
HP Reliable Transaction Router

C Application Programmer’s
Reference Manual
Order Number: AA-Q88BJ-TE

June 2005

This manual explains how to design and code applications for HP Reliable
Transaction Router (RTR) using the C programming language. It contains
full descriptions of the RTR C application programming interface (API)
calls, and includes a short tutorial.

Revision/Update Information: This manual supersedes the Reliable
Transaction Router Application
Programmer’s Reference Manual, Version
4.2.

Software Version: HP Reliable Transaction Router Version
5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2003, 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group. Java is a US trademark of Sun
Microsystems, Inc.

This document was prepared using DECdocument, Version 3.3-1B.

Contents

Preface . ix

1 Introduction

1.1 RTR Application Programming Interface 1–1
1.2 C Programming and RTR APIs . 1–1
1.2.1 Compatibility Between RTR Versions 1–1
1.2.2 Reasons for a C Programming API . 1–2
1.2.3 Benefits of the C Programming API . 1–2
1.2.4 Comparison of OpenVMS and C Programming API Calls . . . 1–3

2 Overview of the C Programming API

2.1 Transactional Messages . 2–1
2.2 RTR Channels . 2–1
2.3 Broadcast Messages and Events . 2–2
2.4 C Programming API Calls . 2–2
2.5 Programming Examples . 2–4
2.5.1 Simple Client . 2–4
2.5.2 Simple Server . 2–5
2.6 Using the C Programming API . 2–5
2.7 Concurrency . 2–7
2.8 Exit Handlers in Applications . 2–7
2.9 Using the RTR Set Wakeup Routine . 2–7
2.9.1 Restrictions on the RTR Wakeup Handler 2–8
2.10 API Optimizations . 2–9
2.10.1 Client Optimization . 2–10
2.10.2 Voting Optimization and Server Flags 2–10
2.10.2.1 The RTR_F_OPE_EXPLICIT_PREPARE Flag 2–11
2.10.2.2 The RTR_F_OPE_EXPLICIT_ACCEPT Flag 2–11
2.11 RTR Messages . 2–12
2.12 RTR Events . 2–16
2.12.1 RTR Event Names and Numbers . 2–17

iii

2.12.2 Developing Applications to Use Events 2–18
2.12.3 Event Management by RTR . 2–26
2.12.4 Event Troubleshooting . 2–27
2.13 Use of XA Support . 2–28
2.14 RTR Applications in a Multiplatform Environment 2–28
2.14.1 Defining a Message Format . 2–28
2.14.1.1 Data Types . 2–30
2.14.1.2 Alignment . 2–30
2.15 Application Design and Tuning Issues . 2–30
2.15.1 Transactions That Can Cause Server Failure 2–30
2.15.2 Transaction Grouping and Database Applications 2–31
2.15.3 Transaction Sequence and Shadow Servers 2–31
2.15.4 Transaction Independence . 2–32
2.15.5 Handling Error Conditions . 2–33

3 RTR Call Reference

3.1 RTR Environmental Limits . 3–1
3.2 RTR Maximum Field Lengths . 3–2
3.3 RTR C API Calls . 3–2

rtr_accept_tx . 3–3
rtr_broadcast_event . 3–6
rtr_close_channel . 3–10
rtr_error_text . 3–13
rtr_ext_broadcast_event . 3–15
rtr_get_tid . 3–19
rtr_get_user_context . 3–24
rtr_open_channel . 3–26
rtr_receive_message . 3–44
rtr_reject_tx . 3–49
rtr_reply_to_client . 3–52
rtr_request_info . 3–56
rtr_send_to_server . 3–74
rtr_set_info . 3–78
rtr_set_user_context . 3–88
rtr_set_user_handle . 3–90
rtr_set_wakeup . 3–93
rtr_start_tx . 3–96

iv

4 Compiling and Linking Your Application

4.1 Compilers . 4–2
4.2 Linking Libraries . 4–3

A RTR C API Sample Applications

A.1 Overview . A–1
A.2 Client Application . A–2
A.3 Server Application . A–7
A.4 Shared Code . A–11
A.5 Header Code . A–13

B RTR Application Development Tutorial

Index

Examples

2–1 Example Client . 2–4
2–2 Example Server . 2–5
2–3 Type rtr_status_data_t . 2–15
2–4 User Event Example . 2–20
2–5 RTR and User Event Example . 2–20
2–6 Broadcast Event Example . 2–21
2–7 Frontend Gain and Loss Examples . 2–22
2–8 Returned Event Key Range Data Example 2–24
2–9 Receive Message Example . 2–25
3–1 Client Application . 3–37
3–2 Server Application . 3–39
3–3 Sample XA Server Application, Version 4.1 and Later 3–40
3–4 Sample XA Server Application Prior to Version 4.1 3–41
3–5 Use of Partition Names . 3–42
3–6 RTR Message Status Block . 3–45

v

Figures

1 RTR Reading Path . xii
4–1 Compile Sequence . 4–2

Tables

1 RTR Documents . x
2 Conventions . xi
1–1 OpenVMS API (V2) and C Programming API (V3)

Compared . 1–3
2–1 C Programming API Calls . 2–3
2–2 RTR Received Message Types for Server Applications 2–13
2–3 RTR Received Message Types for Client Applications 2–14
2–4 Contents of the User Buffer for Different Message Types . . . 2–15
2–5 RTR Event Names and Numbers . 2–17
2–6 Symbols for Event Lists . 2–19
2–7 Event Notifications . 2–22
2–8 Events that Return Key Range Data 2–23
2–9 Independent Transaction Flags . 2–32
3–1 Environmental Limits . 3–1
3–2 RTR Maximum Field-Length Definitions 3–2
3–3 Accept Transaction Flags . 3–4
3–4 Get TID Flags . 3–20
3–5 Format Identification and Data Content 3–21
3–6 Open Channel Flags (One Required) 3–27
3–7 Open Channel Client Flags . 3–28
3–8 Open Channel Server Flags . 3–29
3–9 Key Segment Data Type . 3–34
3–10 Reply To Client Flag . 3–53
3–11 Information Classes . 3–58
3–12 Application Process ("prc") Strings . 3–59
3–13 Client Process ("cli") Strings . 3–60
3–14 Facility ("fac") Strings . 3–60
3–15 Global Configuration and Status ("gcs") Strings 3–61
3–16 Key Segment ("ksg") Strings . 3–62
3–17 Node Links ("lnk") Strings . 3–62
3–18 Node and ACP ("rtr") Strings . 3–64

vi

3–19 Partition on a Backend ("bpt") Strings 3–64
3–20 Partition on a Router ("rpt") Strings 3–65
3–21 Partition History ("hpt") Strings . 3–65
3–22 Server Process ("srv") Strings . 3–65
3–23 Transaction on a Backend ("btx") Strings 3–66
3–24 Transaction on a Frontend ("ftx") Strings 3–67
3–25 Transaction on a Router ("rtx") Strings 3–67
3–26 Send to Server Flags . 3–75
3–27 Select Qualifiers for the Set Partition Object 3–79
3–28 Select Qualifiers for the Set Transaction Object 3–79
3–29 Valid Set Transaction State Changes 3–80
3–30 Qualifiers for Set Partition . 3–80
3–31 Qualifiers for Set Transaction . 3–82
4–1 Compilers for Developing RTR Applications 4–2

vii

Preface

Purpose of This Manual
This manual is the reference source for persons writing application programs
using Reliable Transaction Router (RTR) in the C programming language. It
completely describes the RTR C application programming interface (API).

Document Structure
This manual contains four chapters and two appendices:

• Chapter 1 introduces the RTR C programming interface.

• Chapter 2 provides a guide to writing RTR applications.

• Chapter 3 describes the RTR C Application Programming Interface (API)
showing the syntax and data structures for each RTR call.

• Chapter 4 describes how to compile and link your application.

• Appendix A provides two short RTR C API sample applications and their
shared and header files.

• Appendix B provides a short tutorial for the application programmer.

Related Documentation
Table 1 describes RTR documents and groups them by audience.

ix

Table 1 RTR Documents

Document Content

For all users:

HP Reliable Transaction Router
Release Notes1

Describes new features, corrections,
restrictions, and known problems for RTR.

HP Reliable Transaction Router
Getting Started

Provides an overview of RTR technology and
solutions, and includes the glossary that
defines all RTR terms.

HP Reliable Transaction Router
Software Product Description

Describes product features.

For the system manager:

HP Reliable Transaction Router
Installation Guide

Describes how to install RTR on all supported
platforms.

HP Reliable Transaction Router
System Manager’s Manual

Describes how to configure, manage, and
monitor RTR.

For the application programmer:

HP Reliable Transaction Router
Application Design Guide

Describes how to design application programs
for use with RTR, with both C++ and C
interfaces.

HP Reliable Transaction Router JRTR
Getting Started 2

Provides an overview of the object-oriented
JRTR Toolkit including installation,
configuration and Java programming concepts,
with links to additional online documentation.

HP Reliable Transaction Router C++
Foundation Classes

Describes the object-oriented C++ interface
that can be used to implement RTR object-
oriented applications.

HP Reliable Transaction Router C
Application Programmer’s Reference
Manual

Explains how to design and code RTR
applications using the C programming
language and the RTR C API. Contains full
descriptions of the basic RTR API calls.

1Distributed on software kit.
2In downloadable kit.

You can find additional information about RTR, including the Software Product
Descriptions, on the RTR website found through http://www.hp.com links to
middleware products or at http://www.hp.com/go/rtr .

x

Conventions
Table 2 describes the conventions used in this guide.

Table 2 Conventions

Convention Meaning

boldface Boldface is used for emphasis.

italic Italics indicate arguments or variables, and titles of
manuals.

rtr_start_tx() Monospaced font indicates the name of an RTR API call
in text, constants, and RTR message types returned by an
RTR call.

RTR_STS_OK Small capitals show RTR commands and return status
values in text and examples.

. . . Horizontal ellipsis in examples indicates one of the
following:

Additional arguments in a statement have been
omitted.

The preceding item can be repeated one or more
times.

Additional parameters, values, or other information
can be entered.

.

.

.

Vertical ellipsis indicates the omission of items from a code
example or command format.

numbers All numbers in text are decimal, unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are
explicitly indicated.

/* . . . */ Comments in source code.

- Continuation character in command-line and some
programming examples.

Reading Path
The reading path to follow when using the Reliable Transaction Router
information set is shown in Figure 1.

xi

Figure 1 RTR Reading Path

VM-0818A-AI

System Manager Application Programmer

= Tutorial
(Online Only)

If C++

If Java

If C

Getting
Started

C Application
Programmer’s
Reference
Manual

Application
Design
Guide

JRTR
Getting
Started

System
Manager’s
Manual

Installation
Guide

RTR Help

(Online Only)

C++
Foundation
Classes

= Glossary

Release
Notes

SPD

xii

1
Introduction

This chapter introduces the Reliable Transaction Router C programming
interface. This interface was formerly called the Portable API. RTR concepts
and terms are fully defined in HP Reliable Transaction Router Getting
Started.

1.1 RTR Application Programming Interface
The RTR C application programming interface (API) that is provided with
Reliable Transaction Router is identical on all hardware and operating system
platforms that support RTR. This API is described in the following chapter.

In addition, a web browser and a command line interface (CLI) to the C API
are available. The CLI enables you to write simple RTR applications for
testing. The RTR CLI is illustrated in HP Reliable Transaction Router Getting
Started and fully described in the HP Reliable Transaction Router System
Manager’s Manual.

1.2 C Programming and RTR APIs
The C-programming RTR API was made available in Reliable Transaction
Router Version 3. It superseded the OpenVMS API used in Reliable
Transaction Router Version 2 for new applications. The RTR C API is
available on all platforms on which RTR is supported.

1.2.1 Compatibility Between RTR Versions
Reliable Transaction Router Version 5 interoperates with RTR Version 4 in
a DECnet environment using DECnet Phase IV naming. (The same version
of RTR must be installed on all routers and backends. See the section on
Network Transports in the HP Reliable Transaction Router System Manager’s
Manual to find out how to configure your Version 5 nodes.)

Note that the size of an RTR transaction ID was changed in Reliable
Transaction Router Version 3 to 28 bytes. (The change ensures that the
transaction ID contains a unique node specification.) This remains true for
later versions of RTR.

Introduction 1–1

Introduction
1.2 C Programming and RTR APIs

1.2.2 Reasons for a C Programming API
RTR was first developed for use within an OpenVMS environment. Reliable
Transaction Router Version 3 extended the applicability of RTR to allow
users to create fault-tolerant distributed applications running on networks of
heterogeneous machines and platforms.

The OpenVMS API presented some incompatibilities when used on non-
OpenVMS platforms as follows:

1. The "$" character contained in all RTR identifiers is not permitted in
identifiers in some languages.

2. There was no provision for reformatting user messages passed between
machines to account for differing machine representations of particular
data types.

3. RTR permits applications to be written to perform multiple concurrent
operations, a feature that can be critical for good performance in high-
volume transaction processing systems. The notification mechanisms used
to indicate completion of such asynchronous operations (event-flag, txsb,
completion-AST) were OpenVMS-specific.

1.2.3 Benefits of the C Programming API
The benefits of using the C programming API are:

• Portability over a wide range of language and machine environments

• Simplified handling of concurrency, independent of the type of operating
system

• Support for communication between machines with different hardware
representations of common data types (little-endian and big-endian, and so
forth)

• Interoperability with existing applications using the OpenVMS API

• Features extended above those provided by the OpenVMS API

• Improved performance for commonly-used transaction types

• Support for use within a threaded environment

The C programming API has been designed to:

• Avoid the problem of applications dropping threads.

• Simplify the API.

1–2 Introduction

Introduction
1.2 C Programming and RTR APIs

• Schedule concurrent application operations in the same FIFO manner
as is used with AST-driven processing on OpenVMS. This avoids the
synchronization worries faced by the application writer when working with
ASTs.

• Make it impossible for an application to stall by waiting for one operation
to complete and hence being unable to respond to some other event.

• Permit a more efficient implementation. RTR does not have to maintain
multiple internal queues.

1.2.4 Comparison of OpenVMS and C Programming API Calls
Table 1–1 compares the OpenVMS and C Programming API calls.

Table 1–1 OpenVMS API (V2) and C Programming API (V3) Compared

OpenVMS API C Programming API

$dcl_tx_prc() rtr_open_channel()

$start_tx() rtr_start_tx() [optional]

$commit_tx() rtr_accept_tx()

$abort_tx() rtr_reject_tx()

$vote_tx() rtr_accept_tx()/rtr_reject_tx()

$deq_tx() rtr_receive_message()

$enq_tx() rtr_send_to_server()/ rtr_reply_to_client()/rtr_
broadcast_event()

$dcl_tx_prc() (SHUT) rtr_close_channel()

$get_txi() rtr_request_info()

$set_txi() rtr_set_info()

ASTPRM (on asynch calls) rtr_set_user_handle()

– rtr_error_text()

– rtr_get_tid()

– rtr_set_wakeup()

Introduction 1–3

2
Overview of the C Programming API

The term C programming API is used to describe the RTR application
programming interface (API) adopted in Reliable Transaction Router Version 3.
This API is available on all platforms on which Reliable Transaction Router
is supported. This API was formerly called the Portable API, when first made
available on several operating systems.

2.1 Transactional Messages
RTR allows the client and server applications to communicate by entering into
a dialogue consisting of an exchange of messages between a client application
(the dialogue initiator) and one or more server applications.

Note

In the context of RTR, client and server are always applications.

Each dialogue forms a transaction in which all participants have the
opportunity to either accept or reject the whole transaction. When the
transaction is complete, all participants are informed of the transaction’s
completion status: success (rtr_mt_accepted) if all participants accepted it,
failure (rtr_mt_rejected) if any participant rejected it. (For more information
on messages, see Section 2.11, RTR Messages.)

2.2 RTR Channels
With RTR, applications can be engaged in several transactions at a time.

To support many in-progress transactions at the same time, RTR lets
applications open multiple channels. An application opens one or more
channels to RTR, and any transaction is associated with only one channel.
The transaction is said to be active on that channel. For example, a client
application opens a channel and then sends the first message of a transaction

Overview of the C Programming API 2–1

Overview of the C Programming API
2.2 RTR Channels

on that channel. All messages sent and received for that transaction are now
associated with that channel.

While waiting for a response from the server, the client application can open
a second channel and start a new transaction on it. When the transaction
on the first channel has completed, the client application may start the next
transaction on it, or simply issue the rtr_accept_tx call.

Similarly, a server application may open several channels and, when the first
message of a new transaction arrives, RTR delivers it on the first available
channel. That channel remains associated with the transaction until it
completes.

An application opens a channel before it can send or receive messages; the RTR
API call rtr_open_channel is used to do this. The RTR call specifies whether
the channel is a client channel or a server channel; it cannot be both. (This
restriction helps to simplify application structure, and to deal with the special
properties of each channel type.) A single application can, however, open client
channels and server channels.

2.3 Broadcast Messages and Events
In addition to transactional messages, client or server programs may broadcast
event messages. These are delivered to some subset of the distributed
applications, as specified by the event-number and event-name parameters.
In contrast to transactional dialogues, no completion status is subsequently
returned to the initiator. A message can be from 0 to 64K bytes long.

Both client and server channels receive messages from RTR. A client channel
receives event messages only from servers, and a server channel receives
event messages only from clients. To enable a client application to receive
event/broadcast messages from another client application, the application must
be both a client and a server application (open a channel with both CLIENT
and SERVER flags), and must be in a facility on a node that is both a frontend
and a backend. A broadcast event can be sent as long as the server channel is
open. Events are more fully described in Section 2.12, RTR Events.

2.4 C Programming API Calls
The C Programming API calls are shown in Table 2–1, C Programming API
Calls. Each call is shown with a brief description and whether it can be used
on client channels or server channels or both. Calls are listed in alphabetical
order.

2–2 Overview of the C Programming API

Overview of the C Programming API
2.4 C Programming API Calls

Table 2–1 C Programming API Calls

RTR Call Description Channel Use

rtr_accept_tx Accepts a transaction Client and server

rtr_broadcast_event Broadcasts (sends) an event
message

Client and server

rtr_close_channel Closes a previously opened
channel

Client and server

rtr_error_text Gets the text for an RTR status
number

Client and server

rtr_ext_broadcast_event Broadcasts (sends) an event
message with a timeout

Client and server

rtr_get_tid Gets the current transaction ID Client and server

rtr_get_user_context Gets the user-defined context
associated with a channel

Client and server

rtr_open_channel Opens a channel for sending and
receiving messages

Client and server

rtr_receive_message Receives the next message
(transaction message, event or
completion status)

Client and server

rtr_reject_tx Rejects a transaction Client and server

rtr_reply_to_client Sends a response from a server
to a client

Server only

rtr_request_info Requests information from RTR Client and server

rtr_send_to_server Sends a message from a client to
the server(s)

Client only

rtr_set_info Sets an RTR parameter Client and server

rtr_set_user_context Sets the value of the user-defined
context for a channel

Client and server

rtr_set_user_handle Associates a user value with a
transaction

Client and server

rtr_set_wakeup Sets a function to be called on
message arrival

Client and server

rtr_start_tx Explicitly starts a transaction Client only

Overview of the C Programming API 2–3

Overview of the C Programming API
2.5 Programming Examples

2.5 Programming Examples
The following pseudocode examples of a client and a server application
illustrate the use of the C programming API. Details have been omitted to
keep the basic structure clear.

2.5.1 Simple Client
This simple client program issues transactions and receives event messages. It
simply issues one transaction, waits for it to be processed, and in the meantime
handles any events that arrive. It then issues the next transaction. It does not
need to wait until one transaction finishes before starting the next.

The following two examples are single-threaded. They can be made
multithreaded by opening more channels. The structure of the main
receive loop does not need to be changed to implement this. Note that
rtr_receive_message receives the next message in the process input queue for
any of the channels opened by the program (unless preferred channels have
been requested in the rtr_receive_message).

Example 2–1 Example Client

rtr_open_channel() ! Open a channel to the required facility
rtr_receive_message() ! Get the completion status of the open call

! success returns rtr_mt_opened
send_loop:

rtr_send_to_server(...RTR_F_SEN_ACCEPT....)
! Send a tx-message and
! implicitly start a new tx

rcv_loop:
rtr_receive_message() ! Find out what RTR wants to tell us next
switch (message_received_type)
{

case rtr_mt_reply: Process_Reply_from_Server; break;
case rtr_mt_rtr_event: Process_RTR_Event; break;
case rtr_mt_user_event: Process_User_Event; break;
case rtr_mt_accepted: Tell_User_It_Worked; break;
case rtr_mt_rejected: Tell_User_About_Failure; break;

}

IF (message_received_type = rtr_mt_accepted)
OR (message_received_type = rtr_mt_rejected)
THEN

GOTO send_loop ! Last transaction done, issue the next one
ELSE

GOTO rcv_loop ! Get the next incoming message

2–4 Overview of the C Programming API

Overview of the C Programming API
2.5 Programming Examples

In Example 2–1, note that the switch statement tests on message type.
All messages that are received from RTR have a message type; for further
information, see Section 2.11.

2.5.2 Simple Server
Example 2–2 is a simple server that receives transactions and events.

Example 2–2 Example Server

rtr_open_channel() ! open a channel to the desired facility
rtr_receive_message() ! get the completion status of the open call

! success returns rtr_mt_opened

rcv_loop:
rtr_receive_message() ! Find out what RTR wants to tell us next

CASE message_received_type
OF

rtr_mt_msg1: Do_Some_SQL_And_Maybe_Send_A_Reply;
rtr_mt_msgn: Do_Some_More_SQL_And_Maybe_Send_A_Reply;
rtr_mt_prepare: Accept_or_Reject_Tx ;
rtr_mt_rtr_event: Process_RTR_Event;
rtr_mt_user_event: Process_User_Event;
rtr_mt_accepted: Commit_DB ;
rtr_mt_rejected: Rollback_DB ;

END_CASE;

GOTO rcv_loop

2.6 Using the C Programming API
As can be seen from the examples in the previous section, an application first
opens one or more channels by calling rtr_open_channel.

The application can then process transactions and events on the channels it
has opened. When a channel is no longer needed, the application closes it by
calling rtr_close_channel.

A transaction becomes associated with a channel in one of the following
circumstances:

1. When a client issues the first rtr_send_to_server call on a previously idle
channel

2. When a server receives from a client the first message belonging to a
transaction by calling rtr_receive_message

Overview of the C Programming API 2–5

Overview of the C Programming API
2.6 Using the C Programming API

3. When a client issues a rtr_start_tx call on a previously idle channel

From this point on the channel remains associated with the transaction until
one of the following occurs:

A. The application rejects the transaction using rtr_reject_tx.

• The transaction is over, no more messages will be received on behalf of
this transaction.

• The channel becomes idle, ready for initiation/reception of another
transaction.

B. The application accepts the transaction using rtr_accept_tx.

• After calling rtr_accept_tx the application may continue receiving
messages belonging to the transaction. However, it cannot
subsequently either reverse its decision to accept by calling
rtr_reject_tx, or (in the case of a client application) make additional
calls to rtr_send_to_server.

• The final message received for a transaction will always be
a transaction completion status; either rtr_mt_rejected or
rtr_mt_accepted.

• The channel becomes idle, ready for initiation or reception of another
transaction.

C. The application receives, by a call to rtr_receive_message, a completion
status indicating that the transaction has been rejected by some other
participant.

• The transaction is over. No more messages will be received, and no
more calls may be made on behalf of this transaction.

• The channel becomes idle, ready for initiation or reception of another
transaction.

Note that RTR considers a transaction to have been committed to the
database (so that it does not need to replay it in case of failure) when
the server indicates willingness to receive a new transaction by calling
rtr_receive_message on the channel, after having received the transaction
completion status.

Calling rtr_close_channel also indicates to RTR that the last transaction has
been committed.

2–6 Overview of the C Programming API

Overview of the C Programming API
2.7 Concurrency

2.7 Concurrency
The routine rtr_receive_message is used by an application to receive all
incoming messages, responses and events. This provides a single consistent
method of information delivery.

All RTR routines other than rtr_receive_message complete immediately, and
any responses are queued for later reception by rtr_receive_message.

The application calling rtr_receive_message may choose whether (and how
long) it should wait for an incoming message to arrive (if there is no message
available for immediate reception).

In addition, the application may optionally specify a ‘‘wakeup routine’’ to be
called by RTR when a message becomes available for reception.

2.8 Exit Handlers in Applications
Making RTR calls from within an application exit handler does not work,
because the channel is usually closed by the time the application exits. If an
exit handler contains a call to RTR, then the exit handler must be declared
after the first call to RTR. If an exit handler is declared before the first call to
RTR, then any call to RTR made within the exit handler will return an error.

The error status returned is RTR_STS_INV_CHANNEL.

2.9 Using the RTR Set Wakeup Routine
An application program may typically wish to respond to input from more than
one source. An example of this is an application program that prompts for
user input in a window and at the same time displays information received
asynchronously via broadcast events.

To avoid the application polling its various input sources, RTR provides the
rtr_set_wakeup routine. This allows the application to specify a routine to be
called when there is data to be received from RTR. The application program
can then be coded as shown in the example provided with the rtr_set_wakeup
routine.

The processing context of the application wakeup handler depends upon the
platform and RTR library variant employed.

Core RTR functionality and the C API are delivered in a single sharable
library. This library is named rtrdll on Windows, and librtr on other
platforms. The latter is supplied in two variants: librtr_r which is targeted
at developers of threaded applications, and librtr which provides a platform-
specific wakeup handler implementation.

Overview of the C Programming API 2–7

Overview of the C Programming API
2.9 Using the RTR Set Wakeup Routine

Wakeup handlers under rtrdll and librtr_r are called in a dedicated thread
created by RTR for this purpose.

Wakeup handlers under librtr on UNIX are called from a signal handler
established by RTR to handle SIGIO. If the application also wishes to use this
signal, it should establish its handler prior to the first call to the RTR API.
In this case the signal handler should be aware that the SIGIO signal may
have been generated by RTR, not necessarily by the event for which the signal
handler was written.

Wakeup handlers under librtr on OpenVMS are called from an AST handler.
In the presence of multiple competing ASTs, calling rtr_set_wakeup() from
the wakeup handler can be used to limit RTR processing and serialize the
execution of RTR events with other asynchronous activity in the program.

Rtrdll and librtr_r provide thread synchronization and are safe to use in a
multithreaded environment. Librtr offers no such protection.

It is not anticipated that applications on OpenVMS will want to use both
threads and ASTs. For this reason the RTR V2 API is functional in librtr on
OpenVMS only.

Summarizing:

Sharable Name Thread-safe Wakeup Mechanism V2 API

rtrdll Yes RTR thread No

librtr_r Yes RTR thread No

librtr/UNIX No signal handler No

librtr/OpenVMS No AST Yes

2.9.1 Restrictions on the RTR Wakeup Handler
The wakeup handler itself cannot call any function that might have to wait
such as rtr_reply_to_client, rtr_send_to_server or rtr_broadcast_event;
the only RTR call allowed in the wakeup handler is rtr_receive_message
called with a zero timeout. Other RTR calls may block or halt processing
when they need transaction IDs or flow control, which will cause unexpected
behavior. This restriction applies to both threaded and unthreaded
applications.

A threaded application does not need to use a wakeup handler; its functionality
can be provided by a dedicated thread that receives and dispatches RTR
messages.

Functions permitted in an rtr_set_wakeup() handler:

2–8 Overview of the C Programming API

Overview of the C Programming API
2.9 Using the RTR Set Wakeup Routine

• While wakeups are unnecessary in threaded application, they may be used
in common code in applications that run on OpenVMS. Because mainline
code continues to run while the wakeup is executing, extra synchronization
may be required. If the wakeup does block then it does not generally hang
the whole application.

• For an RTR wakeup handler in a signal handler within an unthreaded
UNIX application, no RTR API functions and only the very few asynch-
safe system and library functions may be called, because the wakeup
is performed in a signal handler context. An application can write to a
pipe or access a volatile sig_atomic_t variable, but using malloc() and
printf(), for example, will cause unexpected failures. Alternatively,
on most UNIX platforms, you can compile and link the application as a
threaded application with the reentrant RTR shared library -lrtr_r.

• For maximum portability, the wakeup handler should do the minimum
necessary to wake up the mainline event loop. You should assume that
mainline code and other threads might continue to run in parallel with the
wakeup, especially on machines with more than one CPU.

• The rtr_set_wakeup() call may return the errors ACPNOTVIA and
NOACP if the RTRACP process is not running. However, these errors
will only be returned once before an application succeeds in opening a
channel. Subsequent calls will succeed and install the specified handler.
Applications wishing to poll for the availability of the ACP should use the
rtr_open_channel() call.

Note

See the restriction in the HP Reliable Transaction Router System
Manager’s Manual on using the rtr_receive_message() call with V2
and RTR later versions in the same application.

2.10 API Optimizations
Reliable Transaction Router provides client and server optimizations for
greater performance and programming ease.

Overview of the C Programming API 2–9

Overview of the C Programming API
2.10 API Optimizations

2.10.1 Client Optimization
Reliable Transaction Router introduces greater flexibility and efficiency in how
transactions are packaged at the client.

The total sequence of events that a client application has to execute are as
follows:

1. Start a transaction.

2. Send one or more transaction messages, optionally receive one or more
transaction messages.

3. Either accept or reject the transaction.

4. Wait for the transaction accept or reject message and process accordingly.

5. Return to Step 1.

In Reliable Transaction Router, all these steps can be followed if required, but
optimizations allow some of the steps to be handled implicitly.

• The call to rtr_start_tx (Step 1) may be omitted if, for example, no
timeout is required for the transaction. A call to rtr_send_to_server on
a channel that does not have an active transaction automatically implies a
call to rtr_start_tx.

• Step 3 may be handled implicitly if the client wishes to accept the
transaction. This is done by setting the RTR_F_SEN_ACCEPT flag on the
last (or only) call to rtr_send_to_server.

2.10.2 Voting Optimization and Server Flags
Reliable Transaction Router introduces greater flexibility and efficiency in how
transaction voting (acceptance by servers) is handled; RTR allows implicit
voting.

In detail, the sequence of events that a server executes is as follows:

1. Get one or more transaction messages from RTR and process them.

2. Get the vote request message from RTR.

3. Issue the accept (commit).

4. Get the final transaction state.

5. Return to Step 1.

This scheme is not efficient in some cases. For example, a callout
(authentication) server may only need to receive the first message of a multiple
message transaction, whereupon it can vote immediately.

2–10 Overview of the C Programming API

Overview of the C Programming API
2.10 API Optimizations

In Reliable Transaction Router, all these steps can be enforced if required, but
optimizations allow some of the steps to be handled implicitly.

An implicit accept allows Step 3 to be omitted; the transaction is accepted by
the server when it does the next call to rtr_receive_message.

These optimizations are controlled by flags (RTR_F_OPE_EXPLICIT_PREPARE and
RTR_F_OPE_EXPLICIT_ACCEPT) on the call used to open a server channel.

2.10.2.1 The RTR_F_OPE_EXPLICIT_PREPARE Flag
A server channel may be opened with the RTR_F_OPE_EXPLICIT_PREPARE
flag; this specifies that it will receive prepare messages (messages of type
rtr_mt_prepare). The server is then expected to accept or reject a transaction
on receipt of this message (or earlier). The server may accept the transaction
before the prepare message is sent: in this case, the prepare message is not
delivered to the server.

The default behaviour of RTR (for example, when this flag is not set in the call
to rtr_open_channel) is to not send prepare messages to the server application.
In this case, RTR expects the server to accept or reject transactions without
RTR triggering it into voting activity by sending prepare messages.

2.10.2.2 The RTR_F_OPE_EXPLICIT_ACCEPT Flag
A server channel may be opened with the RTR_F_OPE_EXPLICIT_ACCEPT flag;
this specifies that it will accept transactions only by making an explicit call to
rtr_accept_tx.

The default behaviour of RTR (that is, when this flag is not set) is to treat a
server’s call to rtr_receive_message (after the last transaction message has
been received) as an implicit acceptance of the transaction.

If a transaction has been accepted before the last message has been received,
the setting of the RTR_F_OPE_EXPLICIT_ACCEPT is irrelevant.

However, if a transaction has not been prematurely accepted, when the server’s
vote is required by RTR, the setting of the flags have the following effects:

1. When both RTR_F_OPE_EXPLICIT_PREPARE and RTR_F_OPE_EXPLICIT_ACCEPT
are set, the rtr_mt_prepare message is returned to the server, and the
server must accept or reject the transaction.

2. When RTR_F_OPE_EXPLICIT_PREPARE is set but RTR_F_OPE_EXPLICIT_ACCEPT
is not set, the rtr_mt_prepare message is also returned to the server, but if
the server does not perform an explicit accept or reject, then a subsequent
call to rtr_receive_message implies an accept of the transaction.

Overview of the C Programming API 2–11

Overview of the C Programming API
2.10 API Optimizations

3. When RTR_F_OPE_EXPLICIT_PREPARE is not set but
RTR_F_OPE_EXPLICIT_ACCEPT is set, no rtr_mt_prepare message is
returned to the server, and no implicit accept of the transaction will be
performed: It is assumed that some other event will trigger the application
into voting.

4. With neither RTR_F_OPE_EXPLICIT_PREPARE nor RTR_F_OPE_EXPLICIT_ACCEPT
set, no rtr_mt_prepare message is returned to the server. An implicit
transaction accept is performed.

2.11 RTR Messages
All RTR calls return a completion status immediately except
rtr_receive_message. If the immediate status is successful, many calls will
also result in a further message or messages being delivered on the channel.

All RTR received messages are of a defined message type. The message type
is given in the message status block. (See pmsgsb on rtr_receive_message in
Chapter 3).

The message type allows your application to handle the message appropriately;
the message type indicates whether this message contains information that is
part of a transaction, or a broadcast, or RTR informational, and so on.

The use of rtr_receive_message for both RTR status messages and application
data messages requires the application designer to consider how to respond to
the different message types. Message types for server and client applications
are listed in Table 2–2 and Table 2–3.

All received messages cause the message status block (pmsgsb on
rtr_receive_message) to be filled; most message types also put data into
the user buffer (pmsg on rtr_receive_message). Only the rtr_mt_prepare
message type does not fill the user buffer.

Table 2–4 provides information put in the user buffer for each message type.
Table 2–2 and Table 2–3 list all the message types that server channels or
client channels can receive, together with a description of their meaning and
the recommended application behavior. Order is alphabetical.

2–12 Overview of the C Programming API

Overview of the C Programming API
2.11 RTR Messages

Table 2–2 RTR Received Message Types for Server Applications

Message Type Description Recommended Action

rtr_mt_accepted The specified transaction has been
accepted by all participants.

Commit the transaction in the
database and release database
locks.

rtr_mt_closed Channel has been closed. Sent by RTR
if an rtr_open_channel fails (that
is, no such facility) or as a result of
an operator command such as DELETE
FACILITY, or the last message from a
rtr_request_info or rtr_set_info
call.

Examine reason status. Roll
back database for any active
transaction.

rtr_mt_msg1 This is the first application message of
a transaction, sent by a client.

Process the message.

rtr_mt_msg1_
uncertain

This is the first application message
of a replayed transaction, that is, a
previous incarnation of the server
failed during the voting phase.

Check in database to see if the
transaction has been processed.
If not processed, redo the
transaction; else forget the
transaction.

rtr_mt_msgn This is the nth application message
(that is, not the first) of a transaction,
sent by a client.

Process the message.

rtr_mt_opened Channel has been opened. Use the channel.

rtr_mt_prepare The specified transaction is complete
(that is, all messages from the client
have been received). This message
type is only received by a server that
specified that it requires a prepare.
(Servers specify this by using the
RTR_F_OPE_EXPLICIT_PREPARE flag
on the rtr_open_channel call.)

Call either rtr_reject_tx
to reject the transaction, or
have all required database
records locked before calling
rtr_accept_tx to accept the
transaction.

rtr_mt_rejected The specified transaction has been
rejected by a participant.

Roll back the transaction.

rtr_mt_request_info Message from a previous call to
rtr_request_info.

Use information as required.

rtr_mt_rtr_event An RTR event with an associated
message.

evtnum describes which RTR
event occurred. See Table 2–5.

rtr_mt_set_info Message from a previous call to
rtr_set_info.

Use information as required.

(continued on next page)

Overview of the C Programming API 2–13

Overview of the C Programming API
2.11 RTR Messages

Table 2–2 (Cont.) RTR Received Message Types for Server Applications

Message Type Description Recommended Action

rtr_mt_user_event A user event with an associated
message.

evtnum has an application-
specific meaning.

Table 2–3 RTR Received Message Types for Client Applications

Message Type Description Recommended Action

rtr_mt_accepted The specified transaction has been
accepted by all participants.

Inform user of successful
completion.

rtr_mt_closed Channel has been closed. Sent by RTR
if an rtr_open_channel fails (for
example, no such facility) or as a result
of an operator command such as DELETE
FACILITY, or the last message from an
rtr_request_info or rtr_set_info
call.

Examine reason status.

rtr_mt_opened Channel has been opened. Use the channel.

rtr_mt_rejected The specified transaction has been rejected
by a participant.

Inform user of reason for
failure.

rtr_mt_reply This is an application reply message sent
by a server.

Process message.

rtr_mt_request_info Message from a previous call to
rtr_request_info.

Use information as
required.

rtr_mt_rettosend This message (which had been sent with
the RTR_F_SEN_RETURN_TO_SENDER
flag) could not be delivered and has been
returned.

Take appropriate action for
the transaction as required
by your application.

rtr_mt_rtr_event An RTR event with an associated message. evtnum describes which
RTR event occurred. See
Table 2–5.

rtr_mt_set_info Message from a previous call to
rtr_set_info.

Use information as
required.

rtr_mt_user_event A user event with an associated message. evtnum has an application-
specific meaning.

2–14 Overview of the C Programming API

Overview of the C Programming API
2.11 RTR Messages

Table 2–4 Contents of the User Buffer for Different Message Types

Message Type Buffer Contents

rtr_mt_accepted rtr_status_data_t, see Example 2–3.

rtr_mt_closed rtr_status_data_t, see Example 2–3.

rtr_mt_msg1 The first application message of a transaction, sent by a
client.

rtr_mt_msg1_uncertain The first application message of a replayed transaction.

rtr_mt_msgn The nth application message (that is, not the first) of a
transaction, sent by a client.

rtr_mt_opened rtr_status_data_t, see Example 2–3.

rtr_mt_prepare None.

rtr_mt_rejected rtr_status_data_t, see Example 2–3.

rtr_mt_reply An application reply message sent by a server.

rtr_mt_request_info Requested information from rtr_request_info.

rtr_mt_rettosend Returned message.

rtr_mt_rtr_event RTR event message.

rtr_mt_set_info Set information from rtr_set_info.

rtr_mt_user_event The user broadcast message.

Example 2–3 shows the data type that is returned in the user buffer with
message types rtr_mt_accepted, rtr_mt_rejected, rtr_mt_opened and
rtr_mt_closed. You can find the meaning of rtr_status_t using the call
rtr_error_text.

Example 2–3 Type rtr_status_data_t

/* Type returned with rtr_mt_rejected,*/
typedef struct /* rtr_mt_accepted, rtr_mt_opened */
{ /* and rtr_mt_closed messages. */

rtr_status_t status; /* RTR status */
rtr_reason_t reason; /* User-supplied reason */

} rtr_status_data_t;

Overview of the C Programming API 2–15

Overview of the C Programming API
2.12 RTR Events

2.12 RTR Events
What are events?
An event in RTR is a trigger that causes a notification (also called a
‘‘broadcast’’) to be sent to the application that subscribed to the event. RTR
Events are created only by RTR and are used internally by RTR to help
manage activities such as site failover. Application developers may subscribe
to RTR Events to activate certain processing in their application. User Events
are also available to enable application developers to send event notification
or broadcast messages to other RTR applications. RTR provides the call
rtr_broadcast_event to enable an application developer to trigger a User
Event.

Events have special characteristics and restrictions:

• Event notification is delivered on a subscription basis using information
supplied on the rtr_open_channel call.

• Events are not transactional and should not be used to transmit
information that is, or will be, part of an RTR transaction.

• A user application can turn on or off the reception of any events, both RTR
and user events.

• Events can only be transmitted within the RTR facility in which they are
defined. Events cannot be sent between facilities or outside RTR.

• Event notification may include an optional message, which has a size limit
of 64K.

• User Events can only be transmitted from frontend-to-backend or from
backend-to-frontend. User Events cannot be used for peer-to-peer
communication such as from frontend-to-frontend or from backend-to-
backend.

• RTR Events are transmitted from RTR-to-frontend or RTR-to-backend.

The list below shows the RTR Events that are available for subscription. These
events can be grouped in four basic categories:

• Shadow node activity (failover, failback, recovery complete)

• Standby node activity (become active, become standby, recovery complete)

• Changes in facility state and participants (clients/routers/servers entering
or exiting the facility)

• Changes in configuration of partition key ranges (server available, server
not available)

2–16 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

2.12.1 RTR Event Names and Numbers
RTR sends events to the server either inside or outside a transactional
boundary. A transaction is considered to start on receipt of an rtr_mt_msg1 or
rtr_mt_msg1_uncertain message, and to end when the transaction is accepted
or rejected (receipt of an rtr_mt_accepted or rtr_mt_rejected message).
Events containing information about primary, secondary, or standby servers
could arrive outside a transactional boundary. Gain and loss events arrive
inside transactional boundaries.

Table 2–5 lists the RTR events that can be received on a channel (associated
with the rtr_mt_rtr_event message type). Events are listed in order of event
number. See the description for rtr_open_channel in Chapter 3, RTR Call
Reference, for further information.

Table 2–5 RTR Event Names and Numbers

Event Name
Event
Number Description

RTR_EVTNUM_FACREADY 96 The facility has become operational.

RTR_EVTNUM_FACDEAD 97 The facility is no longer operational.

RTR_EVTNUM_FERTRGAIN 98 Frontend link to current router
established.

RTR_EVTNUM_FERTRLOSS 99 Frontend link to current router lost.

RTR_EVTNUM_RTRBEGAIN 100 Current router established link to a
backend.

RTR_EVTNUM_RTRBELOSS 101 Current router lost link to a
backend.

RTR_EVTNUM_KEYRANGEGAIN 102 Server(s) for new routing key range
are now available.

RTR_EVTNUM_KEYRANGELOSS 103 No more servers remain for a
particular routing key range.

RTR_EVTNUM_BERTRGAIN 104 Backend established link to a
router.

RTR_EVTNUM_BERTRLOSS 105 Backend lost link to a router.

RTR_EVTNUM_RTRFEGAIN 106 Router established link to a
frontend.

RTR_EVTNUM_RTRFELOSS 107 Router lost link to a frontend.

(continued on next page)

Overview of the C Programming API 2–17

Overview of the C Programming API
2.12 RTR Events

Table 2–5 (Cont.) RTR Event Names and Numbers

Event Name
Event
Number Description

RTR_EVTNUM_SRPRIMARY 108 Server has become primary.1

RTR_EVTNUM_SRSTANDBY 109 Server has become standby.

RTR_EVTNUM_SRSECONDARY 110 Server in a shadow pair has become
secondary.1

RTR_EVTNUM_SRSHADOWLOST 111 Server in a shadow pair lost its
shadow partner.2

RTR_EVTNUM_SRSHADOWGAIN 112 Server in a shadow pair acquired a
shadow partner.

RTR_EVTNUM_SRRECOVERCMPL 113 Server completed recovery
processing.

1 RTR will generate this event between transactional boundaries. This event can be useful to
signal the application to begin activities that should only be performed by the primary system,
such as processing credit card debits.
2 This event signals that this system is entering remember mode for future catchup of the shadow
partner.

2.12.2 Developing Applications to Use Events
Subscribing to Events
RTR Events can be used for triggering special application processing based
on a change in RTR system status, or for sending notification to the system
operator after certain application or RTR conditions that require intervention.

User Events can be used for actions such as broadcasting stock prices to update
a price table, or triggering special application processing such as handling a
failed transaction. User events can be used to send a message in a one-to-one
or a one-to-many method.

Event subscription is established when the rtr_open_channel call is executed.
See the RTR rtr_open_channel call description for details on this call. The
rtr_open_channel call is as follows:

rtr_open_channel (channel,
flags,
facnam,
rcpnam,
pevtnum,
access,
numseg,
pkeyseg)

2–18 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Two parameters on the call are used to establish event subscription: rcpnam
and pevtnum.

rcpnam is a pointer to an optional channel name for receiving event messages.
If a User Event is sent to a particular channel name, only those subscribers
that match both name AND event number are notified. For example, a client
channel named ‘‘New York’’ and a client channel named ‘‘Hong Kong’’ could
both subscribe to receive User Event number 999. If event 999 was triggered
by the server using the channel named ‘‘Hong Kong,’’ the event would be
received only by the ‘‘Hong Kong’’ client. Specify RTR_NO_RCPNAM for this
parameter if a name is not used. This parameter is case sensitive.

pevtnum is a pointer to lists of RTR and User event numbers to which the
channel wants to subscribe. These lists use the numeric values of the events
shown in Table 2–5. Use the special symbols in Table 2–6 to construct the
event list.

Table 2–6 Symbols for Event Lists

Symbol Description

RTR_NO_PEVTNUM No events selected.

RTR_EVTNUM_USERDEF Begin User Event list.

RTR_EVTNUM_RTRDEF Begin RTR Event list.

RTR_EVTNUM_ENDLIST End of entire list.

RTR_EVTNUM_UP_TO Specifies an event range in the form
x RTR_EVTNUM_UP_TO y.

RTR_EVTNUM_USERBASE Smallest User Event number (0).

RTR_EVTNUM_USERMAX Largest User Event number (250).

RTR_EVTNUM_RTRBASE Smallest RTR Event number.

RTR_EVTNUM_RTRMAX Largest RTR Event number.

Example 2–4 illustrates how to set up a list of all User Event numbers for the
rtr_open_channel call.

Example 2–5 illustrates how to set up a list of all RTR and User Event
numbers for the rtr_open_channel call.

Overview of the C Programming API 2–19

Overview of the C Programming API
2.12 RTR Events

Example 2–4 User Event Example

rtr_evtnum_t all_user_events[]={
RTR_EVTNUM_USERDEF,

RTR_EVTNUM_USERBASE,
RTR_EVTNUM_UP_TO,
RTR_EVTNUM_USERMAX,

RTR_EVTNUM_ENDLIST
} ;

Example 2–5 RTR and User Event Example

rtr_evtnum_t all_events[]={
RTR_EVTNUM_USERDEF,

RTR_EVTNUM_USERBASE,
RTR_EVTNUM_UP_TO,
RTR_EVTNUM_USERMAX,

RTR_EVTNUM_RTRDEF,
RTR_EVTNUM_RTRBASE,
RTR_EVTNUM_UP_TO,
RTR_EVTNUM_RTRMAX,

RTR_EVTNUM_ENDLIST
} ;

Sending Events
A broadcast event is triggered when the rtr_broadcast_event call is executed.
See the rtr_broadcast_event call description for details on this call. The
rtr_broadcast_event call syntax is as follows:

rtr_broadcast_event (channel,
flags,
pmsg,
msglen,
evtnum,
rcpspc,
msgfmt)

The significant parameters on this call are:

channel is the channel identifier returned from the rtr_open_channel call.
pmsg is a pointer to the message to be broadcast.
msglen is the length in bytes of the message.
evtnum is the User Event number that the application developer has
assigned to this event.
rcpspc is the optional recipient channel name that can be specified with the
rcpnam parameter on the rtr_open_channel call.

2–20 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Example 2–6 Broadcast Event Example

if (bServerShutdown)
{
sts = rtr_broadcast_event (

/* channel */ BY_CHAN_CLIENT(cCurrentChannel,client)->chan,
/* flags */ RTR_NO_FLAGS,
/* pmsg */ &msgbuf,
/* msglen */ cbTotalSize,
/* evtnum */ USER_EVT_SHUTDOWN,
/* rcpnam */ "*",
/* msgfmt */ szMsgFmt);

exit_if_error ("rtr_broadcast_event", sts);
}

Example 2–6 shows an example of an rtr_broadcast_event call.

Receiving Events
Any RTR transaction, RTR Event, or User Event can be received when
the application executes the rtr_receive_message call. See the RTR
rtr_receive_message call description for details on this call. The
rtr_receive_message call syntax is as follows:

rtr_receive_message (channel,
flags,
prcvchan,
pmsg,
maxlen,
timoutms,
pmsgsb)

The significant parameters on this call are:

channel is the channel on which the message is received.
pmsg is a pointer to an application buffer where the message is written.
maxlen is the maximum length of the application buffer in bytes.
pmsgsb is a pointer to a message status block describing the received
message.

Notification of Events
If the application has subscribed to events, any call to rtr_receive_message
can return an event notification, either an RTR Event notification or a User
Event notification. The results are described in Table 2–7.

Overview of the C Programming API 2–21

Overview of the C Programming API
2.12 RTR Events

Table 2–7 Event Notifications

If this
notification
is delivered:

the rtr_receive_message call
returns a message of type:

and the user/application buffer
contains the associated:

RTR Event rtr_mt_rtr_event event message

User Event rtr_mt_user_event user broadcast message

When RTR receives a role-gain or role-loss event, it provides both the facility
name and the nodename of the node (FE, TR, or BE) that sent the event
notification. Only events for roles (FE, TR, BE) provide this additional
information. For a definition of roles in RTR, see the HP Reliable Transaction
Router Getting Started manual and the RTR Glossary. In RTR, only facilities
have roles. Example 2–7 shows the results of a frontend gain event (FEGAIN,
event 106) and a frontend loss event (FELOSS, event 107).

Example 2–7 Frontend Gain and Loss Examples

RTR> call rece
%RTR-S-OK, normal successful completion

channel name: RTR$DEFAULT_CHANNEL
msgsb

msgtype: rtr_mt_rtr_event
msglen: 34
evtnum: 106 (RTR_EVTNUM_RTRFEGAIN)

message
facility: RTR$DEFAULT_FACILITY

link: nodename
RTR> call rece
%RTR-S-OK, normal successful completion

channel name: RTR$DEFAULT_CHANNEL
msgsb

msgtype: rtr_mt_rtr_event
msglen: 34
evtnum: 107 (RTR_EVTNUM_RTRFELOSS)

message
facility: RTR$DEFAULT_FACILITY

link: nodename

2–22 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Returned Event Data
Two RTR Events return key range data to the application:

Table 2–8 Events that Return Key Range Data

Event Name Event Number

RTR_EVTNUM_KEYRANGEGAIN 102

RTR_EVTNUM_KEYRANGELOSS 103

The key range data are received in the message returned to the application,
with the length of the message specified in the message status block (msgsb).
For example, the following illustrates rtr_receive_message usage.

rtr_status_t
rtr_receive_message (

rtr_channel_t *pchannel,
rtr_rcv_flag_t flags,
rtr_channel_t *p_rcvchan,
rtr_msgbuf_t pmsg,
rtr_msglen_t maxlen,
rtr_timout_t timoutms,
rtr_msgsb_t *p_msgsb
)

The message status block pointed to by *p_msgsb has the following structure:

typedef struct {
rtr_msg_type_t msgtype;
rtr_usrhdl_t usrhdl;
rtr_msglen_t msglen;
rtr_tid_t tid;
rtr_evtnum_t evtnum;

}rtr_msgsb_t;

When an event number is 102 or 103, RTR returns key range data (the low
and high bounds) in the message, padded as required for data marshalling and
interoperability. The key range data can be examined by the application. For
more detail on data marshalling and formatting, see Section 2.14.

Bounds data are treated as if defined as a structure. For example, if there are
two key segments defined as rtr_uns_8_t and rtr_uns_32_t, then the bounds
data are copied to outbuf as if they were contained in the structure; that is,
the 32-bit ints are correctly aligned in the structure and the structure size is a
multiple of four. For example,

Overview of the C Programming API 2–23

Overview of the C Programming API
2.12 RTR Events

struct{
rtr_uns_8_t low_bound_1;
rtr_uns_32_t low_bound_2;
rtr_uns_8_t hi_bound_1;
rtr_uns_32_t hi_bound_2;

}

The ‘‘four-byte-alignment-fits-all’’ requirement is enforced for interoperability;
no padding is allowed.

Example 2–8, which can be run manually from the RTR CLI, illustrates the
return of key range data with the RTR Event RTR_EVTNUM_KEYRANGELOSS.
The RTR CLI interprets the format of this message as appropriate. In
Example 2–8, the format is string or ASCII data, the default.

Example 2–8 Returned Event Key Range Data Example

RTR> crea fac jws/all=sucre
%RTR-S-FACCREATED, facility jws created
RTR> crea part ab/fac=jws/noshadow/nostandby-

/key1=(type=string,length=2,offset=0,low="AB",high="CD")
%RTR-I-PRTCREATE, partition created
RTR> rtr_open/chan=s/server/noshadow/nostandby/part=ab/fac=jws
%RTR-S-OK, normal successful completion
RTR> rtr_rec/chan=s/time=10
%RTR-S-OK, normal successful completion

channel name: S
msgsb

msgtype: rtr_mt_opened
msglen: 8

message
status: normal successful completion
reason: 0x00000000

RTR> rtr_open/chan=c/client/event=(102,103)/fac=jws
%RTR-S-OK, normal successful completion
RTR> rtr_rec/chan=c/time=10
%RTR-S-OK, normal successful completion

channel name: C
msgsb

msgtype: rtr_mt_opened
msglen: 8

message
status: normal successful completion
reason: 0x00000000

RTR> rtr_close/chan=s
%RTR-S-OK, normal successful completion
RTR> rtr_rec/chan=c/time=10
%RTR-S-OK, normal successful completion

(continued on next page)

2–24 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

Example 2–8 (Cont.) Returned Event Key Range Data Example
channel name: C
msgsb

msgtype: rtr_mt_rtr_event
msglen: 4
evtnum: 103 (RTR_EVTNUM_KEYRANGELOSS)

message
ks_lo_bound: AB
ks_hi_bound: CD

RTR> reca
RTR> rtr_rec/chan=c/time=10
%RTR-E-TIMOUT, call to rtr_receive_message timed out

Design consideration: When an RTR application executes an
rtr_receive_message call, the programmer could incorrectly anticipate that
a particular message type may be received and only write instructions to
respond to the expected message. However, an RTR or User Event could be
received on any instance of the rtr_receive_message call (as could other
unanticipated RTR messages). Therefore, as a general application design
guideline, the application developer should always program the application so
that it can properly handle any type of message that could be received by the
rtr_receive_message call.

Events are delivered in the order in which they are broadcast; therefore event
serialization will be preserved for a particular user. However, RTR does not
enforce any particular serialization across different subscribers, so different
subscribers could receive event notifications in any order.

Example 2–9 shows an rtr_receive_message call in use.

Example 2–9 Receive Message Example

status = rtr_receive_message(&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

Overview of the C Programming API 2–25

Overview of the C Programming API
2.12 RTR Events

2.12.3 Event Management by RTR
RTR manages both event routing and event delivery.

Event Routing
When an event subscription is created with the rtr_open_channel call, the
event details are stored in a subscriber database on all routers. When an event
is triggered, notification is delivered to all routers connected to that system in
that facility. The routers then check their subscriber database for any systems
that have subscribed to that event. If one or more subscribers are located, and
the subscribers are currently attached to this router, then the router broadcasts
the message to the subscribers. If no subscriber is located, then the message is
discarded.

Event Delivery
RTR reliably delivers RTR transactions and RTR events. The delivery of User
Events on a properly configured system is reliable, but RTR Flow Control
manages delivery of User Events if the subscriber cannot process events as
quickly as they are delivered. Flow Control is RTR’s message traffic governor
that helps affected systems to manage spikes in message traffic. For more
detail on RTR Flow Control, refer to the HP Reliable Transaction Router
System Manager’s Manual.

When a User Event is triggered, a broadcast that includes message data is
routed to the subscriber system. User Events, along with RTR Events and
transactions, are placed into an incoming message queue on the destination
system until the subscriber application executes an rtr_receive_message call
to receive the message into the application. If too many messages are sent to
the destination system, then the RTR Flow Control feature will be activated.

Flow Control may then force the sending application to wait awhile in
the next RTR call that sends data, or it may discard broadcasts from the
message queue, until the message queue length reduces and Flow Control
allows new broadcasts to be sent to the destination system. Because User
Event broadcasts are usually used for streaming information such as the
periodic update of a price table, RTR does not store event messages that are
impacted by Flow Control for later processing. This technique would cause the
application to spend time viewing stale data. Instead, RTR Flow Control may
discard the message to help relieve the messaging backlog, and will rely on a
future message delivery to supply the updated information.

Design issue: Because of the possibility that a User Event message could
become delayed or discarded due to Flow Control, User Events should not be
used for delivering information that is of a business critical nature, including
information that previously was, or later will be, used in a transaction. To
compensate for the possibility of a discarded message, the application developer

2–26 Overview of the C Programming API

Overview of the C Programming API
2.12 RTR Events

may consider adding a sequence number to the event message and providing a
read-only transaction in the application to detect and request retransmission of
any discarded broadcast data from the sender.

Overhead of Using Events
Delivery of User Events is based upon the registration databases that are kept
on the routers. The event is delivered from the sender to all connected routers,
which means each event triggers a message traffic load of 1 (for a FE sender)
or the number of routers (for a BE sender). The event is then propagated by
the routers to all subscribers, creating message traffic of 0 or the number of
systems with subscribers to the event.

Design Issue: Processing event messages does consume some system resources
and could impact overall performance. If system resources become constrained,
RTR Flow Control may become active, thus reducing the RTR throughput
on the affected systems. Care should be exercised to provide enough system
resources to handle the message load.

2.12.4 Event Troubleshooting
Several RTR MONITOR screens can be helpful in troubleshooting events, as
described below. Sample screens are available in the HP Reliable Transaction
Router System Manager’s Manual.

Monitoring Events
User Event traffic (broadcasts) may be monitored specifically for each node
using the MONITOR BROADCAST screen in RTR. This screen shows the total
event throughput, along with a count of any discarded broadcasts.

The MONITOR FACILITY screen in RTR provides a combined summary of all
RTR Events and User Events processed for each facility.

The SHOW CLIENT/FULL and SHOW SERVER/FULL commands in RTR are
helpful for viewing the current event subscription list for a particular client or
server, along with any channel name specified in the rcpnam parameter on the
rtr_open_channel call.

Execution of rtr_broadcast_event calls and event message traffic in RTR can
be monitored using the MONITOR CALLS screen in RTR. This screen shows
the frequency of use of the rtr_broadcast_event call, and the number of RTR
Events and User Events processed. If an event is in pending (‘‘pend’’) status,
it indicates that the event is waiting for an rtr_receive_message call to be
performed.

The MONITOR ROUTING screen shows the transaction and broadcast
throughput on the system. This display shows the number of events and
also the rate over time during the monitoring interval.

Overview of the C Programming API 2–27

Overview of the C Programming API
2.12 RTR Events

The MONITOR STALLS screen is helpful to determine if RTR Flow Control
is affecting a particular system. Flow Control stalls that have occurred are
categorized by duration. Any stall that lasts more than 60 seconds results
in a Link Drop entry. A Stall (‘‘stll’’) entry in the far-right column indicates
that a Flow Control stall is currently in progress on the link indicated. For
the purposes of User Event broadcast delivery, any stall could indicate that a
broadcast message could have been discarded.

It is possible to monitor additional details of RTR Flow Control by using the
MONITOR CONGEST, MONITOR FLOW, and MONITOR TRAFFIC monitor
screens in RTR.

2.13 Use of XA Support
Users need to register a resource manager first, to invoke RTR XA support
when creating a facility. Please see the Reliable Transaction Router System
Manager’s Manual for more details about how to register and unregister
resource managers.

In the server application, specify the flag RTR_F_OPE_XA_MANAGED and the
underlying resource manager information when issuing the rtr_open_channel
call. Once this flag is specified for a given RTR partition, all transactions
running in that RTR partition are committed using the XA interface between
RTR and the resource manager. When the partition is deleted or the resource
manager is unregistered, RTR commits transactions running in this partition
in a conventional manner.

2.14 RTR Applications in a Multiplatform Environment
Applications using RTR in a multiplatform (that is, mixed endian) environment
with nonstring application data have to tell RTR how to marshall the data
for the destination architecture. The sender of a message must supply both a
description of the application data being sent and the application data itself.
This description is supplied as the msgfmt argument to rtr_send_to_server,
rtr_reply_to_client, and rtr_broadcast_event.

The default (that is, when no msgfmt is supplied) is to assume the application
message is string data.

2.14.1 Defining a Message Format
The msgfmt string is a null-terminated ASCII string consisting of a number of
field-format specifiers:

[field-format-specifier...]
The field-format specifier is defined as:

2–28 Overview of the C Programming API

Overview of the C Programming API
2.14 RTR Applications in a Multiplatform Environment

%[dimension]field-type
where:

Field Description Meaning

% indicates a new field
description is starting

dimension is an optional integer
denoting array cardinality
(default 1)

field-type is one of the following:

Code Meaning

UB 8 bit unsigned byte

SB 8 bit signed byte

UW 16 bit unsigned

SW 16 bit signed

UL 32 bit unsigned

SL 32 bit signed

C 8 bit signed char

UC 8 bit unsigned char

B boolean

For example, consider the following data structure:

typedef struct {
rtr_uns_32_t first ;
rtr_sgn_32_t second ;
char str[12] ;

} example_t ;

The msgfmt for this structure could be ‘‘%UL%SL%12C’’.

The transparent data type conversion of RTR does not support certain
conversions (for example, floating point). Convert these to another format
such as character string.

Overview of the C Programming API 2–29

Overview of the C Programming API
2.14 RTR Applications in a Multiplatform Environment

2.14.1.1 Data Types
Data types supported by RTR are:

• Unsigned

• Signed

• Char

• Boolean

2.14.1.2 Alignment
Alignment of data on byte boundaries depends on several factors, including
the compiler used in creating an application. RTR’s data marshalling software
manages these alignments.

2.15 Application Design and Tuning Issues
This section addresses some considerations for design and tuning, including:

• Transactions that can cause server failure

• Transaction grouping and database applications

• Transaction sequence and shadow servers

• Transaction independence

• Handling error conditions

2.15.1 Transactions That Can Cause Server Failure
It is possible for a ‘‘rogue’’ client transaction, due to a user application bug, to
‘‘kill’’ the server process. If RTR were to reapply this transaction indefinitely,
all available servers would be destroyed. To avoid a transaction killing all
server processes, the following mechanism is implemented:

• A transaction for which no rtr_accept_tx has been called by a server is
aborted after it has caused the death of three concurrent servers to which
it has been presented. The transaction abort status reported to the client
is RTR_STS_SRVDIED. Retry count for transactions that have not been voted
on is three; for transactions that have been voted on, retry count can be
limited with the RTR command SET PARTITION/RECOVERY_RETRY_COUNT
(default: unlimited).

• An RTR error log message with the same status is also written on the
backend where the server deaths occurred.

2–30 Overview of the C Programming API

Overview of the C Programming API
2.15 Application Design and Tuning Issues

The limitation of this feature to transactions that have not yet been accepted
prevents possible transaction inconsistencies that could otherwise arise
between client and server(s), and on shadow secondary sites. Thus a server
application should complete any necessary validation of client transaction
messages before accepting the transaction, to take advantage of this feature.

2.15.2 Transaction Grouping and Database Applications
RTR generates commit sequence numbers (CSN) for each transaction
committed on the primary site. Concurrent servers can have several
transactions assigned to a single CSN value. Transactions with the same CSN
are understood by RTR to be independent, and hence their relative commit
ordering to the database does not violate the serializability requirements of
transactions.

For purposes of throughput, RTR attempts to group as many transactions as
possible into a single CSN during a given vote cycle. (Grouped transactions are
only those that explicitly vote (that is, call rtr_accept_tx on the server.)

The vote cycle completes as soon as RTR is ready to ask a server to commit the
next transaction. For this mechanism to work correctly with the application,
RTR places the following restriction on the server design:

A server must obtain an exclusive lock on any resource that another
concurrent server may be accessing for a different transaction before it
issues the call to rtr_accept_tx.

Database applications, in general, comply with this requirement. If the
database management software allows ‘‘dirty reads,’’ the application should
apply this rule explicitly, so that RTR can correctly serialize transactions
during shadowing or other recovery. Failure to comply with this rule can
cause unsynchronised copies of shadow databases.

2.15.3 Transaction Sequence and Shadow Servers
When using a facility having a shadow site and two or more partitions, the
transaction sequence is the same at both shadow sites within a single
partition only. Sequences across partitions are not preserved. For
example, suppose the following transactions are executed on half of a shadow
site in the following chronological order:

tx1_for_partition1
tx2_for_partition1
tx3_for_partition1
tx1_for_partition2
tx4_for_partition1

Overview of the C Programming API 2–31

Overview of the C Programming API
2.15 Application Design and Tuning Issues

When replayed on the secondary, the order could be:

tx1_for_partition1
tx2_for_partition1
tx3_for_partition1
tx4_for_partition1
tx1_for_partition2

Do not write your application to expect preservation of transaction serialization
across partitions.

2.15.4 Transaction Independence
RTR normally assumes that each transaction processed by a given server
depends on the transactions that particular server has previously accepted.

To keep the shadowed database identical to that on the primary, RTR controls
the order in which the secondary executes transactions. The secondary is
constrained to execute transactions in the same order as the primary. Under
some circumstances, this can lead to the secondary sitting idle, waiting to be
given a transaction to execute.

RTR provides a performance enhancement that may help some applications
decrease idle time on the secondary, reducing the corresponding backlog. If
the application knows that particular transactions are independent of the
transactions previously received, then the application can set one of two flags
listed in Table 2–9.

Table 2–9 Independent Transaction Flags

Flag Meaning

RTR_F_ACC_INDEPENDENT Set on an rtr_accept_tx call to indicate
this transaction is independent.

RTR_F_REP_INDEPENDENT Set on an rtr_reply_to_client call
along with RTR_F_REP_ACCEPT to indicate
this transaction is independent.

A transaction accepted with one of these flags can be started on the secondary
while other transactions are still running. All transactions flagged with
one of these flags must truly be independent of the transactions that
have previously executed. They will execute in an arbitrary sequence
on the secondary site.

2–32 Overview of the C Programming API

Overview of the C Programming API
2.15 Application Design and Tuning Issues

If the server channel has been opened with RTR_F_OPE_EXPLICIT (explicit
accept), then the RTR_F_REP_INDEPENDENT flag can only be used together with
RTR_F_REP_ACCEPT. If the server channel has been opened with implicit accept,
then using RTR_F_REP_INDEPENDENT implies using RTR_F_REP_ACCEPT.

An application can be written to create CSN boundaries to ensure
independence. A transaction always receives a CSN, and the INDEPENDENT flag
could be used to prevent the CSN from being incremented, so an application
could be coded to force dependence between sets of transactions. This could
be important in certain cases where transactions coming in at a particular
time of day are independent of each other, but other transactions executed,
say, at the end of the day, need to ensure that the day’s transactions have
been processed, and the following day’s transactions need to ensure that the
previous end-of-day processing has completed. For more details on user of
independent transactions, refer to the discussion of CSNs in the HP Reliable
Transaction Router Application Design Guide.

2.15.5 Handling Error Conditions
Error returns are documented in this manual for each RTR call so that
an application designer/implementor can provide solutions for each error
condition. However, it is simpler for the application and the designer to code
applications with one path for success and also one path for any failure, rather
that separately for each failure.

Overview of the C Programming API 2–33

3
RTR Call Reference

This chapter contains the environmental limits, field length maxima, and
syntax definitions for all RTR C programming API calls.

3.1 RTR Environmental Limits
RTR deals with several environmental entities that have architectural limits
as shown in Table 3–1. Actual limits in a specific configuration are determined
by performance.

Table 3–1 Environmental Limits

Component Limit

BE or TR nodes 512

Bytes per message 64000

Channels per application process 1024

Facilities 100 to 1000, depending on operating system

FE nodes 1000

Journal files 16

Memory per process OpenVMS: 4GB; UNIX: unlimited;
Windows: 2GB

Messages per transaction - server to
client

unlimited

Messages per transaction - client to
server

65534

Partitions 65536 (dynamic; default:500)

Processes per node 1000

Size of journal file 256MB

(continued on next page)

RTR Call Reference 3–1

RTR Call Reference
3.1 RTR Environmental Limits

Table 3–1 (Cont.) Environmental Limits

Component Limit

Threads per application process (where
supported by operating system)

4096

3.2 RTR Maximum Field Lengths
Table 3–2 contains definitions of RTR field length maxima. The file rtr.h
contains values for these field lengths.

Table 3–2 RTR Maximum Field-Length Definitions

Field Name Description

RTR_MAX_ACCESS_LEN Maximum length of access string.

RTR_MAX_BLOB_LEN Maximum length of data that can be passed in a
prepare call.

RTR_MAX_FACNAM_LEN Maximum length of facility name.

RTR_MAX_FE_NAM_LEN Maximum length of frontend name.

RTR_MAX_MSGFMT_LEN Maximum length of message format.

RTR_MAX_MSGLEN Maximum length of an RTR message.

RTR_MAX_NUMSEG Maximum number of segments in key.

RTR_MAX_PARNAM_LEN Maximum length of partition name.

RTR_MAX_RCPNAM_LEN Maximum length of broadcast recipient name.

RTR_MAX_RCPSPC_LEN Maximum length for broadcast recipient specification.

RTR_MAX_SELVAL_LEN Maximum length for selector value.

3.3 RTR C API Calls
The calls are presented in alphabetical order.

3–2 RTR Call Reference

rtr_accept_tx

rtr_accept_tx

Accept the transaction currently active on the specified channel.

Syntax

status = rtr_accept_tx (channel, flags, reason)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_acc_flag_t read

reason rtr_reason_t read

C Binding

rtr_status_t rtr_accept_tx (

rtr_channel_t channel ,
rtr_acc_flag_t flags ,
rtr_reason_t reason
)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel()).

flags
Flags that specify options for the call.

Table 3–3 shows the flags that are defined.

RTR Call Reference 3–3

rtr_accept_tx

Table 3–3 Accept Transaction Flags

Flag name Description

RTR_F_ACC_FORGET Set to prevent receipt of any more
messages (or completion status)
associated with the transaction. Any
such messages are discarded. This flag
is valid only on server channels; it has
no effect on client channels.

RTR_F_ACC_INDEPENDENT Set to indicate this transaction is
independent. (See Section 2.15.4 for
further information.)

If you do not require any flags, specify RTR_NO_FLAGS for this parameter.

reason
Optional reason for accepting the transaction. This reason is ORed together
with the reasons of the other participants in the transaction and returned
in the reason field of the rtr_status_data_t structure returned with the
rtr_mt_accepted message to all participants of the transaction. Specify
RTR_NO_REASON if no reason is required.

Description

The rtr_accept_tx() call accepts the transaction currently active on the
specified channel. After rtr_accept_tx() has been called, the caller may no
longer actively participate in the fate of the transaction; that is, messages and
the final completion status can still be received, but no further messages may
be sent for the transaction. An attempt to send a further message yields an
RTR_STS_TXALRACC return status.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_AMBROUNAM Ambiguous API routine name for call - supply
more characters

RTR_STS_CHANOTOPE Channel not opened

3–4 RTR Call Reference

rtr_accept_tx

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

Example

/*
* Client is done with the txn; if the server accepts the
* transaction, there is no reason for us to reject it.
* Accept it, then go on to a new transaction.
*/

if (msgsb.msgtype == rtr_mt_accepted)
{

status = rtr_accept_tx(
channel,
RTR_NO_FLAGS,
RTR_NO_REASON);

check_status(status);
}
else
.
. Issue the error message returned by the
. server, and recover from there.
.

See Also

rtr_open_channel()
rtr_reject_tx()
rtr_reply_to_client()

RTR Call Reference 3–5

rtr_broadcast_event

rtr_broadcast_event

Broadcast (send) a user event message.

Syntax

status = rtr_broadcast_event (channel, flags, pmsg, msglen, evtnum, rcpspc, msgfmt)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_bro_flag_t read

pmsg rtr_msgbuf_t read

msglen rtr_msglen_t read

evtnum rtr_evtnum_t read

rcpspc rtr_rcpspc_t read

msgfmt rtr_msgfmt_t read

C Binding

rtr_status_t rtr_broadcast_event (

rtr_channel_t channel ,
rtr_bro_flag_t flags ,
rtr_msgbuf_t pmsg ,
rtr_msglen_t msglen ,
rtr_evtnum_t evtnum ,
rtr_rcpspc_t rcpspc ,
rtr_msgfmt_t msgfmt
)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel()).

flags
No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

3–6 RTR Call Reference

rtr_broadcast_event

pmsg
Pointer to the message to broadcast.

msglen
Length in bytes of the message broadcast.

evtnum
User event number associated with this broadcast. (Recipients must
specify this to receive it.) For more information on user event numbers,
see Section 2.12.

rcpspc
Name of the recipient(s). This null-terminated character string contains the
name of the recipient(s), specified with the rcpnam parameter on the call to
rtr_open_channel().

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient. rcpspc is an
optional parameter. Specify RTR_NO_RCPSPC for this parameter if no rcpspc is
required.

Named Events

• To receive named events, the correct event number must also be
specified. The event number (evtnum) must be specified by both the
sender (rcpspc) and the recipient (rcpnam).

• Both rcpnam and rcpspc are case sensitive.

• Both rcpnam and rcpspc default to the case-insensitive channel
name if no explicit rcpnam or rcpspc is provided.

msgfmt
Message format description. This null-terminated character string contains
the format description of the message. RTR uses this description to convert
the contents of the message appropriately when processing the message on
different hardware platforms. See Section 2.14 for information on defining a
message format description.

This parameter is optional. Specify RTR_NO_MSGFMT if message content is
platform independent, or there is no intent to use other hardware platforms.

RTR Call Reference 3–7

rtr_broadcast_event

Description

The rtr_broadcast_event() call broadcasts a user event message. The caller
must first open a channel (using rtr_open_channel()), before it can send user
event messages.

A client channel can be used to send user event messages to servers.

A server channel can be used to send user event messages to clients.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_INVRCPSPC Invalid rcpspc argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_WOULDBLOCK Operation would block. Try again later

Example
#define reunion_announcement 678 // In user .h file.

rtr_msg_buf_t reunion_msg = "Jones family reunion today!";
rtr_rcpspc_t recipients = "*Jones";

3–8 RTR Call Reference

rtr_broadcast_event

/*
* If today is the date of the Jones family reunion, tell
* any client whose last name is Jones that they need to
* be there!
*/

if (strcmp(today, reunion_date) == 0)
{

status = rtr_broadcast_event(
&channel,
RTR_NO_FLAGS,
reunion_msg,
strlen(reunion_msg),
reunion_announcement,
recipients,
RTR_NO_MSGFMT);

check_status(status);
}

See Also

rtr_receive_message()
rtr_open_channel()

RTR Call Reference 3–9

rtr_close_channel

rtr_close_channel

Close a previously opened channel.

Syntax

status = rtr_close_channel (channel, flags)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_clo_flag_t read

C Binding

rtr_status_t rtr_close_channel (

rtr_channel_t channel ,
rtr_clo_flag_t flags
)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel(), or
rtr_request_info() or rtr_set_info()).

flags
Flags that specify options for the call.

The flag RTR_F_CLO_IMMEDIATE is defined for this call.

Normally rtr_close_channel() processes a pending transaction that was in a
commit state by forgetting the transaction (removing it from the journal). To
close the channel but leave transactions in the journal, use the flag RTR_F_
CLO_IMMEDIATE to rtr_close_channel().

In some situations, an accepted transaction cannot be completed and replay
is required. For example, a transaction may be accepted but the database
becomes unavailable before the transaction is committed to the database. To
deal with such a situation, an application can use the close-immediate flag
RTR_F_CLO_IMMEDIATE. This closes the channel but leaves the transactions

3–10 RTR Call Reference

rtr_close_channel

in the journal for use on replay when database access is restored. If you do not
need any flags, specify RTR_NO_FLAGS for this argument.

Description

The rtr_close_channel() call closes a previously opened channel. A channel
may be closed at any time after it has been opened via rtr_open_channel()
or rtr_request_info(). If the channel is a server channel, an implicit
acknowledgment is sent, if you have a current transaction.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart
RTR or application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required
100000

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion

Example
/* If the status returned by the previous call is not success,

* close now, and exit the program.
*/

if (status != RTR_STS_OK)
{
printf(fpLog, "Unexpected error, must close immediately!");
status = rtr_close_channel(channel, RTR_CLO_IMMEDIATE);
exit(status);

}

/*
* Normal processing complete, close the channel.
*/

printf(fpLog, "Closing channel");
status = rtr_close_channel (channel, RTR_NO_FLAGS);

RTR Call Reference 3–11

rtr_close_channel

See Also

rtr_open_channel()

3–12 RTR Call Reference

rtr_error_text

rtr_error_text

Return the text associated with an RTR status value.

Syntax

retval = rtr_error_text (sts)

Argument Data Type Access

retval char* write

sts rtr_status_t read

C Binding

char *rtr_error_text (

rtr_status_t sts
)

Arguments

sts
The RTR error number for which the text is required.

Description

The rtr_error_text() call returns a pointer to the text associated with an
RTR error number.

The text string is a constant. If an invalid value for sts is supplied, a pointer is
also returned to an error text, indicating an invalid value.

RTR Call Reference 3–13

rtr_error_text

Example
/* If the status returned by the previous call is not success,

* print the message text to the error log, and exit.
*/

if (status != RTR_STS_OK)
{

printf(errLog, rtr_error_text(status));
exit(status);

}

3–14 RTR Call Reference

rtr_ext_broadcast_event

rtr_ext_broadcast_event

Broadcast (send) a user event message or an RTR_STS_TIMOUT status if RTR
is unable to issue to broadcast message within the specified timeout period.
The call is the same as rtr_broadcast_event with the addition of the timeout
period, given in milliseconds.

Syntax

status = rtr_ext_broadcast_event (channel, flags, pmsg, msglen, evtnum, rcpspc, msgfmt, timoutms)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_bro_flag_t read

pmsg rtr_msgbuf_t read

msglen rtr_msglen_t read

evtnum rtr_evtnum_t read

rcpspc rtr_rcpspc_t read

msgfmt rtr_msgfmt_t read

timoutms rtr_timout_t read

C Binding

rtr_status_t rtr_ext_broadcast_event (

rtr_channel_t channel ,
rtr_bro_flag_t flags ,
rtr_msgbuf_t pmsg ,
rtr_msglen_t msglen ,
rtr_evtnum_t evtnum ,
rtr_rcpspc_t rcpspc ,
rtr_msgfmt_t msgfmt ,
rtr_timout_t timoutms
)

RTR Call Reference 3–15

rtr_ext_broadcast_event

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel()).

flags
No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

pmsg
Pointer to the message to broadcast.

msglen
Length in bytes of the message to be broadcast.

evtnum
User event number associated with this broadcast. (Recipients must
specify this to receive it.) For more information on user event numbers,
see Section 2.12.

rcpspc
Name of the recipient(s). This null-terminated character string contains the
name of the recipient(s), specified with the rcpnam parameter on the call to
rtr_open_channel().

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient. rcpspc is an
optional parameter. Specify RTR_NO_RCPSPC for this parameter if no rcpspc is
required.

Named Events

• To receive named events, the correct event number must also be
specified. The event number (evtnum) must be specified by both the
sender (rcpspc) and the recipient (rcpnam).

• Both rcpnam and rcpspc are case sensitive.

• Both rcpnam and rcpspc default to the case-insensitive channel
name if no explicit rcpnam or rcpspc is provided.

3–16 RTR Call Reference

rtr_ext_broadcast_event

msgfmt
Message format description. This null-terminated character string contains
the format description of the message. RTR uses this description to convert
the contents of the message appropriately when processing the message on
different hardware platforms. See Section 2.14 for information on defining a
message format description.

This parameter is optional. Specify RTR_NO_MSGFMT if message content is
platform independent, or there is no intent to use other hardware platforms.

timoutms
Timeout value in milliseconds that the call will wait before tiing out. Returns
status RTR_STS_TIMOUT if RTR is unable to process the call. If no timeout is
needed, specify RTR_NO_TIMOUTMS.

Description

The rtr_ext_broadcast_event() call broadcasts a user event message. The
caller must first open a channel (using rtr_open_channel()), before it can
send user event messages.

A client channel can be used to send user event messages to servers.

A server channel can be used to send user event messages to clients.

In some circumstances, a broadcast event can wait a long time if RTR runs out
of channel credits; it may seem that the application is hanging. To eliminate
such a wait, the application can specify a timeout value from which the call
returns an RTR_STS_TIMOUT status if RTR is unable to issue the broadcast
message within the specified timeout period.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument

RTR Call Reference 3–17

rtr_ext_broadcast_event

RTR_STS_INVRCPSPC Invalid rcpspc argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_WOULDBLOCK Operation would block. Try again later
RTR_STS_OK Normal successful completion

Example
#define reunion_announcement 10 /* In user .h file. */

rtr_msg_buf_t reunion_msg = "Jones family reunion today!";
rtr_rcpspc_t recipients = "*Jones";
rtr_timout_t = 1000 /* 1 second to time out */
/*

* If today is the date of the Jones family reunion, tell
* any client whose last name is Jones that they need to
* be there!
*/

if (strcmp(today, reunion_date) == 0)
{

status = rtr_ext_broadcast_event(
&channel,
RTR_NO_FLAGS,
reunion_msg,
strlen(reunion_msg),
reunion_announcement,
recipients,
RTR_NO_MSGFMT,
timoutms);

check_status(status);
}

See Also

rtr_broadcast_event()
rtr_receive_message()
rtr_open_channel()

3–18 RTR Call Reference

rtr_get_tid

rtr_get_tid

Return the transaction ID for the current transaction.

Syntax

status = rtr_get_tid (channel, flags, ptid)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_tid_flag_t read

ptid void* write

C Binding

rtr_status_t rtr_get_tid (

rtr_channel_t channel ,
rtr_tid_flag_t flags ,
void *ptid
)

Arguments

channel
The channel identifier (returned previously by rtr_open_channel()).

flags
Flags that specify options for the call.

Table 3–4 shows the flags that are defined.

RTR Call Reference 3–19

rtr_get_tid

Table 3–4 Get TID Flags

Flag Pointer Data Type Returns

RTR_NO_FLAGS rtr_tid_t RTR transaction ID
RTR_F_TID_RTR rtr_tid_t RTR transaction ID
RTR_F_TID_XA rtr_xid_t XA transaction ID
RTR_F_TID_DDTM rtr_ddtmid_t DECdtm transaction ID

If you do not require any flags, specify RTR_NO_FLAGS for this argument.
Specifying RTR_NO_FLAGS is equivalent to specifying RTR_F_TID_RTR; this
capability is maintained for compatibility with RTR versions earlier than RTR
Version 3.2.

The structure rtr_xid_t is based on the X/Open XA specification and is defined
as follows:

typedef struct rtr_xid_t {
long formatID; /* format identifier */
long gtrid_length; /* value from 1 through 64 */
long bqual_length; /* value from 1 through 64 */
char data[RTR_XIDDATASIZE];

} rtr_xid_t;

The XID structure contains a format identifier, two length fields and a data
field. The data field comprises at most two contiguous components: a global
transaction ID (gtrid) and a branch qualifier (bqual).

The gtrid_length field specifies the number of bytes (1-64) that constitute gtrid,
starting at the first byte in data (that is, data[0]). The bqual_length field
specifies the number of bytes (1-64) that constitute bqual, starting at the first
byte after gtrid (that is, data[gtrid_length]). Neither component in data is null
terminated. Any unused bytes in data are undefined.

The contents of data depend on the format of the transaction ID (TX ID), which
is specified by the format identification field. Some valid format ID values are
shown in Table 3–5.

3–20 RTR Call Reference

rtr_get_tid

Table 3–5 Format Identification and Data Content

Format Identification Data Content

RTR_XID_FORMATID_NONE Null XID. No XID has been returned.
This will be the value if the call to
rtr_get_xid / rtr_get_tid returns an
error, for example.

RTR_XID_FORMATID_OSI_CCR The XID is specified using the naming
rules specified for OSI CCR atomic
action identifiers. RTR does not use
this convention directly, but such a
transaction ID format can be returned
if some other associated transaction or
resource manager uses this convention.
If OSI CCR (ISO standard) naming is
used, then the XID’s formatID element
should be set to 0 (zero); if another
format is used, then the formatID
element should be greater than 0. A
value of -1 in formatID means that the
XID is null.

RTR_XID_FORMATID_RTR Identifies an RTR transaction ID. In this
case, the gtrid_length is 28 and bqual_
length is zero. The contents of data can
be interpreted using the format defined
by rtr_tid_t. Note that one should still
use the rtr_get_tid call to get the RTR
transaction ID for a transaction active
on a channel. The rtr_get_xid call
could be used, for example, if a nested
transaction is started where the foreign
transaction manager is also RTR.

(continued on next page)

RTR Call Reference 3–21

rtr_get_tid

Table 3–5 (Cont.) Format Identification and Data Content

Format Identification Data Content

RTR_XID_FORMATID_DDTM Identifies a transaction ID for a
transaction that uses a resource
managed by DECdtm. The gtrid_length
field is 16, and bqual_length is 0.

RTR_XID_FORMATID_RTR_XA Identifies a transaction ID for a
transaction started using an XA resource
manager.

ptid
A pointer to where the unique transaction ID for the current transaction is
returned. Data type depends on any flag that has been set; see Table 3–4.

Description

rtr_get_tid() returns the RTR transaction ID for the current transaction.

The RTR transaction ID is a unique number generated by RTR for each
transaction in the RTR virtual network.

In addition, rtr_get_tid() is capable of returning transaction identifiers
associated with XA and DECdtm managed transactions when RTR is operating
with either of these transaction managers.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_DTXNOSUCHXID No distributed transaction ID found for this

channel
RTR_STS_INVARGPTR Invalid parameter address specified on last

call
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_NOXACHAN No XA channel available

3–22 RTR Call Reference

rtr_get_tid

RTR_STS_OK Normal successful completion
RTR_STS_TXNOTACT No transaction currently active on this channel

Example
rtr_xid_tid xa_tid;
char global_id_buff[64];
char branch_qual_buff[64];
int i, j;

/* The server executed an rtr_receive_message. In the
* rtr_msgsb_t structure, the msgtype field equals
* rtr_mt_msg1_uncertain. This indicates that a recovery
* is in process, and RTR did not get a confirmation
* that the current transaction had been
* completed. RTR is now ‘replaying’ the transaction,
* and this is the first message in that transaction.
*
* Get the transaction id.
*/

status = rtr_get_tid(
&channel,
RTR_F_TID_XA,
&xa_tid);

check_status(status);

/*
* Isolate the information in the xa_tid structure.
*/

if (xa_tid.formatID != RTR_XID_FORMATID_RTR_XA)
{

printf(errLog, "This channel only for X/Open transactions");
exit(BAD_TXTYPE_CHAN);

)

for (i = 0; i < xa_tid.gtrid_length; i++)
global_id_buff[i] = xa_tid.data[i];

global_id_buff[i] = 0;
for
(j = i; j < (xa_tid.gtrid_length + xa_tid.bqual_length); j++)

branch_qual_buff[j - i] = xa_tid.data[j];
branch_qual_buff[j] = 0;

/* Query the database to see if the transaction whose global_id
* and branch qualifier match these had been committed. If so,
* ignore; otherwise, continue as though this were the first
* time the message was received.
*/

RTR Call Reference 3–23

rtr_get_user_context

rtr_get_user_context

Retrieve the optional user-defined context associated with the specified RTR
channel.

Syntax

user_context = rtr_get_user_context (channel)

Argument Data Type Access

user_context rtr_usrctx_t write

channel rtr_channel_t read

C Binding

rtr_usrctx_t rtr_get_user_context (

rtr_channel_t channel
)

Arguments

channel
The channel whose context is to be returned.

Usage example:

struct { rtr_channel_t chan; int state, ... } context[10]; *ctx;
rtr_channel_t chan;
rtr_open_channel(&ctx[4].chan, ...);
rtr_receive_message(&chan, ...);
ctx = rtr_get_user_context(chan);
if (ctx->state) { ... }

3–24 RTR Call Reference

rtr_get_user_context

Description

The rtr_get_user_context() call retrieves the user context for a channel.
The default value of the user context is the value of the pchannel argument
passed to RTR at the time the channel was opened using one of the following
calls or routines:

rtr_open_channel()
rtr_request_info()
rtr_set_info()

The context value may optionally be changed at any later time using
rtr_set_user_context(), provided the channel is still open.

The routine returns the user context of the specified channel.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_NO_USER_CONTEXT The specified channel was not declared or has
closed

RTR Call Reference 3–25

rtr_open_channel

rtr_open_channel

Open a channel to allow for communication with other applications.

Syntax

status = rtr_open_channel (pchannel, flags, facnam, rcpnam, pevtnum, access, numseg, pkeyseg)

Argument Data Type Access

status rtr_status_t write

pchannel rtr_channel_t write

flags rtr_ope_flag_t read

facnam rtr_facnam_t read

rcpnam rtr_rcpnam_t read

pevtnum rtr_evtnum_t read

access rtr_access_t read

numseg rtr_numseg_t read

pkeyseg rtr_keyseg_t read

C Binding

rtr_status_t rtr_open_channel (

rtr_channel_t *pchannel ,
rtr_ope_flag_t flags ,
rtr_facnam_t facnam ,
rtr_rcpnam_t rcpnam ,
rtr_evtnum_t *pevtnum ,
rtr_access_t access ,
rtr_numseg_t numseg ,
rtr_keyseg_t *pkeyseg
)

Arguments

pchannel
A pointer to a location where the channel is returned.

3–26 RTR Call Reference

rtr_open_channel

flags
Flags that specify options for the call.

Defined flags are shown in Table 3–6, Table 3–7, and Table 3–8.

Table 3–6 Open Channel Flags (One Required)

Flag Description

RTR_F_OPE_CLIENT Indicates that the channel will be used as a
client.

RTR_F_OPE_CREATE_
PARTITION

Requests that a partition be created.
Specify partition key segments and name
with the pkeyseg argument. The name is
passed using an rtr_keyseg_t descriptor
where ks_type = rtr_keyseg_partition and
ks_lo_bound point to the name string.
On a successful call, a channel is opened
on which the completion status can be
read from the ensuing message of type
rtr_mt_closed. The completion status is
found in the status field of the message
data of rtr_status_data_t.

RTR_F_OPE_DELETE_
PARTITION

Requests that a partition be deleted.
Specify partition or name key segments
with the pkeyseg argument. The name is
passed using an rtr_keyseg_t descriptor
where ks_type = rtr_keyseg_partition and
ks_lo_bound points to the name string.
On a successful call, a channel is opened
on which the completion status can be
read from the ensuing message of type
rtr_mt_closed. The completion status is
found in the status field of the message
data of rtr_status_data_t.

RTR_F_OPE_SERVER Indicates that the channel will be used
as a server. numseg and pkeyseg must
be specified for all servers except call-out
servers.

RTR Call Reference 3–27

rtr_open_channel

Table 3–7 Open Channel Client Flags

Flag Description

RTR_F_OPE_EXPLICIT_START Valid for client channels only. Use
of this flag requires that an explicit
rtr_start_tx() be called on this
channel. The procedure is in effect
until the channel is closed. The
EXPLICIT_START flag ensures that
the rtr_send_to_server() will not
generate new transactions should the
rtr_start_tx() time out.
If the user calls rtr_send_to_server()
without first calling rtr_start_tx(),
the error message RTR-F-INVIMPLCTSTRT
is returned informing the caller that
they must call rtr_start_tx() first on
this channel.

RTR_F_OPE_FOREIGN_TM Valid for client channels only. This
indicates that the global coordinating
transaction manager is a foreign
transaction manager (non-RTR), and
that all transactions on this channel
will be coordinated by the foreign
transaction manager. If this flag is
set, then calls to rtr_start_tx on this
channel must supply a value for the
jointxid parameter, which is the ID of
the parent transaction.

Note

Calling rtr_open_channel() with the RTR_F_OPE_FOREIGN_TM flag set
causes a local RTR journal scan to occur, if a journal has not already
been opened on that node.

3–28 RTR Call Reference

rtr_open_channel

The flags in Table 3–8 apply only if RTR_F_OPE_SERVER is set.

Note

Server attributes such as key range definition, shadow and standby
flags, can be defined and modified outside the application program by
the system manager. A server should preferably use specific flags.

Table 3–8 Open Channel Server Flags

Flag Description

RTR_F_OPE_BE_CALL_OUT The server is a backend callout server.
By default a server is not a backend
callout server.

RTR_F_OPE_DECDTM_MANAGED Indicates that DECdtm manages
the channel. Valid only for server
channels.

RTR_F_OPE_EXPLICIT_ACCEPT A call to rtr_receive_message() is
not to be interpreted as an implicit call
of rtr_accept_tx().

RTR_F_OPE_EXPLICIT_PREPARE The server needs to receive an explicit
prepare message from RTR when
each transaction has been completely
received. By default, no prepare
message is generated.

RTR_F_OPE_NOCONCURRENT The server may not be concurrent with
other servers. By default a server may
have other concurrent servers.

(continued on next page)

RTR Call Reference 3–29

rtr_open_channel

Table 3–8 (Cont.) Open Channel Server Flags

Flag Description

RTR_F_OPE_NORECOVERY Valid for a server channel, this flag
specifies partition operation without
the services of the RTR recovery
journal. This option may be useful
for applications whose focus is on
the timely delivery of messages with
limited lifetimes, where the recovery
of possibly stale data is not of interest.
Since no IO operations to the RTR
journal are performed, resource
consumption per transaction will be
lower, particularly for applications
where the number of concurrently
active servers is small.
Partitions operating in this mode will
perform the usual recovery operations,
but no recovery transactions will be
found. Further, shadowed partitions in
remember mode using this option are
also not using the journal, so shadow
recovery of such partitions will find no
shadow recovery transactions. Since
consistency between shadowed sites
can thus no longer be maintained,
server channels attached to such
partitions will automatically be closed
should such a non-journalled partition
transition from an active to an inactive
state.

RTR_F_OPE_NOSTANDBY The server may not be (or have)
standby(s). By default, servers may
have standby(s).

RTR_F_OPE_RECEIVE_REPLIES The server, a backend callout server,
can receive server-to-client messages.

(continued on next page)

3–30 RTR Call Reference

rtr_open_channel

Table 3–8 (Cont.) Open Channel Server Flags

Flag Description

RTR_F_OPE_SHADOW The server is part of a shadow pair. By
default a server is not part of a shadow
pair.

RTR_F_OPE _STRICT_SHAD_
ORDER

See the Usage Restriction below.

RTR_F_OPE_TR_CALL_OUT The server is a router callout server.
By default a server is not a router
callout server.

RTR_F_OPE_XA_MANAGED Associates the channel with the XA
protocol.

Usage Restriction
Ordinarily RTR determines groups of independently voting concurrent
transactions on the primary site from server behavior. Transactions within a
group can then be presented on the secondary in any order. The Shadow Order
flag modifies this behavior so that transactions are presented on the secondary
site strictly in the order in which they are accepted by the application on the
primary.

Allowed Settings

For consistent operation, the shadow order flag depends on the journal-
less flag. That is, only certain combinations are allowed:

This Shadow Order
Flag Setting

With this No_
Recovery Flag
Setting Is:

STRICT_SHD_
ORDER

NO_RECOVERY

0 0 Allowed
0 1 Allowed
1 1 Allowed
1 0 Not allowed

RTR Call Reference 3–31

rtr_open_channel

facnam
A null-terminated string containing the facility name. A facility name is
required.

rcpnam
An optional null-terminated string containing the name of the recipient. This
name is used to receive named event messages. Specify RTR_NO_RCPNAM when
named event recipients are not used.

These names are additional qualifiers on the event delivery, are matched to the
sender name, and are ANDed to the event number for delivery. For example,
a client "New York" and a client "Hong Kong" could be set up to both receive
event number 100. If the event 100 was generated by the server with the name
"Hong Kong," the event would not be received by the "New York" client.

Named Events

• To receive named events, the correct event number must also be
specified. The event number (evtnum) must be specified by both the
sender (rcpspc) and the recipient (rcpnam).

• Both rcpnam and rcpspc are case sensitive.

• Both rcpnam and rcpspc default to the case-insensitive channel
name if no explicit rcpnam or rcpspc is provided.

pevtnum
Optional pointer to a list of event numbers to which the channel wishes to
subscribe. There are two types of event: user events and RTR events. This
parameter is used to specify all user and RTR events that the channel is to
receive.

Start the list of user event numbers with RTR_EVTNUM_USERDEF, and the list
of RTR event numbers with RTR_EVTNUM_RTRDEF. End the entire list with
RTR_EVTNUM_ENDLIST. Specify a range of event numbers using the constant
RTR_EVTNUM_UP_TO between the lower and upper (inclusive) bounds. For
example, to specify the list of all user event numbers, use:

3–32 RTR Call Reference

rtr_open_channel

rtr_evtnum_t all_user_events[]={
RTR_EVTNUM_USERDEF,

RTR_EVTNUM_USERBASE,
RTR_EVTNUM_UP_TO,
RTR_EVTNUM_USERMAX,

RTR_EVTNUM_ENDLIST
} ;

For example, to specify the list of all event numbers, use:

rtr_evtnum_t all_events[]={
RTR_EVTNUM_USERDEF,

RTR_EVTNUM_USERBASE,
RTR_EVTNUM_UP_TO,
RTR_EVTNUM_USERMAX,

RTR_EVTNUM_RTRDEF,
RTR_EVTNUM_RTRBASE,
RTR_EVTNUM_UP_TO,
RTR_EVTNUM_RTRMAX,

RTR_EVTNUM_ENDLIST
} ;

Specify RTR_NO_PEVTNUM when the channel is to receive no events. Event names
and numbers are listed in Table 2–5, RTR Event Names and Numbers.

access
An optional null-terminated string containing the access parameter. The access
parameter is a security key used to authorize access to a facility by clients and
servers. Specify RTR_NO_ACCESS when there is no access string.

numseg
The number of key segments defined. The numseg parameter is not required
for client channels or callout server channels. (Callout servers always receive
all messages.) Specify RTR_NO_NUMSEG when defining client channels.

A key can consist of up to RTR_MAX_NUMSEG segments.

pkeyseg
Pointer to the first block of key segment information. Only the first numseg
elements are used. The structure of rtr_keyseg_t is:

typedef struct /* RTR Key Segment Type */
{

rtr_keyseg_type_t ks_type ; /* Key segment data type */
rtr_uns_32_t ks_length ; /* Key segment length (bytes) */
rtr_uns_32_t ks_offset ; /* Key segment offset (bytes) */
void *ks_lo_bound ; /* Ptr to key segment low bound */
void *ks_hi_bound ; /* Ptr to key segment high bound */

} rtr_keyseg_t ;

RTR Call Reference 3–33

rtr_open_channel

The data type of a key segment can be one of the following:

Table 3–9 Key Segment Data Type

Data Type Description

rtr_keyseg_foreign_tm_id Foreign transaction manager identifier.
rtr_keyseg_partition Partition name, the name of the partition

assigned.
rtr_keyseg_rmname Resource manager name, the name of the

foreign resource manager.
rtr_keyseg_signed Signed
rtr_keyseg_string ASCII string
rtr_keyseg_unsigned Unsigned

The pkeyseg parameter is not required for client channels or callout
server channels. (Callout servers always receive all messages.) Specify
RTR_NO_PKEYSEG when defining client channels. The ks_type field can be one of
the data types shown in Table 3–9. The value of the offset ks_offset must be
different for different key segments or key ranges.

If an rtr_keyseg_t of rtr_keyseg_string is specified, then it is up to the
application programmer to ensure that the key value is valid for the complete
range of the key length.

For example, if the key length is 4, and server code includes a statement like:

strcpy(keyvalue, "k");

with keyvalue passed as one of the bounds values, then potentially the bound
value can differ from one open channel call to the next, because the two bytes
following the ‘‘k’’ will contain uninitialized values but still form part of the
key-bound definition. (In this case, one should clear the keyvalue buffer before
copying the bounds values.)

A call to rtr_open_channel() may be used to create a named partition or
to open a server channel associated with an existing named partition. To do
this, supply a partition name when opening a server channel. The pkeyseg
argument specifies an additional item of type rtr_keyseg_t, assigning the
following values:

• ks_type = rtr_keyseg_partition, indicating that a partition name is being
passed

3–34 RTR Call Reference

rtr_open_channel

• ks_lo_bound should point to the null-terminated string to use for the
partition name

Note

When using the RTR CLI, if a key-bound value length is less than the
key length, the key bound is automatically null-padded to the required
length. For example,

RTR> call rtr_open_channel/server/type=string/low=1/high=2

Because no key length is specified, the length defaults to four. The low
and high bound values are automatically null-padded to four bytes by
RTR.

The key segment array may not contain more than RTR_MAX_NUMSEG elements.

XA Usage

Specify RTR_F_OPE_XA_MANAGED only for a server channel. With this
flag, use ks_type = rtr_keyseg_rmname to indicate that the server
application provides resource manager information when a channel
is open. ks_lo_bound should point to the null-terminated string to
use for the resource manager (RM) name, which cannot contain more
than 31 letters. ks_hi_bound should point to the null-terminated
string to use for the RM-specific open string used to connect to
the underlying RM. The open string cannot contain more than 255
letters. Neither ks_length nor ks_offset apply when using the flag
RTR_F_OPE_XA_MANAGED.

Description

The rtr_open_channel() call opens a channel for communication with other
applications on a particular facility.

The caller of rtr_open_channel() specifies the role (client or server) for which
the channel is used.

For use with XA:

1. Change the rtr_open_channel() call as described in the call description.

RTR Call Reference 3–35

rtr_open_channel

2. Remove unnecessary SQL calls from server code such as commit or
rollback in a two-phase commit environment. If these calls remain in your
application code, they may cause vendor-specific warnings.

3. RTR allows only one RM instance to be registered for each RTR partition.

4. Only one transaction is processed on an RTR channel at any given time.
This implies that a server process or a thread of control can only open one
channel to handle a single XA request.

5. Using a multithreaded server application is strongly recommended for
better throughput.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart
RTR or application

RTR_STS_ALLSRVSTRCT All partition instances must agree on the
setting of STRCT_SHD_ORDER

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required
100000

RTR_STS_DTXOPENFAIL Distributed transaction request to open a
session to the RM has failed

RTR_STS_DUPLRMNAME Duplicate RM partition name
RTR_STS_ERROPEJOU Error opening journal file
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVACCESS Invalid access argument
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVEVTNUM Invalid evtnum argument
RTR_STS_INVFACNAM Invalid facnam argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVIMPLCTSTRT Implicit start transaction disallowed by

channel properties
RTR_STS_INVKSLENGTH Invalid ks_length argument
RTR_STS_INVKSTYPE Invalid ks_type argument
RTR_STS_INVNUMSEG Invalid numseg argument
RTR_STS_INVPKEYSEG Invalid pkeyseg argument

3–36 RTR Call Reference

rtr_open_channel

RTR_STS_INVRCPNAM Invalid rcpnam argument
RTR_STS_INVRMNAME Invalid resource manager name
RTR_STS_INVSVRCLIFLG Either both /Client and /Server flags were

supplied or they were missing
RTR_STS_JOUACCDEN No access to journal for attempted operation:

permission denied
RTR_STS_JOUNOTFOU Journal not found
RTR_STS_MISSINGREQFLG A required flag is missing
RTR_STS_NOACP No RTRACP process available
RTR_STS_NONRECPAR Non-recoverable partition is no longer active -

channel closed automatically
RTR_STS_OK Normal successful completion
RTR_STS_RMSTRINGLONG Resource manager open or close string too long
RTR_STS_TOOMANCHA Too many channels already opened

Examples

Examples show the following:

• A simple client application

• A simple server application

• An application using XA

• An application using partition names

Example 3–1 Client Application

rtr_channel_t channel;
rtr_status_t status;
rtr_string_t user_name;

/* Get the user’s name through login or other user interface
*/

user_name = <input data>

(continued on next page)

RTR Call Reference 3–37

rtr_open_channel

Example 3–1 (Cont.) Client Application

/* Open client application’s channel to the router;
* use the facility named ‘CCardPurchases’, and the user’s
* name to identify this client.
*
* This client will receive messages only, no events,
* and is going to use a foreign transaction manager
* that implements the X/Open standard transaction
* formats.
*/

status = rtr_open_channel(
&channel,
RTR_F_OPE_CLIENT | RTR_F_OPE_FOREIGN_TM,
"CCardPurchases",
user_name,
RTR_NO_PEVTNUM,
RTR_NO_ACCESS,
RTR_NO_NUMSEG ,
RTR_NO_PKEYSEG);

check_status(status);

3–38 RTR Call Reference

rtr_open_channel

Example 3–2 Server Application

/* Open a channel in a server application. This server will

* handle only records where the last name begins with A.
* It also wants an explicit message sent when it is time
* to prepare the transaction, and one when it is time to
* vote whether to accept or reject the transaction.
*/

rtr_channel_t channel;
rtr_status_t status;
rtr_keyseg_t p_keyseg[1];
rtr_string_t last = "A";

/*
* Use this rtr_keyseg_t structure to define this server as
* handling only those records whose last name begins
* with ‘A’.
*/

p_keyseg[0].ks_type = rtr_keyseg_string;
p_keyseg[0].ks_length = 1;
p_keyseg[0].ks_offset = 0;
p_keyseg[0].ks_lo_bound = last;
p_keyseg[0].ks_hi_bound = last;

/* Open the channel as a server that wants explicit ACCEPT and
* PREPARE messages. It is a member of the CcardPurchases
* facility, accepts no events (only messages) and we are
* sending 1 rtr_keyseg_t structure that defines those
* messages to be handled by this server.
*
* Note also that we are specifying that this channel
* will be ‘XA managed’; that is, the transaction manager
* will be one that implements the X/Open standard.
*/

status = rtr_open_channel(
&channel,

RTR_F_OPE_SERVER | RTR_F_OPE_EXPLICIT_ACCEPT |
RTR_F_OPE_EXPLICIT_PREPARE | RTR_OPE_XA_MANAGED,

"CCardPurchases",
NULL,
RTR_NO_PEVTNUM,
RTR_NO_ACCESS,
1,
p_keyseg);

check_status(status);

RTR Call Reference 3–39

rtr_open_channel

Using RTR with XA
The snippets from the sample server applications show use of the RM
information, the XA flag, and commenting out RM commits and rollbacks.

New XA example, for V4.1 and later
Starting with RTR Version 4.1, when a server application opens a new
channel it does not have to specify the RTR_F_OPE_XA_MANAGED flag and
RM name along with the RM’s attributes such as open_string in order
to invoke RTR XA service. The server application just has to specify the
name of a partition that is associated with a specific RM, provided that the
user specifies an RM name when creating the partition. All transactions
processed through this channel will be managed by the RTR XA service.

Impact on Server Application
Using an RTR XA service has some impact on existing server applications,
as follows:

• RTR will not present messages of type mt_uncertain to server
applications. The server application does not have to replay
transactions during the recovery. All transactions will be recovered
by RTR when the facility is created.

• The server application does not need to explicitly commit or roll
back the transactions with the underlying resource manager because
transactions are managed directly by RTR using the XA protocol.

Example 3–3 shows how to open a new channel using RTR V4.1:

Example 3–3 Sample XA Server Application, Version 4.1 and Later

srv_key[0].ks_type = rtr_keyseg_partition;
srv_key[0].ks_length = 0; /* N/A */
srv_key[0].ks_offset = 0; /* N/A */
srv_key[0].ks_lo_bound = &partition_name[0]; /* null terminated */

flag = RTR_F_OPE_SERVER |
RTR_F_OPE_EXPLICIT_PREPARE |
RTR_F_OPE_EXPLICIT_ACCEPT;

(continued on next page)

3–40 RTR Call Reference

rtr_open_channel

Example 3–3 (Cont.) Sample XA Server Application, Version 4.1 and Later

status = rtr_open_channel(&s_chan,
flag,
reply_msg.fac_name,
NULL, /* rcpnam */
&pevtnum,
RTR_NO_ACCESS,
num_seg, /* numseg */
srv_key); /* key range */

However, if the server application is running a version of RTR prior to RTR
V4.0, the server application must specify the RTR_F_OPE_XA_MANAGED
flag, the RM’s name, and other RM attributes such as open_string. You
must overload the rtr_keyset_t data structure with the RM-specific
information and then pass it when creating an RTR channel, as shown in
Example 3–4.

Example 3–4 Sample XA Server Application Prior to Version 4.1

srv_key[0].ks_type = rtr_keyseg_unsigned;
srv_key[0].ks_length = sizeof(rtr_uns_8_t);
srv_key[0].ks_offset = 0;
srv_key[0].ks_lo_bound = &low;
srv_key[0].ks_hi_bound = &high;

srv_key[1].ks_type = rtr_keyseg_rmname;
srv_key[1].ks_length = 0; /* N/A */
srv_key[1].ks_offset = 0; /* N/A */
srv_key[1].ks_lo_bound = &rm_name[0]; /* null terminated */
srv_key[1].ks_hi_bound = &xa_open_string[0]; /* null terminated */

flag = RTR_F_OPE_SERVER |
RTR_F_OPE_EXPLICIT_PREPARE |
RTR_F_OPE_EXPLICIT_ACCEPT |
RTR_F_OPE_XA_MANAGED;

status = rtr_open_channel(&s_chan,
flag,
reply_msg.fac_name,
NULL, /* rcpnam */
&pevtnum,
RTR_NO_ACCESS,
num_seg, /* numseg */
srv_key); * key range */

RTR Call Reference 3–41

rtr_open_channel

Example 3–5 Use of Partition Names

/* Demonstrate use of partition names */
/* */
/* */

#include "rtr.h"
#include <stdio.h>

main()
{

/* This program will open a server channel. Servers
* need to identify the partition they will be operating
* on by passing information coded in the pkeyseg argument.
* If the partition already exists and its name is known,
* it suffices to specify the partition name. If this is
* not the case, then the partition must be specified by
* describing the key segments. In the latter case, name
* information is optional. If present, the new partition
* will receive the specified name, otherwise a default
* name will be generated. */

/* */
* This program assumes the presence of a partition named
* par_test in the facility fac_test and opens a server
* channel to it. Create the partition prior to running
* the program, e.g., */

/* */
/* RTR> create partition par_test/facility=fac_test */
/* */

rtr_channel_t AChannel;
const char *pszFacilityName = "fac_test";
const char *pszPartitionName = "par_test";
rtr_status_t status;
rtr_ope_flag_t flags = RTR_F_OPE_SERVER;
rtr_keyseg_t partition_info;

partition_info.ks_type = rtr_keyseg_partition;
partition_info.ks_lo_bound = (rtr_pointer_t)pszPartitionName;
partition_info.ks_hi_bound = NULL;

/* Must be NULL */

(continued on next page)

3–42 RTR Call Reference

rtr_open_channel

Example 3–5 (Cont.) Use of Partition Names

status = rtr_open_channel(
&AChannel,
flags,
pszFacilityName,
RTR_NO_RCPNAM,
RTR_NO_PEVTNUM,
RTR_NO_ACCESS,
1,
&partition_info);

/* Call rtr_receive_message() to receive completion status */
}

See Also

rtr_close_channel()

RTR Call Reference 3–43

rtr_receive_message

rtr_receive_message

Receive a message from RTR or the application.

Syntax

status = rtr_receive_message (pchannel, flags, prcvchan, pmsg, maxlen, timoutms, pmsgsb)

Argument Data Type Access

status rtr_status_t write

pchannel rtr_channel_t write

flags rtr_rcv_flag_t read

prcvchan rtr_channel_t read

pmsg rtr_msgbuf_t write

maxlen rtr_msglen_t read

timoutms rtr_timout_t read

pmsgsb rtr_msgsb_t write

C Binding

rtr_status_t rtr_receive_message (

rtr_channel_t *pchannel ,
rtr_rcv_flag_t flags ,
rtr_channel_t *prcvchan ,
rtr_msgbuf_t pmsg ,
rtr_msglen_t maxlen ,
rtr_timout_t timoutms ,
rtr_msgsb_t *pmsgsb
)

Arguments

pchannel
The channel identifier on which the message was received.

flags
No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

3–44 RTR Call Reference

rtr_receive_message

prcvchan
A pointer to a list of channels on which a receive is required. This parameter
can be used to select a subset of channels on which messages can be received.
Terminate the list with RTR_CHAN_ENDLIST.

If no selection is required, that is, a receive from any open channel is
acceptable, specify RTR_ANYCHAN for this parameter.

Note

See the restriction on using RTR_ANYCHAN with RTR V2 applications
in the HP Reliable Transaction Router System Manager’s Manual.

pmsg
Required pointer to the user buffer where the received message is written.

maxlen
Size allocated in the user buffer for received messages, in bytes.

timoutms
Receive timeout specified in milliseconds. If the timeout expires, the call
completes with status RTR_STS_TIMOUT.

If no timeout is required, specify RTR_NO_TIMOUTMS.

pmsgsb
Pointer to a message status block describing the received message. The
message status block is shown in Example 3–6.

Example 3–6 RTR Message Status Block

typedef struct /* RTR message status block */
{

rtr_msg_type_t msgtype;
rtr_usrhdl_t usrhdl;
rtr_msglen_t msglen;
rtr_tid_t tid;
rtr_evtnum_t evtnum;

} rtr_msgsb_t ;

The msgtype field can assume one of the values listed in Table 2–2, RTR
Received Message Types for Server Applications and Table 2–3, RTR Received
Message Types for Client Applications.

RTR Call Reference 3–45

rtr_receive_message

The usrhdl field contains the value supplied with a call to
rtr_set_user_handle().

The msglen field contains the length of the data stored in the user buffer after
the call has been executed.

The tid field contains the RTR unique ID for the transaction to which this
received message belongs.

The evtnum field contains the event number if the msgtype field is
rtr_mt_rtr_event or rtr_mt_user_event.

Description

The rtr_receive_message() call is used to receive a message.

The caller must have previously opened at least one channel (via
rtr_open_channel() or rtr_request_info()).

By default, this function waits for a message to become available if no message
is currently ready to be received.

Upon successful return (RTR_STS_OK), the message status block pointed to by
pmsgsb contains the description of the message received.

When a client application calls rtr_send_to_server, RTR sends the message
from frontend to router. It is the router’s job to find out which key range the
message belongs to (by looking at the key field in the application message), and
then to forward the message to the backend node where the server application
for this key range is running. If the router does not know of a backend that
has a server running for this key range, then the router aborts the transaction.
In this case, the client application receives an rtr_mt_rejected message for
this transaction with status RTR_STS_NODSTFND.

If a client application receives an RTR_STS_NODSTFND error, then the client can
try to resend the transaction, as the cause may have been only temporary. Note
that the reasons the router cannot find a backend node with an appropriate
server include:

1. The application server for this key range has not been started.

2. The link between the router and backend has gone down.

3. In unusual circumstances, a transaction can be rejected with RTR_STS_
NODSTFND status after the client calls rtr_accept_tx. This can occur
for transactions with multiple participants and no timeout specified
where the link between the router (which is quorate) and one of the
backend participants has gone down for a period greater than the router’s

3–46 RTR Call Reference

rtr_receive_message

transaction replay timeout period. (This can occur even if the messages in
the transaction had all been sent with the RTR_F_SEN_EXPENDABLE flag set.)

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart
RTR or application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required
100000

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSG Invalid pmsg argument
RTR_STS_INVRMNAME Invalid resource manager name
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion
RTR_STS_SRVDCLSBY Successful server declaration, but as standby
RTR_STS_TIMOUT Call to rtr_receive_message timed out
RTR_STS_TRUNCATED Buffer too short for msg

Message has been truncated

Example
status = rtr_receive_message(

&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

/* The rtr_msgsb_t tells us what type of
* message we are receiving. This server has asked to
* be notified when it is time to prepare the transaction.
* It should also handle other message types, as well.
*/

if (msgsb.msgtype == rtr_mt_prepare)
{

// Do the work necessary to prepare the transaction
// before committing.

RTR Call Reference 3–47

rtr_receive_message

See Also

rtr_broadcast_event()
rtr_accept_tx()
rtr_open_channel()
rtr_reject_tx()
rtr_send_to_server()

3–48 RTR Call Reference

rtr_reject_tx

rtr_reject_tx

Reject the transaction currently active on a channel.

Syntax

status = rtr_reject_tx (channel, flags, reason)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_rej_flag_t read

reason rtr_reason_t read

C Binding

rtr_status_t rtr_reject_tx (

rtr_channel_t channel ,
rtr_rej_flag_t flags ,
rtr_reason_t reason
)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel()).

flags

No flags are currently defined. Specify RTR_NO_FLAGS for this parameter.

reason
The reason for the rejection. This rejection reason is returned to the other
participants in the transaction. It is returned in the reason field of the
structure rtr_status_data_t with the rtr_mt_rejected message. Specify
RTR_NO_REASON if no reason is to be supplied.

RTR Call Reference 3–49

rtr_reject_tx

Description

The rtr_reject_tx() call rejects the transaction that is active on the specified
channel.

When rtr_reject_tx() returns, the channel is no longer associated with the
transaction.

Once an rtr_accept() has been called by the server application, the
rtr_reject_tx() call is not allowed until the first message of the next
transaction is received. An attempt to call rtr_reject_tx() yields an
RTR_STS_TXALRACC return status.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_DLKTXRES1 Deadlock detected, transaction rescheduled
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

1This status is returned to a client in the status field of a message of type rtr_mt_rejected if
a transaction currently being processed has been aborted because of a deadlock with other
transactions using the same servers. RTR replays the transaction after the deadlock has been
cleared. This condition can be caused by either a classic database deadlock or a potential deadlock
that RTR tries to avoid in cases such as concurrent server death or server role change. For more
details, see the section in the RTR Application Design Guide, Handling Error Conditions.

Example
rtr_uns_32_t MT_LAST_NAME = 678;

/* Defined in user’s .h file. */

3–50 RTR Call Reference

rtr_reject_tx

if (last_name == null)
{
/* Missing last name! Not everything is ready for

* committing the current transaction (e.g., through
* validations), and so wishes to reject it, rather than
* to commit it.
*/

status = rtr_reject_tx(
channel,
// Same channel it came in on.
RTR_F_REJ_RETRY,
// Retry from msg1 of txn.

MT_LAST_NAME);
// User-defined error code.

check_status(status);
return;
}

See Also

rtr_open_channel()
rtr_accept_tx()

RTR Call Reference 3–51

rtr_reply_to_client

rtr_reply_to_client

Send a server’s reply to a client’s transactional message.

Syntax

status = rtr_reply_to_client (channel, flags, pmsg, msglen, msgfmt)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_rep_flag_t read

pmsg rtr_msgbuf_t read

msglen rtr_msglen_t read

msgfmt rtr_msgfmt_t read

C Binding

rtr_status_t rtr_reply_to_client (

rtr_channel_t channel ,
rtr_rep_flag_t flags ,
rtr_msgbuf_t pmsg ,
rtr_msglen_t msglen ,
rtr_msgfmt_t msgfmt
)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel()).

flags
Table 3–10 shows the flags defined for this call.

3–52 RTR Call Reference

rtr_reply_to_client

Table 3–10 Reply To Client Flag

Flag Description

RTR_F_REP_ACCEPT The transaction is accepted by this server.
This is equivalent to sending a reply to the
server and immediately following it with a
call to rtr_accept_tx(). This is useful in
those cases where the sender knows that the
transaction is definitely acceptable.

RTR_F_REP_FORGET Set to prevent receipt of any more messages
or completion status associated with the
transaction after it has been accepted. Using
this flag requires that the RTR_F_ACC_
FORGET flag be set in the rtr_accept_tx
call, indicating that the transaction is to be
accepted.

RTR_F_REP_INDEPENDENT Set to indicate that this transaction
is independent; can only be used with
RTR_F_REP_ACCEPT. (See Section 2.15.4,
Transaction Independence, for further
information.)

Specify RTR_NO_FLAGS for this parameter if no flags are required.

pmsg
Pointer to the reply message to be sent.

msglen
Length of the message to be sent, in bytes.

msgfmt
Message format description. msgfmt is a null-terminated character string
containing the format description of the message. RTR uses this description
to convert the contents of the message appropriately when processing the
message on different hardware platforms. See Section 2.14, RTR Applications
in a Multiplatform Environment, for information on defining a message format
description.

This parameter is optional. Specify RTR_NO_MSGFMT if the message content is
platform independent, or other hardware platforms will not be used.

RTR Call Reference 3–53

rtr_reply_to_client

Description

The rtr_reply_to_client() call sends a transactional message back to the
client that started the transaction.

The caller must first obtain a server channel (using the rtr_open_channel()
call) and must have received a message from a client using the
rtr_receive_message() call.

Once an rtr_accept_tx() has been called by the server application, the
rtr_reply_to_client() call is not allowed until the first message of the next
transaction is received. An attempt to call rtr_reply_to_client() yields an
RTR_STS_TXALRACC return status.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_TXALRACC Transaction already accepted
RTR_STS_TXNOTACT No transaction currently active on this channel

Example
/* The purchase_msg structure is defined in the user’s

* application header file.
*/

typedef struct {
rtr_uns_8_t my_msg_type;
string31 last_name;
rtr_uns_32_t order_total;
rtr_uns_32_t shipping_amt;
string7 user_id;

} purchase_msg;

purchase_msg purch_msg;

3–54 RTR Call Reference

rtr_reply_to_client

/* The client has made a request on the server; the server
* has fulfilled this request, and now needs to let the
* client know the result.
*
* In this case, the client has asked the server to total
* the purchases in the user’s shopping cart. The server
* is accepting the transaction at this time as well, without
* being explicitly asked to.

*/
purch_msg.my_msg_type = MY_TOTAL_PURCHASES;
purch_msg.last_name = cust_last_name;
.
. Fill the struct based on database query or calculations.
.
status = rtr_reply_to_client (

channel,
RTR_F_REP_ACCEPT,
&purch_msg,
sizeof(purch_msg),
RTR_NO_MSGFMT);

check_status(status);

See Also

rtr_receive_message()
rtr_open_channel()
rtr_accept_tx()

RTR Call Reference 3–55

rtr_request_info

rtr_request_info

Request information about the RTR environment.

Syntax

status = rtr_request_info (pchannel, flags, infcla, selitm, selval, getitms)

Argument Data Type Access

status rtr_status_t write

pchannel rtr_channel_t write

flags rtr_req_flag_t read

infcla rtr_infoclass_t read

selitm rtr_itemcode_t read

selval rtr_selval_t read

getitms rtr_itemcode_t read

C Binding

rtr_status_t rtr_request_info (

rtr_channel_t *pchannel ,
rtr_req_flag_t flags ,
rtr_infoclass_t infcla ,
rtr_itemcode_t selitm ,
rtr_selval_t selval ,
rtr_itemcode_t getitms
)

Arguments

pchannel
Pointer to the channel opened by a successful call to rtr_request_info().

flags
No flags are defined for this call. Use RTR_NO_FLAGS for this parameter.

3–56 RTR Call Reference

rtr_request_info

infcla
A null-terminated text string that specifies the type of information for which
data are requested. Table 3–11 lists information types and their specifying
information class strings. Within an information class, you retrieve a specific
datum with selitm, selval, and getitms parameters specified as strings. Data
returned by rtr_request_info are valid only under certain conditions as listed
in Table 3–11. For example, to obtain information about a node, use the ‘‘rtr’’
string; RTRACP must be running for data to be valid.

When the gcs information class is used with rtr_request_info(), the first
message returned is unique; it includes attributes of the requested information,
and overhead information present because the backend requests information
from many routers.

The first message returned with the gcs information class contains at least
three fields separated by the null character (ASCII 0).

The first field indicates if the gcs data is complete or incomplete. If the
backend gathering the information cannot gather all the information
from the routers, then the data may be incomplete; otherwise, the data
is complete. The first field thus contains one of two literal strings: either
‘‘complete data’’ or ‘‘incomplete data.’’

The second field indicates how many seconds remain until the backend’s
cache is updated. Since the backend must request information from
all routers, it caches the information to avoid extra overhead for every
request. (See the SET NODE /INFO_CACHE_LIFETIME qualifier for
more information on the cache.) The field has the form ‘‘n seconds until
update,’’ where n can be a value from 0 to UINT_MAX. Note that the word
‘‘seconds’’ remains plural for all cases of n.

The third field indicates the age, in seconds, of the backend’s cache. The
age is the number of seconds since the cache was refreshed with current
information. The field has the form: ‘‘n seconds old,’’ where n may take
a value between 0 to UINT_MAX. Note that the word ‘‘seconds’’ remains
plural for all cases of n.

The fourth and following fields may be present to explain why information
is incomplete. If the information is complete, these fields are not present.
If the information is incomplete, one or more of these fields may contain
strings meant to be read by humans. These strings can, for example, be
logged in a log file.

RTR Call Reference 3–57

rtr_request_info

Applications using the gcs information class may choose to parse the first
message to store the information’s attributes, or ignore the first message and
acquire the information found in the second and subsequent messages. The
application must not assume that the first message contains the requested
information. For an example, see the last example for this C API call.

Table 3–11 Information Classes

For this type of
information:

Use this
Information
Class
string: To obtain valid data:

For
available
items and
strings,
see:

Application process prc An application process must have been
started (rtr_open_channel called).

Table 3–12

Client process cli A client channel must have been
opened.

Table 3–13

Facility fac A facility must be defined. Table 3–14
Global Configuration
and Status

gcs The gcs information class can only
be accessed from a backend and
HP recommends that the backend
be connected to all routers. If the
backend is disconnected from one or
more routers, gcs information will still
be available but may be incomplete.
This incomplete status is indicated
in the first message returned by
rtr_request_info. For additional
information, see the description earlier
on the gcs information class and the
gcs example.

Table 3–15

Key segment ksg A server channel must have been
opened.

Table 3–16

Link to a node lnk A facility must be defined. Table 3–17
Node or RTRACP rtr RTRACP must be running. Table 3–18
Partition on a
backend

bpt A server channel must have been
opened.

Table 3–19

(continued on next page)

3–58 RTR Call Reference

rtr_request_info

Table 3–11 (Cont.) Information Classes

For this type of
information:

Use this
Information
Class
string: To obtain valid data:

For
available
items and
strings,
see:

Partition on a router rpt A server channel must have been
opened.

Table 3–20

Partition history hpt A server channel must have been
opened.

Table 3–21

Server process srv A server channel must have been
opened.

Table 3–22

Transaction on a
backend

btx A transaction must be in progress on
the backend.

Table 3–23

Transaction on a
frontend

ftx A client application must have a
transaction in progress.

Table 3–24

Transaction on a
router

rtx A transaction must be in progress on
the router.

Table 3–25

selitm
Null-terminated text string giving the strings used to select information such
as facility name or transaction ID. Use this argument to reduce the amount of
information returned. If you specify a null string (""), all available information
for the class is returned. A string containing multiple items should be a
comma-separated list. Some SHOW commands display the same data. For
example, to obtain the RTR version number (displayed by SHOW RTR/VERSION),
use the string rtr_version_string from the "rtr" information class.

The tables are in alphabetical order by Information Class, and grouped by
function within each table.

Table 3–12 Application Process ("prc") Strings

For this selitm: Use this string:

Process-id process_id
Process Name process_name

RTR Call Reference 3–59

rtr_request_info

Table 3–13 Client Process ("cli") Strings

For this selitm: Use this string:

Process-id dpb_pid
Facility fdb_f_name
Channel dpb_chan
Flags dpb_dclflg
State dpb_req_sts
rcpnam dpb_evtnam
User Events dpb_user_evtnum
RTR Events dpb_rtr_evtnum

Table 3–14 Facility ("fac") Strings

For this selitm: Use this string:

Facility fdb_f_name
Frontend fdb_attr.fdb_attr_bits.is_fe
Router fdb_attr.fdb_attr_bits.is_rtr
Backend fdb_attr.fdb_attr_bits.is_be
Reply Checksum fdb_attr.fdb_attr_bits.reply_enabled
Router call-out fdb_attr.fdb_attr_bits.tr_call_out
Backend call-out fdb_attr.fdb_attr_bits.be_call_out
Load balance fdb_attr.fdb_attr_bits.feshare
Quorum-check off fdb_attr.fdb_attr_bits.qrt_chk
Partition state warning fdb_cn_partition_warning
FE -> TR fdb_trsrch
Router quorate fdb_state.fdb_state_bits.tr_qrt
Backend quorate fdb_state.fdb_state_bits.be_qrt
Quorum threshold fdb_iqt_cnt
Min bcst rate fdb_cn_fct_min_brd_out_rate
Frontends connected fdb_fecnt
Frontends allowed fdb_fecdt

(continued on next page)

3–60 RTR Call Reference

rtr_request_info

Table 3–14 (Cont.) Facility ("fac") Strings

For this selitm: Use this string:

Load coordinator fdb_status.fdb_status_bits.qm_be
Quorate routers fdb_trtot
Total Frontends fdb_fetot
Current Credit fdb_curcdt
FE -> TR fdb_trsrch
Link to fac_ndb
Frontend fac_fe.rol_bits.rol_cfg
Router fac_tr.rol_bits.rol_cfg
Backend fac_be.rol_bits.rol_cfg
Router -> Frontend fac_reasons.fac_reason_bits.trfelnk
Frontend -> Router fac_reasons.fac_reason_bits.fetrlnk
Backend -> Router fac_reasons.fac_reason_bits.betrlnk
Router -> Backend fac_reasons.fac_reason_bits.trbelnk
Router quorate fac_tr.rol_bits.rol_quorum
Backend -> Router fac_reasons.fac_reason_bits.betrlnk
Router -> Backend fac_reasons.fac_reason_bits.trbelnk
Router quorate fac_tr.rol_bits.rol_quorum
Backend quorate fac_be.rol_bits.rol_quorum
Router current fac_tr.rol_bits.rol_cur
Backend coordinator fac_be.rol_bits.rol_qmaster

Table 3–15 Global Configuration and Status ("gcs") Strings

For this selitm: Use this string:

Node name gcs_node
Facility name gcs_fac
Role gcs_role
Cluster gcs_clust
Operating System gcs_os

(continued on next page)

RTR Call Reference 3–61

rtr_request_info

Table 3–15 (Cont.) Global Configuration and Status ("gcs") Strings

For this selitm: Use this string:

RTR version gcs_version
Connection State gcs_connected
Detected Problem Name gst_name
Detected Problem Message gst_mesg
Detected Problem Severity severity
Partition Name gpt_ptn
Partition State gpt_state

Table 3–16 Key Segment ("ksg") Strings

For this selitm: Use this string:

Facility fdb_f_name
Data Type ksd_dtyp
Length ksd_length
Offset ksd_offset

Table 3–17 Node Links ("lnk") Strings

For this selitm: Use this string:

To Node ndb_name
Address ndb_idp
Outgoing message sequence nr ndb_xcnt
Incoming message sequence nr ndb_rcnt
Current receive buffer size ndb_credit
Current transmit buffer size ndb_cdt_out
Current number of link users ndb_reasons
Write buffer timed out ndb_status.wbuftmo
Write buffer full, may be sent ndb_status.wbufrdy
Write buffer allocated ndb_status.wbufalc

(continued on next page)

3–62 RTR Call Reference

rtr_request_info

Table 3–17 (Cont.) Node Links ("lnk") Strings

For this selitm: Use this string:

I/O error detected in write ndb_status.wrerror
I/O error detected in read ndb_status.rderror
Pipe temporarily blocked ndb_status.blocked
Connection broken ndb_status.aborted
Write issued, not completed ndb_status.writing
Read is pending ndb_status.reading
Node initiated the connection ndb_status.initiator
Connection established ndb_status.connected
Connection in progress ndb_status.connecting
Node is configured ndb_status.configured
Autoisolation enabled ndb_attr.attr_bits.isol_ebld
Link disabled ndb_attr.attr_bits.disabled
Link isolated ndb_attr.attr_bits.isolated
In facility fac_ifn
Frontend fac_fe.rol_bits.rol_cfg
Router fac_tr.rol_bits.rol_cfg
Backend fac_be.rol_bits.rol_cfg
Router -> Frontend fac_reasons.fac_reason_bits.trfelnk
Frontend -> Router fac_reasons.fac_reason_bits.fetrlnk
Backend -> Router fac_reasons.fac_reason_bits.betrlnk
Router -> Backend fac_reasons.fac_reason_bits.trbelnk
Router quorate fac_tr.rol_bits.rol_quorum
Backend quorate fac_be.rol_bits.rol_quorum
Router current fac_tr.rol_bits.rol_cur
Backend coordinator fac_be.rol_bits.rol_qmaster

RTR Call Reference 3–63

rtr_request_info

Table 3–18 Node and ACP ("rtr") Strings

For this selitm: Use this string:

Network state ncf_isolated
Auto isolation ncf_isol_ebld
Inactivity timer/s ncf_lw_inact
RTR Version Number rtr_version_string
Start-up and standby recovered txns be_restart_recoveries
Shadow recovered transactions txns be_shadow_recoveries
Replayed messages due to server death be_replay_recoveries
Txns aborted because they killed 3 servers be_3strikes_txns
Txns processed on the backend be_txns_processed
Txns processed on the router tr_txns_processed
Backend ptn switches from inactive to
active

be_ptn_activations

Router partition gains tr_ptn_activations
Backend link connects and re-connects be_link_gains
Router link connects and re-connects tr_link_gains

Table 3–19 Partition on a Backend ("bpt") Strings

For this selitm: Use this string:

Partition name $name
Facility ppb_fdbptr
State ppb_pst.prt_ps
Low Bound ppb_krd.krd_low_bound
High Bound ppb_krd.krd_high_bound
Active Servers srb_active_q.#crm_server_block
Free Servers srb_free_q.#crm_server_block
Transaction presentation tx_presentation_state
Last Rcvy BE last_lcl_rec_be
Txns Active tkb_q.#crm_tx_kr_block

(continued on next page)

3–64 RTR Call Reference

rtr_request_info

Table 3–19 (Cont.) Partition on a Backend ("bpt") Strings

For this selitm: Use this string:

Txns Rcvrd rec_be_txs
Failover policy ppb_failover_policy
Key range ID ppb_krid

Table 3–20 Partition on a Router ("rpt") Strings

For this selitm: Use this string:

Facility fdb_f_name
State krb_sts
Low Bound krb_low_bound
High Bound krb_high_bound
Failover policy krb_failover_policy
Backends bpsb_ndbptr
States bpsb_pst.prt_ps
Primary Main krb_pri_act_bpsbptr.bpsb_ndbptr
Shadow Main krb_sec_act_bpsbptr.bpsb_ndbptr

Table 3–21 Partition History ("hpt") Strings

For this selitm: Use this string:

Partition name $name
Facility phr_fdb
Low Bound phr_krd.krd_low_bound
High Bound phr_krd.krd_high_bound
Creation time phr_creation_time

Table 3–22 Server Process ("srv") Strings

For this selitm: Use this string:

Process-id dpb_pid
(continued on next page)

RTR Call Reference 3–65

rtr_request_info

Table 3–22 (Cont.) Server Process ("srv") Strings

For this selitm: Use this string:

Facility fdb_f_name
Channel dpb_chan
Flags dpb_dclflg
State ppb_pst.prt_ps
Low Bound ppb_krd.krd_low_bound
High Bound ppb_krd.krd_high_bound
rcpnam dpb_evtnam
User Events dpb_user_evtnum
RTR Events dpb_rtr_evtnum
Partition-Id dpb_krid

Table 3–23 Transaction on a Backend ("btx") Strings

For this selitm: Use this string:

Tid tb_txdx.tx_id
Facility fac_id
FE-User tb_txdx.fe_user
State state
Start time tb_txdx.tx_start_time
Router tr_ndbptr
Invocation invocation
Active-Key-Ranges #crm_tx_kr_block
Recovering-Key-Ranges #crm_tr_block
Total-Tx-Enqs nr_tx_enqs
Key-Range-Id kr_id
Server-Pid pid
Server-State sr_state
Journal-Node jnl_node_id
Journal-State jnl_state

(continued on next page)

3–66 RTR Call Reference

rtr_request_info

Table 3–23 (Cont.) Transaction on a Backend ("btx") Strings

For this selitm: Use this string:

First-Enq first_enq_nr
Nr-Enqs nr_enqs
Nr-Replies nr_replys

Table 3–24 Transaction on a Frontend ("ftx") Strings

For this selitm: Use this string:

Tid tb_txdx.tx_id
Facility fac_id
FE-User tb_txdx.fe_user
State state
Start time tb_txdx.tx_start_time
Router tr_ndbptr
Nr-Enqs enqs_from_rq
Nr-Replies replys_rcvd

Table 3–25 Transaction on a Router ("rtx") Strings

For this selitm: Use this string:

Tid tb_txdx.tx_id
Facility fac_id
FE-User tb_txdx.fe_user
State state
Start time tb_txdx.tx_start_time
FE-Connected fe_ndbptr
Total-Tx-Enqs nr_tx_enqs
First-Enq first_enq_nr
Nr-Enqs nr_enqs
Backend be_ndbptr

(continued on next page)

RTR Call Reference 3–67

rtr_request_info

Table 3–25 (Cont.) Transaction on a Router ("rtx") Strings

For this selitm: Use this string:

Key-Range-State kr_state
Key-Range-Id kr_id
Journal-State be_state

selval
Null-terminated text string; contains a value for the item named in selitm. For
example, if selitm specifies fac_id indicating that a facility name is used for the
selection, and selval contains the string "TESTFAC", then only information for
facility TESTFAC is returned. Wildcards can be used in this specification.

getitms
Null-terminated text string containing a comma-separated list of items whose
values are returned. For each instance that matches the selection criterion,
the values of the items specified by getitms are returned in a message of type
rtr_mt_request_info.

Description

An application program can use the rtr_request_info() call to interrogate
the RTR environment and retrieve information about facilities, transactions,
key ranges, and so on. The call accesses data maintained by RTR on behalf of
application programs, and data maintained by the RTR ACP itself.

The way to obtain data is to specify the requirement as parameters to
rtr_request_info(). RTR then opens a channel on which the requested
information can be received by calling rtr_receive_message() on the channel.
The channel is automatically closed when the requested data (if any) has been
completely delivered (that is, an rtr_mt_closed message is received on the
channel.) You may close the channel earlier, if no more information is needed,
by calling rtr_close_channel().

The selection criteria specify an information class, a select item and
a value. This is like doing a table lookup, where the class repre-
sents the specific table, and the select item and value represent the
row and column in the table. For example, the following statement:
rtr_request_info/channel=I/infcla=rtr/selitm=""/ selval="*"
/getitms=rtr_version_string requests information from the RTR (rtr)
information class.

3–68 RTR Call Reference

rtr_request_info

The rtr_request_info() call accesses the RTR tables in memory as follows:

1. The infcla parameter selects the class to be accessed, for example "rtr".

2. The selitm parameter names the row of the RTR table in memory to be
accessed. This can be a null string, for example selitms="" to retrieve all
data for the class.

3. The selval parameter defines what to search for in the row. For example,
in a table containing information about backend transactions, if selitm
specifies fac_id indicating that a facility name is the selection criterion,
and if selval contains the value "TESTFAC", RTR selects only transactions
for the facility TESTFAC.

4. The getitms parameter specifies the items to be returned from the selected
row(s). In the example of a table containing information about backend
transactions, rtr_request_info can specify transaction ID and transaction
start time. The data for these items are returned for all transactions
matching the selection criteria.

The results of the selection are returned as none, one, or more messages of
type rtr_mt_request_info, one message being returned for each selected row
in the table (in a btx example, one message for each backend transaction).

The contents of these messages are defined by the getitms parameter. For
example, if three item names specified for getitms are "item_1,item_2,item_3",
then the corresponding rtr_mt_request_info message or messages contain
three concatenated and null-terminated strings that are the values of those
fields, "value1\0value2\0value3\0".

Casing of Text when Using the GCS Infoclass

• Backend and router node names will be in the case as entered on the
backend where the rtr_request_info() call was issued

• Facility names will be in the case as entered on the backend where the
rtr_request_info() call was issued

• If the frontend node names are all entered in the same case on all the
routers, then their names will be in that case

• If the frontend node names are entered in different cases on different
routers, then the frontend node names can have the case as entered on any
of the routers. There is no guarantee of which router(s) the case will come
from.

• Status problem names and messages will be in the case as they came from
the node reporting the problem

RTR Call Reference 3–69

rtr_request_info

• Generated keywords including role (frontend,router,backend) and
connection status (ncf_conn, ncf_disconn) will be in lowercase

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CLASSREQ At least one data-class definition required
RTR_STS_INVCHANNEL Invalid pchannel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVGETITMS Invalid getitms argument
RTR_STS_INVINFCLA Invalid information class
RTR_STS_INVSELITM Invalid selitm argument
RTR_STS_INVSELVAL Invalid selval argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion
RTR_STS_TOOMANCHA Too many channels already opened

Example

Programming Example:

/*
This routine retrieves the facility names of all facilities
that have been defined.

*/

#include <string.h>
#include <stdio.h>
#include "rtr.h"

void GetFacilityName()
{

char* itemlist[10]; /* Set the elements in this array to point to
each item in getitembuf for later output. */

char* cp = 0;
char getitembuf[1024];
rtr_status_t status;
rtr_channel_t channel;
char msg[1024]; /* Receive message buffer. */

unsigned int getitemcnt = 0;
char infcla_buf[4] = "fac"; /* Set info class to Facility class.*/

rtr_msgsb_t txsb;

getitembuf[0] = ’\0’;

3–70 RTR Call Reference

rtr_request_info

/* Set up the request’s get-item buffer for
requesting the facility name. */

itemlist[getitemcnt] = &getitembuf[strlen(getitembuf)];
strcat(getitembuf, "fdb_f_name");

/* Increment counters. */
getitemcnt++;

/* Add second item FE -> TR. ** Code commented out ** */
/* (Demonstrates multi-item request. Uncomment code to use.)
strcat(getitembuf, ","); //Add comma separator.
itemlist[getitemcnt] = &getitembuf[strlen(getitembuf)];
strcat(getitembuf, "fdb_trsrch");
getitemcnt++;
*/

/* Call rtr_request_info. */
status = rtr_request_info (

/* *pchannel */ &channel,
/* flags */ RTR_NO_FLAGS,
/* infcla */ infcla_buf,
/* selitm */ "",
/* selval */ "*",
/* getitms */ getitembuf);

if (status != RTR_STS_OK) return;

/* Do a receive message to get the information that RTR returns
* in response to this request.
*/

do
{

status = rtr_receive_message(
/* See ’rtr_receive_message’. */

&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
msg,
sizeof(msg),
RTR_NO_TIMOUTMS,

&txsb);

/* Check for bad return status from rtr_receive_message(). */
if (status != RTR_STS_OK) return;

RTR Call Reference 3–71

rtr_request_info

/* Caller expects either an rtr_mt_closed
or an rtr_mt_request_info message. */

if (txsb.msgtype == rtr_mt_closed) break;
/* End of data, exit loop.

Channel closed by RTR. */
if (txsb.msgtype != rtr_mt_request_info)
{

printf("Unexpected msgtype returned. \n");
break;

}
else
{

/* Receive the requested information.
Scan through item list, output item and value.

*/
unsigned int i;
for (i=0, cp = msg; i < getitemcnt; i++, cp += strlen(cp)+1)

{
(itemlist[i+1]-1) = ’\0’; / Overwrite comma. */

printf("%-8s:%40s\t= ’%^s’\n",
infcla_buf,

itemlist[i],
cp);

}
}

} while (1 == 1);
return;

Command Line Example:

RTR> call rtr_request_info/infcla=rtr/selitm=""
/selval="*"/getitms=rtr_version_string/chann=D

%RTR-S-OK, normal successful completion

RTR> call rtr_receive_message/chann=D/tim
%RTR-S-OK, normal successful completion

channel name: D
msgsb

msgtype: rtr_mt_request_info
msglen: 18

message
offset bytes text

000000 52 54 52 20 56 33 2E 32 28 32 33 30 29 20 46 54 RTR V3.2(230) FT
000010 33 00 3.

3–72 RTR Call Reference

rtr_request_info

First Message Example:

The following example illustrates the contents of a first message. In this
example, the information is incomplete, 20 seconds remain until the cache is
updated, the cache is 0 seconds old, and an explanation is given regarding
why the information is incomplete. The example illustrates how the fields are
formed.

%RTR-S-OK, normal successful completion
channel name: RTR$DEFAULT_CHANNEL
msgsb

msgtype: rtr_mt_request_info
msglen: 197

message
offset bytes text
000000 69 6E 63 6F 6D 70 6C 65 74 65 20 64 61 74 61 00 incomplete data.
000010 32 30 20 73 65 63 6F 6E 64 73 20 75 6E 74 69 6C 20 seconds until
000020 20 75 70 64 61 74 65 00 30 20 73 65 63 6F 6E 64 update.0 second
000030 73 20 6F 6C 64 00 54 68 65 20 72 65 71 75 65 73 s old.The reques
000040 74 69 6E 67 20 6E 6F 64 65 20 66 6F 78 20 68 61 ting node wlm ha
000050 73 20 61 20 64 69 73 63 6F 6E 6E 65 63 74 65 64 s a disconnected
000060 20 6C 69 6E 6B 20 77 69 74 68 20 20 72 6F 75 74 link with rout
000070 65 72 20 68 65 78 2E 20 48 65 6E 63 65 20 74 68 er hex. Hence th
000080 65 20 72 65 71 75 65 73 74 69 6E 67 20 6E 6F 64 e requesting nod
000090 65 20 63 6F 75 6C 64 20 6E 6F 74 20 67 61 74 68 e could not gath
0000A0 65 72 20 61 6C 6C 20 6F 66 20 74 68 65 20 72 65 er all of the re
0000B0 71 75 65 73 74 65 64 20 69 6E 66 6F 72 6D 61 74 quested informat
0000C0 69 6F 6E 2E 00 ion..

See Also

rtr_close_channel()
rtr_receive_message()

RTR Call Reference 3–73

rtr_send_to_server

rtr_send_to_server

Send a transactional message to a server.

Syntax

status = rtr_send_to_server (channel, flags, pmsg, msglen, msgfmt)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_sen_flag_t read

pmsg rtr_msgbuf_t read

msglen rtr_msglen_t read

msgfmt rtr_msgfmt_t read

C Binding

rtr_status_t rtr_send_to_server (

rtr_channel_t channel ,
rtr_sen_flag_t flags ,
rtr_msgbuf_t pmsg ,
rtr_msglen_t msglen ,
rtr_msgfmt_t msgfmt ,
)

Arguments

channel
The channel identifier (returned earlier by rtr_open_channel()).

flags
Table 3–26 shows the flags that specify options for the call.

3–74 RTR Call Reference

rtr_send_to_server

Table 3–26 Send to Server Flags

Flag name Description

RTR_F_SEN_ACCEPT This is the last message of the transaction,
and the tx is accepted. This optimization
avoids the need for a separate call to
rtr_accept_tx() in those cases where
the sender knows this is the last (or only)
message in the transaction.

RTR_F_SEN_READONLY Specifies a read-only server operation.
Hence no shadowing or journalling is
required. (The message is still written to
the journal but is not played to a shadow
and is purged after the transaction is
completed on the primary. The message is
still needed in the journal to allow recovery
of in-flight transactions.)

RTR_F_SEN_RETURN_TO_
SENDER

The message is to be returned to the sender
if undeliverable.

RTR_F_SEN_EXPENDABLE The whole transaction is not aborted if this
send fails.

Specify RTR_NO_FLAGS for this parameter if no flags are required.

pmsg
Pointer to the message to be sent.

msglen
Length in bytes of the message to be sent, up to RTR_MAX_MSGLEN bytes. The
value of RTR_MAX_MSGLEN is defined in rtr.h.

msgfmt
Message format description. msgfmt is a null-terminated character string
containing the format description of the message. RTR uses this description
to convert the contents of the message appropriately when processing the
message on different hardware platforms. See Section 2.14, RTR Applications
in a Multiplatform Environment, for information on defining a message format
description.

This parameter is optional. Specify RTR_NO_MSGFMT if the message content
is platform independent, or it is not intended to be used on other hardware
platforms.

RTR Call Reference 3–75

rtr_send_to_server

Description

The rtr_send_to_server() call sends a client’s transactional message to a
server.

The caller must first open a client channel (using the rtr_open_channel()
call), before it can send transactional messages.

If no transaction is currently active on the channel, a new transaction is
started.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVJOINTXID Invalid join transaction argument
RTR_STS_INVMSGFMT Invalid msgfmt argument
RTR_STS_INVMSGLEN Invalid msglen argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion
RTR_STS_REPLYDIFF Reply from new server did not match earlier

reply

Example
/* The my_msg structure is defined in the user’s

* application header file.
*/

typedef struct {
rtr_uns_8_t routing_key;
rtr_uns_32_t sequence_number;
rtr_uns_8_t my_msg_type;
string31 last_name;
rtr_uns_32_t order_total;
rtr_uns_32_t shipping_amt;
string16 cc_number;
string7 cc_expire;

} my_msg;

my_msg send_msg;

3–76 RTR Call Reference

rtr_send_to_server

.

. Load purchase data into send_msg.

.
/*

* Tell the server to validate the credit card for the
* amount of this order.
*/

my_msg.my_msg_type = VALIDATE_CC;
status = rtr_send_to_server(

channel,
RTR_NO_FLAGS ,
&send_msg,
sizeof(send_msg),
RTR_NO_MSGFMT);

See Also

rtr_receive_message()
rtr_open_channel()

RTR Call Reference 3–77

rtr_set_info

rtr_set_info

Sets or changes a managed object in the RTR environment.

Syntax

status = rtr_set_info (*pchannel, flags, verb, object, *select_qualifiers, *set_qualifiers)

Argument Data Type Access

status rtr_status_t write

*pchannel rtr_channel_t write

flags rtr_set_flag_t read

verb rtr_verb_t read

object rtr_managed_object_t read

*select_qualifiers rtr_qualifier_value_t read

*set_qualifiers rtr_qualifier_value_t read

C Binding

rtr_status_t rtr_set_info (

rtr_channel_t *pchannel ,
rtr_set_flag_t flags ,
rtr_verb_t verb ,
rtr_managed_object_t object ,
const rtr_qualifier_value_t *select_qualifiers ,
const rtr_qualifier_value_t *set_qualifiers
)

Arguments

pchannel
Pointer to the channel opened by a successful call to rtr_set_info().

flags
No flags are currently defined. Specify RTR_NO_FLAGS for this argument.

verb
Always rtr_verb_set.

3–78 RTR Call Reference

rtr_set_info

object
Establishes the type of object to which the call is directed. Values are:

• rtr_partition_object: the target object is a partition

• rtr_transaction_object: the target object is a transaction

select_qualifiers
Pointer to array containing selection qualifiers. Values depend on object type:

For: See the values in:

Set Partition Table 3–27
Set Transaction Table 3–28

For example:

typedef struct rtr_qualifier_value_t {
rtr_qualifier_t qv_qualifier ; /* Which qualifier this is */
void *qv_value ; /* What value it has */
} rtr_qualifier_value_t ;

The last value in the array must be rtr_qualifiers_end (see the example).
Specify sufficient descriptors to identify the target object.

Table 3–27 Select Qualifiers for the Set Partition Object

Qualifier Value Type Description Example

rtr_facility_name const char* Facility name string "facility_name"
rtr_partition_
name

const char* Partition name string "partition_
name"

Table 3–28 Select Qualifiers for the Set Transaction Object

Qualifier Value Type Description Example

rtr_facility_
name

facname Facility name
string

"facility_name"

rtr_
partition_
name

partname Partition name
string

"partition_name"

(continued on next page)

RTR Call Reference 3–79

rtr_set_info

Table 3–28 (Cont.) Select Qualifiers for the Set Transaction Object

Qualifier Value Type Description Example

rtr_txn_state rtr_txn_jnl_
commit

Current
transaction
state

See Table 3–29 for valid changes
from one state to another.

rtr_txn_tid tid Transaction ID 63b01d10,0,0,0,0,2e59,43ea2002

When using the Set Transaction Object, the qualifier rtr_txn_state is
required. In addition, when using rtr_txn_state without rtr_facility_name
or rtr_partition_name, rtr_txn_tid is required. The qualifiers
rtr_facility_name and rtr_partition_name must be used together. You must
always provide the current state when making a state change.

Table 3–29 Valid Set Transaction State Changes

From (current state): To (new state):

COMMIT ABORT EXCEPTION DEFER
PRI_
DONE DONE

SENDING YES

VOTED YES YES

COMMIT YES YES

EXCEPTION YES YES

PRI_DONE YES YES

DEFER YES

set_qualifiers
Pointer to an array containing values of type rtr_qualifier_value_t (see Select
Qualifiers above) that describe the desired change to be effected. Table 3–30
and Table 3–31 list qualifiers and value types for the managed object types.

Table 3–30 Qualifiers for Set Partition

Qualifier Value Type Value Desired Action

rtr_partition_
state

rtr_partition_
state_t

rtr_partition_
state_suspend

Suspend transaction
presentation.

(continued on next page)

3–80 RTR Call Reference

rtr_set_info

Table 3–30 (Cont.) Qualifiers for Set Partition

Qualifier Value Type Value Desired Action

rtr_partition_
state

rtr_partition_
state_t

rtr_partition_
state_resume

Resume transaction presenta-
tion.

rtr_partition_
state

rtr_partition_
state_t

rtr_partition_
state_recover

(Re)start partition recovery.

rtr_partition_
state

rtr_partition_
state_t

rtr_partition_
state_exitwait

Exit partition recovery
wait/fail state.

rtr_partition_
state

rtr_partition_
state_t

rtr_partition_
state_shadow

Enable shadowing.

rtr_partition_
state

rtr_partition_
state_t

rtr_partition_
state_noshadow

Disable shadowing.

rtr_partition_
cmd_timeout_
secs

rtr_uns_32_t unsigned int Optional partition suspend
timeout period (in seconds).

rtr_partition_
rcvy_retry_
count

rtr_uns_32_t unsigned int Limit number of recovery
replays for a transaction.

rtr_partition_
failover_policy

rtr_partition_
failover_policy_t

rtr_partition_
fail_to_standby

Set failover policy to standby.

rtr_partition_
failover_policy

rtr_partition_
failover_policy_t

rtr_partition_
fail_to_shadow

Set failover policy to shadow.

rtr_partition_
failover_policy

rtr_partition_
failover_policy_t

rtr_partition_
pre32_
compatible

Set failover policy as pre-V3.2
compatible.

For both managed object types, a message of type rtr_mt_closed is returned.
See Table 3–31 for the value that can be set for the transaction type.

Completion status is read from message data, which is of type
rtr_status_data_t. In addition, a number (type integer) indicating the
number of transactions processed is returned. This number can be read from
the message following the rtr_status_data_t data item. The last value in the
array must be rtr_qualifiers_end.

RTR Call Reference 3–81

rtr_set_info

Table 3–31 Qualifiers for Set Transaction

Set Qualifier Set Qualifier Value Value Description

rtr_txn_
state

rtr_transaction_
state_t

rtr_tx_jnl_commit Set a transaction’s state
to COMMIT to commit the
transaction.

rtr_txn_
state

rtr_transaction_
state_t

rtr_tx_jnl_abort Set a transaction state
to ABORT to abort the
transaction.

rtr_txn_
state

rtr_transaction_
state_t

rtr_tx_jnl_
exception

Mark this as an exception
transaction.

rtr_txn_
state

rtr_transaction_
state_t

rtr_tx_jnl_done Remove this transaction
from the RTR journal; that
is, forget this transaction
completely.

rtr_txn_
state

rtr_transaction_
state_t

rtr_txn_jnl_
deferred

Mark this transaction as
deferred, so that it can be
recovered later.

Description

The rtr_set_info() call requests a change in a characteristic of the RTR
environment. If the call is successful, a channel is opened for asynchronous
completion notification. Applications should use the rtr_receive_message()
call to retrieve informational messages on the opened channel.

The rtr_set_info() call can manipulate two managed object types:

• Partition type

• Transaction type

See Table 3–30 for values that can be set for the partition object and
Table 3–31 for values that can be set for the transaction object. Completion
status is read from message data, which is of type rtr_status_data_t.

3–82 RTR Call Reference

rtr_set_info

Return Value

A value indicating the status of the routine, normally returned as function
completion status. Possible status values are:

RTR_STS_ALRDYINSTATE† Partition is already in the desired state
RTR_STS_BADPRTSTATE† Disallowed attempt to make an illegal or

undefined partition state transition
RTR_STS_FACNAMLON† Facility name facility_name is larger than 30

characters
RTR_STS_FENAMELONG Frontend name string length greater than

permitted maximum
RTR_STS_INSUFPRIV Insufficient privileges to run RTR
RTR_STS_INSVIRMEM Insufficient virtual memory
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFACNAM Invalid FACNAM argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVOBJCT Specified object type invalid for managed

object request
RTR_STS_INVSTATCHANGE Invalid to change from the current state to the

specified state
RTR_STS_IVQUAL Unrecognized qualifier - check validity,

spelling, and placement
RTR_STS_IVVERB Unrecognized command verb - check validity

and spelling
RTR_STS_NOACTION No object management action specified - check

argument set qualifier
RTR_STS_NODNOTBAC† Node not defined as a backend
RTR_STS_NOSUCHPRTN† No such partition in the system
RTR_STS_OK Normal successful completion
RTR_STS_PARTNAMELONG Partition name too long
RTR_STS_PRTBADCMD† Partition command invalid or not implemented

in this version of RTR
RTR_STS_PRTBADFPOL† Unrecognized partition failover policy code
RTR_STS_PRTLCLRECEXT† Partition local recovery terminated by operator

†Returned in status field of rtr_status_data_t data returned with the rtr_mt_closed message.
Indicates outcome of request.

RTR Call Reference 3–83

rtr_set_info

RTR_STS_PRTMODRMBR† Partition must be in remember mode on the
active member

RTR_STS_PRTNOSRVRS† Partition has no servers—please start servers
and retry

RTR_STS_PRTNOTBACKEND† Partition command must be entered on a
backend node

RTR_STS_PRTNOTSUSP† Unable to resume partition that is not
suspended

RTR_STS_PRTNOTWAIT† Partition not in a wait state—no action taken
RTR_STS_PRTRECSTATE† Partition must be in remember or active

(non-recovery) state
RTR_STS_PRTRESUMED† Partition partition_name resumed by operator

operator
RTR_STS_PRTRUNDOWN† Partition is in a rundown prior to deletion –

no action taken
RTR_STS_PRTSHDRECEXT† Partition shadow recovery terminated by

operator
RTR_STS_SETTRANDONE† n transaction(s) updated in partition partition_

name of facility facility_name
RTR_STS_SETTRANROUTER† Cannot process this command, coordinator

router is still available
RTR_STS_TOOMANCHA Too many channels already opened
RTR_STS_TRNOTALL032† Not all routers are at the minimum required

version of V3.2
RTR_STS_VALREQ Missing qualifier or keyword value—supply all

required values
RTR_STS_WTTR Not in contact with sufficient router nodes –

please retry later

†Returned in status field of rtr_status_data_t data returned with the rtr_mt_closed message.
Indicates outcome of request.

3–84 RTR Call Reference

rtr_set_info

Example
/*

* This might follow a call to commit the transaction to the database.
* If the SQL commit returns an error that is beyond the control of
* this application: for example, database disk full, network to
* database not responding, or timeout exceeded, it executes.
*
* Declarations:
*/

rtr_tid_t tid;
rtr_uns_32_t select_idx;
rtr_uns_32_t set_idx;
rtr_qualifier_value_t select_qualifiers[8];
rtr_qualifier_value_t set_qualifiers[3];

/* Everyone has voted to accept the transaction, and RTR has told the
* server to commit it. The client has moved on to performing the next
* transaction. This transaction will be changed from ‘commit’ status
* to ‘exception’ status for a later attempt at committing.
*
* Get the transaction id. The channel has previously been
* declared in an rtr_open_channel call.
*/

rtr_get_tid(channel, RTR_F_TID_RTR, &tid);

/* Load the rtr_qualifier_value_t structures that contain the
* selection criteria for the transaction: ‘the transaction whose tid
* is pointed at by ‘tid’, whose facility name is in ‘facname’, whose
* partition name is in ‘partname’, and whose transaction state is
* ‘rtr_txn_jnl_commit’ (logged to the journal as committed).
*/

select_idx = 0;
select_qualifiers[select_idx].qv_qualifier = rtr_txn_tid;
select_qualifiers[select_idx].qv_value = &tid;
select_idx++;

/* Facility name
*/

select_qualifiers[select_idx].qv_qualifier =
rtr_facility_name;

select_qualifiers[select_idx].qv_value = facname;
select_idx++;

/* Partition name
*/

select_qualifiers[select_idx].qv_qualifier = rtr_partition_name;
select_qualifiers[select_idx].qv_value = partname;
select_idx++;

RTR Call Reference 3–85

rtr_set_info

/* Transaction state in journal
*/

select_qualifiers[select_idx].qv_qualifier = rtr_txn_state;
select_qualifiers[select_idx].qv_value = &rtr_txn_jnl_commit;
select_idx++;

/* Last one on array must be ‘rtr_qualifiers_end’
*/

select_qualifiers[select_idx].qv_qualifier =
rtr_qualifiers_end,

select_qualifiers[select_idx].qv_value = NULL;
select_idx++;

/* Load the
* rtr_qualifier_t structs that we will use to set the
* new property for the transaction: in this case, only the
* state of the transaction. We will change it to
* rtr_txn_jnl_exception, or ‘exception’.
*/

set_idx = 0;

set_qualifiers[set_idx].qv_qualifier = rtr_txn_state;
set_qualifiers[set_idx].qv_value = &rtr_txn_jnl_exception;
set_idx++;

/* Terminate the array with an rtr_qualifiers_end.
*/

set_qualifiers[set_idx].qv_qualifier =
rtr_qualifiers_end;

set_qualifiers[set_idx].qv_value = NULL;
set_idx++;

/* Tell RTR to change the transaction’s state.
*/

status = rtr_set_info(&pchannel,
RTR_NO_FLAGS,
rtr_verb_set,
rtr_transaction_object,
select_qualifiers,
set_qualifiers);

check_status(status);

/* The server should now look for an
* RTR_STS_SETTRADONE message
* from RTR, which confirms that it has changed the status.
*/

3–86 RTR Call Reference

rtr_set_info

See Also

rtr_close_channel()
rtr_receive_message()
rtr_request_info()

RTR Call Reference 3–87

rtr_set_user_context

rtr_set_user_context

Sets the current value of the optional user-defined context associated with the
specified RTR channel.

Syntax

status = rtr_set_user_context (channel, usrctx)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

usrctx rtr_usrctx_t read

C Binding

rtr_status_t rtr_set_user_context (

rtr_channel_t channel ,
rtr_usrctx_t usrctx
)

Arguments

channel
The channel whose context is to be set.

usrctx
User-supplied context value.

Description

Sets the current value of the optional user-defined context associated with the
specified RTR channel. The user context value may be subsequently retrieved
using rtr_get_user_context(). The context value RTR_NO_USER_CONTEXT is
reserved.

3–88 RTR Call Reference

rtr_set_user_context

Return Value

A value indicating the status of the routine. Possible values are:

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_OK Normal successful completion

See Also

rtr_get_user_context()

RTR Call Reference 3–89

rtr_set_user_handle

rtr_set_user_handle

Associate a user-defined value (handle) with a transaction.

Syntax

status = rtr_set_user_handle (channel, usrhdl)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

usrhdl rtr_usrhdl_t read

C Binding

rtr_status_t rtr_set_user_handle (

rtr_channel_t channel ,
rtr_usrhdl_t usrhdl
)

Arguments

channel
The channel identifier, returned earlier by the rtr_open_channel() call.

usrhdl
Value to associate with the channel. This value is returned in the
usrhdl field of the msgsb message status block when subsequent calls to
rtr_receive_message() return messages associated with this channel.

The usrhdl argument can be used to hold a pointer.

Description

The rtr_set_user_handle() call associates a user-defined value (handle) with
a channel. An application can either use a handle, or client and servers can
act independently.

3–90 RTR Call Reference

rtr_set_user_handle

The current value of a handle is associated with a channel; the current
handle value is associated with each operation on the channel. The message
status block supplied with a message delivered on the channel contains the
user handle value that was current at the time of the associated operation.
For example, an rtr_mt_accepted message has the user handle that was
current when the corresponding call to rtr_accept_tx() was made, and the
rtr_mt_rettosend message has the user handle that was current when the
corresponding call to rtr_send_to_server() was made.

Note that the value of a handle is process local, and a different handle would
be associated for the same transaction by the client and server. The scope for
the user handle is within the process in which the user handle is set.

Return Value

A value indicating the status of the routine. Possible values are:

RTR_STS_CHANOTOPE Channel not opened
RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_OK Normal successful completion
RTR_STS_TXACTIVE Transaction is active

Example
/* This client does not use nested transactions, and it does

* not wait for the mt_accepted message before sending
* the next transaction. Instead, it matches each ‘accepted’
* message it receives with a transaction.
*/

typedef struct {
rtr_uns_32_t txn_number;
rtr_uns_32_t message_id_sent;
char my_record[255];

} txn_handle;

/* Allocate and load the txn_handle data structure that
* you create.
*/

txn_handle txn_ident = (txn_handle*)calloc(1, sizeof(txn));
txn_ident->txn_number = ++count;
txn_ident->message_id_sent = my_message_id;
strcpy(txn_ident->record, my_record);

/* Attach this struct to the channel on which we’re sending the
* transaction.
*/

status = rtr_set_user_handle(channel, txn_ident);

RTR Call Reference 3–91

rtr_set_user_handle

See Also

rtr_receive_message()

3–92 RTR Call Reference

rtr_set_wakeup

rtr_set_wakeup

Register a function to be called when a message arrives.

Syntax

status = rtr_set_wakeup (void (*wu_rou)(void))

Argument Data Type Access

status rtr_status_t write

wu_rou procedure read

C Binding

rtr_status_t rtr_set_wakeup (

procedure void (*wu_rou) (void)
)

Arguments

void (*wu_rou) (void)
The routine to be called by RTR when a message is waiting to be delivered.

Description

The rtr_set_wakeup() call sets the address of a function to be called when a
message is waiting to be delivered. To cancel wakeups, call the routine with an
argument of NULL.

Execution of the specified wakeup indicates that you may have messages.

At the time of the execution of the wakeup there may be 0, 1 or more messages
available. Each incoming application message does not generate a separate
wakeup callback, so following a wakeup callback a program should call
rtr_receive_message(..., timoutms=0, ...) in a loop at some point to
ensure that no message is left uncollected.

(See CALL rtr_receive_message in the HP Reliable Transaction Router System
Manager’s Manual for restrictions on using V2 and later RTR version calls in
the same application.)

RTR Call Reference 3–93

rtr_set_wakeup

If a wakeup routine has been set using this call, subsequent calls to
rtr_set_wakeup() should either disable the wakeup feature (with an
argument of NULL), or replace the current wakeup routine with another.

For details and restrictions on using the RTR wakeup handler rtr_set_wakeup,
see the discussion in Section 2.9.

Return Value

A value indicating the status of the routine. Possible values are:

RTR_STS_ACPNOTVIA RTR ACP no longer a viable entity, restart
RTR or application

RTR_STS_BYTLMNSUFF Insufficient process quota bytlm, required
100000

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_OK Normal successful completion

Example

#include <stdlib.h>

void app_wakeup_routine (void)
{

/* NB This is called from an AST, ALRM or IO signal handler,
* or another thread depending on the platform.
* Although RTR blocks signals, ASTs and the wakeup thread
* until it is safe and convenient,
* you may prefer to just set a flag or generate an event and
* perform the receive_message in your main thread instead.
*/

/* Get all outstanding rtr messages */
do
{

sts = rtr_receive_message(..., /* timoutms */ 0) ;
check (sts) ;
process_message () ;

} while (sts != RTR_STS_TIMOUT) ;
}

static void app_cancel_wakeup (void)
{

rtr_set_wakeup(NULL);
}

3–94 RTR Call Reference

rtr_set_wakeup

main ()
{

sts = rtr_set_wakeup(app_wakeup_routine);
atexit(app_cancel_wakeup);
.
.

}

If RTR data is available when rtr_set_wakeup is called, the application’s
wakeup routine is called immediately.

See Also

rtr_receive_message()

RTR Call Reference 3–95

rtr_start_tx

rtr_start_tx

Explicitly start a transaction on the specified channel.

Syntax

status = rtr_start_tx (channel, flags, timoutms, pjointxid)

Argument Data Type Access

status rtr_status_t write

channel rtr_channel_t read

flags rtr_sta_flag_t read

timoutms rtr_timout_t read

pjointxid rtr_pointer_t read

C Binding

rtr_status_t rtr_start_tx (

rtr_channel_t channel ,
rtr_sta_flag_t flags ,
rtr_timout_t timoutms ,
rtr_pointer_t pjointxid
)

Arguments

channel
The channel identifier returned earlier by the rtr_open_channel() call.

flags
Flags that specify options for the call. Normally specify RTR_NO_FLAGS for this
parameter.

timoutms
Transaction timeout specified in milliseconds. If the transaction is not accepted
by all participants within the specified timeout period, RTR aborts the
transaction and reports a status of RTR_STS_TIMOUT.

3–96 RTR Call Reference

rtr_start_tx

The granularity of the underlying timer is 1 second. Fractional values of the
timoutms argument are rounded up to the next whole second. A value of 0
causes an immediate transaction abort. If no timeout is required, specify
RTR_NO_TIMOUTMS.

pjointxid
Pointer to the transaction identifier of the parent transaction.

Description

The rtr_start_tx() call is used to start a transaction explicitly.

An explicit transaction start is only necessary if one of the following conditions
exists:

• a join to an existing transaction is to be done

• a transaction timeout is to be specified

Transactions are implicitly started when a message is sent on a currently
inactive channel. Implicitly started transactions have no timeout and are not
joined to other RTR transactions.

Return Value

A value indicating the status of the routine. Possible status values are:

RTR_STS_ACPNOTVIA RTR is no longer a viable entity, restart RTR
or application

RTR_STS_INVCHANNEL Invalid channel argument
RTR_STS_INVFLAGS Invalid flags argument
RTR_STS_INVJOINTXID Invalid join transaction argument

The flag RTR_F_OPE_FOREIGN_TM was defined in
the call to rtr_open_channel(), but pjointxid
is equal to RTR_NO_JOINTXID, or the formatID
field of an XA transaction in the pjointxid
parameter is equal to RTR_XID_FORMATID_NONE.

RTR_STS_INVOP4SRV Invalid operation for server channel
RTR_STS_INVTIMOUTMS Invalid timoutms argument
RTR_STS_NOACP No RTRACP process available
RTR_STS_NOXACHAN No XA channel available
RTR_STS_OK Normal successful completion

RTR Call Reference 3–97

rtr_start_tx

RTR_STS_TRAALRSTA Transaction already started
RTR_STS_VERMISMAT RTR version mismatch

The RTR router is running an older version
of RTR that does not support nested
transactions.

Example
rtr_xid_t xa_txn;

/* This client/server pair handles transactions that contain
* multiple messages within each one. Transactions are explicitly
* started and prepared, as directed by this client.
*
* Fill in the information in the XA transaction id struct.
* The information will be sent to the server to tag the transaction.
*/

xa_txn.formatID = RTR_XID_FORMATID_RTR_XA;
xa_txn.gtrid_length = 4;
xa_txn.bqual_length = 4;
strcpy(xa_txn.data, "6789.0003");

/* Start the transaction; specify a timeout so we don’t get
* stuck waiting forever. May not complete immediately.
*/

status = rtr_start_tx(
channel,
RTR_F_STA_TID_XA,
1000,
&xa_txn);

check_status(status); /* May be RTR_STS_TIMEOUT. */

See Also

rtr_open_channel()
rtr_send_to_server()

3–98 RTR Call Reference

4
Compiling and Linking Your Application

All client and application programs must be written using C, C++, or a
language that can use RTR API calls. Include the RTR data types and
error messages file rtr.h in your compilation so that it will be appropriately
referenced by your application. For each client and server application, your
compilation/link process is as follows:

1. Write your application code using RTR calls.

2. Use RTR data and status types for cross-platform interoperability.

3. Compile your application code calling in rtr.h using ANSI C include rules.
For example, if rtr.h is in the same directory as your C code, compile with
the following statement: #include "rtr.h".

4. Link your object code with the RTR library to produce your application
executable.

This process is illustrated in Figure 4–1. In this figure, Library represents the
RTR C API shareable images (OpenVMS), DLLs (Win32), and shared libraries
(UNIX).

Compiling and Linking Your Application 4–1

Compiling and Linking Your Application

Figure 4–1 Compile Sequence

VM-0948A-AI

Application
Source

RTR.H

COMPILE

Application
Object

Library

LINK

Application
Executable

4.1 Compilers
Compilers commonly used in developing RTR applications include those
in Table 4–1. For additional information, see the appropriate HP Reliable
Transaction Router Software Product Description.

Table 4–1 Compilers for Developing RTR Applications

Operating System Compiler

Microsoft Windows Microsoft Visual C++ (Microsoft Visual Studio)

OpenVMS Alpha Compaq C

OpenVMS I64 HP C

(continued on next page)

4–2 Compiling and Linking Your Application

Compiling and Linking Your Application
4.1 Compilers

Table 4–1 (Cont.) Compilers for Developing RTR Applications

Operating System Compiler

Linux GNU C

4.2 Linking Libraries
To compile and link a C RTR application, use command lines as shown below.
Separate examples are shown for use of RTR with threaded or unthreaded
libraries. You may need to specify library directories explictly if the RTR
header files and libraries are not installed in the same directory or in system
directories.

Windows
> cl /c /MT yourapp.c
> link yourapp.obj /out:yourapp.exe rtrdll.lib

Linux
Single-threaded:

cc -o yourapp -lrtr yourapp.c

Multi-threaded:

cc -o yourapp -pthread -lrtr_r yourapp.c

OpenVMS Alpha
Single-threaded:

$ cc yourapp.c
$ link yourapp,sys$input/opt
SYS$SHARE:librtr/share
^Z

Multi-threaded:

$ cc yourapp.c
$ link yourapp,sys$input/opt
SYS$SHARE:librtr_r/share
^Z

Compiling and Linking Your Application 4–3

Compiling and Linking Your Application
4.2 Linking Libraries

OpenVMS I64
Single-threaded:

$ cc yourapp.c
$ link yourapp,sys$input/opt
SYS$SHARE:librtr/share
^Z

Multi-threaded:

$ cc yourapp.c
$ link yourapp,sys$input/opt
SYS$SHARE:librtr_r/share
^Z

4–4 Compiling and Linking Your Application

A
RTR C API Sample Applications

A.1 Overview
The software kit contains a short sample application that is unsupported
and not part of the RTR product. Code for the sample application is in the
[EXAMPLES] directory on the software kit. This sample application contains
four components:

adg_client.c
adg_server.c
adg_shared.c
adg_header.h

The code is shown on the next few pages. Note the following:

• Return value checking after fprintf() fclose() and so on, is omitted for
clarity.

• time() and ctime() are used instead of higher resolution reentrant
alternatives that are less portable.

RTR C API Sample Applications A–1

RTR C API Sample Applications
A.2 Client Application

A.2 Client Application
/* Client Application */

/**
* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S. Government
* is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
* DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. III, as
* applicable.
* This software is proprietary to and embodies the confidential technology of
* Compaq Computer Corporation. Possession, use, of copying of this software
* and media is authorized only pursuant to a valid written license from Compaq,
* Digital or an authorized sublicensor.
**/
/***
* APPLICATION: RTR Sample Client Application
* MODULE NAME: adg_client.c
* AUTHOR: Compaq Computer Corporation
* DESCRIPTION: This client application initiates transactions and requests
* transaction status asynchronously. It is to be used with

adg_server.c, adg_header.h, and adg_shared.c.
* DATE : Oct 22, 1998
**/
/*

adg_client.c

Goes with adg_server.c

To build on Unix:
cc -o adg_client adg_client.c adg_shared.c -lrtr

*/

#include "adg_header.h"

void declare_client (rtr_channel_t *pchannel);
FILE *fpLog;

int main (int argc, char *argv[])
{

/*
* This program expects 3 parameters :
* 1: client number (1 or 2)
* 2: partition range
* 3: messages to send
*/

rtr_status_t status;
rtr_channel_t channel ;
time_t time_val = { 0 };

A–2 RTR C API Sample Applications

RTR C API Sample Applications
A.2 Client Application

message_data_t send_msg = {0};
receive_msg_t receive_msg = {0};
int txn_cnt;
rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS;
rtr_msgsb_t msgsb;
char CliLog[80];

send_msg.sequence_number = 1 ;
strcpy(send_msg.text , "from Client");

get_client_parameters(argc , argv, &send_msg, &txn_cnt);

sprintf(CliLog, "CLIENT_%c_%d.LOG", send_msg.routing_key,
send_msg.client_number);

fpLog = fopen(CliLog, "w");

if (fpLog == NULL)
{

perror("adg_client: fopen failed");
fprintf(stderr, " Error opening client log %s\n", CliLog);
exit(EXIT_FAILURE);

}

printf("\n Client log = %s\n", CliLog);

fprintf(fpLog, " txn count = %d\n", txn_cnt);
fprintf(fpLog, " client number = %d\n", send_msg.client_number);
fprintf(fpLog, " routing key = %c\n\n", send_msg.routing_key);

declare_client (&channel);

/* Send the requested number of txns */

for (; txn_cnt > 0; txn_cnt--, send_msg.sequence_number++)
{

status = rtr_send_to_server(
channel,
RTR_NO_FLAGS ,
&send_msg,
sizeof(send_msg),
msgfmt);

check_status("rtr_send_to_server", status);

fprintf(fpLog, "\n ************* sequence %10d *************\n",
send_msg.sequence_number);

time(&time_val);
fprintf(fpLog, " send_to_server at: %s",

ctime(&time_val));
fflush(fpLog);

/*
* Get the server’s reply OR
* an rtr_mt_rejected
*/

RTR C API Sample Applications A–3

RTR C API Sample Applications
A.2 Client Application

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

time(&time_val);
switch (msgsb.msgtype)
{
case rtr_mt_reply:

fprintf(fpLog, " reply from server at: %s",
ctime(&time_val));

fprintf(fpLog, " sequence %10d from server %d\n",
receive_msg.receive_data_msg.sequence_number,
receive_msg.receive_data_msg.server_number);

fflush(fpLog);
break;

case rtr_mt_rejected:
fprintf(fpLog, " txn rejected at: %s",

ctime(&time_val));
fprint_tid(fpLog, &msgsb.tid);
fprintf(fpLog, " status is : %d\n", status);
fprintf(fpLog, " %s\n", rtr_error_text(status));
fflush(fpLog);

/* Resend same sequence_number after reject */
send_msg.sequence_number--;
txn_cnt++;
break;

default:
fprintf(fpLog,

" unexpected msg at: %s", ctime(&time_val));
fprint_tid(fpLog, &msgsb.tid);
fflush(fpLog);
exit(EXIT_FAILURE);

}

if (msgsb.msgtype == rtr_mt_reply)
{

status = rtr_accept_tx(
channel,
RTR_NO_FLAGS,
RTR_NO_REASON);

check_status("rtr_accept_tx", status);

A–4 RTR C API Sample Applications

RTR C API Sample Applications
A.2 Client Application

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

time(&time_val);

switch (msgsb.msgtype)
{
case rtr_mt_accepted:

fprintf(fpLog, " txn accepted at :
%s", ctime(&time_val));

fprint_tid(fpLog, &msgsb.tid);
fflush(fpLog);
break;

case rtr_mt_rejected:
fprintf(fpLog, " txn rejected at :

%s", ctime(&time_val));
fprint_tid(fpLog, &msgsb.tid);
fprintf(fpLog, " status is : %d\n",

receive_msg.receive_status_msg.status);
fprintf(fpLog, " %s\n",

rtr_error_text(receive_msg.receive_status_msg.status));
fflush(fpLog);

/* Resend same sequence_number after reject */

send_msg.sequence_number--;
txn_cnt++;
break;

default:
fprintf(fpLog,

" unexpected status on rtr_mt_accepted message\n");
fprint_tid(fpLog, &msgsb.tid);
fprintf(fpLog, " status is : %d\n",

receive_msg.receive_status_msg.status);
fprintf(fpLog,
" %s\n", rtr_error_text(receive_msg.receive_status_msg.status));
fflush(fpLog);
break;

}
}

}

close_channel (channel);
}

RTR C API Sample Applications A–5

RTR C API Sample Applications
A.2 Client Application

void
declare_client (rtr_channel_t *pchannel)
{

rtr_status_t status;
receive_msg_t receive_msg;
rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS; /* forever */
rtr_msgsb_t msgsb; /* Structure into which receive puts msgtype */

status = rtr_open_channel(
pchannel,
RTR_F_OPE_CLIENT ,
FACILITY_NAME,
NULL, /* rpcnam */
RTR_NO_PEVTNUM,
RTR_NO_ACCESS /* access */
RTR_NO_NUMSEG ,
RTR_NO_PKEYSEG);

check_status("rtr_open_channel", status);

status = rtr_receive_message(
pchannel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

if (msgsb.msgtype != rtr_mt_opened)
{

fprintf(fpLog, " Error opening rtr channel %s : \n", FACILITY_NAME);

fprintf(fpLog, "%s\n",
rtr_error_text(receive_msg.receive_status_msg.status));

exit(EXIT_FAILURE);
}

fprintf(fpLog, " Client channel successfully opened\n");
return;

}

A–6 RTR C API Sample Applications

RTR C API Sample Applications
A.3 Server Application

A.3 Server Application
/* Server Application */

/***
* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S. Government
* is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
* DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. III, as
* applicable.
* This software is proprietary to and embodies the confidential technology of
* Compaq Computer Corporation. Possession, use, of copying of this software
* and media is authorized only pursuant to a valid written license from Compaq,
* Digital or an authorized sublicensor.
**/
/***
* APPLICATION: RTR Sample Server Application
* MODULE NAME: adg_server.c
* AUTHOR : Compaq Computer Corporation
* DESCRIPTION: This server application receives transactions and receives
* transaction status. It is to be used with adg_client.c,
* adg_header.h, and adg_shared.c.
* DATE : Oct 22, 1998
**/
/*

adg_server.c
Goes with adg_client.c

To build on Unix:
cc -o adg_server adg_server.c adg_shared.c -lrtr

*/

#include "adg_header.h"

void declare_server (rtr_channel_t *channel, const message_data_t *outmsg);

FILE *fpLog;

int main(int argc, char *argv[])
{

/*
* This program expects 2 parameters :
* 1: server number (1 or 2)
* 2: partition range
*/

rtr_msgsb_t msgsb;
receive_msg_t receive_msg;
message_data_t reply_msg;
rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS;
char SvrLog[80];
time_t time_val = { 0 };

rtr_channel_t channel;

RTR C API Sample Applications A–7

RTR C API Sample Applications
A.3 Server Application

rtr_status_t status = (rtr_status_t)0;
rtr_bool_t replay;

strcpy(reply_msg.text , "from Server");

get_server_parameters (argc, argv, &reply_msg);

sprintf(SvrLog, "SERVER_%c_%d.LOG", reply_msg.routing_key,
reply_msg.server_number);

fpLog = fopen(SvrLog, "w");

if (fpLog == NULL)
{

perror("adg_server: fopen() failed");
printf(" Error opening server log %s\n", SvrLog);
exit(EXIT_FAILURE);

}

printf(" Server log = %s\n", SvrLog);

fprintf(fpLog, " server number = %d\n", reply_msg.server_number);
fprintf(fpLog, " routing key = %c\n", reply_msg.routing_key);

declare_server(&channel, &reply_msg);

while (RTR_TRUE)
{

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

time(&time_val);

switch (msgsb.msgtype)
{
case rtr_mt_msg1_uncertain:
case rtr_mt_msg1:

if (msgsb.msgtype == rtr_mt_msg1_uncertain)
replay = RTR_TRUE;

else
replay = RTR_FALSE;

fprintf(fpLog, "\n ************* sequence %10d *************\n",
receive_msg.receive_data_msg.sequence_number);

A–8 RTR C API Sample Applications

RTR C API Sample Applications
A.3 Server Application

if (replay == RTR_TRUE)
fprintf(fpLog, " uncertain txn started at :%s",

ctime(&time_val));
else

fprintf(fpLog, " normal txn started at :%s",
ctime(&time_val));

fprintf(fpLog, " sequence %10d from client %d\n",
receive_msg.receive_data_msg.sequence_number,
receive_msg.receive_data_msg.client_number);

fflush(fpLog);

reply_msg.sequence_number =
receive_msg.receive_data_msg.sequence_number;

status = rtr_reply_to_client (
channel,
RTR_NO_FLAGS,
&reply_msg,
sizeof(reply_msg),
msgfmt);

check_status("rtr_reply_to_client", status);
break;

case rtr_mt_prepare:
fprintf(fpLog, " txn prepared at : %s",

ctime(&time_val));
fflush(fpLog);

status = rtr_accept_tx (
channel,
RTR_NO_FLAGS,
RTR_NO_REASON);

check_status("rtr_accept_tx", status);
break;

case rtr_mt_rejected:
fprintf(fpLog, " txn rejected at : %s",

ctime(&time_val));
fprint_tid(fpLog, &msgsb.tid);
fprintf(fpLog, " status is : %d\n", status);
fprintf(fpLog, " %s\n", rtr_error_text(status));
fflush(fpLog);
break;

case rtr_mt_accepted:
fprintf(fpLog, " txn accepted at : %s",

ctime(&time_val));
fprint_tid(fpLog, &msgsb.tid);
fflush(fpLog);
break;

RTR C API Sample Applications A–9

RTR C API Sample Applications
A.3 Server Application

} /* End of switch */
} /* While loop */

}

void
declare_server (rtr_channel_t *channel, const message_data_t *outmsg)
{

rtr_status_t status;
rtr_uns_32_t numseg = 1;
rtr_keyseg_t p_keyseg[1];
receive_msg_t receive_msg;
rtr_timout_t receive_time_out = RTR_NO_TIMOUTMS; /* forever */
rtr_msgsb_t msgsb; /* Structure into which receive puts msgtype */
const char *facility = FACILITY_NAME;

p_keyseg[0].ks_type = rtr_keyseg_string;
p_keyseg[0].ks_length = 1;
p_keyseg[0].ks_offset = 0;
p_keyseg[0].ks_lo_bound =

/* const_cast */ (rtr_uns_8_t *)(&outmsg->routing_key);
p_keyseg[0].ks_hi_bound =

/* const_cast */ (rtr_uns_8_t *)(&outmsg->routing_key);

status = rtr_open_channel(
&channel,
RTR_F_OPE_SERVER,/* | RTR_F_OPE_EXPLICIT_ACCEPT | */

/* RTR_F_OPE_EXPLICIT_PREPARE, */
facility,
NULL, /* rpcnam */
RTR_NO_PEVTNUM,
RTR_NO_ACCESS, /* access */
numseg,
p_keyseg);

check_status("rtr_open_channel", status);

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

if (msgsb.msgtype != rtr_mt_opened)
{

fprintf(fpLog, " Error opening rtr channel %s: \n", facility);

A–10 RTR C API Sample Applications

RTR C API Sample Applications
A.3 Server Application

fprintf(fpLog, "%s\n",
rtr_error_text(receive_msg.receive_status_msg.status));

fclose (fpLog);
exit(EXIT_FAILURE);

}

fprintf(fpLog, " Server channel successfully opened \n");
return;

}

A.4 Shared Code
/* Shared Code */

/***
* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S. Government
* is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
* DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. III, as
* applicable.
* This software is proprietary to and embodies the confidential technology of
* Compaq Computer Corporation. Possession, use, of copying of this software
* and media is authorized only pursuant to a valid written license from Compaq,
* Digital or an authorized sublicensor.
***/
/**
* APPLICATION: RTR Sample Client Application
* MODULE NAME: adg_shared.c
* AUTHOR : Compaq Computer Corporation
* DESCRIPTION: This shared code is to be used with adg_server.c,
* adg_header.h, and adg_client.c.
* DATE : Oct 22, 1998
***/

#include "adg_header.h"

void
check_status(char *call, rtr_status_t status)
{

time_t time_val = { 0 };
if (status != RTR_STS_OK)
{

time(&time_val);
fprintf(fpLog, " Call to %s failed at %s:\n",

call, ctime(&time_val));
fprintf(fpLog, "\n Call status = %s\n",

rtr_error_text(status));
fflush(fpLog);
exit(status);

}
}

RTR C API Sample Applications A–11

RTR C API Sample Applications
A.4 Shared Code

void
get_server_parameters (rtr_sgn_32_t argc, char *argv[], message_data_t
*o_msg)
{

String31 buffer;
if (argc < 2)

{
printf (" Server number : ");
gets(buffer);
o_msg->server_number = atoi(buffer);

printf(" routing key : ");
gets (buffer);
o_msg->routing_key = buffer[0];

}
else
{

sscanf(argv[1], "%1d", &(o_msg->server_number));
o_msg->routing_key = *(argv[2]);

}
} /* End of get_server_parameters */

void
get_client_parameters (rtr_sgn_32_t argc, char *argv[], message_data_t
*o_msg, int *txn_cnt)
{

String31 buffer;

if (argc < 3)
{

printf (" Client number : ");
gets(buffer);
o_msg->client_number = atoi(buffer);

printf(" routing key : ");
gets (buffer);
o_msg->routing_key = buffer[0];

printf(" Message Count : ");
gets (buffer);
*txn_cnt = atoi(buffer);

}
else
{

sscanf(argv[1], "%1d", &(o_msg->client_number));
sscanf(argv[2], "%s", buffer);

}
} /* End of get_client_parameters */

/***/

A–12 RTR C API Sample Applications

RTR C API Sample Applications
A.4 Shared Code

void fprint_tid (FILE *fp , rtr_tid_t *tid)
{

fprintf (fp , " tid: %x,%x,%x,%x,%x,%x,%x\n", tid->tid32[0],
tid->tid32[1],

tid->tid32[2], tid->tid32[3], tid->tid32[4], tid->tid32[5],
tid->tid32[6]);

}

void
close_channel (rtr_channel_t channel)
{

rtr_status_t status;

printf (" Closing Channel.\n");

status = rtr_close_channel (
channel ,
RTR_NO_FLAGS);

check_status("rtr_close_channel", status);

return;

}

A.5 Header Code
/* Header Code */

/***
* Copyright Compaq Computer Corporation 1998. All rights reserved.
* Restricted Rights: Use, duplication, or disclosure by the U.S. Government
* is subject to restrictions as set forth in subparagraph (c) (1) (ii) of
* DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. III, as
* applicable.
* This software is proprietary to and embodies the confidential technology of
* Compaq Computer Corporation. Possession, use, of copying of this software
* and media is authorized only pursuant to a valid written license from Compaq,
* Digital or an authorized sublicensor.
***/
/***
* APPLICATION: RTR Sample Application
* MODULE NAME: adg_header.h
* AUTHOR : Compaq Computer Corporation
* DESCRIPTION: This header file is to be used with adg_server.c,
* adg_client.c, and adg_shared.c.
* DATE : Oct 22, 1998
***/
/*

Header file for adg_client.c and adg_server.c

*/

RTR C API Sample Applications A–13

RTR C API Sample Applications
A.5 Header Code

#include "rtr.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <signal.h>
#include <ctype.h>
#include <fcntl.h>
#include <sys/stat.h>
/* #include <sys/types.h> */

#define PERMS 0666 /* File permissions */
#define FACILITY_NAME "DESIGN"

typedef char String31[31];
typedef char String200[200];

typedef struct {
rtr_uns_8_t routing_key;
rtr_uns_32_t server_number;
rtr_uns_32_t client_number;
rtr_uns_32_t sequence_number;
String31 text;
} message_data_t;

typedef union {
message_data_t receive_data_msg;
rtr_status_data_t receive_status_msg;
} receive_msg_t;

typedef struct {
rtr_uns_32_t low;
rtr_uns_32_t high;
rtr_uns_32_t expected ;
rtr_tid_t prior_txn;
rtr_uns_32_t prior_seqno;
}boundaries_t;

/* Function prototype section */

void
check_status(char *call, rtr_status_t status);

void get_client_parameters (rtr_sgn_32_t argc,
char *argv[],
message_data_t *o_msg,
int *txn_cnt);

void get_server_parameters (rtr_sgn_32_t argc,
char *argv[],
message_data_t *o_msg);

rtr_status_t send_reply (
message_data_t *o_msg,
rtr_channel_t channel);

A–14 RTR C API Sample Applications

RTR C API Sample Applications
A.5 Header Code

void close_channel (rtr_channel_t channel);

void fprint_tid (FILE *fpLog, rtr_tid_t *tid);

/* External section */

extern String200 Errormsg;

extern time_t time_val;
extern boundaries_t txn_range[10];
extern char TxnLog[];
extern char SvrLog[];
extern rtr_uns_32_t msg_cnt;
extern int errno;
extern FILE* fpLog;

RTR C API Sample Applications A–15

B
RTR Application Development Tutorial

Start here!

Purpose: This tutorial goes through all of the steps needed to set up a simple
RTR-based application for a new user. The intent is to provide a starting point
for learning about RTR, and to simplify the main concepts of RTR; you will be
able to cruise through this at a more rapid pace than you normally would with
the RTR reference information. At the end of this tutorial, you´ll find brief
descriptions of some of the more complex features RTR provides, and pointers
to the documentation where you can study them in detail. This tutorial uses
the implicit start, prepare, and accept transaction capabilities of RTR that
are described in the Reliable Transaction Router Application Design Guide, a
prerequisite for using this manual.

Summary: This tutorial walks you through designing, coding and setting
up a basic RTR-based client/server application. To do this, you´ll use RTR to
perform two important services for you:

• to act as the communication mechanism between the client and the server
applications

• to insure that the server application is always available to its clients

In the system that you are about to develop, the client application interacts
with the user to read and display data. The server application handles
requests from the client, and sends replies back to it. When we refer to `client´
and `server´, we will be referring to the applications. When we refer to the
computer nodes on which the client or server is executing, we will call them
`frontend´ and `backend´ nodes, respectively.

In most applications, the server would probably talk to a database to retrieve
or save data according to what a user had entered in the user-interface. In the
interest of simplifying this tutorial, however, this server is only going to tell
you whether it received your client´s request.

RTR Application Development Tutorial B–1

RTR Application Development Tutorial

What´s different in this system from a non-RTR system is that there will be
two servers: one of the servers, also known as the `primary server´, almost
always talks with the client. In a perfect world, nothing would ever happen to
this server; clients would always get the information they asked for, and all
changes would be made to the database when the user updated information.
Every time anyone attempted to access this server, it would always be there,
ready and waiting to `serve´, and users could feel secure in the knowledge that
the data in the database was changed exactly as they had requested.

But we´re all well aware that this is not always the case, and when servers do
go down, it´s usually at the most inopportune time. So you are going to use
RTR to designate a second server as a ‘‘standby’’ server. In this way, if a user
is attempting to get some real work done, and the primary server is down, the
user will never notice. The standby server will spring into action, and replace
the original server by handling the user´s requests in just the same way as the
primary server had been doing. And, this will be done from the same point at
which the primary server had crashed!

Materials List: To fully develop this system, you will need a client application
and frontend node, a server application and two backend nodes, and a router.
What are these things?

Frontend: The frontend node is the system on which your client application
is executing. As in any client/server system, the client application interacts
with the user, then conveys the user´s requests to the server. When developing
an RTR-based client/server system, your client will have the following
characteristics:

• Display an interface to the user, allow the user to make a request, then
communicate with the server to get or set data according to what actions
the user has taken.

• Execute on a Solaris, Tru64 UNIX, Windows or OpenVMS system node,
which has RTR installed on it.

• Be attached to a TCP/IP or DECnet network and able to ‘‘see’’ the server
machines; this means that if you use the `ping´ utility to find a computer
node by name, the computer will respond back to the node you are on.

Example code for the client application and the server application can be found
in the `examples´ subdirectory of your RTR installation directory.

B–2 RTR Application Development Tutorial

RTR Application Development Tutorial

BackEnd1: Your first backend node will be running the primary server
application. It, too, can be on any of the above operating systems, except
the Windows system must be supported as a server. 1 It also must have
RTR installed on it, and will contain your server application. Your server
application will use RTR to listen for requests from the client, receive and
handle those requests, and confirm the result to the client.

BackEnd2: This machine will run the standby server application. It will
probably also be doing any one of a number of other things that have nothing
to do with this tutorial, or even with RTR. It most probably will be sitting
on one of your coworkers´ desks, helping him or her to earn their salary and
support their family. Hopefully, you get along with this coworker well enough
that they will install RTR on their machine, so that you may complete this
tutorial.

Router: Your router is simply RTR software which keeps track of everything
that is going on for you when your application is running. The router can
execute on a separate machine, on a frontend machine, or on a backend
machine. In this tutorial, we will keep our router on the same machine as the
client.

Install RTR: Your first step, once you have determined the three computers
you are going to use for this tutorial, is to be sure RTR is installed and
configured on each machine. The RTR installation is well documented and
straightforward, although slightly different for each operating system on which
the installation is being run. Refer to the section in the RTR Installation
Guide for the system on which you are installing RTR. For the purpose of
documenting examples, the machine you have decided to use for the client
application will be referred to as FE (frontend), primary server as BE1
(backend 1), secondary server as BE2 (backend 2). Remember that the router
will be on the FE machine. The journal must be accessible to both backend
servers.

Start RTR: You will need to start RTR on each of the machines on which
you have installed it. You may do this from one machine. To be able to issue
commands to RTR on a remote node, however, you must have an account
on that node with the necessary access privileges. The operating system´s
documentation, or your system manager, will have information on how to set
up privileges to enable users to run applications over the network. Use the
command interface on your system to interact with RTR. At the command
prompt, type in RTR, and press the Return or Enter key. You will then be at

1 For RTR V4.2, Windows 2000, or Windows XP. For later versions of RTR, refer to the
SPD.

RTR Application Development Tutorial B–3

RTR Application Development Tutorial

the RTR> prompt, and can start RTR on all of the nodes. For example, on a
UNIX system, it will look like this:

% rtr
RTR> start rtr/node=(FE,BE1,BE2)
RTR> exit

This command starts `services´ or `daemons´ on each of the nodes in the list.
These are processes that listen for messages being sent by other RTR services
or daemons over the network. After executing the command, a `ps´, `show
process´ or Task Manager review of processes executing on your system should
now show at least one process named rtr, rtr.exe, or RTRACP. on each of the
machines. This process is the one that manages the communications between
the nodes in the RTR-based application, and handles all transactions and
recoveries.

Create a Recovery Journal: This step holds the key to letting the second
server pick up on the work at exactly the right time; no work is lost, and the
hot swap to the standby server is ‘‘automagic.’’ RTR keeps track of the work
being done by writing data to this journal. If a failure occurs, all incomplete
transactions are being kept track of here, and can be replayed by the standby
server when it comes to the rescue. When transactions have been completed,
they are removed from this journal. For this example, only your backend nodes
need a recovery journal, and you must create the journal before creating your
facility; you´ll learn more about facilities in the next section.

You´ll now need to go to each of the backend nodes that you´ll be using and
create a journal there. Log into each machine and, using the command prompt
interface, run RTR and create the journal. When you specify the location of
the journal, it should be the disk name or share name where the journal will
be located. The journal must be accessible by both of the backend servers.

This is an example of what the command would look like on a VMS system.

$ RTR
RTR> create journal user2
RTR> exit

Be sure to do this on both machines or you can use the /NODE qualifier to do
it on each machine from one node.

To allow both servers to access the journal, you have a number of options:

• Use a disk in the disk farm on your cluster, if you use clusters.

• Use a disk served via NFS with UNIX systems.

B–4 RTR Application Development Tutorial

RTR Application Development Tutorial

• Use a share when using Windows systems.

In any case, you should be sure the disk is not on your primary server, because
this is the machine that we are protecting, in case of a crash. If the machine
goes down, the standby server would not be able to access the disk. The
primary server and the standby server must be physically separate machines.

The Database: While we are having this discussion on sharing resources, we
should also mention how a database fits into this system, as well. This tutorial
and the example code provided with it does not do database transactions.
However, there are likely places in the code where you would probably want
to access the database in most applications. Because the standby server steps
into place when the primary server crashes, each must have access to your
database.

This configuration can be supplied using a number of options:

• Use a database server, such as SQL Server or Oracle´s database server.

• Use machines in a cluster to run the database as well as the servers.

• Use a database API that implements RPC stubs to move data across the
network.

Create a `Facility´: There can be numerous RTR applications running on any
of your computers in your network. The systems or nodes that service one
RTR application and the role of each must be clearly defined. This makes the
RTR daemons and processes aware of who is talking with whom, and why.
The description of a configuration of a group of nodes into frontends, backends
and routers is called a facility. To create a facility, use your command prompt
utility again and type `RTR´; at the RTR> prompt, create the facility for this
example with the following command on a Windows system in the command
prompt window:

C:\> rtr
RTR> create facility RTRTutor/node=(FE,BE1,BE2) -
_RTR> /frontend=FE/router=FE/backend=(BE1,BE2)
RTR> exit

With this command, you have now:

• Created a Facility named `RTRTutor´ on all three nodes.

• Defined the role of each node in that facility to show who participates as
the client, the primary server, the secondary server and the router.

RTR Application Development Tutorial B–5

RTR Application Development Tutorial

Take a Break: At this point you have accomplished a lot; you´ve configured
RTR to protect a multitiered application by providing failover capability, and
to handle communications between your client and your server. Next, you will
write the application: your client will talk to RTR, and your server will talk to
RTR. RTR will deliver the messages between them and, if the server crashes,
bring in the standby server to handle your client´s requests. The client will
never know that the server has been switched, and no data or requests to
retrieve or modify data will be lost!

Application: The C modules and header files for this application are located
in the `examples´ subdirectory of the directory into which you installed RTR.
They consist of the following files:

adg_client.c The client application

adg_server.c The server application

adg_shared.c C code common to both the client and server applications

adg_header.h Header file containing definitions specific to both sample
applications

Although you won´t have much typing to do, this tutorial will explain what
the code in each module is doing. Copy all four of these files into a working
directory of your own. For convenience, you may also wish to copy rtr.h from
the RTR installation directory into your working directory as well.

The example code you´ll run must reference the facility you created earlier,
so edit the example file adg_header.h and change the FACILITY value to
‘‘RTRTutor’’.

The application example code supplied with RTR has a lot going on inside of it,
but can be broken down into a few general and very simple concepts that will
give you an idea of the power of RTR, and how to make it work for you. As you
see, you have code for the client application and the server application. Each
will talk only to RTR, who will move the messages and data between them.
And you are free not to worry about:

RPC Stubs
Time zones
Endianism
Network protocols and packets

Aren´t you relieved? Maybe you should take another break to celebrate!

B–6 RTR Application Development Tutorial

RTR Application Development Tutorial

Client Application: The files shipped with the RTR kit used in the client
application for this tutorial are adg_client.c, adg_shared.c and adg_header.h.
All applications that wish to talk to RTR through its API need to include
`rtr.h´ as a header file. This file lives in the directory into which RTR was
installed, and contains the definitions for RTR structures and values that
you´ll need to reference in your application. Please do not modify this file.
Always create your own application header file to include, as we did in the
sample (adg_header.h), whenever you need additional definitions for your
application.

#include "adg_header.h"
#include "rtr.h"

The client application design follows this outline:

1. Initialize RTR

2. Send a message to the server

3. Get a response from the server

4. Decide what to do with the response

Pretty straightforward, don´t you think? Let´s look at how it´s done.

Initialize RTR: This is the first thing that every RTR client application needs
to do: tell RTR that it wants to get a facility up and running, and to talk
with the server. You will find this happening in the declare_client function
in adg_client.c, and somewhat more simplified here. You remember from the
`Start RTR´ step in this tutorial that there are RTR daemons or processes
executing on the nodes in a facility, listening for communications from other
RTR components and applications. Your client application is going to request
that all processes associated with the RTRTutor facility ‘‘listen up.’’ To do this,
you´ll open a channel that enables communication between the client and the
RTR router. Remember that the RTR router has been described as ‘‘keeping
track of everything’’ that goes on in an RTR application.

Declare the items needed for the open channel call:

rtr_status_t status; /* will be returned by RTR */
rtr_channel_t channel; /* a channel */

RTR Application Development Tutorial B–7

RTR Application Development Tutorial

Open the channel:

status = rtr_open_channel(
&channel, /* channel of communication */
RTR_F_OPE_CLIENT , /* I am a client */
"RTRTutor", /* the facility we created */
NULL, /* recipient name */
RTR_NO_PEVTNUM, /* don´t send events, just messages */
RTR_NO_ACCESS /* access key */
RTR_NO_NUMSEG , /* number of key segments */
RTR_NO_PKEYSEG); /* first key segment */

Let´s examine what this `open channel´ call does. First, the `channel´
parameter we sent to it is only a pointer to a block of memory; we´ve done
nothing to set any values in it. RTR will use this block of memory to store
the information it needs to assign and keep track of this channel. The
channel represents the means of communication from the client to the rest
of the components in this system. There is a lot going on here to make the
communication work, but it´s all being done by RTR so you won´t have to
worry about all of the problems inherent in communicating over a network.

The second parameter tells RTR that this application is acting as a client. So
now RTR knows that if the server goes down, it certainly doesn´t want to force
this application to come to the rescue as the standby server! And there will be
other things that RTR will be handling that are appropriate only to clients or
only to servers. This information helps it to keep track of all the players.

And now [trumpets are heard in the distance!] the third parameter tells RTR
the name of the facility we created earlier. Suddenly, RTR has a whole lot
more information about your application: where to find the server, the standby
server, and the router. You will see later in this tutorial that the server also
declares itself and supplies the same facility name.

At this point, RTR has all of the information it needs to put the pieces together
into one system; you´re ready to start sending messages to the server, and to
get messages back from it.

A Word About RTR´s API Parameters: You may have noticed that although
we´ve looked at only three of the parameters in the `open channel´ call,
there are a number more. It´s a quirk of RTR that you´ll often need to tell
it to default. Rather than defaulting on its own when you do not provide a
parameter (or provide a null parameter), it needs the ‘‘default’’ parameter. So
you´ll see things like RTR_NO_PEVTNUM to tell it ‘‘I don´t want to be notified
of any events’’ which is actually a default, and RTR_NO_NUMSEG to tell it ‘‘I
have defined no key segments’’ which is also a default. Whenever we skip the

B–8 RTR Application Development Tutorial

RTR Application Development Tutorial

discussion on non-null parameters, you´ll know they are default parameters.
The parameter RTR_NO_FLAGS tells RTR that there are no flags.

A Word About RTR´s Return Status: Your facility may have more than just
one client talking to your server. In fact, your neighbor who so generously
allowed you to run your standby server on his or her machine might want
to get in on this RTR thing, too. That´s all right: just add a machine to the
RTRTutor facility definition that will also run a copy of the client. But not yet;
we´re only telling you this to illustrate the point that there can be more than
one client in an RTR-based application. Because of this, after the RTR router
hands off your client´s request to your server, it must then be able to do the
same for other clients.

Servers can also decide they want to talk to your client, and the RTR router
may need to handle their requests at any time, as well. If RTR were to wait
for the server to do its processing and then return the answer each time, there
would be an awful bottleneck.

But RTR doesn´t wait. This means that the status that you get back from each
call means only, ‘‘I passed your message on to the server,’’ not that the server
successfully handled it and here is the result. So how does your client actually
get the result of the request it made on the server? It will need to explicitly
‘‘receive’’ a message, as you´ll see later in this tutorial.

Checking RTR Status: Throughout this code example, you´ll see a line of code
that looks like this (with a different string in the first parameter each time):

check_status("rtr_open_channel", status);

This is good because, as you know from your Programming 101 course, you
should always check your return status. But it´s also good that your program
knows when something has gone wrong and can tell the user, or behave
accordingly. The `check_status´ function is not part of RTR, but is something
you will probably want to do in your application.

To check RTR´s return status, compare it to RTR_STS_OK. If it´s the same,
everything is fine, and you can go on to the next call. But if it is something
else, you´ll probably want to print a message to the user. To get the text string
that goes with this status, call `rtr_error_text´ which returns a null terminated
ASCII string containing the message in human readable format.

RTR Application Development Tutorial B–9

RTR Application Development Tutorial

if (status != RTR_STS_OK)
{
printf(" Call failed: %s", rtr_error_text(status));
}

Receiving Messages: As explained earlier, RTR doesn´t hold your client up
while it processes your request, or even a request from another client. And
because nothing can continue until the system has been set up, you now need
to wait for the open channel call to let you know that everything is started
up and ready to go. This is what the rest of the code in the ‘‘declare_client’’
function does. These statements declare the memory for a ‘‘receive’’ message
and a message status block:

receive_msg_t receive_msg = {0}; /* message received */
rtr_msgsb_t msg_status; /* message status block */

And now the rtr_receive_message waits to receive a message from RTR.

status = rtr_receive_message(
&channel, /* channel on which message received */
RTR_NO_FLAGS, /* sending no flags (default) */
RTR_ANYCHAN, /* default channel */
&receive_msg, /* location to place return info */
sizeof(receive_msg),/* size of last */
RTR_NO_TIMEOUTMS, /* do not timeout */
&msg_status); /* location to return status */

The channel parameter and the RTR_NO_FLAGS parameter should now
be familiar to you; we discussed them in the sections of this document on
`Initialize´ and `Parameters´. RTR_ANYCHAN and RTR_NO_TIMEOUTMS
are defaults for this API.

Remember Programming 101 — check your status every time!

Information about whether RTR or your server has successfully handled your
client´s request is returned in an rtr_msgsb_t message status block structure.
It is received from RTR as the last parameter in the rtr_receive_message call.
For rtr_open_channel, we are looking for the ‘‘rtr_mt_opened’’ message type in
the status block to confirm that the channel has been opened, and that we are
now prepared to do all of the rest of the messaging on it for our application. If
we don´t have the ‘‘opened’’ message, then we can expect there to be an error
status in the receive message block.

if (msg_status.msgtype != rtr_mt_opened)
{
printf(" Error opening rtr channel : ");

printf(rtr_error_text(receive_msg.receive_status_msg.status));
}

B–10 RTR Application Development Tutorial

RTR Application Development Tutorial

The rtr.h header file provided with the RTR installation kit describes the
rtr_msgsb_t structure in detail.

Send Messages: The rest of the client application is simply a send/receive
message loop. It continues to send messages to the server, then listens for the
server´s response. It is important to remember that, although the client is
sending these messages to the server, it is doing so through the RTR router.
Because of this, the client can receive, asynchronously, different types of
messages:

• A notice from the server of failure to process the sent message

• An answer to the sent message from the server

• An ‘‘out of band’’ message from the server regarding server status

In addition, RTR may send the client messages under certain conditions. So
the client application must be prepared to accept any of these messages, and
not necessarily in a particular sequence.

That´s certainly a tall order! How should you handle this? Well, there are a
number of ways, but in this tutorial we will explain how to run a ‘‘message
loop’’ that both sends and receives messages.

A Word About RTR Data Types: You may have noticed that your client,
server and router can be on any one of many different operating systems. And
you´ve probably written code for more than one operating system and noticed
that each has a number of data types that the other doesn´t have. If you send
data between a Solaris UNIX machine and a VMS or Windows machine, you´ll
also have to worry about the order different operating system stores bytes
in their data types (called ‘‘endian’’ order). And what happens to the data
when you send it from a 16-bit Intel 486 Windows machine to a 64-bit Alpha
Tru64 machine? Thanks to RTR, you don´t need to worry about it. RTR will
handle everything for you. Just write standard C code that will compile on the
machines you choose, and the run-time problems won´t complicate your design.
When you do this, you need to use RTR data types to describe your data. RTR
converts the data to the native data types on the operating system with which
it happens to be communicating at the time.

Think of RTR as your very own ‘‘Babel fish,’’ if you´ve read the ‘‘Hitchhiker´s
Guide to the Galaxy’’ series. It will translate everything necessary when your
data gets to a new machine. The little fish you put in your ear is actually
made up of the RTR application programming interface and the RTR data
types.

RTR Application Development Tutorial B–11

RTR Application Development Tutorial

To illustrate this, the example code evaluates your input parameters and places
them into a message_data_t structure called `send_msg´. Message_data_t is
not an RTR structure, but created by the programmer who wrote this client.
The message_data_t structure is defined in adg_header.h.

typedef struct {
rtr_uns_8_t routing_key;
rtr_uns_32_t server_number;
rtr_uns_32_t client_number;
rtr_uns_32_t sequence_number;
String31 text;
} message_data_t;

You´ll notice that the data types that make up message_data_t aren´t your
standard data types — they are RTR data types. And they are generic enough
to be able to be used on any operating system: 8 bit unsigned, 32 bit unsigned,
and a string.

Earlier, we looked at the receive message code when the client opened a
channel. The structure it used to obtain information, receive_message_t, is
also one created by the programmer, and not a standard RTR structure. If you
look at its definition in the adg_header.h file, you´ll see that it´s the same as
the message_data_t structure, plus it contains a location for RTR status. There
will be more on this in the next section.

Send/Receive Message Loop: As mentioned earlier, the sample code for the
RTR client application contains a message loop that sends messages to the
server via the RTR router, and handles messages that come from the server
via the router, or from RTR itself. The following discussion will reference a
simplified version of that loop; code in the sample to add time stamps and
print to a log file has been removed here for clarity.

When you run the sample client, the client expects three parameters: a client
number, a partition range, and the number of messages to send, in that order.
We will talk more about partition ranges later when we look at the server
application, but for now it is enough to know that we´ll use one character, the
letter h.

The input command parameters are evaluated and placed in the message_
data_t structure named send_msg. The `number of messages´ parameter which
you´ll input on the command line is placed in the `txn_cnt´ variable. The `for´
loop which sends and receives messages will execute this number of times.

The message_data_t structure also holds a `sequence number´ value that is
incremented each time the loop is executed; so now our loop begins:

B–12 RTR Application Development Tutorial

RTR Application Development Tutorial

for (; txn_cnt > 0; txn_cnt--, send_msg.sequence_number++)
{

status = rtr_send_to_server(
channel,
RTR_NO_FLAGS ,
&send_msg,
sizeof(send_msg),
RTR_NO_MSGFMT);

check_status("rtr_send_to_server", status);

Note

The check_status function is not part of RTR; you must define it in the
application.

The first message has been sent to the server in the third parameter of the
rtr_send_to_server call. As you will see, this is part of the flexibility and power
of RTR. This third parameter is no more than a pointer to a block of memory
containing your data. RTR doesn´t know what it´s a pointer to — but it doesn´t
need to know this. You, as the programmer, are the only one who cares what
it is. It´s your own data structure that carries any and all of the information
your server will need to do your bidding. We´ll see this in detail when we look
at the server code.

In the fourth parameter, you must tell RTR how big the piece of memory being
pointed to by the third parameter is. RTR needs to know how many bytes to
move from your client machine to your server machine, so that your server
application has access to the data being sent by the client.

The rest of the parameters bear some looking at, as well: there´s the channel
again. You´ll see the channel parameter in almost every RTR call. You may be
becoming suspicious about the channel, and think that it´s really more than
just a line for communicating. And you´d be right. RTR uses the channel much
like you use that third parameter in this call. The RTR developers are the only
ones who know what´s in it, and it contains much of the information they need
to make RTR work.

You´ll recognize two more default parameters, RTR_NO_FLAGS and RTR_NO_
MSGFMT.

And now, the client waits for a response from the server.

RTR Application Development Tutorial B–13

RTR Application Development Tutorial

/*
* Get the server’s reply OR an rtr_mt_rejected
*/
status = rtr_receive_message(

&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,

&receive_msg,
sizeof(receive_msg),
RTR_NO_TIMOUTMS,

&msgsb);

check_status("rtr_receive_message", status);

Again you see the channel and the default flags; the receive_msg parameter
is a pointer to another data structure created by you as the programmer, and
can carry any information you need your server to be able to communicate
back to your client. In your own application, you would actually create
this data structure in your application´s header file. You can see what the
example receive message looks like by checking out the receive_msg_t in the
adg_header.h file. RTR picks it up from your server and writes it here for your
client to read.

The msgsb parameter is an RTR data structure: you saw this message status
block earlier when we looked at the open channel code. Its msgtype field
contains a code that tells you what kind of a message you are now receiving. If
msgsb.msgtype contains the value rtr_mt_reply, then you are receiving a reply
to a message you already sent, and your receive message data structure has
been written to with information from your server.

switch (msgsb.msgtype)
{
case rtr_mt_reply:

fprintf(fpLog, " sequence %10d from server %d\n ",
receive_msg.receive_data_msg.sequence_number,
receive_msg.receive_data_msg.server_number);

break;

If msgsb.msgtype contains the value rtr_mt_rejected, then something has
happened that caused your transaction to fail after you sent it to the router.
You can find out what that `something´ is by looking at the status returned by
the rtr_receive_message call. You will recall that making the rtr_error_text
call and passing the status value will return a human readable null terminated
ASCII string containing the error message.

B–14 RTR Application Development Tutorial

RTR Application Development Tutorial

case rtr_mt_rejected:
fprintf(fpLog, " txn rejected at: %s",

ctime(&time_val));
fprint_tid(fpLog, &msgsb.tid);

This is where you´ll need to make a decision about what to do with this
transaction. You can abort and exit the application, issue an error message
and go onto the next message, or resend the message to the server. This code
resends a rejected transaction to the server.

/* Resend message with same sequence_number after reject */
send_msg.sequence_number--;
txn_cnt++;
break;

default:
fprintf(fpLog, " unexpected msg˜);
fprint_tid(fpLog, &msgsb.tid);
fflush(fpLog);
exit((int)-1);

}

When your client application receives an rtr_mt_reply message, your message
has come full circle. The client has made a request of the server on behalf of
the user; the server has responded to this request. If you´re satisfied that the
transaction has completed successfully, you must notify RTR so that it can do
its own housekeeping. To this point, this transaction has been considered ‘‘in
progress’’, and its status kept track of at all times. If all parties interested in
this transaction (this includes the client AND the server) notify RTR that the
transaction has been completed, RTR will stop tracking it, and confirm to all
parties that it has been completed. This is called `voting´.

if (msgsb.msgtype == rtr_mt_reply)
{

status = rtr_accept_tx(
channel,
RTR_NO_FLAGS,
RTR_NO_REASON);

check_status("rtr_accept_tx", status);

And now the client waits to find out the result of the voting.

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

RTR Application Development Tutorial B–15

RTR Application Development Tutorial

check_status("rtr_receive_message", status);
time(&time_val);

If everyone voted to `accept´ the transaction, the client can move on to the next
one. But if one of the voters rejected the transaction, then another decision
must be made regarding what to do about this transaction. This code attempts
to send the transaction to the server again.

switch (msgsb.msgtype)
{
case rtr_mt_accepted:

fprintf(fpLog, " txn accepted at : %s",
ctime(&time_val));

break;

case rtr_mt_rejected:
fprintf(fpLog, " txn rejected at : %s",

ctime(&time_val));

/* Resend same sequence_number after reject */
send_msg.sequence_number--;
txn_cnt++;
break;

default:
fprintf(fpLog,
" unexpected status on rtr_mt_accepted message\n");

fprintf(fpLog,
" %s\n",

rtr_error_text(receive_msg.receive_status_msg.status);

break;
}

}
} /* end of for loop */

All of the requested messages, or transactions, have been sent to the server,
and responded to. The only RTR cleanup we need to do before we exit the
client is to close the channel. This is similar to signing off, and RTR releases
all of the resources it was holding for the client application.

close_channel (channel);

Now, that wasn´t so bad, was it? Of course not. And what has happened so
far? The client application has sent a message to the server application. The
server has responded. RTR has acted as the messenger by carrying the client´s
message and the server´s response between them.

Next, let´s see how the server gets these messages, and sends a response back
to the client.

B–16 RTR Application Development Tutorial

RTR Application Development Tutorial

Server Application: The files shipped with the RTR kit used in the server
application for this tutorial are adg_server.c, adg_shared.c and adg_header.h.
You´ll notice that adg_shared.c and adg_header.h are used in both client and
the server applications. This is for a number of reasons, but most importantly
that both the client and the server will use the same definition for the data
structures they pass back and forth as messages. With the exception of only
two items, there will be nothing in this server that you haven´t already seen
in the client. It´s doing much the same things as the client application is
doing. It opens a channel to the router, telling the router that it is a server
application; waits to hear that the open channel request has been successfully
executed; runs a loop that receives messages from the client; carries out the
client´s orders; sends the response back to the client. And the server gets to
vote, too, on whether each message/response loop is completed.

One of the differences is the types of messages a server can receive from RTR;
we´ll go through some of them in this section of the tutorial about the server
application.

The other difference is the declaration of a partition that is sent to RTR in
the open channel call. We mentioned partitions while discussing the client
application, but said we´d discuss them later. Well, it´s later...

Initialize RTR: Just like the client, the server opens a channel to the router,
causing RTR to initialize a number of resources for use by the server, as well
as to gather information about the server. In the declare_server function in the
server example application, adg_server.c, you´ll find the example server calling
rtr_open_channel. Immediately, you see that the code initializes an RTR data
structure called rtr_keyseg_t. In the example server code, the variable name of
the structure is p_keyseg. This structure is a required parameter in the server
open channel call to implement data partitioning.

Data Partitions: What is data partitioning, and why would you wish to take
advantage of it? It is possible to run a server application on each of multiple
backend machines, and to run multiple server applications on any backend
machine. When a server opens a channel to begin communicating with the
RTR router, it uses the rtr_keyseg_t information in its last two parameters to
tell RTR that it is available to handle certain key segments. A key segment
can be ‘‘all last names that start with A to K’’ and ‘‘all last names that start
with L to Z’’, or ‘‘all user identification numbers from zero to 1000’’ and ‘‘all
user identification numbers from 1001 to 2000’’.

RTR Application Development Tutorial B–17

RTR Application Development Tutorial

Each key segment describes a data partition. Data partitions allow you to use
multiple servers to handle the transactions all of your clients are attempting to
perform; in this way, they don´t all have to wait in line to use the same server.
They can get more done in less time.

The RTR Application Design Guide and API reference manual go into much
more detail about data partitioning.

This is how the example server application defines the key segment that it will
handle:

p_keyseg[0].ks_type = rtr_keyseg_string;
p_keyseg[0].ks_length = 1;
p_keyseg[0].ks_offset = 0;
p_keyseg[0].ks_lo_bound = &outmsg->routing_key;
p_keyseg[0].ks_hi_bound = &outmsg->routing_key;

It tells RTR that this server is interested only in records containing a string of
1 byte at the beginning of the record; this actually makes it a single character.
The value of that character is from and including the value of the character
in the routing_key field of outmsg, to and including the value of the character
in the routing_key field of outmsg. As you can see, this too describes only one
character.

The structure `outmsg´ is actually a msg_data_t structure, which is the
structure you saw the client application using to pass data to the server
application. The value of this character is input when you start the server.
Because we decided to use the letter h when we start the client, it would be
really nice if the server we start identifies itself as one that can handle the
client´s request. So we´ll start the server using h as well; in this way, the h
gets into outmsg->routing_key. The complete server command line for both the
client and the server is documented later in this tutorial.

status = rtr_open_channel(
&channel,
RTR_F_OPE_SERVER,
"RTRTutor",
NULL,
RTR_NO_PEVTNUM,
RTR_NO_ACCESS,
1,
p_keyseg);

check_status("rtr_open_channel", status);

B–18 RTR Application Development Tutorial

RTR Application Development Tutorial

Note

The check_status function is not part of RTR; you must define it in the
application.

The server has requested a channel on which to communicate with RTR,
and advertised itself as handling all requests from clients in the RTRTutor
facility that have a key segment value of h. The remaining parameters contain
defaults.

Now the server waits for a message confirming that RTR opened the channel
successfully. If it did, the server can then begin receiving requests from the
client, via RTR.

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

Again, we use the RTR rtr_msgsb_t structure that RTR will place information
in, and the user-defined receive_msg_t data structure (see adg_header.h) that
the client´s data will be copied into. But at this point, the server is talking
with RTR only, not the client, so it is expecting an answer from RTR in msgsb;
all the server really wants to know is that the channel has been opened
successfully. If it hasn´t, the server application will write out an error message
and exit with a failure status.

if (msgsb.msgtype != rtr_mt_opened)
{

fprintf(fpLog, " Error opening rtr channel : \n");
fprintf(fpLog,

"%s",
rtr_error_text(receive_msg.receive_status_msg.status);

fclose (fpLog);
exit(-1)

}

fprintf(fpLog, " Server channel successfully opened \n");
return;

And now that the channel has been established, the server waits to receive
messages from the client application and the RTR router.

RTR Application Development Tutorial B–19

RTR Application Development Tutorial

Receive/Reply Message Loop: The server sits in a message loop receiving
messages from the router, or from the client application via the router. Like
the client, it must be prepared to receive various types of messages in any
order and then handle and reply to each appropriately. But the list of possible
messages the server can receive is different than that of the client. This
example includes some of those. First, the server waits to receive a message
from RTR.

while (RTR_TRUE) /* always, or until we exit */
{

status = rtr_receive_message(
&channel,
RTR_NO_FLAGS,
RTR_ANYCHAN,
&receive_msg,
sizeof(receive_msg),
receive_time_out,
&msgsb);

check_status("rtr_receive_message", status);

Like the client, upon receiving the message the server checks the rtr_msgsb_t
structure´s msgtype field to see what kind of message it is. Some are messages
directly from RTR and others are from the client. When the message is from
the client, your application will read the data structure you constructed to pass
between your client and server and, based on what it contains, do the work
it was written to do. In many cases, this will involve storing and retrieving
information using your favorite database.

But when the message is from RTR, how should you respond? Let´s look at
some of the types of messages a server gets from RTR, and what should be
done about them.

switch (msgsb.msgtype)
{

case rtr_mt_msg1_uncertain:
case rtr_mt_msg1:

The first message this server application prepares to handle is the rtr_
mt_msg1_uncertain message. This is combined with the handler for the
rtr_mt_msg1 message.

The msg1 messages identify the beginning of a new transaction. Rtr_mt_msg1
says that this is a message from the client, and it´s the first in a transaction.
When you receive this message type, you will find the client data in the
structure pointed to by the fourth parameter of this call. The client and server
have agreed on a common data structure that the client will send to the server
whenever it makes a request: this is the message_data_t we looked at in the

B–20 RTR Application Development Tutorial

RTR Application Development Tutorial

client section of this document. RTR has copied the data from the client´s data
structure into the one whose memory has been supplied by the server. The
server´s responsibility when receiving this message is to process it.

Recovered Transactions: The rtr_mt_msg1_uncertain message type tells the
server that this is the first message in a recovered transaction. The original
server the application was communicating with failed, possibly leaving some
of its work incomplete, and now the client is talking to the standby server.
What happens to that incomplete work left by the original server? Looking
back at the client you will recall that everyone got to vote as to whether the
transaction was accepted or rejected, and then the client waited to see what
the outcome of the vote was. While the client was waiting for the results of
this vote, the original server failed, and the standby server took over. RTR
uses the information it kept storing to the recovery journal, which you also
created earlier, to replay to the standby server so that it can recover the
incomplete work of the original server.

When a server receives the `uncertain´ message, it knows that it is stepping
in for a defunct server that had, to this point, been processing client requests.
But it doesn´t know how much of the current transaction has been processed
by that server, and how much has not, even though it receives the replayed
transactions from RTR. The standby server will need to check in the database
or files to see if the work represented by this transaction is there and, if not,
then process it. If it has already been done, the server can forget about it.
In the examples, rtr_msgsb_t must be declared as a variable, as rtr_msgsb_t
msgsb;.

if (msgsb.msgtype == rtr_mt_msg1_uncertain)
replay = RTR_TRUE;

else
replay = RTR_FALSE;

if (replay == TRUE)
/* The server should use this opportunity to

* clean up the original attempt, and prepare
* to process this request again.
*/

else
/*

* Process the request.
*/

RTR Application Development Tutorial B–21

RTR Application Development Tutorial

The server then replies to the client indicating that it has received this
message and handled it.

reply_msg.sequence_number =
receive_msg.receive_data_msg.sequence_number;

status = rtr_reply_to_client (
channel,
RTR_NO_FLAGS,
&reply_msg,
sizeof(reply_msg),
RTR_NO_MSGFMT);

The rtr_reply_to_client call is one you haven´t seen before. Obviously, it is
responding to a client´s request. This call may not be used on a channel in an
application that has declared itself a client.

The server is using the rtr_reply_to_client call to answer the request the client
has made. In some cases, this may mean that data needs to be returned. This
will be done in the `reply_msg´ structure which, like the send_msg structure,
has been agreed upon by both the client and the server. RTR will copy `sizeof´
bytes from the server´s copy of the reply_msg into the client´s copy.

check_status("rtr_reply_to_client", status);
break;

case rtr_mt_prepare:

Prepare Transaction: The rtr_mt_prepare message tells the server to prepare
to commit the transaction. All messages from the client that make up this
transaction have been received, and it is now almost time to commit the
transaction in the database. This message type will never be sent to a server
that has not requested an explicit prepare. To make this request, the server
must use the RTR_F_OPE_EXPLICIT_PREPARE flag in the `flags´ parameter
when opening the channel.

After determining whether it is possible to complete the transaction based on
what has occurred to this point, the server can either call rtr_reject_tx to reject
the transaction, or set all of the required locks on the database before calling
rtr_accept_tx to accept the transaction.

Because this example code is not dealing with a database, nor is it bundling
multiple messages into a transaction, the code here immediately votes to
accept the transaction.

B–22 RTR Application Development Tutorial

RTR Application Development Tutorial

status = rtr_accept_tx (
channel,
RTR_NO_FLAGS,
RTR_NO_REASON);

check_status("rtr_accept_tx", status);

break;

case rtr_mt_rejected:

Transaction Rejected: The rtr_mt_rejected message is from RTR, telling the
server application that a participant in the transaction voted to reject it. If one
participant rejects the transaction, it fails for all. The transaction will only be
successful if all participants vote to accept it. When it receives this message,
the server application should take this opportunity to roll back the current
transaction if it is processing database transactions.

break;

case rtr_mt_accepted:

Transaction Accepted: RTR is telling the server that all participants in this
transaction have voted to accept it. If database transactions are being done
by the server, this is the place at which the server will want to commit the
transaction to the database, and release any locks it may have taken on the
database.

break;

} /* end of switch */
} /* end of while loop */

Note that there is no close_channel call in the server. This is because the RTR
router closes the channel and stops the server when it sees fit. RTR makes
this decision.

That´s it. You now know how to write a client and server application
using RTR as your network communications, availability and reliability
infrastructure. Congratulations!

RTR Application Development Tutorial B–23

RTR Application Development Tutorial

Build and Run the Servers: Compile the adg_server.c and adg_shared.c
module on the operating system that will run your server applications. If you
are using two different operating systems, then compile it on each of them. To
build on UNIX, issue the command:

cc -o server adg_server.c adg_shared.c /usr/shlib/librtr.so -DUNIX

You should start the servers before you start your clients. They will register
with the RTR router so that the router will know where to send client
requests. Start your primary server with the appropriate `run´ command for
its operating system along with the two parameters `1´ and `h´. To run on
UNIX:

% server 1 h

Start your standby server with the parameters `2´ and `h´.

% server 2 h

Build and Run the Client: Compile the adg_client.c and adg_shared.c module
on the operating system that will run your client application. To build on
UNIX:

% cc -o client adg_client.c adg_shared.c /usr/shlib/librtr.so -DUNIX

Run the client with the following command:

% client 1 h 10

or

C:\RtrTutor\> client.exe 1 h 10

But Wait! There´s More! This tutorial has only scratched the surface of
RTR. There is a great deal more that RTR gives you to make your distributed
application reliable, available, and perform better. The following sections of
this document highlight some of the capabilities you have at your service.
For more details on each item, and information on what additional features
will help you to enhance your application, look first through the HP Reliable
Transaction Router Application Design Guide. Then, earlier sections of this
manual will tell you in detail how to implement each capability.

B–24 RTR Application Development Tutorial

RTR Application Development Tutorial

Training Services offers training classes for RTR. If you´d like to attend any of
them, contact your local representative.

Callout Server: RTR supports the concept of a ‘‘callout server’’ for
authentication. You may designate an additional application on your server
machines or your router machine as a callout server when it opens its channel
to the router. Callout servers are asked to check all requests in a facility, and
are asked to vote on every transaction.

Events: In addition to messages, RTR can be used to dispatch asynchronous
events on servers and clients. A callback function in the user´s server and
client applications can be designated for RTR to call asynchronously to
dispatch events to your application.

Shadowing: This tutorial only discussed failover to a standby server. But
RTR also supports shadowing: while your server is making changes to your
database, another ‘‘shadow’’ server can be making changes to an exact copy
of your database in real time. If your primary server fails, your shadow
server will take over, and record all of the transactions occurring while your
primary server is down. Your primary server will be given the opportunity to
update the original database and catch up to the correct state when it comes
back up. So as you can see, if your database and transactions are important
enough to you, you have the opportunity to double protect them with an RTR
configuration that includes some of the following:

• A standby software server on a primary hardware backend system

• A shadow backend system replicating all transactions on a duplicate
database

• Failover backend systems for each of your primary backends

• Failover routers

• Concurrent servers

Transactions: One of RTR´s greatest strengths is in supporting transactions.
The RTR Application Design Guide goes into more detail regarding
transactions and processing of transactions.

RTR Utility: You´ve seen how to use the RTR utility (or CLI) to start RTR and
to create a facility. But the RTR utility contains many more features than this,
and in fact can be used to prototype an application. Refer to the RTR System
Manager´s Manual for details.

RTR Application Development Tutorial B–25

Index

A
Accept transaction, 3–3
Access parameter, 3–33
adg_client.c file, B–6
API, 1–1, 2–1, 2–2, 2–5

optimizations, 2–9
Application

build, 4–3
client, 2–1, A–2
client/server, B–1
compile, 4–3
exit handler, 2–7
header file, B–7
link, 4–3
prototype, B–25
server, 2–1, A–7

AST-driven processing, 1–3
AST operations, 1–2
Asynchronous events, B–25
Authentication server, 2–10

B
Babel fish, B–11
Backend

node, B–3
Backlog, 2–32
BE callout server, 3–29
BE nodes

number of, 3–1
Bounds value, 3–34

Branch qualifier, 3–20, 3–23
Broadcast, 2–2
Buffer

user, 2–12
Build application, 4–3

C
Callback function, B–25
Callout server, 2–10, B–25

BE, 3–29
TR, 3–31

C files, B–6
Channel identifier, 3–3, 3–6, 3–10, 3–16,

3–19, 3–24, 3–44, 3–49, 3–52, 3–74,
3–88, 3–90, 3–96

Channels, 2–1
number of, 3–1

Checking status, B–9
Classes

information, 3–58
CLI, 1–1
Client

application, 2–1, A–2
number, B–12
optimization, 2–10
program, 2–4
sample, B–12

Client/server application, B–1
Close immediate flag, 3–10
Clusters, B–4, B–5
C modules, B–6
Code

header, A–13
shared, A–11

Index–1

Command
DELETE FACILITY, 2–14
ps, B–4
show process, B–4

Command line interface, 1–1
Commit sequence number, 2–31
Compile application, 4–3
Compile sequence, 4–1
Completion notification, 3–82
Completion status, 2–12, 3–4, 3–27
Computer nodes, B–1
Concurrency, 2–7
Context

user, 3–88
user-defined, 3–88

Conversion
data type, 2–29

Create partition, 3–27
CSN, 2–31

D
Daemons, B–4, B–5, B–7
Data marshalling, 2–28
Data partitioning, B–17
Data returned with event, 2–22
Data structure, B–7

message_data_t, B–12
Data type, B–11

conversion, 2–29
rtr_status_data_t, 2–15

Data types, B–11
DECdtm flag, 3–29
DECnet environment, 1–1
DECnet Phase IV, 1–1
DELETE FACILITY command, 2–14
Delete partition, 3–27
Design restriction

server, 2–31
Dirty read, 2–31

E
Endian, 1–2, 2–28, B–6
Endian order, B–11
Environmental limits, 3–1
Error code, 3–51
Error log message, 2–30
Error number, 3–13
Error text, 3–13, B–9
Event

frontend gain, 2–22
frontend loss, 2–22

Event Notification, 2–21
Event number, 2–14, 2–17, 3–7, 3–16, 3–32,

3–46
Event number range, 3–32
Event recipients, 3–32
Event returns data, 2–22
Events

asynchronous, B–25
EVTNUM, 2–17
Exclusive lock, 2–31
Exit handlers, 2–7
Explicit accept, 2–11
Explicit prepare, 2–11

F
Facilities

number of, 3–1
Facility

name, B–8
Failover

capability, B–6
router, B–25

FE nodes
number of, 3–1

Field
length, 3–2
tid, 3–46

Files
*.C, B–6
header, B–6

Index–2

Flag
close immediate, 3–10
independent, 2–33
RTR_F_ACC_FORGET, 3–4
RTR_F_ACC_INDEPENDENT, 2–32, 3–4
RTR_F_OPE_EXPLICIT_ACCEPT, 2–11
RTR_F_OPE_EXPLICIT_PREPARE, 2–11
shadow, 3–29
standby, 3–29

Floating point, 2–29
Foreign transaction manager, 3–28
Forget

flag, 3–4
transaction, 3–10

Format
message, 3–7, 3–17

Frontend
gain event, 2–22
loss event, 2–22
node, B–2

G
Global transaction, 3–20

H
Handle

user-defined, 3–90
Handler

exit, 2–7
wakeup, 3–95

Hardware platforms, 3–53, 3–75
Header code, A–13
Header file, B–6

application, B–7
rtr.h, B–6

Hot swap, B–4

I
Identifier

channel, 3–3

Idle time, 2–32
Implicit acknowledgment, 3–11
Independent

flag, 2–33, 3–4
transaction, 3–53

Information classes, 3–58
Initialize RTR, B–7
Install RTR, B–3
Interface

XA, 2–28

J
Journal

leave transaction in, 3–10
recovery, B–4, B–21
removal from, 3–10
scan, 3–28
writing data, B–4

Journal file
size of, 3–1

Journal files
number of, 3–1

K
Key range, 3–29
Key range data returned, 2–22
Key segments, 3–33
Key value, 3–34

L
Leave transaction in journal, 3–10
Length

field, 3–2
message, 3–75

Limits
environmental, 3–1

Link application, 4–3
Lock

exclusive, 2–31
Loop

message, B–11

Index–3

M
Managed object type, 3–80
Memory

size of, 3–1
Message

error log, 2–30
format, 2–28, 2–29, 3–7, 3–17, 3–53
length, 3–7, 3–16, 3–75
loop, B–11
prepare, B–22
receiving, B–20
size, 3–1
status block, 2–12, 3–45, 3–90, B–10
uncertain, B–20

Messages
receiving, B–10
send, B–11
user event, 3–8, 3–17

Messages per transaction, 3–1
Message status block, 2–12
Message type, 2–5, 2–12, 2–13, 2–14

rtr_mt_rtr_event, 2–17
Message validation, 2–31
message_data_t data structure, B–12
Mixed endian, 2–28
Modules

C, B–6

N
Named partition, 3–34
Network

not responding, 3–85
packet, B–6
protocol, B–6

NFS, B–4
Node role, B–5
Nodes

computer, B–1
Notification

completion, 3–82
event, 2–21

O
Object

partition, 3–79
transaction, 3–79

Object type, 3–79
managed, 3–80

Open a channel, B–7
Operating systems

different, B–24
Optimization

client, 2–10
voting, 2–10

Optimizations, 2–9
Oracle

server, B–5

P
Packet

network, B–6
Parameter

access, 3–33
rcpnam, 3–7, 3–16, 3–32
rcpspc, 3–7, 3–16, 3–32

Partition, 2–31
creation, 3–27
deletion, 3–27
name, 3–34, 3–41
object, 3–79
range, B–12

Partitioning
data, B–17

Partitions
number of, 3–1

Prepare
message, 3–29, B–22

Processes
RTR, B–5, B–7

Processes per node
number of, 3–1

Program examples, 2–4

Index–4

Protocol
network, B–6

Prototype
application, B–25

ps command, B–4

Q
Qualifier

branch, 3–20
select, 3–79

R
Range

event number, 3–32
rcpnam parameter, 3–7, 3–16, 3–32
rcpspc parameter, 2–20, 3–7, 3–16, 3–32
Read

dirty, 2–31
Read-only server, 3–75
Reason

code, 2–15
field, 3–49
mask, 3–4

Received message types
clients, 2–14
servers, 2–13

Receive timeout, 3–45
Receiving message, B–20
Receiving messages, B–10
Recipient name, 2–20, 3–32
Recovered transaction, B–21
Recovery journal, B–4, B–21
Register function, 3–93
Rejected

transaction, B–23
Remove from journal, 3–10
Resource manager, 3–35
Restriction

server design, 2–31
Retry

count, 2–30

Return status, B–9
Return value

RTR_STS_SRVDIED, 2–30
RM, 3–35
Rogue transaction, 2–30
Role

of node, B–5
Roles, 2–22
Router, B–7

callout server, 3–31
failover, B–25
node, B–3

RPC stubs, B–5, B–6
RTR

API, 1–1, 2–1
channels, 2–1
daemons, B–4, B–5, B–7
data types, B–11
error log message, 2–30
error text, B–9
initialize, B–7
install, B–3
processes, B–5, B–7
router, B–7
services, B–4
structures, B–7
transactions, 2–1
utility, B–25

rtr.h header file, B–6
RTR event returns data, 2–22
rtr_accept_tx call, 2–2, 2–3, 2–6, 2–11, 2–30,

2–31, 3–3
rtr_broadcast_event call, 2–3, 3–6
rtr_close_channel call, 2–3, 2–5, 2–6, 3–10
rtr_error_text call, 2–3, 3–13
rtr_ext_broadcast_event call, 2–3, 3–15
RTR_F_ACC_FORGET flag, 3–4
RTR_F_ACC_INDEPENDENT flag, 2–32, 3–4
RTR_F_OPE_EXPLICIT_ACCEPT flag, 2–11
RTR_F_OPE_EXPLICIT_PREPARE flag, 2–11
RTR_F_SEN_ACCEPT flag, 2–10
rtr_get_tid call, 2–3, 3–19
rtr_get_user_context call, 2–3, 3–24

Index–5

RTR_MAX_MSGLEN, 3–75
rtr_msgsb_t data structure, B–10
rtr_mt_accepted message, 2–1, 2–6, 3–5
rtr_mt_closed message, 3–83, 3–84
rtr_mt_prepare message, 2–11
rtr_mt_rejected message, 2–1, 2–6
rtr_mt_rtr_event message type, 2–17
RTR_NO_USER_CONTEXT, 3–25
rtr_open_channel call, 2–2, 2–3, 2–5, 2–11,

2–17, 3–26
rtr_reason_t code, 2–15
rtr_receive_message call, 2–3, 2–5, 2–6, 2–7,

2–11, 2–12, 3–44
rtr_reject_tx call, 2–3, 2–6, 3–49
rtr_reply_to_client call, 2–3, 3–52
rtr_request_info call, 2–3, 3–56
rtr_send_to_server call, 2–3, 2–5, 2–6, 2–10,

3–74
rtr_set_info call, 3–78
rtr_set_user_context call, 2–3, 3–88
rtr_set_user_handle call, 2–3, 3–90
rtr_set_wakeup call, 2–3, 2–7, 3–93
rtr_start_tx call, 2–3, 2–6, 2–10, 3–96
rtr_status_data_t data type, 2–15, 3–4,

3–81, 3–83, 3–84
RTR_STS_ACPNOTVIA, 3–94
RTR_STS_BYTLMNSUFF, 3–94
RTR_STS_INVCHANNEL, 2–7, 3–89, 3–94
RTR_STS_NOACP, 3–94
RTR_STS_OK, 3–89, 3–94
RTR_STS_SRVDIED return value, 2–30

S
Sample client, B–12
Secondary

idle time, 2–32
shadow, 2–31

Security
key, 3–33

Select qualifier, 3–79
Send messages, B–11
Serializability, 2–31

Server
application, 2–1, A–7
attributes, 3–29
authentication, 2–10
BE callout, 3–29
callout, 2–10, B–25
design restriction, 2–31
no recovery, 3–30
no standby, 3–30
Oracle, B–5
primary, B–2
program, 2–5
read-only, 3–75
receive replies, 3–30
shadow, B–25
SQL, B–5
standby, B–2, B–5, B–25
TR callout, 3–31

Services
RTR, B–4

Shadow
flag, 3–29
pair, 3–31
secondary, 2–31
server, B–25
site, 2–31

Share, B–5
Shared code, A–11
Show process command, B–4
SQL

calls, 3–36
server, B–5

Standby
flag, 3–29
server, B–3, B–5, B–25

Start RTR, B–3
State changes

transaction, 3–80
Status

checking, B–9
data type, 2–15
return, B–9

Status block
message, 2–12, 3–90, B–10

Index–6

Suspend timeout, 3–81

T
Task Manager, B–4
Threads per application

number of, 3–2
tid field, 3–46
Timeout

exceeded, 3–85
suspend, 3–81
transaction, 3–96

Time zones, B–6
TR

callout server, 3–31
Transaction, 2–1, 2–6

accept, 3–3
forget, 3–10
grouping, 2–31
identifier, 3–97
independent, 3–53
object, 3–79
recovered, B–21
rejected, B–23
rogue, 2–30
state changes, 3–80
timeout, 3–96

Transaction manager
foreign, 3–28

TR nodes
number of, 3–1

Type of object, 3–79

U
Uncertain

message, B–20
User buffer, 2–12, 3–45
User context, 3–88
User-defined context, 3–88
User-defined handle, 3–90
User event messages, 3–8, 3–17
Utility

RTR, B–25

V
Validation

message, 2–31
Version mismatch, 3–98
Voting, B–15
Voting optimization, 2–10

W
Wakeup

feature, 3–94
routine, 2–7

Wakeup handler, 3–95
Wildcards, 3–7, 3–16
Windows share, B–5

X
XA

protocol, 3–31
specification, 3–20
support, 2–28
usage, 3–35, 3–40

XID structure, 3–20

Index–7

