HP Reliable Transaction Router

C Application Programmer’s
Reference Manual

Order Number: AA-Q88BJ-TE

June 2005

This manual explains how to design and code applications for HP Reliable
Transaction Router (RTR) using the C programming language. It contains
full descriptions of the RTR C application programming interface (API)
calls, and includes a short tutorial.

Revision/Update Information: This manual supersedes the Reliable
Transaction Router Application
Programmer’s Reference Manual, Version
4.2

Software Version: HP Reliable Transaction Router Version
5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2003, 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group. Java is a US trademark of Sun
Microsystems, Inc.

This document was prepared using DECdocument, Version 3.3-1B.

Contents

Preface

1 Introduction

1.1 RTR Application Programming Interface
1.2 C Programming and RTRAPIs
121 Compatibility Between RTR Versions
1.2.2 Reasons for a C Programming API
1.2.3 Benefits of the C Programming API....................
124 Comparison of OpenVMS and C Programming API Calls ...

2 Overview of the C Programming API

2.1 Transactional Messagesiiiit ..
2.2 RTR Channels i
2.3 Broadcast Messages and Events
2.4 C Programming API Calls
25 Programming Examples
251 Simple Client
25.2 Simple Server
2.6 Using the C Programming API
2.7 CONCUITENCY .« . v ottt e e e et e et e et et e et e e e
2.8 Exit Handlers in Applications
2.9 Using the RTR Set Wakeup Routine
29.1 Restrictions on the RTR Wakeup Handler
2.10 APIOptimizations,
2.10.1 Client Optimization
2.10.2 Voting Optimization and Server Flags
2.10.2.1 The RTR_F_OPE_EXPLICIT PREPARE Flag
2.10.2.2 The RTR_F _OPE_EXPLICIT ACCEPT Flag
211 RTR MeSSages . . cv vttt ettt et e e e
212 RTREvents

2.12.1 RTR Event Names and Numbers

il
WNN R R

NN NN
T NNNNNDNONNNNDNONNNDNDN
RRrEE |

~NONRPPFPOOOONNNUUAOBRMBRMNDNRRE

NN
N el o

2.12.2
2.12.3
2124
2.13
2.14
2.14.1
2.141.1
2.14.1.2
2.15
2.15.1
2.15.2
2.15.3
2.154
2.155

Developing Applications to Use Events
Event Management by RTR
Event Troubleshooting
Use of XA Supportt e
RTR Applications in a Multiplatform Environment
Defining a Message Format
DataTypes.co i
Alignment

Application

Design and Tuning Issues

Transactions That Can Cause Server Failure
Transaction Grouping and Database Applications
Transaction Sequence and Shadow Servers
Transaction Independence
Handling Error Conditions.

3 RTR Call Reference

3.1
3.2
3.3

RTR Environmental Limits
RTR Maximum Field Lengths

RTR C API

Calls e

rtr_accept_tx e

rtr_broadcast_event

rtr_close_channel

rtr_error text

rtr_ext_broadcast_event

rtr_get_tid

rtr_get_user_context.

rtr_open_channel

IEr_TeCeivVe_IMNESSAZE . o o v vt et ettt e e e

rtroreject_tx

rtr_reply_to_client

rtr_request_info

rtr_send_to_SETVEro e

rtr_set_info

rtr_set_user_context

rtr_set_user_ handle

rtr_set_wakeup

rtr_start_tx

WWWWWWWWNNNNDNE
WNPFPPFPOOOO0WOoOoNOO®O®

4 Compiling and Linking Your Application

4.1 Compilers. e 4-2
4.2 Linking Libraries 4-3

A RTR C API Sample Applications

Al OVEIVIEW . ottt A-1
A2 Client Application i, A-2
A.3 Server Application A-7
A.4 Shared Code. e A-11
A5 Header Code A-13

B RTR Application Development Tutorial

Index

Examples
2-1 Example Client 2-4
2-2 Example Server 2-5
2-3 Type rtr_status_data_t.............................. 2-15
2-4 User Event Example 2-20
2-5 RTR and User Event Example 2-20
2-6 Broadcast Event Example 2-21
2-7 Frontend Gain and Loss Examples 2-22
2-8 Returned Event Key Range Data Example 2-24
2-9 Receive Message Example 2-25
3-1 Client Application u..... 3-37
3-2 Server Application 3-39
3-3 Sample XA Server Application, Version 4.1 and Later 3-40
34 Sample XA Server Application Prior to Version 4.1 3-41
3-5 Use of Partition Names 3-42
3-6 RTR Message Status Block 3-45

Figures

1 RTR Reading Path Xii
4-1 Compile Sequence 4-2
Tables

1 RTR Documents X
2 Conventions Xi
1-1 OpenVMS API (V2) and C Programming API (V3)

Compared. it e 1-3
2-1 C Programming API Calls 2-3
2-2 RTR Received Message Types for Server Applications 2-13
2-3 RTR Received Message Types for Client Applications 2-14
2-4 Contents of the User Buffer for Different Message Types . .. 2-15
2-5 RTR Event Names and Numbers 2-17
2-6 Symbols for Event Lists 2-19
2-7 Event Notifications 2-22
2-8 Events that Return Key Range Data 2-23
2-9 Independent Transaction Flags 2-32
3-1 Environmental Limits 3-1
3-2 RTR Maximum Field-Length Definitions 3-2
3-3 Accept Transaction Flags 3-4
34 Get TID Flags0 3-20
3-5 Format Identification and Data Content 3-21
3-6 Open Channel Flags (One Required) 3-27
3-7 Open Channel Client Flags 3-28
3-8 Open Channel Server Flags 3-29
3-9 Key Segment Data Type. 3-34
3-10 Reply ToClient Flag 3-53
3-11 Information Classes, 3-58
3-12 Application Process ("prc") Strings 3-59
3-13 Client Process ("cli") Strings 3-60
3-14 Facility ("fac") Strings 3-60
3-15 Global Configuration and Status ("ges") Strings. 3-61
3-16 Key Segment ("ksg") Strings 3-62
3-17 Node Links ("Ink") Strings 3-62
3-18 Node and ACP ("rtr") Strings 3-64

vi

3-19 Partition on a Backend ("bpt") Strings 3-64

3-20 Partition on a Router ("rpt") Strings 3-65
3-21 Partition History ("hpt") Strings 3-65
3-22 Server Process ("srv") Strings 3-65
3-23 Transaction on a Backend ("btx") Strings................ 3-66
3-24 Transaction on a Frontend ("ftx") Strings 3-67
3-25 Transaction on a Router ("rtx") Strings 3-67
3-26 Send to Server Flags 3-75
3-27 Select Qualifiers for the Set Partition Object 3-79
3-28 Select Qualifiers for the Set Transaction Object 3-79
3-29 Valid Set Transaction State Changes 3-80
3-30 Qualifiers for Set Partition. 3-80
3-31 Qualifiers for Set Transaction 3-82
4-1 Compilers for Developing RTR Applications. 4-2

Vii

Preface

Purpose of This Manual
This manual is the reference source for persons writing application programs
using Reliable Transaction Router (RTR) in the C programming language. It
completely describes the RTR C application programming interface (API).
Document Structure
This manual contains four chapters and two appendices:
e Chapter 1 introduces the RTR C programming interface.
e Chapter 2 provides a guide to writing RTR applications.

e Chapter 3 describes the RTR C Application Programming Interface (API)
showing the syntax and data structures for each RTR call.

e Chapter 4 describes how to compile and link your application.

e Appendix A provides two short RTR C API sample applications and their
shared and header files.

e Appendix B provides a short tutorial for the application programmer.

Related Documentation
Table 1 describes RTR documents and groups them by audience.

Table 1 RTR Documents

Document

Content

For all users:

HP Reliable Transaction Router
Release Notes!

HP Reliable Transaction Router
Getting Started

HP Reliable Transaction Router
Software Product Description

For the system manager:

HP Reliable Transaction Router
Installation Guide

HP Reliable Transaction Router
System Manager’s Manual

For the application programmer:

HP Reliable Transaction Router
Application Design Guide

HP Reliable Transaction Router JRTR
Getting Started *

HP Reliable Transaction Router C++
Foundation Classes

HP Reliable Transaction Router C
Application Programmer’s Reference
Manual

Describes new features, corrections,
restrictions, and known problems for RTR.

Provides an overview of RTR technology and
solutions, and includes the glossary that
defines all RTR terms.

Describes product features.

Describes how to install RTR on all supported
platforms.

Describes how to configure, manage, and
monitor RTR.

Describes how to design application programs
for use with RTR, with both C++ and C
interfaces.

Provides an overview of the object-oriented
JRTR Toolkit including installation,
configuration and Java programming concepts,
with links to additional online documentation.

Describes the object-oriented C++ interface
that can be used to implement RTR object-
oriented applications.

Explains how to design and code RTR
applications using the C programming
language and the RTR C API. Contains full
descriptions of the basic RTR API calls.

IDistributed on software kit.
2In downloadable kit.

You can find additional information about RTR, including the Software Product
Descriptions, on the RTR website found through http:/www.hp.com links to
middleware products or at http:/www.hp.com/go/rtr .

Conventions

Table 2 describes the conventions used in this guide.

Table 2 Conventions

Convention Meaning
boldface Boldface is used for emphasis.
italic Ttalics indicate arguments or variables, and titles of

rtr_start _tx()

RTR_STS_OK

numbers

[EoLF

manuals.

Monospaced font indicates the name of an RTR API call
in text, constants, and RTR message types returned by an
RTR call.

Small capitals show RTR commands and return status
values in text and examples.

Horizontal ellipsis in examples indicates one of the
following:

— Additional arguments in a statement have been
omitted.

— The preceding item can be repeated one or more
times.

— Additional parameters, values, or other information
can be entered.

Vertical ellipsis indicates the omission of items from a code
example or command format.

All numbers in text are decimal, unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are
explicitly indicated.

Comments in source code.

Continuation character in command-line and some
programming examples.

Reading Path

The reading path to follow when using the Reliable Transaction Router
information set is shown in Figure 1.

Xi

[%2]

PD

Release
Notes

Getting
Started

System Manager

Installation
Guide

System
Manager’'s
Manual

RTR Help
(Online Only)

Application Programmer

Application
Design

>

C Application
Programmer’s
Reference
Manual

@= Tutorial

If Java

Getting
Started

Foundation

Classes

Xii

VM-0818A-Al

1

Introduction

This chapter introduces the Reliable Transaction Router C programming
interface. This interface was formerly called the Portable API. RTR concepts
and terms are fully defined in HP Reliable Transaction Router Getting
Started.

1.1 RTR Application Programming Interface

The RTR C application programming interface (API) that is provided with
Reliable Transaction Router is identical on all hardware and operating system
platforms that support RTR. This API is described in the following chapter.

In addition, a web browser and a command line interface (CLI) to the C API
are available. The CLI enables you to write simple RTR applications for
testing. The RTR CLI is illustrated in HP Reliable Transaction Router Getting
Started and fully described in the HP Reliable Transaction Router System
Manager’s Manual.

1.2 C Programming and RTR APIs

The C-programming RTR API was made available in Reliable Transaction
Router Version 3. It superseded the OpenVMS API used in Reliable
Transaction Router Version 2 for new applications. The RTR C API is
available on all platforms on which RTR is supported.

1.2.1 Compatibility Between RTR Versions

Reliable Transaction Router Version 5 interoperates with RTR Version 4 in

a DECnet environment using DECnet Phase IV naming. (The same version
of RTR must be installed on all routers and backends. See the section on
Network Transports in the HP Reliable Transaction Router System Manager’s
Manual to find out how to configure your Version 5 nodes.)

Note that the size of an RTR transaction ID was changed in Reliable
Transaction Router Version 3 to 28 bytes. (The change ensures that the
transaction ID contains a unique node specification.) This remains true for
later versions of RTR.

Introduction 1-1

Introduction
1.2 C Programming and RTR APIs

1.2.2 Reasons for a C Programming API

RTR was first developed for use within an OpenVMS environment. Reliable
Transaction Router Version 3 extended the applicability of RTR to allow
users to create fault-tolerant distributed applications running on networks of
heterogeneous machines and platforms.

The OpenVMS API presented some incompatibilities when used on non-
OpenVMS platforms as follows:

1.

The "$" character contained in all RTR identifiers is not permitted in
identifiers in some languages.

There was no provision for reformatting user messages passed between
machines to account for differing machine representations of particular
data types.

RTR permits applications to be written to perform multiple concurrent
operations, a feature that can be critical for good performance in high-
volume transaction processing systems. The notification mechanisms used
to indicate completion of such asynchronous operations (event-flag, txsb,
completion-AST) were OpenVMS-specific.

1.2.3 Benefits of the C Programming API
The benefits of using the C programming API are:

Portability over a wide range of language and machine environments

Simplified handling of concurrency, independent of the type of operating
system

Support for communication between machines with different hardware
representations of common data types (little-endian and big-endian, and so
forth)

Interoperability with existing applications using the OpenVMS API
Features extended above those provided by the OpenVMS API
Improved performance for commonly-used transaction types

Support for use within a threaded environment

The C programming API has been designed to:

Avoid the problem of applications dropping threads.
Simplify the APL.

1-2 Introduction

Introduction
1.2 C Programming and RTR APIs

e Schedule concurrent application operations in the same FIFO manner
as is used with AST-driven processing on OpenVMS. This avoids the
synchronization worries faced by the application writer when working with

ASTs.

e Make it impossible for an application to stall by waiting for one operation
to complete and hence being unable to respond to some other event.

e Permit a more efficient implementation. RTR does not have to maintain

multiple internal queues.

1.2.4 Comparison of OpenVMS and C Programming API Calls

Table 1-1 compares the OpenVMS and C Programming API calls.

Table 1-1 OpenVMS API (V2) and C Programming API (V3) Compared

OpenVMS API

C Programming API

$dcl_tx_pre()
$start_tx()
$commit_tx()
$abort_tx()
$vote_tx()
$deq_tx()
$enq_tx()

$dcl_tx_pre() (SHUT)
$get_txi()

$set_txi()

ASTPRM (on asynch calls)

rtr_open_channel()
rtr_start_tx() [optional]
rtr_accept_tx()
rtr_reject_tx()
rtr_accept_tx()/rtr_reject_tx()
rtr_receive_message()

rtr_send_to_server()/ rtr_reply_to_client()/rtr_
broadcast_event()

rtr_close_channel()
rtr_request_info()
rtr_set_info()
rtr_set_user_handle()
rtr_error_text()
rtr_get_tid()

rtr_set_wakeup()

Introduction 1-3

2

Overview of the C Programming API

The term C programming API is used to describe the RTR application
programming interface (API) adopted in Reliable Transaction Router Version 3.
This API is available on all platforms on which Reliable Transaction Router

is supported. This API was formerly called the Portable API, when first made
available on several operating systems.

2.1 Transactional Messages

RTR allows the client and server applications to communicate by entering into
a dialogue consisting of an exchange of messages between a client application
(the dialogue initiator) and one or more server applications.

Note

In the context of RTR, client and server are always applications.

Each dialogue forms a transaction in which all participants have the
opportunity to either accept or reject the whole transaction. When the
transaction is complete, all participants are informed of the transaction’s
completion status: success (rtr_nt_accept ed) if all participants accepted it,
failure (rtr_nt _rejected) if any participant rejected it. (For more information
on messages, see Section 2.11, RTR Messages.)

2.2 RTR Channels

With RTR, applications can be engaged in several transactions at a time.

To support many in-progress transactions at the same time, RTR lets
applications open multiple channels. An application opens one or more
channels to RTR, and any transaction is associated with only one channel.
The transaction is said to be active on that channel. For example, a client
application opens a channel and then sends the first message of a transaction

Overview of the C Programming APl 2-1

Overview of the C Programming API
2.2 RTR Channels

on that channel. All messages sent and received for that transaction are now
associated with that channel.

While waiting for a response from the server, the client application can open
a second channel and start a new transaction on it. When the transaction
on the first channel has completed, the client application may start the next
transaction on it, or simply issue the rtr_accept tx call.

Similarly, a server application may open several channels and, when the first
message of a new transaction arrives, RTR delivers it on the first available
channel. That channel remains associated with the transaction until it
completes.

An application opens a channel before it can send or receive messages; the RTR
API call rtr_open_channel is used to do this. The RTR call specifies whether
the channel is a client channel or a server channel; it cannot be both. (This
restriction helps to simplify application structure, and to deal with the special
properties of each channel type.) A single application can, however, open client
channels and server channels.

2.3 Broadcast Messages and Events

In addition to transactional messages, client or server programs may broadcast
event messages. These are delivered to some subset of the distributed
applications, as specified by the event-number and event-name parameters.

In contrast to transactional dialogues, no completion status is subsequently
returned to the initiator. A message can be from 0 to 64K bytes long.

Both client and server channels receive messages from RTR. A client channel
receives event messages only from servers, and a server channel receives
event messages only from clients. To enable a client application to receive
event/broadcast messages from another client application, the application must
be both a client and a server application (open a channel with both CLIENT
and SERVER flags), and must be in a facility on a node that is both a frontend
and a backend. A broadcast event can be sent as long as the server channel is
open. Events are more fully described in Section 2.12, RTR Events.

2.4 C Programming API Calls

The C Programming API calls are shown in Table 2-1, C Programming API
Calls. Each call is shown with a brief description and whether it can be used
on client channels or server channels or both. Calls are listed in alphabetical
order.

2-2 Overview of the C Programming API

Overview of the C Programming API
2.4 C Programming API Calls

Table 2-1 C Programming API Calls

RTR Call

Description

Channel Use

rtr_accept_tx

rtr_broadcast_event

rtr_close_channel

rtr_error_text

rtr_ext_broadcast_event

rtr_get_tid

rtr_get_user_context
rtr_open_channel
rtr_receive_message
rtr_reject_tx
rtr_reply_to_client

rtr_request_info

rtr_send_to_server

rtr_set_info

rtr_set_user_context
rtr_set_user_handle
rtr_set_wakeup

rtr_start_tx

Accepts a transaction

Broadcasts (sends) an event
message

Closes a previously opened
channel

Gets the text for an RTR status
number

Broadcasts (sends) an event
message with a timeout

Gets the current transaction ID

Gets the user-defined context
associated with a channel

Opens a channel for sending and
receiving messages

Receives the next message
(transaction message, event or
completion status)

Rejects a transaction

Sends a response from a server
to a client

Requests information from RTR

Sends a message from a client to
the server(s)

Sets an RTR parameter

Sets the value of the user-defined
context for a channel

Associates a user value with a
transaction

Sets a function to be called on
message arrival

Explicitly starts a transaction

Client and server

Client and server
Client and server
Client and server
Client and server

Client and server

Client and server
Client and server
Client and server
Client and server
Server only

Client and server

Client only

Client and server

Client and server
Client and server
Client and server

Client only

Overview of the C Programming API

2-3

Overview of the C Programming API
2.5 Programming Examples

2.5 Programming Examples

The following pseudocode examples of a client and a server application
illustrate the use of the C programming API. Details have been omitted to
keep the basic structure clear.

2.5.1 Simple Client

This simple client program issues transactions and receives event messages. It
simply issues one transaction, waits for it to be processed, and in the meantime
handles any events that arrive. It then issues the next transaction. It does not
need to wait until one transaction finishes before starting the next.

The following two examples are single-threaded. They can be made
multithreaded by opening more channels. The structure of the main

receive loop does not need to be changed to implement this. Note that
rtr_recei ve_nessage receives the next message in the process input queue for
any of the channels opened by the program (unless preferred channels have
been requested in the rtr_recei ve_nessage).

Example 2-1 Example Client

rtr_open_channel () I Open a channel to the required facility
rtr_receive_message() I Get the conpletion status of the open call
I success returns rtr_nt_opened
send_| oop:
rtr_send_to_server(...RTR_F_SEN ACCEPT....)
I Send a tx-message and
Iinplicitly start a new tx

rcv_| oop:
rtr_receive_nessage() I Find out what RTR wants to tell us next
switch (message received_type)
case rtr_m _reply: Process_Reply_from Server; break;
case rtr_m _rtr_event: Process _RTR Event; break;
case rtr_m _user_event: Process_User Event; break;
case rtr_m _accepted: Tell _User It Worked; break;
case rtr_nmt _rejected: Tel | _User_About Failure; break;
}

I'F (message received_type = rtr_nt_accepted)
OR (nessage received type = rtr_nt _rejected)
THEN
GOTO send_| oop ! Last transaction done, issue the next one
ELSE
GOTO rev_loop ! Get the next incomng nessage

2-4 Overview of the C Programming API

Overview of the C Programming API
2.5 Programming Examples

In Example 2-1, note that the switch statement tests on message type.
All messages that are received from RTR have a message type; for further
information, see Section 2.11.

2.5.2 Simple Server

Example 2-2 is a simple server that receives transactions and events.

Example 2-2 Example Server

rtr_open_channel () ! open a channel to the desired facility
rtr_receive_nessage() I get the conpletion status of the open call
I success returns rtr_nt_opened
rcv_l oop:
rtr_receive_nessage() I Find out what RTR wants to tell us next
CASE nessage_received_type
OF
rtr_m _nsgl: Do_Some_SQ._And_Maybe Send A Reply;
rtr_m_nsgn: Do_Some_More _SQ._And_Maybe_Send_A Reply;
rtr_nt_prepare: Accept _or Reject Tx ;
rtr_nt_rtr_event: Process_RTR Event;
rtr_nt_user_event: Process_User Event;
rtr_m _accepted: Commit DB ;
rtr_n _rejected: Rol | back DB ;
END_CASE;
GOTO rcv_| oop

2.6 Using the C Programming API

As can be seen from the examples in the previous section, an application first
opens one or more channels by calling rtr_open_channel .

The application can then process transactions and events on the channels it
has opened. When a channel is no longer needed, the application closes it by
calling rtr_cl ose_channel .

A transaction becomes associated with a channel in one of the following
circumstances:

1. When a client issues the first rtr_send_to_server call on a previously idle
channel

2. When a server receives from a client the first message belonging to a
transaction by calling rtr_recei ve_nessage

Overview of the C Programming APl 2-5

Overview of the C Programming API
2.6 Using the C Programming API

3. When a client issues artr_start _tx call on a previously idle channel

From this point on the channel remains associated with the transaction until
one of the following occurs:

A. The application rejects the transaction using rtr_reject _tx.

e The transaction is over, no more messages will be received on behalf of
this transaction.

e The channel becomes idle, ready for initiation/reception of another
transaction.

B. The application accepts the transaction using rtr_accept tx.

e After calling rtr_accept _tx the application may continue receiving
messages belonging to the transaction. However, it cannot
subsequently either reverse its decision to accept by calling
rtr_reject_tx, or (in the case of a client application) make additional
calls tortr_send to_server.

e The final message received for a transaction will always be
a transaction completion status; either rtr_nt _rejected or
rtr_m _accepted.

¢ The channel becomes idle, ready for initiation or reception of another
transaction.

C. The application receives, by a call to rtr_recei ve_nessage, a completion
status indicating that the transaction has been rejected by some other
participant.

e The transaction is over. No more messages will be received, and no
more calls may be made on behalf of this transaction.

e The channel becomes idle, ready for initiation or reception of another
transaction.

Note that RTR considers a transaction to have been committed to the
database (so that it does not need to replay it in case of failure) when

the server indicates willingness to receive a new transaction by calling
rtr_recei ve_nessage on the channel, after having received the transaction
completion status.

Calling rtr_cl ose_channel also indicates to RTR that the last transaction has
been committed.

2-6 Overview of the C Programming API

Overview of the C Programming API
2.7 Concurrency

2.7 Concurrency

The routine rtr_recei ve_nessage is used by an application to receive all
incoming messages, responses and events. This provides a single consistent
method of information delivery.

All RTR routines other than rtr_recei ve_nessage complete immediately, and
any responses are queued for later reception by rtr_recei ve_message.

The application calling rtr_recei ve_nessage may choose whether (and how
long) it should wait for an incoming message to arrive (if there is no message
available for immediate reception).

In addition, the application may optionally specify a “wakeup routine” to be
called by RTR when a message becomes available for reception.

2.8 Exit Handlers in Applications

Making RTR calls from within an application exit handler does not work,
because the channel is usually closed by the time the application exits. If an
exit handler contains a call to RTR, then the exit handler must be declared
after the first call to RTR. If an exit handler is declared before the first call to
RTR, then any call to RTR made within the exit handler will return an error.

The error status returned is RTR_STS | NV_CHANNEL.

2.9 Using the RTR Set Wakeup Routine

An application program may typically wish to respond to input from more than
one source. An example of this is an application program that prompts for
user input in a window and at the same time displays information received
asynchronously via broadcast events.

To avoid the application polling its various input sources, RTR provides the
rtr_set_wakeup routine. This allows the application to specify a routine to be
called when there is data to be received from RTR. The application program
can then be coded as shown in the example provided with the rtr_set_wakeup
routine.

The processing context of the application wakeup handler depends upon the
platform and RTR library variant employed.

Core RTR functionality and the C API are delivered in a single sharable
library. This library is named rtrdl | on Windows, and | i brtr on other
platforms. The latter is supplied in two variants: | i brtr_r which is targeted
at developers of threaded applications, and | i brtr which provides a platform-
specific wakeup handler implementation.

Overview of the C Programming APl 2-7

Overview of the C Programming API
2.9 Using the RTR Set Wakeup Routine

Wakeup handlers under rtrdl | and librtr _r are called in a dedicated thread
created by RTR for this purpose.

Wakeup handlers under | i brtr on UNIX are called from a signal handler
established by RTR to handle SIGIO. If the application also wishes to use this
signal, it should establish its handler prior to the first call to the RTR APIL.

In this case the signal handler should be aware that the SIGIO signal may
have been generated by RTR, not necessarily by the event for which the signal
handler was written.

Wakeup handlers under | i brtr on OpenVMS are called from an AST handler.
In the presence of multiple competing ASTSs, calling rtr_set wakeup() from
the wakeup handler can be used to limit RTR processing and serialize the
execution of RTR events with other asynchronous activity in the program.

Rirdll and librtr_r provide thread synchronization and are safe to use in a
multithreaded environment. Li brtr offers no such protection.

It is not anticipated that applications on OpenVMS will want to use both
threads and ASTs. For this reason the RTR V2 API is functional in | i brtr on
OpenVMS only.

Summarizing:

Sharable Name Thread-safe Wakeup Mechanism V2 API
rtrdll Yes RTR thread No
librtr_r Yes RTR thread No
['ibrtr/UNIX No signal handler No
['ibrtr/OpenvMS No AST Yes

2.9.1 Restrictions on the RTR Wakeup Handler

The wakeup handler itself cannot call any function that might have to wait
such asrtr_reply to client,rtr_send_to_server orrtr_broadcast_event;
the only RTR call allowed in the wakeup handler is rtr_recei ve_nessage
called with a zero timeout. Other RTR calls may block or halt processing
when they need transaction IDs or flow control, which will cause unexpected
behavior. This restriction applies to both threaded and unthreaded
applications.

A threaded application does not need to use a wakeup handler; its functionality
can be provided by a dedicated thread that receives and dispatches RTR
messages.

Functions permitted in an rtr_set wakeup() handler:

2-8 Overview of the C Programming API

Overview of the C Programming API
2.9 Using the RTR Set Wakeup Routine

e While wakeups are unnecessary in threaded application, they may be used
in common code in applications that run on OpenVMS. Because mainline
code continues to run while the wakeup is executing, extra synchronization
may be required. If the wakeup does block then it does not generally hang
the whole application.

e For an RTR wakeup handler in a signal handler within an unthreaded
UNIX application, no RTR API functions and only the very few asynch-
safe system and library functions may be called, because the wakeup
is performed in a signal handler context. An application can write to a
pipe or access a volatile Si g_atoni ¢_t variable, but using mal | oc() and
printf(), for example, will cause unexpected failures. Alternatively,
on most UNIX platforms, you can compile and link the application as a
threaded application with the reentrant RTR shared library -1 rtr_r.

e For maximum portability, the wakeup handler should do the minimum
necessary to wake up the mainline event loop. You should assume that
mainline code and other threads might continue to run in parallel with the
wakeup, especially on machines with more than one CPU.

e Thertr_set_wakeup() call may return the errors ACPNOTVIA and
NOACP if the RTRACP process is not running. However, these errors
will only be returned once before an application succeeds in opening a
channel. Subsequent calls will succeed and install the specified handler.
Applications wishing to poll for the availability of the ACP should use the
rtr_open_channel () call.

Note

See the restriction in the HP Reliable Transaction Router System
Manager’s Manual on using the rtr_recei ve_nessage() call with V2
and RTR later versions in the same application.

2.10 API Optimizations

Reliable Transaction Router provides client and server optimizations for
greater performance and programming ease.

Overview of the C Programming APl 2-9

Overview of the C Programming API
2.10 API Optimizations

2.10.1 Client Optimization

Reliable Transaction Router introduces greater flexibility and efficiency in how
transactions are packaged at the client.

The total sequence of events that a client application has to execute are as
follows:

1. Start a transaction.

2. Send one or more transaction messages, optionally receive one or more
transaction messages.

3. Either accept or reject the transaction.
4. Wait for the transaction accept or reject message and process accordingly.
5. Return to Step 1.

In Reliable Transaction Router, all these steps can be followed if required, but
optimizations allow some of the steps to be handled implicitly.

e Thecalltortr_start tx (Step 1) may be omitted if, for example, no
timeout is required for the transaction. A call tortr_send to_server on
a channel that does not have an active transaction automatically implies a
calltortr_start_tx.

e Step 3 may be handled implicitly if the client wishes to accept the
transaction. This is done by setting the RTR_F_SEN ACCEPT flag on the
last (or only) call to rtr_send_to_server.

2.10.2 Voting Optimization and Server Flags

Reliable Transaction Router introduces greater flexibility and efficiency in how
transaction voting (acceptance by servers) is handled; RTR allows implicit
voting.

In detail, the sequence of events that a server executes is as follows:

1. Get one or more transaction messages from RTR and process them.
2. Get the vote request message from RTR.

3. Issue the accept (commit).

4. Get the final transaction state.

5. Return to Step 1.

This scheme is not efficient in some cases. For example, a callout
(authentication) server may only need to receive the first message of a multiple
message transaction, whereupon it can vote immediately.

2-10 Overview of the C Programming API

2.10.21

2.10.2.2

Overview of the C Programming API
2.10 API Optimizations

In Reliable Transaction Router, all these steps can be enforced if required, but
optimizations allow some of the steps to be handled implicitly.

An implicit accept allows Step 3 to be omitted; the transaction is accepted by
the server when it does the next call to rtr_recei ve_message.

These optimizations are controlled by flags (RTR_F_OPE_EXPLI CI T_PREPARE and
RTR_F_OPE_EXPLI CI T_ACCEPT) on the call used to open a server channel.

The RTR_F_OPE_EXPLICIT _PREPARE Flag
A server channel may be opened with the RTR_F_OPE EXPLI Cl T_PREPARE

flag; this specifies that it will receive prepare messages (messages of type
rtr_m _prepare). The server is then expected to accept or reject a transaction
on receipt of this message (or earlier). The server may accept the transaction
before the prepare message is sent: in this case, the prepare message is not
delivered to the server.

The default behaviour of RTR (for example, when this flag is not set in the call
to rtr_open_channel) is to not send prepare messages to the server application.
In this case, RTR expects the server to accept or reject transactions without
RTR triggering it into voting activity by sending prepare messages.

The RTR_F_OPE_EXPLICIT_ACCEPT Flag

A server channel may be opened with the RTR_F_OPE_EXPLI Cl T_ACCEPT flag;
this specifies that it will accept transactions only by making an explicit call to
rtr_accept tx.

The default behaviour of RTR (that is, when this flag is not set) is to treat a
server’s call to rtr_recei ve_nessage (after the last transaction message has
been received) as an implicit acceptance of the transaction.

If a transaction has been accepted before the last message has been received,

the setting of the RTR_F_OPE_EXPLI Cl T_ACCEPT is irrelevant.

However, if a transaction has not been prematurely accepted, when the server’s
vote is required by RTR, the setting of the flags have the following effects:

1. When both RTR_F_OPE_EXPLI CI T_PREPARE and RTR_F_OPE_EXPLI CI T_ACCEPT
are set, the rtr_nt_prepare nessage is returned to the server, and the
server must accept or reject the transaction.

2. When RTR_F_OPE_EXPLI CI T_PREPARE is set but RTR_F_OPE_EXPLI CI T_ACCEPT
is not set, the rtr_nt _prepar e message is also returned to the server, but if
the server does not perform an explicit accept or reject, then a subsequent
call to rtr_recei ve_nessage implies an accept of the transaction.

Overview of the C Programming APl 2-11

Overview of the C Programming API
2.10 API Optimizations

3. When RTR F_OPE_EXPLI CI T_PREPARE is not set but
RTR_F_OPE EXPLI CI T_ACCEPT is set, no rtr_nt_prepare message is
returned to the server, and no implicit accept of the transaction will be
performed: It is assumed that some other event will trigger the application
into voting.

4. With neither RTR_F_OPE_EXPLI Cl T_PREPARE nor RTR_F_OPE_EXPLI Cl T_ACCEPT
set, no rtr_nt_prepare message is returned to the server. An implicit
transaction accept is performed.

2.11 RTR Messages

All RTR calls return a completion status immediately except
rtr_recei ve_nessage. If the immediate status is successful, many calls will
also result in a further message or messages being delivered on the channel.

All RTR received messages are of a defined message type. The message type
is given in the message status block. (See pmsgsb on rtr_receive_nessage in
Chapter 3).

The message type allows your application to handle the message appropriately;
the message type indicates whether this message contains information that is
part of a transaction, or a broadcast, or RTR informational, and so on.

The use of rtr_recei ve_nmessage for both RTR status messages and application
data messages requires the application designer to consider how to respond to
the different message types. Message types for server and client applications
are listed in Table 2—2 and Table 2-3.

All received messages cause the message status block (pmsgsb on
rtr_recei ve_nessage) to be filled; most message types also put data into
the user buffer (pmsg on rtr_receive_message). Only the rtr_nt _prepare
message type does not fill the user buffer.

Table 2—4 provides information put in the user buffer for each message type.
Table 2—2 and Table 2—3 list all the message types that server channels or
client channels can receive, together with a description of their meaning and
the recommended application behavior. Order is alphabetical.

2-12 Overview of the C Programming API

Overview of the C Programming API

2.11 RTR Messages

Table 2-2 RTR Received Message Types for Server Applications

Message Type

Description

Recommended Action

rtr_mt_accepted

rtr_mt_closed

rtr_mt_msgl

rtr_mt_msgl_
uncertain

rtr_mt_msgn

rtr_mt_opened

rtr_mt_prepare

rtr_mt_rejected
rtr_mt_request_info
rtr_mt_rtr_event

rtr_mt_set_info

The specified transaction has been
accepted by all participants.

Channel has been closed. Sent by RTR
ifan rtr_open_channel fails (that
is, no such facility) or as a result of
an operator command such as DELETE
FACILITY, or the last message from a
rtr_request _infoorrtr_set info
call.

This is the first application message of
a transaction, sent by a client.

This is the first application message
of a replayed transaction, that is, a
previous incarnation of the server
failed during the voting phase.

This is the nth application message
(that is, not the first) of a transaction,
sent by a client.

Channel has been opened.

The specified transaction is complete
(that is, all messages from the client
have been received). This message
type is only received by a server that
specified that it requires a prepare.
(Servers specify this by using the
RTR_F_OPE EXPLI CI T_PREPARE flag
on the rtr_open_channel call.)

The specified transaction has been
rejected by a participant.

Message from a previous call to
rtr_request_info.

An RTR event with an associated
message.

Message from a previous call to
rtr_set _info.

Overview of the C Programming API

Commit the transaction in the
database and release database
locks.

Examine reason status. Roll
back database for any active
transaction.

Process the message.

Check in database to see if the
transaction has been processed.
If not processed, redo the
transaction; else forget the
transaction.

Process the message.

Use the channel.

Call either rtr_reject _tx
to reject the transaction, or
have all required database
records locked before calling
rtr_accept _tX to accept the
transaction.

Roll back the transaction.

Use information as required.
evtnum describes which RTR
event occurred. See Table 2-5.

Use information as required.

(continued on next page)

2-13

Overview of the C Programming API
2.11 RTR Messages

Table 2-2 (Cont.) RTR Received Message Types for Server Applications

Message Type Description Recommended Action

evtnum has an application-
specific meaning.

A user event with an associated
message.

rtr_mt_user_event

Table 2-3 RTR Received Message Types for Client Applications

Message Type

Description

Recommended Action

rtr_mt_accepted

rtr_mt_closed

rtr_mt_opened

rtr_mt_rejected
rtr_mt_reply
rtr_mt_request_info

rtr_mt_rettosend

rtr_mt_rtr_event

rtr_mt_set_info

rtr_mt_user_event

The specified transaction has been
accepted by all participants.

Channel has been closed. Sent by RTR
if an rtr_open_channel fails (for
example, no such facility) or as a result
of an operator command such as DELETE
FACILITY, or the last message from an
rtr_request_infoorrtr_set_info
call.

Channel has been opened.

The specified transaction has been rejected
by a participant.

This is an application reply message sent
by a server.

Message from a previous call to
rtr_request _info.

This message (which had been sent with
the RTR_F_SEN RETURN TO SENDER
flag) could not be delivered and has been
returned.

An RTR event with an associated message.

Message from a previous call to
rtr_set_info.

A user event with an associated message.

Inform user of successful
completion.

Examine reason status.

Use the channel.

Inform user of reason for
failure.

Process message.

Use information as
required.

Take appropriate action for
the transaction as required
by your application.

evtnum describes which
RTR event occurred. See
Table 2-5.

Use information as
required.

evtnum has an application-
specific meaning.

2-14 Overview of the C Programming API

Overview of the C Programming API
2.11 RTR Messages

Table 2-4 Contents of the User Buffer for Different Message Types

Message Type

Buffer Contents

rtr_mt_accepted
rtr_mt_closed

rtr_mt_msgl

rtr_mt_msgl_uncertain

rtr_mt_msgn

rtr_mt_opened
rtr_mt_prepare
rtr_mt_rejected
rtr_mt_reply
rtr_mt_request_info
rtr_mt_rettosend
rtr_mt_rtr_event
rtr_mt_set_info

rtr_mt_user_event

rtr_status_data_t, see Example 2-3.
rtr_status data_t, see Example 2-3.

The first application message of a transaction, sent by a
client.

The first application message of a replayed transaction.

The nth application message (that is, not the first) of a
transaction, sent by a client.

rtr_status_data_t, see Example 2-3.

None.

rtr_status_data_t, see Example 2-3.

An application reply message sent by a server.
Requested information from rtr_request _i nfo.
Returned message.

RTR event message.

Set information from rtr_set _info.

The user broadcast message.

Example 2-3 shows the data type that is returned in the user buffer with
message types rtr_mt _accepted, rtr_nt rejected, rtr_nt_opened and
rtr_m _closed. You can find the meaning of rtr_status_t using the call

rtr_error_text.

Example 2-3 Type rtr_status_data_t

typedef struct

rtr_status_t
rtr_reason_t
} rtr_status_data t;

[* Type returned with rtr_nt _rejected, */
* rtr_nmt_accepted, rtr_nt_opened */

[* and rtr_nt _closed messages. *|
stat us; [* RIR status *|
reason; /* User-supplied reason *|

Overview of the C Programming APl 2-15

Overview of the C Programming API
2.12 RTR Events

2.12 RTR Events

What are events?

An event in RTR is a trigger that causes a notification (also called a
“broadcast”) to be sent to the application that subscribed to the event. RTR
Events are created only by RTR and are used internally by RTR to help
manage activities such as site failover. Application developers may subscribe
to RTR Events to activate certain processing in their application. User Events
are also available to enable application developers to send event notification
or broadcast messages to other RTR applications. RTR provides the call
rtr_broadcast _event to enable an application developer to trigger a User
Event.

Events have special characteristics and restrictions:

e Event notification is delivered on a subscription basis using information
supplied on the rtr_open_channel call.

e Events are not transactional and should not be used to transmit
information that is, or will be, part of an RTR transaction.

e A user application can turn on or off the reception of any events, both RTR
and user events.

e Events can only be transmitted within the RTR facility in which they are
defined. Events cannot be sent between facilities or outside RTR.

e Event notification may include an optional message, which has a size limit
of 64K.

e User Events can only be transmitted from frontend-to-backend or from
backend-to-frontend. User Events cannot be used for peer-to-peer
communication such as from frontend-to-frontend or from backend-to-
backend.

e RTR Events are transmitted from RTR-to-frontend or RTR-to-backend.

The list below shows the RTR Events that are available for subscription. These
events can be grouped in four basic categories:

e Shadow node activity (failover, failback, recovery complete)
e Standby node activity (become active, become standby, recovery complete)

e Changes in facility state and participants (clients/routers/servers entering
or exiting the facility)

¢ Changes in configuration of partition key ranges (server available, server
not available)

2-16 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

2.12.1 RTR Event Names and Numbers

RTR sends events to the server either inside or outside a transactional
boundary. A transaction is considered to start on receipt of an rtr_nt_nsgl or
rtr_m _megl_uncertai n message, and to end when the transaction is accepted
or rejected (receipt of an rtr_nt_accepted or rtr_nt reject ed message).
Events containing information about primary, secondary, or standby servers
could arrive outside a transactional boundary. Gain and loss events arrive
inside transactional boundaries.

Table 2-5 lists the RTR events that can be received on a channel (associated
with the rtr_nt _rtr_event message type). Events are listed in order of event
number. See the description for rtr_open_channel in Chapter 3, RTR Call
Reference, for further information.

Table 2-5 RTR Event Names and Numbers

Event
Event Name Number Description
RTR_EVTNUM_FACREADY 96 The facility has become operational.
RTR_EVTNUM_FACDEAD 97 The facility is no longer operational.
RTR_EVTNUM_FERTRGAIN 98 Frontend link to current router
established.
RTR_EVTNUM_FERTRLOSS 99 Frontend link to current router lost.
RTR_EVTNUM_RTRBEGAIN 100 Current router established link to a
backend.
RTR_EVTNUM_RTRBELOSS 101 Current router lost link to a
backend.
RTR_EVTNUM_KEYRANGEGAIN 102 Server(s) for new routing key range
are now available.
RTR_EVTNUM_KEYRANGELOSS 103 No more servers remain for a
particular routing key range.
RTR_EVTNUM_BERTRGAIN 104 Backend established link to a
router.
RTR_EVTNUM_BERTRLOSS 105 Backend lost link to a router.
RTR_EVTNUM_RTRFEGAIN 106 Router established link to a
frontend.
RTR_EVTNUM_RTRFELOSS 107 Router lost link to a frontend.

(continued on next page)

Overview of the C Programming APl 2-17

Overview of the C Programming API
2.12 RTR Events

Table 2-5 (Cont.) RTR Event Names and Numbers

Event
Event Name Number Description
RTR_EVTNUM_SRPRIMARY 108 Server has become primary.!
RTR_EVTNUM_SRSTANDBY 109 Server has become standby.
RTR_EVTNUM_SRSECONDARY 110 Server in a shadow pair has become
secondary.’
RTR_EVTNUM_SRSHADOWLOST 111 Server in a shadow pair lost its
shadow partner.?
RTR_EVTNUM_SRSHADOWGAIN 112 Server in a shadow pair acquired a
shadow partner.
RTR_EVTNUM_SRRECOVERCMPL 113 Server completed recovery
processing.

1 RTR will generate this event between transactional boundaries. This event can be useful to
signal the application to begin activities that should only be performed by the primary system,
such as processing credit card debits.

2 This event signals that this system is entering remember mode for future catchup of the shadow
partner.

2.12.2 Developing Applications to Use Events

Subscribing to Events

RTR Events can be used for triggering special application processing based
on a change in RTR system status, or for sending notification to the system
operator after certain application or RTR conditions that require intervention.

User Events can be used for actions such as broadcasting stock prices to update
a price table, or triggering special application processing such as handling a
failed transaction. User events can be used to send a message in a one-to-one
or a one-to-many method.

Event subscription is established when the rtr_open_channel call is executed.
See the RTR rtr_open_channel call description for details on this call. The
rtr_open_channel call is as follows:

rtr_open_channel (channel,
flags,
facnam
rcpnam
pevt num
access,
nunseg,
pkeyseg)

2-18 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Two parameters on the call are used to establish event subscription: rcpnam
and pevtnum.

rcpnam is a pointer to an optional channel name for receiving event messages.
If a User Event is sent to a particular channel name, only those subscribers
that match both name AND event number are notified. For example, a client
channel named “New York” and a client channel named “Hong Kong” could
both subscribe to receive User Event number 999. If event 999 was triggered
by the server using the channel named “Hong Kong,” the event would be
received only by the “Hong Kong” client. Specify RTR_NO_RCPNAM for this
parameter if a name is not used. This parameter is case sensitive.

pevtnum is a pointer to lists of RTR and User event numbers to which the
channel wants to subscribe. These lists use the numeric values of the events
shown in Table 2-5. Use the special symbols in Table 2-6 to construct the
event list.

Table 2-6 Symbols for Event Lists

Symbol Description

RTR_NO_PEVTNUM No events selected.
RTR_EVTNUM_USERDEF Begin User Event list.
RTR_EVTNUM_RTRDEF Begin RTR Event list.
RTR_EVTNUM_ENDLIST End of entire list.
RTR_EVTNUM_UP_TO Specifies an event range in the form

x RTR_EVTNUM_UP_TO y.
RTR_EVTNUM_USERBASE Smallest User Event number (0).
RTR_EVTNUM_USERMAX Largest User Event number (250).
RTR_EVTNUM_RTRBASE Smallest RTR Event number.
RTR_EVTNUM_RTRMAX Largest RTR Event number.

Example 2—4 illustrates how to set up a list of all User Event numbers for the
rtr_open_channel call.

Example 2-5 illustrates how to set up a list of all RTR and User Event
numbers for the rtr_open_channel call.

Overview of the C Programming APl 2-19

Overview of the C Programming API
2.12 RTR Events

Example 2—4 User Event Example

rtr_evtnumt all _user_events[]={
RTR_EVTNUM_USERDEF,
RTR_EVTNUM USERBASE,
RTR_EVTNUM_UP_TQ,
RTR_EVTNUM_USERMAX,
RTR_EVTNUM ENDLI ST

b

Example 2-5 RTR and User Event Example

rtr_evtnumt all _events[]={

RTR_EVTNUM_USERDEF,
RTR_EVTNUM USERBASE,
RTR_EVTNUM UP_TQ,
RTR_EVTNUM USERMAX,

RTR_EVTNUM RTRDEF,
RTR_EVTNUM RTRBASE,
RTR_EVTNUM UP_TO,
RTR_EVTNUM RTRVAX,

RTR_EVTNUM ENDLI ST

Sending Events

A broadcast event is triggered when the rtr_broadcast _event call is executed.
See the rtr_broadcast event call description for details on this call. The
rtr_broadcast _event call syntax is as follows:

rtr_broadcast _event (channel,
flags,
pnsg,
nsgl en,
evt num
rcpspe,
megfnt)

The significant parameters on this call are:

channel is the channel identifier returned from the rtr_open_channel call.
pmsg is a pointer to the message to be broadcast.

msglen is the length in bytes of the message.

evtnum is the User Event number that the application developer has
assigned to this event.

repspe is the optional recipient channel name that can be specified with the
rcpnam parameter on the rtr_open_channel call.

2-20 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Example 2-6 Broadcast Event Example
i f (bServer Shut down)

sts = rtr_broadcast _event (
[* channel */ BY_CHAN CLI ENT(cCurrent Channel, client)->chan,
[* flags */ RTR_NO FLAGS,
[* pnsg *| &msgbuf,
/* nmeglen */ chTotal Size,
[* evtnum */ USER EVT_ SHUTDOWN,
[* rcpnam */ "*"
[* megfnmt */ szMsgFnt);

exit _if error ("rtr_broadcast_event", sts);

}

Example 2—-6 shows an example of an rtr_broadcast event call.

Receiving Events

Any RTR transaction, RTR Event, or User Event can be received when
the application executes the rtr_recei ve_nessage call. See the RTR
rtr_recei ve_nessage call description for details on this call. The
rtr_recei ve_nessage call syntax is as follows:

rtr_receive _nmessage (channel,
flags,
prcvchan,
pmsg,
max| en,
tinout ns,
pnsgsh)

The significant parameters on this call are:

channel is the channel on which the message is received.

pmsg is a pointer to an application buffer where the message is written.
maxlen is the maximum length of the application buffer in bytes.
pmsgsb is a pointer to a message status block describing the received
message.

Notification of Events

If the application has subscribed to events, any call to rtr_recei ve_nmessage
can return an event notification, either an RTR Event notification or a User
Event notification. The results are described in Table 2-7.

Overview of the C Programming APl 2-21

Overview of the C Programming API
2.12 RTR Events

Table 2—7 Event Notifications

If this

notification thertr_receive_message call and the user/application buffer
is delivered: returns a message of type: contains the associated:

RTR Event rtr_nmt _rtr_event event message

User Event rtr_mt _user_event user broadcast message

When RTR receives a role-gain or role-loss event, it provides both the facility
name and the nodename of the node (FE, TR, or BE) that sent the event
notification. Only events for roles (FE, TR, BE) provide this additional
information. For a definition of roles in RTR, see the HP Reliable Transaction
Router Getting Started manual and the RTR Glossary. In RTR, only facilities
have roles. Example 2—7 shows the results of a frontend gain event (FEGAIN,
event 106) and a frontend loss event (FELOSS, event 107).

Example 2—7 Frontend Gain and Loss Examples

RTR> cal | rece
YRTR-S- OK, normal successful conpletion
channel name: RTRSDEFAULT_CHANNEL

msgsh

nsgt ype: rtr_nmt_rtr_event

msgl en: 34

evt num 106 (RTR_EVTNUM RTRFEGAI N)
nmessage

facility: RTRSDEFAULT_FACI LI TY

l'ink: nodenane

RTR> cal | rece

YRTR-S- OK, normal successful conpletion
channel name: RTR$DEFAULT_CHANNEL

msgsh

nsgt ype: rtr_m_rtr_event

nsgl en: 34

evtnum 107 (RTR_EVTNUM_RTRFELGSS)
nmessage

facility: RTRSDEFAULT_FACI LI TY

[ink: nodename

2-22 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Returned Event Data
Two RTR Events return key range data to the application:

Table 2-8 Events that Return Key Range Data

Event Name Event Number
RTR_EVTNUM_KEYRANGEGAIN 102
RTR_EVTNUM_KEYRANGELOSS 103

The key range data are received in the message returned to the application,
with the length of the message specified in the message status block (nMsgsh).
For example, the following illustrates rtr_recei ve_nmessage usage.

rtr_status_t
rtr_receive _nmessage (

rtr_channel _t *pchannel ,
rer_rev_flag_t flags,
rtr_channel _t *p_rcvchan,
rtr_msgbuf t pnsg,
rtr_msglen_t max| en,
rer_tinout _t timout s,
rtr_msgsh_t *p_nsgsh

)
The message status block pointed to by *p_nmsgsb has the following structure:

typedef struct {
rtr_msg_type_t msgtype;

rtr_usrhdl _t usrhdl;
rtr_msglen_t msgl en;
rtr tidt tid;
rtr_evtnumt evtnum
}rtr_msgsb_t;

When an event number is 102 or 103, RTR returns key range data (the low
and high bounds) in the message, padded as required for data marshalling and
interoperability. The key range data can be examined by the application. For
more detail on data marshalling and formatting, see Section 2.14.

Bounds data are treated as if defined as a structure. For example, if there are
two key segments defined as rtr_uns_8 t and rtr_uns_32 t, then the bounds
data are copied to outbuf as if they were contained in the structure; that is,
the 32-bit ints are correctly aligned in the structure and the structure size is a
multiple of four. For example,

Overview of the C Programming APl 2-23

Overview of the C Programming API
2.12 RTR Events

struct{
rtr_uns 8 t |ow bound 1;
rtr_uns_32_t |ow bound_2;
rtr_uns 8 t hi_bound 1;
\ rtr_uns_32_t hi_bound_2;

The “four-byte-alignment-fits-all” requirement is enforced for interoperability;
no padding is allowed.

Example 2-8, which can be run manually from the RTR CLI, illustrates the
return of key range data with the RTR Event RTR_EVTNUM KEYRANGELCSS.
The RTR CLI interprets the format of this message as appropriate. In
Example 2-8, the format is string or ASCII data, the default.

Example 2-8 Returned Event Key Range Data Example

RTR> crea fac jws/all=sucre

YRTR- S- FACCREATED, facility jws created

RTR> crea part ab/fac=jws/noshadow nost andby-

[keyl=(type=string, | ength=2, of f set =0, | ow="AB", hi gh="CD")
YRTR- | - PRTCREATE, partition created

RTR> rtr_open/ chan=s/ server/noshadow nost andby/ part =ab/ f ac=j ws
URTR-S- OK, normal successful conpletion

RTR> rtr_rec/chan=s/time=10

URTR-S- OK, normal successful conpletion

channel name: S

nmsgsh
negt ype: rtr_nt_opened
nsgl en: 8
nessage
status: normal successful conpletion
reason: 0x00000000

RTR> rtr_open/ chan=c/client/event=(102, 103)/fac=jws
YRTR-S- OK, normal successful conpletion

RTR> rtr_rec/ chan=c/tinme=10

YRTR-S-OK, normal successful conpletion

channel name: C

msgsh
nsgt ype: rtr_nt_opened
msgl en: 8
nmessage
status: normal successful conpletion
reason: 0x00000000

RTR> rtr_cl ose/ chan=s

URTR-S- OK, normal successful conpletion
RTR> rtr_rec/chan=c/tinme=10

URTR-S- OK, normal successful conpletion

(continued on next page)

2-24 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Example 2-8 (Cont.) Returned Event Key Range Data Example
channel name: C

nmegsh

nsgt ype: rtr_nt _rtr_event

nsgl en: 4

evtnum 103 (RTR_EVTNUM_KEYRANGELCSS)
nessage

ks_I'o_bound: AB
ks_hi _bound: CD
RTR> reca
RTR> rtr_rec/ chan=c/tine=10
YRTR-E-TIMOUT, call to rtr_receive_message timed out

Design consideration: When an RTR application executes an

rtr_recei ve_nessage call, the programmer could incorrectly anticipate that
a particular message type may be received and only write instructions to
respond to the expected message. However, an RTR or User Event could be
received on any instance of the rtr_recei ve_nmessage call (as could other
unanticipated RTR messages). Therefore, as a general application design
guideline, the application developer should always program the application so
that it can properly handle any type of message that could be received by the
rtr_recei ve_message call.

Events are delivered in the order in which they are broadcast; therefore event
serialization will be preserved for a particular user. However, RTR does not
enforce any particular serialization across different subscribers, so different
subscribers could receive event notifications in any order.

Example 2-9 shows an rtr_recei ve_nmessage call in use.

Example 2-9 Receive Message Example

status = rtr_receive_nessage(&channel,
RTR_NO _FLAGS,
RTR_ANYCHAN,
&receive_msg,
RTR_ANYCHAN,
&receive_msg,
si zeof (recei ve_nsg),
receive_time_out,
&msgsh) ;

check_status("rtr_receive_message", status);

Overview of the C Programming APl 2-25

Overview of the C Programming API
2.12 RTR Events

2.12.3 Event Management by RTR

RTR manages both event routing and event delivery.

Event Routing

When an event subscription is created with the rtr_open_channel call, the
event details are stored in a subscriber database on all routers. When an event
is triggered, notification is delivered to all routers connected to that system in
that facility. The routers then check their subscriber database for any systems
that have subscribed to that event. If one or more subscribers are located, and
the subscribers are currently attached to this router, then the router broadcasts
the message to the subscribers. If no subscriber is located, then the message is
discarded.

Event Delivery

RTR reliably delivers RTR transactions and RTR events. The delivery of User
Events on a properly configured system is reliable, but RTR Flow Control
manages delivery of User Events if the subscriber cannot process events as
quickly as they are delivered. Flow Control is RTR’s message traffic governor
that helps affected systems to manage spikes in message traffic. For more
detail on RTR Flow Control, refer to the HP Reliable Transaction Router
System Manager’s Manual.

When a User Event is triggered, a broadcast that includes message data is
routed to the subscriber system. User Events, along with RTR Events and
transactions, are placed into an incoming message queue on the destination
system until the subscriber application executes an rtr_recei ve_message call
to receive the message into the application. If too many messages are sent to
the destination system, then the RTR Flow Control feature will be activated.

Flow Control may then force the sending application to wait awhile in

the next RTR call that sends data, or it may discard broadcasts from the
message queue, until the message queue length reduces and Flow Control
allows new broadcasts to be sent to the destination system. Because User
Event broadcasts are usually used for streaming information such as the
periodic update of a price table, RTR does not store event messages that are
impacted by Flow Control for later processing. This technique would cause the
application to spend time viewing stale data. Instead, RTR Flow Control may
discard the message to help relieve the messaging backlog, and will rely on a
future message delivery to supply the updated information.

Design issue: Because of the possibility that a User Event message could
become delayed or discarded due to Flow Control, User Events should not be
used for delivering information that is of a business critical nature, including
information that previously was, or later will be, used in a transaction. To
compensate for the possibility of a discarded message, the application developer

2-26 Overview of the C Programming API

2.12.4

Overview of the C Programming API
2.12 RTR Events

may consider adding a sequence number to the event message and providing a
read-only transaction in the application to detect and request retransmission of
any discarded broadcast data from the sender.

Overhead of Using Events

Delivery of User Events is based upon the registration databases that are kept
on the routers. The event is delivered from the sender to all connected routers,
which means each event triggers a message traffic load of 1 (for a FE sender)
or the number of routers (for a BE sender). The event is then propagated by
the routers to all subscribers, creating message traffic of 0 or the number of
systems with subscribers to the event.

Design Issue: Processing event messages does consume some system resources
and could impact overall performance. If system resources become constrained,
RTR Flow Control may become active, thus reducing the RTR throughput

on the affected systems. Care should be exercised to provide enough system
resources to handle the message load.

Event Troubleshooting

Several RTR MONITOR screens can be helpful in troubleshooting events, as
described below. Sample screens are available in the HP Reliable Transaction
Router System Manager’s Manual.

Monitoring Events

User Event traffic (broadcasts) may be monitored specifically for each node
using the MONITOR BROADCAST screen in RTR. This screen shows the total
event throughput, along with a count of any discarded broadcasts.

The MONITOR FACILITY screen in RTR provides a combined summary of all
RTR Events and User Events processed for each facility.

The SHOW CLIENT/FULL and SHOW SERVER/FULL commands in RTR are
helpful for viewing the current event subscription list for a particular client or
server, along with any channel name specified in the rcpnam parameter on the
rtr_open_channel call.

Execution of rtr_broadcast _event calls and event message traffic in RTR can
be monitored using the MONITOR CALLS screen in RTR. This screen shows
the frequency of use of the rtr_broadcast event call, and the number of RTR
Events and User Events processed. If an event is in pending (“pend”) status,
it indicates that the event is waiting for an rtr_recei ve_message call to be
performed.

The MONITOR ROUTING screen shows the transaction and broadcast
throughput on the system. This display shows the number of events and
also the rate over time during the monitoring interval.

Overview of the C Programming APl 2-27

Overview of the C Programming API
2.12 RTR Events

The MONITOR STALLS screen is helpful to determine if RTR Flow Control
is affecting a particular system. Flow Control stalls that have occurred are
categorized by duration. Any stall that lasts more than 60 seconds results
in a Link Drop entry. A Stall (“stll”) entry in the far-right column indicates
that a Flow Control stall is currently in progress on the link indicated. For
the purposes of User Event broadcast delivery, any stall could indicate that a
broadcast message could have been discarded.

It is possible to monitor additional details of RTR Flow Control by using the
MONITOR CONGEST, MONITOR FLOW, and MONITOR TRAFFIC monitor
screens in RTR.

2.13 Use of XA Support

Users need to register a resource manager first, to invoke RTR XA support
when creating a facility. Please see the Reliable Transaction Router System
Manager’s Manual for more details about how to register and unregister
resource managers.

In the server application, specify the flag RTR F_OPE_XA MANAGED and the
underlying resource manager information when issuing the rtr_open_channel
call. Once this flag is specified for a given RTR partition, all transactions
running in that RTR partition are committed using the XA interface between
RTR and the resource manager. When the partition is deleted or the resource
manager is unregistered, RTR commits transactions running in this partition
in a conventional manner.

2.14 RTR Applications in a Multiplatform Environment

Applications using RTR in a multiplatform (that is, mixed endian) environment
with nonstring application data have to tell RTR how to marshall the data

for the destination architecture. The sender of a message must supply both a
description of the application data being sent and the application data itself.
This description is supplied as the msgfmt argument to rtr_send to_server,
rtr_reply_to_client,and rtr_broadcast _event.

The default (that is, when no msgfmt is supplied) is to assume the application
message is string data.

2.14.1 Defining a Message Format

The msgfmt string is a null-terminated ASCII string consisting of a number of
field-format specifiers:

[field-format-specifier...]
The field-format specifier is defined as:

2-28 Overview of the C Programming API

Overview of the C Programming API
2.14 RTR Applications in a Multiplatform Environment

%[dimension]field-type

where:

Field Description Meaning

% indicates a new field
description is starting

dimension is an optional integer
denoting array cardinality
(default 1)

field-type is one of the following:
Code Meaning
UB 8 bit unsigned byte
SB 8 bit signed byte
UW 16 bit unsigned
SW 16 bit signed
UL 32 bit unsigned
SL 32 bit signed
C 8 bit signed char
ucC 8 bit unsigned char
B boolean

For example, consider the following data structure:

typedef struct {
rtr_uns 32t first ;
rtr_sgn_32_t second ;
char str[12] ;
} exanple_ t ;
The msgfmt for this structure could be “UILUBLYL2C".

The transparent data type conversion of RTR does not support certain
conversions (for example, floating point). Convert these to another format
such as character string.

Overview of the C Programming API

2-29

Overview of the C Programming API
2.14 RTR Applications in a Multiplatform Environment

2.14.1.1 Data Types
Data types supported by RTR are:

Unsigned
Signed
Char

Boolean

2.14.1.2 Alignment

Alignment of data on byte boundaries depends on several factors, including
the compiler used in creating an application. RTR’s data marshalling software
manages these alignments.

2.15 Application Design and Tuning Issues

This section addresses some considerations for design and tuning, including:

Transactions that can cause server failure
Transaction grouping and database applications
Transaction sequence and shadow servers
Transaction independence

Handling error conditions

2.15.1 Transactions That Can Cause Server Failure

It is possible for a “rogue” client transaction, due to a user application bug, to
“kill” the server process. If RTR were to reapply this transaction indefinitely,
all available servers would be destroyed. To avoid a transaction killing all
server processes, the following mechanism is implemented:

A transaction for which no rtr_accept tx has been called by a server is
aborted after it has caused the death of three concurrent servers to which
it has been presented. The transaction abort status reported to the client
is RTR_STS_SRVDIED. Retry count for transactions that have not been voted
on is three; for transactions that have been voted on, retry count can be
limited with the RTR command SET PARTITION/RECOVERY_RETRY_COUNT
(default: unlimited).

An RTR error log message with the same status is also written on the
backend where the server deaths occurred.

2-30 Overview of the C Programming API

Overview of the C Programming API
2.15 Application Design and Tuning Issues

The limitation of this feature to transactions that have not yet been accepted
prevents possible transaction inconsistencies that could otherwise arise
between client and server(s), and on shadow secondary sites. Thus a server
application should complete any necessary validation of client transaction
messages before accepting the transaction, to take advantage of this feature.

2.15.2 Transaction Grouping and Database Applications

RTR generates commit sequence numbers (CSN) for each transaction
committed on the primary site. Concurrent servers can have several
transactions assigned to a single CSN value. Transactions with the same CSN
are understood by RTR to be independent, and hence their relative commit
ordering to the database does not violate the serializability requirements of
transactions.

For purposes of throughput, RTR attempts to group as many transactions as
possible into a single CSN during a given vote cycle. (Grouped transactions are
only those that explicitly vote (that is, call rtr_accept _t X on the server.)

The vote cycle completes as soon as RTR is ready to ask a server to commit the
next transaction. For this mechanism to work correctly with the application,
RTR places the following restriction on the server design:

A server must obtain an exclusive lock on any resource that another
concurrent server may be accessing for a different transaction before it
issues the call tortr_accept tx.

Database applications, in general, comply with this requirement. If the
database management software allows “dirty reads,” the application should
apply this rule explicitly, so that RTR can correctly serialize transactions
during shadowing or other recovery. Failure to comply with this rule can
cause unsynchronised copies of shadow databases.

2.15.3 Transaction Sequence and Shadow Servers

When using a facility having a shadow site and two or more partitions, the
transaction sequence is the same at both shadow sites within a single
partition only. Sequences across partitions are not preserved. For
example, suppose the following transactions are executed on half of a shadow
site in the following chronological order:

tx1_for_partitionl
tx2_for_partitionl
tx3_for_partitionl
tx1_for_partition2
tx4_for_partitionl

Overview of the C Programming APl 2-31

Overview of the C Programming API
2.15 Application Design and Tuning Issues

2.15.4

When replayed on the secondary, the order could be:

tx1_for_partitionl
tx2_for_partitionl
tx3_for_partition1
tx4_for_partitionl
tx1_for_partition2

Do not write your application to expect preservation of transaction serialization
across partitions.

Transaction Independence

RTR normally assumes that each transaction processed by a given server
depends on the transactions that particular server has previously accepted.

To keep the shadowed database identical to that on the primary, RTR controls
the order in which the secondary executes transactions. The secondary is
constrained to execute transactions in the same order as the primary. Under
some circumstances, this can lead to the secondary sitting idle, waiting to be
given a transaction to execute.

RTR provides a performance enhancement that may help some applications
decrease idle time on the secondary, reducing the corresponding backlog. If
the application knows that particular transactions are independent of the
transactions previously received, then the application can set one of two flags
listed in Table 2-9.

Table 2-9 Independent Transaction Flags

Flag Meaning

RTR_F_ACC_INDEPENDENT Set on an r'tr_accept _t X call to indicate
this transaction is independent.

RTR_F_REP_INDEPENDENT Setonanrtr reply to client call

along with RTR_F_REP_ACCEPT to indicate

this transaction is independent.

A transaction accepted with one of these flags can be started on the secondary
while other transactions are still running. All transactions flagged with
one of these flags must truly be independent of the transactions that
have previously executed. They will execute in an arbitrary sequence
on the secondary site.

2-32 Overview of the C Programming API

2.155

Overview of the C Programming API
2.15 Application Design and Tuning Issues

If the server channel has been opened with RTR_F_OPE _EXPLI CI T (explicit
accept), then the RTR_F_REP_| NDEPENDENT flag can only be used together with
RTR_F_REP_ACCEPT. If the server channel has been opened with implicit accept,
then using RTR_F_REP_| NDEPENDENT implies using RTR_F_REP_ACCEPT.

An application can be written to create CSN boundaries to ensure
independence. A transaction always receives a CSN, and the | NDEPENDENT flag
could be used to prevent the CSN from being incremented, so an application
could be coded to force dependence between sets of transactions. This could
be important in certain cases where transactions coming in at a particular
time of day are independent of each other, but other transactions executed,
say, at the end of the day, need to ensure that the day’s transactions have
been processed, and the following day’s transactions need to ensure that the
previous end-of-day processing has completed. For more details on user of
independent transactions, refer to the discussion of CSNs in the HP Reliable
Transaction Router Application Design Guide.

Handling Error Conditions

Error returns are documented in this manual for each RTR call so that

an application designer/implementor can provide solutions for each error
condition. However, it is simpler for the application and the designer to code
applications with one path for success and also one path for any failure, rather
that separately for each failure.

Overview of the C Programming APl 2-33

3

RTR Call Reference

This chapter contains the environmental limits, field length maxima, and
syntax definitions for all RTR C programming API calls.

3.1 RTR Environmental Limits

RTR deals with several environmental entities that have architectural limits
as shown in Table 3-1. Actual limits in a specific configuration are determined

by performance.

Table 3—1 Environmental Limits

Component Limit
BE or TR nodes 512
Bytes per message 64000
Channels per application process 1024

Facilities
FE nodes
Journal files

Memory per process

Messages per transaction - server to
client

Messages per transaction - client to
server

Partitions
Processes per node

Size of journal file

100 to 1000, depending on operating system
1000
16

OpenVMS: 4GB; UNIX: unlimited,;
Windows: 2GB

unlimited
65534

65536 (dynamic; default:500)
1000
256MB

(continued on next page)

RTR Call Reference 3-1

RTR Call Reference
3.1 RTR Environmental Limits

Table 3-1 (Cont.) Environmental Limits

Component Limit

Threads per application process (where 4096
supported by operating system)

3.2 RTR Maximum Field Lengths

Table 3-2 contains definitions of RTR field length maxima. The file rtr. h
contains values for these field lengths.

Table 3-2 RTR Maximum Field-Length Definitions

Field Name Description
RTR_MAX ACCESS_LEN Maximum length of access string.
RTR_MAX_BLOB_LEN Maximum length of data that can be passed in a

prepare call.
RTR_MAX FACNAM_LEN Maximum length of facility name.
RTR_MAX FE_NAM_LEN Maximum length of frontend name.
RTR_MAX_MSGFMT_LEN Maximum length of message format.
RTR_MAX_MSGLEN Maximum length of an RTR message.
RTR_MAX_NUMSEG Maximum number of segments in key.
RTR_MAX_PARNAM_LEN Maximum length of partition name.
RTR_MAX RCPNAM_LEN Maximum length of broadcast recipient name.
RTR_MAX_RCPSPC_LEN Maximum length for broadcast recipient specification.
RTR_MAX_SELVAL_LEN Maximum length for selector value.

3.3 RTR C API Calls

The calls are presented in alphabetical order.

3-2 RTR Call Reference

rtr_accept_tx

rtr_accept_tx
Accept the transaction currently active on the specified channel.

Syntax

status = rtr_accept_tx (channel, flags, reason)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_acc_flag_t read
reason rtr_reason_t read

C Binding

rr_status_t rtr_accept tx (

rir_channel_t channel
rtr_acc_flag_t flags ,
rir_reason_t reason

)
Arguments

channel
The channel identifier (returned earlier by rtr_open_channel ()).

flags
Flags that specify options for the call.

Table 3—3 shows the flags that are defined.

RTR Call Reference 3-3

rtr_accept_tx

Table 3—-3 Accept Transaction Flags

Flag name Description

RTR_F_ACC_FORGET Set to prevent receipt of any more
messages (or completion status)
associated with the transaction. Any
such messages are discarded. This flag
is valid only on server channels; it has
no effect on client channels.

RTR_F ACC_INDEPENDENT Set to indicate this transaction is

independent. (See Section 2.15.4 for
further information.)

If you do not require any flags, specify RTR_NO_FLAGS for this parameter.

reason

Optional reason for accepting the transaction. This reason is ORed together
with the reasons of the other participants in the transaction and returned
in the reason field of the rtr_status _data t structure returned with the
rtr_mt _accept ed message to all participants of the transaction. Specify
RTR_NO_REASON if no reason is required.

Description

The rtr_accept _tx() call accepts the transaction currently active on the
specified channel. After rtr_accept _tx() has been called, the caller may no
longer actively participate in the fate of the transaction; that is, messages and
the final completion status can still be received, but no further messages may
be sent for the transaction. An attempt to send a further message yields an
RTR_STS_TXALRACC return status.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_AMBROUNAM Ambiguous API routine name for call - supply
more characters
RTR_STS_CHANOTOPE Channel not opened

3-4 RTR Call Reference

RTR_STS_INVCHANNEL
RTR_STS_INVFLAGS
RTR_STS_OK
RTR_STS_TXALRACC
RTR_STS_TXNOTACT

Example

/*

rtr_accept_tx

Invalid channel argument

Invalid flags argument

Normal successful completion

Transaction already accepted

No transaction currently active on this channel

* Cient is done with the txn; if the server accepts the
* transaction, there is no reason for us to reject it.

* Accept it, then go on to a new transaction

*

if (msgsh. nsgt ype
{

rtr_nm _accepted)

status = rtr_accept tx(

channel,
RTR_NO FLAGS,
RTR_NO REASON) ;

check_status(status);

el se

I'ssue the error nessage returned by the

server,

See Also

rtr_open_channel ()
rer_reject _tx()
rtr_reply to client()

and recover fromthere

RTR Call Reference 3-5

rtr_broadcast_event

rtr_broadcast_event

Broadcast (send) a user event message.

Syntax

status = rtr_broadcast_event (channel, flags, pmsg, msglen, evtnum, rcpspc, msgfmt)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_bro_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
evtnum rtr_evtnum_t read
rcpspc rtr_rcpspc_t read
msgfmt rtr_msgfmt_t read
C Binding

rtr_status_t rtr_broadcast event (

rir_channel_t channel ,
rir_bro_flag_t flags ,
rir_msgbuf_t pmsg ,
rir_msglen_t msglen ,
rtr_evtnum_t evtnum ,
rtr_rcpspc_t repspe ,
rir_msgfmt_t msgfmt

)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel ()).

flags
No flags are currently defined. Specify RTR_NO FLAGS for this parameter.

3-6 RTR Call Reference

rtr_broadcast_event

pmsg
Pointer to the message to broadcast.

msglen
Length in bytes of the message broadcast.

evtnum

User event number associated with this broadcast. (Recipients must
specify this to receive it.) For more information on user event numbers,
see Section 2.12.

rcpspc

Name of the recipient(s). This null-terminated character string contains the
name of the recipient(s), specified with the rcpnam parameter on the call to
rtr_open_channel ().

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient. rcpspc is an
optional parameter. Specify RTR_NO RCPSPC for this parameter if no rcpspe is
required.

Named Events

e To receive named events, the correct event number must also be
specified. The event number (evtnum) must be specified by both the
sender (rcpspe) and the recipient (repnam,).

e Both repnam and repspe are case sensitive.

e Both repnam and repspe default to the case-insensitive channel
name if no explicit repnam or rcpspe is provided.

msgfmt

Message format description. This null-terminated character string contains
the format description of the message. RTR uses this description to convert
the contents of the message appropriately when processing the message on
different hardware platforms. See Section 2.14 for information on defining a
message format description.

This parameter is optional. Specify RTR_NO MSGFM if message content is
platform independent, or there is no intent to use other hardware platforms.

RTR Call Reference 3-7

rtr_broadcast_event

Description

The rtr_broadcast _event () call broadcasts a user event message. The caller
must first open a channel (using rtr_open_channel ()), before it can send user
event messages.

A client channel can be used to send user event messages to servers.

A server channel can be used to send user event messages to clients.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_INVRCPSPC Invalid rcpspe argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_WOULDBLOCK Operation would block. Try again later
Example
#define reuni on_announcenent 678 Il In user .h file.

rtr_msg _buf t reunion_msg = "Jones family reunion today!";
rtr_rcpspc_t recipients = "*Jones";

3-8 RTR Call Reference

rtr_broadcast_event

* |f today is the date of the Jones fanmly reunion, tel
* any client whose |ast name is Jones that they need to
* pe therel
*]

if (strcnp(today, reunion_date) == 0)

status = rtr_broadcast _event (
&channel
RTR_NO_FLAGS,
reuni on_nsg,
strlen(reuni on_nsg)
reuni on_announcenent,
recipients
RTR_NO_MSGFMT) ;

check_status(status);

See Also

rtr_receive_message()
rtr_open_channel ()

RTR Call Reference 3-9

rtr_close_channel

rtr_close channel

Close a previously opened channel.

Syntax

status = rtr_close_channel (channel, flags)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_clo_flag_t read

C Binding

rtr_status_t rtr_close_channel (

rtr_channel_t channel ,
rir_clo_flag_t flags

)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel (), or
rtr_request _info() orrtr_set _info()).

flags
Flags that specify options for the call.

The flag RTR_F_CLO_IMMEDIATE is defined for this call.

Normally rtr_cl ose_channel () processes a pending transaction that was in a
commit state by forgetting the transaction (removing it from the journal). To
close the channel but leave transactions in the journal, use the flag RTR_F_
CLO_IMMEDIATE to rtr_cl ose_channel ().

In some situations, an accepted transaction cannot be completed and replay

is required. For example, a transaction may be accepted but the database
becomes unavailable before the transaction is committed to the database. To
deal with such a situation, an application can use the close-immediate flag
RTR_F_CLO_IMMEDIATE. This closes the channel but leaves the transactions

3-10 RTR Call Reference

rtr_close_channel

in the journal for use on replay when database access is restored. If you do not
need any flags, specify RTR_NO_FLAGS for this argument.
Description

The rtr_cl ose_channel () call closes a previously opened channel. A channel
may be closed at any time after it has been opened via rtr_open_channel ()
or rtr_request _info(). If the channel is a server channel, an implicit
acknowledgment is sent, if you have a current transaction.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart
RTR or application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required
100000

RTR_STS_INVCHANNEL Invalid channel argument

RTR_STS_NOACP No RTRACP process available

RTR_STS_OK Normal successful completion

Example

[* 1f the status returned by the previous call is not success,
* close now, and exit the program

*|

if (status !'= RTR STS (X)

printf(fpLog, "Unexpected error, nust close imediately!");
status = rtr_close_channel (channel, RTR_CLO | MVEDI ATE);
exit(status);

}

/*

* Normal processing conplete, close the channel.

*|
printf(fpLog, " osing channel");

status = rtr_close channel (channel, RTR _NO FLAGS);

RTR Call Reference 3-11

rtr_close_channel

See Also
rtr_open_channel ()

3-12 RTR Call Reference

rtr_error_text

rtr_error_text

Return the text associated with an RTR status value.

Syntax

retval = rtr_error_text (sts)

Argument Data Type Access
retval char* write
sts rtr_status_t read

C Binding

char *rtr_error_text (

rr_status_t sts

)
Arguments
sts
The RTR error number for which the text is required.

Description

The rtr_error_text() call returns a pointer to the text associated with an
RTR error number.

The text string is a constant. If an invalid value for sts is supplied, a pointer is
also returned to an error text, indicating an invalid value.

RTR Call Reference 3-13

rtr_error_text

Example

[* If the status returned by the previous call is not success,
* print the message text to the error log, and exit.

*|

if (status !'= RTR STS (X)

printf(errLog, rtr_error_text(status));
exit(status);

3-14 RTR Call Reference

rtr_ext_broadcast_event

rtr_ext _broadcast_event

Broadcast (send) a user event message or an RTR_STS_TIMOUT status if RTR
is unable to issue to broadcast message within the specified timeout period.
The call is the same as rtr_broadcast_event with the addition of the timeout
period, given in milliseconds.

Syntax

status = rir_ext_broadcast_event (channel, flags, pmsg, msglen, evtnum, rcpspc, msgfmt, timoutms)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_bro_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
evtnum rtr_evtnum_t read
rcpspc rtr_rcpspc_t read
msgfmt rtr_msgfmt_t read
timoutms rtr_timout_t read
C Binding

rr_status t rtr_ext broadcast event (

rtr_channel_t channel ,
rtr_bro_flag_t flags ,
rtr_msgbuf _t pmsg ,
rtr_msglen_t msglen ,
rir_evtnum_t evtnum ,
rtr_rcpspc_t repspe
rtr_msgfmt_t msgfmt |,
rtr_timout_t timoutms

)

RTR Call Reference 3-15

rtr_ext_broadcast_event

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel ()).

flags
No flags are currently defined. Specify RTR_NO FLAGS for this parameter.

pmsg
Pointer to the message to broadcast.

msglen
Length in bytes of the message to be broadcast.

evtnum

User event number associated with this broadcast. (Recipients must
specify this to receive it.) For more information on user event numbers,
see Section 2.12.

rcpspc

Name of the recipient(s). This null-terminated character string contains the
name of the recipient(s), specified with the rcpnam parameter on the call to
rtr_open_channel ().

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient. rcpspc is an
optional parameter. Specify RTR_ NO RCPSPC for this parameter if no rcpspe is
required.

Named Events

e To receive named events, the correct event number must also be
specified. The event number (evtnum) must be specified by both the
sender (rcpspe) and the recipient (repnam,).

e Both repnam and repspe are case sensitive.

e Both repnam and repspe default to the case-insensitive channel
name if no explicit repnam or rcpspe is provided.

3-16 RTR Call Reference

rtr_ext_broadcast_event

msgfmt

Message format description. This null-terminated character string contains
the format description of the message. RTR uses this description to convert
the contents of the message appropriately when processing the message on
different hardware platforms. See Section 2.14 for information on defining a
message format description.

This parameter is optional. Specify RTR_NO MSGFM if message content is
platform independent, or there is no intent to use other hardware platforms.

timoutms
Timeout value in milliseconds that the call will wait before tiing out. Returns

status RTR_STS_TIMOUT if RTR is unable to process the call. If no timeout is
needed, specify RTR_NO_TIMOUTMS.

Description

The rtr_ext_broadcast _event() call broadcasts a user event message. The
caller must first open a channel (using rtr_open_channel ()), before it can
send user event messages.

A client channel can be used to send user event messages to servers.
A server channel can be used to send user event messages to clients.

In some circumstances, a broadcast event can wait a long time if RTR runs out
of channel credits; it may seem that the application is hanging. To eliminate
such a wait, the application can specify a timeout value from which the call
returns an RTR_STS_TIMOUT status if RTR is unable to issue the broadcast
message within the specified timeout period.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument

RTR Call Reference 3-17

rtr_ext_broadcast_event

RTR_STS_INVRCPSPC Invalid rcpspc argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_WOULDBLOCK Operation would block. Try again later
RTR_STS_OK Normal successful completion
Example
#define reunion_announcenment 10 [* In user .hfile. */

rtr_msg_buf t reunion_msg = "Jones famly reunion today!";
rtr_rcpspc_t recipients = "*Jones"

rtr timout t = 1000 /* 1 second to time out */

/*
* |f today is the date of the Jones fanmily reunion, tel

* any client whose last name is Jones that they need to

* be there!
*|
if (strcnp(today, reunion_date) == 0)
status = rtr_ext _broadcast event (
&channel
RTR_NO _FLAGS,
reuni on_nsg,

strlen(reuni on_nsg),
reuni on_announcenent,
recipients,
RTR_NO_MSGFMT,
tinoutnms);

check_status(status);

See Also

rtr_broadcast event()
rtr_receive nessage()
rtr_open_channel ()

3-18 RTR Call Reference

rtr_get_tid

rtr_get_tid
Return the transaction ID for the current transaction.

Syntax
status = rtr_get _tid (channel, flags, ptid)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_tid_flag_t read
ptid void* write

C Binding

rr_status trtr_get tid (

rir_channel_t channel
rir_tid_flag_t flags ,
void *ptid
)
Arguments
channel
The channel identifier (returned previously by rtr_open_channel ()).
flags
Flags that specify options for the call.

Table 3—4 shows the flags that are defined.

RTR Call Reference 3-19

rtr_get_tid

Table 3-4 Get TID Flags

Flag Pointer Data Type Returns
RTR_NO_FLAGS rtr_tid_t RTR transaction ID
RTR_F _TID RTR rtr_tid_t RTR transaction ID
RTR_F _TID XA rtr xid_t XA transaction ID
RTR_F TID DDTM rtr_ddtmid_t DECdtm transaction ID

If you do not require any flags, specify RTR_NO FLAGS for this argument.
Specifying RTR_NO FLAGS is equivalent to specifying RTR_F_TI D _RTR; this
capability is maintained for compatibility with RTR versions earlier than RTR
Version 3.2.

The structure rtr_xi d_t is based on the X/Open XA specification and is defined
as follows:

typedef struct rtr_xid t {
long formatl D [* format identifier */
long gtrid_ length; /* value from1 through 64 */
long bqual length; /* value from1 through 64 */
char dat a[RTR_XI DDATASI ZE] ;

}ortr xid_t;

The XID structure contains a format identifier, two length fields and a data

field. The data field comprises at most two contiguous components: a global
transaction ID (gtrid) and a branch qualifier (bqual).

The gtrid_length field specifies the number of bytes (1-64) that constitute gtrid,
starting at the first byte in data (that is, data/0/). The bqual_length field
specifies the number of bytes (1-64) that constitute bqual, starting at the first
byte after girid (that is, datalgtrid_length]). Neither component in data is null
terminated. Any unused bytes in data are undefined.

The contents of data depend on the format of the transaction ID (TX ID), which
is specified by the format identification field. Some valid format ID values are
shown in Table 3-5.

3-20 RTR Call Reference

rtr_get_tid

Table 3-5 Format Identification and Data Content

Format Identification

Data Content

RTR_XID_FORMATID_NONE

RTR_XID_FORMATID_OSI_CCR

RTR_XID_FORMATID_RTR

Null XID. No XID has been returned.
This will be the value if the call to
rtr_get xid/ rtr_get tid returns an
error, for example.

The XID is specified using the naming
rules specified for OSI CCR atomic
action identifiers. RTR does not use
this convention directly, but such a
transaction ID format can be returned
if some other associated transaction or
resource manager uses this convention.

If OSI CCR (ISO standard) naming is
used, then the XID’s formatID element
should be set to 0 (zero); if another
format is used, then the formatID
element should be greater than 0. A
value of -1 in formatID means that the
XID is null.

Identifies an RTR transaction ID. In this
case, the gtrid_length is 28 and bqual_
length is zero. The contents of data can
be interpreted using the format defined
by rtr _tid t. Note that one should still
use the rtr_get tid call to get the RTR
transaction ID for a transaction active
on a channel. The rtr_get xid call
could be used, for example, if a nested
transaction is started where the foreign
transaction manager is also RTR.

(continued on next page)

RTR Call Reference 3-21

rtr_get_tid

Table 3-5 (Cont.) Format Identification and Data Content

Format Identification Data Content

RTR_XID_FORMATID_DDTM Identifies a transaction ID for a
transaction that uses a resource
managed by DECdtm. The gtrid_length
field is 16, and bqual_length is 0.

RTR_XID_FORMATID_RTR_XA Identifies a transaction ID for a
transaction started using an XA resource
manager.

ptid

A pointer to where the unique transaction ID for the current transaction is

returned. Data type depends on any flag that has been set; see Table 3—4.
Description

rtr_get tid() returns the RTR transaction ID for the current transaction.

The RTR transaction ID is a unique number generated by RTR for each
transaction in the RTR virtual network.

In addition, rtr_get _tid() is capable of returning transaction identifiers
associated with XA and DECdtm managed transactions when RTR is operating
with either of these transaction managers.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened

RTR_STS_DTXNOSUCHXID No distributed transaction ID found for this
channel

RTR_STS_INVARGPTR Invalid parameter address specified on last
call

RTR_STS_INVCHANNEL Invalid channel argument

RTR_STS_INVFLAGS Invalid flags argument

RTR_STS_NOXACHAN No XA channel available

3-22 RTR Call Reference

rtr_get_tid

RTR_STS_OK Normal successful completion
RTR_STS_TXNOTACT No transaction currently active on this channel
Example

rtr xid tid xa_tid

char global _id buff[64];

char branch_qual buff[64];

int i, j;
The server executed an rtr_receive_nmessage. In the
rtr_msgsh t structure, the nsgtype field equals
rtr_m _nmsgl uncertain. This indicates that a recovery
is in process, and RTR did not get a confirnmation
that the current transaction had been
conpleted. RTRis now ‘replaying the transaction
and this is the first message in that transaction

R I R T

Cet the transaction id.

*]

status = rtr_get_tid(
&channel ,
RTR_F_TI D XA,
&a_tid);

check_status(status);

/*
* |solate the information in the xa tid structure.
*|
if (xa_tid formatID != RTR XI D FORMATI D RTR XA)

printf(errLog, "This channel only for X Open transactions");
exi t (BAD_TXTYPE_CHAN) ;
)

for (i =0; i <xa_tid.gtrid_ length; i++)
global id buff[i] = xa_tid. data[i];

global _id buff[i] = 0;

for

(j =1;] < (xa_tid.gtrid length + xa_tid.bqual |ength); j++)
branch_qual _buff[j - i] = xa_tid. data[j];

branch_qual _buff[j] = 0;

/* Query the database to see if the transaction whose gl obal _id
* and branch qualifier match these had been comitted. If so,
* ignore; otherw se, continue as though this were the first
* tine the nessage was received.

*

RTR Call Reference 3-23

rtr_get_user_context

rtr_get_user_context

Retrieve the optional user-defined context associated with the specified RTR
channel.

Syntax

user_context = rtr_get user_context (channel)

Argument Data Type Access
user_context rtr_usrctx_t write
channel rtr_channel_t read

C Binding

rtr_usrctx_t rtr_get_user_context (

rir_channel_t channel
)
Arguments

channel
The channel whose context is to be returned.

Usage example:

struct { rtr_channel _t chan; int state, ... } context[10]; *ctx;
rtr_channel _t chan;

rtr_open_channel (&tx[4].chan, ...);

rtr_receive_nmessage(é&chan, ...);

ctx = rtr_get _user_context(chan);

if (ctx->state) { ... }

3-24 RTR Call Reference

rtr_get_user_context

Description

The rtr_get user_context() call retrieves the user context for a channel.
The default value of the user context is the value of the pchannel argument
passed to RTR at the time the channel was opened using one of the following
calls or routines:

rtr_open_channel ()
rtr_request _info()
rtr_set _info()

The context value may optionally be changed at any later time using
rtr_set_user_context (), provided the channel is still open.

The routine returns the user context of the specified channel.
Return Value
A value indicating the status of the routine. Possible status values are:

RTR_NO_USER_CONTEXT The specified channel was not declared or has
closed

RTR Call Reference 3-25

rtr_open_channel

rtr_open_channel

Open a channel to allow for communication with other applications.

Syntax

status = rtr_open_channel (pchannel, flags, facnam, rcpnam, pevtnum, access, numseg, pkeyseg)

Argument Data Type Access
status rtr_status_t write
pchannel rtr_channel_t write
flags rtr_ope_flag_t read
facnam rtr_facnam_t read
rcpnam rtr_rcpnam_t read
pevtnum rtr_evtnum_t read
access rtr_access_t read
numseg rtr_numseg_t read
pkeyseg rtr_keyseg_t read
C Binding

rr_status_t rtr_open_channel (

rir_channel_t *pchannel ,
rir_ope_flag_t flags ,
rir_facnam_t facnam ,
rir_rcpnam_t rcpnam ,
rtr_evtnum_t *pevtnum ,
rir_access_t access ,
rtr_numseg_t numseg ,
rir_keyseg_t *pkeyseg

)

Arguments

pchannel
A pointer to a location where the channel is returned.

3-26 RTR Call Reference

rtr_open_channel

flags
Flags that specify options for the call.

Defined flags are shown in Table 3-6, Table 3-7, and Table 3-8.

Table 3-6 Open Channel Flags (One Required)

Flag Description

RTR_F_OPE_CLIENT Indicates that the channel will be used as a
client.

RTR_F_OPE_CREATE_ Requests that a partition be created.

PARTITION Specify partition key segments and name

with the pkeyseg argument. The name is
passed using an rtr_keyseg_t descriptor
where ks_type = rtr_keyseg_partition and
ks_lo_bound point to the name string.
On a successful call, a channel is opened
on which the completion status can be
read from the ensuing message of type
rtr_m _closed. The completion status is
found in the status field of the message
data of rtr_status_data_t.

RTR_F_OPE_DELETE_ Requests that a partition be deleted.

PARTITION Specify partition or name key segments
with the pkeyseg argument. The name is
passed using an r'tr_keyseg_t descriptor
where ks_type = rir_keyseg_partition and
ks_lo_bound points to the name string.
On a successful call, a channel is opened
on which the completion status can be
read from the ensuing message of type
rtr_m closed. The completion status is
found in the status field of the message
data of rtr_status_data_t.

RTR_F_OPE_SERVER Indicates that the channel will be used
as a server. numseg and pkeyseg must
be specified for all servers except call-out
servers.

RTR Call Reference 3-27

rtr_open_channel

Table 3-7 Open Channel Client Flags

Flag Description

RTR_F OPE_EXPLICIT START Valid for client channels only. Use
of this flag requires that an explicit
rtr_start_tx() be called on this
channel. The procedure is in effect
until the channel is closed. The
EXPLICIT_START flag ensures that
the rtr_send_to_server() will not
generate new transactions should the
rtr_start_tx() time out.
If the user calls rtr_send_to_server()
without first calling rtr_start _tx(),
the error message RTR- F- | NVI MPLCTSTRT
is returned informing the caller that
they must call rtr_start tx() first on
this channel.

RTR_F_OPE_FOREIGN_TM Valid for client channels only. This
indicates that the global coordinating
transaction manager is a foreign
transaction manager (non-RTR), and
that all transactions on this channel
will be coordinated by the foreign
transaction manager. If this flag is
set, then calls to rtr_start _tXx on this
channel must supply a value for the
jointxid parameter, which is the ID of
the parent transaction.

Note
Calling rtr_open_channel () with the RTR_F_OPE_FOREI GN_TMflag set

causes a local RTR journal scan to occur, if a journal has not already
been opened on that node.

3-28 RTR Call Reference

rtr_open_channel

The flags in Table 3-8 apply only if RTR F_ OPE_SERVERis set.

Note

Server attributes such as key range definition, shadow and standby
flags, can be defined and modified outside the application program by
the system manager. A server should preferably use specific flags.

Table 3-8 Open Channel Server Flags

Flag Description

RTR_F OPE_BE_CALL_OUT The server is a backend callout server.
By default a server is not a backend
callout server.

RTR_F_OPE_DECDTM_MANAGED Indicates that DECdtm manages
the channel. Valid only for server
channels.

RTR_F_OPE_EXPLICIT ACCEPT Acall tortr_receive_nessage() is
not to be interpreted as an implicit call
of rtr_accept _tx().

RTR_F_OPE_EXPLICIT PREPARE The server needs to receive an explicit
prepare message from RTR when
each transaction has been completely
received. By default, no prepare
message is generated.

RTR_F_OPE_NOCONCURRENT The server may not be concurrent with

other servers. By default a server may
have other concurrent servers.

(continued on next page)

RTR Call Reference 3-29

rtr_open_channel

Table 3-8 (Cont.) Open Channel Server Flags

Flag

Description

RTR_F_OPE_NORECOVERY

RTR_F_OPE_NOSTANDBY

RTR_F_OPE_RECEIVE_REPLIES

3-30 RTR Call Reference

Valid for a server channel, this flag
specifies partition operation without
the services of the RTR recovery
journal. This option may be useful

for applications whose focus is on

the timely delivery of messages with
limited lifetimes, where the recovery
of possibly stale data is not of interest.
Since no IO operations to the RTR
journal are performed, resource
consumption per transaction will be
lower, particularly for applications
where the number of concurrently
active servers is small.

Partitions operating in this mode will
perform the usual recovery operations,
but no recovery transactions will be
found. Further, shadowed partitions in
remember mode using this option are
also not using the journal, so shadow
recovery of such partitions will find no
shadow recovery transactions. Since
consistency between shadowed sites
can thus no longer be maintained,
server channels attached to such
partitions will automatically be closed
should such a non-journalled partition
transition from an active to an inactive
state.

The server may not be (or have)
standby(s). By default, servers may
have standby(s).

The server, a backend callout server,
can receive server-to-client messages.

(continued on next page)

rtr_open_channel

Table 3-8 (Cont.) Open Channel Server Flags

Flag

Description

RTR_F_OPE_SHADOW

RTR_F_OPE _STRICT_SHAD_
ORDER

RTR_F_OPE_TR_CALL_OUT

RTR_F_OPE_XA MANAGED

The server is part of a shadow pair. By
default a server is not part of a shadow
pair.

See the Usage Restriction below.

The server is a router callout server.
By default a server is not a router
callout server.

Associates the channel with the XA
protocol.

Usage Restriction

Ordinarily RTR determines groups of independently voting concurrent
transactions on the primary site from server behavior. Transactions within a
group can then be presented on the secondary in any order. The Shadow Order
flag modifies this behavior so that transactions are presented on the secondary
site strictly in the order in which they are accepted by the application on the

primary.

Allowed Settings

For consistent operation, the shadow order flag depends on the journal-
less flag. That is, only certain combinations are allowed:

With this No_
This Shadow Order Recovery Flag
Flag Setting Setting Is:
STRICT_SHD_ NO_RECOVERY
ORDER
0 0 Allowed
0 1 Allowed
1 1 Allowed
1 0 Not allowed

RTR Call Reference 3-31

rtr_open_channel

facnam
A null-terminated string containing the facility name. A facility name is
required.

rcpnam

An optional null-terminated string containing the name of the recipient. This
name is used to receive named event messages. Specify RTR_NO_RCPNAM when
named event recipients are not used.

These names are additional qualifiers on the event delivery, are matched to the
sender name, and are ANDed to the event number for delivery. For example,
a client "New York" and a client "Hong Kong" could be set up to both receive
event number 100. If the event 100 was generated by the server with the name
"Hong Kong," the event would not be received by the "New York" client.

Named Events

e To receive named events, the correct event number must also be
specified. The event number (evtnum) must be specified by both the
sender (rcpspc) and the recipient (repnam,).

e Both repnam and repspe are case sensitive.

e Both repnam and repspe default to the case-insensitive channel
name if no explicit repnam or repspce is provided.

pevtnum

Optional pointer to a list of event numbers to which the channel wishes to
subscribe. There are two types of event: user events and RTR events. This
parameter is used to specify all user and RTR events that the channel is to
receive.

Start the list of user event numbers with RTR_EVTNUM USERDEF, and the list
of RTR event numbers with RTR_EVTNUM RTRDEF. End the entire list with
RTR_EVTNUM ENDLI ST. Specify a range of event numbers using the constant
RTR_EVTNUM UP_TO between the lower and upper (inclusive) bounds. For
example, to specify the list of all user event numbers, use:

3-32 RTR Call Reference

rtr_open_channel

rtr_evtnumt all _user_events[]={
RTR_EVTNUM_USERDEF,
RTR_EVTNUM USERBASE,
RTR_EVTNUM_UP_TQ,
RTR_EVTNUM USERMAX,

RTR_EVTNUM ENDLI ST

b

For example, to specify the list of all event numbers, use:

rtr_evtnumt all _events[]={
RTR_EVTNUM USERDEF,
RTR_EVTNUM_USERBASE,
RTR_EVTNUM UP_TO,
RTR_EVTNUM_USERMAX,
RTR_EVTNUM RTRDEF,
RTR_EVTNUM RTRBASE,
RTR_EVTNUM UP_TO,
RTR_EVTNUM_RTRVAX,
RTR_EVTNUM ENDLI ST
b

Specify RTR_NO PEVINUMwhen the channel is to receive no events. Event names
and numbers are listed in Table 2-5, RTR Event Names and Numbers.

access

An optional null-terminated string containing the access parameter. The access
parameter is a security key used to authorize access to a facility by clients and
servers. Specify RTR_NO ACCESS when there is no access string.

numseg

The number of key segments defined. The numseg parameter is not required
for client channels or callout server channels. (Callout servers always receive
all messages.) Specify RTR_NO NUVBEG when defining client channels.

A key can consist of up to RTR_MAX_NUVSEG segments.
pkeyseg

Pointer to the first block of key segment information. Only the first numseg
elements are used. The structure of rtr_keyseg t is:

t%/pedef struct /* RTR Key Segnent Type *|
rtr_keyseg type t ks type ; /* Key segnent data type *|
rtr_uns_32 t ks_length ; /* Key segnent |ength (bytes) *|
rtr_uns 32t ks _offset ; /* Key segnent offset (bytes) *|
voi d *ks lo_bound ; /* Ptr to key segnent |ow bound */
voi d *ks_hi _bound ; /* Ptr to key segnment high bound */

} rtr_keyseg t ;

RTR Call Reference 3-33

rtr_open_channel

The data type of a key segment can be one of the following:

Table 3-9 Key Segment Data Type

Data Type Description

rtr_keyseg_foreign_tm_id Foreign transaction manager identifier.

rtr_keyseg_partition Partition name, the name of the partition
assigned.

rtr_keyseg_rmname Resource manager name, the name of the
foreign resource manager.

rtr_keyseg_signed Signed

rtr_keyseg_string ASCII string

rtr_keyseg_unsigned Unsigned

The pkeyseg parameter is not required for client channels or callout

server channels. (Callout servers always receive all messages.) Specify
RTR_NO _PKEYSEG when defining client channels. The ks_type field can be one of
the data types shown in Table 3-9. The value of the offset ks_offset must be
different for different key segments or key ranges.

If an rtr_keyseg_t of rir_keyseg_string is specified, then it is up to the
application programmer to ensure that the key value is valid for the complete
range of the key length.

For example, if the key length is 4, and server code includes a statement like:
strcpy(keyval ue, "k");

with keyvalue passed as one of the bounds values, then potentially the bound
value can differ from one open channel call to the next, because the two bytes
following the “k” will contain uninitialized values but still form part of the
key-bound definition. (In this case, one should clear the keyvalue buffer before
copying the bounds values.)

A call to rtr_open_channel () may be used to create a named partition or
to open a server channel associated with an existing named partition. To do
this, supply a partition name when opening a server channel. The pkeyseg
argument specifies an additional item of type rtr_keyseg t, assigning the
following values:

o ks_type=rtr_keyseg_partition, indicating that a partition name is being
passed

3-34 RTR Call Reference

rtr_open_channel

e ks_|o_bound should point to the null-terminated string to use for the
partition name

Note

When using the RTR CLI, if a key-bound value length is less than the
key length, the key bound is automatically null-padded to the required
length. For example,

RTR> cal | rtr_open_channel / server/type=string/| ow=1/hi gh=2

Because no key length is specified, the length defaults to four. The low
and high bound values are automatically null-padded to four bytes by
RTR.

The key segment array may not contain more than RTR_MAX NUMSEG elements.

XA Usage

Specify RTR_F_OPE_XA MANAGED only for a server channel. With this
flag, use ks_type =rtr_keyseg rmane to indicate that the server
application provides resource manager information when a channel
is open. kS_| 0_bound should point to the null-terminated string to
use for the resource manager (RM) name, which cannot contain more
than 31 letters. ks_hi _bound should point to the null-terminated
string to use for the RM-specific open string used to connect to

the underlying RM. The open string cannot contain more than 255
letters. Neither ks_| engt h nor ks_of f set apply when using the flag
RTR_F_OPE_XA MANAGED.

Description

The rtr_open_channel () call opens a channel for communication with other
applications on a particular facility.

The caller of rtr_open_channel () specifies the role (client or server) for which
the channel is used.

For use with XA:

1. Change the rtr_open_channel() call as described in the call description.

RTR Call Reference 3-35

rtr_open_channel

2. Remove unnecessary SQL calls from server code such as commit or
rollback in a two-phase commit environment. If these calls remain in your
application code, they may cause vendor-specific warnings.

RTR allows only one RM instance to be registered for each RTR partition.

4. Only one transaction is processed on an RTR channel at any given time.
This implies that a server process or a thread of control can only open one
channel to handle a single XA request.

5. Using a multithreaded server application is strongly recommended for
better throughput.

Return Value
A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart

RTR_STS_ALLSRVSTRCT

RTR_STS_BYTLMNSUFF

RTR_STS_DTXOPENFAIL

RTR_STS_DUPLRMNAME
RTR_STS_ERROPEJOU
RTR_STS_INSVIRMEM
RTR_STS_INVACCESS
RTR_STS_INVCHANNEL
RTR_STS_INVEVTNUM
RTR_STS_INVFACNAM
RTR_STS_INVFLAGS
RTR_STS_INVIMPLCTSTRT

RTR_STS_INVKSLENGTH
RTR_STS_INVKSTYPE
RTR_STS_INVNUMSEG
RTR_STS_INVPKEYSEG

3-36 RTR Call Reference

RTR or application

All partition instances must agree on the
setting of STRCT_SHD_ORDER

Insufficient process quota bytlm, required
100000

Distributed transaction request to open a
session to the RM has failed

Duplicate RM partition name
Error opening journal file
Insufficient virtual memory
Invalid access argument
Invalid channel argument
Invalid evtnum argument
Invalid facnam argument
Invalid flags argument

Implicit start transaction disallowed by
channel properties

Invalid ks_length argument
Invalid ks_type argument
Invalid numseg argument

Invalid pkeyseg argument

RTR_STS_INVRCPNAM
RTR_STS_INVRMNAME
RTR_STS_INVSVRCLIFLG

RTR_STS_JOUACCDEN

RTR_STS_JOUNOTFOU
RTR_STS_MISSINGREQFLG
RTR_STS_NOACP
RTR_STS_NONRECPAR

RTR_STS_OK
RTR_STS_RMSTRINGLONG
RTR_STS_TOOMANCHA

Examples

rtr_open_channel

Invalid rcpnam argument
Invalid resource manager name

Either both /Client and /Server flags were
supplied or they were missing

No access to journal for attempted operation:
permission denied

Journal not found
A required flag is missing
No RTRACP process available

Non-recoverable partition is no longer active -
channel closed automatically

Normal successful completion
Resource manager open or close string too long
Too many channels already opened

Examples show the following:

e A simple client application

e A simple server application

e An application using XA

e An application using partition names

Example 3-1 Client Application

rtr_channel _t channel
rtr_status_t status;
rtr_string_t user_narme;

[* Get the user’s nane through login or other user interface
|
user_nanme = <input data>

(continued on next page)

RTR Call Reference 3-37

rtr_open_channel

Example 3-1 (Cont.) Client Application

/* Open client application’s channel to the router;
* use the facility named ‘ CCardPurchases’, and the user's
* name to identify this client.
*
* This client will receive messages only, no events,
* and is going to use a foreign transacti on manager
* that inplenments the X/ Open standard transaction
* formats.
*|
status = rtr_open_channel (
&channel
RTR_F_OPE_CLIENT | RTR_F_OPE_FOREI GN_TM
" CCar dPur chases",
user _nane,
RTR_NO_PEVTNUM
RTR_NO_ACCESS,
RTR_NO_NUMSEG ,

RTR_NO_PKEYSEG) ;
check_status(status);

3-38 RTR Call Reference

rtr_open_channel

Example 3—2 Server Application

LR R SR SRR RS E SRS RS R SRS RS R SR SRS SR SRS SRR RS SR EE SR SRS RS ER SRR SR EREEEEEEEEEES

[* Open a channel in a server application. This server will
* handl e only records where the |ast nane begins with A

* It also wants an explicit message sent when it is time
* to prepare the transaction, and one when it is tine to
*/vote whether to accept or reject the transaction.

*

rtr_channel _t channel;

rtr_status_t stat us;

rer_keyseg_t p_keyseg[1];

rtr_string t last = "A";

/*

* Use this rtr_keyseg t structure to define this server as
* handling only those records whose |ast name begins
*with A,

*|

p_keyseg[0].ks_type = rtr_keyseg_string;
p_keyseg[0].ks_length = 1;

p_keyseg[0].ks _offset = 0;

p_keyseg[0].ks_lo_bound = |ast;

p_keyseg[0].ks_hi bound = last;

QOpen the channel as a server that wants explicit ACCEPT and
PREPARE nessages. It is a nmenber of the CcardPurchases
facility, accepts no events (only nmessages) and we are
sending 1 rtr_keyseg t structure that defines those
nessages to be handled by this server.

—
*

Note al so that we are specifying that this channel
will be ‘XA managed'; that is, the transaction manager
will be one that inplenments the X Qpen standard.

E R I

*
/
status = rtr_open_channel (
&channel ,
RTR_F_OPE SERVER | RTR_F_OPE EXPLICI T_ACCEPT |
RTR_F_OPE_EXPLI CI T_PREPARE | RTR_OPE_XA MANAGED,
" CCar dPur chases",
NULL,
RTR_NO_PEVTNUM
RTR_NO_ACCESS,
11
p_keyseg);
check_status(status);

RTR Call Reference 3-39

rtr_open_channel

Using RTR with XA

The snippets from the sample server applications show use of the RM
information, the XA flag, and commenting out RM commits and rollbacks.

New XA example, for V4.1 and later

Starting with RTR Version 4.1, when a server application opens a new
channel it does not have to specify the RTR F_OPE XA MANAGED flag and
RM name along with the RM’s attributes such as open_string in order

to invoke RTR XA service. The server application just has to specify the
name of a partition that is associated with a specific RM, provided that the
user specifies an RM name when creating the partition. All transactions
processed through this channel will be managed by the RTR XA service.

Impact on Server Application

Using an RTR XA service has some impact on existing server applications,
as follows:

e RTR will not present messages of type nmt _uncertain to server
applications. The server application does not have to replay
transactions during the recovery. All transactions will be recovered
by RTR when the facility is created.

e The server application does not need to explicitly commit or roll
back the transactions with the underlying resource manager because
transactions are managed directly by RTR using the XA protocol.

Example 3-3 shows how to open a new channel using RTR V4.1:

Example 3-3 Sample XA Server Application, Version 4.1 and Later

srv_key[0].ks_type = rtr_keyseg_ partition;
srv_key[0].ks_length = 0; /* NA*/
srv_key[0].ks_offset = 0; /* NA*/
srv_key[0].ks_l o_bound = &partition_name[0]; /* null terminated */

flag = RTR_F_OPE_SERVER |
RTR_F_OPE_EXPLI Ol T_PREPARE |
RTR_F_OPE_EXPLI CI T_ACCEPT;

(continued on next page)

3-40 RTR Call Reference

rtr_open_channel

Example 3-3 (Cont.) Sample XA Server Application, Version 4.1 and Later

status = rtr_open_channel (&s_chan,

flag,

reply_nsg.fac_nane,

NULL, [* rcpnam */
&pevt num

RTR_NO_ACCESS,

num seg, [* nunmseg */
srv_key); /* key range */

However, if the server application is running a version of RTR prior to RTR
V4.0, the server application must specify the RTR_F_OPE_XA_MANAGED
flag, the RM’s name, and other RM attributes such as open_string. You
must overload the rtr_keyset t data structure with the RM-specific
information and then pass it when creating an RTR channel, as shown in
Example 3—4.

Example 3—4 Sample XA Server Application Prior to Version 4.1

srv_key[0].ks_type = rtr_keyseg_unsi gned;

srv_key[0].ks_length = sizeof (rtr_uns_8 t);

srv_key[0].ks_offset = 0;

srv_key[0].ks_|o_bound = & ow;

srv_key[0] . ks_hi _bound = &hi gh;

srv_key[1].ks_type = rtr_keyseg_rmane;

srv_key[1].ks_length = 0; /* NA*/

srv_key[1].ks offset = 0; /* NA*/

srv_key[1].ks_lo_bound = & m nange[0]; [* nul'l ternminated */
srv_key[1].ks_hi _bound = &a _open_string[0]; /* null term nated */

flag = RTR_F_OPE_SERVER |
RTR_F_OPE_EXPLI CI T_PREPARE |
RTR_F_OPE_EXPLI Ol T_ACCEPT |
RTR_F_OPE_XA_MANAGED;

status = rtr_open_channel (&s_chan,

flag,

reply_nsg. fac_nane,

NULL, [* rcpnam */
&pevt num

RTR_NO_ACCESS,

num seg, [* nunseg */
srv_key); * key range */

RTR Call Reference 3-41

rtr_open_channel

Example 3-5 Use of Partition Names

/* Denonstrate use of partition names *|
* *
2 N
#incl ude "rtr.h"

#incl ude <stdio. h>

mai n()

~— o~

This programwill open a server channel. Servers
need to identify the partition they will be operating
on by passing information coded in the pkeyseg argunent.
If the partition already exists and its name is known,
it suffices to specify the partition name. If this is
not the case, then the partition nust be specified by
describing the key segnents. In the latter case, nane
information is optional. If present, the new partition
will receive the specified nane, otherw se a default
name will be generated. *|

*]
This program assumes the presence of a partition named
par_test in the facility fac_test and opens a server
channel to it. Create the partition prior to running
the program e.g., *|

*

/
RTR> create partition par_test/facility=fac_test */

*

/

—

%%k k% ok ok ok k% % ok ok %k % ok ok k%

—_——

rtr_channel _t AChannel ;

const char *pszFaci | it yName
const char *pszPartitionName
rtr_status_t stat us;
rtr_ope_flag_t flags = RTR F_OPE SERVER,
rtr_keyseg_t partition_info,

"fac _test";
“par_test";

partition_info.ks type rtr_keyseg partition;
partition_info.ks | o bound (rtr_pointer_t)pszPartitionNane;
partition_info.ks_hi_bound = NULL;

[* Mist be NULL *|

(continued on next page)

3-42 RTR Call Reference

rtr_open_channel

Example 3-5 (Cont.) Use of Partition Names

status = rtr_open_channel (
&AChannel ,
flags,
pszFaci | i t yNane,
RTR_NO_RCPNAM
RTR_NO_PEVTNUM
RTR_NO_ACCESS,
11
&partition_info);

[* Call rtr_receive_nessage() to receive conpletion status *|

See Also

rtr_cl ose_channel ()

RTR Call Reference 3-43

rtr_receive_message

rtr_receive_message

Receive a message from RTR or the application.

Syntax

status = rtr_receive_message (pchannel, flags, prcvchan, pmsg, maxlen, timoutms, pmsgsh)

Argument Data Type Access
status rtr_status_t write
pchannel rtr_channel_t write
flags rtr_rcv_flag_t read
prcvchan rtr_channel_t read
pmsg rtr_msgbuf_t write
maxlen rtr_msglen_t read
timoutms rtr_timout_t read
pmsgsb rtr_msgsb_t write
C Binding

rr_status t rtr_receive_message (

rir_channel_t *pchannel ,
rir_rcv_flag_t flags ,
rir_channel_t *prcvchan ,
rir_msgbuf t pmsg ,
rir_msglen_t maxlen ,
rtr_timout_t timoutms
rtr_msgsb_t *pmsgsh

)

Arguments

pchannel
The channel identifier on which the message was received.

flags
No flags are currently defined. Specify RTR_NO FLAGS for this parameter.

3-44 RTR Call Reference

rtr_receive_message

prcvchan
A pointer to a list of channels on which a receive is required. This parameter

can be used to select a subset of channels on which messages can be received.
Terminate the list with RTR_CHAN ENDLI ST.

If no selection is required, that is, a receive from any open channel is
acceptable, specify RTR_ANYCHAN for this parameter.
Note

See the restriction on using RTR_ANYCHAN with RTR V2 applications
in the HP Reliable Transaction Router System Manager’s Manual.

pmsg
Required pointer to the user buffer where the received message is written.

maxlen
Size allocated in the user buffer for received messages, in bytes.

timoutms
Receive timeout specified in milliseconds. If the timeout expires, the call
completes with status RTR_STS_TIMOUT.

If no timeout is required, specify RTR_NO_TI MOUTMS.

pmsgshb
Pointer to a message status block describing the received message. The
message status block is shown in Example 3-6.

Example 3-6 RTR Message Status Block
typedef struct [* RTR message status block */

rtr_nmsg_type_t nsgtype;
rtr_usrhdl t usrhdl;
rtr_msglen_t msglen;
rtr_tid t tid;
rtr_evtnumt evtnum

} ortr_msgsh_t

The msgtype field can assume one of the values listed in Table 2-2, RTR
Received Message Types for Server Applications and Table 2-3, RTR Received
Message Types for Client Applications.

RTR Call Reference 3-45

rtr_receive_message

The usrhdl field contains the value supplied with a call to
rtr_set _user_handle().

The msglen field contains the length of the data stored in the user buffer after
the call has been executed.

The tid field contains the RTR unique ID for the transaction to which this
received message belongs.

The evtnum field contains the event number if the msgtype field is
rtr_nt_rtr_event orrtr_nt_user_event.

Description
The rtr_recei ve_nessage() call is used to receive a message.

The caller must have previously opened at least one channel (via
rtr_open_channel () orrtr_request _info()).

By default, this function waits for a message to become available if no message
is currently ready to be received.

Upon successful return (RTR_STS_OK), the message status block pointed to by
pmsgsb contains the description of the message received.

When a client application calls rtr_send to_server, RTR sends the message
from frontend to router. It is the router’s job to find out which key range the
message belongs to (by looking at the key field in the application message), and
then to forward the message to the backend node where the server application
for this key range is running. If the router does not know of a backend that
has a server running for this key range, then the router aborts the transaction.
In this case, the client application receives an rtr_nt_rej ect ed message for
this transaction with status RTR_STS_NODSTFND.

If a client application receives an RTR_STS_NODSTFND error, then the client can
try to resend the transaction, as the cause may have been only temporary. Note
that the reasons the router cannot find a backend node with an appropriate
server include:

1. The application server for this key range has not been started.
2. The link between the router and backend has gone down.

3. In unusual circumstances, a transaction can be rejected with RTR_STS_
NODSTFND status after the client calls rtr_accept _tX. This can occur
for transactions with multiple participants and no timeout specified
where the link between the router (which is quorate) and one of the
backend participants has gone down for a period greater than the router’s

3-46 RTR Call Reference

rtr_receive_message

transaction replay timeout period. (This can occur even if the messages in
the transaction had all been sent with the RTR_F_SEN EXPENDABLE flag set.)

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA

RTR_STS_BYTLMNSUFF

RTR_STS_INVCHANNEL
RTR_STS_INVFLAGS
RTR_STS_INVMSG
RTR_STS_INVRMNAME
RTR_STS_NOACP
RTR_STS_NOXACHAN
RTR_STS_OK
RTR_STS_SRVDCLSBY
RTR_STS_TIMOUT
RTR_STS_TRUNCATED

Example

RTR ACP no longer a viable entity, restart

RTR or application

Insufficient process quota bytlm, required

100000

Invalid channel argument
Invalid flags argument

Invalid pmsg argument

Invalid resource manager name
No RTRACP process available
No XA channel available

Normal successful completion

Successful server declaration, but as standby

Call to rtr_receive_message timed out
Buffer too short for msg
Message has been truncated

status = rtr_recei ve_nessage(

&channel ,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,

si zeof (recei ve_nsg),
receive_time_out,
&msgsh) ;

check_status("rtr_receive_message", status);

[* The rtr_nsgsbh t tells us what type of

* message we are receiving. This server has asked to

* pe notified when it is time to prepare the transaction.
* |t should also handle other nessage types, as well.

*]

if (msgsh. megtype == rtr_nt_prepare)

/1 Do the work necessary to prepare the transaction
/1l before commtting.

RTR Call Reference

3-47

rtr_receive_message

See Also

rtr_broadcast event()
rtr_accept _tx()
rtr_open_channel ()
rtr_reject _tx()
rtr_send _to_server()

3-48 RTR Call Reference

rtr_reject_tx

rtr_reject_tx
Reject the transaction currently active on a channel.

Syntax

status = rtr_reject_tx (channel, flags, reason)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_rej_flag_t read
reason rtr_reason_t read

C Binding

rr_status_t rir_reject tx (

rir_channel_t channel
rtr_rej_flag_t flags ,
rir_reason_t reason

)

Arguments
channel
The channel identifier (returned earlier by rtr_open_channel ()).
flags
No flags are currently defined. Specify RTR_NO FLAGS for this parameter.
reason
The reason for the rejection. This rejection reason is returned to the other
participants in the transaction. It is returned in the reason field of the

structure rtr_status_data_t with the rtr_nt_reject ed message. Specify
RTR_NO _REASON if no reason is to be supplied.

RTR Call Reference 3-49

rtr_reject_tx

Description

Thertr_reject _tx() call rejects the transaction that is active on the specified
channel.

When rtr_reject_tx() returns, the channel is no longer associated with the
transaction.

Once an rtr_accept() has been called by the server application, the
rtr_reject _tx() call is not allowed until the first message of the next

transaction is received. An attempt to call rtr_reject_tx() yields an
RTR_STS_TXALRACC return status.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened

RTR_STS_DLKTXRES! Deadlock detected, transaction rescheduled
RTR_STS_INVCHANNEL Invalid channel argument

RTR_STS_INVFLAGS Invalid flags argument

RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

IThis status is returned to a client in the status field of a message of type rtr_mt_rejected if

a transaction currently being processed has been aborted because of a deadlock with other
transactions using the same servers. RTR replays the transaction after the deadlock has been
cleared. This condition can be caused by either a classic database deadlock or a potential deadlock
that RTR tries to avoid in cases such as concurrent server death or server role change. For more
details, see the section in the RTR Application Design Guide, Handling Error Conditions.

Example

rtr_uns_32 t MI_LAST NAME = 678;
[* Defined inuser’s .h file. */

3-50 RTR Call Reference

rtr_reject_tx

if (last_nanme == null)

[* Mssing last name! Not everything is ready for

* commtting the current transaction (e.g., through
validations), and so wishes to reject it, rather than
*to commt it.

*

/

*

status = rtr_reject _tx(
channel ,
/1 Same channel it cane in on.
RTR F_REJ_RETRY,
Il Retry frommsgl of txn.
MI_LAST NAME);
[l User-defined error code.

check_status(status);
return;

}

See Also

rtr_open_channel ()
rtr_accept tx()

RTR Call Reference 3-51

rtr_reply_to_client

rtr_reply_to_client

Send a server’s reply to a client’s transactional message.

Syntax

status = rtr_reply_to_client (channel, flags, pmsg, msglen, msgfmt)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_rep_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
msgfmt rtr_msgfmt_t read
C Binding

rtr_status_t rtr_reply_to_client (

rir_channel_t channel ,
rir_rep_flag_t flags ,
rtr_msgbuf t pmsg ,
rir_msglen_t msglen ,
rir_msgfmt_t msgfmt

)

Arguments

channel

The channel identifier (returned earlier by rtr_open_channel ()).

flags
Table 3-10 shows the flags defined for this call.

3-52 RTR Call Reference

rtr_reply_to_client

Table 3-10 Reply To Client Flag

Flag

Description

RTR_F_REP_ACCEPT

RTR_F_REP_FORGET

RTR_F_REP_INDEPENDENT

The transaction is accepted by this server.
This is equivalent to sending a reply to the
server and immediately following it with a
call tortr_accept _tx(). This is useful in
those cases where the sender knows that the
transaction is definitely acceptable.

Set to prevent receipt of any more messages
or completion status associated with the
transaction after it has been accepted. Using
this flag requires that the RTR_F_ACC_
FORGET flag be set in the rtr_accept _tx
call, indicating that the transaction is to be
accepted.

Set to indicate that this transaction

is independent; can only be used with
RTR_F_REP_ACCEPT. (See Section 2.15.4,
Transaction Independence, for further
information.)

Specify RTR_NO FLAGS for this parameter if no flags are required.

pmsg

Pointer to the reply message to be sent.

msglen

Length of the message to be sent, in bytes.

msgfmt

Message format description. msgfmt is a null-terminated character string
containing the format description of the message. RTR uses this description
to convert the contents of the message appropriately when processing the
message on different hardware platforms. See Section 2.14, RTR Applications
in a Multiplatform Environment, for information on defining a message format

description.

This parameter is optional. Specify RTR_NO MSGFM if the message content is
platform independent, or other hardware platforms will not be used.

RTR Call Reference 3-53

rtr_reply_to_client

Description

The rtr _reply to client() call sends a transactional message back to the
client that started the transaction.

The caller must first obtain a server channel (using the rtr_open_channel ()
call) and must have received a message from a client using the
rtr_receive_nessage() call.

Once an rtr_accept _tx() has been called by the server application, the
rtr_reply_to_client() call is not allowed until the first message of the next
transaction is received. An attempt to callrtr_reply_to_client() yields an
RTR_STS_TXALRACC return status.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel
Example

[* The purchase nmsg structure is defined in the user’s
* application header file.
*
/
typedef struct {
rtr_uns_8 t nmy_nsg_t ype;
string3l | ast _nane;
rtr_uns 32t order _total;
rtr_uns_32_t shi ppi ng_ant;
string7 user _id;
} purchase_nsg;

purchase_nsg purch_nsg;

3-54 RTR Call Reference

rtr_reply_to_client

The client has made a request on the server; the server
has fulfilled this request, and now needs to let the
client know the result.

In this case, the client has asked the server to total

the purchases in the user’'s shopping cart. The server

is accepting the transaction at this tinme as well, without
being explicitly asked to.

EE I

*

/

purch_nsg. my_msg_type = MY_TOTAL_PURCHASES;
purch_nsg.last_nanme = cust |ast_nang;

Fill the struct based on database query or cal cul ations.

status = rtr_reply to client (
channel ,
RTR_F_REP_ACCEPT,
&purch_nsg,
si zeof (purch_nsg),
RTR_NO_MSGFM) ;

check_status(status);

See Also

rtr_receive_message()
rtr_open_channel ()
rtr_accept tx()

RTR Call Reference 3-55

rtr_request_info

rtr_request_info
Request information about the RTR environment.

Syntax

status = rtr_request_info (pchannel, flags, infcla, selitm, selval, getitms)

Argument Data Type Access
status rtr_status_t write
pchannel rtr_channel_t write
flags rtr_req_flag_t read
infcla rtr_infoclass_t read
selitm rtr_itemcode_t read
selval rtr_selval_t read
getitms rtr_itemcode_t read
C Binding

rr_status_t rtr_request_info (

rir_channel_t *pchannel ,
rir_req_flag_t flags ,
rir_infoclass_t infcla ,
rr_itemcode_t selitm |
rir_selval_t selval ,
rir_itemcode_t getitms

)

Arguments

pchannel
Pointer to the channel opened by a successful call tortr_request _info().

flags
No flags are defined for this call. Use RTR_NO FLAGS for this parameter.

3-56 RTR Call Reference

rtr_request_info

infcla

A null-terminated text string that specifies the type of information for which
data are requested. Table 3-11 lists information types and their specifying
information class strings. Within an information class, you retrieve a specific
datum with selitm, selval, and getitms parameters specified as strings. Data
returned by rtr_request _i nfo are valid only under certain conditions as listed
in Table 3-11. For example, to obtain information about a node, use the “rtr”
string; RTRACP must be running for data to be valid.

When the ges information class is used with rtr_request _info(), the first
message returned is unique; it includes attributes of the requested information,
and overhead information present because the backend requests information
from many routers.

The first message returned with the gcs information class contains at least
three fields separated by the null character (ASCII 0).

— The first field indicates if the gcs data is complete or incomplete. If the
backend gathering the information cannot gather all the information
from the routers, then the data may be incomplete; otherwise, the data
is complete. The first field thus contains one of two literal strings: either
“complete data” or “incomplete data.”

— The second field indicates how many seconds remain until the backend’s
cache is updated. Since the backend must request information from
all routers, it caches the information to avoid extra overhead for every
request. (See the SET NODE /INFO_CACHE_LIFETIME qualifier for
more information on the cache.) The field has the form “n seconds until
update,” where n can be a value from 0 to UINT_MAX. Note that the word
“seconds” remains plural for all cases of n.

— The third field indicates the age, in seconds, of the backend’s cache. The
age is the number of seconds since the cache was refreshed with current
information. The field has the form: “n seconds old,” where n may take
a value between 0 to UINT_MAX. Note that the word “seconds” remains
plural for all cases of n.

— The fourth and following fields may be present to explain why information
is incomplete. If the information is complete, these fields are not present.
If the information is incomplete, one or more of these fields may contain
strings meant to be read by humans. These strings can, for example, be
logged in a log file.

RTR Call Reference 3-57

rtr_request_info

Applications using the gcs information class may choose to parse the first
message to store the information’s attributes, or ignore the first message and
acquire the information found in the second and subsequent messages. The
application must not assume that the first message contains the requested
information. For an example, see the last example for this C API call.

Table 3-11 Information Classes
For
Use this available
Information items and

For this type of Class strings,
information: string: To obtain valid data: see:
Application process prc An application process must have been Table 3—-12

started (rtr_open_channel called).
Client process cli A client channel must have been Table 3-13

opened.
Facility fac A facility must be defined. Table 3-14
Global Configuration ges The ges information class can only Table 3—-15
and Status be accessed from a backend and

HP recommends that the backend

be connected to all routers. If the

backend is disconnected from one or

more routers, gecs information will still

be available but may be incomplete.

This incomplete status is indicated

in the first message returned by

rtr_request _info. For additional

information, see the description earlier

on the gecs information class and the

ges example.
Key segment ksg A server channel must have been Table 3-16

opened.
Link to a node Ink A facility must be defined. Table 3-17
Node or RTRACP rtr RTRACP must be running. Table 3-18
Partition on a bpt A server channel must have been Table 3-19

backend

3-58 RTR Call Reference

opened.

(continued on next page)

rtr_request_info

Table 3-11 (Cont.) Information Classes

For
Use this available
Information items and
For this type of Class strings,
information: string: To obtain valid data: see:
Partition on a router rpt A server channel must have been Table 3—-20
opened.
Partition history hpt A server channel must have been Table 3-21
opened.
Server process STV A server channel must have been Table 3-22
opened.
Transaction on a btx A transaction must be in progress on Table 3-23
backend the backend.
Transaction on a ftx A client application must have a Table 3—-24
frontend transaction in progress.
Transaction on a rtx A transaction must be in progress on Table 3-25
router the router.

selitm

Null-terminated text string giving the strings used to select information such
as facility name or transaction ID. Use this argument to reduce the amount of
information returned. If you specify a null string ("), all available information
for the class is returned. A string containing multiple items should be a
comma-separated list. Some SHOW commands display the same data. For
example, to obtain the RTR version number (displayed by SHONVRTR/ VERSI ON),
use the string rtr_versi on_string from the "rtr" information class.

The tables are in alphabetical order by Information Class, and grouped by
function within each table.

Table 3-12 Application Process ("prc") Strings

For this selitm: Use this string:
Process-id process_id
Process Name process_name

RTR Call Reference 3-59

rtr_request_info

Table 3-13 Client Process ("cli") Strings

For this selitm:

Use this string:

Process-id
Facility
Channel
Flags

State
rcpnam
User Events
RTR Events

dpb_pid

fdb_f name
dpb_chan
dpb_dclfig
dpb_req_sts
dpb_evtnam
dpb_user_evtnum
dpb_rtr_evtnum

Table 3-14 Facility ("fac") Strings

For this selitm:

Use this string:

Facility

Frontend

Router

Backend

Reply Checksum
Router call-out
Backend call-out
Load balance
Quorum-check off
Partition state warning
FE -> TR

Router quorate
Backend quorate
Quorum threshold
Min best rate
Frontends connected
Frontends allowed

3-60 RTR Call Reference

fdb_f name

fdb_attr.fdb_attr bits.is_fe
fdb_attr.fdb_attr_bits.is_rtr
fdb_attr.fdb_attr_bits.is_be
fdb_attr.fdb_attr_bits.reply_enabled
fdb_attr.fdb_attr_bits.tr_call_out
fdb_attr.fdb_attr_bits.be_call_out
fdb_attr.fdb_attr bits.feshare
fdb_attr.fdb_attr_bits.qrt_chk
fdb_cn_partition_warning
fdb_trsrch
fdb_state.fdb_state_bits.tr_qrt
fdb_state.fdb_state_bits.be_qrt
fdb_iqt_cnt
fdb_cn_fet_min_brd_out_rate
fdb_feent

fdb_fecdt

(continued on next page)

rtr_request_info

Table 3-14 (Cont.) Facility ("fac") Strings

For this selitm:

Use this string:

Load coordinator
Quorate routers
Total Frontends
Current Credit

FE -> TR

Link to

Frontend

Router

Backend

Router -> Frontend
Frontend -> Router
Backend -> Router
Router -> Backend
Router quorate
Backend -> Router
Router -> Backend
Router quorate
Backend quorate
Router current

Backend coordinator

fdb_status.fdb_status_bits.qm_be
fdb_trtot

fdb_fetot

fdb_curcdt

fdb_trsrch

fac_ndb

fac_fe.rol_bits.rol_cfg
fac_tr.rol_bits.rol_cfg
fac_be.rol_bits.rol_cfg
fac_reasons.fac_reason_bits.trfelnk
fac_reasons.fac_reason_bits.fetrlnk
fac_reasons.fac_reason_bits.betrlnk
fac_reasons.fac_reason_bits.trbelnk
fac_tr.rol_bits.rol_quorum
fac_reasons.fac_reason_bits.betrlnk
fac_reasons.fac_reason_bits.trbelnk
fac_tr.rol_bits.rol_quorum
fac_be.rol_bits.rol_quorum
fac_tr.rol_bits.rol_cur

fac_be.rol_bits.rol_gmaster

Table 3-15 Global Configuration and Status ("gcs") Strings

For this selitm:

Use this string:

Node name
Facility name
Role

Cluster
Operating System

ges_node
ges_fac
ges_role
ges_clust
gcs_os

(continued on next page)

RTR Call Reference 3-61

rtr_request_info

Table 3-15 (Cont.) Global Configuration and Status ("gcs") Strings

For this selitm: Use this string:
RTR version ges_version
Connection State ges_connected
Detected Problem Name gst_name
Detected Problem Message gst_mesg
Detected Problem Severity severity
Partition Name gpt_ptn
Partition State gpt_state

Table 3-16 Key Segment ("ksg") Strings

For this selitm:

Use this string:

Facility fdb_f name
Data Type ksd_dtyp
Length ksd_length
Offset ksd_offset

Table 3-17 Node Links ("Ink") Strings

For this selitm: Use this string:

To Node ndb_name

Address ndb_idp

Outgoing message sequence nr ndb_xcnt

Incoming message sequence nr ndb_rcnt

Current receive buffer size ndb_credit

Current transmit buffer size ndb_cdt_out
Current number of link users ndb_reasons

Write buffer timed out ndb_status.wbuftmo

Write buffer full, may be sent ndb_status.wbufrdy
Write buffer allocated ndb_status.wbufalc

(continued on next page)

3-62 RTR Call Reference

rtr_request_info

Table 3-17 (Cont.) Node Links ("Ink") Strings

For this selitm:

Use this string:

I/O error detected in write
I/O error detected in read
Pipe temporarily blocked
Connection broken

Write issued, not completed
Read is pending

Node initiated the connection
Connection established
Connection in progress
Node is configured
Autoisolation enabled
Link disabled

Link isolated

In facility

Frontend

Router

Backend

Router -> Frontend
Frontend -> Router
Backend -> Router
Router -> Backend

Router quorate

Backend quorate

Router current

Backend coordinator

ndb_status.wrerror
ndb_status.rderror
ndb_status.blocked
ndb_status.aborted
ndb_status.writing
ndb_status.reading
ndb_status.initiator
ndb_status.connected
ndb_status.connecting
ndb_status.configured
ndb_attr.attr_bits.isol_ebld
ndb_attr.attr_bits.disabled
ndb_attr.attr_bits.isolated

fac_ifn

fac_fe.rol_bits.rol_cfg
fac_tr.rol_bits.rol_cfg
fac_be.rol_bits.rol_cfg
fac_reasons.fac_reason_bits.trfelnk
fac_reasons.fac_reason_bits.fetrlnk
fac_reasons.fac_reason_bits.betrlnk
fac_reasons.fac_reason_bits.trbelnk
fac_tr.rol_bits.rol_quorum
fac_be.rol_bits.rol_quorum
fac_tr.rol_bits.rol_cur
fac_be.rol_bits.rol_gmaster

RTR Call Reference 3-63

rtr_request_info

Table 3-18 Node and ACP ("rtr") Strings

For this selitm:

Use this string:

Network state

Auto isolation
Inactivity timer/s
RTR Version Number

ncf_isolated

ncef isol_ebld

ncf lw_inact
rtr_version_string

Start-up and standby recovered txns
Shadow recovered transactions txns

Replayed messages due to server death

Txns aborted because they killed 3 servers

Txns processed on the backend
Txns processed on the router

Backend ptn switches from inactive to
active

Router partition gains
Backend link connects and re-connects
Router link connects and re-connects

be_restart_recoveries
be_shadow_recoveries
be_replay_recoveries
be_3strikes_txns
be_txns_processed
tr_txns_processed
be_ptn_activations

tr_ptn_activations
be_link_gains
tr_link_gains

Table 3-19 Partition on a Backend ("bpt") Strings

For this selitm:

Use this string:

Partition name

Facility

State

Low Bound

High Bound

Active Servers

Free Servers
Transaction presentation
Last Revy BE

Txns Active

3-64 RTR Call Reference

$name

ppb_fdbptr

ppb_pst.prt_ps
ppb_krd.krd_low_bound
ppb_krd.krd_high_bound
srb_active_q.#crm_server_block
srb_free_q.#crm_server_block
tx_presentation_state
last_lcl_rec_be
tkb_q.#crm_tx_kr_block

(continued on next page)

rtr_request_info

Table 3-19 (Cont.) Partition on a Backend ("bpt") Strings

For this selitm: Use this string:
Txns Revrd rec_be_txs
Failover policy ppb_failover_policy
Key range ID ppb_krid

Table 3-20 Partition on a Router ("rpt") Strings

For this selitm: Use this string:

Facility fdb_f name

State krb_sts

Low Bound krb_low_bound

High Bound krb_high_bound

Failover policy krb_failover_policy

Backends bpsb_ndbptr

States bpsb_pst.prt_ps

Primary Main krb_pri_act_bpsbptr.bpsb_ndbptr
Shadow Main krb_sec_act_bpsbptr.bpsb_ndbptr

Table 3-21 Partition History ("hpt") Strings

For this selitm: Use this string:

Partition name $name

Facility phr_fdb

Low Bound phr_krd.krd_low_bound
High Bound phr_krd.krd_high_bound
Creation time phr_creation_time

Table 3-22 Server Process ("srv") Strings

For this selitm: Use this string:

Process-id dpb_pid

(continued on next page)

RTR Call Reference 3-65

rtr_request_info

Table 3-22 (Cont.) Server Process ("srv") Strings

For this selitm:

Use this string:

Facility
Channel
Flags

State

Low Bound
High Bound
rcpnam
User Events
RTR Events
Partition-Id

fdb_f name

dpb_chan

dpb_dclflg
ppb_pst.prt_ps
ppb_krd.krd_low_bound
ppb_krd.krd_high_bound
dpb_evtnam
dpb_user_evtnum

dpb_rtr_evtnum
dpb_krid

Table 3—23 Transaction on a Backend ("btx") Strings

For this selitm:

Use this string:

Tid

Facility

FE-User

State

Start time

Router

Invocation
Active-Key-Ranges
Recovering-Key-Ranges
Total-Tx-Enqs
Key-Range-Id
Server-Pid
Server-State
Journal-Node
Journal-State

3-66 RTR Call Reference

th_txdx.tx_id
fac_id
tb_txdx.fe_user
state
tb_txdx.tx_start_time
tr_ndbptr
invocation
#cerm_tx_kr block
#crm_tr _block
nr_tx_enqgs

kr id

pid

sr_state
jnl_node_id
jnl_state

(continued on next page)

rtr_request_info

Table 3-23 (Cont.) Transaction on a Backend ("btx") Strings

For this selitm:

Use this string:

First-Enq
Nr-Engs
Nr-Replies

first_enq_nr
nr_enqs
nr_replys

Table 3-24 Transaction on a Frontend ("ftx") Strings

For this selitm:

Use this string:

Tid
Facility
FE-User
State
Start time
Router
Nr-Engs
Nr-Replies

th_txdx.tx_id

fac_id
th_txdx.fe_user

state
tbh_txdx.tx_start_time
tr_ndbptr
enqs_from_rq

replys_rcvd

Table 3-25 Transaction on a Router ("rtx") Strings

For this selitm:

Use this string:

Tid

Facility
FE-User
State

Start time
FE-Connected
Total-Tx-Enqs
First-Enq
Nr-Engs
Backend

th_txdx.tx_id

fac_id
tb_txdx.fe_user

state
th_txdx.tx_start_time
fe_ndbptr

nr_tx_enqs
first_enq_nr

nr_enqgs

be_ndbptr

(continued on next page)

RTR Call Reference 3-67

rtr_request_info

Table 3-25 (Cont.) Transaction on a Router ("rtx") Strings

For this selitm: Use this string:
Key-Range-State kr_state
Key-Range-Id kr id
Journal-State be_state
selval

Null-terminated text string; contains a value for the item named in selitm. For
example, if selitm specifies fac_id indicating that a facility name is used for the
selection, and selval contains the string "TESTFAC", then only information for
facility TESTFAC is returned. Wildcards can be used in this specification.

getitms

Null-terminated text string containing a comma-separated list of items whose
values are returned. For each instance that matches the selection criterion,
the values of the items specified by getitms are returned in a message of type
rtr_mt_request_info.

Description

An application program can use the rtr_request _info() call to interrogate
the RTR environment and retrieve information about facilities, transactions,
key ranges, and so on. The call accesses data maintained by RTR on behalf of
application programs, and data maintained by the RTR ACP itself.

The way to obtain data is to specify the requirement as parameters to
rtr_request_info(). RTR then opens a channel on which the requested
information can be received by calling rtr_recei ve_nessage() on the channel.
The channel is automatically closed when the requested data (if any) has been
completely delivered (that is, an rtr_nt_cl osed message is received on the
channel.) You may close the channel earlier, if no more information is needed,
by calling rtr_cl ose_channel ().

The selection criteria specify an information class, a select item and

a value. This is like doing a table lookup, where the class repre-
sents the specific table, and the select item and value represent the
row and column in the table. For example, the following statement:
rtr_request _info/channel =l/infcla=rtr/selitm=""/ selval ="*"
[getitms=rtr_version_string requests information from the RTR (rtr)
information class.

3-68 RTR Call Reference

rtr_request_info

The rtr_request _info() call accesses the RTR tables in memory as follows:
1. The infcla parameter selects the class to be accessed, for example "rtr".

2. The selitm parameter names the row of the RTR table in memory to be
accessed. This can be a null string, for example Sel i t 15="" to retrieve all
data for the class.

3. The selval parameter defines what to search for in the row. For example,
in a table containing information about backend transactions, if selitm
specifies fac_id indicating that a facility name is the selection criterion,
and if selval contains the value "TESTFAC", RTR selects only transactions
for the facility TESTFAC.

4. The getitms parameter specifies the items to be returned from the selected
row(s). In the example of a table containing information about backend
transactions, rtr_request _i nfo can specify transaction ID and transaction
start time. The data for these items are returned for all transactions
matching the selection criteria.

The results of the selection are returned as none, one, or more messages of
type rtr_nt_request _info, one message being returned for each selected row
in the table (in a btx example, one message for each backend transaction).

The contents of these messages are defined by the getitms parameter. For
example, if three item names specified for getitms are "item_1,item_2,item_3",
then the corresponding rtr_nt _request _info message or messages contain
three concatenated and null-terminated strings that are the values of those
fields, "valuel\ Ovalue2\ Ovalue3\ 0".

Casing of Text when Using the GCS Infoclass

e Backend and router node names will be in the case as entered on the
backend where the rtr_request_info() call was issued

e Facility names will be in the case as entered on the backend where the
rtr_request_info() call was issued

e If the frontend node names are all entered in the same case on all the
routers, then their names will be in that case

e If the frontend node names are entered in different cases on different
routers, then the frontend node names can have the case as entered on any
of the routers. There is no guarantee of which router(s) the case will come
from.

e Status problem names and messages will be in the case as they came from
the node reporting the problem

RTR Call Reference 3-69

rtr_request_info

e Generated keywords including role (frontend,router,backend) and
connection status (ncf_conn, ncf disconn) will be in lowercase

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CLASSREQ At least one data-class definition required
RTR_STS_INVCHANNEL Invalid pchannel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVGETITMS Invalid getitms argument
RTR_STS_INVINFCLA Invalid information class
RTR_STS_INVSELITM Invalid selitm argument
RTR_STS_INVSELVAL Invalid selval argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_TOOMANCHA Too many channels already opened
Example

Programming Example:

/*

*|

This routine retrieves the facility nanes of all facilities
that have been defined.

#include <string. h>
#incl ude <stdio. h>
#include "rtr.h"

voi d Get FacilityNane()

{

char* itemist[10]; /* Set the elements in this array to point to
each itemin getitenmbuf for later output. */

char* cp = 0;

char getitenbuf[1024];

rtr_status_t status;

rtr_channel t channel;

char nsg[1024] ; [* Receive nessage buffer. */

unsigned int getitencnt = 0;
char infcla buf[4] = "fac"; /* Set info class to Facility class.*/
rtr_msgsb t txsb;

getitenbuf[0] = "\0";

3-70 RTR Call Reference

rtr_request_info

/* Set up the request’s get-itembuffer for
requesting the facility nane. */

itemist[getitentnt] = &getitenbuf[strlien(getitenbuf)];
strcat(getitenbuf, "fdb_f nane");

[* Increment counters. */
getitencnt ++;

/* Add second itemFE -> TR ** Code conmented out ** */

/* (Demonstrates multi-itemrequest. Uncomment code to use.)
strcat(getitenbuf, ", "); /1 Add comma separ at or.
|tem|st[get|tem:nt] -&getltenbuf[strlen(geutenbuf)]
strcat(getitenbuf, "fdb_trsrch");

getitencnt ++;

*

/

[* Call rtr_request _info. */
status = rtr_request_info (

[* *pchannel *| &channel ,

[* flags *| RTR_NO FLAGS,
[* infcla *| infcla_buf,
[* selitm o

[* selval Ko

[* getitns *| getlten‘ouf)

if (status !'= RTR STS OK) return;

/* Do a receive message to get the information that RTR returns
* in response to this request.
*]

do

status = rtr_receive_nessage(
[* See 'rtr_receive_nessage’ . */
&channel
RTR_NO_FLAGS,
RTR_ANYCHAN,
msg,
si zeof (nsQ),
RTR_NO_TI MOUTMS,

& xsbh) ;

[* Check for bad return status fromrtr_recei ve_nessage(). */
if (status !'= RTR STS X) return;

RTR Call Reference 3-71

rtr_request_info

[* Caller expects either an rtr_nt closed
or an rtr_nt_request_info message. */
if (txsb.nmsgtype == rtr_nt _closed) break
/* End of data, exit |oop
Channel closed by RTR */
if (txsh.nmsgtype !'= rtr_nt_request_info)

printf("Unexpected nmsgtype returned. \n");

break;
el se
{ , . :
/* Receive the requested information
Scan through itemlist, output itemand val ue
*]
unsigned int i

for (i=0, cp = msg; i < getitencnt; i++ cp += strlien(cp)+l)
(itemist[i+1]-1) ="\0"; / Qverwite comm. */

printf("%8s:%0s\t="9%s"\n"
i nfcla_buf
itemist[i],
cp);
}

} while %1 == 1);
return

Command Line Example:

RTR> cal | rtr_request _info/infcla=rtr/selitnr
/selval ="*"/getitms=rtr_version_string/chann=D
URTR-S-OK, normal successful conpletion

RTR> cal | rtr_receive_nmessage/ chann=D/tim
URTR-S-OK, normal successful conpletion
channel name: D
nsgsh
msgt ype: rtr_mt _request _info
nsgl en: 18
nessage
offset hytes text
000000 52 54 52 20 56 33 2E 32 28 32 33 30 29 20 46 54 RTR V3.2(230) FT
000010 33 00 3

3-72 RTR Call Reference

First Message Example:

rtr_request_info

The following example illustrates the contents of a first message. In this
example, the information is incomplete, 20 seconds remain until the cache is
updated, the cache is 0 seconds old, and an explanation is given regarding
why the information is incomplete. The example illustrates how the fields are
formed.

See Also

msgsh

nsgt ype
msgl en

nmessage
of f set
000000
000010
000020
000030
000040
000050
000060
000070
000080
000090
0000A0
0000B0
0000C0

rtr_m _request_info

197

byt es

69
32
20
73
74
73
20
65
65
65
65
71
69

6E 63
30 20
75 70
20
69
20 61
6C 69
72 20
20 72
20 63
72 20
75 65
6F

YRTR-S- OK, normal successful conpletion
channel name: RTR$DEFAULT_CHANNEL

6F 6D 70 6C 65 74 65 20 64

73
64

20

65
61

63 6F 6E
74 65 00

6F 6C 64 00 54 68
6E 67

20 6E 6F 64
64 69 73 63

6E 6B 20 77 69

68
65

6F 75

61
73

rtr_cl ose_channel ()
rtr_receive_nessage()

65
71

78 2E 20
75 65 73
6C 64 20
6C 6C 20 6F
74 65 64 20

6E 2E 00

64 73 20 75
30 20 73 65
65 20 72 65
65 20 66 6F
6F 6E 6E 65
74 68 20 20
48 65 6E 63
74 69 6E 67
6E 6F 74 20
66 20 74 68
69 6E 66 6F

61 74 61 00
6E 74 69 6C
63 6F 6E 64
71 75 65 73
78 20 68 61
63 74 65 64
72 6F 75 74
65 20 74 68
20 6E 6F 64
67 61 74 68
65 20 72 65
72 6D 61 74

t ext
inconpl ete data
20 seconds unti
update. 0 second
s ol d. The reques
ting node wmha
s a disconnected
[ink with rout
er hex. Hence th
e requesting nod
e coul d not gath
er all of there
quest ed informat
ion.

RTR Call Reference 3-73

rtr_send_to_server

rtr_send _to_server

Send a transactional message to a server.

Syntax

status = rtr_send_to_server (channel, flags, pmsg, msglen, msgfmt)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_sen_flag_t read
pmsg rtr_msgbuf_t read
msglen rtr_msglen_t read
msgfmt rtr_msgfmt_t read
C Binding

rtr_status_t rtr_send_to_server (

rir_channel_t channel ,
rir_sen flag_t flags ,
rir_msgbuf t pmsg ,
rir_msglen_t msglen ,
rir_msgfmt_t msgfmt ,

)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel ()).

flags
Table 3-26 shows the flags that specify options for the call.

3-74 RTR Call Reference

rtr_send_to_server

Table 3-26 Send to Server Flags

Flag name Description

RTR_F_SEN_ACCEPT This is the last message of the transaction,
and the tx is accepted. This optimization
avoids the need for a separate call to
rtr_accept _tx() in those cases where
the sender knows this is the last (or only)
message in the transaction.

RTR_F_SEN_READONLY Specifies a read-only server operation.
Hence no shadowing or journalling is
required. (The message is still written to
the journal but is not played to a shadow
and is purged after the transaction is
completed on the primary. The message is
still needed in the journal to allow recovery
of in-flight transactions.)

RTR_F_SEN_RETURN_TO_ The message is to be returned to the sender

SENDER if undeliverable.

RTR_F_SEN_EXPENDABLE The whole transaction is not aborted if this
send fails.

Specify RTR_NO_FLAGS for this parameter if no flags are required.

pmsg
Pointer to the message to be sent.

msglen
Length in bytes of the message to be sent, up to RTR_MAX_MSGLEN bytes. The
value of RTR_MAX_ MSGLEN is defined in rtr. h.

msgfmt

Message format description. msgfmt is a null-terminated character string
containing the format description of the message. RTR uses this description
to convert the contents of the message appropriately when processing the
message on different hardware platforms. See Section 2.14, RTR Applications
in a Multiplatform Environment, for information on defining a message format
description.

This parameter is optional. Specify RTR_NO MSGFM if the message content
is platform independent, or it is not intended to be used on other hardware
platforms.

RTR Call Reference 3-75

rtr_send_to_server

Description

The rtr_send_to_server() call sends a client’s transactional message to a

server.

The caller must first open a client channel (using the rtr_open_channel ()
call), before it can send transactional messages.

If no transaction is currently active on the channel, a new transaction is

started.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE
RTR_STS_INSVIRMEM
RTR_STS_INVCHANNEL
RTR_STS_INVFLAGS
RTR_STS_INVJOINTXID
RTR_STS_INVMSGFMT
RTR_STS_INVMSGLEN
RTR_STS_NOACP
RTR_STS_NOXACHAN
RTR_STS_OK
RTR_STS_REPLYDIFF

Example

Channel not opened

Insufficient virtual memory
Invalid channel argument

Invalid flags argument

Invalid join transaction argument
Invalid msgfmt argument

Invalid msglen argument

No RTRACP process available

No XA channel available

Normal successful completion

Reply from new server did not match earlier
reply

[* The ny_nsg structure is defined in the user’s
* application header file.

*|

typedef struct {

rtr_uns_8 t
rtr_uns_32_t
rtr_uns_8 t
string3l
rtr_uns_ 32 t
rtr_uns_32_t
stringlé
string7

} ny_msg;
my_msg send_nsg;

3-76 RTR Call Reference

routing_key;
sequence_nunber;
nmy_nsg_type,

| ast _nane;
order total;

shi pping_ant;
cc_nunber;
cc_expire;

rtr_send_to_server

Load purchase data into send_nsg.

/*

* Tell the server to validate the credit card for the

* amount of this order.

*

my_nsg. ny_msg_type = VALI DATE CC,

status = rtr_send_to_server(
channel ,
RTR_NO FLAGS ,
&send _nsg,
si zeof (send_nsg),
RTR_NO_MSGFMT)

1

See Also

rtr_receive_message()
rtr_open_channel ()

RTR Call Reference 3-77

rtr_set_info

rtr_set_info
Sets or changes a managed object in the RTR environment.

Syntax

status = rtr_set_info (*pchannel, flags, verb, object, *select_qualifiers, *set_qualifiers)

Argument Data Type Access
status rtr_status_t write
*pchannel rtr_channel_t write
flags rtr_set_flag_t read
verb rtr_verb_t read
object rtr_managed_object_t read
*select_qualifiers rtr_qualifier_value_t read
*set_qualifiers rtr_qualifier_value_t read
C Binding

rr_status_t rtr_set info (

rir_channel_t *pchannel ,

rir_set flag t flags ,

rir_verb_t verb ,

rir_managed_object t object ,

const rtr_qualifier_value_t *select_qualifiers
const rtr_qualifier_value_t *set_qualifiers

)

Arguments

pchannel
Pointer to the channel opened by a successful call tortr_set _info().

flags
No flags are currently defined. Specify RTR_NO FLAGS for this argument.

verb
Always rtr_verb_set.

3-78 RTR Call Reference

object

rtr_set_info

Establishes the type of object to which the call is directed. Values are:

rtr_partition_object: the target object is a partition
rtr_transaction_object: the target object is a transaction

select_qualifiers
Pointer to array containing selection qualifiers. Values depend on object type:

For: See the values in:
Set Partition Table 3-27
Set Transaction Table 3—-28

For example:

typedef struct rtr_qualifier_value t {

rtr_qualifier_t qv_qualifier ; [* Wich qualifier thisis */
void *qv_val ue ; [* Vhat value it has */
} ortr_qualifier_value_t ;

The last value in the array must be rtr_qualifiers_end (see the example).
Specify sufficient descriptors to identify the target object.

Table 3-27 Select Qualifiers for the Set Partition Object

Qualifier Value Type Description Example
rtr_facility_name const char* Facility name string "facility_name"
rtr_partition_ const char* Partition name string "partition_
name name"

Table 3-28 Select Qualifiers for the Set Transaction Object

Qualifier Value Type Description Example
rtr_facility_ facname Facility name "facility_name"
name string

rtr_ partname Partition name "partition_name"
partition_ string

name

(continued on next page)

RTR Call Reference 3-79

rtr_set_info

Table 3-28 (Cont.) Select Qualifiers for the Set Transaction Object

Qualifier Value Type Description Example
rtr_txn_state rtr_txn_jnl_ Current See Table 3—29 for valid changes
commit transaction from one state to another.
state
rtr_txn_tid tid Transaction ID 63b01d10,0,0,0,0,2e59,43ea2002

When using the Set Transaction Object, the qualifier rtr_txn_state is
required. In addition, when using rtr_txn_state without rtr_facility name
orrtr_partition_name, rtr_txn_tid is required. The qualifiers

rtr_facility _name and rtr_partition_nanme must be used together. You must
always provide the current state when making a state change.

Table 3-29 Valid Set Transaction State Changes

From (current state): To (new state):

PRI_

COMMIT ABORT EXCEPTION DEFER DONE DONE

SENDING YES
VOTED YES YES
COMMIT YES YES
EXCEPTION YES YES
PRI_DONE YES YES
DEFER YES

set_qualifiers

Pointer to an array containing values of type rir_qualifier_value_t (see Select
Qualifiers above) that describe the desired change to be effected. Table 3—30
and Table 3—-31 list qualifiers and value types for the managed object types.

Table 3-30 Qualifiers for Set Partition

Qualifier Value Type Value Desired Action
rtr_partition_ rtr_partition_ rtr_partition_ Suspend transaction
state state t state_suspend presentation.

(continued on next page)

3-80 RTR Call Reference

Table 3-30 (Cont.) Qualifiers for Set Partition

rtr_set_info

Qualifier

Value Type

Value

Desired Action

rtr_partition_
state

rtr_partition_
state

rtr_partition_
state

rtr_partition_
state

rtr_partition_
state

rtr_partition_
cmd_timeout_
secs

rtr_partition_
revy_retry_
count
rtr_partition_
failover_policy
rtr_partition_
failover_policy
rtr_partition_
failover_policy

rtr_partition_
state_t

rtr_partition_
state_t

rtr_partition_
state_t

rtr_partition_
state_t

rtr_partition_
state_t

rtr uns_32 t

rtr uns_32_t

rtr_partition_
failover_policy_t
rtr_partition_
failover_policy_t
rtr_partition_
failover_policy_t

rtr_partition_
state_resume

rtr_partition_
state_recover

rtr_partition_
state_exitwait

rtr_partition_
state_shadow

rtr_partition_
state_noshadow

unsigned int

unsigned int

rtr_partition_
fail_to_standby
rtr_partition_
fail_to_shadow
rtr_partition_
pre32_
compatible

Resume transaction presenta-
tion.

(Re)start partition recovery.
Exit partition recovery
wait/fail state.

Enable shadowing.

Disable shadowing.

Optional partition suspend
timeout period (in seconds).

Limit number of recovery
replays for a transaction.

Set failover policy to standby.
Set failover policy to shadow.

Set failover policy as pre-V3.2
compatible.

For both managed object types, a message of type rtr_nt _cl osed is returned.
See Table 3—31 for the value that can be set for the transaction type.

Completion status is read from message data, which is of type

rtr_status data_ t. In addition, a number (type integer) indicating the
number of transactions processed is returned. This number can be read from
the message following the rtr_status_data_t data item. The last value in the
array must be rtr_qualifiers_end.

RTR Call Reference 3-81

rtr_set_info

Table 3—-31 Qualifiers for Set Transaction

Set Qualifier Set Qualifier Value Value Description

rtr_txn_ rtr_transaction_ rtr_tx_jnl_commit Set a transaction’s state

state state_t to COMMIT to commit the
transaction.

rtr txn_ rtr_transaction_ rtr_tx_jnl_abort Set a transaction state

state state_t to ABORT to abort the
transaction.

rtr_txn_ rtr_transaction_ rtr_tx_jnl_ Mark this as an exception

state state_t exception transaction.

rtr_txn_ rtr_transaction_ rtr_tx_jnl_done Remove this transaction

state state_t from the RTR journal; that
is, forget this transaction
completely.

rtr_txn_ rtr_transaction_ rtr_txn_jnl_ Mark this transaction as

state state_t deferred deferred, so that it can be

recovered later.

Description

The rtr_set_info() call requests a change in a characteristic of the RTR
environment. If the call is successful, a channel is opened for asynchronous
completion notification. Applications should use the rtr_recei ve_message()
call to retrieve informational messages on the opened channel.

The rtr_set _info() call can manipulate two managed object types:
e Partition type
e Transaction type

See Table 3—30 for values that can be set for the partition object and
Table 3-31 for values that can be set for the transaction object. Completion
status is read from message data, which is of type rtr_status_data t.

3-82 RTR Call Reference

Return Value

rtr_set_info

A value indicating the status of the routine, normally returned as function
completion status. Possible status values are:

RTR_STS_ALRDYINSTATET
RTR_STS_BADPRTSTATET

RTR_STS_FACNAMLONf

RTR_STS_FENAMELONG

RTR_STS_INSUFPRIV
RTR_STS_INSVIRMEM
RTR_STS_INVCHANNEL
RTR_STS_INVFACNAM
RTR_STS_INVFLAGS
RTR_STS_INVOBJCT

RTR_STS_INVSTATCHANGE

RTR_STS_IVQUAL

RTR_STS_IVVERB

RTR_STS_NOACTION

RTR_STS_NODNOTBACT
RTR_STS_NOSUCHPRTN
RTR_STS_OK
RTR_STS_PARTNAMELONG
RTR_STS_PRTBADCMD+

RTR_STS_PRTBADFPOLT
RTR_STS_PRTLCLRECEXTY

Partition is already in the desired state

Disallowed attempt to make an illegal or
undefined partition state transition

Facility name facility_name is larger than 30
characters

Frontend name string length greater than
permitted maximum

Insufficient privileges to run RTR
Insufficient virtual memory
Invalid channel argument
Invalid FACNAM argument
Invalid flags argument

Specified object type invalid for managed
object request

Invalid to change from the current state to the
specified state

Unrecognized qualifier - check validity,
spelling, and placement

Unrecognized command verb - check validity
and spelling

No object management action specified - check
argument set qualifier

Node not defined as a backend
No such partition in the system
Normal successful completion
Partition name too long

Partition command invalid or not implemented
in this version of RTR

Unrecognized partition failover policy code
Partition local recovery terminated by operator

fReturned in status field of rtr_status_data_t data returned with the rtr_mt_closed message.

Indicates outcome of request.

RTR Call Reference 3-83

rtr_set_info

RTR_STS_PRTMODRMBRf
RTR_STS_PRTNOSRVRSTY
RTR_STS_PRTNOTBACKENDT
RTR_STS_PRTNOTSUSP?

RTR_STS_PRTNOTWAITY
RTR_STS_PRTRECSTATET

RTR_STS_PRTRESUMED
RTR_STS_PRTRUNDOWN
RTR_STS_PRTSHDRECEXT+Y
RTR_STS_SETTRANDONET
RTR_STS_SETTRANROUTERT

RTR_STS_TOOMANCHA
RTR_STS_TRNOTALLO32}

RTR_STS_VALREQ

RTR_STS_WTTR

Partition must be in remember mode on the
active member

Partition has no servers—please start servers
and retry

Partition command must be entered on a
backend node

Unable to resume partition that is not
suspended

Partition not in a wait state—no action taken

Partition must be in remember or active
(non-recovery) state

Partition partition_name resumed by operator
operator

Partition is in a rundown prior to deletion —
no action taken

Partition shadow recovery terminated by
operator

n transaction(s) updated in partition partition_
name of facility facility_name

Cannot process this command, coordinator
router is still available

Too many channels already opened

Not all routers are at the minimum required
version of V3.2

Missing qualifier or keyword value—supply all
required values

Not in contact with sufficient router nodes —
please retry later

TReturned in status field of rtr_status_data_t data returned with the rtr_mt_closed message.

Indicates outcome of request.

3-84 RTR Call Reference

rtr_set_info

Example

/*

* This mght followa call to conmt the transaction to the database.
* |f the SQL conmit returns an error that is beyond the control of

* this application: for exanple, database disk full, network to

* database not responding, or tineout exceeded, it executes.
*
*

Decl arati ons:
*
rer tid t tid;
rtr_uns_32_t sel ect _idx;
rtr_uns 32t set _idx;

rtr_qualifier_value_t select_qualifiers[8];
rtr_qualifier _value t set qualifiers[3];

/* BEveryone has voted to accept the transaction, and RTR has told the

* server to conmit it. The client has noved on to performng the next
* transaction. This transaction will be changed from‘comit’ status
* to ‘exception’ status for a later attenpt at committing.

*

* Get the transaction id. The channel has previously been

* declared in an rtr_open_channel call.

*|

rtr_get _tid(channel, RTR_F_TID RTR, &tid);

[* Load the rtr_qualifier _value t structures that contain the

* selection criteria for the transaction: ‘the transaction whose tid
* is pointed at by ‘tid, whose facility name is in ‘facname’, whose
* partition name is in ‘partnanme’, and whose transaction state is
*rtr_txn_jnl _comit’ (logged to the journal as committed).

*|

select_idx = 0;

select _qualifiers[select idx].qv_qualifier =rtr_txn_tid;

select _qualifiers[select idx].qv_value = &tid,;

sel ect i dx++;

[* Facility name
*|
select_qualifiers[select_idx].qv_qualifier =
rtr_facility_nane;
select _qualifiers[select idx].qv_value = facnane;
sel ect i dx++;

[* Partition nane
*|
select _qualifiers[select idx].qv_qualifier = rtr_partition_nang,
select _qualifiers[select_idx].qv_value = partnane;
sel ect i dx++;

RTR Call Reference 3-85

rtr_set_info

[* Transaction state in journal

*|
select _qualifiers[select idx].qv_qualifier = rtr_txn state;
select _qualifiers[select_idx].qv_value = &tr_txn_jnl_comit;
sel ect i dx++;

[* Last one on array nust be ‘rtr_qualifiers_end

*|

select _qualifiers[select_idx].qv_qualifier =
rtr_qualifiers_end,

select _qualifiers[select_idx].qv_value = NULL;

sel ect i dx++;

/* Load the
* rtr_qualifier_t structs that we will use to set the
* new property for the transaction: in this case, only the
* state of the transaction. W will change it to
* rtr_txn_jnl _exception, or ‘exception’.
*
/

set _idx = 0;

set_qualifiers[set idx].qv_qualifier =rtr_txn_state;
set_qualifiers[set idx].qv_value = &tr_txn_jnl_exception;
set _idx++;

[* Terminate the array with an rtr_qualifiers_end.

*|

set_qualifiers[set idx].qv_qualifier =
rtr_qualifiers_end,

set_qualifiers[set idx].qv_value = NULL;

set _idx++;

/* Tell RTR to change the transaction’s state.
*

status = rtr_set _info(&pchannel,
RTR_NO _FLAGS,
rtr_verb_set,
rtr_transaction_obj ect,
select _qualifiers,
set_qualifiers);

check_status(status);

[* The server should now | ook for an

* RTR_STS_SETTRADONE message

* from RTR, which confirns that it has changed the status.
*|

3-86 RTR Call Reference

rtr_set_info

See Also

rtr_close_channel ()
rtr_receive_nessage()
rtr_request _info()

RTR Call Reference 3-87

rtr_set_user_context

rtr_set_user_context

Sets the current value of the optional user-defined context associated with the
specified RTR channel.

Syntax

status = rtr_set_user_context (channel, usrctx)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
usrctx rtr_usrctx_t read

C Binding

rtr_status_t rtr_set_user_context (

rir_channel_t channel ,
rtr_usrctx_t usrctx

)
Arguments

channel
The channel whose context is to be set.

usrctx
User-supplied context value.

Description

Sets the current value of the optional user-defined context associated with the
specified RTR channel. The user context value may be subsequently retrieved
using rtr_get_user_context(). The context value RTR_NO USER CONTEXT is
reserved.

3-88 RTR Call Reference

rtr_set_user_context

Return Value

A value indicating the status of the routine. Possible values are:

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_OK Normal successful completion
See Also

rtr_get user_context()

RTR Call Reference 3-89

rtr_set_user_handle

rtr_set _user_handle

Associate a user-defined value (handle) with a transaction.

Syntax

status = rtr_set_user_handle (channel, usrhdl)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
usrhdl rtr_usrhdl_t read

C Binding

rr_status t rtr_set user_handle (

rtr_channel_t channel ,
rir_usrhdl_t usrhdl

)

Arguments

channel
The channel identifier, returned earlier by the rtr_open_channel () call.

usrhdl

Value to associate with the channel. This value is returned in the
usrhdl field of the msgsb message status block when subsequent calls to
rtr_recei ve_nessage() return messages associated with this channel.

The usrhdl argument can be used to hold a pointer.

Description

The rtr_set _user_handl e() call associates a user-defined value (handle) with
a channel. An application can either use a handle, or client and servers can
act independently.

3-90 RTR Call Reference

rtr_set_user_handle

The current value of a handle is associated with a channel; the current
handle value is associated with each operation on the channel. The message
status block supplied with a message delivered on the channel contains the
user handle value that was current at the time of the associated operation.
For example, an rtr_nt _accept ed message has the user handle that was
current when the corresponding call to rtr_accept _tx() was made, and the
rtr_m _rettosend message has the user handle that was current when the
corresponding call to rtr_send to_server() was made.

Note that the value of a handle is process local, and a different handle would
be associated for the same transaction by the client and server. The scope for
the user handle is within the process in which the user handle is set.

Return Value

A value indicating the status of the routine. Possible values are:

RTR_STS_CHANOTOPE Channel not opened

RTR_STS_INVCHANNEL Invalid channel argument

RTR_STS_OK Normal successful completion

RTR_STS_TXACTIVE Transaction is active
Example

[* This client does not use nested transactions, and it does
* not wait for the nt_accepted nessage before sending

* the next transaction. Instead, it matches each ‘accepted
* message it receives with a transaction

*
/
typedef struct {
rtr_uns_32_t txn_nunber;
rtr_uns_32_t nmessage id_sent;
char ny_record[255];
} txn_handl e;

[* Allocate and load the txn_handl e data structure that

* you create

*|

txn_handl e txn_ident = (txn_handl e*)calloc(l, sizeof(txn))
txn_i dent->txn_nunmber = ++count;

txn_i dent - >nessage_id_sent = ny_nessage_id
strcpy(txn_ident->record, ny record);

[* Attach this struct to the channel on which we’'re sending the
* transaction.
*]
status = rtr_set_user_handl e(channel, txn_ident);

RTR Call Reference 3-91

rtr_set_user_handle

See Also
rtr_receive_nessage()

3-92 RTR Call Reference

rtr_set_wakeup

rtr_set_wakeup

Register a function to be called when a message arrives.

Syntax

status = rtr_set wakeup (void (*wu_rou)(void))

Argument Data Type Access
status rtr_status_t write
wu_rou procedure read

C Binding

rtr_status_t rtr_set wakeup (

procedure void (*wu_rou) (void)

)

Arguments
void (*wu_rou) (void)

The routine to be called by RTR when a message is waiting to be delivered.

Description

The rtr_set _wakeup() call sets the address of a function to be called when a
message is waiting to be delivered. To cancel wakeups, call the routine with an

argument of NULL.

Execution of the specified wakeup indicates that you may have messages.

At the time of the execution of the wakeup there may be 0, 1 or more messages
available. Each incoming application message does not generate a separate
wakeup callback, so following a wakeup callback a program should call
rtr_receive_message(..., timutns=0, ...) in a loop at some point to

ensure that no message is left uncollected.

(See CALL rtr_recei ve_nmessage in the HP Reliable Transaction Router System
Manager’s Manual for restrictions on using V2 and later RTR version calls in

the same application.)

RTR Call Reference 3-93

rtr_set_wakeup

If a wakeup routine has been set using this call, subsequent calls to
rtr_set wakeup() should either disable the wakeup feature (with an
argument of NULL), or replace the current wakeup routine with another.

For details and restrictions on using the RTR wakeup handler rtr_set wakeup,
see the discussion in Section 2.9.

Return Value

A value indicating the status of the routine. Possible values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart
RTR or application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required
100000

RTR_STS_INVCHANNEL Invalid channel argument

RTR_STS_NOACP No RTRACP process available

RTR_STS_OK Normal successful completion

Example

#include <stdlib.h>
voi d app_wakeup_routine (void)

/[* NB This is called froman AST, ALRMor 10 signal handler,
* or another thread depending on the platform

* Al though RTR bl ocks signals, ASTs and the wakeup thread
*until it is safe and convenient,

* you may prefer to just set a flag or generate an event and
*/performthe receive_nessage in your main thread instead.

*

[* Get all outstanding rtr nmessages */
do

{
sts = rtr_receive nessage(..., /* timoutns */ 0) ;
check (sts) ;
process_nessage () ;
} while (sts !'= RTR.STS TIMWT) ;
}

static void app_cancel wakeup (void)

rtr_set_wakeup(NULL);

3-94 RTR Call Reference

rtr_set_wakeup

main ()
sts = rtr_set wakeup(app_wakeup routine);
atexit(app_cancel _wakeup);

}

If RTR data is available when rtr_set wakeup is called, the application’s
wakeup routine is called immediately.

See Also
rtr_receive_nmessage()

RTR Call Reference 3-95

rtr_start_tx

rtr_start_tx

Explicitly start a transaction on the specified channel.

Syntax

status = rtr_start_tx (channel, flags, timoutms, pjointxid)

Argument Data Type Access
status rtr_status_t write
channel rtr_channel_t read
flags rtr_sta_flag_t read
timoutms rtr_timout_t read
pjointxid rtr_pointer_t read

C Binding

rr_status_t rtr_start tx (

rir_channel_t channel ,
rir_sta_flag_t flags ,
rtr_timout_t timoutms ,
rir_pointer_t pjointxid

Arguments

channel
The channel identifier returned earlier by the rtr_open_channel () call.

flags
Flags that specify options for the call. Normally specify RTR_NO FLAGS for this
parameter.

timoutms

Transaction timeout specified in milliseconds. If the transaction is not accepted
by all participants within the specified timeout period, RTR aborts the
transaction and reports a status of RTR_STS_TIMOUT.

3-96 RTR Call Reference

rtr_start_tx

The granularity of the underlying timer is 1 second. Fractional values of the
tinout s argument are rounded up to the next whole second. A value of 0
causes an immediate transaction abort. If no timeout is required, specify

RTR_NO_TI MOUTMG.

pjointxid

Pointer to the transaction identifier of the parent transaction.
Description

The rtr_start_tx() call is used to start a transaction explicitly.

An explicit transaction start is only necessary if one of the following conditions
exists:

® ajoin to an existing transaction is to be done
* a transaction timeout is to be specified

Transactions are implicitly started when a message is sent on a currently
inactive channel. Implicitly started transactions have no timeout and are not
joined to other RTR transactions.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR is no longer a viable entity, restart RTR
or application

RTR_STS_INVCHANNEL Invalid channel argument

RTR_STS_INVFLAGS Invalid flags argument

RTR_STS_INVJOINTXID Invalid join transaction argument

The flag RTR_ F_OPE_FOREl GN_TMwas defined in
the call to rtr_open_channel (), but pjointxid
is equal to RTR_NO JO NTXI D, or the formatID

field of an XA transaction in the pjointxid
parameter is equal to RTR_XI D_FORVATI D_NONE.

RTR_STS_INVOP4SRV Invalid operation for server channel
RTR_STS_INVTIMOUTMS Invalid timoutms argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion

RTR Call Reference 3-97

rtr_start_tx

RTR_STS_TRAALRSTA Transaction already started

RTR_STS_VERMISMAT RTR version mismatch
The RTR router is running an older version
of RTR that does not support nested
transactions.

Example
rtr_xid t xa_txn;

[* This client/server pair handles transactions that contain
mul tiple nmessages within each one. Transactions are explicitly
started and prepared, as directed by this client.

Fill inthe information in the XA transaction id struct.
The information will be sent to the server to tag the transaction.

E

xa_txn.formt|D = RTR_XI D_FORVATI D_RTR_XA
xa_txn.gtrid_length = 4,

xa_txn. bqual _length = 4;
strcpy(xa_txn.data, "6789.0003");

[* Start the transaction; specify a tinmeout so we don't get
*/st uck waiting forever. My not conplete imediately.
*
status = rtr_start_tx(
channel ,
RTR_F_STA TID_XA,
1000,
&a_txn);

check_status(status); /* May be RTR STS TI MEQUT. */

See Also

rtr_open_channel ()
rtr_send_to_server()

3-98 RTR Call Reference

A

Compiling and Linking Your Application

All client and application programs must be written using C, C++, or a
language that can use RTR API calls. Include the RTR data types and
error messages file rtr.h in your compilation so that it will be appropriately
referenced by your application. For each client and server application, your
compilation/link process is as follows:

1. Write your application code using RTR calls.
2. Use RTR data and status types for cross-platform interoperability.

3. Compile your application code calling in rtr.h using ANSI C include rules.
For example, if rtr.h is in the same directory as your C code, compile with
the following statement: #include "rtr.h".

4. Link your object code with the RTR library to produce your application
executable.

This process is illustrated in Figure 4-1. In this figure, Library represents the
RTR C API shareable images (OpenVMS), DLLs (Win32), and shared libraries
(UNIX).

Compiling and Linking Your Application 4-1

Compiling and Linking Your Application

Figure 4-1 Compile Sequence
Application
Source

COMPILE

Application
Object

LINK

Y

Application
Executable

VM-0948A-Al

4.1 Compilers

Compilers commonly used in developing RTR applications include those
in Table 4-1. For additional information, see the appropriate HP Reliable
Transaction Router Software Product Description.

Table 4-1 Compilers for Developing RTR Applications

Operating System Compiler

Microsoft Windows Microsoft Visual C++ (Microsoft Visual Studio)
OpenVMS Alpha Compaq C

OpenVMS 164 HP C

(continued on next page)

4-2 Compiling and Linking Your Application

Compiling and Linking Your Application
4.1 Compilers

Table 4-1 (Cont.) Compilers for Developing RTR Applications

Operating System Compiler

Linux GNU C

4.2 Linking Libraries

To compile and link a C RTR application, use command lines as shown below.
Separate examples are shown for use of RTR with threaded or unthreaded
libraries. You may need to specify library directories explictly if the RTR
header files and libraries are not installed in the same directory or in system

directories.
Windows

>cl /¢ /M yourapp.c

> |ink yourapp.obj /out:yourapp.exe rtrdll.lib
Linux

Single-threaded:
cc -0 yourapp -lrtr yourapp.c
Multi-threaded:

cc -0 yourapp -pthread -Irtr_r yourapp.c

OpenVMS Alpha
Single-threaded:

$ cc yourapp.c

$ 1ink yourapp, sys$i nput/opt
SYS$SHARE: | i brtr/share

N

Multi-threaded:
$ cc yourapp.c
$ l'ink yourapp, sys$i nput/ opt

SYS$SHARE: | i brtr_r/share
N

Compiling and Linking Your Application 4-3

Compiling and Linking Your Application
4.2 Linking Libraries

OpenVMS 164
Single-threaded:

$ cc yourapp.c
$ link yourapp, sys$i nput/opt
SYS$SHARE: | i brtr/share
N
Multi-threaded:
$ cc yourapp.c
$ link yourapp, sys$i nput/opt

SYS$SHARE: |i brtr _r/share
N

4-4 Compiling and Linking Your Application

A

RTR C API Sample Applications

A.1 Overview

The software kit contains a short sample application that is unsupported
and not part of the RTR product. Code for the sample application is in the
[EXAMPLES] directory on the software kit. This sample application contains
four components:

adg_client.c
adg_server.c
adg_shared.c
adg_header.h

The code is shown on the next few pages. Note the following:

e Return value checking after fprintf() fclose() and so on, is omitted for
clarity.

e time() and ctinme() are used instead of higher resolution reentrant
alternatives that are less portable.

RTR C API Sample Applications A-1

RTR C APl Sample Applications
A.2 Client Application

A.2 Client Application
[* Client Application */

/**

* Copyright Conpaq Conputer Corporation 1998. Al rights reserved.

Restricted Rights: Use, duplication, or disclosure by the U S. Covernnent
is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. I, as
applicable

This software is proprietary to and enbodies the confidential technology of
Conpaq Conputer Corporation. Possession, use, of copying of this software
and nedia 1s authorized only pursuant to a valid witten |icense from Conpaq,
Digital or an authorized sublicensor.

**/

E R

/***

* APPLI CATION: RTR Sanple Client Application

* MODULE NAME: adg_client.c

* AUTHOR: Conpaq Conputer Corporation

* DESCRIPTION This client application initiates transactions and requests

* transaction status asynchronously. It is to be used with
adg_server.c, adg_header.h, and adg_shared.c

* DATE . Oct 22, 1998
**/
/*

adg_client.c

Goes with adg_server.c

To build on Unix:
cc -0 adg_client adg_client.c adg shared.c -Irtr
*|
#include "adg_header.h"

void declare_client (rtr_channel t *pchannel);
FILE *fpLog;

int min (int argc, char *argv[])

/*
* This program expects 3 paranmeters
* 1. client nunber (1 or 2)
* 2 partition range
* 3. messages to send

*|
rtr_status_t stat us;
rtr_channel _t channel ;

time_t time_val ={ 0}

A—-2 RTR C API Sample Applications

RTR C APl Sample Applications
A.2 Client Application

message data t send nmsg = {0};

receive_nsg_t receive_nmsg = {0};

int txn cnt;

rtr_timout t receive_time_out = RTR_NO TI MOUTNG,
rtr_msgsh_t nmsgsbh;

char dilLog[80];

send_nsg. sequence_nunber = 1 ;
strcpy(send_nsg.text , "fromdient");

get client_paraneters(argc , argv, &send _nsg, & xn_cnt);

sprintf(CiLog, "CLIENT % %l.LOG', send _nsg.routing key,
send_msg. cl i ent _nunber);
fpLog = fopen(Cilog, "W');

if (fpLog == NULL)
{

perror("adg_client: fopen failed");
fprintf(stderr, " Error opening client log %\n", Cilog);
exit (EXI T_FAI LURE);

printf("\n Client log = %\n", dilog);

fprintf(fpLog, " txn count = %\ n", txn_cnt);
fprintf(fpLog, " client nunber = %l\n", send_msg.client_nunber);
fprintf(fpLog, " routing key = %\n\n", send _nsg.routing_key);

declare_client (&channel);
/* Send the requested number of txns */
for (; txn_cnt > 0; txn_cnt--, send_nsg.sequence_number ++)

status = rtr_send to_server(
channel ,
RTR_NO_FLAGS ,
&send nsg,
si zeof (send_nsg),
megfm) ;

check _status("rtr_send to server", status);

fprl ntf(prog’ "\n kkkkkkkkkkkk*k Sequence O/dod *************\ n"7
send_nsg. sequence_nunber);

time(&ime_val);

fprintf(fpLog, " send to server at: %",
ctime(&ime_val));

fflush(fpLog);

/*

* et the server's reply OR

* an rtr_nt _rejected
|

RTR C API Sample Applications A-3

RTR C APl Sample Applications
A.2 Client Application

status = rtr_receive_nessage(
&channel
RTR_NO FLAGS,
RTR_ANYCHAN,
& eceive_nsg,
si zeof (recei ve_nsg),
receive_time_out,
&msgsh) ;

check_status("rtr_receive message", status);

tine(&ine_val);
switch (msgsh. nsgtype)
{

case rtr_nt_reply:

fprintf(fpLog, reply fromserver at: %",
ctime(&ine_val));

fprintf(fpLog, " sequence %0d from server %l\n",
recei ve_nsg.receive data _nsg. sequence_nunber,
recei ve_nsg. recei ve_data_nsg. server _nunber);

fflush(fpLog);

br eak;

case rtr_nt_rejected:
fprintf(fpLog, " txn rejected at: %",
ctime(&inme_val));
fprint _tid(fpLog, &sgsh.tid);
fprintf(fpLog, " status is : %l\n", status);
fprintf(fpLog, %\n", rtr_error_text(status));
fflush(fpLog);

/* Resend sane sequence_number after reject */
send_nsg. sequence_nunber--;

txn_cnt ++;

br eak;

defaul t:
fprintf(fpLog,
" unexpected nsg at: Y%", ctimg(&ime_val));
fprint_tid(fpLog, &msgsh.tid);
fflush(fpLog);
exit (EXI T_FAI LURE);

}
if (msgsh. msgtype == rtr_nt_reply)
status = rtr_accept _tx(
channel,
RTR_NO_FLAGS,
RTR_NO REASON) ;
check _status("rtr_accept _tx", status);

A—-4 RTR C API Sample Applications

RTR C APl Sample Applications
A.2 Client Application

status = rtr_recei ve_nessage(
&channel
RTR_NO FLAGS,
RTR_ANYCHAN,
&recei ve_nsg,
si zeof (recei ve_nsg),
receive_tine_out,
&nsgsh) ;

check _status("rtr_receive message", status);
time(&ine_val);

switch (msgsh. megtype)

{

case rtr_nmt_accepted:
fprintf(fpLog, " txn accepted at :
%", ctime(&inme_val));
fprint _tid(fpLog, &msgsb.tid);

fflush(fpLog);
br eak;

case rtr_nt_rejected:
fprintf(fpLog, " txnrejected at :
%", ctime(&inme_val));
fprint _tid(fpLog, &msgsb.tid);
fprintf(fpLog, " status is : %l\n",
recei ve_nsg.receive_status_nsg.status);
fprintf(fpLog, " %\n",
rtr_error_text(receive nsg.receive status_nsg.status));
fflush(fpLog);

/* Resend sane sequence_nunber after reject */

send_nsg. sequence_nunber - - ;
txn_cnt ++;
br eak;

defaul t:
fprintf(fpLog,
" unexpected status on rtr_nt_accepted nessage\n");
fprint_tid(fpLog, &msgsh.tid);
fprintf(fpLog, " status Is : %\n",
recei ve_nsg.recei ve_status_nsg.status);
fprintf(fpLog,
" O8\n", rtr_error_text(receive nsg.receive_status_nsg.status));
fflush(fpLog);
br eak;

}

cl ose_channel (channel);

}

RTR C API Sample Applications A-5

RTR C APl Sample Applications
A.2 Client Application

voi d
declare_client (rtr_channel _t *pchannel)
{
rtr_status_t stat us;
receive_nsg_t receive_nsg;

rtr_tinmout t receive_time_out = RTR_ NO TIMOUTMS; [* forever */
rtr_msgsh_t msgsh; /* Structure into which receive puts nsgtype */

status = rtr_open_channel (
pchannel ,
RTR_F_OPE_CLI ENT ,
FACI LI TY_NAME,
NULL, [* rpcnam */
RTR_NO_PEVTNUM
RTR_NO ACCESS [* access */
RTR_NO_NUMBEG ,
RTR_NO_PKEYSEG) ;

check _status("rtr_open_channel ", status);

status = rtr_receive_nessage(
pchannel ,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_nsg,
si zeof (recei ve_nsg),
receive_tinme_out,
&msgsh) ;

check_status("rtr_receive_nessage", status);
if (msgsb.msgtype !=rtr_nt_opened)
fprintf(fpLog, " Error opening rtr channel % : \n", FACILITY_NAME);

fprintf(fpLog, "%\n",
rtr_error_text(receive msg.receive status_msg.status));
exit (EXI T_FAI LURE);

}

fprintf(fpLog, " Cient channel successfully opened\n");
return;

A—6 RTR C API Sample Applications

RTR C APl Sample Applications
A.3 Server Application

A.3 Server Application

[* Server Application */
/***

* Copyright Conpagq Conputer Corporation 1998. Al rights reserved.

Restricted Rights: Use, duplication, or disclosure by the U S. Governnment

is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. |11, as
appl i cabl e.

This software is proprietary to and enbodies the confidential technology of
Conpaq Conputer Corporation. Possession, use, of copying of this software
and nedia is authorized only pursuant to a valid witten license from Conpag,
Digital or an authorized sublicensor.

***/
IR R R R SR SRR RS R SRR SRR R SRR SRR R SRR EERREEEEEREEEREEEREEEEEEREEEEEEEEEEEEEEEEEEE]

APPLI CATI ON: RTR Sanpl e Server Application

MODULE NAME: adg_server.c

AUTHOR . Conpaq Conputer Corporation

DESCRI PTION: This server application receives transactions and receives
transaction status. It is to be used with adg client.c,

* adg_header. h, and adg_shared. c.

* DATE o Cct 22, 1998

**/

/*

EE I . T I I I

adg_server.c
Goes with adg client.c

To build on Unix
y cc -0 adg_server adg_server.c adg shared.c -lrtr
#include "adg_header.h"
voi d declare_server (rtr_channel t *channel, const nmessage_data t *outnsg);
FILE *fpLog;
int main(int argc, char *argv([])
/*
* This program expects 2 parameters
* 1. server nunber (1 or 2)

* 2 partition range

*|

rtr_msgsh_t nmsgsb;

receive_nsg_t receive_nsg;

message_data t reply nsg;

rtr_tinmout t receive_time_out = RTR_NO TI MOUTNG,
char Svrlog[80];

time_t time_val ={ 0 };

rtr_channel t channel;

RTR C API Sample Applications A-7

RTR C APl Sample Applications
A.3 Server Application

rtr_status_t status = (rtr_status_t)0;
rtr_bool _t replay;

strcpy(reply_msg.text , "from Server");
get _server _paraneters (argc, argv, &eply nsg);

sprintf(SvrLog, "SERVER % _%l.LOG', reply_nsg.routing_key,
reply_nsg.server_nunber);
fpLog = fopen(SvrLog, "wW');

if (fpLog == NULL)
{

perror("adg_server: fopen() failed");
printf(" Error opening server log %\n", SvrlLog);
exit (EXI T_FAI LURE) ;

printf(" Server log = %\n", SvrLog);

fprintf(fpLog, " server number = %l\n", reply_msg.server_nunber);
fprintf(fpLog, " routing key = %\n", reply nsg.routing_key);

decl are_server(&channel, &reply_nsg);
while (RTR_TRUE)
{

status = rtr_receive_nessage(
&channel
RTR_NO FLAGS,
RTR_ANYCHAN,
& eceive_nsg,
si zeof (recei ve_nsg),
receive_tim_out,
&sgsh) ;
check_status("rtr_receive_message", status);
tinme(&inme_val);
fwitch (msgsh. msgt ype)
case rtr_mt_nsgl uncertain:
case rtr_nmt _msgl:
if (msgsh. msgtype == rtr_nt_nsgl_uncertain)
replay = RTR TRUE;

el se
replay = RTR FALSE;

fprl ntf(prog' "\n kkkkkkkkkkkkk Sequence O/d_od *************\ n"7
recei ve_nsg.receive _data_nsg. sequence_nunber);

A-8 RTR C API Sample Applications

RTR C APl Sample Applications
A.3 Server Application

if (replay == RTR_TRUE)
fprintf(fpLog, " uncertain txn started at : %",
ctime(&ime val));

el se
fprintf(fpLog, " normal txn started at :9%",
ctime(&inme_val));
fprintf(fpLog, " sequence %0d fromclient %l\n",

recei ve_nsg. recei ve_data_nsg. sequence_nunber,
recei ve_nsg.receive data nsg.client_nunber);
fflush(fpLog);

reply_nsg. sequence_nunber =
receive_msg. recei ve_data_nsg. sequence_nunber;

status = rtr_reply to client (
channel ,
RTR_NO FLAGS,
&eply nsg,
si zeof (reply_nsg),
negfnt);

check_status("rtr_reply to client", status);
br eak;

case rtr_nt_prepare:
fprintf(fpLog, " txn prepared at : %",
ctime(&ime_val));
fflush(fpLog);

status = rtr_accept _tx (
channel ,
RTR_NO_FLAGS,
RTR_NO_REASQN) ;
check_status("rtr_accept _tx", status);
br eak;

case rtr_nt_rejected:
fprintf(fpLog, " txn rejected at : %",
ctinme(&ime_val));
fprint tid(fpLog, &nmsgsh.tid);

fprintf(fpLog, " status is : %l\n", status);
fprintf(fpLog, " %\n", rtr_error_text(status));
fflush(fpLog);

br eak;

case rtr_nt_accepted:
fprintf(fpLog, " txn accepted at : %",
ctinme(&ime_val));
fprint tid(fpLog, &nmsgsh.tid);

fflush(fpLog);
br eak;

RTR C API Sample Applications A-9

RTR C APl Sample Applications
A.3 Server Application

} /* End of switch */
} /% Vhile loop */

voi d
declare_server (rtr_channel t *channel, const message data t *outnsg)
{
rtr_status_t status;
rtr_uns_32_t nunseg = 1
rtr_keyseg t p_keyseg[1];
receive_nmsg_t receive_nsg;
rtr_tinmout t receive tinme_out = RTR NO TIMOUTMS;, /* forever */
rtr_msgsbh_t msgsh; /* Structure into which receive puts nsgtype */
const char *facility = FAC LI TY_NAME

p_keyseg[0].ks_type = rtr_keyseg_string
p_keyseg[0].ks length = 1;
p_keyseg[0].ks_offset = 0;
p_keyseg[0].ks o _bound =
[* const_cast */ (rtr_uns_8 t *)(&outnsg->routing_key);
p_keyseg[0].ks_hi bound =
[* const_cast */ (rtr_uns_8 t *)(&outnsg->routing_key);

status = rtr_open_channel (
&channel
RTR_F_OPE_SERVER,/* | RTR_F_OPE_EXPLI CI T_ACCEPT | */
[* RTR_F_OPE_EXPLI Cl T_PREPARE, */
facility,
NULL, [* rpcnam */
RTR_NO_PEVTNUM
RTR_NO ACCESS, /* access */
nunseg
p_keyseg);
check _status("rtr_open_channel ", status);

status = rtr_receive_nessage(
&channel
RTR_NO_FLAGS
RTR_ANYCHAN,
&receive_nsg,
si zeof (recei ve_nsg),
receive_time_out,
&nmsgsh)

check _status("rtr_receive_nmessage", status);
if (msgsh.msgtype !=rtr_nt_opened)

fprintf(fpLog, " Error opening rtr channel %: \n", facility);

A-10 RTR C API Sample Applications

RTR C APl Sample Applications
A.3 Server Application

fprintf(fpLog, "%\n",
rtr_error_text(receive_nsg.receive_status_nsg.status));

fclose (fpLog);

exit (EXI T_FAILURE);

}

fprintf(fpLog,
return,

Server channel successfully opened \n");

A.4 Shared Code
/* Shared Code */

/***

*

E I

Copyright Conpaq Conputer Corporation 1998. All rights reserved.

Restricted Rights: Use, duplication, or disclosure by the U S. Government

is subject to restrictions as set forth in subparagraph (c¢) (1) (ii) of
DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. Ill, as
appl i cabl e.

This software is proprietary to and enbodies the confidential technology of
Conpaq Conputer Corporation. Possession, use, of copying of this software
and nedia is authorized only pursuant to a valid witten license from Conpag,
Digital or an authorized sublicensor.

***/
/**

*
*

*
*
*
*

APPLI CATION: RTR Sanple Client Application
MODULE NAME: adg_shared. c

AUTHCOR . Conpaq Conputer Corporation

DESCRIPTION: This shared code is to be used with adg_server.c,
adg_header.h, and adg_client.c.

DATE : Cct 22, 1998

***/

#include "adg_header.h"

voi d
check _status(char *call, rtr_status_ t status)

time t time val ={ 0 };
i{f (status !'= RTR_STS (K)
tinme(&time val);
fprintf(fpLog, " Call to % failed at %:\n",
call, ctime(&inme val));
fprintf(fpLog, "\n Call status = %\n",
rtr_error _text(status));
fflush(fpLog);
exit(status);

RTR C APl Sample Applications A-11

RTR C APl Sample Applications
A.4 Shared Code

voi d
get _server_paraneters (rtr_sgn_32_t argc, char *argv[], message data_t
*0_msQ)

String3l buffer;
if (argc < 2)
{

printf (" Server nunber : ");
gets(buffer);
0_nsg->server _nunber = atoi (buffer);

printf(" routing key : ");
gets (buffer);
0_msg- >routing_key = buffer[0];

el se

sscanf(argv[1], "9%d", & o_msg->server_nunber));
0_msg->routing_key = *(argv[2]);
} I* End of get_server_paranmeters */
voi d
get_client_paraneters (rtr_sgn_32_t argc, char *argv[], message data_t
*0_meg, int *txn_cnt)
String3l buffer;
if (argc < 3)
{
printf (" Client nunber : ");

gets(buffer);
0_nsg->client_nunber = atoi (buffer);

printf(" routing key : ");
gets (buffer);
0_msg- >routing_key = buffer[0];

printf(" Message Count : ");
gets (buffer);
*txn_cnt = atoi(buffer);
el se
sscanf(argv[1], "9dd", & o_msg->client_nunber));
sscanf(argv[2], "9%", buffer);

} I* End of get _client_parameters */

/***/

A-12 RTR C API Sample Applications

RTR C APl Sample Applications
A.4 Shared Code

void fprint _tid (FILE *fp, rtr_tidt *tid)
{

fprintf (fp, " tid: o 9, %, %, %, % %\n", tid->tid32[0],
tid->tid32[1],
tid->tid32[2], tid->tid32[3], tid->tid32[4], tid->tid32[5],
tid->tid32[6]):
}

voi d
cl ose_channel (rtr_channel _t channel)

rtr_status_t status;

printf (" Cosing Channel.\n");
status = rtr_close_channel (
channel
RTR_NO FLAGS);

check_status("rtr_close_channel", status);
return;

A.5 Header Code
| * Header Code */

/***

* Copyright Conpaq Conputer Corporation 1998. Al rights reserved.

Restricted Rights: Use, duplication, or disclosure by the U S. Governnent
is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. IIlI, as
appl i cabl e.

This software is proprietary to and enbodies the confidential technology of
Conpaq Conputer Corporation. Possession, use, of copying of this software
and nmedia is authorized only pursuant to a valid witten license from Conpag,

Digital or an authorized sublicensor.
**/

khkkkkkkkhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhkhhrhkhkhhrhkhhrhrhhkhdrhrhkhkdkhkkhkhkkh*k

APPL| CATI ON: RTR Sanpl e Application

MODULE NAME: adg_header. h

AUTHOR . Conpaq Conput er Corporation

DESCRI PTION: This header file is to be used with adg_server.c,
adg_client.c, and adg_shared. c.

* DATE » Cot 22, 1998

***/

/*

% % ¥ ¥ TS ¥ ¥ ¥ ¥ * F * * F

Header file for adg client.c and adg_server.c
*|

RTR C API Sample Applications A-13

RTR C APl Sample Applications
A.5 Header Code

#include "rtr.h"
#include <stdio.h>
#include <stdlib. h>
#include <string.h>
#include <tine.h>
#incl ude <math. h>
#include <signal.h>
#include <ctype. h>
#include <fcntl. h>
#include <sys/stat.h>
[* #include <sys/types.h> */

#define PERVS 0666 /* File permssions */
#define FACI LI TY_NAME "DESI G\'

typedef char String31[31];
typedef char String200[200];

typedef struct {
rtr_uns 8t routing_key;
rtr_uns 32t server _nunber;
rtr_uns 32t client _nunber
rtr_uns_32_t sequence_nunber;
String3l text;

} nmessage data t;

typedef union {
message_data t receive data nmsg;
rtr_status_data t receive_status_nsg;
} receive nsg t;

typedef struct {

rtr_uns 32t | ow
rtr_uns_32_t hi gh
rtr_uns 32t expect ed
rtr_tid_t prior_txn
rtr_uns_32_t prior_seqno

}boundaries_t;
[* Function prototype section */

voi d
check_status(char *call, rtr_status t status);

void get client paraneters (rtr_sgn_32_t argc
char *argv[]
message_data t *o_nsg,
int *txn_cnt);

void get_server paraneters (rtr_sgn 32 t argc
char *argv[]
message_data t *o_nsg)

rtr_status_ t send reply (
message_data t *o_nsg,
rtr_channel t channel);

A-14 RTR C API Sample Applications

RTR C APl Sample Applications
A.5 Header Code

voi d cl ose_channel (rtr_channel _t channel);
void fprint _tid (FILE *fpLog, rtr _tid t *tid);
/* External section */

extern String200 Errornsg;
extern time_t tinme val;
extern boundaries_t txn_range[10] ;
extern char TxnLog[];
extern char SvrlLog|];
extern rtr_uns_32_t nmsg_cnt;
extern int errno;

extern FILE* fpLog;

RTR C API Sample Applications A-15

B

RTR Application Development Tutorial

Start here!

Purpose: This tutorial goes through all of the steps needed to set up a simple
RTR-based application for a new user. The intent is to provide a starting point
for learning about RTR, and to simplify the main concepts of RTR; you will be
able to cruise through this at a more rapid pace than you normally would with
the RTR reference information. At the end of this tutorial, you'll find brief
descriptions of some of the more complex features RTR provides, and pointers
to the documentation where you can study them in detail. This tutorial uses
the implicit start, prepare, and accept transaction capabilities of RTR that

are described in the Reliable Transaction Router Application Design Guide, a
prerequisite for using this manual.

Summary: This tutorial walks you through designing, coding and setting
up a basic RTR-based client/server application. To do this, youll use RTR to
perform two important services for you:

e to act as the communication mechanism between the client and the server
applications

e to insure that the server application is always available to its clients

In the system that you are about to develop, the client application interacts
with the user to read and display data. The server application handles
requests from the client, and sends replies back to it. When we refer to “client”
and “server’, we will be referring to the applications. When we refer to the
computer nodes on which the client or server is executing, we will call them
“frontend” and “backend” nodes, respectively.

In most applications, the server would probably talk to a database to retrieve
or save data according to what a user had entered in the user-interface. In the
interest of simplifying this tutorial, however, this server is only going to tell
you whether it received your client’s request.

RTR Application Development Tutorial B-1

RTR Application Development Tutorial

What’s different in this system from a non-RTR system is that there will be
two servers: one of the servers, also known as the “primary server’, almost
always talks with the client. In a perfect world, nothing would ever happen to
this server; clients would always get the information they asked for, and all
changes would be made to the database when the user updated information.
Every time anyone attempted to access this server, it would always be there,
ready and waiting to “serve’, and users could feel secure in the knowledge that
the data in the database was changed exactly as they had requested.

But were all well aware that this is not always the case, and when servers do
go down, it’s usually at the most inopportune time. So you are going to use
RTR to designate a second server as a “standby” server. In this way, if a user
is attempting to get some real work done, and the primary server is down, the
user will never notice. The standby server will spring into action, and replace
the original server by handling the user’s requests in just the same way as the
primary server had been doing. And, this will be done from the same point at
which the primary server had crashed!

Materials List: To fully develop this system, you will need a client application
and frontend node, a server application and two backend nodes, and a router.
What are these things?

Frontend: The frontend node is the system on which your client application
is executing. As in any client/server system, the client application interacts
with the user, then conveys the user’s requests to the server. When developing
an RTR-based client/server system, your client will have the following
characteristics:

e Display an interface to the user, allow the user to make a request, then
communicate with the server to get or set data according to what actions
the user has taken.

e Execute on a Solaris, Tru64 UNIX, Windows or OpenVMS system node,
which has RTR installed on it.

e Be attached to a TCP/IP or DECnet network and able to “see” the server
machines; this means that if you use the “ping” utility to find a computer
node by name, the computer will respond back to the node you are on.

Example code for the client application and the server application can be found
in the “examples” subdirectory of your RTR installation directory.

B—2 RTR Application Development Tutorial

RTR Application Development Tutorial

BackEndl1: Your first backend node will be running the primary server
application. It, too, can be on any of the above operating systems, except
the Windows system must be supported as a server. ! It also must have
RTR installed on it, and will contain your server application. Your server
application will use RTR to listen for requests from the client, receive and
handle those requests, and confirm the result to the client.

BackEnd2: This machine will run the standby server application. It will
probably also be doing any one of a number of other things that have nothing
to do with this tutorial, or even with RTR. It most probably will be sitting
on one of your coworkers” desks, helping him or her to earn their salary and
support their family. Hopefully, you get along with this coworker well enough
that they will install RTR on their machine, so that you may complete this
tutorial.

Router: Your router is simply RTR software which keeps track of everything
that is going on for you when your application is running. The router can
execute on a separate machine, on a frontend machine, or on a backend
machine. In this tutorial, we will keep our router on the same machine as the
client.

Install RTR: Your first step, once you have determined the three computers
you are going to use for this tutorial, is to be sure RTR is installed and
configured on each machine. The RTR installation is well documented and
straightforward, although slightly different for each operating system on which
the installation is being run. Refer to the section in the RTR Installation
Guide for the system on which you are installing RTR. For the purpose of
documenting examples, the machine you have decided to use for the client
application will be referred to as FE (frontend), primary server as BE1
(backend 1), secondary server as BE2 (backend 2). Remember that the router
will be on the FE machine. The journal must be accessible to both backend
servers.

Start RTR: You will need to start RTR on each of the machines on which
you have installed it. You may do this from one machine. To be able to issue
commands to RTR on a remote node, however, you must have an account

on that node with the necessary access privileges. The operating system’s
documentation, or your system manager, will have information on how to set
up privileges to enable users to run applications over the network. Use the
command interface on your system to interact with RTR. At the command
prompt, type in RTR, and press the Return or Enter key. You will then be at

L' For RTR V4.2, Windows 2000, or Windows XP. For later versions of RTR, refer to the
SPD.

RTR Application Development Tutorial B-3

RTR Application Development Tutorial

the RTR> prompt, and can start RTR on all of the nodes. For example, on a
UNIX system, it will look like this:

% rtr
RTR> start rtr/node=(FE, BEL, BE2)
RTR> exit

This command starts “services” or "daemons” on each of the nodes in the list.
These are processes that listen for messages being sent by other RTR services
or daemons over the network. After executing the command, a “ps”, “show
process” or Task Manager review of processes executing on your system should
now show at least one process named rtr, rtr.exe, or RTRACP. on each of the
machines. This process is the one that manages the communications between
the nodes in the RTR-based application, and handles all transactions and
recoveries.

Create a Recovery Journal: This step holds the key to letting the second
server pick up on the work at exactly the right time; no work is lost, and the
hot swap to the standby server is “automagic.” RTR keeps track of the work
being done by writing data to this journal. If a failure occurs, all incomplete
transactions are being kept track of here, and can be replayed by the standby
server when it comes to the rescue. When transactions have been completed,
they are removed from this journal. For this example, only your backend nodes
need a recovery journal, and you must create the journal before creating your
facility; you’ll learn more about facilities in the next section.

You’ll now need to go to each of the backend nodes that you’ll be using and
create a journal there. Log into each machine and, using the command prompt
interface, run RTR and create the journal. When you specify the location of
the journal, it should be the disk name or share name where the journal will
be located. The journal must be accessible by both of the backend servers.

This is an example of what the command would look like on a VMS system.

$ RIR
RTR> create journal user2
RTR> exit

Be sure to do this on both machines or you can use the /NODE qualifier to do
it on each machine from one node.

To allow both servers to access the journal, you have a number of options:
e Use a disk in the disk farm on your cluster, if you use clusters.

e Use a disk served via NFS with UNIX systems.

B—4 RTR Application Development Tutorial

RTR Application Development Tutorial

e Use a share when using Windows systems.

In any case, you should be sure the disk is not on your primary server, because
this is the machine that we are protecting, in case of a crash. If the machine
goes down, the standby server would not be able to access the disk. The
primary server and the standby server must be physically separate machines.

The Database: While we are having this discussion on sharing resources, we
should also mention how a database fits into this system, as well. This tutorial
and the example code provided with it does not do database transactions.
However, there are likely places in the code where you would probably want

to access the database in most applications. Because the standby server steps
into place when the primary server crashes, each must have access to your
database.

This configuration can be supplied using a number of options:
e Use a database server, such as SQL Server or Oracle’s database server.
e Use machines in a cluster to run the database as well as the servers.

e Use a database API that implements RPC stubs to move data across the
network.

Create a "Facility”: There can be numerous RTR applications running on any
of your computers in your network. The systems or nodes that service one
RTR application and the role of each must be clearly defined. This makes the
RTR daemons and processes aware of who is talking with whom, and why.
The description of a configuration of a group of nodes into frontends, backends
and routers is called a facility. To create a facility, use your command prompt
utility again and type "RTR"; at the RTR> prompt, create the facility for this
example with the following command on a Windows system in the command
prompt window:

C\>rtr

RTR> create facility RTRTutor/node=(FE, BE1, BE2) -
_RTR> [frontend=FE rout er =FE/ backend=(BE1, BE2)
RTR> exi t

With this command, you have now:
e Created a Facility named "RTRTutor” on all three nodes.

e Defined the role of each node in that facility to show who participates as
the client, the primary server, the secondary server and the router.

RTR Application Development Tutorial B-5

RTR Application Development Tutorial

Take a Break: At this point you have accomplished a lot; you've configured
RTR to protect a multitiered application by providing failover capability, and
to handle communications between your client and your server. Next, you will
write the application: your client will talk to RTR, and your server will talk to
RTR. RTR will deliver the messages between them and, if the server crashes,
bring in the standby server to handle your client’s requests. The client will
never know that the server has been switched, and no data or requests to
retrieve or modify data will be lost!

Application: The C modules and header files for this application are located
in the “examples” subdirectory of the directory into which you installed RTR.
They consist of the following files:

adg_client.c The client application

adg_server.c The server application

adg_shared.c C code common to both the client and server applications

adg_header.h Header file containing definitions specific to both sample
applications

Although you won’t have much typing to do, this tutorial will explain what
the code in each module is doing. Copy all four of these files into a working
directory of your own. For convenience, you may also wish to copy rtr.h from
the RTR installation directory into your working directory as well.

The example code you’ll run must reference the facility you created earlier,
so edit the example file adg_header.h and change the FACILITY value to
“RTRTutor”.

The application example code supplied with RTR has a lot going on inside of it,
but can be broken down into a few general and very simple concepts that will
give you an idea of the power of RTR, and how to make it work for you. As you
see, you have code for the client application and the server application. Each
will talk only to RTR, who will move the messages and data between them.
And you are free not to worry about:

RPC Stubs
Time zones
Endianism
Network protocols and packets

Aren’t you relieved? Maybe you should take another break to celebrate!

B—6 RTR Application Development Tutorial

RTR Application Development Tutorial

Client Application: The files shipped with the RTR kit used in the client
application for this tutorial are adg_client.c, adg_shared.c and adg_header.h.
All applications that wish to talk to RTR through its API need to include
‘rtr.h” as a header file. This file lives in the directory into which RTR was
installed, and contains the definitions for RTR structures and values that
you’ll need to reference in your application. Please do not modify this file.
Always create your own application header file to include, as we did in the
sample (adg_header.h), whenever you need additional definitions for your
application.

#include "adg_header.h"
#include "rtr.h"

The client application design follows this outline:

1. Initialize RTR

2. Send a message to the server

3. Get a response from the server

4. Decide what to do with the response

Pretty straightforward, don’t you think? Let’s look at how it’s done.

Initialize RTR: This is the first thing that every RTR client application needs
to do: tell RTR that it wants to get a facility up and running, and to talk
with the server. You will find this happening in the declare_client function
in adg_client.c, and somewhat more simplified here. You remember from the
“Start RTR” step in this tutorial that there are RTR daemons or processes
executing on the nodes in a facility, listening for communications from other
RTR components and applications. Your client application is going to request
that all processes associated with the RTRTutor facility “listen up.” To do this,
you’ll open a channel that enables communication between the client and the
RTR router. Remember that the RTR router has been described as “keeping
track of everything” that goes on in an RTR application.

Declare the items needed for the open channel call:

rtr_status_t status; /* will be returned by RTR */
rtr_channel t channel; /* a channel */

RTR Application Development Tutorial B-7

RTR Application Development Tutorial

Open the channel:

status = rtr_open_channel (

&channel , [* channel of communication */
RTR_F_OPE CLIENT , /* | ama client */
"RTRTut or ", [* the facility we created */
NULL, [* recipient name */

RTR_NO_PEVTNUM /* don"t send events, just nessages */
RTR_NO ACCESS /* access key */

RTR_NO_NUMSEG , ['* nunber of key segnents */

RTR NO PKEYSEG); /* first key segnent */

Let’s examine what this “open channel” call does. First, the “channel”
parameter we sent to it is only a pointer to a block of memory; we've done
nothing to set any values in it. RTR will use this block of memory to store
the information it needs to assign and keep track of this channel. The
channel represents the means of communication from the client to the rest
of the components in this system. There is a lot going on here to make the
communication work, but it’s all being done by RTR so you won't have to
worry about all of the problems inherent in communicating over a network.

The second parameter tells RTR that this application is acting as a client. So
now RTR knows that if the server goes down, it certainly doesn’t want to force
this application to come to the rescue as the standby server! And there will be
other things that RTR will be handling that are appropriate only to clients or
only to servers. This information helps it to keep track of all the players.

And now [trumpets are heard in the distance!] the third parameter tells RTR
the name of the facility we created earlier. Suddenly, RTR has a whole lot
more information about your application: where to find the server, the standby
server, and the router. You will see later in this tutorial that the server also
declares itself and supplies the same facility name.

At this point, RTR has all of the information it needs to put the pieces together
into one system; youre ready to start sending messages to the server, and to
get messages back from it.

A Word About RTR’s API Parameters: You may have noticed that although
we’ve looked at only three of the parameters in the “open channel” call,

there are a number more. It’s a quirk of RTR that you’ll often need to tell

it to default. Rather than defaulting on its own when you do not provide a
parameter (or provide a null parameter), it needs the “default” parameter. So
you’ll see things like RTR_NO_PEVTNUM to tell it “I don"t want to be notified
of any events” which is actually a default, and RTR_NO_NUMSEG to tell it “I
have defined no key segments” which is also a default. Whenever we skip the

B—8 RTR Application Development Tutorial

RTR Application Development Tutorial

discussion on non-null parameters, you’ll know they are default parameters.
The parameter RTR_NO_FLAGS tells RTR that there are no flags.

A Word About RTR’s Return Status: Your facility may have more than just
one client talking to your server. In fact, your neighbor who so generously
allowed you to run your standby server on his or her machine might want

to get in on this RTR thing, too. That’s all right: just add a machine to the
RTRTutor facility definition that will also run a copy of the client. But not yet;
we re only telling you this to illustrate the point that there can be more than
one client in an RTR-based application. Because of this, after the RTR router
hands off your client’s request to your server, it must then be able to do the
same for other clients.

Servers can also decide they want to talk to your client, and the RTR router
may need to handle their requests at any time, as well. If RTR were to wait
for the server to do its processing and then return the answer each time, there
would be an awful bottleneck.

But RTR doesn’t wait. This means that the status that you get back from each
call means only, “I passed your message on to the server,” not that the server
successfully handled it and here is the result. So how does your client actually
get the result of the request it made on the server? It will need to explicitly
“receive” a message, as you'll see later in this tutorial.

Checking RTR Status: Throughout this code example, you’ll see a line of code
that looks like this (with a different string in the first parameter each time):

check _status("rtr_open_channel ", status);

This is good because, as you know from your Programming 101 course, you
should always check your return status. But it’s also good that your program
knows when something has gone wrong and can tell the user, or behave
accordingly. The “check_status” function is not part of RTR, but is something
you will probably want to do in your application.

To check RTR’s return status, compare it to RTR_STS_OK. If it’s the same,
everything is fine, and you can go on to the next call. But if it is something
else, you’ll probably want to print a message to the user. To get the text string
that goes with this status, call ‘rtr_error_text” which returns a null terminated
ASCII string containing the message in human readable format.

RTR Application Development Tutorial B—9

RTR Application Development Tutorial

if (status !'= RTR STS (X)

{
printf(" Call failed: %", rtr_error_text(status));
}

Receiving Messages: As explained earlier, RTR doesn’t hold your client up
while it processes your request, or even a request from another client. And
because nothing can continue until the system has been set up, you now need
to wait for the open channel call to let you know that everything is started
up and ready to go. This is what the rest of the code in the “declare_client”
function does. These statements declare the memory for a “receive” message
and a message status block:

receive_nsg_t receive_nmsg = {0}; /* nessage received */
rtr_msgsh t nsg_status; [* message status bl ock */

And now the rtr_receive_message waits to receive a message from RTR.

status = rtr_receive_nessage(

&channel , [* channel on which nmessage received */
RTR_NO_FLAGS, /* sending no flags (default) */
RTR_ANYCHAN, [* default channel */

&receive_msg, /* location to place return info */

si zeof (receive_msg),/* size of last */
RTR_NO TIMEQUTMS, /* do not timeout */
&msg_status); /* location to return status */

The channel parameter and the RTR_NO_FLAGS parameter should now
be familiar to you; we discussed them in the sections of this document on
*Initialize” and *Parameters”. RTR_ANYCHAN and RTR_NO _TIMEOUTMS
are defaults for this API.

Remember Programming 101 — check your status every time!

Information about whether RTR or your server has successfully handled your
client’s request is returned in an rtr_msgsb_t message status block structure.
It is received from RTR as the last parameter in the rtr_receive_message call.
For rtr_open_channel, we are looking for the “rtr_mt_opened” message type in
the status block to confirm that the channel has been opened, and that we are
now prepared to do all of the rest of the messaging on it for our application. If
we don’t have the “opened” message, then we can expect there to be an error
status in the receive message block.

if (meg_status.nmsgtype !=rtr_nt_opened)

printf(" Error opening rtr channel : ");
printf(rtr_error_text(receive_nsg.receive_status_nsg.status));

B—10 RTR Application Development Tutorial

RTR Application Development Tutorial

The rtr.h header file provided with the RTR installation kit describes the
rtr_msgsb_t structure in detail.

Send Messages: The rest of the client application is simply a send/receive
message loop. It continues to send messages to the server, then listens for the
server’s response. It is important to remember that, although the client is
sending these messages to the server, it is doing so through the RTR router.
Because of this, the client can receive, asynchronously, different types of
messages:

e A notice from the server of failure to process the sent message
e An answer to the sent message from the server
e An “out of band” message from the server regarding server status

In addition, RTR may send the client messages under certain conditions. So
the client application must be prepared to accept any of these messages, and
not necessarily in a particular sequence.

That’s certainly a tall order! How should you handle this? Well, there are a
number of ways, but in this tutorial we will explain how to run a “message
loop” that both sends and receives messages.

A Word About RTR Data Types: You may have noticed that your client,
server and router can be on any one of many different operating systems. And
you’ve probably written code for more than one operating system and noticed
that each has a number of data types that the other doesn’t have. If you send
data between a Solaris UNIX machine and a VMS or Windows machine, you’ll
also have to worry about the order different operating system stores bytes

in their data types (called “endian” order). And what happens to the data
when you send it from a 16-bit Intel 486 Windows machine to a 64-bit Alpha
Tru64 machine? Thanks to RTR, you don’t need to worry about it. RTR will
handle everything for you. Just write standard C code that will compile on the
machines you choose, and the run-time problems wont complicate your design.
When you do this, you need to use RTR data types to describe your data. RTR
converts the data to the native data types on the operating system with which
it happens to be communicating at the time.

Think of RTR as your very own “Babel fish,” if you've read the “Hitchhiker’s
Guide to the Galaxy” series. It will translate everything necessary when your
data gets to a new machine. The little fish you put in your ear is actually
made up of the RTR application programming interface and the RTR data

types.

RTR Application Development Tutorial B-11

RTR Application Development Tutorial

To illustrate this, the example code evaluates your input parameters and places
them into a message_data_t structure called “send_msg”. Message_data_t is
not an RTR structure, but created by the programmer who wrote this client.
The message_data_t structure is defined in adg_header.h.

typedef struct {
rtr_uns_8_t routing_key;

rtr_uns_32_t server_nunber;
rtr_uns 32t client_nunber;
rtr_uns_ 32t sequence_nunber ;
String3l text;

} message data_t;

You'll notice that the data types that make up message_data_t aren’t your
standard data types — they are RTR data types. And they are generic enough
to be able to be used on any operating system: 8 bit unsigned, 32 bit unsigned,
and a string.

Earlier, we looked at the receive message code when the client opened a
channel. The structure it used to obtain information, receive_message_t, is
also one created by the programmer, and not a standard RTR structure. If you
look at its definition in the adg_header.h file, you’ll see that it’s the same as
the message_data_t structure, plus it contains a location for RTR status. There
will be more on this in the next section.

Send/Receive Message Loop: As mentioned earlier, the sample code for the
RTR client application contains a message loop that sends messages to the
server via the RTR router, and handles messages that come from the server
via the router, or from RTR itself. The following discussion will reference a
simplified version of that loop; code in the sample to add time stamps and
print to a log file has been removed here for clarity.

When you run the sample client, the client expects three parameters: a client
number, a partition range, and the number of messages to send, in that order.
We will talk more about partition ranges later when we look at the server
application, but for now it is enough to know that we’ll use one character, the
letter h.

The input command parameters are evaluated and placed in the message_
data_t structure named send_msg. The ‘number of messages” parameter which
you’ll input on the command line is placed in the “txn_cnt” variable. The “for”
loop which sends and receives messages will execute this number of times.

The message_data_t structure also holds a “sequence number” value that is
incremented each time the loop is executed; so now our loop begins:

B—12 RTR Application Development Tutorial

RTR Application Development Tutorial

for (; txn_cnt >0; txn_cnt--, send_nsg.sequence_number++)

status = rtr_send to_server(
channel ,
RTR_NO FLAGS ,
&send_nsg,
si zeof (send_nsgQ),
RTR_NO _MSGFMT);

check _status("rtr_send_to_server", status);

Note

The check_status function is not part of RTR; you must define it in the
application.

The first message has been sent to the server in the third parameter of the
rtr_send_to_server call. As you will see, this is part of the flexibility and power
of RTR. This third parameter is no more than a pointer to a block of memory
containing your data. RTR doesn’t know what it’s a pointer to — but it doesn’t
need to know this. You, as the programmer, are the only one who cares what
it is. It’s your own data structure that carries any and all of the information
your server will need to do your bidding. We’ll see this in detail when we look
at the server code.

In the fourth parameter, you must tell RTR how big the piece of memory being
pointed to by the third parameter is. RTR needs to know how many bytes to
move from your client machine to your server machine, so that your server
application has access to the data being sent by the client.

The rest of the parameters bear some looking at, as well: there’s the channel
again. You'll see the channel parameter in almost every RTR call. You may be
becoming suspicious about the channel, and think that it’s really more than
just a line for communicating. And you’d be right. RTR uses the channel much
like you use that third parameter in this call. The RTR developers are the only
ones who know what’s in it, and it contains much of the information they need
to make RTR work.

Youll recognize two more default parameters, RTR_NO_FLAGS and RTR_NO_
MSGFMT.

And now, the client waits for a response from the server.

RTR Application Development Tutorial B-13

RTR Application Development Tutorial

/*
*/ Get the server's reply ORan rtr_nt_rejected
*
status = rtr_receive_nessage(
&channel ,
RTR_NO_FLAGS,
RTR_ANYCHAN,
& eceive_nsg,
si zeof (recei ve_nsg),
RTR_NO_TI MOUTNG,
&nsgsh) ;

check_status("rtr_receive_message", status);

Again you see the channel and the default flags; the receive_msg parameter

is a pointer to another data structure created by you as the programmer, and
can carry any information you need your server to be able to communicate
back to your client. In your own application, you would actually create

this data structure in your application’s header file. You can see what the
example receive message looks like by checking out the receive_msg_t in the
adg_header.h file. RTR picks it up from your server and writes it here for your
client to read.

The msgsb parameter is an RTR data structure: you saw this message status
block earlier when we looked at the open channel code. Its msgtype field
contains a code that tells you what kind of a message you are now receiving. If
msgsb.msgtype contains the value rtr_mt_reply, then you are receiving a reply
to a message you already sent, and your receive message data structure has
been written to with information from your server.

switch (msgsh. nsgtype)
{

case rtr_nt_reply:
fprintf(fpLog, " sequence %0d fromserver %l\n ",
recei ve_nsg. recei ve_data_nsg. sequence_nunber,
recei ve_nsg.receive _data nsg. server_nunber);
br eak;

If msgsb.msgtype contains the value rtr_mt_rejected, then something has
happened that caused your transaction to fail after you sent it to the router.
You can find out what that “something” is by looking at the status returned by
the rtr_receive_message call. You will recall that making the rtr_error_text
call and passing the status value will return a human readable null terminated
ASCII string containing the error message.

B—14 RTR Application Development Tutorial

RTR Application Development Tutorial

case rtr_nt _rejected:
fprintf(fpLog, " txn rejected at: %",
ctime(&ine_val));
fprint_tid(fpLog, &msgsh.tid);

This is where you’ll need to make a decision about what to do with this
transaction. You can abort and exit the application, issue an error message
and go onto the next message, or resend the message to the server. This code
resends a rejected transaction to the server.

/* Resend nessage with same sequence_nunber after reject */
send_nsg. sequence_nunber - -;

txn_cnt ++;

br eak;

defaul t:
fprintf(fpLog, " unexpected nsg”);
fprint _tid(fpLog, &nmsgsb.tid);

fflush(fpLog);
exit((int)-1);

When your client application receives an rtr_mt_reply message, your message
has come full circle. The client has made a request of the server on behalf of
the user; the server has responded to this request. If you're satisfied that the
transaction has completed successfully, you must notify RTR so that it can do
its own housekeeping. To this point, this transaction has been considered “in

progress”, and its status kept track of at all times. If all parties interested in
this transaction (this includes the client AND the server) notify RTR that the
transaction has been completed, RTR will stop tracking it, and confirm to all

parties that it has been completed. This is called “voting”.

if (megsb. megtype == rtr_nt_reply)
{

status = rtr_accept_tx(
channel ,
RTR_NO FLAGS,
RTR_NO REASON) ;

check_status("rtr_accept _tx", status);
And now the client waits to find out the result of the voting.

status = rtr_receive_nessage(
&channel ,
RTR_NO FLAGS,
RTR_ANYCHAN,
&receive_msg,
si zeof (recei ve_nsg),
receive_tinme_out,
&msgsh) ;

RTR Application Development Tutorial B-15

RTR Application Development Tutorial

check _status("rtr_receive message", status);
time(&inme_val);

If everyone voted to “accept” the transaction, the client can move on to the next
one. But if one of the voters rejected the transaction, then another decision
must be made regarding what to do about this transaction. This code attempts
to send the transaction to the server again.

switch (nmsgsh. nsgtype)

case rtr_nt_accepted:
fprintf(fpLog, txn accepted at : 9",
ctine(&ime_val));

br eak;

case rtr_nt_rejected:
fprintf(fpLog, txn rejected at : 9",
ctine(&inme_val));

/* Resend sane sequence_nunber after reject */
send_nsg. sequence_nunber--;

txn_cnt ++;

break;

defaul t:
fprintf(fpLog,
" unexpected status on rtr_nt_accepted message\n");
fprintf(fpLog,
" %\n",
rtr_error_text(receive_nsg.receive _status_nsg.status);

br eak;

}
} I* end of for loop */

All of the requested messages, or transactions, have been sent to the server,
and responded to. The only RTR cleanup we need to do before we exit the
client is to close the channel. This is similar to signing off, and RTR releases
all of the resources it was holding for the client application.

cl ose_channel (channel);

Now, that wasnt so bad, was it? Of course not. And what has happened so
far? The client application has sent a message to the server application. The
server has responded. RTR has acted as the messenger by carrying the client’s
message and the server’s response between them.

Next, let’s see how the server gets these messages, and sends a response back
to the client.

B—16 RTR Application Development Tutorial

RTR Application Development Tutorial

Server Application: The files shipped with the RTR kit used in the server
application for this tutorial are adg_server.c, adg_shared.c and adg_header.h.
Youll notice that adg_shared.c and adg_header.h are used in both client and
the server applications. This is for a number of reasons, but most importantly
that both the client and the server will use the same definition for the data
structures they pass back and forth as messages. With the exception of only
two items, there will be nothing in this server that you haven't already seen
in the client. It’s doing much the same things as the client application is
doing. It opens a channel to the router, telling the router that it is a server
application; waits to hear that the open channel request has been successfully
executed; runs a loop that receives messages from the client; carries out the
client’s orders; sends the response back to the client. And the server gets to
vote, too, on whether each message/response loop is completed.

One of the differences is the types of messages a server can receive from RTR,;
we’ll go through some of them in this section of the tutorial about the server
application.

The other difference is the declaration of a partition that is sent to RTR in
the open channel call. We mentioned partitions while discussing the client
application, but said we’d discuss them later. Well, it’s later...

Initialize RTR: Just like the client, the server opens a channel to the router,
causing RTR to initialize a number of resources for use by the server, as well
as to gather information about the server. In the declare_server function in the
server example application, adg_server.c, you'll find the example server calling
rtr_open_channel. Immediately, you see that the code initializes an RTR data
structure called rtr_keyseg_t. In the example server code, the variable name of
the structure is p_keyseg. This structure is a required parameter in the server
open channel call to implement data partitioning.

Data Partitions: What is data partitioning, and why would you wish to take
advantage of it? It is possible to run a server application on each of multiple
backend machines, and to run multiple server applications on any backend
machine. When a server opens a channel to begin communicating with the
RTR router, it uses the rtr_keyseg_t information in its last two parameters to
tell RTR that it is available to handle certain key segments. A key segment
can be “all last names that start with A to K” and “all last names that start
with L to Z”, or “all user identification numbers from zero to 1000” and “all
user identification numbers from 1001 to 2000”.

RTR Application Development Tutorial B-17

RTR Application Development Tutorial

Each key segment describes a data partition. Data partitions allow you to use

multiple servers to handle the transactions all of your clients are attempting to
perform; in this way, they don’t all have to wait in line to use the same server.

They can get more done in less time.

The RTR Application Design Guide and API reference manual go into much
more detail about data partitioning.

This is how the example server application defines the key segment that it will
handle:

p_keyseg[0].ks_type = rtr_keyseg_string;
p_keyseg[0].ks_length = 1;
p_keyseg[0].ks_offset = 0;

p_keyseg[0].ks_| o_bound = &out msg->routing_key;
p_keyseg[0] . ks_hi _bound = &out msg- >routing_key;

It tells RTR that this server is interested only in records containing a string of
1 byte at the beginning of the record; this actually makes it a single character.
The value of that character is from and including the value of the character

in the routing key field of outmsg, to and including the value of the character

in the routing_key field of outmsg. As you can see, this too describes only one

character.

The structure “outmsg” is actually a msg_data_t structure, which is the
structure you saw the client application using to pass data to the server
application. The value of this character is input when you start the server.
Because we decided to use the letter h when we start the client, it would be
really nice if the server we start identifies itself as one that can handle the
client’s request. So we’ll start the server using h as well; in this way, the h
gets into outmsg->routing_key. The complete server command line for both the
client and the server is documented later in this tutorial.

status = rtr_open_channel (
&channel ,
RTR_F_OPE_SERVER,
"RTRTut or ",
NULL,
RTR_NO_PEVTNUM
RTR_NO_ACCESS,
11
p_keyseg);

check_status("rtr_open_channel", status);

B—18 RTR Application Development Tutorial

RTR Application Development Tutorial

Note

The check_status function is not part of RTR; you must define it in the
application.

The server has requested a channel on which to communicate with RTR,

and advertised itself as handling all requests from clients in the RTRTutor
facility that have a key segment value of 4. The remaining parameters contain
defaults.

Now the server waits for a message confirming that RTR opened the channel
successfully. If it did, the server can then begin receiving requests from the
client, via RTR.

status = rtr_receive_nessage(
&channel ,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_nsg,
si zeof (recei ve_nsg),
receive_time_out,
&nsgsh) ;

check _status("rtr_receive_nessage", status);

Again, we use the RTR rtr_msgsb_t structure that RTR will place information
in, and the user-defined receive_msg_t data structure (see adg_header.h) that
the client’s data will be copied into. But at this point, the server is talking
with RTR only, not the client, so it is expecting an answer from RTR in msgsb;
all the server really wants to know is that the channel has been opened
successfully. If it hasnt, the server application will write out an error message
and exit with a failure status.

if (megsb.nmsgtype != rtr_nt_opened)
{

fprintf(fpLog, " Error opening rtr channel : \n");
fprintf(fpLog,
"Og"
rtr_error_text(receive _nsg.receive _status nsg.status);
fclose (fpLog);
exit(-1)

fprintf(fpLog, " Server channel successfully opened \n");
return;

And now that the channel has been established, the server waits to receive
messages from the client application and the RTR router.

RTR Application Development Tutorial B-19

RTR Application Development Tutorial

Receive/Reply Message Loop: The server sits in a message loop receiving
messages from the router, or from the client application via the router. Like
the client, it must be prepared to receive various types of messages in any
order and then handle and reply to each appropriately. But the list of possible
messages the server can receive is different than that of the client. This
example includes some of those. First, the server waits to receive a message
from RTR.

while (RTR_TRUE) /* always, or until we exit */

status = rtr_recei ve_nessage(
&channel
RTR_NO FLAGS,
RTR_ANYCHAN,
&receive nmsg,
si zeof (receive_nsg),
receive_tinme_out,
&msgsh) ;

check _status("rtr_receive_nmessage", status);

Like the client, upon receiving the message the server checks the rtr_msgsb_t
structure’s msgtype field to see what kind of message it is. Some are messages
directly from RTR and others are from the client. When the message is from
the client, your application will read the data structure you constructed to pass
between your client and server and, based on what it contains, do the work

it was written to do. In many cases, this will involve storing and retrieving
information using your favorite database.

But when the message is from RTR, how should you respond? Let’s look at
some of the types of messages a server gets from RTR, and what should be
done about them.

switch (msgsh. nsgtype)
{

case rtr_nt_msgl_uncertain:
case rtr_nt_nsgl:

The first message this server application prepares to handle is the rér_
mt_msgl_uncertain message. This is combined with the handler for the
rtr_mt_msgl message.

The msgl messages identify the beginning of a new transaction. Rtr_mt_msgl
says that this is a message from the client, and it’s the first in a transaction.
When you receive this message type, you will find the client data in the
structure pointed to by the fourth parameter of this call. The client and server
have agreed on a common data structure that the client will send to the server
whenever it makes a request: this is the message_data_t we looked at in the

B—20 RTR Application Development Tutorial

RTR Application Development Tutorial

client section of this document. RTR has copied the data from the client’s data
structure into the one whose memory has been supplied by the server. The
server’s responsibility when receiving this message is to process it.

Recovered Transactions: The rir_mt_msgl_uncertain message type tells the
server that this is the first message in a recovered transaction. The original
server the application was communicating with failed, possibly leaving some
of its work incomplete, and now the client is talking to the standby server.
What happens to that incomplete work left by the original server? Looking
back at the client you will recall that everyone got to vote as to whether the
transaction was accepted or rejected, and then the client waited to see what
the outcome of the vote was. While the client was waiting for the results of
this vote, the original server failed, and the standby server took over. RTR
uses the information it kept storing to the recovery journal, which you also
created earlier, to replay to the standby server so that it can recover the
incomplete work of the original server.

When a server receives the “uncertain” message, it knows that it is stepping
in for a defunct server that had, to this point, been processing client requests.
But it doesn’t know how much of the current transaction has been processed
by that server, and how much has not, even though it receives the replayed
transactions from RTR. The standby server will need to check in the database
or files to see if the work represented by this transaction is there and, if not,
then process it. If it has already been done, the server can forget about it.

In the examples, rir_msgsb_t must be declared as a variable, as rtr_msgsb_t
msgsb;.

if (msgsh.megtype == rtr_m _nsgl uncertain)
replay = RTR_TRUE;
el se
replay = RTR_FALSE;

if (replay == TRUE)
[* The server should use this opportunity to
* clean up the original attenpt, and prepare
* to process this request again

*|
el se
/*
* Process the request.
*|

RTR Application Development Tutorial B-21

RTR Application Development Tutorial

The server then replies to the client indicating that it has received this
message and handled it.

reply_nsg. sequence_nunber =
recei ve_nsg. recei ve_data_nmsg. sequence_nunber;

status = rtr_reply_to_client (
channel ,
RTR_NO _FLAGS,
& eply_nsg,
si zeof (reply_nsg),
RTR_NO_MSGFM) ;

The rtr_reply_to_client call is one you haven’t seen before. Obviously, it is
responding to a client’s request. This call may not be used on a channel in an
application that has declared itself a client.

The server is using the rtr_reply_to_client call to answer the request the client
has made. In some cases, this may mean that data needs to be returned. This
will be done in the “reply_msg” structure which, like the send_msg structure,
has been agreed upon by both the client and the server. RTR will copy “sizeof”
bytes from the server’s copy of the reply_msg into the client’s copy.

check _status("rtr_reply to client", status);
br eak;

case rtr_nt_prepare:

Prepare Transaction: The rtr_mt_prepare message tells the server to prepare
to commit the transaction. All messages from the client that make up this
transaction have been received, and it is now almost time to commit the
transaction in the database. This message type will never be sent to a server
that has not requested an explicit prepare. To make this request, the server
must use the RTR_F_OPE_EXPLICIT PREPARE flag in the “flags” parameter
when opening the channel.

After determining whether it is possible to complete the transaction based on
what has occurred to this point, the server can either call rtr_reject_tx to reject
the transaction, or set all of the required locks on the database before calling
rtr_accept_tx to accept the transaction.

Because this example code is not dealing with a database, nor is it bundling
multiple messages into a transaction, the code here immediately votes to
accept the transaction.

B—22 RTR Application Development Tutorial

RTR Application Development Tutorial

status = rtr_accept_tx (
channel ,
RTR_NO_FLAGS,
RTR_NO_REASQN) ;

check _status("rtr_accept _tx", status);
break;
case rtr_nt_rejected:

Transaction Rejected: The rtr_mt_rejected message is from RTR, telling the
server application that a participant in the transaction voted to reject it. If one
participant rejects the transaction, it fails for all. The transaction will only be
successful if all participants vote to accept it. When it receives this message,
the server application should take this opportunity to roll back the current
transaction if it is processing database transactions.

br eak;
case rtr_nt_accepted:

Transaction Accepted: RTR is telling the server that all participants in this
transaction have voted to accept it. If database transactions are being done
by the server, this is the place at which the server will want to commit the
transaction to the database, and release any locks it may have taken on the
database.

br eak;

} /* end of switch */
} /* end of while |oop */

Note that there is no close_channel call in the server. This is because the RTR
router closes the channel and stops the server when it sees fit. RTR makes
this decision.

That’s it. You now know how to write a client and server application
using RTR as your network communications, availability and reliability
infrastructure. Congratulations!

RTR Application Development Tutorial B-23

RTR Application Development Tutorial

Build and Run the Servers: Compile the adg_server.c and adg_shared.c
module on the operating system that will run your server applications. If you
are using two different operating systems, then compile it on each of them. To
build on UNIX, issue the command:

cc -0 server adg server.c adg_shared.c /usr/shlib/librtr.so -DUNI X

You should start the servers before you start your clients. They will register
with the RTR router so that the router will know where to send client
requests. Start your primary server with the appropriate ‘run” command for
its operating system along with the two parameters 1" and “h”. To run on
UNIX:

%server 1 h

Start your standby server with the parameters "2” and "h".

% server 2 h

Build and Run the Client: Compile the adg_client.c and adg_shared.c module
on the operating system that will run your client application. To build on
UNIX:

%cc -0 client adg client.c adg_shared.c /usr/shlib/librtr.so -DUNI X
Run the client with the following command:

%client 1 h 10

or

C\RtrTutor\> client.exe 1 h 10

But Wait! There’s More! This tutorial has only scratched the surface of
RTR. There is a great deal more that RTR gives you to make your distributed
application reliable, available, and perform better. The following sections of
this document highlight some of the capabilities you have at your service.
For more details on each item, and information on what additional features
will help you to enhance your application, look first through the HP Reliable
Transaction Router Application Design Guide. Then, earlier sections of this
manual will tell you in detail how to implement each capability.

B—24 RTR Application Development Tutorial

RTR Application Development Tutorial

Training Services offers training classes for RTR. If you’d like to attend any of
them, contact your local representative.

Callout Server: RTR supports the concept of a “callout server” for
authentication. You may designate an additional application on your server
machines or your router machine as a callout server when it opens its channel
to the router. Callout servers are asked to check all requests in a facility, and
are asked to vote on every transaction.

Events: In addition to messages, RTR can be used to dispatch asynchronous
events on servers and clients. A callback function in the user’s server and
client applications can be designated for RTR to call asynchronously to
dispatch events to your application.

Shadowing: This tutorial only discussed failover to a standby server. But
RTR also supports shadowing: while your server is making changes to your
database, another “shadow” server can be making changes to an exact copy
of your database in real time. If your primary server fails, your shadow
server will take over, and record all of the transactions occurring while your
primary server is down. Your primary server will be given the opportunity to
update the original database and catch up to the correct state when it comes
back up. So as you can see, if your database and transactions are important
enough to you, you have the opportunity to double protect them with an RTR
configuration that includes some of the following:

e A standby software server on a primary hardware backend system

e A shadow backend system replicating all transactions on a duplicate
database

e Failover backend systems for each of your primary backends
e Failover routers

b Concurrent servers

Transactions: One of RTR’s greatest strengths is in supporting transactions.
The RTR Application Design Guide goes into more detail regarding
transactions and processing of transactions.

RTR Utility: You've seen how to use the RTR utility (or CLI) to start RTR and
to create a facility. But the RTR utility contains many more features than this,
and in fact can be used to prototype an application. Refer to the RTR System
Manager’s Manual for details.

RTR Application Development Tutorial B-25

Index

Branch qualifier, 3-20, 3-23

A Broadcast, 2-2
Accept transaction, 3-3 Buffer
’ user, 2-12

Access parameter, 3-33

adg_client.c file, B-6

API, 1-1,2-1,2-2,2-5
optimizations, 2-9 C

Application Callback function, B-25

bll.lﬂdg 42_31 A9 Callout server, 2-10, B-25
cient, 27, A BE, 3-29

client/server, B-1 TR. 3-31
compile, 4-3 C ﬁles’ B-6
ﬁXItdhaI}i(}Ier,B2;7 Channel identifier, 3-3, 3-6, 3-10, 3-16,
l.eelli eI“1 3e, — 3-19, 3-24, 3-44, 3-49, 3-52, 3-74,
ink, 4- 3-88, 3-90, 3-96
prototype, B-25 Channels, 2-1
server, 2-1, A—? number of, 3-1
AST-driven processing, 1-3 Checking status, B-9
AST operations, 1-2 Classes ¢ ’

Asynchronous events, B-25 information, 3-58

Build application, 4-3

Authentication server, 2-10 CLL 1-1
Client
B application, 2-1, A-2
Babel fish, B-11 nurpbfer, ‘B—12
Backend optimization, 2-10
node, B-3 program, 2-4
Backlog, 2-32 ‘Sample, B—12‘ '
BE callout server. 3-29 Client/server application, B-1
BE nodes , Close immediate flag, 3-10

Clusters, B—4, B-5
C modules, B-6
Code
header, A-13
shared, A-11

number of, 3-1
Bounds value, 3-34

Index—1

Command

DELETE FACILITY, 2-14

ps, B4

show process, B—4
Command line interface, 1-1
Commit sequence number, 2-31
Compile application, 4-3
Compile sequence, 4-1
Completion notification, 3—-82

Completion status, 2-12, 3—4, 3-27

Computer nodes, B-1
Concurrency, 2-7
Context

user, 3-88

user-defined, 3-88
Conversion

data type, 2-29
Create partition, 3-27
CSN, 2-31

D

Daemons, B-4, B-5, B-7
Data marshalling, 2-28
Data partitioning, B-17
Data returned with event, 2-22
Data structure, B-7
message_data_t, B-12
Data type, B-11
conversion, 2-29
rtr_status_data_t, 2-15
Data types, B-11
DECdtm flag, 3-29
DECnet environment, 1-1
DECnet Phase IV, 1-1
DELETE FACILITY command, 2-14
Delete partition, 3-27
Design restriction
server, 2-31
Dirty read, 2-31

Index—2

E

Endian, 1-2, 2-28, B-6
Endian order, B-11
Environmental limits, 3-1
Error code, 3-51
Error log message, 2-30
Error number, 3-13
Error text, 3-13, B-9
Event

frontend gain, 2-22

frontend loss, 2-22
Event Notification, 2-21
Event number, 2-14, 2-17, 3-7, 3-16, 3-32,

3-46

Event number range, 3-32
Event recipients, 3-32
Event returns data, 2-22
Events

asynchronous, B-25
EVINUM, 2-17
Exclusive lock, 2-31
Exit handlers, 2-7
Explicit accept, 2-11
Explicit prepare, 2-11

F

Facilities

number of, 3-1
Facility

name, B-8
Failover

capability, B-6

router, B-25
FE nodes

number of, 3-1
Field

length, 3-2

tid, 3-46
Files

*.C, B-6

header, B-6

Flag Idle time, 2-32

close immediate, 3-10 Implicit acknowledgment, 3-11
independent, 2-33 Independent
RTR_F_ACC_FORGET, 3—4 flag, 2-33, 34
RTR_F_ACC_INDEPENDENT, 2-32, 3—4 transaction, 3-53
RTR_F_OPE_EXPLICIT ACCEPT, 2-11 Information classes, 3-58
RTR_F_OPE_EXPLICIT PREPARE, 2-11 Initialize RTR, B-7
shadow, 3-29 Install RTR, B-3
standby, 3-29 Interface

Floating point, 2-29 XA, 2-28

Foreign transaction manager, 3-28

Forget J
flag, 3—4
transaction, 3-10 Journal

Format leave transaction in, 3-10
message, 3-7, 3-17 recovery, B—4, B-21

Frontend removal fI‘OIl’l, 3-10
gain event, 2-22 scan, 3-28
loss event, 2-22 writing data, B—4
node, B-2 Journal file

size of, 3-1
G Journal files

number of, 3-1

Global transaction, 3-20
K

Key range, 3-29

H

Handle Key range data returned, 2-22
user-defined, 3-90 Key segments, 3-33
Handler Key value, 3-34
exit, 2-7
wakeup, 3-95 L
Hardware platforms, 3-53, 3-75
Header code, A-13 Leave transaction in journal, 3-10
Header file, B-6 Length
application, B-7 field, 3-2
rtrh, B-6 message, 3-75
Hot swap, B—4 Limits
environmental, 3-1
| Link application, 4-3
Lock
Identifier exclusive, 2-31
channel, 3-3 Loop

message, B-11

Index—3

M

O

Managed object type, 3-80

Memory

size of, 3-1

Message

error log, 2-30

format, 2-28, 2-29, 3-7, 3-17, 3-53
length, 3-7, 3-16, 3-75

loop, B-11
prepare, B-22
receiving, B-20
size, 3-1

status block, 2-12, 3-45, 3-90, B-10

uncertain, B-20

Messages

Messages per transaction, 3-1
Message status block, 2-12
Message type, 2-5, 2-12, 2-13, 2-14

receiving, B-10
send, B-11
user event, 3-8, 3-17

rtr_mt_rtr_event, 2-17

Message validation, 2-31

message_data_t data structure, B-12

Mixed endian, 2-28
Modules

N

C, B-6

Named partition, 3-34
Network

not responding, 3-85
packet, B-6
protocol, B-6

NFS, B4
Node role, B-5
Nodes

computer, B-1

Notification

completion, 3-82
event, 2-21

Index—4

Object

partition, 3-79

transaction, 3-79
Object type, 3-79

managed, 3-80
Open a channel, B-7
Operating systems

different, B-24
Optimization

client, 2-10

voting, 2-10
Optimizations, 2-9
Oracle

server, B-5

P

Packet

network, B-6
Parameter

access, 3-33

rcpnam, 3-7, 3-16, 3-32

rcpspe, 3-7, 3-16, 3—-32
Partition, 2-31

creation, 3-27

deletion, 3-27

name, 3-34, 3—41

object, 3-79

range, B-12
Partitioning

data, B-17
Partitions

number of, 3-1
Prepare

message, 3-29, B-22
Processes

RTR, B-5, B-7
Processes per node

number of, 3-1
Program examples, 2-4

Protocol
network, B-6
Prototype
application, B-25
ps command, B—4

Q

Qualifier
branch, 3-20
select, 3-79

R

Range

event number, 3-32
rcpnam parameter, 3-7, 3—-16, 3—-32
rcpspe parameter, 2-20, 3-7, 3-16, 3—32
Read

dirty, 2-31
Read-only server, 3-75
Reason

code, 2-15

field, 3-49

mask, 3-4
Received message types

clients, 2-14

servers, 2-13
Receive timeout, 3-45
Receiving message, B-20
Receiving messages, B-10
Recipient name, 2-20, 3-32
Recovered transaction, B-21
Recovery journal, B—4, B-21
Register function, 3-93
Rejected

transaction, B-23
Remove from journal, 3-10
Resource manager, 3-35
Restriction

server design, 2-31
Retry

count, 2-30

Return status, B-9
Return value
RTR_STS_SRVDIED, 2-30
RM, 3-35
Rogue transaction, 2-30
Role
of node, B-5
Roles, 2-22
Router, B-7
callout server, 3-31
failover, B-25

node, B-3
RPC stubs, B-5, B-6
RTR

API, 1-1,2-1

channels, 2-1
daemons, B—4, B-5, B-7
data types, B-11
error log message, 2-30
error text, B-9
initialize, B-7
install, B-3
processes, B-5, B-7
router, B-7
services, B—4
structures, B-7
transactions, 2-1
utility, B-25
rtr.h header file, B—6
RTR event returns data, 2-22

rtr_accept_tx call, 2-2, 2-3, 2-6, 2-11, 2-30,

2-31, 3-3
rtr_broadcast_event call, 2-3, 3-6
rtr_close_channel call, 2-3, 2-5, 2-6, 3—10
rtr_error_text call, 2-3, 3-13
rtr_ext_broadcast_event call, 2-3, 3-15
RTR_F_Acc FORGET flag, 3-4
RTR_F_ACC_INDEPENDENT flag, 2-32, 3—4
RTR_F_OPE_EXPLICIT_ACCEPT flag, 2-11
RTR_F_OPE_EXPLICIT_PREPARE flag, 2-11
RTR_F_SEN_accepT flag, 2-10
rtr_get_tid call, 2-3, 3-19
rtr_get_user_context call, 2-3, 3-24

Index-5

RTR_MAX_MSGLEN, 3-75
rtr_msgsb_t data structure, B-10
rtr_mt_accepted message, 2-1, 2-6, 3-5
rtr_mt_closed message, 3-83, 3-84
rtr_mt_prepare message, 2-11
rtr_mt_rejected message, 2-1, 2—6
rtr_mt_rtr_event message type, 2-17
RTR_NO_USER_CONTEXT, 3—25
rtr_open_channel call, 2-2, 2-3, 2-5, 2-11,
2-17, 3-26
rtr_reason_t code, 2-15
rtr_receive_message call, 2-3, 2-5, 2-6, 2-7,
2-11, 2-12, 3-44
rtr_reject_tx call, 2-3, 2-6, 3-49
rtr_reply_to_client call, 2-3, 3-52
rtr_request_info call, 2-3, 3-56
rtr_send_to_server call, 2-3, 2-5, 2-6, 2-10,
3-74
rtr_set_info call, 3-78
rtr_set_user_context call, 2-3, 3-88
rtr_set_user_handle call, 2-3, 3-90
rtr_set_wakeup call, 2-3, 2-7, 3-93
rtr_start_tx call, 2-3, 2-6, 2-10, 3-96
rtr_status_data_t data type, 2-15, 34,
3-81, 3-83, 3-84
RTR_STS_ACPNOTVIA, 3-94
RTR_STS_BYTLMNSUFF, 3-94
RTR_STS_INVCHANNEL, 2-7, 3-89, 3-94
RTR_STS_NOACP, 3-94
RTR_STS_OK, 3-89, 3-94
RTR_STS_SRVDIED return value, 2-30

S

Sample client, B-12

Secondary
idle time, 2-32
shadow, 2-31
Security
key, 3-33

Select qualifier, 3-79
Send messages, B-11
Serializability, 2-31

Index—6

Server
application, 2-1, A-7
attributes, 3-29
authentication, 2-10
BE callout, 3-29
callout, 2-10, B-25
design restriction, 2-31
no recovery, 3-30
no standby, 3-30

Oracle, B-5
primary, B-2
program, 2-5

read-only, 3-75
receive replies, 3-30
shadow, B-25
SQL, B-5
standby, B-2, B-5, B-25
TR callout, 3-31
Services
RTR, B4
Shadow
flag, 3-29
pair, 3-31
secondary, 2-31
server, B-25
site, 2-31
Share, B-5
Shared code, A-11
Show process command, B—4
SQL
calls, 3-36
server, B-5
Standby
flag, 3-29
server, B-3, B-5, B-25
Start RTR, B-3
State changes
transaction, 3-80
Status
checking, B-9
data type, 2-15
return, B-9
Status block
message, 2-12, 3-90, B-10

Suspend timeout, 3-81

T

Task Manager, B—4
Threads per application
number of, 3-2
tid field, 3-46
Timeout
exceeded, 3-85
suspend, 3-81
transaction, 3-96
Time zones, B-6
TR
callout server, 3-31
Transaction, 2-1, 2-6
accept, 3-3
forget, 3-10
grouping, 2-31
identifier, 3-97
independent, 3-53
object, 3-79
recovered, B-21
rejected, B-23
rogue, 2-30
state changes, 3-80
timeout, 3-96
Transaction manager
foreign, 3-28
TR nodes
number of, 3-1
Type of object, 3-79

U

Uncertain

message, B-20
User buffer, 2-12, 3-45
User context, 3-88

User-defined context, 3-88
User-defined handle, 3-90
User event messages, 3-8, 3-17

Utility

RTR, B-25
V
Validation

message, 2-31
Version mismatch, 3-98
Voting, B-15

Voting optimization, 2-10

W

Wakeup
feature, 3-94
routine, 2-7
Wakeup handler, 3-95
Wildcards, 3-7, 3-16
Windows share, B-5

X

XA
protocol, 3-31
specification, 3-20
support, 2-28
usage, 3-35, 3—40
XID structure, 3-20

Index—7

