4.

ACMSMGMT_DELETE_COLLECTION_1

entity_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Pointer to a character string containing a full

or partial entity name. May contain wildcard
characters (%, !).

collection_class

Type: Integer
Access: Read
Mechanism: By value
Usage: The type of collection class to delete. Collection
classes are listed in Table 8-1.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Return Value

Description

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or failure status
code. MGMT _SUCCESS indicates success. Other values indicate
failure.

This procedure deletes a row from the Collection table (see Section 9.4).

Calls to this procedure must specify entity_type, entity_name, and collection_
class. The combination of these fields must exactly match an existing row in

the table for the row to be deleted. Table 8-1 and Table 8-4 contain symbolic
values used to populate the collection_class and entity_type fields; entity_name is
specified as a null-terminated string.

ID and CONFIG class rows cannot be deleted.

The Collection table contains a fixed number of rows, which is determined by the
Remote Manager Parameter table field total_entity_slots. This is a nondynamic
parameter and requires a restart of the ACMS system in order to be changed.
The default is 20 rows. When a row is deleted, it becomes immediately available
for reuse.

Management APIls 8-15

ACMSMGMT_DELETE_COLLECTION_1

Deletions from the collection table are processed immediately, and may affect
more than one ACMS process. See Section 5.1 for a discussion of how the
Collection table affects ACMS data collection.

Example

int delete_collection_data(int client_id,CLIENT *cl)
{

static char c_name_all[] = "*";
static coll_del_rec set_struct;
int *status;

set_struct.client_id = client_id;
set_struct.entity_type = MGMT_ALL;
set_struct.entity_name = c_name_all;

set_struct.collection_class = MGMT CLASS_RT;
status = acmsmgmt_delete_collection_1 (&set_struct,cl);

if (!status) {
printf("\n Call to delete collection failed");
return (MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to delete collection failed with status %d", *status);
free (status);
return (MGMT_FAIL);
}
else
printf("\nCall to delete collection was executed");
free (status);
return(0) ;

}

In the preceding example, the ACMSMGMT_DELETE_COLLECTION_1
procedure is called to delete a row from the Collection table. The row deleted
is for entity type of * (all), entity name of * (all), and a collection class of
RUNTIME. If the call succeeds, the collection table row is deleted, and the
RUNTIME collection state for some processes may be changed depending on the
collection state of the row before it was deleted. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

8-16 Management APIs

ACMSMGMT_DELETE_ERR_FILTER_2

8.7 ACMSMGMT_DELETE_ERR_FILTER_2

Format

Parameters

This procedure deletes entries from the Remote Manager Error Filter table. Error
Filter table entries can also be added (see Section 8.4).

int *acmsmgmt_delete_err_filter_2(err_del_rec *set_struct,CLIENT *cl2)

set_struct

Type:

Access:

Mechanism:

Usage:

cl2

Type:

Access:

Mechanism:

Usage:

Err _del rec
Read

By reference

Structure that contains the following client identification and
Error Filter table fields.

client_id
Type:
Access:
Mechanism:
Usage:

error_code
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Integer
Read
By value

The type of ACMS entity the process is. Entity
types are listed in Table 8—4.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APIls 8-17

ACMSMGMT_DELETE_ERR_FILTER_2

Return Value

Description

Example

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

This procedure deletes rows from the Error Filter table (see Section 9.6).

The Error Filter table is dynamic and does not have a fixed upper boundary. The
size of the table fluctuates as entries are added and deleted. When a row becomes
empty or unoccupied, it is removed and the remaining rows are renumbered.

Changes to the Error Filter table are processed immediately, and may affect more
than one ACMS process. See Section 5.1 for a discussion of how the Error Filter
table affects ACMS error logging.

int delete_err_filter(int client_id,CLIENT *cl2)

}

set_struct.client_id =
set_struct.err_code = 16638720;

int *status;
err_filter config rec_r_2 set_struct;

client_id;

status = acmsmgmt_delete_err filter_ 2 (&set_struct,cl2);

(!status) {
printf("\n RPC Call to delete filter failed");
return (MGMT_FAIL) ;

(*status != MGMT_SUCCESS) {

printf("\n Call to delete error filter failed with status %d", *status);
free(status);

return (MGMT_FAIL) ;

else {

printf ("\n Call to delete error filter was executed");

free(status);
return(0);

In the preceding example, the acmsmgmt_delete_err_filter_2 procedure is called
to delete a row from the Error Filter table. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8-18 Management APIs

ACMSMGMT_DELETE_TRAP_1

8.8 ACMSMGMT_DELETE_TRAP_1

Format

Parameters

This procedure deletes entries from the Remote Manager Trap table. Trap table
entries can also be added (see Section 8.5) and updated (see Section 8.42).

int *acmsmgmt_delete_trap_1(trap_del_rec *set_struct,CLIENT *cl)

set_struct

Type:

Access:

Mechanism:

Usage:

Trap_del_rec

Read
By reference

Structure that contains the following client identification and
Trap table fields.

client_id
Type:
Access:
Mechanism:
Usage:

entity_type
Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Integer
Read
By value

The type of ACMS entity the process is. Entity
types are listed in Table 8—4.

Management APIls 8-19

ACMSMGMT_DELETE_TRAP_1

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

Description

entity_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Pointer to a character string containing a full

or partial entity name. May contain wildcard
characters (%, !).

param_to_trap

Type: Integer

Access: Read

Mechanism: By value

Usage: The type of parameter to be monitored for
trap conditions. Parameter types are listed in
Table 8-8.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Integer
Write
By reference

Pointer to a status code containing a success or failure status
code. MGMT_SUCCESS indicates success. Other values indicate
failure.

This procedure deletes rows from the Trap table (see Section 9.14).

Calls to this procedure must specify entity_type, entity_name, and param_to_
trap. These fields must exactly match an existing record in the Trap table for
the delete to be performed. Table 8-1 and Table 8—4 contain symbolic values
used to populate the collection_class and entity_type fields; symbolic values to the
param_to_trap field are described in Table 8-8.

Deletions from the Trap table are processed immediately and may affect more
than one ACMS process. See Section 7.8 for a discussion of how to set SNMP

traps.

8-20 Management APIs

Example

ACMSMGMT_DELETE_TRAP_1

int delete_trap_data(int client_id,CLIENT *cl)

{

}

static char c_name_all[2] = "*";
static trap_del_rec set_struct;
static int *status;

set_struct.client_id client_id
set_struct.entity_type MGMT_ACC;
set_struct.entity_name c_name_all;

set_struct.param_to_trap = MGMT_EXISTS;

status = acmsmgmt_delete_trap_1(&set_struct,cl);

if (!status) {
printf("\n Call to delete trap failed");
return (MGMT_FAIL) ;

}

if (*status != MGMT_SUCCESS) {
printf ("\nCall to delete trap failed with status %d", *status);
free(status);
return (MGMT_FAIL) ;
}
else
printf("\nCall to delete trap was executed");
free(status);
return(0) ;

In the preceding example, the ACMSMGMT_DELETE_TRAP_1 procedure is
called to delete a row from the Trap table. The row to be deleted contains an
entity type of ACC, an entity name of * (all), and a trap parameter of EXISTS.
If the call succeeds, the trap is deleted from the Trap table. Otherwise, an error
message is displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

Management APIs 8-21

ACMSMGMT_GET_ACC_2

8.9 ACMSMGMT_GET_ACC_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain class information
about an ACMS Central Controller (ACC) on a local or remote node.

acc_rec_out_2 *acmsmgmt_get_acc_2 (sub_id_struct *sub_rec,CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

8-22 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Acc_rec_out_2

Write

By reference

Pointer to record returned. If NULL, the RPC has failed. If not
null, the record contains either an error code in the status field

(the RPC succeeded, but the call failed for another reason) or the
data requested.

Description

Example

ACMSMGMT_GET_ACC_2

This procedure obtains class information about an ACC. The return pointer
points to a record of type acc_rec_out_2, which contains a union consisting of
either a failure return code or a pointer to an ACC record. See Section 9.2 for a
description of the fields in the ACC record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

int get_acc_data(int client_id,CLIENT *cl)
{

acc_rec_r_2 *accs;
acc_rec_out_2 *acc_rec;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
acc_rec = acmsmgmt_get_acc_2 (&sub_rec,cl);

if (lacc_rec) {
printf("\n RPC Call to get ACC data failed");
return (MGMT_FAIL);

}

if (acc_rec->status != MGMT_SUCCESS) {
printf("\n Call to get ACC data failed, returning status code %d",
acc_rec->status);
xdr_free(xdr_acc_rec_out_2, acc_rec);
free(acc_rec);
return(status) ;

}
accs = &acc_rec->acc_rec_out_2_u.acc_rec;

printf("\n ACC version 1s %s",accs->acms_version);
xdr_free(xdr_acc_rec_out_2, acc_rec);
free(acc_rec);

return(0);

}

In the preceding example, the ACMSMGMT_GET_ACC_2 procedure is called

to fetch ACC management information. If the call succeeds, the ACC version is
printed from the retreived record. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APls 8-23

ACMSSMGMT_GET_CREDS

8.10 ACMSSMGMT_GET_CREDS

Format

Parameters

Clients that support explicit authentication call this procedure to obtain a client
ID. A client ID is issued for the client process when the client process logs in
to the ACMS Remote Manager using the ACMSMGR LOGIN command. Once
obtained by this procedure, the client ID is used on subsequent RPC calls.

int acms$mgmt_get_creds(char *server_node,char *user_name, int *client)

server_node

Type:

Access:

Mechanism:

Usage:

user_name

Type:

Access:

Mechanism:

Usage:

client

Type:

Access:

Mechanism:

Usage:

8-24 Management APIs

String
Read
By reference

Name of the node the server that issued the client ID was
running on; the node that will be accessed. Client_id is valid
only for the server that issued it.

String
Read
By reference

Name of the user the client ID was issued to, and on whose
behalf the client ID is used. The name may the same as or
different than the account name of the client process.

Integer
Write
By reference

The client ID to be used for the target user on the target server
node. The client ID is valid only for the client process that
created it.

ACMSSMGMT_GET_CREDS

Return Value

Description

Type: Integer
Access: Write
Mechanism: By value
Usage: The completion status of the call. The following are possible
return values:
Value Description
MGMT _SUCCESS Client ID was fetched; credentials
verified.
MGMT _NO_ Can’t translate UCX$INET HOST
NODELOGICAL logical name to get local node
name.
MGMT NO_CREDS_FILE Credentials file was not found.
MGMT _CREDS_DATA_ Credentials file is corrupt.
ERR
MGMT_WRONG_PID PID in credentials file doesn’t
match client process’s PID.
MGMT_WRONG_NODE Node name in credentials file
doesn’t match server node
argument.

Clients call this procedure to fetch a previously created client ID from an
encrypted credentials file. Credentials files can be created only by the ACMSMGR
LOGIN command. They are stored in the directory pointed to by the logical name
ACMS$MGMT_CREDS_DIR (or SYS$LOGIN if ACMS$MGMT_CREDS_DIR is
not defined). Credentials files are named using the following format:

user-name_pid_target-node_current-node.dat
In this format:

user-name must match the user_name argument string.

pid must match the PID of the client process.

target-node must match the server_node argument string.

current-node must be the local node name (as determined by the logical name
UCX$INET_HOST).

Note

For credentials information to be created, the client process must first
execute the login command of the ACMSMGR utility. The only way to
create credentials files is by using the ACMSMGR utility.

If the credentials file cannot be located, opened, and read, an error is returned.
Once opened and read, the credentials in the file are verified. If the credentials
are acceptable, the client_id field is populated and the procedure returns a status
that indicates success.

This procedure is statically linked and locally executed.

Management APls 8-25

ACMSSMGMT_GET_CREDS

Example

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;

char sname[] = "sparks";

char *username_p, username[l13] = "";
int client_id;

int status;

int acms$mgmt_get_creds();

int main ()

{

/* 1f the logical is defined, credential information will be used */
username_p = getenv ("ACMSSMGMT USER") ;
if (username_p)

strcpy (username, username_p) ;

/* establish an rpc connection to the server */
cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

/* 1f the connection was established */
if (cl !'= NULL) {

/* create a security context */
cl->cl_auth = authunix_create_default();
client id = 0;

/* optionally, get credentials for this user & server */
if (strlen(username))
status = acms$mgmt_get_creds (sname,username, &client_id);

}

return(l);

}

The preceding example is a program that performs initialization for an ACMS
Remote Manager client. The program calls the acms$mgmt_get_creds procedure
to obtain the client ID for the user whose name is defined by the logical name
ACMS$MGMT USER on the node SPARKS.

8-26 Management APIs

ACMSMGMT_GET_ERR_FILTER_2

8.11 ACMSMGMT_GET_ERR_FILTER_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a listing of system
messages currently being filtered from the Remote Manager, and subsequently,
the error log.

int *acmsmgmt_get_err_filter_2 (sub_id_struct *sub_id_rec,CLIENT *cl2)

sub_id_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.
cl2
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT_CREATE.

Management APIls 8-27

ACMSMGMT_GET_ERR_FILTER_2

Return Value

Description

Example

Type: Err_filter_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to record returned. If NULL, the RPC has failed. If not

null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

This procedure obtains class information about an Error Filter. The return
pointer points to a record of type err_filter_data_list_2, which is a union
containing either an error code or a pointer to an Error Filter record. See
Section 9.6 for a description of the fields in the Error Filter record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

int get_err_filter(int client_id,CLIENT *cl2)

int status;
err_filter data_list_2 *err_filter;
err_filter_link_2 *nl;

struct sub_id_struct sub_rec;
sub_rec.client_id = client_id;
err_filter = acmsmgmt_get_err_ filter 2 (&sub_rec,cl2);

if (lerr_filter) {
printf("\n RPC Call to get Error Filter failed");
return (MGMT_FAIL) ;

}

if (err_filter->status != MGMT_SUCCESS) {
printf("\n Call to get Error Filter failed, returning status code %d",
err_filter->status);
status = err filter->status;
xdr_free(xdr_err_filter data_list 2, err_filter);
free(err_filter);
return(status);

}

for (nl = err_filter->err filter data_list_2 u.list; nl != NULL;
nl = nl->pNext) {
printf("Filter name = %s, and code =%X\n",
nl->err_filter_data.err_msg_name,
nl->err_filter_data.err_code);

}

xdr_free(xdr_err_filter data_list 2, err_filter);
free(err_filter);
return(0) ;

8-28 Management APIs

ACMSMGMT_GET_ERR_FILTER_2

}

In the preceding example, the acmsmgmt_get_err_filter_2 procedure is called to
fetch error filter information. If the call succeeds, the message code and symbolic
name are fetched. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this

procedure.

Management APls 8-29

ACMSMGMT_GET_MGR_STATUS _1

8.12 ACMSMGMT_GET_MGR_STATUS _1

ACMS Remote Manager clients call this procedure to obtain run-time status
information about a Remote Manager on a particular node.

Format

mgr_status_rec_out *acmsmgmt_get_mgr_status_1(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

8-30 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Return Value

Description

Example

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_GET_MGR_STATUS _1

Mgr_status_rec_out

Write

By reference

Pointer to a record that contains a union consisting either of a
failure code or a pointer to a structure of type mgr_status_rec,

which contains the status data. The following are the contents of
this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data

Type: Mgr_status_rec

Access: Write

Mechanism: By reference

Usage: Remote Manager status data record. Contains

the fields from the Manager Status table (see
Section 9.9).

This procedure gets run-time information about a Remote Manager on a
particular node. The return pointer points to a record of type mgr_status_
rec_out, which contains a union consisting of a failure returns code or a pointer
to a manager status record. See Section 9.9 for a description of the fields in the
manager status record.

This procedure does not require the ACMS run-time system in order to execute.

int get_mgr_data(int client_id,CLIENT *cl)

{

mgr_status_rec *mgrs;
mgr_status_rec_out *mgr_data;
static struct sub_id_struct sub_rec;

int status;

sub_rec.client_id = client_id;

mgr_data

acmsmgmt_get_mgr_status_1 (&sub_rec,cl);

if (!mgr_data) {
printf("\n RPC Call to get RM data failed");
return (MGMT_FAIL) ;

}

Management APIls 8-31

ACMSMGMT_GET_MGR_STATUS _1

if (mgr_data->status != MGMT_SUCCESS) {
printf("\n Call to get RM data failed, returning status code %d",
mgr_data->status);
status = mgr_data->status;
xdr_free(xdr_mgr_status_rec_out, mgr_data);
free(mgr_data) ;
return(status);

}
mgrs = &mgr_data->mgr_status_rec_out_u.data;
printf("\n RPC UDP state is %d",mgrs->rpc_udp_state);
xdr_free(xdr_mgr_status_rec_out, mgr_data);
free(mgr_data) ;
return(0) ;
}
In the preceding example, the ACMSMGMT_GET_MGR_STATUS_1 procedure
is called to fetch the contents of the Manager Status table. If the call succeeds,
the current state of the TCP/UDP protocol in the RPC interface is printed from
the retrieved record. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this

procedure.

8-32 Management APIs

ACMSMGMT_GET_PARAM_2

8.13 ACMSMGMT_GET_PARAM_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain configuration
information about a Remote Manager on a particular node.

param_rec_out2 *acmsmgmt_get_param_2(sub_id_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Param_rec_out2
Write
By reference

Pointer to record returned. If NULL, the RPC has failed. If not
null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason), or the
data requested.

Management APls 8-33

ACMSMGMT_GET_PARAM_2

Description

Example

This procedure gets configuration information about a Remote Manager on a
particular node. The return pointer points to a record of type param_rec_out2,
which contains a union consisting of either a failure return code or a pointer
to a Parameter record. See Section 9.10 for a description of the fields in the

Parameter record.

This procedure does not require the ACMS run-time system in order to execute.

int get_param_ data(int client_id,CLIENT *cl)

{

}

int x = 0;
int y = 0;
param_rec?2 *params;

param_rec_out2 *param_rec;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
param_rec = acmsmgmt_get_param_2 (&sub_rec,cl);

if (!param_rec) {
printf("\n RPC Call to get Parameter data failed");
return (MGMT_FAIL);

}

if (param_rec->status != MGMT_SUCCESS) {
printf("\n Call to get Parameter data failed, returning status code %d",
param_rec->status) ;
status = param_rec->status;
xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec) ;
return(status) ;

}
params = ¶m_rec->param_rec_out2_u.data;

printf ("\n Maximum logins allowed is %d",params->max_logins);
xdr_free(xdr_param_rec_out2, param_rec);
free(param_rec) ;

return(0) ;

In the preceding example, the ACMSMGMT_GET_PARAM_2 procedure is called
to fetch the contents of the Parameter table. If the call succeeds, the maximum
number of logins is printed from the retrieved record. Otherwise, an error
message is displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

8-34 Management APIs

ACMSMGMT_GET_QTI_2

8.14 ACMSMGMT_GET_QTI_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain class information
about a Queued Task Initiator (QTI) on a local or remote node.

qti_rec_out_2 *acmsmgmt_get_qti_2(sub_id_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Qti_rec_out2
Write
By reference

Pointer to record returned. If NULL, the RPC has failed. If not
null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Management APIls 8-35

ACMSMGMT_GET_QTI_2

Description

Example

This procedure obtains class information about a QTI on a local or remote node.
The return pointer points to a record of type qti_rec_out_2, which contains a
union consisting of either a failure return code or a pointer to a QTI record. See
Section 9.11 for a description of the fields in the QTI record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

int get_qgti_data(int client_id,CLIENT *cl)
{

qti_rec_r_2 *gtis;
gti_rec_out_2 *qti_rec;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
gti_rec = acmsmgmt_get_gti_2 (&sub_rec,cl);

if (!qgti_rec) {
printf("\n RPC Call to get QTI data failed");
return (MGMT_FAIL);

}

if (gti_rec->status != MGMT_SUCCESS) {
printf("\n Call to get QTI data failed, returning status code %d",
gti_rec->status);
status = gti_rec->status;
xdr_free(xdr_qti_rec_out_2, qti_rec);
free(qgti_rec);
return(status) ;

}
gtis = >i_rec->gti_rec_out_2_u.qti_rec;

printf("\n QTI process name is %$s",qgtis->process_name);
xdr_free(xdr_qgti_rec_out_2, qti_rec);
free(qgti_rec);

return(0) ;

}

In the preceding example, the ACMSMGMT_GET_QTI_2 procedure is called to
fetch QTT management information. If the call succeeds, the QTI process name is
printed from the retrieved record. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

8-36 Management APIs

ACMSMGMT_GET_TSC_2

8.15 ACMSMGMT_GET_TSC_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain class information
about a Terminal Subsystem Controller (TSC) on a local or remote node.

tsc_rec_out_2 *acmsmgmt_get_tsc_2(sub_id_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Tsc_rec_out_2
Write
By reference

Pointer to record returned. If NULL, the RPC has failed. If not
null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Management APIls 8-37

ACMSMGMT_GET_TSC_2

Description

Example

The return pointer points to a record of type tsc_rec_out_2, which contains a
union consisting of either a failure return code or a pointer to a TSC record. See
Section 9.15 for a description of the fields in the record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

int get_tsc_data(int client_id,CLIENT *cl)

{

}

tsc_rec_r 2 *tscs;
tsc_rec_out_2 *tsc_rec;

static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
tsc_rec = acmsmgmt_get_tsc_2 (&sub_rec,cl);

if (!'tsc_rec) {
printf("\n RPC Call to get TSC data failed");
return (MGMT_FAIL);

}

if (tsc_rec->status != MGMT_SUCCESS) {
printf("\n Call to get TSC data failed, returning status code %d",
tsc_rec->status);
status = tsc_rec->status;
xdr_free(xdr_tsc_rec_out_2, tsc_rec);
free(tsc_rec);
return(status) ;

}
tscs = &tsc_rec->tsc_rec_out_2_u.tsc_rec;

printf("\n TSC process name is %$s",tscs->process_name) ;
xdr_free(xdr_tsc_rec_out_2, tsc_rec);
free(tsc_rec);

return(0) ;

In the preceding example, the ACMSMGMT_GET_TSC_2 procedure is called to
fetch TSC management information. If the call succeeds, the TSC’s process name
is printed from the retrieved record. Otherwise, an error message is displayed.
The example in Section 6.4.1 shows how to declare and initialize the input
arguments to this procedure.

8-38 Management APIs

ACMSMGMT_GET_VERSION_2

8.16 ACMSMGMT_GET_VERSION_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain version information

for ACMS.

version_data_list_2 *acmsmgmt_get_version_2(sub_id_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

version_data_list_2
Write
By reference

Pointer to record returned. If NULL, the RPC has failed. If not
null, the record contains either an error code in the status field
(the RPC succeeded, but the call failed for another reason) or the
data requested.

Management APls 8-39

ACMSMGMT_GET_VERSION_2

Description

The return pointer points to a record of type version_data_list_2, which constains
a union consisting of either a failure return code or a pointer to a version record.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int get_version_data(int client_id,CLIENT *cl2)
{

struct sub_id_struct sub_rec;
version_data_list_2 *version;
int status;

sub_rec.client_id = client_id;
version = acmsmgmt_get_version_2 (&sub_rec,cl2);

if (!version) {
printf("\n RPC Call to get Version data failed");
return (MGMT_FAIL) ;

}

if (version->status != MGMT_SUCCESS) {
printf("\n Call to get Version data failed, returning status code %d",
version->status);
status = version->status;
xdr_free(xdr_version_data_list 2, version);
free(version);
return(status);

}

printf("\n ACMS version 1s %s",version->
version_data_list_ 2 u.data.acms_version);
xdr_free(xdr _version_data list 2, version);
free(version) ;
return(0) ;

}

In the preceding example, the ACMSMGMT_GET_VERSION_2 procedure is
called to fetch ACMS version information. If the call succeeds, the version of
the installed ACMS software is printed from the retrieved record. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

8-40 Management APIs

ACMSMGMT_LIST_AGENT_2

8.17 ACMSMGMT_LIST_AGENT_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of Agent
Process table entries.

agent_data_list “acmsmgmt_list_agent_2(agent_sel_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

agent_sel_struct

Read

By reference

Structure that contains the following client authorization

information.

client_id
Type:
Access:
Mechanism:
Usage:

proc_name
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

String
Read
By value

String that lists the OpenVMS process name for
each Agent.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APIls 8-41

ACMSMGMT_LIST_AGENT_2

Return Value

Type: agent_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a

8-42 Management APIs

pointer to a structure of type agent_data_list, which contains the
start of a linked list of records. The following are the contents of

this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
list

Type: agent_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of

Agent table record, and a forward pointer to the
next node in the linked list. The following are the
contents of this structure:.

pNext

Type: agent_write

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a
structure of type coll_list.

agent_data

Type: agent_rec_r

Access: Write

Mechanism: By reference

Usage: Agent table row. Agent table

fields.

ACMSMGMT_LIST_AGENT_2

Description

The ACMSMGMT_LIST _AGENT_2 procedure returns a linked list of Agent
table rows. All Agent table rows are returned in each call. Records are returned
sequentially from the table, beginning at the start of the table. Entire table rows
are returned.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the Agent table are subject to reuse. Rows are assigned round-robin, and
are not cleared until they have been reassigned. So some rows may contain data
for inactive Agents. It is the callers responsibility to examine the record_state
field to determine whether this row belongs to an active (record_state field is
MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) Agent, and
to process the row accordingly.

Example

int list_agent_data(int client_id,CLIENT *cl)
{

static char c_all_agents[2] = "*";
agent_data_list *agent_data;
agent_link *nl;

static struct agent_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.proc_name = c_all_agents;

agent_data = acmsmgmt_list_agent_2(&sub_rec,cl);

if (lagent_data) {
printf("\n RPC Call to get agent data failed");
return (MGMT_FAIL) ;

if (agent_data->status == MGMT_FAIL) {
if (agent_data->agent_data_list_u.rc == MGMT_NOMORE_DATA) {
printf("\n No agent data found");
xdr_free(xdr_agent_data_list, agent_data);
free(agent data);
return (MGMT_FAIL);
}
printf("\n Call to get agent data failed, returning status code %d",
agent_data->agent_data_list_u.rc);
status = agent_data->agent_data_list_u.rc;
xdr_free (xdr_agent_data_list, agent_data);
free(agent_data);
return(status);

}

if (agent_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

for (nl = agent_data->agent_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->agent_data.record_state == MGMT_INACTIVE)
printf("\n INACTIVE ");
else
printf ("\n ")
printf (" PID: $8X Process Name: %-s",
nl->agent_data.pid,
nl->agent_data.process_name) ;

Management APls 8-43

ACMSMGMT_LIST_AGENT_2

printf("\n End of data");
xdr_free (xdr_agent_data_list, agent_data);
free(agent_data);

return(0);

}

In the preceding example, the ACMSMGMT_LIST _AGENT_2 procedure is called
to fetch a linked list of agents running on the system. If the call succeeds, the pid
and name of each agent in the list are printed. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the

input arguments to this procedure.

8-44 Management APIs

ACMSMGMT_LIST_COLLECTIONS_2

8.18 ACMSMGMT_LIST_COLLECTIONS_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of Collection

table entries.

coll_data_list_2 *acmsmgmt_list_collections_2(coll_sel_struct *coll_rec, CLIENT *cl)

coll_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Coll_sel struct

Read
By reference

Defines starting point for list of records to be returned. Also
identifies the user. The coll_rec structure contains the following

fields:

client_id
Type:
Access:
Mechanism:
Usage:

starting rec
Type:

Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer

Read

By value

If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used.

Integer
Read
By value

Sequential record number (starting at 0) of
record to begin list from. Records are returned
sequentially from the table. Up to max_rpc_
return_recs (Parameter table configuration value)
are returned in each call.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Management APls 8-45

ACMSMGMT_LIST_COLLECTIONS_2

Return Value

Type: Coll_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code or a

pointer to a structure of type coll_list, which contains the start

8-46 Management APIs

of a linked list of records. The following are the contents of this

union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.
list

Type: Coll_list_2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of

collection table record, and a forward pointer to
the next node in the linked list. The following are
the contents of this structure:

pNext

Type: Coll_list_2

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a
structure of type coll_list.

coll_data

Type: Coll_rec_2

Access: Write

Mechanism: By reference

Usage: Collection table row. Collection

table fields are described in
Section 9.4.

Description

Example

ACMSMGMT_LIST_COLLECTIONS_2

The ACMSMGMT_LIST_COLLECTIONS_2 procedure returns a linked list of
collection table rows. The number of rows returned in a single call is bounded
by the value of the Parameter table field max_rpc_return_recs. More than one
call may be required to fetch all the rows. The selection record field starting rec
determines the table row to begin with. Records are returned sequentially from
the table, beginning with the starting_rec row. Row numbering begins at 0.

Entire table rows are returned. See Section 9.4 for a description of the fields in
the coll_rec structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

If the end of the table is reached during execution of this procedure, MGMT _
NOMORE_DATA is returned in the status field.

int list_collection_data(int client_id,CLIENT *cl)
{

int rec_count = 0;
coll_data_list_ 2 *coll;

coll_link 2 *nl;

static struct coll_sel struct coll_rec;

int status;

char c_states[2][9] = {"enabled", "disabled"};

char c_entities[10][9] = {"unknown","*","acc","tsc","gti", "cp", "exc",
"server", "group", "'mgr"};

char c_classes[6][8] = {"*","id","config", "runtime", "pool", "error"};

coll_rec.client_id = client_id;
top:
coll_rec.starting rec = rec_count;

coll = acmsmgmt_list_collections_2(&coll_rec,cl);

if (lcoll) {
printf("\n RPC Call to get Collection data failed");
return (MGMT_FAIL) ;

}

if ((coll->status != MGMT_SUCCESS) && (coll->status != MGMT_NOMORE_DATA)) ({
printf("\n Call to get Collection data failed, returning status code
%d",coll->status);
xdr_free(xdr_coll data_list2, coll);
free(coll);
return(status);

}

for (nl = coll->coll_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
rec_count++;
if (nl->coll_data.entity name_s > 0)
printf("\n Entity: %-9s Name: %$-32s Class: %-9s

Collection State: %-9s",
c_entities[nl->coll_data.entity_typel],
nl->coll_data.entity name,
c_classes[nl->coll_data.collection_class],
c_states[nl->coll data.collection_state]);

}

if (coll->status != MGMT_NOMORE_DATA)
goto top;

Management APls 8-47

ACMSMGMT_LIST_COLLECTIONS_2

printf("\n End of data");
xdr_ free(xdr_coll data_list 2, coll);
free(coll);

return(0);

}

In the preceding example, the ACMSMGMT_LIST _COLLECTIONS_2 procedure
is called to fetch the contents of the Collection table. If the call succeeds, the
entity type, name, class, and collection state are printed for each row in the table.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8-48 Management APIs

ACMSMGMT_LIST_CP_2

8.19 ACMSMGMT_LIST_CP_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of Command
Process (CP) table entries.

cp_data_list_2 *acmsmgmt_list_cp_2(cp_sel_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Cp_sel_struct

Read

By reference

Structure that contains the following client authorization

information.

client_id
Type:
Access:
Mechanism:
Usage:

proc_name
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

String
Read
By value

String that lists the OpenVMS process name for
each CP.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APls 8-49

ACMSMGMT_LIST_CP_2

Return Value

Type: Cp_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either

Management APIls

a failure code or a pointer to a structure of type cp_data_list2,
which contains the start of a linked list of records. The following
are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Cp_list_2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of CP

table record, and a forward pointer to the next
node in the linked list. The following are the
contents of this structure:

pNext

Type: Cp_list_2

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a
structure of type coll_list.

cp_data

Type: Cp_rec_r 2

Access: Write

Mechanism: By reference

Usage: CP table row. CP table fields are

described in Section 9.5.

Description

Example

ACMSMGMT_LIST_CP_2

The ACMSMGMT_LIST_CP_2 procedure returns a linked list of CP table rows.
All CP table rows are returned in each call. Records are returned sequentially
from the table, beginning at the start of the table.

Entire table rows are returned. See Section 9.5 for a description of the fields in
the cp_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the CP table are subject to reuse. Rows are assigned round-robin, and
are not cleared until they have been reassigned. So some rows may contain data
for inactive CPs. It is the caller’s responsibility to examine the record_state
field to determine whether this row belongs to an active (record_state field is
MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) CP, and to
process the row accordingly.

int list_cp_data(int client_id,CLIENT *cl)
{

static char c_all_cps([2] = "*";
cp_data_list_2 “*cp_data;

cp_link 2 *nl;

static struct cp_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.proc_name = c_all_cps;

cp_data = acmsmgmt_list_cp_2 (&sub_rec,cl);

if (!cp_data) {
printf("\n RPC Call to get CP data failed");
return (MGMT_FAIL) ;

if (cp_data->status == MGMT_FAIL) {
if (cp_data->cp_data_list_2_u.rc == MGMT_NOMORE_DATA) ({
printf("\n No CP data found");
xdr_free(xdr_cp_data_list_2, cp_data);
free(cp data);
return (MGMT_FAIL);
}
printf("\n Call to get CP data failed, returning status code %d",
cp_data->cp_data_list_2_u.rc);
status = cp_data->cp_data_list_2_u.rc;
xdr_free(xdr_cp_data_list_2, cp_data);
free(cp_data);
return(status);

if (cp_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

Management APIls 8-51

ACMSMGMT_LIST_CP_2

for (nl = cp_data->cp_data_list_2_u.list; nl != NULL; nl

if (nl->cp_data.record_state == MGMT_INACTIVE)
printf("\n INACTIVE ");
else
printf("\n ")
printf (" PID: %8X Process Name: %-s",
nl->cp_data.pid,
nl->cp_data.process_name) ;

}

printf("\n End of data");
xdr_free(xdr_cp_data_list_2, cp_data);
free(cp_data);

return(0) ;

}

= nl->pNext) {

In the preceding example, the ACMSMGMT_LIST_CP_2 procedure is called to
fetch the contents of the CP table. If the call succeeds, the state of the CP (if
INACTIVE), its PID, and process name are displayed for each table row returned.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8-52 Management APIs

ACMSMGMT_LIST_ERR_2

8.20 ACMSMGMT_LIST_ERR_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of the error log
entries.

err_data_list *acmsmgmt_list_err_2(err_sel_struct *err_sel, CLIENT *cl)

log_rec

Type: Log_sel_struct

Access: Read

Mechanism: By reference

Usage: Defines which log records to return. The log_sel_struct contains

the following fields:

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds

procedure.
before time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated character string

containing a valid OpenVMS ASCII time string.
This field determines the chronological starting
point for the list of records to be returned. If
omitted, records are returned beginning at the
start of the file. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

Management APIs 8-53

8-54 Management APIs

ACMSMGMT_LIST_ERR_2

since_time
Type:
Access:
Mechanism:
Usage:

file_name
Type:
Access:
Mechanism:
Usage:

dup_count
Type:
Access:
Mechanism:
Usage:

facility
Type:
Access:
Mechanism:
Usage:

Null-terminated character string
Read, optional
By reference

Pointer to a null-terminated character string
containing a valid OpenVMS ASCII time string.
This field determines the chronological ending
point for the list of records to be returned. If
omitted, records are returned until end of file
is reached. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

Null-terminated character string

Read, optional

By reference

Pointer to a null-terminated character string
containing either a valid OpenVMS file
specification or a logical name pointing to a valid
OpenVMS file specification. This field determines
the log file to be processed. An empty string
requests the default (currently open) log file.

Integer
Read
By value

A sequential counter of records with the same
time. This allows records to be unique even if
they were generated at the same time. Set this
value to -1 for the initial call.

Integer
Read, optional
By value

Value of a valid Remote Manager facility. If
specified, only records with matching facility
codes are returned. Facility codes are listed in
Section 8.1.5.

ACMSMGMT_LIST_ERR_2

severity
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote Manager severity. If
specified, only records with matching severity are
returned. Severities are listed in Section 8.1.7.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

Return Value

Type: Log_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code

or a pointer to the start of a linked list of records. See the
Description section for a discussion of the structure of the union.
The following are the contents of this record:

log_data_list

Type: Logging_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a structure of type logging rec.

dup_count

Type: Integer

Access: Write

Mechanism: By value

Usage: Integer value with uniquely identifies records

generated at the same time.

Management APIls 8-55

ACMSMGMT_LIST_ERR_2

Description

log_msg

Type: Null-terminated character string

Access: Write

Mechanism: By reference

Usage: Pointer to a null-terminated character string
containing the error information.

pNext

Type: Log_list

Access: Write

Mechanism: By value

Usage: Pointer to the next record in the linked list.

The ACMSMGMT_LIST_ERR_2 procedure returns a linked list of error log
entries, ordered by time. The records to be returned are determined by the fields
specified in the log_sel_struct input argument. Records can be selected by
date and time, facility, and severity. Note that only max_rpc_return_rec data
(Parameter table field) is returned in each call. The end of data is signaled by
the status field (see the following example). If the end of data is not signaled,
repeated calls are needed to fetch all matching records.

The return record is a union containing either a failure code or the first record in
the list:

struct log data_list {
int status;
union {
int rc;
log_list list;
} log _data_list_u;
b

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

e MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

e MGMT_NOMORE_DATA

There are no more records in the file. The linked list may or may not contain
the final records, depending on whether any more records matched the
selection criteria.

e MGMT_SUCCESS

The call completed successfully. More records exist than were returned in the
call.

8-56 Management APIs

ACMSMGMT_LIST_ERR_2

The ACMSMGMT_LIST_ERR_2 procedure returns n records per call, where n
is determined by the Remote Manager parameter field max_rpc_return_recs.
Therefore, repeated calls may be necessary to retrieve all records that match
the selection criteria. Context is not maintained by the server between calls; the
selection criteria are evaluated on each call by the Remote Manager. Following
the initial call, callers should place the correct time value in the since_time field
of the log_sel_struct input argument, as well as the correct dup_count value in
order to have the chronologically next n records returned.

This procedure does not require the ACMS run-time system to execute.

Example

int list_err data(int client_id,CLIENT *cl)
{

int skip_rec

char null_time_str[24] ;
char first_of_jan[24] "01-JAN-1998 00:00:00.00";
char file_spec|] "acms$mgmt_err_log";

char time_cache[MGMT S _TIME A+1];

struct log_sel_struct log_rec;

0;

nn o,

log_data_list *1og;
log_link *nl;
int status;

/* Initialize err selection data */

log_rec.client_id = client_id;
log_rec.before_time = null_time_str;
log_rec.since_time = first_of_jan;
log_rec.file_name = file_spec;
log_rec.dup_count = -1;
log_rec.facility = =1;
log_rec.severity = -1;

top:
log = acmsmgmt_list_log_ 1(&log_rec,cl);

if (!log) {
return (MGMT_FAIL) ;
}

if (log->status == MGMT_FAIL) {
status = log->log_data_list_u.rc;
xdr_free(xdr_log_data_list, log);
free(log);
return(status) ;

for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (skip_rec)
skip_rec = 0;
else
printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);
memcpy (&time_cache[0],nl->log_data.log_msg,23);
log_rec.dup_count = nl->log_data.dup_count;
log_rec.since_time = time_cache;

Management APls 8-57

ACMSMGMT_LIST_ERR_2

if (log->status == MGMT_NOMORE_DATA)
printf("\n *** End of data**");
else {
skip_rec = 1;
goto top;

xdr_free(xdr_log data_list, log);
free(log);
return(0) ;

}

In the preceding example, the ACMSMGMT_LIST_ERR_2 procedure is called

to fetch the contents of the error log. If the call succeeds, the node, symbolic
name, and code equivalent are displayed for each ACMS run-time error relayed
to the Remote Manager. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8-58 Management APIs

ACMSMGMT_LIST_EXC_2

8.21 ACMSMGMT_LIST_EXC_2

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of Application
Execution Controller (EXC) (ACMS application) table entries.

exc_data_list_2 *acmsmgmt_list_exc_2(exc_sel_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Exc_sel struct

Read

By reference

Structure that contains client information and application
selection critera. The structure contains the following fields.

client_id
Type:
Access:
Mechanism:
Usage:

appl_name
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Null-terminated string
Read
By reference

A pointer to an application name. The name may
contain wildcard characters (¥, !). Specify in all
uppercase characters.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APls 8-59

ACMSMGMT_LIST_EXC_2

Return Value

Type: Exc_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type exc_data_list_2,
which contains the start of a linked list of records. The following
are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Exc_list 2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure

containing an EXC table record, and a forward
pointer to the next node in the linked list. The
following are the contents of this structure:

pNext

Type: Exc_list 2

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a
structure of type coll_list.

exc_data

Type: Exc_rec r 2

Access: Write

Mechanism: By reference

Usage: EXC table row. EXC table fields

are described in Section 9.7.

8-60 Management APIs

Description

Example

ACMSMGMT_LIST_EXC_2

The ACMSMGMT_LIST_EXC_2 procedure returns a linked list of EXC table
rows. All EXC table rows whose application_name field matches the appl_name
field in the selection record are returned in each call.

Entire table rows are returned. See Section 9.7 for a description of the fields in
the exc_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin,

and are not cleared until they have been reassigned. Therefore, some rows may
contain data for inactive EXCs. It is the caller’s responsibility to examine the
record_state field to determine whether this row belongs to an active (record_state
field is MGMT _VALID) or inactive (record_state field is MGMT_INACTIVE) EXC,
and to process the row accordingly.

int list_exc_data(int client_id,CLIENT *cl)
{

static char c_all_appls[2] = "*";
exc_data_list_2 *exc_data;
exc_link_ 2 *nl;

static struct exc_sel_struct sub_rec;
int status;

client_id;
c_all_appls;

sub_rec.client_id
sub_rec.appl_name

exc_data = acmsmgmt_list_exc_2(&sub_rec,cl);

if (lexc_data) {
printf("\n RPC Call to get EXC data failed");
return (MGMT_FAIL) ;

if (exc_data->status == MGMT_FAIL) {
if (exc_data->exc_data_list_2_u.rc == MGMT_NOMORE_DATA) {
printf("\n No EXC data found");
xdr_free (xdr_exc_data_list_2, exc_data);
free(exc_data);
return (MGMT_FAIL);
}
printf("\n Call to get EXC data failed, returning status code %d",
exc_data->exc_data_list_2_u.rc);
status = exc_data->exc_data_list_2_u.rc;
xdr_free(xdr_exc_data_list_2, exc_data);
free(exc_data);
return(status);

if (exc_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

Management APIls 8-61

ACMSMGMT_LIST_EXC_2

for (nl = exc_data->exc_data_list 2 u.list; nl != NULL; nl

if (nl->exc_data.record_state == MGMT_INACTIVE)
printf("\n INACTIVE ");
else
printf("\n ")
printf (" PID: %8X Application : %-s",
nl->exc_data.pid,
nl->exc_data.appl_name) ;

}

printf("\n End of data");
xdr_free (xdr_exc_data_list_2, exc_data);
free(exc_data) ;

return(0) ;

}

= nl->pNext) {

In the preceding example, the ACMSMGMT_LIST_EXC_2 procedure is called to
fetch the contents of the EXC table. If the call succeeds, the state of the EXC

(if inactive), its PID, and its application name are displayed for each table row
returned. Otherwise, an error message is displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8-62 Management APIs

ACMSMGMT_LIST_INTERFACES _1

8.22 ACMSMGMT_LIST_INTERFACES_1

ACMS Remote Manager clients call this procedure to obtain information about all
configured interfaces for a Remote Manager server on a local or remote node.

Format
interfaces_rec_out *acmsmgmt_list_interfaces_1 (sub_id_struct *sub_rec, CLIENT *cl)
Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT _CREATE.

Management APls 8-63

ACMSMGMT_LIST_INTERFACES _1

Return Value

Description

Example

Type: Interfaces_rec_out

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to the start of a linked list of records.
See the Description section for a discussion of the structure of the
union. The records contain all the fields of the Interfaces table
(see Section 9.8).

The ACMSMGMT_LIST_INTERFACES_1 procedure returns an array of Remote
Manager Interfaces table rows. All records in the table are returned. Each record
represents a separate interface, as determined by the interface_type field.

The return record is a union containing either a failure code or the first record in
the list, as follows:

struct interfaces_rec_out {
int status;
union {
interfaces_rec_out_r interfaces;
int rc;
} interfaces_rec_out_u;

}i
To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:
e MGMT_FAIL
The call has failed and the rc field contains a specific error code describing
the failure.
e MGMT_SUCCESS
The call completed successfully. All rows in the table were returned.

The array is contained in a structure of type interfaces_rec_out_r with an
integer field (num_elements) containing the size of the array, as follows:

struct interfaces_rec_out_r {
int num_elements;
interfaces_rec values[MGMT _K_MAX IF];
}i

int list_interfaces_data(int client_id,CLIENT *cl)
{

interfaces_rec_out *if_ptr;
interfaces_rec_out_r *inter;

static struct sub_id struct sub_rec;
int status;

sub_rec.client_id = client_id;

8-64 Management APIs

ACMSMGMT_LIST_INTERFACES _1

if_ptr = acmsmgmt_list_interfaces_1(&sub_rec,cl);

if ('if_ptr) {
printf("\n RPC Call to get Interfaces data failed");
return (MGMT_FAIL) ;

}

inter = &if_ptr->interfaces_rec_out_u.interfaces;
if (if_ptr->status == MGMT_FAIL) {
printf("\n Call to get Interfaces data failed, returning status code
%$d",if_ptr->interfaces_rec_out_u.rc);
status = if_ptr->interfaces_rec_out_u.rc;
xdr_free(xdr_interfaces_rec_out, if_ptr);
free(if_ptr);
return(status);

}

printf("\n RPC interface has processed %d read requests",
inter->values[0] .get_request_count);
printf("\n SNMP interface has processed %d read requests",
inter->values[1].get_request_count);
xdr_free(xdr_interfaces_rec_out, if_ptr);
free(if_ptr);
return(0);

}

In the preceding example, the ACMSMGMT_LIST _INTERFACES_1 procedure
is called to fetch the contents of the Interfaces table. If the call succeeds, the
number of read requests by each interface is printed from the retrieved record.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

Management APls 8-65

ACMSMGMT_LIST_LOG_1

8.23 ACMSMGMT_LIST_LOG_1

ACMS Remote Manager clients call this procedure to obtain information from a
Remote Manager log on a local or remote node.

Format
log_data_list *acmsmgmt_list_log_1 (log_sel_struct *log_rec, CLIENT *cl)
Parameters
log_rec
Type: Log_sel_struct
Access: Read
Mechanism: By reference
Usage: Defines which log records to return. The log_sel_struct contains

the following fields:

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used.

before_time

Type: Null-terminated character string

Access: Read, optional

Mechanism: By reference

Usage: Pointer to a null-terminated character string

containing a valid OpenVMS ASCII time string.
This field determines the chronological starting
point for the list of records to be returned. If
omitted, records are returned beginning at the
start of the file. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

8-66 Management APIs

since_time

Type:

Access:

Mechanism:

Usage:

file_name

Type:

Access:

Mechanism:

Usage:

dup_count

Type:

Access:

Mechanism:

Usage:

facility
Type:

Access:

Mechanism:

Usage:

ACMSMGMT_LIST_LOG_1

Null-terminated character string

Read, optional

By reference

Pointer to a null-terminated character string
containing a valid OpenVMS ASCII time string.
This field determines the chronological ending
point for the list of records to be returned. If
omitted, records are returned until end of file
is reached. Format is OpenVMS ASCII time
(DD-MMM-YY HH:MM:SS.hh).

Null-terminated character string
Read, optional
By reference

Pointer to a null-terminated character string
containing either a valid OpenVMS file
specification or a logical name pointing to a valid
OpenVMS file specification. This field determines
the log file to be processed. An empty string
requests the default (currently open) log file.

Integer
Read
By value

A sequential counter of records with the same
time. This allows records to be unique even if
they were generated at the same time. Set this
value to -1 for the initial call.

Integer
Read, optional
By value

Value of a valid Remote Manager facility. If
specified, only audit records with matching
facility codes are returned. Facility codes are
listed in Section 8.1.5.

Management APls 8-67

ACMSMGMT_LIST_LOG_1

severity
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote Manager severity. If
specified, only audit records with matching
severity are returned. Severities are listed in
Section 8.1.7.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

Return Value

the RPC routine CLNT CREATE.

Type: Log_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a union. The union contains either a failure code

or a pointer to the start of a linked list of records. See the

Description section for a discussion of the structure of the union.
The following are the contents of this record:

log_data_list

8-68 Management APIs

Type: Logging_rec

Access: Write

Mechanism: By reference

Usage: Pointer to a structure of type logging_rec.

dup_count

Type: Integer

Access: Write

Mechanism: By value

Usage: Integer value with uniquely identifies records

generated at the same time.

Description

ACMSMGMT_LIST_LOG_1

log_msg

Type: Null-terminated character string

Access: Write

Mechanism: By reference

Usage: Pointer to a null-terminated character string
containing the audit information.

pNext

Type: Log_list

Access: Write

Mechanism: By value

Usage: Pointer to the next record in the linked list.

Note

The ACMSMGMT_LIST_LOG_1 procedure is also described in detail in
Section 6.6.1.

The ACMSMGMT_LIST_LOG_1 procedure returns a linked list of Remote
Manager log entries, ordered by time. The records to be returned are determined
by the fields specified in the log_sel_struct input argument. Records can be
selected by date and time, facility, and severity. Note that only max_rpc_return_
rec data (Parameter table field) is returned in each call. The end of data is
signaled by the status field (see the following example). If the end of data is not
signaled, repeated calls are needed to fetch all matching records.

The return record is a union containing either a failure code or the first record in
the list:

struct log_ data_list {
int status;
union {
int rc;
log_list list;
} log_data_list_u;
b

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

e MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

e MGMT_NOMORE_DATA

There are no more records in the file. The linked list may or may not contain
the final records, depending on whether any more records matched the
selection criteria.

Management APls 8-69

ACMSMGMT_LIST_LOG_1

Example

MGMT_SUCCESS

The call completed successfully. More records exist than were returned in the
call.

The ACMSMGMT_LIST_LOG_1 procedure returns n records per call, where n
is determined by the Remote Manager parameter field max_rpc_return_recs.
Therefore, repeated calls may be necessary to retrieve all records that match
the selection criteria. Context is not maintained by the server between calls; the
selection criteria are evaluated on each call by the Remote Manager. Following
the initial call, callers should place the correct time value in the since_time field
of the log_sel_struct input argument, as well as the correct dup_count value in
order to have the chronologically next n records returned.

This procedure does not require the ACMS run-time system to execute.

int

{

list_log_data(int client_id,CLIENT *cl)

0;

int skip_rec

char null_time_str[24] ;
char first_of_jan[24] "01-JAN-1998 00:00:00.00";

char file_spec]] "v. /% use default, i.e. active log file */
char time_cache[MGMT S _TIME A+l];

static struct log_sel_struct log_rec;

log_data_list *log;

log_link *nl;

int status;

/* Initialize log selection data */

log_rec.client_id
log_rec.before_time
log_rec.since_time
log_rec.file_name
log_rec.dup_count
log_rec.facility
log_rec.severity

client_id;

null_time_str;

first_of_jan;

file_spec;

-1;

-1; /* don’t match on facility */
-1; /* don’t match on severity */

top:

log = acmsmgmt_list_log_1(&log_rec,cl);

if (!log)
return (MGMT_FAIL);

if (log->status == MGMT_FAIL) {
status = log->log data_list_u.rc;
xdr_free (xdr_log_data_list, log);
free(log);
return(status);

}

for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (skip_rec)
skip_rec = 0;
else
printf("\n %$-12s\t%-s",sname,nl->log_data.log_msg);

log_rec.dup_count nl->log_data.dup_count;

memcpy (&time_cache[0],nl->log_data.log msg,23);
log_rec.since_time = time_cache;

8-70 Management APIs

ACMSMGMT_LIST_LOG_1

if (log->status == MGMT_NOMORE_DATA)
printf("\n *** End of data **");

else {
skip_rec = 1;
goto top;

xdr_free(xdr_log_data_list, log);
free(log);
return(0) ;

}
In the preceding example, the ACMSMGMT_LIST_LOG_1 procedure is called
to fetch the contents of the RM log file. All entries since January 1, 1998 are
requested. If the call succeeds, each entry is printed out. Otherwise, an error
message is displayed. This example is very similar to the one described in detail
in Chapter 6. The example in Section 6.4.1 shows how to declare and initialize

the input arguments to this procedure.

Management APIs 8-71

ACMSMGMT_LIST_PROC_1

8.24 ACMSMGMT_LIST_PROC_1

ACMS Remote Manager clients call this procedure to obtain a list of ACMS
processes running on a particular node, along with some collection state
information for each process.

Format

proc_data_list *acmsmgmt_list_proc_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

8-72 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

ACMSMGMT_LIST_PROC_1

Return Value

Type: Proc_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type proc_link, which

contains the start of a linked list of records. The following are the
contents of this union:

re
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Proc_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of

process data, and a forward pointer to the next
node in the linked list. The following are the
contents of this structure:

pNext

Type: Proc_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a

proc_data

structure of type user_list.

Type: Proc_rec

Access: Write

Mechanism: By reference

Usage: The data describing the process.

This record contains the following
fields:

Management APIls 8-73

ACMSMGMT_LIST_PROC_1

8-74 Management APIs

record_state

Type: Integer

Access: Write
Mechanism: By value

Usage: The current state

of the record.
Will be either

MGMT_VALID
or MGMT_
INACTIVE.
entity_type
Type: Integer
Access: Write
Mechanism: By value
Usage: The type of

ACMS entity the
process is. Entity
types are listed
in Section 8.1.4.

pid

Type: Integer

Access: Write

Mechanism: By value

Usage: OpenVMS
Process ID.

process_name

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The OpenVMS

process name.

Description

ACMSMGMT_LIST_PROC_1

class_states

Type: Array of integers
Size: 5

Access: Write
Mechanism: By value

Usage: An array of

integers. Each
array element
represents

the collection
state for a class.
Positions are:

e (0:ID

e 1: CONFIG
e 2: RUNTIME
e 3: POOL

e 4: ERROR

The ACMSMGMT_LIST _PROC_1 procedure returns a linked list of processes that
a particular Remote Manager is aware of. The Remote Manager builds this list
from the various ACMS Entity tables (Chapter 9). For each process, the Remote
Manager populates a proc_data record.

Note that some entity tables may contain rows with inactive data, that is, data
for processes that are no longer active. The data in these rows may or may not be
interesting to the caller. To distinguish active and inactive processes, the Remote
Manager sets the record_state field to MGMT_VALID for active processes and to
MGMT_INACTIVE for inactive processes. The caller is responsible for checking
this field and taking appropriate action.

The collection_states field is a simple array of five integers. Each array element
contains either a 1 (if the collection class is enabled) or a 0 (if the collection class
is disabled). Array elements are positional, as described in the Return Value
section.

Like other procedures that return linked lists (see Section 6.6.1 for a detailed
example of linked-list processing), the return parameter is a union containing
either a failure status code or a linked list of records.

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values in the status field:

e MGMT_FAIL

The call has failed and the rc field contains a specific error code describing
the failure.

e MGMT_SUCCESS

The call completed successfully. All user records have been returned.

Management APls 8-75

ACMSMGMT_LIST_PROC_1

If the status field value is MGMT_SUCCESS, a linked list has been returned.
The linked list contains a structure containing the process data, and a forward
pointer. By following the forward pointer, all the records in the list can be
retrieved.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Example

int list_process_data(int client_id,CLIENT *cl)
{

proc_data_list *proc;

proc_link *nl;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
proc = acmsmgmt_list_proc_1 (&sub_rec,cl);

if (!proc) {
printf("\n RPC Call to get Process data failed");
return (MGMT_FAIL);

}

if ((proc->status != MGMT_SUCCESS) && (proc->status != MGMT_NOMORE_DATA)) {
printf("\n Call to get Process data failed, returning status code %d",
proc->proc_data_list_u.rc);
status = proc->proc_data_list_u.rc;
xdr_free (xdr_proc_data_list, proc);
free(proc);
return(status);

}

for (nl = proc->proc_data_list_u.list; nl != NULL; nl = nl->pNext) {
if (nl->proc_data.record_state == MGMT_INACTIVE)
printf("\n INACTIVE ");
else
printf("\n ");
printf (" PID: %8X Process Name: %s",nl->proc_data.pid,
nl->proc_data.process_name) ;

}

printf("\n End of data");
xdr_free (xdr_proc_data_list, proc);
free(proc);

return(0) ;

}

In the preceding example, the ACMSMGMT_LIST _PROC_1 procedure is called
to fetch information about collection states from all processes accessible to the
Remote Manager. If the call succeeds, the name of the process, along with its
state is displayed (inactive processes have that string printed before the process
name). Otherwise, an error message is displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8-76 Management APIs

ACMSMGMT_LIST_SERVER_1

8.25 ACMSMGMT_LIST_SERVER 1

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of procedure
server table (Server table) entries.

ser_data_list *acmsmgmt_list_server_1(ser_sel_struct *sub_rec, CLIENT *cl)

sub_rec

Type:
Access:
Mechanism:
Usage:

Ser_sel struct
Read
By reference

Structure that contains client information and procedure server
selection criteria. The structure contains the following fields.

client_id
Type:
Access:
Mechanism:
Usage:

appl_name
Type:
Access:
Mechanism:
Usage:

server_name
Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Null-terminated string
Read
By reference

A pointer to an application name. The name may
contain wildcard characters (¥, !). Specify in all
uppercase characters.

Null-terminated string
Read
By reference

A pointer to a procedure server name. The name
may contain wildcard characters (¥, !). Specify in
all uppercase characters.

Management APIls 8-77

ACMSMGMT_LIST_SERVER_1

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

Return Value

Type: Ser_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type ser_link, which
contains the start of a linked list of records. The following are the
contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Ser_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure

containing an EXC table record, and a forward
pointer to the next node in the linked list. The
following are the contents of this structure:

pNext

Type: Ser_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a

structure of type coll_list.

8-78 Management APIs

Description

Example

ACMSMGMT_LIST_SERVER_1

ser_data

Type: Ser_rec_r

Access: Write

Mechanism: By reference

Usage: Server table row. Server

table fields are described in
Section 9.12.

The ACMSMGMT_LIST_SER_1 procedure returns a linked list of Server table
rows. All matching Server table rows are returned in each call. Matching is
performed first on application name, and then on server name. Therefore, all
matching servers for all matching applications are returned.

Entire table rows are returned. See Section 9.12 for a description of the fields in
the ser_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin,
and are not cleared until they have been reassigned. Therefore, some rows may
contain data for inactive EXCs. The Remote Manager attempts to retrieve server
information for inactive EXCs. It is the caller’s responsibility to examine the
record_state field to determine whether this row belongs to an active (record_
state field is MGMT _VALID) or inactive (record_state field is MGMT INACTIVE)
EXC, and to process the row accordingly.

int list_ser_data(int client_id,CLIENT *cl)
{

static char c_all_appls[2] = "*";
ser_data_list *ser_data;

ser_link *nl;

static struct ser_sel struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;
sub_rec.server_name = c_all_appls;

ser_data = acmsmgmt_list_server_1(&sub_rec,cl);

if (!ser_data) {
printf("\n RPC Call to get Server data failed");
return (MGMT_FAIL) ;

}

Management APls 8-79

ACMSMGMT_LIST_SERVER_1

if (ser_data->status == MGMT_FAIL) {
if (ser_data->ser_data_list_u.rc == MGMT_NOMORE_DATA) {
printf("\n No SERVER data found");
xdr_free(xdr_ser data_list, ser data);
free(ser_data);
return (MGMT_FAIL) ;
}
printf("\n Call to get Server data failed, returning status code %d",
ser_data->ser_data_list_u.rc);
status = ser_data->ser data_list_u.rc;
xdr_free(xdr_ser_data_list, ser_data);
free(ser_data);
return(status);

}

if (ser_data->status == MGMT_WARN)
printf("\n ** Warning, some data may be from inactive processes **");

for (nl = ser_data->ser_data_list_u.list; nl != NULL; nl = nl->pNext) ({
if (nl->ser_data.record_state == MGMT_INACTIVE)
printf("\n INACTIVE ");
else
printf("\n ")
printf (" Application : %-32s Server: %-s",
nl->ser_data.appl_name,
nl->ser_data.server_name) ;

}

printf("\n End of data");
xdr_free(xdr_ser_data_list, ser_data);
free(ser_data);

return(0) ;

}

In the preceding example, the ACMSMGMT_LIST_SERVER_1 procedure is
called to fetch the contents of the Server tables for all applications on the target
node. If the call succeeds, the state of the server (if inactive), the name of the
application it belongs to, and the name of the server are displayed for each
table row returned. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8-80 Management APIs

ACMSMGMT_LIST_TG_2

8.26 ACMSMGMT_LIST_TG_2

ACMS Remote Manager clients call this procedure to obtain a list of Task Group

table entries.

tg_data_list_2 *acmsmgmt_list_tg_2(tg_sel_struct *sub_rec, CLIENT *cl)

Format

Parameters
sub_rec
Type:
Access:
Mechanism:
Usage:

Tg_sel_struct

Read

By reference

Structure that contains client information and task group
selection critera. The structure contains the following fields.

client_id
Type:
Access:
Mechanism:
Usage:

appl_name
Type:
Access:
Mechanism:
Usage:

tg name
Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Null-terminated string
Read
By reference

A pointer to an application name. The name may
contain wildcard characters (¥, !). Specify in all
uppercase characters.

Null-terminated string
Read
By reference

A pointer to a task group name. The name may
contain wildcard characters (*, !). Specify in all
uppercase characters.

Management APIls 8-81

ACMSMGMT_LIST_TG_2

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

Return Value

Type: Tg_data_list_2

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type tg_link_2, which
contains the start of a linked list of records. The following are the
contents of this union:

re
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Tg list_2

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure

containing a Task Group table record, and a
forward pointer to the next node in the linked list.
The following are the contents of this structure:

pNext

Type: Tg_list_2

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a

structure of type coll_list.

8-82 Management APIs

Description

Example

ACMSMGMT_LIST_TG_2

tg _data

Type: Tg rec_r_2

Access: Write

Mechanism: By reference

Usage: Task Group table row. Task

Group table fields are described
in Section 9.13.

The ACMSMGMT_LIST TG_2 procedure returns a linked list of Task Group table
rows. All matching Task Group table rows are returned in each call. Matching
is performed first on the application name, and then on the task group name.
Therefore, all matching task groups for all matching applications are returned.

Entire table rows are returned. See Section 9.13 for a description of the fields in
the tg_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin,

and are not cleared until they have been reassigned. Therefore, some rows may
contain data for inactive EXCs. The Remote Manager will attempt to retrieve
task group information for inactive EXCs. It is the caller’s responsibility to
examine the record_state field to determine whether this row belongs to an active
(record_state field is MGMT_VALID) or inactive (record_state field is MGMT _
INACTIVE) EXC, and to process the row accordingly.

int list_group_data(int client_id,CLIENT *cl)
{

static char c_all_appls[2] = "*";
tg_data_list_2 *tg_data;

tg_link 2 *nl;

static struct tg_sel_struct sub_rec;
int status;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_all_appls;
sub_rec.tg_name = c_all_appls;

tg_data = acmsmgmt_list_tg_2 (&sub_rec,cl);

if (!'tg_data) {
printf("\n RPC Call to get Task Group data failed");
return (MGMT_FAIL) ;

}

Management APls 8-83

ACMSMGMT_LIST_TG_2

}

if (tg_data->status == MGMT_FAIL) ({

if (tg_data->tg_data_list_2_u.rc == MGMT_NOMORE_DATA)

printf("\n No GROUP data found");
xdr_free(xdr_tg_data_list_2, tg_data);
free(tg_data);
return (MGMT_FAIL) ;
}

{

printf("\n Call to get Task Group data failed, returning status code

$d",tg_data->tg_data_list_2_u.rc);
status = tg_data->tg_data_list_2 u.rc;
xdr_free(xdr_tg_data_list_2, tg_data);
free(tg_data);
return(status);

}
if (tg_data->status == MGMT_WARN)

printf("\n ** Warning, some data may be from inactive processes **");

for (nl = tg_data->tg_data_list_2_u.list; nl != NULL; nl

if (nl->tg data.record_state == MGMT_INACTIVE)
printf("\n INACTIVE ");
else
printf("\n ")
printf (" Application: %-32s Task Group: %-s",
nl->tg_data.appl_name,
nl->tg_data.tg_name);
}

printf("\n End of data");
xdr_free(xdr_tg_data_list_2, tg_data);
free(tg_data);

return(0) ;

= nl->pNext) {

In the preceding example, the ACMSMGMT_LIST_TG_1 procedure is called to
fetch the contents of the Task Group tables for all applications on the target
node. If the call succeeds, the state of the task group (if inactive), the name of
the application it belongs to, and the name of the task group are displayed for
each table row returned. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

8-84 Management APIs

ACMSMGMT_LIST_TRAP_1

8.27 ACMSMGMT_LIST_TRAP_1

Format

Parameters

ACMS Remote Manager clients call this procedure to obtain a list of Trap table

entries.

trap_data_list *acmsmgmt_list_trap_1(sub_id_struct *sub_rec, CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Management APls 8-85

ACMSMGMT_LIST_TRAP_1

Return Value

Type: Trap_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type trap_link, which
contains the start of a linked list of records. The following are the
contents of this union:

re
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: Trap_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of trap

table rows, and a forward pointer to the next
node in the linked list. The following are the
contents of this structure:

pNext

Type: Trap_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a
structure of type trap_list.

trap_data

Type: Trap_rec

Access: Write

Mechanism: By reference

Usage: Trap table row. Trap table fields

are described in Section 9.14.

8-86 Management APIs

ACMSMGMT_LIST_TRAP_1

Description

The ACMSMGMT_LIST_TRAP_1 procedure returns a linked list of Trap table
rows. All Trap table rows are returned in each call. Records are returned
sequentially from the table, beginning at the start of the table.

Entire table rows are returned. See Section 9.14 for a description of the fields in
the trap_rec structure.

This procedure does not require the ACMS run-time system in order to execute.
Example

int list_trap_data(int client_id,CLIENT *cl)
{

char c_states[2][9] = {"enabled", "disabled"};

char c_entities[10][9] = {"unknown","*","acc","tsc","gti","cp", "exc",
"server", "group", "mgr"};

char c_classes[6][8] = {"*","id","config", "runtime", "pool", "error"};

char c_trap_params([2][15] = {"exists", "event severity"};

trap_data_list *trap;

trap_link *nl;

static struct sub_id_struct sub_rec;

int status;

sub_rec.client_id = client_id;
trap = acmsmgmt_list_trap_1(&sub_rec,cl);

if (!trap) {
printf("\n RPC Call to get Trap data failed");
return (MGMT_FAIL) ;

}

if (trap->status != MGMT_SUCCESS) {
printf("\n Call to get Trap data failed, returning status code %d",
trap->trap_data_list_u.rc);
status = trap->trap_data_list_u.rc;
xdr_free(xdr_trap_data_list, trap);
free(trap);
return(status);

}

for (nl = trap->trap_data_list_u.list; nl != NULL; nl = nl->pNext) ({
printf("\n Entity: %-9s Name: %-32s Param: %-15s Trap Min: %d

Trap Max: %d",
c_entities[nl->trap_data.entity_type],
nl->trap_data.entity_name,
c_trap_params [nl->trap_data.param_to_trap],
nl->trap_data.min,
nl->trap_data.max) ;

}

printf("\n End of data");
xdr_free(xdr_trap_data_list, trap);
free(trap);

return(0);

}

In the preceding example, the ACMSMGMT_LIST_TRAP_1 procedure is called to
fetch the contents of the Trap table. If the call succeeds, the entity_type, entity_
name, parameter, trap_min, and trap_max fields are displayed for each row in the
table. Otherwise, an error message is displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

Management APls 8-87

ACMSMGMT_LIST_USERS _1

8.28 ACMSMGMT_LIST_USERS _1

ACMS Remote Manager clients call this procedure to obtain information about
users attached to a Remote Manager server on a local or remote node.

Format

user_data_list *acmsmgmt_list_users_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

8-88 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

ACMSMGMT_LIST_USERS _1

Return Value

Type: User_data_list

Access: Write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a pointer to a structure of type user_link, which
contains the start of a linked list of records. The following are the
contents of this union:

re
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

list

Type: User_list

Access: Write

Mechanism: By reference

Usage: Start of linked list. Pointer to a structure of user

data, and a forward pointer to the next node in
the linked list. The following are the contents of
this structure:

pNext

Type: User_list

Access: Write

Mechanism: By value

Usage: Start of linked list. Pointer to a

user_data

structure of type user_list.

Type: User_rec

Access: Write

Mechanism: By reference

Usage: The data describing the user.

This record contains the following
fields:

Management APls 8-89

ACMSMGMT_LIST_USERS _1

8-90 Management APIs

client_id

Type:

Access:

Mechanism:

Usage:

reserved

Type:

Access:

Mechanism:

Usage:

gid
Type:

Access:

Mechanism:

Usage:

uid
Type:

Access:

Mechanism:

Usage:

proxy_gid
Type:

Access:

Mechanism:

Usage:

Integer
Write
By value

Integer value
containing the
client ID for the
user.

Integer
Write
By value

Reserved for HP
use.

Word
Write
By value

UIC group
identifier.

Word
Write
By value

UIC user
identifier.

Word

Write

By value

UIC group
identifier of

the proxy user,
if proxy is being
used.

ACMSMGMT_LIST_USERS _1

proxy_uid
Type:
Access:
Mechanism:
Usage:

node-name

Type:

Access:
Mechanism:
Usage:

expires

Type:

Access:
Mechanism:
Usage:

Word
Write
By value

UIC user
identifier of

the proxy user,
if proxy is being
used.

Null-terminated
string

Write
By reference

Pointer to a null-
terminated string
containing the
name of the node
from which the
user logged in.

Null-terminated
string

Write
By reference

Time the user’s
credentials
expire. Time

is expressed in
OpenVMS ASCII
time format (DD-
MMM-YYYY
HH:MM:SS.hh).

Management APIls 8-91

ACMSMGMT_LIST_USERS _1

Description

user-name

Type:

Access:

Mechanism:

Usage:

rights
Type:

Access:

Mechanism:

Usage:

proxy_flag
Type:

Access:

Mechanism:

Usage:

Null-terminated
string

Write

By reference
Pointer to a null-
terminated string

containing the
user name.

Array of integers
Write

By value

ACMS

management
rights identifiers
held by the user.

Integer
Write
By value

Indicates whether
the record is for
a proxy user
(proxy_flag =

1) or is not for

a proxy user
(proxy_flag = 0).

The ACMSMGMT_LIST _USERS_1 procedure returns a linked list of users who
are logged in to a particular Remote Manager. All user records are returned on

each call to this procedure.

Like other procedures that return linked lists, the return parameter is a
union containing either a failure status code or a linked list of records. (See

Section 6.6.1 for a detailed example of linked list processing.)

To determine the status of the call and the contents of the return record, first
check the status field. The following are possible values for the status field:

e MGMT_FAIL

The call has failed, and the rc field contains a specific error code describing

the failure.

e MGMT_SUCCESS

The call completed successfully. All user records have been returned.

8-92 Management APIs

Example

ACMSMGMT_LIST_USERS _1

If the status field is equal to MGMT_SUCCESS, a linked list has been returned.
The linked list contains a structure containing the user data and a forward
pointer. By following the forward pointer, all the records in the list can be
retrieved.

This procedure does not require the ACMS run-time system to execute.

int list_users_data(int client_id,CLIENT *cl)
{

user_data_list *user;

user_link *nl;
static struct sub_id_struct sub_rec;
int status;

sub_rec.client_id = client_id;
user = acmsmgmt_list_users_1(&sub_rec,cl);

if (luser) {
printf("\n RPC Call to get User data failed");
return (MGMT_FAIL) ;

}

if ((user->status != MGMT_SUCCESS) && (user->status != MGMT_NOMORE_DATA)) ({
printf("\n Call to get User data failed, returning status code %d",
user->user_data_list_u.rc);
status = user->user _data_list u.rc;
xdr_free(xdr_user_data_list, user);
free(user);
return(status);

}

for (nl = user->user_data_list_u.list; nl != NULL; nl = nl->pNext)
printf("\n User %s is logged in from node %s",nl->user_data.uname,
nl->user_data.nodename) ;

printf("\n End of data");
xdr_free(xdr_user_data_list, user);
free(user);

return(0) ;

}

In the preceding example, the ACMSMGMT_LIST USERS_1 procedure is called
to fetch information about the users who have logged in to the Remote Manager.
If the call succeeds, the name of the user and the node they logged in from

are displayed. Otherwise, an error message is displayed. Note that the name
displayed is the name by which the user is known to the server, and may be a
proxy account. The example in Section 6.4.1 shows how to declare and initialize
the input arguments to this procedure.

Management APls 8-93

ACMSMGMT_REPLACE_SERVER _1

8.29 ACMSMGMT_REPLACE_SERVER _1

This procedure requests the Remote Manager to replace an ACMS procedure
server in an ACMS application on the same node on which the Remote Manager

is running.

Format

cmd_output_rec *acmsmgmt_replace_server_1(ser_sel_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type:

Access:
Mechanism:
Usage:

8-94 Management APIs

Ser_sel struct
Read
By reference

Structure that contains client information and procedure server
selection criteria. The structure contains the following fields.

client_id
Type:
Access:
Mechanism:
Usage:

appl_name
Type:
Access:
Mechanism:
Usage:

server_name
Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Null-terminated string
Read
By reference

A pointer to an application name. The name may
contain wildcard characters (¥, !). Specify in all
uppercase characters.

Null-terminated string
Read
By reference

A pointer to a procedure server name. The name
may contain wildcard characters (¥, !). Specify in
all uppercase characters.

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

CLIENT *
Read
By value

ACMSMGMT_REPLACE_SERVER _1

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Cmd_output_rec

Write

By reference

Pointer to a union. The union contains either a failure code or a
structure of type cmd_rec, which points to a linked list containing
status messages. The following are the contents of this union:

status
Type:
Access:
Mechanism:
Usage:

re
Type:
Access:
Mechanism:
Usage:

Integer

Write

By value

Failure return code.

Integer

Write

By value

Failure return code.

data, data_warn

Type:
Access:
Mechanism:
Usage:

Cmd_rec
Write
By value

Structure containing the first node in a linked list
of status messages (type dcl_list). The following
are the contents of this structure:

Management APls 8-95

ACMSMGMT_REPLACE_SERVER _1

Description

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl _list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

This procedure requests to have an ACMS procedure server replaced (stopped
and started) in an application that is running on the same node on which the
Remote Manager is running. The combination of appl_name and server_name in
the input record determines which server will be replaced.

This call executes synchronously. It does not return to the caller until the attempt
to replace the server is complete. Any messages associated with an unsuccessful
replacing of the server are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT _
SUCCESS. There are no status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status
messages returned; instead, the reason for the failure is contained in the rc field.

8-96 Management APIs

ACMSMGMT_REPLACE_SERVER _1

Example

int replace_server (int client_id,CLIENT *cl)

{

dcl_link *nl;

static char c_name_all[2] = "*";

static char vr_read_server[] = "VR_READ SERVER";
static struct ser_sel_struct sub_rec;

static cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;
sub_rec.appl_name = c_name_all;
sub_rec.server_name = vr_read_server;

ret_struct = acmsmgmt_replace_server_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to replace server failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to replace procedure server %s failed",
sub_rec.server_name) ;
return (MGMT_FAIL);
}

printf("\n Call to replace procedure server %s completed with warnings or
errors",sub_rec.server_name) ;

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl= nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}

else {
printf("\nCall to replace procedure server %s was executed",
sub_rec.server_name) ;

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the ACMSMGMT_REPLACE_SERVER _1 procedure is
called to replace servers named VR_READ_SERVER in any application on the
target node. If the call succeeds, all VR_READ_SERVER servers are replaced
(stopped and started). Otherwise, any error messages associated with the failure
are displayed. The example in Section 6.4.1 shows how to declare and initialize
the input arguments to this procedure.

Management APls 8-97

ACMSMGMT_RESET_LOG _1

8.30 ACMSMGMT_RESET_LOG_1

Format

Parameters

This procedure requests the Remote Manager to close the current version of its
log file and open a new one.

int *acmsmgmt_reset_log_1(sub_id_struct *sub_rec,CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

8-98 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Integer
Write
By reference

Pointer to a status code containing a success or failure status
code. MGMT _SUCCESS indicates success. Other values indicate
failure.

Description

Example

ACMSMGMT_RESET_LOG_1

This procedure requests the Remote Manager to close the currently open version
of its log and to open a new one. All subsequent log entries are posted to the new
version, and the old version can be safely removed.

int reset_log_data(int client_id,CLIENT *cl)
{

static struct sub_id_struct sub_rec;
int *status;

sub_rec.client_id = client id;
status = acmsmgmt_reset_log_1(&sub_rec,cl);

if (!status) {
printf("\n Call to reset log failed");
return (MGMT_FAIL) ;

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to reset log failed with status %d", *status);
free(status);
return (MGMT_FAIL);
}
else
printf("\n Call to reset log completed");
free(status);
return(0);

}

In the preceding example, the ACMSMGMT_RESET LOG_1 procedure is
called to close the current Remote Manager log and to open a new one. If the
call succeeds, a success message is displayed. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

Management APls 8-99

ACMSMGMT_RESET_ERR_2

8.31 ACMSMGMT_RESET_ERR_2

Format

Parameters

This procedure requests the Remote Manager to close the current version of the
error log file and open a new one.

int *acmsmgmt_reset_err_2(sub_id_struct *sub_rec,CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

8-100 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Integer

Write

By reference

Pointer to a status code containing a success or failure status

code. MGMT _SUCCESS indicates success. Other values indicate

failure.

Description

Example

ACMSMGMT_RESET_ERR_2

This procedure requests the Remote Manager to close the currently open version
of the error log and to open a new one. All subsequent erro log entries are posted
to the new version, and the old version can be safely removed.

int reset_err_data(int client_id,CLIENT *cl)
{

static struct sub_id_struct sub_rec;
int *status;

sub_rec.client_id = client id;
status = acmsmgmt_reset_err_ 2 (&sub_rec,cl);

if (!status) {
printf("\n Call to reset log failed");
return (MGMT_FAIL) ;

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to reset log failed with status %d", *status);
free(status);
return (MGMT_FAIL);
}
else
printf("\n Call to reset log completed");
free(status);
return(0);

}

In the preceding example, the ACMSMGMT_RESET ERR_2 procedure is called
to close the current error log and to open a new one. If the call succeeds, a
success message is displayed. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APIls 8-101

ACMSMGMT_SAVE_ERR_FILTER_2

8.32 ACMSMGMT_SAVE_ERR_FILTER_2

This procedure saves the current error filter records to an error filter file.

Format

int *acmsmgmt_save_err_filter_2(sub_id_struct *sub_rec,CLIENT *cl)

8-102 Management APIs

Parameters

set_struct

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_SAVE_ERR_FILTER_2

Err_filter_config_rec_r_2

Read

By reference

Structure that contains the following client authorization and
error filter record information.

client_id
Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

err_filter file name

Type:
Access:

Mechanism:
Usage:

file_spec
Read
By value

Specifies the OpenVMS file specification for the
error filter file.

err_msg_name

Type:
Access:
Mechanism:
Usage:

err_code
Type:
Access:
Mechanism:
Usage:

String
Read
By value

Symbolic name of the error message.

String
Read
By value

Decimal or hexadecimal code for the error
message.

Management APIls 8-103

ACMSMGMT_SAVE_ERR_FILTER_2

cl

Type: CLIENT *

Access: Read

Mechanism: By value

Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

Return Value

Description

Example

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to a status code containing a success or failure status
code. MGMT_SUCCESS indicates success. Other values indicate
failure.

This procedure saves all records in the Error Filter table to the specified ASCII
text file.

int save_err_filter(int client_id, CLIENT *cl)
{
int *status;
static char c_null_str([2] = "";
static char file_spec = "sysSlogin:err_filter.dat";
err_filter config rec_r_2 set_struct;

set_struct.client_id = client_ id;

set_struct.err_filter_file_name = file_spec;
set_struct.err_msg name = c_null_str;
set_struct.err_code = -2;

status = acmsmgmt_save_err_filter_file_ 2 (&set_struct, cl);

if (!status) {
printf("\n Call to save error filter failed");
return (MGMT_FAIL) ;

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to save error filter failed with status %d",
*status) ;
free(status);
return (MGMT_FAIL) ;
}
else {
printf("\n Call to save error filter completed");

}

free(status);
return(0);

}
In the preceding example, the ACMSMGMT_SAVE_ERR_FILTER 2

8-104 Management APIs

ACMSMGMT_SAVE_ERR_FILTER_2

procedure is called to save all the records in the Error Filter table to the
file SYS$LOGIN:ERR_FILTER.DAT. If the call succeeds, a success message
is displayed. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIls 8-105

ACMSMGMT_SET_ACC_2

8.33 ACMSMGMT_SET_ACC_2

Format

Parameters

This procedure modifies ACMS Central Controller (ACC) Config class fields.

acc_status_rec_2 *acmsmgmt_set_acc_2(acc_config_rec_2 *set_struct, CLIENT *cl)

set_struct

Type:

Access:

Mechanism:

Usage:

8-106 Management APIs

Acc_config_rec_2

Read

By reference

Structure that contains the following client identification and
ACC table fields.

client_id

Type:

Access:

Mechanism:

Usage:

active_sw

Type:

Access:

Mechanism:

Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Integer
Read
By value

Indicates whether active variables should be
updated (active_sw = 1). Active variables are
currently in use by the ACMS system; updates to
active variables take effect immediately but are
not durable (that is, they do not survive a restart
of the ACMS system). Not all variables are
dynamic, however. Refer to Section 9.2, and to
the field descriptions in this section, to determine
whether a particular variable can be updated
dynamically.

current_sw
Type:
Access:
Mechanism:
Usage:

ACMSMGMT_SET_ACC_2

Integer
Read
By value

Indicates whether current variables should be
updated (current_sw = 1). Current variables are
those stored in the ACMSGEN file currently in
use by the ACMS system and are durable (that is,
they can survive a restart of the ACMS system).
Updates to current variables take effect when the
ACMS system is restarted.

acc_priority, audit_state, max_appl, mss_maxobj, mss_
maxbuf, mss_net_retry_timer, mss_poolsize, mss_process_
pool, ws_poolsize, wsc_poolsize, tws_poolsize, twsc_

poolsize
Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond

to fields of the same names in the ACC table,
depending on the value of active_sw and current_
sw in this record (for example, acc_priority will
update the acc_priority_active field if active_sw
is equal to 1). See Section 9.2 for a discussion

of these fields. Note that not all fields can be
updated dynamically.

astlm, biolm, bytlm, channelcnt, diolm, enqlm, fillm,
gblpages, gblpagfil, gblsections, pgfiquota, tqelm,
wsdefault, wsextent, wsquota

Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond

to fields of the same names in the ACC table,
depending on the value of active_sw and current_
sw in this record (for example, astlm will update
the astlm_stored field if current_sw is equal to
1). See Section 9.2 for a discussion of these fields.
None of these fields can be updated dynamically.

Management APIls 8-107

ACMSMGMT_SET_ACC_2

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

8-108 Management APIs

acc_username, username_default, node_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Values to be updated. These fields correspond

to fields of the same names in the ACC table,
depending on the value of active_sw and current_
sw in this record (for example, username_default
will update the username_default_active field if
active_sw is equal to 1). See Section 9.2 for a
discussion of these fields. Note that not all fields
can be updated dynamically. In order to have any
of these fields set to null (that is, ""), set the field
to the string "NULL".

CLIENT *
Read
By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Acc_status_rec_2
Write
By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type acc_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

ACMSMGMT_SET_ACC_2

data, data_warn

Type:
Access:

Mechanism:
Usage:

Acc_config_rec_out
Write
By value

Structure containing fields corresponding to the
fields in the acc_config_rec_2 structure, as well
as a linked list of status messages associated
with the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

acc_priority, acc_username, astlm, audit_
state, biolm, bytlm, channelent, diolm,
enqlm, fillm, gblpages, gblpagfil, gblsections,
max_appl, mss_maxobj, mss_maxbuf, mss_
net_retry_timer, mss_poolsize, mss_process_
pool, node_name, pgflquota, tqelm, twsc_
poolsize, tws_poolsize, username_default,
wsc_poolsize, wsdefault, wsextent, ws_
poolsize, wsquota

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the

fields in the input argument.

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APIls 8-109

ACMSMGMT_SET_ACC_2

Description

Example

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

This procedure requests updates to ACMS ACC Config class fields contained in
the ACC table (see Section 9.2). Note that the ACC table contains both active and
stored values. The active_sw field and current_sw field control which fields are to
be updated.

Attempting to update an active field that is nondynamic is essentially useless,
since the value of the active field value will not change. For instance, calling this
procedure with the active_sw field set to 1 and the acc_username field populated
produces no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current
ACMSGEN file. These updates are durable (that is, they can survive a restart
of the ACMS sytem), but they do not affect the active system until the system is
restarted.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure. For string fields, the
string field value is returned regardless of the status of the call.

In order to have one of the string fields set to a null string (that is, ""), populate
the field with the value NULL. To have one of the string fields ignored, pass in a
null string.

int set_acc_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char c_null_str([2] = "";
static acc_config rec_2 set_struct;
acc_status_rec_2 *ret_struct;
decl_link *nl;

8-110 Management APIs

ACMSMGMT_SET_ACC_2

memset (&set_struct,-1,sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.active_sw 1;
set_struct.current_sw 0;
set_struct.audit_state MGMT_STATE_DISABLED;

/* Have to provide a pointer for string conversions by XDR
or it will access vio. RM will ignore any fields with
strlen of 0 */

set_struct.acc_username = c_null_str;

set_struct.username_default = c_null str;

set_struct.node_name = c_null_str;

ret_struct = acmsmgmt_set_acc_2(&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify ACC failed");
return (MGMT_FAIL);

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify ACC returned the following warnings or
errors\n") ;
else
printf("\n Call to modify ACC completed\n");

for (nl = ret_struct->acc_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_acc_status_rec_2, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the acmsmgmt_set_acc_2 procedure is called to disable
system auditing on the target node. If the call succeeds, system auditing is
disabled on the target node, and a success message is displayed. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

Management APIs 8-111

ACMSMGMT_SET_AGENT_2

8.34 ACMSMGMT_SET_AGENT_2

This procedure modifies the ACMS Agent Process class attributes.

Format

agent_status_rec *acmsmgmt_set_agent_2(agent_config_rec *agent_cfg_rec,CLIENT *cl)
Parameters

set_struct

Type: agent_config_rec

Access: Read

Mechanism: By reference

Usage: Structure that contains the following client identification and

Agent table fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds

procedure.

current_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Update current values flag, required to be set to
1.

pid

Type: Integer

Access: Read

Mechanism: By reference

Usage: PID of the Agent process to be updated, required.

8-112 Management APIs

cl

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_SET_AGENT_2

userl_time, user2_time, user3_time

Type: Null-terminated String

Access: Read

Mechanism: By reference

Usage: Time fields provided for use by programmers.

Pointers to character strings representing VMS
time (for example, "18-NOV-2003 00:00:00.00"). If
these fields are not to be set, the fields should be
initialized to a null string (""). See the note at the
end of this section for a discussion of these fields.

userl_data, user2_data, user3_data, user4_data, user5_
data, user6_data

Type: Integer

Access: Read

Mechanism: By value

Usage: Integer fields provided for use by programmers.

astlm, biolm, bytlm, diolm, enqlm, fillm, pgfiquota, tqelm,
wsdefault, wsextent, wsquota

Type: Integer

Access: Read

Mechanism: By value

Usage: Quota values to be updated. These fields

correspond to the stored fields of the same names
in the Agent table (for example, astlm will update
astlm_stored). See the note at the end of this
section for a discussion of these fields.

CLIENT *
Read
By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Management APIs 8-113

ACMSMGMT_SET_AGENT_2

Return Value

Type:

Access:

Mechanism:

Usage:

8-114 Management APIs

agent_status_rec

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type agent_config_rec_out, which
contains status codes for each quota field, as well as a linked list
of status messages associated with the update. The following are
the contents of this union:

re

Type:
Access:
Mechanism:
Usage:

Integer

Write

By value

Failure return code.

data, data_warn

Type:
Access:
Mechanism:
Usage:

agent_config_rec_out
Write
By value

Structure containing fields corresponding to the
quota fields in the agent_config_rec structure, as
well as a linked list of status messages associated
with the update. The following are the contents
of this structure:

astlm, biolm, bytlm, diolm, enqlm, fillm,
pgflquota, tqelm, wsdefault, wsextent,
wsquota

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to
the quota fields in the input
argument.

Description

ACMSMGMT_SET_AGENT_2

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl list

Access: Write

Mechanism: By reference

Usage: Pointer to the

next node in the
linked list.

Note

This procedure requests updates to ACMS Agent Config class fields
contained in the Agent table at the end of this section. Note that the
Agent table contains both active and stored quota values; however, only
the stored fields can be changed.

The ACMSMGMT_SET_AGENT_2 procedure sets the three user time fields and
six user data fields, these fields are provided for agent developers to use as they
see fit for individual agents.

If the ACMS run-time system is not running when this call is issued, the Remote
Manager returns the MGMT_NOT_MAPPED error code.

Management APIs 8-115

ACMSMGMT_SET_AGENT_2

Example

int set_agent_data(int client_id, CLIENT

}

{

*cl)

static char null_time[] = "";
static agent_config_rec set_struct;
agent_status_rec *ret_struct;
dcl_link *nl;

static char timel [MGMTS$S_TIME_A+1]
static char time2[MGMTS$S_TIME_A+1]
static char time3[MGMTS$S_TIME_A+1]

"18-NOV-1858 00:00:00.00";
"19-NOV-1858 00:00:00.00";
"20-NOV-1858 00:00:00.00";

// Initialize the agent config record.
memset (&set_struct,-1,sizeof (set_struct));

set_struct

set_struct.
set_struct.

set_struct.

set_struct

set_struct.
set_struct.

set_struct.
set_struct.
set_struct.
set_struct.
set_struct.
set_struct.
set_struct.
set_struct.

set_struct

ret_struct

.userl_time = null_time;
user2_time = null time;
user3_time = null_time;
pid = 0x45400931;
.client_id = client_id;
current_sw = 1;

astlm = 500;
userl_time = timel;
user2_time = time2;
user3_time = time3;
userl_data = 1;
user2_data = 2;
user3_data = 3;

userd _data = 4;
user5_data = 5;
.user6_data = 6;

= acmsmgmt_set_agent_2 (&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify Agent failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify Agent returned the following warnings or errors\n");

else

printf("\n Call to modify Agent completed\n");

for (nl = ret_struct->agent_status_rec_u.data.cmd_output;
nl != NULL;

nl = nl-

>pNext)

printf("\n %$s",nl->dcl_msg);

xdr_free(xdr_agent_status_rec, ret_struct);
free(ret_struct);

return(0);

In the preceding example, the ACMSMGMT_SET _AGENT_2 procedure is call
to set the user time and data fields. If the call succeeds, a success message is
displayed. Otherwise, an error message is displayed. The example in Section
5.3.1 shows how to declare and initialize the input arguments to this procedure.

8-116 Management APIs

ACMSMGMT_SET_COLLECTION_2

8.35 ACMSMGMT_SET_COLLECTION_2

Format

Parameters

This procedure modifies entries in the Remote Manager Collection table.
Collection table entries can also be added (see Section 8.3) and deleted (see

Section 8.6).

coll_status_rec_2 *acmsmgmt_set_collection_2(coll_config_rec_2 *set_struct,CLIENT *cl)

set_struct

Type:

Access:
Mechanism:
Usage:

cl

Type:
Access:
Mechanism:
Usage:

Coll_config_rec_2

Read

By reference

Structure that contains the following client identification and
collection table fields.

client_id

Type:

Access:

Mechanism:

Usage:

coll
Type:

Access:

Mechanism:

Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Coll_update_rec_r_2

Read

By value

Structure containing a Collection table record.
Collection table fields are described in Section 9.4.

See the Description section for information on
how to initialize this record.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Management APIs 8-117

ACMSMGMT_SET_COLLECTION_2

Return Value

Type: Coll_status_rec_2

Access: write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type coll_update_rec_r_2, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

re

Type: Integer

Access: write

Mechanism: By value

Usage: Failure return code.

data_warn

Type: Coll_output_rec_r_2

Access: write

Mechanism: By value

Usage: Structure containing a Collection table record.

The entries in this field contain status codes that
correspond to the fields in the coll structure. See
the Description section for a discussion of how to
determine the update status for any field.

Description
This procedure requests updates to fields in the Collection table (see Section 9.4).

Updates to this table are not durable; that is, they do not survive a restart of
the Remote Manager. To make nondynamic, permanent updates to the collection
table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_
class. These fields must exactly match an existing record in the Collection table
for the update to be applied. Table 8—1 and Table 8—4 contain symbolic values
used to populate the collection_class and entity_type fields; entity_name is
specified as a null-terminated string.

For any nonnegative fields, the completion status of the update is returned in
the corresponding field in the return structure. This includes the key fields of
entity_type, entity_name, and collection_class. If no matching record is found in
the table, entity_type and collection_class contain values of MGMT_FAIL.

Updates to the collection table are processed immediately and may affect more
than one ACMS process. See Section 5.1 for discussion of how the collection table
affects ACMS data collection.

8-118 Management APIs

Example

ACMSMGMT_SET_COLLECTION_2

int set_collection_ data(int client_id,CLIENT *cl)

{

}

static char c_name_all[2] = "*";
static coll_config_rec_2 set_struct;
struct coll status_rec_2 *status_rec;

set_struct.client_id
set_struct.coll.entity_type
set_struct.coll.entity_name
set_struct.coll.collection_class
set_struct.coll.collection_state

st
if

if

}

client_id;
MGMT_ALL;
c_name_all;
MGMT_CLASS_RT;
MGMT_STATE_ENABLED;

atus_rec = acmsmgmt_set_collection_2 (&set_struct,cl);
(!status_rec) {

printf("\n Call to modify collection failed");
return (MGMT_FAIL) ;

(status_rec->status == MGMT_WARN) ({
printf ("\nThe following updates failed: ");
if (status_rec->coll_status_rec_2_u.data_warn.entity_type == MGMT_FAIL)
printf("\n Record not found");
if (status_rec->coll_status_rec_2_u.data_warn.collection_state
== MGMT_FAIL)
printf ("\n coll_state invalid");
if (status_rec->coll_status_rec_2_u.data_warn.storage_state == MGMT_FAIL)
printf("\n storage_state invalid");
if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
== MGMT_FAIL)
printf("\n storage_interval invalid");

}

else if (status_rec->status != MGMT SUCCESS) ({

printf("\n Call to modify collection failed with status
%d",status_rec->coll_status_rec_2 u.rc);
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);
return (MGMT_FAIL) ;

else

printf("\nCall to modify collection was executed");
xdr_free(xdr_coll_status_rec_2, status_rec);
free(status_rec);

return(0) ;

In the preceding example, the ACMSMGMT_SET _COLLECTION_2 procedure

is called to set the collection state to ENABLED for the Collection table record
with an entity of * (all), a name of * (all), and class of RUNTIME. If the call
succeeds, the new value will be stored in the Collection table, all ACMS processes
on the target node will begin collecting run-time data, and a success message
will be displayed. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIs 8-119

ACMSMGMT_SET_CP_2

8.36 ACMSMGMT_SET_CP_2

This procedure modifies the ACMS Central Process (CP) class attributes.

Format
cp_status_rec_2 *acmsmgmt_set_cp_2(cp_config_rec_2 *cp_cfg_rec,CLIENT *cl)
Parameters
cp_cfg_rec_2
Type: Cp_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and
collection table fields.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.
astlm, biolm, bytlm, current_sw, diolm, enqlm, fillm,
pgflquota, tqelm, wsdefault, wsextent, wsquota
Type: Cp_rec_r
Access: Read
Mechanism: By value
Usage: Structure containing a CP table record. CP
table fields are described in Section 9.5. See the
Description section for information on how to
initialize this record.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

8-120 Management APIs

Return Value

Description

Example

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_SET_CP_2

Cp_status_rec_2

write

By reference

Pointer to a record that contains a union consisting of either

a failure code or a structure of type config_rec_out_2, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

rc

Type:
Access:

Mechanism:

Usage:

data_warn

Type:

Access:

Mechanism:

Usage:

Integer

write

By value

Failure return code.

Config_rec_out_2

write

By value

Structure containing a CP table record. The
entries in this field contain status codes that
correspond to the fields in the cp structure. See

the Description section for a discussion of how to
determine the update status for any field.

This procedure requests updates to fields in the CP table (see Section 9.5).

Updates to this table are not durable; that is, they do not survive a restart of
the Remote Manager. To make nondynamic, permanent updates to the collection
table, use the ACMSCFG utility.

Updates to the CP table are processed immediately and may affect more than one

ACMS process.

int set_cp_data(int client_id,CLIENT *cl)

{

cp_config_rec_2
cp_status_rec_2 *ret_struct;
dcl_link

*nl;

set_struct;

memset (&set_struct,-1,sizeof (set_struct));

set_struct.client_id
set_struct.current_sw
set_struct.astlm

ret_struct

= 500;

client_id;
1;

acmsmgmt_set_cp_2 (&set_struct,cl);

Management APIls 8-121

ACMSMGMT_SET_CP_2

}

if (!ret_struct) {
printf("\n Call to modify CP failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify CP returned the following warnings or
errors\n") ;
else
printf("\n Call to modify CP completed\n");

for (nl = ret_struct->cp_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cp_status_rec_2, ret_struct);
free(ret_struct);
return(0) ;

In the preceding example, the ACMSMGMT_SET_CP_2 procedure is called.
Otherwise, an error message is displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8-122 Management APIs

ACMSMGMT_SET_EXC_2

8.37 ACMSMGMT_SET_EXC_2

Format

Parameters

This procedure modifies the ACMS Application Execution Controller (EXC) Config
class attributes.

exc_status_rec_2 *acmsmgmt_set_exc_2(exc_config_rec_2 *set_struct,CLIENT *cl)

set_struct

Type: Exc_config_rec_2

Access: Read

Mechanism: By reference

Usage: Structure that contains the following client identification and

EXC table fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

appl_name

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Name of the application to update.

Management APIls 8-123

ACMSMGMT_SET_EXC_2

cl

Type:

Access:
Mechanism:
Usage:

8-124 Management APIs

active_sw, audit_state, current_sw, max_tasks, max_
servers, sp_mon_interval, transaction_timeout

Type:
Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond to
the active fields of the same names in the EXC
table (for example, max_tasks will update max_
tasks_active). See Section 9.7 for a discussion
of these fields. All fields in this record can be
updated dynamically. Stored values cannot be
changed for EXCs (application must be rebuilt).

astlm, biolm, bytlm, diolm, enqlm, fillm, pgfiquota, tqelm,
wsdefault, wsextent, wsquota

Type:
Access:

Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

Values to be updated. These fields correspond

to the stored fields of the same names in the
EXC table (for example, astlm will update astlm_
stored). See Section 9.7 for a discussion of these
fields.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Return Value

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_SET_EXC_2

Exc_status_rec_2

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type exc_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

re

Type:
Access:
Mechanism:
Usage:

Integer

Write

By value

Failure return code.

data, data_warn

Type:
Access:
Mechanism:
Usage:

Exc_config_rec_out_2
Write
By value

Structure containing fields corresponding to the
fields in the exc_config_rec_2 structure, as well
as a linked list of status messages associated
with the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

astlm, audit_state, biolm, bytlm, diolm,
enqlm, fillm, max_servers, max_tasks,
pgflquota, sp_mon_interval, tqelm,
transaction_timeout, wsdefault, wsextent,
wsquota

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the

fields in the input argument.

Management APIls 8-125

ACMSMGMT_SET_EXC_2

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl _list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

Description

This procedure requests updates to ACMS EXC Config class fields contained in
the EXC table (see Section 9.7). Note that the EXC table contains both active and
stored values; however, only the active fields can be changed. In order to change
the stored values, the application must be rebuilt.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure.

Example

int set_exc_data(int client_id,CLIENT *cl)
{

static char vr_appl[] = "VR_APPL";
static exc_config rec_2 set_struct;
exc_status_rec_2 *ret_struct;
decl_link *nl;

memset (&set_struct,-1,sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.audit_state MGMT_STATE_DISABLED;
set_struct.appl_name vr_appl;

ret_struct = acmsmgmt_set_exc_2 (&set_struct,cl);

8-126 Management APIs

ACMSMGMT_SET_EXC_2

if (!ret_struct) {
printf("\n Call to modify EXC failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify EXC returned the following warnings or

errors\n") ;
else
printf("\n Call to modify EXC completed\n");
for (nl = ret_struct->exc_status_rec_2_u.data.cmd_output; nl != NULL; nl =
nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_exc_status_rec_2, ret_struct);
free(ret_struct);
return(0) ;
}
In the preceding example, the ACMSMGMT_SET_EXC_2 procedure is called to
disable application auditing for the application VR_APPL on the target node. If
the call succeeds, the VR_APPL no longer writes application auditing messages,
and a success message is displayed. Otherwise, an error message is displayed.
The example in Section 6.4.1 shows how to declare and initialize the input
arguments to this procedure.

Management APls 8-127

ACMSMGMT_SET_INTERFACE _1

8.38 ACMSMGMT_SET_INTERFACE_1

This procedure modifies the status of a Remote Manager interface. Either the
SNMP or RPC interface can be modified.

Note

The ACMS Remote Manager will not allow the RPC interface to be
DISABLED through this call. The only way to disable the RPC interface
dynamically is to use the SNMP interface.

Format
int *acmsmgmt_set_interface_1(interface_config_rec *set_struct,CLIENT *cl)
Parameters
set_struct
Type: Interface_config_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

interface configuration fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

interface_type

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates the interface to be modified. Table 8-2
shows the valid symbolic values for interface
types.

8-128 Management APIs

ACMSMGMT_SET_INTERFACE _1

state
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates desired state of the interface. Table 8-3
shows the valid symbolic values for the allowable
states.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

Return Value

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to status value returned. If NULL or MGMT_SUCCESS,

the RPC has succeeded. If neither NULL nor MGMT_SUCCESS,
the procedure call failed and the value pointed to is the reason
for failure.

Description

This procedure modifies the status of an interface. Interfaces can be enabled
(that is, requested to start) or disabled (that is, requested to stop) by setting the
state field in set_struct to the appropriate value.

Note that it is not possible to use the RPC interface to enable the RPC interface.
In order to use the RPC interface, it must already be enabled. In order to start
the RPC interface, either use the SNMP interface, or use the ACMSCFG utility to
configure the RPC interface to be enabled when the Remote Manager starts up.

It is also not possible to use this call to disable the RPC interface. The ACMS
Remote Manager does not allow an interface to disable itself. The only way to
disable the RPC interface dynamically is to use the SNMP interface.

Example

int set_interface_data(int client_id,CLIENT *cl)
{

static interface_config_rec set_struct;
int *status;

memset (&set_struct,-1,sizeof (set_struct));

Management APIls 8-129

ACMSMGMT_SET_INTERFACE _1

}

set_struct.client_id = client_id;
set_struct.interface_type = MGMT_IF_SNMP;
set_struct.state = MGMT_STATE_ENABLED;

status = acmsmgmt_set_interface_l(&set_struct,cl);

if (!status) {
printf("\n Call to update SNMP interface failed");
return (MGMT_FAIL);

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to update SNMP interface failed with status %d", *status);
free(status);
return (MGMT_FAIL) ;
}
else
printf("\n Call to set SNMP interface completed");

(
free(status);
return(0);

In the preceding example, the ACMSMGMT_SET_INTERFACE_1 procedure is
called to enable the SNMP interface. If the call succeeds, the SNMP interface is
running on the target node, and a success message is displayed. Otherwise, an
error message is displayed. The example in Section 6.4.1 shows how to declare
and initialize the input arguments to this procedure.

8-130 Management APIs

ACMSMGMT_SET_PARAM_2

8.39 ACMSMGMT_SET_PARAM_2

Format

Parameters

This procedure requests updates to fields in the Remote Manager Parameter

table.

param_status_rec2 *acmsmgmt_set_param_2(param_config_rec2 *set_struct, CLIENT *cl)

set_struct

Type:
Access:
Mechanism:
Usage:

cl

Type:
Access:

Mechanism:
Usage:

Param_config_rec2

Read

By reference

Structure that contains the following client identification and
parameter configuration fields.

client_id

Type:

Access:

Mechanism:

Usage:

params

Type:

Access:

Mechanism:

Usage:

CLIENT *
Read
By value

Integer

Read

By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Param_rec2
Read
By value

Structure containing a Parameter table
record. Parameter table fields are described
in Section 9.10. See the Description section for
information on how to initialize this record.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Management APIls 8-131

ACMSMGMT_SET_PARAM_2

Return Value

Type: Param_status_rec2

Access: write

Mechanism: By reference

Usage: Pointer to a record that contains a union consisting of either a

failure code or a structure of type param_rec2, which contains
status codes for each field. See the Description section for a
discussion of how to determine the update status for any field.
The following are the contents of this union:

re

Type: Integer

Access: write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Param_rec_2

Access: write

Mechanism: By value

Usage: Structure containing a Parameter table record.

The entries in this field contain status codes
correspond to the fields in the params structure.
See the Description section for a discussion of
how to determine the update status for any field.

Description

This procedure requests updates to fields in the Parameter table (see
Section 9.10). Some field updates are dynamic; others are not. Updates to
this table are not durable; that is, they do not survive a restart of the Remote
Manager.

When this procedure is called, any fields with negative values are ignored.
Callers should initialize any fields to a negative value (for example, -1) for which
updates are not to be applied. All nonnegative fields are validated prior to being
updated.

For any nonnegative fields, the completion status of the update is returned in the
corresponding field in the return structure. For instance, if the mss_coll_interval
and max_logins fields in the params structure of the param_config_rec are
nonnegative when this procedure is called, the mss_coll_interval and max_logins
field of the data or data_warn structures of the param_status_rec will contain the
completion status for those updates.

The data and data_warn structures contain identical data. If the operation fails,
the status field of either structure is MGMT_WARN; in this case, use the data_
warn structure to fetch the status messages from the emd_output linked list.

8-132 Management APIs

Example

ACMSMGMT_SET_PARAM_2

If the operation is successful, the status field of either structure is MGMT _
SUCCESS. There are no status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status
messages returned; instead, the reason for the failure is contained in the rc field.

int set_param_ data(int client_id,CLIENT *cl)
{

static param_config_rec2 set_struct;
param_status_rec2 *ret_struct;
int status;

memset (&set_struct, -1, sizeof (set_struct));

set_struct.client_id = client_id;
set_struct.params.max_logins = 25;

ret_struct = acmsmgmt_set_param_2 (&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify parameters failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS) {

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to modify parameters failed, returning %d",
ret_struct->status);
status = ret_struct->status;
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);
return (MGMT_FAIL);
}

if (ret_struct->param_status_rec2_u.data.max_logins != MGMT_SUCCESS)
printf("\n max_logins specified was invalid ");
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}

else
printf("\n Call to set params completed");
xdr_free(xdr_param_status_rec2, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the ACMSMGMT_SET_PARAM_2 procedure is called
to set the maximum number of logins to the Remote Manager to 25. If the call
succeeds, the new value will be stored in the Parameter table and a success
message will be displayed. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APls 8-133

ACMSMGMT_SET_QTI_2

8.40 ACMSMGMT_SET_QTI_2

This procedure modifies Queued Task Initator (QTI) Config class attributes.

Format
qti_status_rec_2 *acmsmgmt_set_qti_2(qti_config_rec_2 “set_struct, CLIENT *cl)
Parameters
set_struct
Type: Qti_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and QTI

table fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

active_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether active variables should be

updated (active_sw = 1). Active variables are
currently in use by the ACMS system; updates
to active variables take effect immediately but
are not durable (that is, they do not survive a
restart of the ACMS system). Not all variables
are dynamic, however. Refer to Section 9.11
and to the field descriptions in this section, to
determine whether a particular variable can be
updated dynamically.

8-134 Management APIs

current_sw
Type:
Access:
Mechanism:
Usage:

ACMSMGMT_SET_QTI_2

Integer
Read
By value

Indicates whether current variables should be
updated (current_sw = 1). Current variables are
those stored in the ACMSGEN file currently in
use by the ACMS system and are durable (that
is, they survive a restart of the ACMS system).
Updates to current variables take effect when the
ACMS system is restarted.

qti_priority, sub_timeout, max_threads, retry_timer,

polling_timer
Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond

to fields of the same names in the QTI table,
depending on the value of active_sw and current_
sw in this record (for example, qti_priority will
update the qti_priority_stored field if current_sw
is equal to 1). See Section 9.11 for a discussion of
these fields. None of these fields can be updated
dynamically.

astlm, biolm, bytlm, diolm, enqlm, fillm, pgfiquota, tqelm,
wsdefault, wsextent, wsquota

Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond

to fields of the same names in the QTI table,
depending on the value of active_sw and current_
sw in this record (for example, astlm will update
the astlm_stored field if current_sw is equal to
1). See Section 9.11 for a discussion of these
fields. Note that not all fields can be updated
dynamically.

Management APIls 8-135

ACMSMGMT_SET_QTI_2

cl

Type:
Access:

Mechanism:
Usage:

Return Value

Type:
Access:

Mechanism:
Usage:

8-136 Management APIs

qti_username

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Values to be updated. This field corresponds

to the qti_username field in the QTI table; the
exact field depends on the value of active_sw
and current_sw in this record (for example, qti_
username will update the qti_username_stored
field if current_sw is equal to 1). See Section 9.11
for a discussion of these fields. Note that not all
fields can be updated dynamically. In order to
have this field set to null (that is, ""), set the field
to the string "NULL".

CLIENT *
Read
By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Qti_status_rec_2
Write
By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type qti_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

ACMSMGMT_SET_QTI_2

data, data_warn

Type:
Access:

Mechanism:
Usage:

Qti_config_rec_out_2
Write
By value

Structure containing fields corresponding to the
fields in the set_struct structure, as well as a
linked list of status messages associated with
the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

astlm, biolm, bytlm, diolm, enqlm, fillm,
max_threads, pgflquota, polling_timer,
qti_priority, qti_username, retry_timer,
sub_timeout, tqelm, wsdefault, wsextent,
wsquota

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the

fields in the input argument.

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

Management APIls 8-137

ACMSMGMT_SET_QTI_2

pNext

Type: Del_list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

Description

This procedure requests updates to ACMS QTI Config class fields contained in
the QTI table (see Section 9.11). Note that the QTI table contains both active
and stored values. The active_sw field and current_sw field control which fields
should be updated.

Attempting to update an active field that is nondynamic is essentially useless,
since the active field value does not change. For instance, calling this procedure
with the active_sw field set to 1 and the qti_username field populated produces
no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current
ACMSGEN file. These updates are durable (that is, they survive a restart of the
ACMS sytem) but do not affect the active system until the system is restarted.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure. For string fields, the
string field value is returned, regardless of the status of the call.

In order to have one of the string fields set to a null string (that is, ""), populate
the field with value "NULL". To have one of the string fields ignored, pass in a
null string.

Example

int set_qgti_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static char c_null_str([2] = "";
static gti_config rec 2 set_struct;

gti_status_rec_2 *ret_struct;
decl_link *nl;

memset (&set_struct,-1,sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.active_sw =1;
set_struct.current_sw = 0;
set_struct.polling_timer = 4999;

/* Have to provide a pointer for string conversions by XDR
or it will gtiess vio. RM will ignore any fields with
strlen of 0 */

set_struct.qgti_username = c_null_str;

ret_struct = acmsmgmt_set_qgti_2 (&set_struct,cl);

8-138 Management APIs

ACMSMGMT_SET_QTI_2

if (lret_struct) {

printf("\n Call to modify gti failed");

return (MGMT_FAIL) ;
}
if (ret_struct->status != MGMT_SUCCESS)

printf("\n Call to modify QTI returned the following warnings or

errors\n");

else

printf("\n Call to modify QTI completed\n");
for (nl = ret_struct->gti_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_qti_status_rec_2, ret_struct);
free(ret_struct);
return(0) ;

}
In the preceding example, the ACMSMGMT_SET _QTI_2 procedure is called to
set the ACMSGEN parameter qti_polling_timer to 4999 milliseconds. If the call
succeeds, only the active value is modified, the stored value is unchanged, and
a success message is displayed. Otherwise, an error message is displayed. The
example in Section 6.4.1 shows how to declare and initialize the input arguments
to this procedure.

Management APIls 8-139

ACMSMGMT_SET_SERVER _1

8.41 ACMSMGMT_SET_SERVER_1

Format

Parameters

This procedure modifies server (ACMS procedure server) Config class attributes.

ser_status_rec “acmsmgmt_set_server_1(ser_config_rec *set_struct,CLIENT *cl)

set_struct

Type:

Access:

Mechanism:

Usage:

8-140 Management APIs

Ser_config_rec
Read

By reference

Structure that contains the following client identification and
Server table fields.

client_id
Type:
Access:
Mechanism:
Usage:

appl_name
Type:
Access:
Mechanism:
Usage:

server_name
Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

Null-terminated string
Read
By reference

Name of the application to which the server to be
updated belongs.

Null-terminated string
Read
By reference

Name of the server to update.

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_SET_SERVER _1

creation_delay, creation_interval, deletion_delay, deletion_
interval, server_proc_dmpflag, minimum_instances,
maximum_instances

Type: Integer

Access: Read

Mechanism: By value

Usage: Values to be updated. These fields correspond to

the active fields of the same names in the Server
table (for example, creation_delay updates the
creation_delay_active field). See Section 9.12

for a discussion of these fields. All fields in this
record can be updated dynamically.

CLIENT *
Read
By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Ser_status_rec
Write
By reference

Pointer to a record that contains a union consisting of either

a failure code or a structure of type ser_config_rec_out, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

re
Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

Management APIls 8-141

ACMSMGMT_SET_SERVER _1

8-142 Management APIs

data, data_warn

Type:
Access:

Mechanism:

Usage:

Ser_config_rec_out
Write
By value

Structure containing fields corresponding to the
fields in the ser_config_rec structure, as well as
a linked list of status messages associated with
the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

creation_delay, creation_interval, deletion_
delay, deletion_interval, server_proc_
dmpflag, minimum_instances, maximum_
instances

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the

cmd_output

fields in the input argument.

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

Description

Example

ACMSMGMT_SET_SERVER _1

pNext

Type: Decl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the

next node in the
linked list.

This procedure requests updates to ACMS server Config class fields contained
in the Server table (see Section 9.12). Note that the Server table contains only
active values.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure.

int set_ser_data(int client_id,CLIENT *cl)

static char c_name_all[2] = "*";
static char vr_appl[] = "VR_APPL";
static ser_config rec set_struct;
ser_status_rec *ret_struct;
dcl_link *nl;

memset (&set_struct,-1,sizeof (set_struct));
set_struct.client_id = client_id;

set_struct.appl_name = vr_appl;
set_struct.server_name = c_name_all;
set_struct.creation_delay = 20;

ret_struct = acmsmgmt_set_server_1 (&set_struct,cl);

if (!ret_struct) {
printf("\n Call to modify Server failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify Server returned the following warnings or
errors\n") ;
else
printf("\n Call to modify Server completed\n");

for (nl = ret_struct->ser_status_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_ser_status_rec, ret_struct);
free(ret_struct);
return(0);

In the preceding example, the ACMSMGMT_SET_SERVER_1 procedure is called
to set the creation_delay parameter field for all servers in application VR_APPL
to 20 seconds. If the call succeeds, this parameter field is modified for all servers
in the VR_APPL, and a success message is displayed. Otherwise, an error

Management APIls 8-143

ACMSMGMT_SET_SERVER _1

message is displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

8-144 Management APIs

ACMSMGMT_SET_TRAP_1

8.42 ACMSMGMT_SET_TRAP_1

Format

Parameters

This procedure modifies entries in the Remote Manager Trap table. Trap table
entries can also be added (see Section 8.5) and deleted (see Section 8.8).

trap_status_rec *acmsmgmt_set_trap_1(trap_config_rec *set_struct,CLIENT *cl)

set_struct

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Trap_config_rec

Read

By reference

Structure that contains the following client identification and
Trap table fields.

client_id
Type:
Access:
Mechanism:
Usage:

trap_entry
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

Trap_update_rec_r
Read
By value

Structure containing a Trap table record. Trap
table fields are described in Section 9.14. See
the Description section for information on how to
initialize this record.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APIls 8-145

ACMSMGMT_SET_TRAP_1

Return Value

Description

Type:

Access:

Mechanism:

Usage:

Trap_status_rec

Write

By reference

Pointer to a record that contains a union consisting of either

a failure code or a structure of type trap_update_rec_r, which
contains status codes for each field. See the Description section
for a discussion of how to determine the update status for any
field. The following are the contents of this union:

rc

Type:

Access:

Mechanism:

Usage:

data_warn

Type:

Access:

Mechanism:

Usage:

Integer

Write

By value

Failure return code.

Trap_update_rec_r
Write
By value

Structure containing a Trap table record.

The entries in this field contain status codes
corresponding to the fields in the trap_entry
structure. See the Description section for a
discussion of how to determine the update status
for any field.

This procedure requests updates to fields in the Trap table (see Section 9.14).

Updates to this table are not durable; that is, they do not survive a restart of the
Remote Manager. To make nondynamic, permanent updates to the Trap table,
use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_
trap. These fields must exactly match an existing record in the Trap table for
the update to be applied. Table 8-1 and Table 8-4 contain symbolic values used
to populate the collection_class and entity_type fields; symbolic values to the
param_to_trap field are described in Table 8-8.

Setting fields trap_min, trap_max, or severity to -2 excludes them from being
updating. Otherwise, the corresponding field in the matching trap record is
modified. (-1 is a special value that causes the field to be ignored when evaluating
the trap conditions; see Section 7.8.)

Updates to the Trap table are processed immediately and may affect more than
one ACMS process. See Section 7.8 for a discussion of how to set SNMP traps.

8-146 Management APIs

ACMSMGMT_SET_TRAP_1

Example

int set_trap_data(int client_id,CLIENT *cl)
{

static char c_name_all[2] = "*";
static trap_config_rec set_struct;
struct trap_status_rec *status_rec;

client_id
MGMT_ACC;
c_name_all;
MGMT_EXISTS;

1;

-1;
MGMT_SEV_FATAL;

set_struct.client_id
set_struct.trap_entry.entity_type
set_struct.trap_entry.entity name
set_struct.trap_entry.param_to_trap
set_struct.trap_entry.min
set_struct.trap_entry.max
set_struct.trap_entry.severity

status_rec = acmsmgmt_set_trap_1(&set_struct,cl);

if (!status_rec) {
printf("\n Call to modify trap failed");
return (MGMT_FAIL) ;

if (status_rec->status == MGMT_WARN) {

printf("\nThe following updates failed: ");

if (status_rec->trap_status_rec_u.data_warn.entity type == MGMT_FAIL)
printf("\n entity_type not found or invalid");

if (status_rec->trap_status_rec_u.data_warn.param_to_trap == MGMT_FAIL)
printf("\n param not found or invalid");

if (status_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)
printf("\n min invalid");

if (status_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)
printf("\n max invalid");

if (status_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)
printf("\n severity invalid");

}

else if (status_rec->status != MGMT_SUCCESS) ({
printf ("\nCall to modify trap failed with status %d",
status_rec->trap_status_rec_u.rc);
xdr_free(xdr_trap_status_rec, status_rec);
free(status_rec);
return (MGMT_FAIL) ;
}
else
printf("\nCall to modify trap was executed");
xdr_free(xdr_trap_status_rec, status_rec);
free(status_rec);
return(0) ;

}

In the preceding example, the ACMSMGMT_SET_TRAP_1 procedure is called

to set the trap_min field to 1, the trap_max field to -1, and the trap severity to
FATAL for a trap based on an entity_type of ACC, an entity_name of * (all), and a
trap parameter of EXISTS. The effect of this change is to cause a fatal-level trap
to be generated if the ACC on the target node is stopped. If the call succeeds, the
trap is reconfigured in the Trap table in memory. Otherwise, an error message is
displayed. The example in Section 6.4.1 shows how to declare and initialize the
input arguments to this procedure.

Management APls 8-147

ACMSMGMT_SET_TSC_2

8.43 ACMSMGMT_SET_TSC_2

This procedure modifies Terminal Subsystem Controller (TSC) Config class

attributes.
Format
tsc_status_rec_2 *acmsmgmt_set_tsc_2(tsc_config_rec_2 *set_struct, CLIENT *cl)
Parameters
set_struct
Type: Tsc_config_rec_2
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and

TSC table fields.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value of client_
id is 0, proxy access is used. Client_id is obtained
by calling the acms$mgmt_get_creds procedure.

active_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether active variables should be

updated (active_sw = 1). Active variables are
currently in use by the ACMS system; updates
to active variables take effect immediately but
are not durable (that is, they do not survive a
restart of the ACMS system). Not all variables
are dynamic, however. Refer to Section 9.15,
and to the field descriptions in this section, to
determine whether a particular variable can be
updated dynamically.

8-148 Management APIs

current_sw
Type:
Access:
Mechanism:

Usage:

ACMSMGMT_SET_TSC_2

Integer
Read
By value

Indicates whether current variables should be
updated (current_sw = 1). Current variables are
those stored in the ACMSGEN file currently in
use by the ACMS system and are durable (that
is, they survive a restart of the ACMS system).
Updates to current variables take effect when the
ACMS system is restarted.

tsc_priority, cp_priority, cp_slots, max_logins, max_tts_cp,
perm_cps, min_cpis

Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond

to fields of the same names in the TSC table,
depending on the value of active_sw and current_
sw in this record (for example, tsc_priority will
update the tsc_priority_stored field if current_sw
is equal to 1). See Section 9.15 for a discussion of
these fields. None of these fields can be updated
dynamically.

astlm, biolm, bytlm, diolm, enqlm, fillm, pgflquota, tqelm,
wsdefault, wsextent, wsquota

Type:

Access:
Mechanism:
Usage:

Integer
Read
By value

Values to be updated. These fields correspond

to fields of the same names in the TSC table,
depending on the value of active_sw and current_
sw in this record (for example, astlm will update
the astlm_stored field if current_sw is equal to
1). See Section 9.15 for a discussion of these
fields. Note that not all fields can be updated
dynamically.

Management APIls 8-149

ACMSMGMT_SET_TSC_2

cl

Type:
Access:

Mechanism:
Usage:

Return Value

Type:
Access:

Mechanism:
Usage:

8-150 Management APIs

tsc_username, cp_username

Type: Null-terminated string

Access: Read

Mechanism: By reference

Usage: Values to be updated. These fields correspond

to fields of the same names in the TSC table,
depending on the value of active_sw and current_
sw in this record (for example, tsc_username

will update the tsc_username_stored field if
current_sw is equal to 1). See Section 9.15 for a
discussion of these fields. Note that not all fields
can be updated dynamically. In order to have any
of these fields set to null (that is, ""), set the field
to the string "NULL".

CLIENT *
Read
By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT CREATE.

Tsc_status_rec_2
Write
By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type tsc_config_rec_out_2, which
contains status codes for each field, as well as a linked list of
status messages associated with the update. See the Description
section for a discussion of how to determine the update status for
any field. The following are the contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

ACMSMGMT_SET_TSC_2

data, data_warn

Type:
Access:

Mechanism:
Usage:

Tsc_config_rec_out_2
Write
By value

Structure containing fields corresponding to the
fields in the set_struct structure, as well as a
linked list of status messages associated with
the update. See the Description section for a
discussion of how to determine the update status
for any field. The following are the contents of
this structure:

astlm, biolm, bytlm, cp_priority, cp_slots, cp_
username, diolm, enqlm, fillm, max_logins,
max_tts_cp, min_cpis, pgflquota, perm_cps,
tqelm, tsc_priority, tsc_username, wsdefault,
wsextent, wsquota

Type: Integer

Access: Write

Mechanism: By value

Usage: Status fields corresponding to the

fields in the input argument.

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

Management APIls 8-151

ACMSMGMT_SET_TSC_2

Description

Example

pNext

Type: Del_list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

This procedure requests updates to ACMS TSC Config class fields contained in
the TSC table (see Section 9.15). Note that the TSC table contains both active

and stored values. The active_sw field and current_sw field control which fields
are attempted to be updated.

Attempting to update an active field that is nondynamic is essentially useless,
since the active field value will not change. For instance, calling this procedure
with the active_sw field set to 1 and the tsc_username field populated does not
result in any change to the system.

Setting the current_sw field to 1 causes updates to be written to the current
ACMSGEN file. These updates are durable (that is, they survive a restart of the
ACMS sytem) but do not affect the active system until the system is restarted.

For any nonnegative integer fields, the completion status of the update is
returned in the corresponding field in the return structure. For string fields, the
string field value is returned, regardless of the status of the call.

In order to have one of the string fields set to a null string (that is, ""), populate
the field with value "NULL". To have one of the string fields ignored, pass in a
null string.

int set_tsc_data(int client_id,CLIENT *cl)
{
static char c_name_all[2] = "*";

static char c_null_str([2] = "";
static tsc_config rec set_struct;

tsc_status_rec *ret_struct;
decl_link *nl;

memset (&set_struct,-1,sizeof (set_struct));
set_struct.client_id = client_id;
set_struct.active_sw = 1;
set_struct.current_sw =0;
set_struct.max_logins = 61;

/* Have to provide a pointer for string conversions by XDR
or it will tscess vio. RM will ignore any fields with
strlen of 0 */

set_struct.tsc_username = c_null_ str;

set_struct.cp_username = c_null_str;

ret_struct = acmsmgmt_set_tsc_2 (&set_struct,cl);

8-152 Management APIs

ACMSMGMT_SET_TSC_2

if (!ret_struct) {
printf("\n Call to modify TSC failed");
return (MGMT_FAIL) ;
}
if (ret_struct->status != MGMT_SUCCESS)
printf("\n Call to modify TSC returned the following warnings or
errors\n") ;

else
printf("\n Call to modify TSC completed\n");
for (nl = ret_struct->tsc_status_rec_2_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_tsc_status_rec_2, ret_struct);
free(ret_struct);
return(0);

}

In the preceding example, the ACMSMGMT_SET_TSC_2 procedure is called

to set the ACMSGEN parameter max_logins to 61. If the call succeeds, only
the active value is modified; the stored value is unchanged, and a success
message is displayed. Otherwise, an error message is displayed. The example
in Section 6.4.1 shows how to declare and initialize the input arguments to this

procedure.

Management APls 8-153

ACMSMGMT_START_ACC _1

8.44 ACMSMGMT_START_ACC_1

Format

Parameters

This procedure requests that the Remote Manager start the ACMS system.

cmd_output_rec *acmsmgmt_start_acc_1(acc_startup_rec *start_struct, CLIENT *cl)

start_struct

Type:

Access:

Mechanism:

Usage:

8-154 Management APIs

Acc_startup_rec

Read

By reference

Structure that contains the following information.

client_id

Type:

Access:

Mechanism:

Usage:

audit_sw

Type:

Access:

Mechanism:

Usage:

qti_sw

Type:

Access:

Mechanism:

Usage:

Integer

Read

By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Integer
Read
By value

Indicates whether system auditing should be
enabled (audit_sw = 1), or disabled (audit_sw =
0).

Integer
Read
By value

Indicates whether the Queued Task Initiator
(QTI) should be started (qti_sw = 1), or not (qti
sw = 0).

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_START_ACC _1

terminals_sw

Type: Integer

Access: Read

Mechanism: By value

Usage: Indicates whether the Terminal Subsystem

Controller (TSC) should be started (terminals_sw
= 1), or not (terminals_sw = 0).

CLIENT *
Read
By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Cmd_output_rec

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type cmd_rec, which points to a

linked list containing status messages. The following are the
contents of this union:

re

Type: Integer

Access: Write

Mechanism: By value

Usage: Failure return code.

data, data_warn

Type: Cmd_rec

Access: Write

Mechanism: By value

Usage: Structure containing the first node in a linked list

of status messages (type dcl_list). The following
are the contents of this structure:

Management APIls 8-155

ACMSMGMT_START_ACC _1

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl _list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

Description

This procedure requests startup of the ACMS run-time system on the same node
that the Remote Manager is running on. Fields in the input argument determine
how the ACMS system will be started (that is, with or without auditing, terminals
or QTI).

This call executes synchronously. It does not return to the caller until the attempt
to start the system is complete. Any messages associated with an unsuccessful
start of the system are returned in the ecmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT _
SUCCESS. There are no status messages associated with a successful call. If
the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

8-156 Management APIs

ACMSMGMT_START_ACC _1

Example

int start_acc(int client_id,CLIENT *cl)
{
dcl _link *nl;
static acc_startup_rec start_struct;
cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.audit_sw = 1;
start_struct.qti_sw = 1;
start_struct.terminals_sw = 1;

ret_struct = acmsmgmt_start_acc_1(&start_struct,cl);

if (!ret_struct) {
printf("\n Call to start system failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT_SUCCESS) ({

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS system failed with status %d",
ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL);
}

printf("\n Call to start ACMS system completed with warnings or

errors");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)

printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}

else {
printf("\nCall to start ACMS system was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the ACMSMGMT _START_ACC_1 procedure is called
to start the ACMS run-time system on the target node. The system is started
with system auditing enabled, the QTI started, and terminals started. If the call
succeeds, the ACMS run-time system is started on the target node. Otherwise,
any error messages associated with the failure are displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this
procedure.

Management APIls 8-157

ACMSMGMT_START_EXC_1

8.45 ACMSMGMT_START_EXC_1

Format

Parameters

This procedure requests that the Remote Manager start an ACMS application on
the same node on which the Remote Manager is running.

cmd_output_rec *acmsmgmt_start_exc_1(exc_startup_rec *start_struct, CLIENT *cl)

start_struct

Type:

Access:

Mechanism:

Usage:

cl

Type:
Access:
Mechanism:
Usage:

8-158 Management APIs

Exc_startup_rec

Read

By reference

Structure that contains the following information.

client_id
Type:
Access:
Mechanism:
Usage:

appl_name
Type:
Access:
Mechanism:
Usage:

CLIENT *
Read
By value

Integer
Read
By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

Null-terminated string
Read
By reference

Pointer to the application name of the application
to be started.

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Return Value

Type:

Access:

Mechanism:

Usage:

Cmd_output_rec

Write

By reference

ACMSMGMT_START_EXC_1

Pointer to a record that contains a union consisting of either a
failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type:
Access:
Mechanism:
Usage:

re

Type:
Access:
Mechanism:
Usage:

Integer
Write
By value

Failure return code.

Integer
Write
By value

Failure return code.

data, data_warn

Type:

Access:
Mechanism:
Usage:

Cmd_rec
Write
By value

Structure containing the first node in a linked list
of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output
Type:

Access:
Mechanism:
Usage:

Del list
Write
By reference

Pointer to a linked list of records
containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APIls 8-159

ACMSMGMT_START_EXC_1

Description

Example

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the
next node in the
linked list.

This procedure starts an ACMS application on the same node on which the
Remote Manager is running. The appl_name field in the input record determines
which application will be started.

This call executes synchronously. It does not return to the caller until the
attempt to start the application is complete. Any messages associated with an
unsuccessful start of the application are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of either structure will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of either structure will be MGMT _
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

int start_exc(int client_id,CLIENT *cl)

{
dcl_link *nl;
static char c_appl_name[] = "VR_APPL";
static exc_startup_rec start_struct;
cmd_output_rec *ret_struct;

start_struct.client_id = client_id;
start_struct.appl_name = c_appl_name;

ret_struct = acmsmgmt_start_exc_1 (&start_struct,cl);

if (!ret_struct) {
printf("\n Call to start EXC failed");
return (MGMT_FAIL) ;

}

8-160 Management APIs

ACMSMGMT_START_EXC_1

if (ret_struct->status != MGMT_SUCCESS)
1f (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS EXC failed with status %d",
ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL);

}
printf("\n Call to start ACMS EXC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL);

}

else {
printf("\nCall to start ACMS EXC was executed");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the ACMSMGMT_START_EXC_1 procedure is called
to start an application named VR_APPL on the target node. If the call succeeds,
the VR_APPL application is started on the target node. Otherwise, any error
messages associated with the failure are displayed. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

Management APIls 8-161

ACMSMGMT_START_QTI_1

8.46 ACMSMGMT_START_QTI_1

This procedure requests that the Remote Manager start a Queued Task Initiator
(QTT) on the same node on which the Remote Manager is running.

Format
cmd_output_rec *acmsmgmt_start_qti_1(sub_id_struct *sub_rec,CLIENT *cl)
Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT CREATE.

8-162 Management APIs

Return Value

Type:

Access:

Mechanism:

Usage:

ACMSMGMT_START_QTI_1

Cmd_output_rec

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type:
Access:
Mechanism:
Usage:

re

Type:
Access:
Mechanism:
Usage:

Integer

Write

By value

Failure return code.

Integer

Write

By value

Failure return code.

data, data_warn

Type:

Access:
Mechanism:
Usage:

Cmd_rec
Write
By value

Structure containing the first node in a linked list
of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output

Type: Del_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Management APls 8-163

ACMSMGMT_START_QTI_1

dcl_msg
Type: Null-terminated
string
Access: Write
Mechanism: By reference
Usage: The status
message.
pNext
Type: Decl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the
next node in the
linked list.
Description
This procedure starts an ACMS QTI on the same node on which the Remote
Manager is running.
This call executes synchronously. It does not return to the caller until the attempt
to start the QTI is complete. Any messages associated with an unsuccessful start
of the QTI are returned in the cmd_output linked list.
The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.
If the operation is successful, the status field of both structures will be MGMT _
SUCCESS. No status messages are associated with a successful call.
If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.
Example

int start_gti(int client_id,CLIENT *cl)
{
del_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;
ret_struct = acmsmgmt_start_qgti_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to start QTI failed");
return (MGMT_FAIL);

}

1f (ret_struct->status !'= MGMT_SUCCESS) {

8-164 Management APIs

ACMSMGMT_START_QTI_1

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS QTI failed with status %d",
ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}

printf("\n Call to start ACMS QTI completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}
else {
printf("\nCall to start ACMS QTI was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL; \
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);

xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0) ;

}

In the preceding example, the ACMSMGMT_START_QTI_1 procedure is called to
start the Queued Task Initiator (QTI) on the target node. If the call succeeds, the
QTT is started on the target node. Otherwise, any error messages associated with
the failure are displayed. The example in Section 6.4.1 shows how to declare and
initialize the input arguments to this procedure.

Management APIls 8-165

ACMSMGMT_START_TRACE_MONITOR_1

8.47 ACMSMGMT_START_TRACE_MONITOR_1

This procedure requests that the Remote Manager start the ACMS$TRACE_
MONITOR process. The ACMS$TRACE_MONITOR process is an intermediate
process used by the Remote Manager to communicate with ACMS run-time
processes to enable and disable collections.

Format

int *acmsmgmt_start_trace_monitor_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

8-166 Management APIs

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

ACMSMGMT_START_TRACE_MONITOR_1

Return Value

Description

Example

Type: Integer

Access: Write

Mechanism: By reference

Usage: Pointer to status value returned. If the value is NULL or MGMT _

SUCCESS, the RPC has succeeded. If the value is neither NULL
nor MGMT_SUCCESS, the call failed and the value pointed to is
the reason for failure.

This procedure requests that the Remote Manager start the ACMS$TRACE_
MONITOR process on the target node. The ACMS$TRACE_MONITOR process
is an intermediate process used by the Remote Manager to communicate with
ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup and shutdown request of
the trace monitor process. The Remote Manager starts the trace monitor during
process initialization and stops it during process shutdown. Additionally, the
Remote Manager starts the trace monitor anytime it is needed (if it is not already
started). Once started, the trace monitor continues to run until the Remote
Manager shuts down.

After issuing the start command to the trace monitor, the Remote Manager waits
for a period of up to trace_start_wait_time (a Parameter table parameter that is
dynamic and expressed in seconds). If the trace monitor fails to start during that
period, the Remote Manager returns an error to the caller.

int start_trace(int client_id,CLIENT *cl)
{

int *status;
static struct sub_id struct sub_rec;

sub_rec.client_id = client_id;
status = acmsmgmt_start_trace_monitor_1 (&sub_rec,cl);

if (!status) {
printf ("\nStartup of Trace Monitor has failed");
return (MGMT_FAIL) ;

}

if (*status != MGMT_SUCCESS) {
printf ("\nStartup of Trace Monitor has failed with return code %d",
*status) ;
return(*status) ;

}

printf("\nTrace Monitor has been started ");
free(status);
return (MGMT_SUCCESS) ;
}

In the preceding example, the ACMSMGMT_START TRACE_MONITOR_1
procedure is called to start the ACMS$TRACE_MON process on the target
node. If the call succeeds, the process is started. Otherwise, any error messages

Management APIls 8-167

ACMSMGMT_START_TRACE_MONITOR_1

associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8-168 Management APIs

ACMSMGMT_START_TSC_1

8.48 ACMSMGMT_START_TSC_1

This procedure requests that the Remote Manager start a Terminal Subsystem
Controller (T'SC) on the same node on which it is running.

Format
cmd_output_rec *acmsmgmt_start_tsc_1(sub_id_struct *sub_rec,CLIENT *cl)
Parameters
sub_rec
Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization
information.
client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.
cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling

the RPC routine CLNT _CREATE.

Management APIls 8-169

ACMSMGMT_START_TSC_1

Return Value

Type:

Access:

Mechanism:

Usage:

8-170 Management APIs

Cmd_output_rec

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type:
Access:
Mechanism:
Usage:

re

Type:
Access:
Mechanism:
Usage:

Integer

Write

By value

Failure return code.

Integer

Write

By value

Failure return code.

data, data_warn

Type:

Access:
Mechanism:
Usage:

Cmd_rec
Write
By value

Structure containing the first node in a linked list
of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

ACMSMGMT_START_TSC_1

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the

next node in the
linked list.

Description

This procedure requests that an ACMS TSC be started on the same node on
which the Remote Manager is running.

This call executes synchronously. It does not return to the caller until the attempt
to start the TSC is complete. Any messages associated with an unsuccessful start
of the T'SC are returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails,
the status field of both structures will be MGMT_WARN; in this case, use the
data_warn structure to fetch the status messages from the cmd_output linked
list.

If the operation is successful, the status field of both structures will be MGMT _
SUCCESS. No status messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are
returned; instead, the reason for the failure is contained in the rc field.

Example

int start_tsc(int client_id,CLIENT *cl)
{
dcl_link *nl;
static struct sub_id_struct sub_rec;
cmd_output_rec *ret_struct;

sub_rec.client_id = client_id;
ret_struct = acmsmgmt_start_tsc_1(&sub_rec,cl);

if (!ret_struct) {
printf("\n Call to start TSC failed");
return (MGMT_FAIL) ;

}

if (ret_struct->status != MGMT SUCCESS) {

Management APIls 8-171

ACMSMGMT_START_TSC_1

if (ret_struct->status != MGMT_WARN) {
printf("\nCall to start ACMS TSC failed with status %d",
ret_struct->status);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL) ;
}

printf("\n Call to start ACMS TSC completed with warnings or errors");

for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return (MGMT_FAIL);

}
else {
printf("\nCall to start ACMS TSC was executed");
for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
nl = nl->pNext)
printf("\n %s",nl->dcl_msg);
}
xdr_free(xdr_cmd_output_rec, ret_struct);
free(ret_struct);
return(0);

}

In the preceding example, the ACMSMGMT_START TSC_1 procedure is called
to start the terminal subsystem on the target node. If the call succeeds, the
terminal subsystem is started on the target node. Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.4.1 shows
how to declare and initialize the input arguments to this procedure.

8-172 Management APIs

ACMSMGMT_STOP_1

8.49 ACMSMGMT_STOP_1

Format

Parameters

This procedure initiates shutdown of the Remote Manager server on a particular

node.

int *acmsmgmt_stop_1(sub_id_struct *sub_rec,CLIENT *cl)

sub_rec

Type:

Access:

Mechanism:

Usage:

cl

Type:

Access:

Mechanism:

Usage:

Return Value

Type:

Access:

Mechanism:

Usage:

Sub_id_struct
Read
By reference

Structure that contains the following client authorization
information.

client_id

Type: Integer

Access: Read

Mechanism: By value

Usage: If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

CLIENT *

Read

By value

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT _CREATE.

Integer
Write
By reference

Pointer to status value returned. If the value is NULL or MGMT_
SUCCESS, the RPC has succeeded. If the value is neither null
nor MGMT_SUCCESS, the call failed and the value pointed to is
the reason for failure.

Management APIls 8-173

ACMSMGMT_STOP_1

Description

Example

This procedure shuts down the Remote Manager server on the target node. As
part of shutdown, the RPC interface is stopped, which may result in a NULL
pointer being returned to the caller. A NULL pointer in this case signals success
of the shutdown request.

Note that the success of this procedure does not guarantee that the Remote
Manager server has actually shut down. It guarantees only that the shutdown
has been requested.

int stop_manager (int client_id,CLIENT *cl)
{

static int *status;
static struct sub_id struct sub_rec;
sub_rec.client_id = client_id;

status = acmsmgmt_stop_1 (&sub_rec,cl);

if (!status) {
printf ("\nServer shutdown has been requested");
return(0) ;

}

if (*status != MGMT_SUCCESS) {
printf("\n Call to stop server failed with status %d", *status);
return (MGMT_FAIL);

}

printf ("\n Server shutdown has been requested");

return(0);

}

In the preceding example, the ACMSMGMT_STOP_1 procedure is called to
request shutdown of the ACMS Remote Manager. A message is displayed
indicating the success or failure of the operation. The example in Section 6.4.1
shows how to declare and initialize the input arguments to this procedure.

8-174 Management APIs

ACMSMGMT_STOP_ACC _1

8.50 ACMSMGMT_STOP_ACC_1

Format

Parameters

This procedure requests that the Remote Manager stop the ACMS system.

cmd_output_rec *acmsmgmt_stop_acc_1(acc_shutdown_rec *stop_struct, CLIENT *cl)

stop_struct

Type:
Access:
Mechanism:
Usage:

cl

Type:
Access:

Mechanism:
Usage:

Acc_shutdown_rec

Read

By reference

Structure that contains the following client identification and
ACC control fields.

client_id

Type:

Access:

Mechanism:

Usage:

cancel_sw

Type:

Access:

Mechanism:

Usage:

CLIENT *
Read
By value

Integer

Read

By value

If explicit authentication is being used, a valid
client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is

obtained by calling the acms$mgmt_get_creds
procedure.

Integer
Read
By value

Indicates whether the system should be stopped
immediately (cancel_sw = 1), or whether currently
executing tasks should be allowed to complete
first (cancel_sw = 0).

Pointer to an RPC client handle previously obtained by calling
the RPC routine CLNT_CREATE.

Management APIls 8-175

ACMSMGMT_STOP_ACC 1

Return Value

Type:

Access:

Mechanism:

Usage:

8-176 Management APIs

Cmd_output_rec

Write

By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type cmd_rec, which points to a
linked list containing status messages. The following are the
contents of this union:

status
Type:
Access:
Mechanism:
Usage:

re

Type:
Access:
Mechanism:
Usage:

Integer

Write

By value

Failure return code.

Integer

Write

By value

Failure return code.

data, data_warn

Type:

Access:
Mechanism:
Usage:

Cmd_rec
Write
By value

Structure containing the first node in a linked list
of status messages (type dcl_list). The following
are the contents of this structure:

cmd_output

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to a linked list of records

containing status messages
related to the failure of any
updates. This structure contains
the following fields:

Description

Example

ACMSMGMT_STOP_ACC _1

dcl_msg

Type: Null-terminated
string

Access: Write

Mechanism: By reference

Usage: The status
message.

pNext

Type: Decl_list

Access: Write

Mechanism: By reference

Usage: Pointer to the

next node in the
linked list.

This procedure shuts down the ACMS run-time system on the same node on
which the Remote Manager is running. Fields in the input argument determine
how the ACMS system will be stopped. If the value for cancel_sw is 1, currently
executing tasks are cancelled, and the system is stopped. If the value for cancel
sw is 0, currently executing tasks are allowed to complete before the system is
shut down.

This call executes synchronously. It does not return to the call