OpenVMS User’s Manual

Order Number: AA-PV5JF-TK

June 2002

This manual describes how to use the Compaq OpenVMS operating
system. The information contained in this manual is intended for
all OpenVMS users and is applicable to all computers running the
OpenVMS operating system.

Revision/Update Information: This manual supersedes the OpenVMS
User’s Manual, Version 7.3.

Software Version: OpenVMS Alpha Version 7.3-1
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

DocPrep V1.0.2
Processed on 6/8/2002

Black and white submission.

© 2002 Compaq Computer Corporation

Compagq, the Compaq logo, AlphaServer, OpenVMS, POLYCENTER, Tru64, VAX, VMS, and the
DIGITAL logo are trademarks of Compaq Information Technologies Group, L.P. in the U.S. and/or
other countries.

UNIX and X/Open are trademarks of The Open Group in the U.S. and/or other countries.
All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compagq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject

to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6489
The Compaq OpenVMS documentation set is available on CD-ROM.

Contents

Preface Xix

1 Getting Started with the OpenVMS Operating System

1.1 Logging In e 1-1
1.1.1 Successful Logins e 1-2
1.1.2 Login Errors. e 1-3
1.2 Logging In From a PC 1-3
1.3 Choosing Passwords for Your Account 1-3
1.3.1 Obtaining Your Initial Password 1-4
1.3.2 Changing Your Initial Password 1-4
1.3.3 Restrictions on Passwords 1-4
1.3.4 Types of Passwordst 1-5
1.3.5 Entering a System Password 1-5
1.3.6 Entering a Secondary Password 1-6
1.3.7 Password Requirements for Different Types of Accounts 1-6
1.4 Reading Informational Messages 1-7
1.41 Suppressing Messagesottt 1-8
1.4.2 Successful Login Messages v it 1-8
1.5 Types of Logins and Login Classes, 1-8
1.5.1 Interactive Logins 1-8
1.5.2 Noninteractive Logins 1-9
1.6 Login Failures e 1-9
1.6.1 Terminals That Require System Passwords 1-10
1.6.2 Login Class Restrictions. 1-10
1.6.3 Shift Restrictions 1-10
1.6.4 Batch Jobs During Shift Restrictions 1-10
1.6.5 Failures During Dialup Logins 1-11
1.6.6 Break-In Evasion Procedures 1-11
1.7 Changing Passwords 1-11
1.71 Selecting Your Own Password 1-12
1.7.2 Using Generated Passwords. 1-12
1.7.3 Generated Passwords: Disadvantages 1-13
1.7.4 Changing a Secondary Password 1-13
1.7.5 Changing Passwords at Login 1-14
1.8 Password and Account Expiration Times 1-14
1.8.1 Expired Passwords e 1-14
1.8.2 Using Secondary Passwords 1-14
1.8.3 Failure to Change Passwords 1-15
1.8.4 Expired Accounts 1-15
1.9 Guidelines for Protecting Your Password 1-15
1.10 Recognizing System Responses 1-16
1.10.1 Default Actions 1-16
1.10.2 Informational System Messages 1-16

.10.3
.10.4
A1
A1
1.2
11.3
12
1241
12.2
12.3
13
14
1441
14.2

—_ = b

System Error Messages
Checking Your Current Process
Getting Help About the System
Using Online Help
Getting Help on Specific Commands
Getting Help on System Messagesuun....
Logging Out of the System
Obtaining Accounting Information
Ending a Remote Session
Lost Network Connections uuo....
Logging Out Without Compromising System Security

Networks

Network Nodes e
Executing Programs over Networks

2 Using DCL to Interact with the System

21
2141
21.2
2.2
2.2.1
222
2.2.3
224
2.3
2.4
2.5
2.5.1
252
2.5.3
254
255
2.6
2.6.1
2.6.2
2.6.3
2.7
2.71
2.7.2
2.7.3
2.8
2.8.1
2.8.2
2.9
2.10

Entering Commands e
Usage Modesi it e e
Types of DCL Commands0 e,

The DCL Command Line

Syntax . ..

Canceling Commands.
Using Defaults e
Entering Multiple Line Commands
Rules for Entering DCL Commands
Entering Parameters
Entering Qualifiers e
Command Qualifiers
Positional Qualifiers.
Parameter Qualifiers
Conflicting Qualifiers e
Values Accepted by Qualifiers
Entering Dates and Times as Values
Absolute Time Format
Delta Time Format.
Combination Time Format
Recalling Commands
Pressing Ctrl/B e
Using Arrow Keys e
Using the RECALL Command
Editing the DCL Command Line
SET TERMINAL Command0 ...,
Deleting Parts of the Command Line
Defining Terminal Keys

Key Sequences

1-17
1-17
1-18
1-18
1-19
1-19
1-20
1-20
1-20
1-20
1-21
1-21
1-21
1-22

I\)I\)I\)l\)l\)l\)l\)l\)l})l\)l\)l\)l\)l\)l\)l\)l\)

PR PP
QOO R DPRWONMNMNMNN-2LOO0OOCOOQOOOONNOOOOOOR~,WWONDDN

I\)I\)I\)I\)II\)I\JI\DI\)I\)

3 Storing Information with Files

3.1 Understanding File Names and File Specifications
3.1.1 Providing a Complete File Specification
3.1.2 Rules for File Specifications
3.1.3 Default File Types Used by DCL Commands
3.1.4 Default File Types for Language Source Programs
3.1.5 File Versions
3.1.6 Network Node Names
3.1.7 Specifying DECnet-Plus Node Full Names.
3.1.8 Specifying TCP/IP Names and Addresses
3.1.9 Accessing Files on Remote Nodes Using DECnet
3.1.10 Accessing Files on Remote Nodes Using TCP/IP
3.1.11 Using Network File Specifications
3.1.111 Conventional File Specification
3.1.11.2 Foreign File Specification.
3.1.11.3 Task Specification Strings,
3.1.12 Access Control String Format
3.2 Using Wildcards with File Names
3.2.1 Asterisk (*) Wildcard Character
3.2.2 Percent Sign (%) Wildcard Character
3.3 Other File Names
3.3.1 Null File Names and File Types.
3.3.1.1 File References with Null File Types
3.3.2 Alternate File Names for Magnetic Tapes
3.4 Creating and Modifying Files.
3.4.1 Creating Files e
3.4.2 Copying Files
3.4.3 File Concatenation
3.4.4 Copying Files from a Remote Node to Your Node Using DECnet
3.4.5 Copying Files from Your Node to a Remote Node Using DECnet
3.4.6 Copying Files on Remote Systems Using TCP/IP.................
3.4.7 Using Access Control Strings to Copy Files
3.4.8 Renaming Files e
3.5 Displaying the Contents of Files
3.5.1 Using the TYPE Command,
3.5.2 Controlling the Display
3.5.3 Displaying Files on Remote Nodes
3.5.4 Displaying Files with Wildcards.
3.5.5 Displaying Multiple Files
3.6 Deleting Files.o e
3.6.1 Using the PURGE Command
3.7 Protecting Files from Other Users
3.7.1 Access Control Lists (ACLs) i e
3.7.2 Types of Protection.
3.8 Printing Files
3.8.1 Print Job Priority
3.8.2 Displaying Queue Information
3.8.3 Print Forms
3.8.4 Stopping a PrintJob
3.8.5 Printing Files on Other Nodes
3.8.6 PRINT Command Qualifiers
3.8.7 WWPPS Utility (Alpha Only) i
3.8.7.1 Invoking WWPPS
3.8.7.2 WWPPS Utility Commands

3-2
3-2
3-3
3-4
3-4
3-5
3-6
3-6
3-7
3—7
3-8
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-10
3-10
3—11
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-13
3-13
3-13
3-14
3-14
3-14
3-14
3-14
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16
3-17
3-17
3-17
3-17
3-18
3-18
3-19
3-21
3-21

4 Organizing Files with Directories

41
4.2
421
422
423
4.3
4.3.1
4.3.2
4.3.3
4.4
4.5
4.51
4.5.2
4.6
4.6.1
46.2

Directory Structures
Understanding Directories
Creating Directories.
Displaying Directories
Deleting Directories
Setting Defaults

Setting Default to Nonexistent Directories.

SHOW DEFAULT Command .
Using Temporary Defaults . . .

Protecting Directories from Other Users
Using Wildcards to Search the Directory Structure

Ellipsis Wildcard Character . .

Hyphen (-) Subdirectory Character
Working with Directories in UIC Format
Using Wildcards with UIC Directories
Translating to Named from UIC Format

5 Extended File Specifications

5.1
5.1.1
51.2
5.1.3
5.1.4
5.1.4.1
51.42
5.2
5.2.1
5.2.2
5.3
54
5.5
5.5.1
5.5.2
5.5.3
554
5.6
5.7

ODS-5 Volume Structure
Long File Names
More Characters Legal Within
Preservation of Case
Using Wildcards

Wildcard Characters
Wildcard Syntax........

Deep Directory Structures

Directory Naming Syntax . ..

File Names

Directory ID and File ID Abbreviation.........................
Using the Extended File Specifications Parsing Feature in DCL
Where You Can Use Extended File Specifications
Displaying Files with Extended Names

DIRECTORY Command
TYPE Command
DELETE Command
PURGE Command

Displaying Extended File Names on a Terminal

Working in Mixed Environments .

6 Using Disk and Tape Drives

vi

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.8

Physical Device Names
Displaying Device Information . . .
Logical Device Names
Generic Device Names
OpenVMS Cluster Device Names .
Volumes and Volume Sets
Device Management...........

Allocating Devices

Initializing Volumes

Mounting Volumes

Requesting Operator Assistance.

Accessing Files on Private Devices

2 OO0 QOO AR ON—= =

77T
o = -

(é)]
|

[e>)Ne>Ne>NeNe)le)le)le) Ne)le)Ne) el

|
OO, PAWWWNNN =

6.8.1

Dismounting Volumes .

7 Using Mail to Communicate with Others

7.1

711
71.2
7.2

7.21
7.2.2
7.2.3
7.3

7.4

7.41
7.4.2
7.4.3
7.4.4
7.5

7.51
7.5.2
7.5.3
7.6

7.6.1
7.6.2
7.6.3
7.6.4
7.7

7.7

7711

7.7.2

7.7.21

7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6
7.8.7
7.8.8
7.9
7.91
7.10
7.11
7111
7.11.2
712
7121
7.12.2
7.12.3
7124
7.12.5
713
7.13.1

Invoking and Exiting Mail .
Invoking Mail.
Exiting from Mail.

Reading Messages
Reading New Malil
Reading Old Messages .
Searching for Messages

Sending Messages

Sending Mail Over Networks
Specifying Your Network Protocol

Specifying Node Names

Using Internet Mail Addressesc0 ...
Using Logical Node Names0 i,
Sending Messages to Multiple Users

Using Individual Names

Creating Distribution Lists
Sending Messages to Distribution Lists

Manipulating Files in Mail
Sending DDIF Files . . .
Sending Files from DCL

Creating Files from Messagesiiiiiuineenn..
Appending Files to Messagesoi i,
Other Ways to Send Messages

Replying to Messages . .

Replying to an Address Containing Nested Quotation Marks

Forwarding Messages. .

SET FORWARD Command

Organizing Messages
Creating Folders

Creating Mail Subdirectories
Moving Messages into Folders
Copying Messages Between Folders

Selecting Folders
Deleting Folders.

Creating and Accessing Mail Files
Correcting the Mail Message Count

Deleting Messages

Recovering Deleted Messages.

Printing Mail Messages . . .
Protecting Mail Files
Default Protection
Security Measures
Using Text Editors in Mail .
Using EVE

Using /EDIT Qualifier Keywords

Selecting an Editor . ..

Using a Command File to Edit Mail
Overriding Your Selected Editor.

Using the Mail Keypad . ..
Redefining Keypad Keys

72
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-5
7-5
7-6
7-6
7-6
7-6
77
7-7
7-8
7-8
7-9
7-9
7-10
7-10
7-11
7-11
7-11
7-11
7-12
7-13
7-13
7-13
7-13
7-13
7-14
7-14
7-15
7-15
7-16
7-16
7-16
7-17
7-17
7-17
7-17
7-17
7-18
7-18
7-18
7-18
7-19
7-19

Vii

7.13.2 Assigning Additional Key Definitions.

7.13.3 Creating Permanent Key Definitions
714 Summary of Mail Commands u.....
7141 Reading Messages
7.14.2 Exchanging Messages
7.14.3 Removing Messagesttt e e
7.14.4 Printing Messages i e
7.14.5 Organizing MesSSageso vttt it e e e e e
7.14.6 Marking Messages oottt
7147 Customizing the Mail Environment
7.14.8 Exiting or Transferring Control
7.14.9 Mail File Compressiony
7.14.10 System Management Commands
715 MIME Utilityo
7.15.1 Invoking the MIME Utility
7.15.2 Initializing the MIME Utility.
7.15.3 Creating Optional MIME Utility Files
7.15.3.1 MIME$MAILCAP.DAT File Processingo......
7.15.3.2 MIMES$FILETYPES.DAT File Processing
7.15.4 Extracting MIME-Encoded Files Using the MIME Utility
7.15.5 Encoding Files Using the MIME utility
7.15.6 MIME Utility Commandsttt
7.15.7 Error Handling i

8 Editing Text Files with EVE

viii

8.1 EVE Features e
8.2 Getting Help e
8.2.1 Using Keypad Help i,
8.2.2 Using EVE Help.
8.3 Beginning an Editing Session
8.4 Entering Commands
8.4.1 Typing Commandsttt
8.4.2 Using Defined Keys i
8.5 Saving Your Edits and Exiting from EVE
8.5.1 Using the WRITE FILE Command
8.5.2 Using the EXIT Command 0t ..
8.5.3 Using the QUIT Command v iniee....
8.6 Moving the Cursor e
8.7 Entering Text
8.7.1 Adding Textot e
8.7.2 Including Files
8.7.3 Special Nonprinting Characters
8.7.4 EVE Editing Keys for Entering Text
8.7.5 EVE Commands for Entering Text
8.7.6 Setting Buffer Mode
8.8 Erasing and Restoring Text
8.9 Moving Text
8.10 Copying Text e
8.11 Box Editing
8.11.1 Selecting a Box of Text.
8.11.2 Cutting and Pasting a Boxof Text
8.11.3 SET BOX SELECT Commandscouuinieeiennnn...
8.12 Using Pending Delete

7-20
7-20
7-20
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-25
7-25
7-25
7-26
7-26
7-26
7-27
7-27
7-28
7-28
7-29
7-29
7-31

GJCXJCO(DCDGJCIDCOGJCXJCDGJCO

[
|
O©COOWMNMNMNN—=2L =22 200NN NOOTOOTEAWWWND

ICOCIXJCXJCD

O G Qe G G G T G Y

—
©

i
N N
- O

8-21

8.12.1
8.12.2
8.13
8.13.1
8.13.1.1
8.13.2
8.13.3
8.13.4
8.13.5
8.13.6
8.13.6.1
8.13.6.2
8.14
8.14.1
8.14.2
8.14.3
8.15
8.15.1
8.15.2
8.15.3
8.15.4
8.16
8.16.1
8.17
8.18
8.18.1
8.18.2
8.18.3
8.18.4
8.18.5
8.18.6
8.18.7
8.18.8
8.18.9
8.18.10
8.19
8.19.1
8.19.1.1

Erasing a Selection with Pending Delete
Restoring a Selection That Was Erased with Pending Delete
Finding and Replacing Text
Finding Text. e
When a Search String IsFound
Setting Case-Exact Searches
Using Wildcards e
Including White Spaceina Search
Marking Locations in Text,
Replacing Text i
REPLACE Command and Case Sensitivity
REPLACE Command Responses

Using Command Line Qualifiers
Starting in an Alternate Position
Using Work Files e

Modifying

the Main Buffer.

Alternate Methods to Invoke EVE
Invoking EVE from a Search List
Invoking EVE with Wildcards
Invoking EVE with Wildcard Directory Names
Invoking EVE with Multiple Input Files

Journaling and Recovery
Using Buffer-Change Journaling

EVE Formatting Commands,

Using Buffers
Obtaining

Buffer Information

Deleting a Buffer
Changing Buffer Status
Displaying the Messages Buffer
Editing Multiple Buffers
Reading Filesinto EVE
Writing Files from EVE
Using WIindows i e e e
Viewing Two Sections of One Buffer.
Editing Two Buffers
Creating a Subprocessiiiim it

Spawning

Spawning to EVE from DCL

9 Sorting and Merging Files

9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6
9.3
9.4
9.4.1
9.4.2
9.5

High-Performance Sort/Merge,

Sorting Files

Defininga Key e
Multiple Key Fields
Identical Key Fields
Noncharacter Data.
Output File Organization.
Sorting Process e
Specifying a Collating Sequence.
Running Sort asa BatchJob
Command Procedures
Including Input Records.

Merging Files

8-21
8-22
8-22
8-23
8-23
8-24
8-25
8-25
8-25
8-26
8-26
8-27
8-27
8-27
8-28
8-28
8-29
8-29
8-29
8-30
8-30
8-30
8-31
8-34
8-36
8-37
8-38
8-38
8-39
8-39
8-40
8-40
8-40
8—41
8-42
8-42
8-42
8-43

9-1
9-3
9-4
9-7
9-8
9-9
9-9
9-10
9-10
9-13
9-13
9-13
9-14

9.5.1 Sorted Files 9-15

9.5.2 Identical Key Fields i 9-16
9.6 Entering Records from a Terminal 9-16
9.7 Using a Sort/Merge Specification File 9-16
9.8 Optimizing a Sort or Merge Operation............................ 9-21
9.8.1 Sorting Process 9-22
9.8.2 Omitting Records and Fields 9-23
9.8.3 Assigning Work Files 9-23
9.8.4 Modifying the Working Set Extent 9-24
9.9 Summary of Sort/Merge Qualifiers. 9-24
9.91 Input File Qualifier 9-28
9.9.2 Output File Qualifiers 9-28
9.9.3 Specification File Qualifiers 9-31

10 Controlling Access to Resources

10.1 Displaying the Rights Identifiers of Your Process 10-2
10.2 Security Profile of Objects 10-3
10.2.1 Modifying a Security Profile. 10-3
10.3 Interpreting Protection Codes, 10-3
10.4 Default File Protection 10-4
10.4.1 Default UIC Protection 10-4
10.4.2 Default ACL Protection 10-5
10.4.3 Renaming Files e 10-5
10.4.4 Explicit File Protection 10-5
10.5 Accessing Files Across Networks 10-5
10.5.1 Access Control Strings 10-6
10.5.2 Protecting Access Control Strings 10-6
10.5.3 Using Proxy Login Accounts to Protect Passwords. 10-6
10.5.4 General Access Proxy Accounts 107
10.6 Auditing Access to Your Account and Files 10-8
10.6.1 Observing Your Last Login Time 10-8
10.6.2 Events That Can Trigger Security Alarms 10-9
10.6.3 Security Audit Log Files 10-9
10.6.4 Adding ACEs to Sensitive Files 10-10

11 Defining Logical Names for Devices and Files

11.1 Logical Name Characteristicst .. 11-1
11.2 Using System-Defined Logical Names 11-2
11.3 Creating Logical Names i 11-2
11.3.1 Using the DEFINE Command 11-3
11.3.2 Creating Logical Names in Command Procedures for File /O 11-4
11.3.3 Rules for Creating Logical Names 11-4
11.3.4 Translation Attributes 11-5
11.3.5 Access Modesot e 11-5
11.3.6 Creating Logical Node Names 11-6
11.3.6.1 Using Logical Node Names in File Specifications. 11-7
11.3.6.2 Overriding Access Control Strings 11-7
11.3.7 Creating Multiple Logical Names for the Same Object 11-7
11.4 Deleting Logical Names 11-8
11.5 Logical Name Translation iiiiine.... 11-8
11.5.1 Iterative Translation 11-8
11.5.2 Missing Fields Filled in with System Defaults................... 11-9

11.5.3 Default Search Order for Logical Name Translations

11.6 Displaying Logical Names

11.6.1 Specifying a Logical Name Table to Search
11.6.2 Displaying Translation Attributes and Access Modes.

11.7 Creating and Using Search Lists

11.7.1 Using Search Lists with Commands That Accept Wildcards
11.7.2 Using a Search List with the SET DEFAULT Command
11.7.3 Using a Search List with the RUN Command

11.7.4 Search Order for Multiple Search Lists . .
11.8 Logical Name Table Characteristics
11.8.1 Logical Name Table Directories

11.8.2 Displaying the Structure of Directory Tables

11.9 Default Logical Name Tables
11.9.1 Process Logical Name Directory........
11.9.2 Process Logical Name Table...........
11.9.3 System Logical Name Directory
11.94 Shareable Logical Name Tables

11.9.5 Default Protection of Shareable Logical Name Tables
11.9.6 Privilege and Access Requirements for Managing Shareable Logical

Names i ...
11.10 Creating Logical Name Tables

11.10.1 Creating Process-Private Logical Name Tables

11.10.2 Creating Shareable Logical Name Tables .

11.10.3 Creating Clusterwide Logical Name Tables

11.10.4 Privilege and Access Requirements
11.10.5 Modifying the Default Protection

11.10.6 Establishing Quotas for Logical Name Tables

11.10.6.1 Setting Job Table Quotas

11.11 Modifying the Order of Logical Name Translations

11.12 Deleting Logical Name Tables
11.13 Process-Permanent Logical Names

11.13.1 Equivalence Name Differences Between Interactive and Batch
Processing
11.13.2 Redirecting File I/O Using Process-Permanent Logical Names
11.13.2.1 Redefining SYSSINPUTttt
11.13.2.2 Redefining SYSSOUTPUTttt
11.13.2.3 Redefining SYSSERROR i ...
11.13.2.4 Redefining SYSSCOMMAND

12 Defining Symbols, Commands, and Expressions

121 About Symbols
12.1.1 Comparing Logical Names and Symbols .
122 Using Symbols

12.2.1 Using Symbols to Represent DCL Commands

12.2.2 Symbol Abbreviation
12.2.3 Defining Foreign Commands
12.2.4 Symbol Substitution.................
12.2.5 Deleting Symbols
12.3 Displaying Symbols
12.4 Using Symbols with Other Symbols
12.4.1 Symbol Concatenation
12.4.2 Including Symbols in String Assignments
12.5 Using Symbols to Store and Manipulate Data

12-2
12-2
12-3
12-3
12-4
12-4
12-5
12-5
12-5
12-5
12-6
12-6
12-6

xi

13

Xii

12.6 Character Strings.
12.6.1 Defining Character Strings
12.6.2 Character String Expressions,
12.6.3 Character String Operations0iuinieo....
12.6.4 Comparing Character Strings
12.6.5 Replacing Substrings
12.7 Using Numeric Values and Expressions.
12.7.1 Specifying Numbers
12.7.2 Internal Storage of Numbers
12.7.3 Performing Arithmetic Operations
12.7.4 Comparing Numbers
12.7.5 Performing Numeric Overlays
12.8 Using Logical Values and Expressions
12.8.1 Logical Operationst
12.8.2 Logical EXpressionsttt
12.8.3 Logical Operation Results
12.8.4 Using Values Returned by Lexical Functions
12.8.5 Order of Operationst
12.8.6 Evaluating Data Types. i
12.9 Converting Value Types in Expressions
12.91 Converting Strings to Integers
12.9.2 Converting Integers to Strings
12.10 Understanding Symbol Tables
12.10.1 Local Symbol Tables. i,
12.10.2 Global Symbol Tables,
12.10.3 Symbol Table Search Order
12.11 Masking the Value of Symbols
12.11.1 SET SYMBOL Command i,
12.11.2 Symbol Scoping State............
12.12 Understanding Symbol Substitution
12.12.1 Forced Symbol Substitution
12.12.2 Symbol Substitution Operators
12.13 The Three Phases of Command Processing
12.13.1 Phase 1: Command Input Scanning
12.13.2 Phase 2: Command Parsing
12.13.3 Phase 3: Expression Evaluation
12.13.4 Repetitive and Iterative Substitution..........................
12.13.5 Undefined Symbols
12.14 An Alternative to Using Symbols: Automatic Foreign Commands.
12.14.1 Using Automatic Foreign Commands.
12.14.2 Automatic Foreign Command Restrictions

Introduction to Command Procedures

13.1
13.1.1
13.1.2
13.1.3
13.2
13.2.1
13.2.2
13.3
13.4
13.5

Basic Information for Writing Command Procedures

Default File Type
Writing Commands
Writing Command Lines
Using Labels in Command Lines
Labels in Local Symbol Tables
Duplicate Labels

Using Comments in Command Procedures

How to Write Command Procedures. . .
Steps for Writing Command Procedures

12—7

12-7

12-8

12-9

12-9
12-10
12—-11
12-12
12-12
12-13
12-14
12-15
12-16
12-16
12-16
12-17
12-18
12-20
12-20
12-21
12-22
12-22
12-22
12-22
12-23
12-23
12-23
12-23
12-24
12-24
12-25
12-26
12-28
12-28
12-28
12-29
12-29
12-31
12-32
12-33
12-34

13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-3
13-4
13-4

13.5.1 Step 1: Design the Command Procedure 13-5

13.5.2 Step 2: Assign Variables and Test Conditionals 13-6
13.5.2.1 Using the INQUIRE Command 13-6
13.5.2.2 Preserving Literal Characters 136
13.5.2.3 Testing Conditionals Using IF and THEN 13-7
13.5.2.4 Writing Program Stubs 13-7
13.5.3 Step 3: Add Loops oo i 13-8
13.54 Step 4: End the Command Procedure 13-9
13.5.4.1 Using the EXIT Command 13-9
13.5.4.2 Using the STOP Command 13-10
13.5.5 Step 5: Test and Debug the Program Logic 13-10
13.5.5.1 Debugging Command Procedures. 13-11
13.5.5.2 Enabling Verification During Execution 13-12
13.5.6 Step 6: Add Cleanup Tasks i, 13-12
13.5.6.1 Closing Files i 13-13
13.5.6.2 Deleting Temporary or Extraneous Files 13-13
13.5.6.3 Commonly Changed Process Characteristics 13-13
13.5.6.4 Ensuring Cleanup Operations Are Performed 13-14
13.5.7 Step 7: Complete the Command Procedure 13-14
13.6 Executing Command Procedures 13-15
13.6.1 Executing Command Procedures from Within Other Command

Procedures e 13-16
13.6.2 Executing Command Procedures on Remote Nodes 13-16
13.6.2.1 Security Note 13-17
13.6.3 Executing Command Procedures with DCL Qualifiers or

Parameters 13-17
13.6.3.1 Restrictions 13-17
13.6.4 Executing Command Procedures Interactively 13-18
13.6.5 Executing Command Procedures as Batch Jobs 13-18
13.6.5.1 Remote Batch Jobs. 13-19
13.6.5.2 Restarting Batch Jobs 13-19
13.6.6 Executing Command Procedures on Disk and Tape Volumes 13-20
13.6.6.1 Executing on Private Disks 13-20
13.6.6.2 Executing on Tape Volumes 13-20
13.7 Exiting and Interrupting Command Procedures 13-20
13.7.1 Methods of Exiting 13-21
13.7.2 Exit-Handling Routines 13-21
138.8 Handling Errors. e 13-21
13.8.1 Default Error Actions. 13-22
13.9 Other Methods of Error Handling 13-22
13.9.1 ON Commandi ettt 13-22
13.10 Using the SET NOON Commandiiiinenneon.. 13-24
13.11 Handling Ctrl/Y Interruptions 13-25
13.11.1 Stopping Command Procedures 13-25
18.11.2 Stopping Privileged Images 13-26
13.12 Setting Ctrl/Y Action Routines. 1326
13.12.1 Using the ON Command 13-27
13.12.2 Effects of Entering Ctrl/Y. 13-27
13.13 Disabling and Enabling Ctrl/Y Interruptions 13-29
13.13.1 Using SET NOCONTROL=Y o 13-30
13.13.2 Using SET CONTROL=Y 13-30
13.14 Detecting Errors in Command Procedures Using Condition Codes 13-31
13.14.1 Displaying Condition Codes ($STATUS), .. 13-31
13.14.2 Condition Codes with the EXIT Command...................... 13-31

xiii

13.14.3 Determining Severity Levels
13.14.4 Testing for Successful Completion
13.15 Using Commands That Do Not Set $STATUS
13.16 Login Command Procedures.,

13.16.1 Systemwide Login Command Procedures.......................
13.16.2 Personal Login Command Procedures
13.16.3 Login Command Procedures in Captive Accounts

13.17 Extended File Specifications and Parsing Styles
13.18 Using Extended File Names in DCL Command Parameters
13.18.1 Command Procedure File Specification
13.18.2 Case Preservation and $FILE
13.18.3 Ampersand Versus Apostrophe Substitution

14 Advanced Programming with DCL

Xiv

141 Performing Command Procedure Input
1411 Restrictions to Including Data in Command Procedures
14.1.2 Other Methods of Inputting Data.
14.2 Using Parameters to PassData
14.2.1 Specifying Parameters as Integers
14.2.2 Specifying Parameters as Character Strings
14.2.3 Specifying Parameters as Symbols.
14.2.4 Specifying Parameters as Null Values
14.3 Using Parameters to Pass Data to Batch Jobs
14.4 Using Parameters to Pass Data to Nested Command Procedures
145 Prompting for Data
14.6 Using the SYS$INPUT Logical Name to Obtain Data
14.6.1 Redefining SYS$INPUT as Your Terminal
14.6.2 Defining SYS$INPUT as a Separate File
14.7 Performing Command Procedure Output

14.7.1 Displaying Data
14.7.2 Redirecting Output from Commands and Images
14.7.3 Returning Data from Command Procedures
14.7.4 Redirecting Error Messagest
14.7.41 Redefining SYS$ERROR
14.7.4.2 Suppressing System Error Messages

14.8 Reading and Writing Files (File /O)
14.9 Usingthe OPEN Command
1410 Writingto Files
14.10.1 Creating Files with Unique File Names
1411 Using the WRITE Command iiiinin....
14.11.1 Specifying Data e
14.11.2 Using the /SYMBOL Qualifier
14.11.3 Using the /UPDATE Qualifier
1412 Using the READ Command,
14.12.1 Using the /END_OF_FILE Qualifier
14.12.2 Using the /INDEX and /KEY Qualifiers
14.12.3 Using the /DELETE Qualifier
1413 Using the Close Command,
14.14 Modifying Files
14.141 Updating Records. e
14.14.2 Creating New Output Files
14.14.3 Appending Records to Files
14.15 Handling File /O Errors i

13-32
13-32
13-33
13-33
13-33
13-34
13-34
13-34
13-34
13-35
13-36
13-36

141
14-2
14-2
14-2
14-3
14-3
14-3
14-4
14-4
14-4
14-5
14-6
14-6
14-7
14-7
14-7
14-8
14-10
14-11
14-11
14-12
14-12
14-13
14-14
14-15
14-16
14-16
14-17
14-17
14-17
14-18
14-18
14-19
14-19
14-19
14-19
14-20
14-22
14-23

14.15.1
14.16

14.16.1
14.16.2
14.16.3
14.16.4
14.16.5
14.16.5
14.16.6
14.17

14171
14171
14171
14.18

14.18.1
14.18.2
14.18.3
14.19

14.20

14.20.1
14.20.2
14.20.3
14.20.4
14.20.5
14.20.6
14.20.7

Default Error Actions.
Techniques for Controlling Execution Flow
Using the IF Command
Using the THEN Command
Using the ELSE Command
Using Command Blocks
Using the GOTO Command

A Avoiding Reexecution

Using the GOSUB and RETURN Commands

Creating New Command Levels........
Using the CALL Command

A CALL Command Defaults
2

Writing Case Statements
Listing the Labels
Writing the Case Statement........
Writing the Command Blocks

Writing Loops.

Using the PIPE Command

Beginning and Ending Subroutines

Using the PIPE Command for Conditional Command Execution

Using the PIPE Command for Pipeline

Execution

Using the PIPE Command for Subshell Execution................
Using the PIPE Command for Background Execution
Using the PIPE Command for Input/Output Redirection

Interrupting a PIPE Command
Improving Subprocess Performance . .

15 Using Lexical Functions to Obtain and Manipulate Information

15.1
15.2
15.2.1
15.2.2
15.3
15.3.1
15.3.2
15.3.3
15.3.4
15.4
15.4.1
15.4.2
15.4.3
15.5
15.6
15.6.1
15.6.2
15.6.3
15.7
15.7.1
156.7.2
15.7.3

Why Use Lexical Functions

Obtaining Information About Your Process
Changing Verification Settings
Changing Default File Protection. . ..

Obtaining Information About the System

Determining Your OpenVMS Cluster Node Name

Obtaining Queue Information
Obtaining Process Information.
F$CONTEXT Lexical Function

Obtaining Information About Files and Devices

Searching for Devices.............
Searching for a File in a Directory . . .
Deleting Old Versions of Files
Translating Logical Names
Manipulating Strings
Determining Presence of Strings or Ch
Extracting Parts of Strings
Formatting Output Strings
Manipulating Data Types.............
Converting Data Types
Evaluating Expressions
Determining Whether a Symbol Exists

aracters

14-24
14-24
14-24
14-25
14-25
14-26
14-29
14-30
14-31
14-32
14-32
14-32
14-32
14-34
14-35
14-35
14-35
14-36
14-38
14-39
14-39
14-41
14-41
14-41
14-42
1442

151
15-2
15-3
15-4
15-5
15-5
15-6
15-6
15-7
15-8
15-8
15-9
15-9
15-9
15-10
15—11
15-11
15-13
15-14
15-14
15-15
15-15

XV

16 Understanding Processes and Batch Jobs

16.1 Interpreting Your Process Context 16-1
16.2 Using Detached Processes, 16-4
16.3 Using Subprocessesottt 16—4
16.3.1 Using Subprocesses to Spawn Tasks 16-4
16.3.2 Using Subprocesses to Perform Multiple Tasks 16-4
16.3.3 Creating a Subprocess 16-5
16.3.4 Exiting from a Subprocess 16-5
16.3.5 Subprocess Contextt 166
16.4 Connecting to Disconnected Processes on Virtual Terminals 16-7
16.4.1 Terminal Disconnectionst . 16-7
16.4.2 Removing Disconnected Processes 16-8
16.4.3 Managing Disconnected Processes 16-8
16.5 Working with Batch Jobs 16-8
16.5.1 Submitting Batch Jobs 169
16.5.2 Passing Data to Batch Jobs 1611
16.5.3 Control of Batch Job Output 16-12
16.5.4 Changing Batch Job Characteristics 16-13
16.5.5 SUBMIT Command Qualifiers 16-14
16.5.6 Displaying Jobs in Batch Queues. 16-15
16.5.7 Deleting and Stopping Batch Jobs 16-16
16.5.8 Restarting Batch Jobs 16-16
16.5.9 Synchronizing Batch Job Execution 16-17
16.5.10 Using the WAIT Command uiiion.. 16-18

A Character Sets

B Annotated Command Procedures

B.1 CONVERT.COM Command Procedure B—1
B.2 REMINDER.COM Command Procedure B—4
B.3 DIR.COM Command Procedure, B-7
B.4 SYS.COM Command Procedure 0 . v.... B-10
B.5 GETPARMS.COM Command Procedure. B—11
B.6 EDITALL.COM Command Procedure............................. B-13
B.7 MAILEDIT.COM Command Procedure B-15
B.8 FORTUSER.COM Command Procedure........................... B-16
B.9 LISTER.COM Command Procedure B—-20
B.10 CALC.COM Command Procedure B-21
B.11 BATCH.COM Command Procedure B-23
B.12 COMPILE_FILE.COM Command Procedure B-27

Glossary

Index

XVi

Examples
7—1

Figures

4-1
71
7-2
81
82
91
9-2
9-3
9-4
9-5
9-6

9-7
9-8
13—1
13-2
13-3
16-1
A-1

Tables

2-1
2-2
2-3
2-4
2-5
3—1
5-1
5-2
5-3
7-1
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9

MIME$MAILCAPDAT File 7-28
Directory Structure 4-3
Organizing Mail 7-15
Mail Utility Keypad 7-19
EVE Keys — VT200, VT300, and VT400 Series Terminals 86
EVE Keys — VT100 Series Terminals 8-7
List Sorted in Ascending Order 94
Record Fieldsina List......... 9-6
Sorting by Key Field 9-7
Sorting with Default Key Records 9-7
Sorting with Multiple Key Fields 9-8
Sorting with Multiple Key Fields (Ascending and Descending

Order) e 9-8
Sorting with Identical Key Fields 9-9
Output from Using a Specification File 9-18
ON Command Actionsouintetianeen... 13-24
Flow of Execution Following Ctrl/Y Action...................... 13-28
Ctrl/Y in Nested Procedures. 13-29
Synchronizing Batch Job Execution 16-17
Differences Between DEC Multinational Character Set and ISO

Latin-1 Character Set A-9
To Enter DCL Commandsttt 2-15
To Interrupt DCL Commandsuuiun... 2-16
To Recall Commands 2-16
To Control Cursor Position 2-16
To Control Screen Display 2-17
Commonly Associated Language Codes and Country Codes......... 3-22
Sample Wildcards and Matching Patterns 5-5
Directory Names on ODS-5 Volumes 5-6
Non-Supported OpenVMS Components 5-8
MIME Utility Optional Files 7-27
EVE Editing Keys That Move the Cursor 8-8
EVE Commands That Move the Cursor 8-9
EVE Editing Keys for Erasing and Restoring Text. 8-13
EVE Commands for Erasing and Restoring Text 8-14
EVE Editing Keys That Move Text 8-16
EVE Commands That Move Text 8-17
EVE Commands for Box Editing 8-20
SET BOX SELECT Commandscc.oiuiieunnn... 8-21
EVE Commands for Locating Text in a Buffer 8-22

Xvii

xviii

(OCDCDCXJ(IDOOCOCOGJ
L T S Ui U U G
NOoO oobh whhd =+ O

— O
-
(I
—_

1-2
11-3
11-4
11-5
11-6
11-7

12—1
12-2
A-1

EDIT Command Line Qualifiers
EVE Commands for Buffer-Change Journaling and Recovery
Buffer-Change Journal File Names
EVE Editing Keys and Their Functions
EVE Text Formatting Commands and Their Functions
EVE Commands to Manipulate Buffers
Keys Used with EVE Windows
EVE Window Commands,
High-Performance Sort/Merge: Differences in Behavior............
/KEY Qualifier Values
Default Logical Name Tables
Default Logical Names in Process Logical Name Directory
Default Logical Names in Process Logical Name Table
Default Logical Names in System Logical Name Directory
Default Logical Names in System Logical Name Table
Default Protection of Shareable Logical Name Tables

Privilege or Access Type Required for Shareable Logical Name
Tasks . .o

String CompariSOnso vttt it e
Numeric CompariSOnsttt ettt
DEC Multinational Character Set
DCL Character Set

8-27
8-31
8-32
8-34
8-34
8-36
8-41
8-41

9-2
9-4

11-15

11-16

1-17

1-17

11-20

11-21

11-22
12-9
12-14

Preface

Intended Audience
This manual is intended for all users of the Compaq OpenVMS operating system.

A system manager performs the administrative tasks that create and maintain
an efficient computing environment. If you are a system manager or want to
understand system management concepts and procedures, refer to the OpenVMS
System Manager’s Manual.

Document Structure

Each chapter describes concepts and procedures for performing computing tasks.
Basic information is presented first within each chapter; more complex concepts
and procedures are presented last.

Getting Started

Refer to the following chapters to help you get started using the OpenVMS
operating system:

Chapter 1

Getting Started with the OpenVMS Operating System describes how to log in
and log out of the system, how to change your password, and how to get help.

Chapter 2

Using DCL to Interact with the System describes how to use the DIGITAL
Command Language (DCL).

Chapter 3

Storing Information with Files describes files and how you can use them to
store information. It also includes examples for creating, copying, renaming,
displaying, deleting, protecting, and printing files.

Chapter 4

Organizing Files with Directories describes how to use directories to organize
and manage files.

Chapter 5

Extended File Specifications describes the extended file specifications
environment for OpenVMS Alpha systems using ODS-5.

Chapter 6

Using Disk and Tape Drives describes how to reserve tapes or disks for
private use. Unlike devices that are shared by a group of users, private
devices might not be set up and maintained by a system manager.

Xix

Chapter 7

Using Mail to Communicate with Others describes how to use the Mail
utility (MAIL) to communicate with other users on your system or on any
other computer that is connected to your system with the DECnet for
OpenVMS network. The chapter includes a sample mail message; step-by-
step instructions for reading, sending, replying to, forwarding, and organizing
mail messages; a summary of Mail commands; and instructions on how to use
the MIME utility.

Manipulating Text and Records

Refer to the following chapters to learn about editing text files and sorting
records:

Chapter 8

Editing Text Files with EVE describes EVE, an interactive text editor that
is included with the OpenVMS operating system. The chapter describes how
to use EVE to create and edit new files or to edit existing files. It includes
summaries of EVE commands.

Chapter 9

Sorting and Merging Files describes how to use the Sort/Merge utility
(SORT/MERGE) to sort records from one or more input files or to merge
files that have been sorted. The chapter includes a summary of Sort/Merge
command qualifiers.

Ensuring Security
Refer to the following chapter to learn about security:

Chapter 10

Controlling Access to Resources describes general security issues such as
controlling access to protected objects and accessing data on remote systems.

Logical Names and Symbols
Refer to the following chapters to learn about logical names and symbols:

Programming

XX

Chapter 11

Defining Logical Names for Devices and Files describes how to create and use
logical names to represent files, directories, and devices. The chapter also
summarizes the logical names created by the system.

Chapter 12

Defining Symbols, Commands, and Expressions describes how to use symbols
to represent commands, character strings, and numeric data. The chapter
also describes how to combine symbols into expressions to manipulate the
values that the symbols represent.

Refer to the following chapters to learn about writing programs and using
programming functions:

Chapter 13

Introduction to Command Procedures describes basic techinques used in
writing command procedures, which are files that contain DCL commands
and data lines used by DCL commands.

Chapter 14

Advanced Programming with DCL describes advanced techniques used in
writing command procedures. This chapter also describes how to use the
PIPE command interactively and within command procedures.

Chapter 15

Using Lexical Functions to Obtain and Manipulate Information describes how
to use lexical functions within a command procedure to get information about
your process or the system environment.

Managing Processes

Refer to the following chapter to learn about managing processes:

Chapter 16

Understanding Processes and Batch Jobs describes processes, which are
environments created by the OpenVMS operating system that let you interact
with the system. The chapter describes how and when to use subprocesses,
programs, and batch jobs.

Reference Sections

The following information is provided for reference:

Appendix A

Character Sets describes the DEC Multinational character set and the DCL
character set.

Appendix B

Annotated Command Procedures contains complete command procedures that
demonstrate the concepts and techniques discussed in Chapters 13, 14, and
15.

Glossary

The Glossary provides a list of terms used in this manual. Glossary terms are
highlighted when first used in text.

Related Documents

For additional information about OpenVMS products and services, access the
following World Wide Web address:

http://www.openvms.compaq.com/

Reader’s Comments

Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation

OSSG Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

XXi

How To Order Additional Documentation

Visit the following World Wide Web address for informaion about how to order
additional documentation:

http://www.openvms.compag.com/

Conventions

In this manual, any reference to OpenVMS is synonymous with Compaq
OpenVMS.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

A horizontal ellipsis in examples indicate one of the following

possibilities:

e Additional optional arguments in a statement have been
omitted.

e The preceding item or items can be repeated one or more
times.

e Additional parameters, values, or other information can be
entered.

A vertical ellipsis indicate the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[] In command format descriptions, brackets indicate optional

elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

[]] In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

XXii

{}

bold text

italic text

UPPERCASE TEXT

Monospace text

numbers

In command format descriptions, braces indicate required
elements; you must choose one of the options listed.

This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text indicates code examples and interactive screen
displays.

In the C programming language, monospace text identifies
the following elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

XXiii

1

Getting Started with the OpenVMS Operating
System

OpenVMS is an interactive virtual memory operating system. While you are
logged in to the computer, you and the system conduct a dialogue using the
DIGITAL Command Language (DCL). You use DCL by entering commands
from your keyboard, which the system reads and translates. The system responds
by executing the command or by displaying an error message on the screen, if
it cannot interpret what you entered. This chapter describes the following basic
information that you need to know to interact with the OpenVMS operating
system:

¢ Logging in
e Logging in from a PC
¢ Choosing passwords for your account
¢ Reading informational messages
e Types of logins and login classes
¢ Login failures
¢ Changing passwords
e Password and account expiration times
¢ Guidelines for protecting your password
¢ Recognizing system responses
e Getting help about the system
e Logging out of the system
e Logging out without compromising system security
e Networks
For complete descriptions of all commands referenced in this chapter, refer to the
OpenVMS DCL Dictionary and online help.
1.1 Logging In

Logging in consists of gaining access to the system and identifying yourself as an
authorized user. When you log in, the system creates an environment from which
you can enter commands. This environment is called your process.

The way you log in and out of the OpenVMS operating system depends on how

the system is set up at your site. This section provides a general description of

logging in to and out of the operating system. Check with your system manager
for the procedures specific to your site.

Getting Started with the OpenVMS Operating System 1-1

Getting Started with the OpenVMS Operating System
1.1 Logging In

To interact with the operating system, you must log in to a user account. An
account is a name or number that identifies you to the system when you log in.
That name or number tells the system where your files are stored and the type of
access you have to other files.

Your system manager (or whoever authorizes system use at your installation)
usually sets up accounts and grants privileges according to your needs. The type
of access rights and privileges enabled for your account determine whether you
have access to files, images, or utilities that might affect system performance or
other users.

To access your account, you need to enter your user name and password. Your
system manager usually provides you with your user name and initial password.
Your user name identifies you to the system and distinguishes you from other
users. Your password is for your protection. If you maintain its secrecy, other
users cannot use system resources under your user name.

To log in to the system, use the following procedure:

Step Task
1 The system displays a prompt for your user name:
Username:

Type your user name and press Enter. You have approximately 30 seconds to do
this; otherwise, the system “times out.” If a timeout occurs, you must start the
login procedure again.

The system displays your user name on the screen as you type it. For example:

Username: CASEY

The system prompts you for your password:

Password:

2 Type your password and press Enter.
The system does not display your password, which is sometimes referred to as “no
echo.”

3 Depending on how your system manager has set up your account, you might be

required to enter a second password or use an automatically generated password
(see Section 1.3.4).

1.1.1 Successful Logins

If your login is successful, the system displays a dollar sign ($) in the left margin
of your screen. The dollar sign is the default DCL prompt; it indicates that the
system is ready to use.

The following example shows a successful login:

Username: CASEY
Password:
Welcome to OpenVMS on node MARS
Last interactive login on Friday, 11-DEC-2002 08:41
Last non-interactive login on Thursday, 10-DEC-2002 11:05

1-2 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.1 Logging In

1.1.2 Login Errors

If you make a mistake entering your user name or password or if your password
has expired, the system displays the message User authorization failure and
you are not logged in. If you make a mistake, press Enter and try again. If
your password has expired, you need to change your password; the system will
automatically display the Set Password: prompt. See Section 1.7 for information
on changing your password in this instance. If you have any other problems
logging in, get help from the person who set up your account.

1.2 Logging In From a PC

In previous times, you would connect to a host computer with a video terminal
that consisted of a monitor and a keyboard. All computing power resided on the
host computer running the OpenVMS operating system, often located in a central
computing room. Today it is more common to work from a personal computer
(PC) or workstation that has its own set of independent computing capabilities.
In this situation you connect to a host computer running OpenVMS via a terminal
emulation program.

A terminal emulation program lets you connect to an OpenVMS system over

a TCP/IP network, the Internet, or an intranet. Your interactions with the
operating system display on the PC monitor using the interface provided by
the terminal emulation program. To connect to OpenVMS in this way, start the
terminal emulation program, select the system you want to connect to, and then
log in to the OpenVMS operating system as described in this chapter.

1.3 Choosing Passwords for Your Account
To choose a secure password, use the following guidelines:

¢ Include both numbers and letters in the password. Although a 6-character
password that contains only letters is fairly secure, a 6-character password
with both letters and numbers is much more secure.

¢ Choose passwords that contain 6 to 10 characters. Adequate length makes
passwords more secure. You can choose a password as long as 32 characters.

e Do not select passwords from a dictionary or from your native language.

e Avoid choosing words readily associated with your computer site or yourself,
such as the name of a product or the model of your car.

¢ Choose new passwords each time. Do not reuse old ones.

Your system manager or security administrator may set up additional restrictions,
for example, not allowing passwords with fewer than 10 characters or not
allowing repeats of passwords.

The following table provides examples of secure passwords and high-risk
passwords (words that others might easily guess):

Getting Started with the OpenVMS Operating System 1-3

Getting Started with the OpenVMS Operating System
1.3 Choosing Passwords for Your Account

Secure Passwords High-Risk Passwords

Nonsense syllables: Words with a strong personal association:
aladaskgam your name
eojfuvcue the name of a loved one
joxtyois the name of your pet

the name of your town
the name of your automobile

A mixed string: A work-related term:
492_weid your company name
$924spa a special project
zu_$rags your work group name

1.3.1 Obtaining Your Initial Password

Typically, when you learn that an account has been created for you on the system,
you are told whether a user password is required. If user passwords are in effect,
your system manager will usually assign a specific password for your first login.
This password has been placed in the system user authorization file (UAF) with
other information about how your account can be used.

It is inadvisable to have passwords that others could easily guess. Ask the person
creating the account for you to specify a password that is difficult to guess. If you
have no control over the password you are given, you might be given a password

that is the same as your first name. If so, change it immediately after you log in.
(The use of first or last names as passwords is a practice so well known that it is
undesirable from a security standpoint.)

At the time your account is created, you should also be told a minimum length for
your password and whether you can choose your new password or whether the
system generates the password for you.

1.3.2 Changing Your Initial Password

Log in to your account soon after it is created to change your password. If there
is a time lapse from the moment your account is created until your first login,
other users might log in to your account successfully, gaining a chance to damage
the system. Similarly, if you neglect to change the password or are unable to do
so, the system remains vulnerable. Possible damage depends largely on what
other security measures are in effect. See Section 1.7 for more information on
changing passwords.

1.3.3 Restrictions on Passwords

The system screens passwords for acceptability, as follows:

e It automatically compares new passwords to a system dictionary. This helps
to ensure that a password is not a native language word.

e It maintains a history list of your old passwords and compares each new
password to this list to be sure that you do not reuse a password.

e It enforces a minimum password length, which the system manager specifies
in your UAF record.

The system rejects any passwords that it finds in a system dictionary, that you
have used before, and that are shorter than the minimum password length
specified in your UAF.

1-4 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.3 Choosing Passwords for Your Account

1.3.4 Types of Passwords

There are several types of passwords recognized by the OpenVMS operating
system:

e User password

Required for most accounts. After entering your user name, you are
prompted for a password. If the account requires both primary and secondary
passwords, two passwords must be entered.

e System password

Controls access to particular terminals and is required at the discretion of the
security administrator. System passwords are usually necessary to control
access to terminals that might be targets for unauthorized use, such as dialup
and public terminal lines.

e Primary password

The first of two passwords to be entered for an account requiring both primary
and secondary passwords.

e Secondary password

The second of two passwords to be entered for an account requiring both
primary and secondary passwords. The secondary password provides an
additional level of security on user accounts. Typically, the primary user does
not know the secondary password; a supervisor or other key person must be
present to supply it. For certain applications, the supervisor may also decide
to remain present while the account is in use. Thus, secondary passwords
facilitate controlled logins and the actions taken after a login.

Secondary passwords can be time-consuming and inconvenient. They are
justified only at sites with maximum security requirements. An example of
an account that justifies dual passwords would be one that bypasses normal
access controls to permit emergency repair to a database.

1.3.5 Entering a System Password

Your security administrator will tell you if you must specify a system password to
log in to one or more of the terminals designated for your use. Ask your security
administrator for the current system password, how often it changes, and how to
obtain the new system password when it does change.

To specify a system password, do the following:

Getting Started with the OpenVMS Operating System 1-5

Getting Started with the OpenVMS Operating System
1.3 Choosing Passwords for Your Account

Step Task

1 Press the Enter key until the terminal responds with the recognition character,
which is commonly a bell.

2 Type the system password and press Enter. There is no prompt and the system
does not display the characters you type. If you fail to specify the correct system
password, the system does not notify you. (Initially, you might think the system
is malfunctioning unless you know that a system password is required at that
terminal.) If you do not receive a response from the system, assume that you have
entered the wrong password and try again.

3 When you enter the correct system password, you receive the system
announcement message, if there is one, followed by the Username: prompt. For
example:

MAPLE - A member of the Forest Cluster
Unauthorized Access is Prohibited

Username:

1.3.6 Entering a Secondary Password

Your security administrator decides whether to require the use of secondary
passwords for your account at the time your account is created. When your
account requires primary and secondary passwords, you need two passwords to
log in. Minimum password length, which the security administrator specifies in
your UAF, applies to both passwords.

As with a single password login, the system allots a limited amount of time for
the entire login. If you do not enter a secondary password in time, the login
period expires.

The following example shows a login that requires primary and secondary
passwords:

WILLOW - A member of the Forest Cluster
Welcome to OpenVMS on node WILLOW

Username: RWOODS

Password:
Password:

Last interactive login on Friday, 11-DEC-2002 10:22
$

1.3.7 Password Requirements for Different Types of Accounts

Four types of user accounts are available on OpenVMS systems:

e Accounts secured with passwords that you or the security administrator
change periodically. This account type is the most common.

e Accounts that always require passwords but prohibit you from changing the
password. By locking the password (setting the LOCKPWD flag in the UAF),
the security administrator controls all changes made to the password.

e Restricted accounts limit your use of the system and sometimes require a
password.

e Open accounts require no password. When you log in to an open account,
the system does not prompt you for a password and you do not need to enter
one. You can begin entering commands immediately. Because open accounts

1-6 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.3 Choosing Passwords for Your Account

allow anyone to gain access to the system, they are used only at sites with
minimal security requirements.

1.4 Reading Informational Messages

When you log in from a terminal that is directly connected to a computer, the
OpenVMS system displays informational system messages, as shown in the
following example.

WILLOW - A member of the Forest Cluster (1)

Unlawful Access is Prohibited

Username: RWOODS

Password:
You have the following disconnected process: (2]
Terminal Process name Image name
VT320: RWOODS (none)
Connect to above listed process [YES]: NO
Welcome to OpenVMS on node WILLOW (3]
Last interactive login on Wednesday, 11-DEC-2002 10:20 (4]
Last non-interactive login on Monday, 30-NOV-2002 17:39 (5)
2 failures since last successful login (6
You have 1 new mail message. (7]

$

Note the following about the example:

© The announcement message identifies the node (and, if relevant, the
OpenVMS Cluster name). It may also warn unauthorized users that unlawful
access is prohibited. The system manager or security administrator can
control both the appearance and the content of this message.

® A disconnected process message informs you that your process was
disconnected at some time after your last successful login but is still
available. You have the option of reconnecting to the old process, in the state
it was in before you were disconnected.

The system displays the disconnected message only when the following
conditions exist:

e The terminal where the interruption occurred is set up as a virtual
terminal.

e Your terminal is set up as one that can be disconnected.

e During a recent session, your connection to the central processing unit
(CPU) through that terminal was broken before you logged out.

In general, the security administrator should allow you to reconnect because
this ability poses no special problems for system security. However, the
security administrator can disable this function by changing the setup on
terminals and by disabling virtual terminals on the system. (For information
on setting up and reconnecting to virtual terminals, refer to the OpenVMS
System Manager’s Manual.)

© A welcome message indicates the version number of the OpenVMS operating
system that is running and the name of the node on which you are logged
in. The system manager can choose a different message or can suppress the
message entirely.

Getting Started with the OpenVMS Operating System 1-7

Getting Started with the OpenVMS Operating System
1.4 Reading Informational Messages

O The last successful interactive login message provides the time of the last
completed login for a local, dialup, or remote login. (The system does not
count logins from a subprocess whose parent was one of these types.)

© The last successful noninteractive login message provides the time the last
noninteractive (batch or network) login completed.

® The number of login failure messages indicates the number of failed attempts
at login. (An incorrect password is the only source of login failure that is
counted.) To attract your attention, a bell rings after the message appears.

@ The new mail message indicates if you have any unread mail messages.

1.4.1 Suppressing Messages

A security administrator can suppress the announcement and welcome messages,
which include node names and operating system identification. Because login
procedures differ according to operating system, it is more difficult to log in
without this information.

The last login success and failure messages are optional. Your security
administrator can enable or disable them as a group. Sites with medium-level
or high-level security needs display these messages because they can indicate
break-in attempts. In addition, by showing that the system is monitoring logins,
these messages can be a deterrent to potential illegal users.

1.4.2 Successful Login Messages

Each time you log in, the system resets the values for the last successful login
and the number of login failures. If you access your account interactively and do
not specify an incorrect password in your login attempts, you may not see the last
successful noninteractive login and login failure messages.

1.5 Types of Logins and Login Classes

Logins can be either interactive or noninteractive. When you log in interactively,
you enter a user name and a password. In noninteractive logins, the system
performs the identification and authentication for you; you are not prompted for a
user name and password.

In addition to interactive and noninteractive logins, the OpenVMS operating
system recognizes different classes of logins. How you log in to the system
determines the login class to which you belong. Based on your login class, as
well as the time of day or day of the week, the system manager controls your
access to the system.

1.5.1 Interactive Logins

Interactive logins include the following login classes:

e T.ocal

You log in from a terminal connected directly to the central processor or from
a terminal server that communicates directly with the central processor.

e Dialup

You log in to a terminal that uses a modem and a telephone line to make

a connection to the computer system. Depending on the terminal that your
system uses, you might need to execute a few additional steps initially. Your
site security administrator can give you the necessary details.

e Remote

1-8 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.5 Types of Logins and Login Classes

You log in to a node over the network by entering the DCL command SET
HOST. For example, to access the remote node HUBBUB, you enter the
following command:

$ SET HOST HUBBUB

If you have access to an account on node HUBBUB, you can log in to that
account from your local node. You have access to the facilities on node
HUBBUB, but you remain physically connected to your local node.

For additional information on remote sessions, see Section 1.12.2.

1.5.2 Noninteractive Logins

Noninteractive logins include the following:

Network Logins

The system performs a network login when you initiate a network task on a
remote node, such as displaying the contents of a directory or copying files
stored in a directory on another node. Both your current system and the
remote system must be nodes in the same network. In the file specification,
you identify the target node and provide an access control string, which
includes your user name and password for the remote node.

For example, a network login occurs when user GREG, who has an account
on remote node PARIS, enters the following command:

$ DIRECTORY PARIS"GREG 8G4FR93A"::WORK2:[PUBLIC]*.*;*

This command displays a listing of all the files in the public directory on
disk WORK2. It also reveals the password 8G4FR93A. A more secure way to
perform the same task would be to use a proxy account on node PARIS. For
an example of a proxy login, see Section 10.5.3.

Batch Logins

The system performs a batch login when a batch job that you submitted runs.
Authorization to build the job is determined at the time the job is submitted.
When the system prepares to execute the job, the job controller creates a
noninteractive process that logs in to your account. No password is required
when the job logs in.

1.6 Login Failures

Logins can fail for any number of reasons. One of your passwords might have
changed or your account might have expired. You might be attempting to log in
over the network or from a modem but be unauthorized to do so. The following
table summarizes common reasons for login failure:

Failure Indicator Reason

No response from the terminal A defective terminal, a terminal that

requires a system password, or a terminal
that is not powered on.

No response from any terminal The system is down.

No response from the terminal when you The system password changed.
enter the system password

System messages:

Getting Started with the OpenVMS Operating System 1-9

Getting Started with the OpenVMS Operating System
1.6 Login Failures

Failure Indicator Reason
"User authorization failure" A typing error in your user name or
password.

The account or password expired.

"Not authorized to log in from this source" Your particular class of login (local, dialup,
remote, interactive, batch, or network) is
prohibited.

"Not authorized to log in at this time" You do not have access to log in during this

hour or this day of the week.

"User authorization failure" (and no known An apparent break-in has been attempted

user failure occurred) at the terminal using your user name, and
the system has temporarily disabled all
logins at that terminal by your user name.

The following sections describe the reasons for login failure in more detail.

1.6.1 Terminals That Require System Passwords

You cannot log in if the terminal you attempt to use requires a system password
and you are unaware of the requirement. All attempts at logging in fail until you
enter the system password.

If you know the system password, perform the steps described in Section 1.3.5. If
your attempts fail, it is possible that the system password has been changed. If
you do not know the system password and you suspect that this is the problem,
try to log in at another terminal or request the new system password.

1.6.2 Login Class Restrictions

If you attempt a class of login that is prohibited in your UAF record, your login
will fail. For example, your security administrator can restrict you from logging
in over the network. If you attempt a network login, you receive a message telling
you that you are not authorized to log in from this source.

Your security administrator can restrict your logins to include or exclude any of
the following classes: local, remote, dialup, batch, or network.

1.6.3 Shift Restrictions

Another cause of login difficulty is failure to observe your shift restrictions.

A system manager or security administrator can control access to the system
based on the time of day or the day of the week. These restrictions are imposed
on classes of logins. The security administrator can apply the same work-time
restrictions to all classes of logins or choose to place different restrictions on
different login classes.

If you attempt a login during a time prohibited for that login class, your login
fails. The system notifies you that you are not authorized to log in at this time.

1.6.4 Batch Jobs During Shift Restrictions

When shift restrictions apply to batch jobs, jobs you submit that are scheduled
to run outside your permitted work times are not run. The system does not
automatically resubmit such jobs during your next available permitted work time.
Similarly, if you have initiated any kind of job and attempt to run it beyond your
permitted time periods, the job controller aborts the uncompleted job when the
end of your allocated work shift is reached. This job termination behavior applies
to all jobs.

1-10 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.6 Login Failures

1.6.5 Failures During Dialup Logins

Your security administrator can control the number of opportunities you are
given to enter a correct password during a dialup login before the connection is
automatically broken.

If your login fails and you have attempts remaining, press the Enter key and try
again. You can do this until you succeed or reach the limit. If the connection is
lost, you can redial the access line and start again.

The typical reason for limiting the number of dialup login failures is to discourage
unauthorized users attempting to learn passwords by trial and error. They
already have the advantage of anonymity because of the dialup line. Of course,
limiting the number of tries for each dialup does not necessarily stop this kind
of break-in attempt. It only requires the perpetrator to redial and start another
login.

1.6.6 Break-In Evasion Procedures

If anyone has made a number of failed attempts to log in at the same terminal
with your user name, the system can respond as though a break-in attempt is
in progress. That is, the system concludes that someone is attempting to gain
illegal access to the system by using your user name.

At the discretion of your security administrator, break-in evasion measures can
be in effect for all users of the system. The security administrator controls how
many password attempts are allowed over what period of time. Once break-in
evasion tactics are triggered, you cannot log in to the terminal—even with your
correct password—during a defined interval. Your security administrator can tell
you how long you must wait before reattempting the login, or you can move to
another terminal to attempt a login.

If you suspect that break-in evasion is preventing your login and you have not
personally experienced any login failures, contact your security administrator
immediately. Together, you should attempt another login and check the message
that reveals the number of login failures since the last login to confirm or deny
your suspicion of break-in attempts. (If your system does not normally display
the login message, your security administrator can use the Authorize utility
(AUTHORIZE) to examine the data in your UAF record.) With prompt action,
your security administrator can locate someone attempting logins at another
terminal.

1.7 Changing Passwords

Changing passwords on a regular basis promotes system security. To change your
password, enter the DCL command SET PASSWORD.

The system manager can allow you to select a password on your own or can
require that you use the automatic password generator when you change your
password. If you select your own password, note that the password must follow
system restrictions on length and acceptability (see Section 1.3.3).

There is no restriction on how many times you can change your password in a
given period of time.

Getting Started with the OpenVMS Operating System 1-11

Getting Started with the OpenVMS Operating System
1.7 Changing Passwords

The following example shows a password choice that is too short:

$ SET PASSWORD

0ld password:

New password:

$SET-F-INVPWDLEN, password length must be between 12 and 32
characters; password not changed

1.7.1 Selecting Your Own Password

If your system manager does not require use of the automatic password generator,
the SET PASSWORD command prompts you to enter the new password. It then
prompts you to reenter the new password for verification, as follows:

$ SET PASSWORD
New password:
Verification:

If you fail to enter the same new password twice, the password is not changed.
If you succeed in these two steps, there is no notification. The command changes
your password and Enters you to the DCL prompt.

Even though your security administrator might not require the password
generator, you are strongly encouraged to use it to promote the security of
your system.

1.7.2 Using Generated Passwords

If your system security administrator decides that you must let the system
generate the password for you automatically, the system provides you with a
list of password choices when you enter the DCL command SET PASSWORD.
(If your system is not set up to use automatically generated passwords, you can
use them by specifying the SET PASSWORD command with the /GENERATE
qualifier.) The character sequence resembles native language words to make it
easy to remember, but it is unusual enough to be difficult for outsiders to guess.
Because system-generated passwords vary in length, they become even more
difficult to guess.

Note

The password generator uses basic syllabic rules to generate words but
has no real knowledge of any language. As a result, it can unintentionally
produce words that are offensive.

In the following example, the system automatically generates a list of passwords
made up of random sequences of characters. The minimum password length
for the user in the following example has been set to 8 characters in their UAF

record.

$ SET PASSWORD

0ld password: (1]
reankuna rean-ku-na @)
cigtawdpau cig-tawd-pau
adehecun a-de-he-cun
ceebatorai cee-ba-to-rai

arhoajabad ar-hoa-ja-bad

1-12 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.7 Changing Passwords

Choose a password from this list, or press Enter to get a new list (3]
New password:

Verification: (5]

s O

Note the following about the example:
© The user correctly specifies the old password and presses the Enter key.

® The system responds with a list of five password choices ranging in length
from 8 to 10 characters. Usually, the password that is easiest to pronounce is
easiest to remember; therefore, it is the best choice.

On OpenVMS VAX systems, representations of the same word divided into
syllables are displayed to the right of each password choice (as shown here).

© The system informs the user that it is possible to request a new list by
pressing the Enter key in response to the prompt for a new password.

O The user enters one of the first five possible passwords and presses the Enter
key.

©® The system recognizes that this password is one provided by the automatic
password generator and responds with the verification prompt. The user
enters the new password again and presses Enter.

® The system changes the password and responds with the DCL prompt.

1.7.3 Generated Passwords: Disadvantages

There are two disadvantages to using generated passwords:

e There is a possibility that you might not remember your password choice.
However, if you dislike all the password choices in your list or think none are
easy to remember, you can always request another list.

e There is a potential for disclosure of password choices from the display that
the command produces. To protect your account, change your password in
private. If you perform the change on a video terminal, clear the display of
password choices from the screen after the command finishes. If you use a
printing terminal, properly dispose of all hardcopy output.

If you later realize that you failed to protect your password in these ways,
change your password immediately. Depending on site policy or your own
judgment concerning the length of time your account was exposed, you should
notify your security administrator that a security breach could have occurred
through your account.

1.7.4 Changing a Secondary Password

To change a secondary password, use the DCL command SET
PASSWORD/SECONDARY. You are prompted to specify the old secondary
password and the new secondary password, just as in the procedure for changing
the primary password. To remove a secondary password, press the Enter key
when you are prompted for a new password and verification.

You can change primary and secondary passwords independently, but both are
subject to the same change frequency because they share the same password
lifetime.

Getting Started with the OpenVMS Operating System 1-13

Getting Started with the OpenVMS Operating System
1.7 Changing Passwords

1.7.5 Changing Passwords at Login

Even if your current password has not yet expired, you can change your password
when you log in to the system by including the /NEW_PASSWORD qualifier with
your user name. When you enter the /NEW_PASSWORD qualifier after your user
name, the system prompts you to set a new password immediately after login.

The following example shows how to change your password when you log in:
WILLOW - A member of the Forest Cluster

Username: RWOODS/ NEW_PASSWORD
Password:
Welcome to OpenVMS on node WILLOW
Last interactive login on Tuesday, 7-NOV-2002 10:20
Last non-interactive login on Monday, 6-NOV-2002 14:20

Your password has expired; you must set a new password to log in
New password:
Verification:

1.8 Password and Account Expiration Times

Your system manager can set up your account so that your password, or the
account itself, expires automatically on a particular date and time. Password
expiration times promote system security by forcing you to change your password
on a regular basis. Account expiration times help to ensure that accounts are
available only for as long as they are needed.

1.8.1 Expired Passwords

As you approach the expiration time of your password, you receive an advance
warning message. The message first appears 5 days before the expiration date
and at each subsequent login. The message appears immediately below the new
mail message and sounds the bell character on your terminal to attract your
attention. The message indicates that your password is expiring, as follows:

WARNING -- Your password expires on Thursday 11-DEC-2002 15:00

If you fail to change your password before it expires, you receive the following
message when you log in:

Your password has expired; you must set a new password to log in
New password:

The system prompts you for a new password or, if automatic password generation
is enabled, asks you to select a new password from those listed. You can abort the
login by pressing Ctrl/Y. At your next login attempt, the system again prompts
you to change your password.

1.8.2 Using Secondary Passwords

If secondary passwords are in effect for your account (see Section 1.3.4), the
secondary password expires at the same time as the primary one. You are
prompted to change both passwords. If you change the primary password and
press Ctrl/Y before changing the secondary password, the login fails. The system
does not record a password change.

1-14 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.8 Password and Account Expiration Times

1.8.3 Failure to Change Passwords

If the system manager decides not to force you to change your expired password
upon logging in, you receive one final warning when you log in after your
password expires, as follows:

WARNING -- Your password has expired; update immediately with
SET PASSWORD!

At this point, if you do not change the password or if the system fails before you
have the opportunity to do so, you will be unable to log in again. To regain access,
see your system manager.

1.8.4 Expired Accounts

If you need your account for a specific purpose for a limited time only, the person
who creates your account may specify a period of time after which the account
lapses. For example, student accounts at universities are typically authorized for
a single semester at a time.

Expired accounts deny logins automatically. You receive no advance warning
message before the account expiration date, so it is important to know in advance
your account duration. The account expiration resides in the UAF record, which
can be accessed and displayed only through the use of the OpenVMS Authorize
utility (AUTHORIZE) by users with the SYSPRV privilege or equivalent—
normally, your system manager or security administrator.

When your account expires, you receive an authorization failure message at your
next attempted login. If you need an extension, follow the procedures defined at
your site.

1.9 Guidelines for Protecting Your Password

Illegal system accesses involving the use of a correct password are more often
traced to disclosure of the password by its owner than to surreptitious discovery.
It is vital that you do not reveal your password to anyone.

You can best protect your password by observing the following rules:

e Select reasonably long passwords that cannot be guessed easily. Avoid using
words in your native language that appear in a dictionary. Consider including
numbers in your password. Alternatively, let the system generate passwords
for you automatically.

e Never write down your password.

e Never give your password to another user. If another user obtains your
password, change it immediately.

¢ Do not include your password in any file, including the body of an electronic
mail message. (If anyone else reveals a password to you, delete the
information promptly.)

The character strings that appear in conjunction with your actual password
can make it easy for someone to find your password in a file. For example, a
quotation mark followed by two colons ("::) always comes after a user name
and password in an access control string. Someone attempting to break into
the system could obtain your password by searching inadequately protected
files for this string. Another way in which you might reveal your password is
by using the word “password” in a text file, for example:

My password is GOBBLEDYGOOK.

Getting Started with the OpenVMS Operating System 1-15

Getting Started with the OpenVMS Operating System
1.9 Guidelines for Protecting Your Password

¢ Do not use the same password for accounts on different systems.

An unauthorized user can try one password on every system where you have
an account. The account that first reveals the password might hold little
information of interest, but another account might yield more information or
more privileges, ultimately leading to a far greater security breach.

e Before you log in to a terminal that is already on, invoke the secure
terminal server feature (if enabled) by pressing the Break key. This is
particularly relevant when you are working in a public terminal room.

e Change your password every 3 to 6 months. Compaq warns against sharing
passwords. If you do share your password, change it every month.

e Change your password immediately if you have any reason to suspect it might
have been discovered. Report such incidents to your security administrator.

e Log off a terminal you expect to leave unattended.

Unauthorized users could use the terminal for malicious purposes, such as
loading a password-stealing program.

e Check your last login messages routinely. Be alert for login failure counts
seem unusual. If you observe any unusual failure during a login, change your
password immediately and notify your security administrator.

1.10 Recognizing System Responses

The system responds to the commands you enter in one or more of the following
ways:

e By executing the command. Generally, you know your command has executed
successfully when the system prompt Enters (by default, the dollar sign).

e By executing the command and informing you in a message what it has done.
e By informing you of errors, if execution of a command is unsuccessful.

¢ By supplying values (defaults) you have not supplied.

1.10.1 Default Actions

A default is the value supplied by the operating system when you do not specify
one yourself. For example, if you do not specify the number of copies as a
qualifier for the PRINT command, the system uses the default value 1. The
operating system supplies default values in several areas, including command
qualifiers and parameters. The defaults that the operating system uses with
specific commands are described in each command’s entry in the OpenVMS DCL
Dictionary.

1.10.2 Informational System Messages

The system responds to some commands by displaying information in a system
message about what it has done. For example, when you use the PRINT
command, the system displays the job identification number it assigned to

the print job and shows the name of the print queue the job has entered.

$ PRINT MYFILE.LIS
Job MYFILE (queue SCALE PRINT, entry 210) started on SYSSPRINT

Not all commands display informational messages. Successful completion of
a command is usually indicated when the DCL prompt Enters. Unsuccessful
completion is always indicated by one or more error messages.

1-16 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.10 Recognizing System Responses

1.10.3 System Error Messages

If you enter a command incorrectly, the system displays a system message and
prompts you for the correct command string, as the following example shows:

$ CAPY)
$DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\CAPY\
$
The format for the 3-part code is:
DCL-W-IVVERB
where:
DCL The OpenVMS facility or component name that Entered the error. In this
example, the message is from DCL, the default command interpreter.
W A severity level that indicates a warning. Other severity levels include S

(success), I (information), E (error), and F (fatal or severe error).

IVVERB The type of message. The message can be identified by the mnemonic
IVVERB in the OpenVMS system messages documentation or by using the
Help Message utility (MSGHLP) described in Section 1.11.3.

You can also receive system error messages during command execution if the
system cannot perform the function you have requested. For example, if you type
a PRINT command correctly but the file you specify does not exist, the PRINT
command informs you of the error with a message like the following:

$ PRINT NOFILE.DAT

$PRINT-E-OPENIN, error opening CLASS1:[MAYMON]NOFILE.DAT; as input
-RMS-E-FNF, file not found

$

The first message is from the PRINT command. It tells you it cannot open the
specified file. The second message indicates the reason for the first; that is, the
file cannot be found. RMS refers to the OpenVMS file-handling software, Record
Management Services; error messages related to filehandling are generally
OpenVMS RMS messages.

1.10.4 Checking Your Current Process

If you suspect that your process is not doing what you think it should be doing,
press Ctrl/T. Ctrl/T displays a single line of statistical information about the
current process. The statistical information includes node and user name, current
time, current process, central processing unit (CPU) usage, number of page
faults, level of I/O activity, and memory usage, which is listed in number of
CPU-specific pages.

When you press Ctrl/T during an interactive terminal session, it momentarily
interrupts the current command, command procedure, or image to display
statistics. Although Ctrl/T disrupts the characters on the screen, it does not affect
any procedure or editing session. For example, if a user named MCCARTHY on
node GREEN presses Ctrl/T while using the EVE editor, the following line is
displayed in the EVE message window:

GREEN: :MCCARTHY 13:45:02 EVE CPU=00:00:03.33 PF=778 I10=295 MEM=315

To refresh the screen, press Ctrl/W.

Getting Started with the OpenVMS Operating System 1-17

Getting Started with the OpenVMS Operating System
1.10 Recognizing System Responses

Ctrl/T is disabled by default. If you know your system is running and Ctrl/T
does not display statistical information, you can enable Ctrl/T with the DCL
command SET CONTROL=T. Enter the command at DCL level (at the dollar
sign ($) prompt), then press Ctrl/T again. Ctrl/T will remain in effect for the
duration of your process, unless it is disabled from a program or command such
as SET NOCONTROL=T. Note that your terminal must be set to BROADCAST
mode for Ctrl/T to display on your screen. BROADCAST mode controls whether
reception of broadcast messages (such as those issued by MAIL and REPLY) is
enabled. To set your terminal to BROADCAST mode, enter the DCL command
SET TERMINAL/BROADCAST at the DCL prompt.

1.11 Getting Help About the System

When you are logged in to the operating system, you can obtain information
about using the system and available commands by using the HELP command.
You can also get help on system messages by entering the HELP/MESSAGE
command as shown in Section 1.11.3.

1.11.1 Using Online Help
Use the following procedure to get help on OpenVMS commands and utilities:

Step Task

1 Enter HELP at the DCL prompt and press Enter.
HELP displays a list of topics and the Topic? prompt.

2 To see information about one of the topics, type the topic name after the prompt
and press Enter.

3 If you want information on one of the subtopics, type the name after the prompt
and press Enter.

HELP displays information about that subtopic.

4 To redisplay the SHOW USERS topic and the list of subtopics, enter a question
mark (?) at the Subtopic? prompt. If you want to read all of the listed subtopics,
enter an asterisk (*).

5 If you want information on another topic, press Enter. Help displays the Topic?
prompt.
6 To exit Help, press Enter until you Enter to the DCL prompt.

The following example shows the commands that you would enter to look for help
about the SHOW USERS command:

$ HELP
HELP

. (HELP message text and subtopics)

Topic? SHOW USERS
SHOW
USERS

Displays the user name and node name (in a VAXcluster environment)
of interactive, subprocess, and batch users on the system.

Format

SHOW USERS [username]

Additional information available:

1-18 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.11 Getting Help About the System

PARAMETER QUALIFIER

/BATCH /CLUSTER /FULL /INTERACTIVE /NETWORK /NODE
/OUTPUT /SUBPROCESS
Examples
SHOW USERS Subtopic? EXAMPLES
SHOW
USERS
Examples

. (SHOW USERS Examples message text and subtopics, if any)

SHOW USERS Subtopic?
SHOW Subtopic?
Topic?

$
1.11.2 Getting Help on Specific Commands

If you know the command you need information about, enter HELP and the
command name. For example, to get help about the SHOW USERS command
enter the following command:

$ HELP SHOW USERS

If you need help but do not know what command or system topic to specify, enter
the command HELP with the word HINTS as a parameter. Each task name
listed in the HINTS text is associated with a list of related command names and
system information topics.

The OpenVMS DCL Dictionary contains more information about the HELP
command.

1.11.3 Getting Help on System Messages

Use the Help Message utility (MSGHLP) to get online help for system messages.
To display information on how the last command completed, type:

$ HELP/MESSAGE

You can also display information about a specific message by including the
message identifier or words from the message text. For example:

$ HELP/MESSAGE BADACP

A message and its description can also be accessed by entering the message
status code. For example:

$ HELP/MESSAGE/STATUS=%$X00038090

If you do not know the message status code, you can view it by entering the
command SHOW SYMBOL followed by the $STATUS global symbol. For
example:

§ SHOW SYMBOL $STATUS
$STATUS == "%X00038090"

The Help Message utility allows you to update the messages database with your
own messages or to add comments to existing message descriptions. You can
also extract a subset of messages from the messages database to create and print
your own customized messages documentation. For details on how to use the
Help Message utility, see OpenVMS System Messages: Companion Guide for Help
Message Users.

Getting Started with the OpenVMS Operating System 1-19

Getting Started with the OpenVMS Operating System
1.12 Logging Out of the System

1.12 Logging Out of the System

When you finish using the system, always log out. This prevents unauthorized
users from accessing your account and the system. It is also a wise use of system
resources; the resources you no longer need are available for other users.

To log out, enter LOGOUT at the DCL prompt. For example:
$ LOGOUT

The system displays a message, similar to the following message, confirming that
you are logged out of the system:

$ LOGOUT
HARRIS logged out at 11-DEC-2002 12:42:48.12

You can log out of the system only when you are at the DCL prompt ($). You
cannot enter the LOGOUT command while you are compiling or executing a
program, using a text editor (such as EDT or EVE), or running a utility (such
as Mail). First you must exit the program, editor, or utility. When the system
displays the DCL prompt, you can log out.

1.12.1 Obtaining Accounting Information

To find out how much time you spent at the terminal (elapsed time), how much
computer time you used (charged CPU time), and other accounting information,
enter LOGOUT/FULL at the DCL prompt. For example:

$ LOGOUT/FULL
The system displays information similar to the following:

SIMPSON logged out at 11-DEC-2002 12:42:48.12

Accounting information:

Buffered I/0O count: 8005 Peak working set size: 212
Direct I/0 count: 504 Peak virtual size: 770
Page faults: 1476 Mounted volumes: 0

Charged CPU time:0 00:00:50.01 Elapsed time:0 02:27:43.06

1.12.2 Ending a Remote Session

You can end a remote session in two ways:

e Use the remote system’s logout procedure (for example, on an OpenVMS
system, use the LOGOUT command).

e Press Ctrl/Y twice to obtain the host system’s prompt, which asks whether
you want to abort the remote session. Answer YES (Y) if you want to abort
the remote session. This method works regardless of the type of system
running on the remote node.

When you end a remote session, the system displays the message “#REM-S-END,
control Entered to node NODENAME::” and Enters you to the process on the
system from which you made the remote node connection.

1.12.3 Lost Network Connections

If a TCP/IP network connection to a remote system is lost, TCP/IP uses the
best-effort delivery protocol, which is a characteristic of network technologies
that attempts to deliver data but does not try to recover if there is an error such
as a line failure.

1-20 Getting Started with the OpenVMS Operating System

Getting Started with the OpenVMS Operating System
1.12 Logging Out of the System

If a DECnet network connection to a remote system is lost, DECnet will
retransmit your data in an attempt to reestablish communications. If DECnet
is unable to reestablish communications within a predetermined timeout period,
your connection to the remote system is terminated and the system displays the
message “Path lost to partner.”

1.13 Logging Out Without Compromising System Security

Logging out of a session conserves system resources and protects your files.
Leaving a terminal on line represents one of the greatest sources of inside
break-ins. When you leave your terminal on line and your office open, you have
effectively given away your password and your privileges and have left your files
and those of the other members of your group unprotected. Any user can easily
and quickly transfer all files accessible through your account. A malicious insider
could rename and delete your files and any other files to which you have write
access. If you have special privileges, especially privileges in the Files or All
category, a malicious user can do major damage.

If you are working on a system that doesn’t automatically lock after a determined
time of inactivity, you should log out when you leave your office even for a brief
period of time. If you have performed remote logins, you must log out of each
node.

Your security administrator might ask you to break the connection to a dialup
line when you log out. Breaking the connection to a dialup line:

e Prevents others from taking advantage of an open access line. To access the
line, someone must know the access number and must personally redial.

e Is especially important if the dialup line you use is in a public area or where
someone might use the terminal after you.

e Saves resources by reducing the required number of dialup lines.

1.14 Networks

When computer systems are linked together, they form a network. Operating
systems in an OpenVMS network are able to communicate with each other and
share information and resources. Each system in a network is called a network
node or host and is identified by a unique name or address. Host and node are
used interchangeably, and mean a system connected to a network.

With OpenVMS, you have a choice of networking protocols. You can use

the Compaq TCP/IP Services for OpenVMS product or Compaq’s DECnet
products within a single network, or you can have an environment where both
products exist. Compaq’s primary network strategy for OpenVMS is TCP/IP, the
industry-standard network protocol suite.

1.14.1 Network Nodes

When you are logged in to a network node, you can communicate with other
nodes in the network. The node at which you are logged in is called the local
node; other nodes on the network are called remote nodes. If you have access
to an account on a remote node, you can log in to that account from your local
node and perform tasks on that node while remaining connected to your local
node.

Getting Started with the OpenVMS Operating System 1-21

Getting Started with the OpenVMS Operating System
1.14 Networks

Section 1.5.2 describes how to log in to a remote node. Additional tasks you
can perform on remote nodes are described in the appropriate chapters of this
manual.

1.14.2 Executing Programs over Networks

Because of support provided by TCP/IP and DECnet software, programs can
execute across the network as if they were executing locally. Because the network
software is integrated within the operating system, it is easy to write programs
that access remote files. To access a remote file in an application program, you
need only include the name of the remote node and any required access control
information in the file specification.

Task-to-task communications, a feature common to all TCP/IP or DECnet
implementations, allows two application programs running on the same or
different operating systems to communicate with each other regardless of the
programming languages used. Examples of network applications are distributed
processing applications, transaction processing applications, and applications
providing connection to servers.

Note

In the examples of remote operations in this manual, proxy accounts
enable users to perform operations on remote systems. Proxy accounts
are one way users can access remote systems. For additional ways to
access remote systems, see the OpenVMS System Manager’s Manual.

1-22 Getting Started with the OpenVMS Operating System

2

Using DCL to Interact with the System

The DIGITAL Command Language (DCL) is a set of English-like instructions
that tell the operating system to perform specific operations. DCL provides

you with over 200 commands and functions to use in communicating with the
operating system to accomplish computing tasks. DCL commands let you do the

following:

® Get information about the system

e Work with files

e Work with disks, magnetic tapes, and other devices

¢ Modify your work environment

e Develop and execute programs

¢ Provide security and ensure that resources are used efficiently

The following table lists the DCL commands you use to perform a few common

computing tasks:

Command Task

COPY Makes a copy of a specified file

COPY/FTP Transfers files between hosts over a TCP/IP network
CREATE Creates files or directories

DELETE Erases a specified file and removes it from a directory
DIRECTORY Displays the contents of a directory (list of files)
EDIT Views and changes the contents of a text file
LOGOUT Ends your session

PRINT Sends a specified file to a printer for printing
RENAME Changes the name or the location of a specified file
SET Controls how you see the system on the screen
SHOW Displays the status of the system

TYPE Displays the contents of a specified file on the screen

In this chapter you will learn how to use the DIGITAL Command Language. This
chapter includes information about:

¢ Entering DCL commands

e The DCL command line

¢ Rules for entering DCL commands

¢ Entering parameters

Using DCL to Interact with the System 2-1

Using DCL to Interact with the System

e Entering qualifiers

e Entering dates and times as values
e Recalling commands

e Editing the DCL command line

¢ Defining terminal keys

e Key sequences

Differences in Your Local Environment

Note that this manual covers standard DCL commands only. System managers
at your site may customize your system to support the local environment. They
might decide to:

e Use a different command language interpreter

e Change the default action of some standard DCL commands

e Disable some DCL commands

e Alter some system defaults, such as the DCL prompt

e Configure an environment with extended file specifications

For additional information on the commands, qualifiers, and parameters
discussed in this chapter, refer to the OpenVMS DCL Dictionary and online
help.

2.1 Entering Commands

To enter a DCL command, type the command at the DCL prompt ($) and press
Enter. DCL is not usually case sensitive; you can enter commands in either
uppercase or lowercase letters.!

In the following example, the DCL command SHOW TIME is entered as follows:
$ SHOW TIME

The system responds by displaying the current date and time and returns the
DCL prompt to indicate it is ready to accept another command:

11-DEC-2002 15:41:43
$
2.1.1 Usage Modes

You can use DCL in the following two modes:

e Interactive

In interactive mode, you enter commands from your terminal. One
command has to finish executing before you can enter another.

e Batch

In batch mode, the system creates another process to execute commands
on your behalf. A batch job is a command procedure or program that is
submitted to the operating system for execution as a separate user process.
After you submit the command procedure for batch execution, you can
continue to use your terminal interactively.

I For information on case sensitivity, see Chapter 5.

2-2 Using DCL to Interact with the System

Using DCL to Interact with the System
2.1 Entering Commands

Batch jobs and network processes use DCL in batch mode. See Chapter 16 for
more information about processes.

2.1.2 Types of DCL Commands

When you enter a DCL command, it is read and translated by the DCL
interpreter. The way the command interpreter responds to a command is
determined by the type of command entered. The three types of DCL commands
are as follows:

e Built-in commands

These commands are built in to the DCL interpreter and are executed
internally.

e Commands that invoke programs

DCL calls another program to execute the command rather than executing
it internally. The program invoked to execute a command is referred to
as a command image. This command image can be either an interactive
program, a utility (such as Mail), or a noninteractive program (such as
COPY).

e Foreign commands

A symbol that executes an image is referred to as a foreign command. A
foreign command executes an image whose name is not recognized by the
command interpreter as a DCL command. Refer to Chapter 12 for complete
information on symbols.

2.2 The DCL Command Line

DCL, like any language, has its own vocabulary and usage rules. DCL is made up
of words (vocabulary) and word order (syntax or format). The following sections
describe these two elements and explain how to construct a valid DCL command.

The following example shows the general format and parts of a DCL command
line:

$ PRINT/COPIES = 5 GROCERY.LIS
O 0 © (4] (5] 6]

The following list describes each element of the DCL command line:
© DCL prompt

The dollar sign ($) is the default DCL prompt. When you work interactively
with DCL, DCL displays the prompt when it is ready to accept a command.

® DCL command

A DCL command specifies the name of the command. The command can be a
built-in command, a command that invokes a program, or a foreign command.
In this example, the DCL command is PRINT.

© Qualifier

A qualifier modifies the action taken by the command. Some qualifiers
modify the entire command, while others can modify specific command
parameters. Some qualifiers can accept values. Qualifiers are always
preceded by a slash (/). In this example, the qualifier is /COPIES.

O Value

Using DCL to Interact with the System 2-3

Using DCL to Interact with the System
2.2 The DCL Command Line

A value modifies a qualifier and is often preceded by an equal sign (=). A
value can be a file specification, a character string, a number, or a DCL
keyword. A keyword is a word reserved for use in certain specified formats.

In this example, the value is 5 (for 5 copies).

©® Parameter

A parameter specifies what the command acts upon. You must position
parameters in a specified order within the command. Examples of parameter
values include file specifications, queue names, and logical names.

O Enter key

The Enter key ends the DCL command line and signals to the system that
the command is ready for processing.

The following items may also be used in a DCL command line:
e Labels

Labels identify lines in command procedures. Use labels only within
command procedures, which are described in Chapter 13 and Chapter 14.

e Keywords

Keywords are words that are defined for use in certain specified formats.
You must use keywords exactly as listed in the description of the particular
DCL command you want to specify. For example, system, owner, group,
and world are DCL keywords for the /PROTECTION qualifier of the SET
SECURITY command. (A DCL keyword can also have a value.)

e Wildcard characters

Wildcard characters are the asterisk (*), percent sign (%), ellipsis (...)
and hyphen (-). They can be used within, or in place of, a file name, file type
directory name, or version number in a file specification to indicate all for the
given field. For information about using wildcard characters with files and
directories, see Chapter 3, Chapter 4, and Chapter 5.

2.2.1 Syntax

Just as a spoken language depends on the order of words to create meaning, DCL
requires that you put the correct elements of the command line in a specific word
order or format.

Following are two examples of the syntax, or format, used for typical DCL
commands:

command/qualifier=value=keyword
command parameter/qualifier

When you enter a DCL command, some parameters are required; they must be
entered on the command line. If you do not enter them, the system prompts
you to supply the missing information. A line beginning with an underscore (_)
means that the system is waiting for your response.

When you are prompted for an optional parameter, press Enter to omit it. At any
prompt, after you enter the required parameter, you can enter one or more of the
remaining parameters and any additional qualifiers.

Note that you must enclose in quotation marks ("") any parameter containing a
slash (/) or at sign (@).

2-4 Using DCL to Interact with the System

Using DCL to Interact with the System
2.2 The DCL Command Line

In the following example, the TYPE command requires a file specification.
Because a file specification is a required parameter of the TYPE command, if you
do not enter one, the system requests it.

$ TYPE
_File: WATER. TXT

2.2.2 Canceling Commands

If you press Ctrl/Z after a command prompt, DCL ignores the command and
redisplays the DCL prompt.

2.2.3 Using Defaults

Some items, called defaults, need not be specified on the command line. When
DCL performs an operation by default, it assigns a command certain values

or performs certain functions associated with that command even though you
may not have explicitly specified those values or functions when you entered the
command. In general, the values and functions are those considered typical or
expected by users.

DCL supplies default values in several areas, including command parameters and
qualifiers. For parameter defaults, see the sections in this manual that describe
the specific DCL command. Qualifier defaults are described in Section 2.5.

If the number of copies is not specified as a qualifier for the PRINT command,
DCL uses the default value 1. In the following example, the default is overridden
and multiple copies of the file are printed by including the /COPIES qualifier on
the PRINT command line:

$ PRINT/COPIES=4 MYFILE.TXT

2.2.4 Entering Multiple Line Commands

If you enter a command longer than one line, you can continue the command onto
the next line by following this procedure:

Step Task

1 End the command line with a hyphen (-) and press Enter.
The system displays an underscore (_) followed by the DCL prompt ($).
2 Enter the rest of the command line after this prompt.

A line beginning with an underscore means that the system is waiting for your
response.

Note the following:

* You must include the appropriate spaces between command names,
parameters, and so on.

¢ Pressing Enter after the hyphen does not add a space.

e There is no restriction to the number of continued lines you can use to enter
a command, as long as you do not exceed the 1024-character limit.

* You can also enter a long command line without specifying a hyphen; the
system automatically wraps text to the next line. However, separating
portions of the command lines with hyphens makes the command line easier
to read.

Using DCL to Interact with the System 2-5

Using DCL to Interact with the System
2.2 The DCL Command Line

The following example shows how to enter a multiple line command:

$ COPY/LOG FORMAT.TXT,FIGURE.TXT,ARTWORK.TXT -
_$ SAVE.TXT

You can use the DCL command PIPE to create complex command processing
statements from a single DCL command. For example, you can execute one or
more of the following operations from the same DCL command line:

Pipelining (a sequence of commands)
Input/output redirection
Multiple and conditional command execution

Background processing

For more detailed information, see Section 14.20 and the description of the PIPE
command in the OpenVMS DCL Dictionary: N-Z.

2.3 Rules for Entering DCL Commands

The following rules apply when entering DCL commands. Refer to Chapter 5 for
information about using extended file names in DCL commands.

Use any combination of uppercase and lowercase letters. The DCL interpreter
translates lowercase letters to uppercase. Uppercase and lowercase
characters in parameter and qualifier values are equivalent unless enclosed
in quotation marks (“”).

Separate the command name from the first parameter with at least one blank
space or a tab.

Separate each additional parameter from the previous parameter or qualifier
with at least one blank space or a tab.

Begin each qualifier with a slash (/). The slash serves as a separator and
need not be preceded by blank spaces or tabs.

If a parameter or qualifier value includes a blank space or a tab, enclose the
parameter or qualifier value in quotation marks.

You cannot specify null characters (<NUL>) on a DCL command line, even if
you enclose the null character in quotation marks.

Include no more than 127 elements (parameters, qualifiers, and qualifier
values) in each command line.

Each element in a command must not exceed 255 characters. The entire
command must not exceed 1024 characters after all symbols! and lexical
functions? are converted to their values.

You can abbreviate a command as long as the abbreviated name remains
unique among the defined commands on a system. DCL looks only at the first
four characters for uniqueness.

The following commands are equal:
$ PRIN/COPI=2 FORMAL ART.TXT
$ PRINT/COPIES=2 FORMAL_ART.TXT

1

2

You use symbols, described in Chapter 12, to pass information to the system in an
abbreviated manner.

A lexical function, described in Chapter 15, obtains information from the system.

2-6 Using DCL to Interact with the System

Using DCL to Interact with the System
2.3 Rules for Entering DCL Commands

For greater clarity and to ensure that your command procedures are
upwardly compatible, do not abbreviate commands in command procedures.
See Chapter 13 and Chapter 14 for more information about using commands
in command procedures.

2.4 Entering Parameters

File specifications are the most common type of parameter. DCL commands can
accept input file specifications (files that are acted upon by a command) and
output file specifications (files that are created by a command).

The following rules apply when specifying parameters in a command line:

e Square brackets ([]) in command descriptions indicate optional items.
For example, you do not have to enter a file specification in the following
command:

DIRECTORY [file-spec]

e In a command description, anything not enclosed in square brackets is
required. For example, you must enter a device name in the following
command:

SHOW PRINTER device-name
e In general, precede an output file parameter with an input file parameter.

e A parameter can be one item or a series of items. If you enter a series of
items, separate the items with commas (,) or plus signs (+). Any number
of spaces or tab characters can precede or follow a comma or a plus sign.
Note that some commands regard the plus sign as a concatenator, not as a
separator.

Examples

The following example shows how to copy the input file LISTS.TXT to the output
file FORMAT.TXT:

§ COPY LISTS.TXT FORMAT.TXT

The following example line shows how you can enter a list of file specifications as
the parameter:

DELETE file-spec],...]

The following example shows how to specify a list of parameters. Here, three
files are copied to a fourth file. The three file specifications, PLUTO.TXT,
SATURN.TXT, and EARTH.TXT, constitute the first parameter. PLANETS.TXT
is the second parameter. Note that there are no spaces (although they could have
been inserted) between the PLUTO.TXT, SATURN.TXT, and EARTH.TXT file
specifications.

§ COPY PLUTO.TXT,SATURN.TXT,EARTH.TXT PLANETS.TXT

2.5 Entering Qualifiers
There are three types of qualifiers:
e Command
e DPositional

e Parameter

Using DCL to Interact with the System 2-7

Using DCL to Interact with the System
2.5 Entering Qualifiers

You can abbreviate any qualifier name as long as the abbreviated name remains
unique among all qualifier names for the same command. However, to ensure
that your command procedures are upwardly compatible, do not abbreviate
commands and qualifiers in command procedures.

Commands have default qualifiers; you do not have to specify a qualifier unless
it is different from the command default. The following sections describe types of
qualifiers and qualifier defaults. The OpenVMS DCL Dictionary contains default
information for specific commands.

2.5.1 Command Qualifiers

A command qualifier modifies a command and can appear anywhere in the
command line. However, it is a good practice to place the qualifier after the
command name. If you are specifying multiple qualifiers, you should place a
command qualifier with other command qualifiers that follow the command
name.

In the following example, /QUEUE is a command qualifier. The files
SATURN.TXT and EARTH.TXT are queued to the print queue LNO3_PRINT:

$ PRINT/QUEUE=LN03_PRINT SATURN.TXT,EARTH. TXT

2.5.2 Positional Qualifiers

A positional qualifier can modify commands or parameters and has different
meanings depending on where you place it in the command string. If you place
a positional qualifier after the command but before the first parameter, it affects
the entire command string. If you place a positional qualifier after a parameter,
it affects only that parameter.

In the following example, the first PRINT command requests two copies of the
files SPRING.SUM and FALL.SUM. The second PRINT command requests two
copies of the file SPRING.SUM but only one copy of FALL.SUM.

$ PRINT/COPIES=2 SPRING.SUM,FALL.SUM
$ PRINT SPRING.SUM/COPIES=2,FALL.SUM

2.5.3 Parameter Qualifiers
A parameter qualifier can be used only with certain types of parameters, such as
input files and output files.
For example, the BACKUP command accepts several parameter qualifiers that
apply only to input and output file specifications.

In the following example, the /CREATED and /BEFORE qualifiers, which can be
specified only with input files, select specific input files for the backup operation.
The asterisk (*) is a wildcard character that replaces the file name. BACKUP
selects all files with the .TXT file type that were created before December 11,
2002.

$ BACKUP *,TXT/CREATED/BEFORE=11-DEC-2002 NEWFILE.TXT

2-8 Using DCL to Interact with the System

Using DCL to Interact with the System
2.5 Entering Qualifiers

2.5.4 Conflicting Qualifiers

If you use two or more contradictory qualifiers on a command line, the right-most
qualifier overrides the others.

Some commands contain conflicting qualifiers that cannot be specified in the
same command line. If you use incompatible qualifiers, the command interpreter
displays an error message.

Following is an example of conflicting qualifiers. Note that the PRINT command
accepts only the /COPIES=2 and the /NOBURST qualifiers because they are the
right-most qualifiers in the command line:

$ PRINT MYFILE/COPIES=3/BURST/COPIES=2/NOBURST EARTH.TXT

2.5.5 Values Accepted by Qualifiers

Qualifiers can accept keywords, file specifications, character strings, and numeric
values. When you enter a value for a qualifier, separate the qualifier and the
value with either an equal sign (=) or a colon (:).

Some qualifier keywords require additional information. In these cases, separate
the keyword from its value with a colon or an equal sign.

To specify multiple keywords that require values, enclose the list in parentheses
and separate the keyword and value with either an equal sign (=) or a colon (:).

Examples
Either command in this example is valid:

$ PRINT/COPIES=3 MYFILE.DAT
$ PRINT/COPIES:3 MYFILE.DAT

This is an example of a qualifier that requires additional information; the
keyword "PROTECTION" is separated from its value by a colon or an equal
sign (=):

$ SET SECURITY/PROTECTION:GROUP:RW MYFILE.DAT
$ SET SECURITY/PROTECTION=GROUP=RW MYFILE.DAT

This is an example of a qualifier that requires multiple keywords, each of which
require multiple values:

$ SET SECURITY/PROTECTION=(OWNER=RWD,GROUP=RW) myfile.dat

$ SET SECURITY/PROTECTION=(OWNER:RWD,GROUP:RW) myfile.dat

2.6 Entering Dates and Times as Values

Certain commands and qualifiers (such as the PRINT/AFTER command) accept
date and time values. You can specify these values in one of the following
formats:

e Absolute time
e Delta time

e Combination time (combines absolute and delta time formats)

Using DCL to Interact with the System 2-9

Using DCL to Interact with the System
2.6 Entering Dates and Times as Values

2.6.1 Absolute Time Format

Absolute time is a specific date or time of day. The format for absolute time is as
follows:

[dd-mmm-yyyy][:hh:mm:ss.cc]

The fields are as follows:

dd Day of the month: an integer in the range 1 to 31

mmm Month: JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC
NAAAS Year: an integer

hh Hour: an integer in the range 0 to 23

mm Minute: an integer in the range 0 to 59

ss Second: an integer in the range 0 to 59

cc Hundredths of a second: an integer in the range 0 to 99

The following rules apply when specifying absolute time:

¢ You can truncate the date or the time on the right.

e If you specify both a date and a time, include a colon between them.
e The date must contain at least one hyphen.

¢ You can omit any of the fields within the date and time as long as you include
the punctuation marks that separate the fields.

e A truncated or omitted date field defaults to the corresponding fields for the
current date.

e A truncated or omitted time field defaults to zero.

e If you specify a past time in a command that expects the current or a future
time, the current time is used.

You can also specify an absolute time as one of the following keywords:

TODAY The current day, month, and year at 00:00:00.0 o’clock
TOMORROW 00:00:00.00 o’clock tomorrow
YESTERDAY 00:00:00.00 o’clock yesterday

The following table shows examples of absolute time specifications:

Time Specification Result

11-DEC-2002:13 1 PM. on December 11, 2002

11-DEC Midnight at the beginning of December 11 this year
15:30 3:30 PM. today

19— Midnight on the 19th day of the current year and month
19-:30 12:30 A.M. on the 19th of this month

2.6.2 Delta Time Format

Delta time is an offset (a time interval) from the current date and time to a time
in the future. The general format of a delta time is as follows:

"+{dddd-][hh:mm:ss.cc]"

2-10 Using DCL to Interact with the System

Using DCL to Interact with the System
2.6 Entering Dates and Times as Values

The fields are as follows:

dddd Number of days; an integer in the range 0 to 9999

hh Number of hours; an integer in the range 0 to 23

mm Number of minutes; an integer in the range 0 to 59

ss Number of seconds; an integer in the range 0 to 59

cc Number of hundredths of seconds; an integer in the range 0 to 99

If a qualifier is described as a value that can be expressed as an absolute time,
a delta time, or a combination of the two, you must specify a delta time as if it
were part of a combination time. For example, to specify a delta time value of
five minutes from the current time, use “+:5” (not “0-0:5”).

The following rules apply when specifying delta time:
* You can truncate a delta time on the right.
e If you specify the number of days, include a hyphen.

¢ You can omit fields within the time as long as you include the punctuation
that separates the fields.

e If you omit the time field, the default is zero.

The following table shows some examples of delta time specifications:

Time Specification Result

“+3-” 3 days from now (72 hours)

“+3” 3 hours from now

“+:30” 30 minutes from now

“+3-:30” 3 days and 30 minutes from now
“+15:30” 15 hours and 30 minutes from now

2.6.3 Combination Time Format

To combine absolute and delta times, specify an absolute time plus or minus a
delta time. Use one of the following formats:

"[absolute time][+delta time]"

[absolute time][-delta time]

The variable fields and default fields for absolute and delta time values are the
same as those described in the preceding sections.

The following rules apply when specifying combination time:

e Precede the delta time value by a plus or minus sign. (Note that the minus
sign is the same keyboard key as the hyphen.)

e Enclose the entire time specification in quotation marks if a plus or minus
sign precedes the delta time value.

e Omit the absolute time value if you want to offset the delta time from the
current date and time.

e Specify date and time information as completely as possible.

Using DCL to Interact with the System 2-11

Using DCL to Interact with the System
2.6 Entering Dates and Times as Values

The following table shows some examples of combination time specifications:

Time Specification Result
“+5”7 5 hours from now.
“1” Current time minus 1 hour. The minus sign (-) indicates a

negative offset. (The 1 is interpreted as an hour, not a day,
because it is not followed by a hyphen.)

“+:5” 5 minutes from now.

“:5” Current time minus 5 minutes.

“-1-00” Current time minus 1 day. The minus sign (-) indicates a
negative offset. The hyphen (-) separates the day from the time
field.

“31-DEC:+:5” 12:05 AM. on December 31 of the current year. The absolute time

specification (before the colon) defaults to midnight on December
31 of the current year. The plus sign (+) indicates a positive
offset.

31-DEC:-00:10 11:50 PM. on December 30 of the current year. The absolute time
specification (before the colon) defaults to midnight on December
31 of the current year. The minus sign (-) after DEC: indicates
a negative offset.

2.7 Recalling Commands

At the DCL prompt, you can recall previously typed command lines to avoid
retyping long command lines. Once a command is displayed, you can reexecute or
edit it.

On OpenVMS VAX systems, the recall buffer holds up to 20 previously entered
commands.

On OpenVMS Alpha systems, the recall buffer holds up to 254 previously entered
commands.

You can display your previously entered commands by using one of the following
methods:

e Pressing Ctrl/B
e Using up arrow and down arrow keys

¢ Using the RECALL command
2.7.1 Pressing Ctri/B

Pressing Ctrl/B once recalls the previous command line. Pressing Ctrl/B again
recalls the line before the previous line and so on to the last saved command
line.

2.7.2 Using Arrow Keys

Using the up arrow and down arrow keys recalls the previous and successive
command, respectively. Press the arrow keys repeatedly to move through the
commands.

2-12 Using DCL to Interact with the System

Using DCL to Interact with the System
2.7 Recalling Commands

2.7.3 Using the RECALL Command

To examine previously typed command lines, type RECALL/ALL. After reviewing
the available commands, you can recall a particular command line by typing
RECALL and the number of the desired command.

You can also follow RECALL with the first characters of the command line you
want to display. RECALL scans the previous command lines (beginning with
the most recent one) and Enters the first command line that begins with the
characters you typed.

Examples
This is a sample display generated by typing RECALL/ALL:

$ RECALL/ALL

SET DEFAULT DISK2:[MARSHALL]
EDIT ACCOUNTS.COM

PURGE ACCOUNTS.COM
DIRECTORY/FULL ACCOUNTS.COM
COPY ACCOUNTS.COM [.ACCOUNTS]*
SET DEFAULT [.ACCOUNTS]

oUW N

The following example shows how to recall the fourth command line:
$ RECALL 4

After you press Enter, the system displays the fourth command in the list at the
DCL prompt. (The RECALL command itself is not placed in the buffer.)

The following example shows how to recall a previously entered command, EDIT
ACCOUNTS.COM:

$ RECALL E
After you press Enter, the system displays the following command line:

$ EDIT ACCOUNTS.COM

Note

If you are running a utility or an application program that uses OpenVMS
screen management software, you can use Ctrl/B and the up arrow and
down arrow keys to perform command recall; however, line editing must
be enabled. Some utilities that have this feature are Mail, OpenVMS
Debugger, Show Cluster, the System Dump Analyzer (SDA), and the EVE
editor.

To erase the contents of the recall buffer, enter the RECALL command with the
ERASE qualifier. For example:

$ RECALL/ERASE

For security reasons, it is good practice to erase the contents of the recall buffer
after you have entered commands that include passwords.

Using DCL to Interact with the System 2-13

Using DCL to Interact with the System
2.8 Editing the DCL Command Line

2.8 Editing the DCL Command Line

At the DCL command level, you can use many individual keys and key sequences
to change what you type. Although different types of terminals have different
operating characteristics, most have standard function keys and keys that can be
used with line editors.

To see whether line editing is enabled, enter the SHOW TERMINAL command.
In the following example, line editing is enabled:

§ SHOW TERMINAL

Terminal: VTA2138: Device Type: VI200_Series Owner: ROHBA
Physical terminal: TNA2114:
Remote Port Info: Host: 16.32.216.68 Port: 1409

Input: 9600 LFfill: 0 Width: 80 Parity: None
Output: 9600 CRfill: 0 Page: 24

Terminal Characteristics:
Interactive Echo Type_ahead No Escape
Hostsync TTsync Lowercase Tab
Wrap Scope No Remote Eightbit
Broadcast No Readsync No Form Fulldup
No Modem No Local echo No Autobaud Hangup
No Brdcstmbx No DMA No Altypeahd Set_speed
No Commsync Line Editing Overstrike editing No Fallback
No Dialup No Secure server Disconnect No Pasthru
No Syspassword No SIXEL Graphics No Soft Characters Printer port
Numeric Keypad ANSI_CRT No Regis No Block mode
Advanced video Edit mode DEC_CRT DEC CRT2
No DEC_CRT3 No DEC_CRT4 No DEC_CRT5 No Ansi_Color

VMS Style Input

2.8.1 SET TERMINAL Command

You can use the SET TERMINAL command to alter the way in which your
terminal edits a DCL command line. By default, changes made with the SET
TERMINAL command apply only to the current session. To set the terminal each
time you log in, you can include SET TERMINAL commands in your LOGIN.COM
file.

To enable line editing, enter the SET TERMINAL/LINE_EDIT command:
§ SET TERMINAL/LINE_EDIT

Insert and Overstrike Modes

You can edit a command line in either insert or overstrike mode. In insert mode,
the character you type is inserted to the left of the cursor. In overstrike mode,
the character you type overwrites the character indicated by the cursor.

To change editing modes for a single command line, press Ctrl/A (Ctrl/A acts
as a toggle). To change edit modes for your session, enter either the SET
TERMINAL/INSERT or SET TERMINAL/OVERSTRIKE command.

Text Wrapping

If you use the SET TERMINAL/WRAP command, when you enter more characters
than will fit on one line of the screen, the text wraps to the next line. If you use
the SET TERMINAL/NOWRAP command, when you enter more characters than
will fit on one line of the terminal screen, the last character on the line is typed
over.

2-14 Using DCL to Interact with the System

Using DCL to Interact with the System
2.8 Editing the DCL Command Line

You can edit only the line where your cursor appears. When text wraps, you
cannot use the up arrow key to move the cursor up to edit the previous line. To
move the cursor up to the previous line, use the Delete key and delete all the
characters in the current line.

2.8.2 Deleting Parts of the Command Line

Pressing the Backspace key moves the cursor backwards and erases the character
in that space. If line editing is enabled, you can use Ctrl/U to delete characters
from the beginning of the line to the current cursor position. If line editing is not
enabled, you can use Ctrl/U to cancel an entire line. The system ignores the line
and redisplays the DCL prompt.

2.9 Defining Terminal Keys

A key definition is a string of characters that you assign to a particular terminal
key. Use the DEFINE/KEY command. When a key is defined, you can press

it instead of typing the string of characters. A key definition usually contains

all or part of a command line. Using key definitions, you can customize your
keyboard so that you can enter DCL commands with fewer keystrokes. When you
press a defined key, the system either displays the command on your terminal or
executes the command, depending on whether the command was defined using
the /TERMINATE qualifier.

By default, the terminal is set to numeric keypad mode. Use the SET TERMINAL
command to redefine the keys on the numeric keypad. For more information,

see the descriptions of the SET TERMINAL/APPLICATION_KEYPAD, SET
TERMINAL/NONUMERIC, and DEFINE/KEY commands in the OpenVMS DCL
Dictionary.

2.10 Key Sequences

In addition to entering DCL commands, you can perform tasks by using specific
key sequences. A key sequence is a shortcut or a way to get the system’s
attention while it is processing another command.

To enter a key sequence, hold down the Ctrl key while you press and release a
second key. The following tables organize key sequences by function.

Table 2-1 To Enter DCL Commands

Key Sequence Function

Ctrl/Z and F10 Signals the end of the file for data entered from the terminal.

Enter Sends the current line to the system for processing. If you are not
already logged in, Enter initiates a login sequence.

Using DCL to Interact with the System 2-15

Using DCL to Interact with the System
2.10 Key Sequences

Table 2-2 To Interrupt DCL Commands

Key Sequence

Function

Ctrl/T

Ctrl/y, Ctrl/C
and F6

Momentarily interrupts terminal output to display a line of statistical

information about the current process. This display includes your node
and user name, the time, the name of the image you are running, and

information about system resources used during your current terminal
session.

You can also use Ctrl/T to determine whether the system is operating.
Ctrl/T does not Enter information if the system is temporarily
unresponsive or if your terminal is set to NOBROADCAST. To use
Ctrl/T, you must first enter the SET CONTROL=T command (in the
system login command procedure, in your personal login command
procedure, or interactively).

Interrupts command processing. You can disable Ctrl/Y with the
command SET NOCONTROL=Y.

Under most conditions, Ctrl/Y returns you to the DCL prompt. The
program running is still active. You can enter any built-in command
then continue the program with the CONTINUE command. (Press
Ctrl/W to refresh the screen after you enter the CONTINUE command.)

Table 2-3 To Recall Commands

Key Sequence

Function

Ctrl/B and up
arrow

Down arrow

Recalls up to 20 (VAX) or 254 (Alpha) previously entered commands.

Displays the next line in the recall buffer.

Table 2-4 To Control Cursor Position

Key Sequence

Function

Backspace
Ctrl/A and F14

Ctrl/D and left

arrow
Ctrl/E

Ctrl/F and right
arrow

Ctrl/H and F12
Ctrl/T and Tab

Ctrl/J
CtrI/K

Deletes the last character entered.

Switches between overstrike and insert mode. The default mode (as set
with the SET TERMINAL/LINE_EDITING command) is reset at the
beginning of each line.

Moves the cursor one character to the left.

Moves the cursor to the end of the line.

Moves the cursor one character to the right.

Moves the cursor to the beginning of the line.

Moves the cursor to the next tab stop on the terminal. The system
provides tab stops at every eighth character position on a line. Tab
settings are hardware terminal characteristics that, in general, you can
modify. The Tab key also works when line editing is disabled.

Deletes the word to the left of the cursor.

Advances the current line to the next vertical tab stop.

2-16 Using DCL to Interact with the System

Ctrl/L
Ctrl/R

Ctrl/U
Ctrl/V

Ctrl/X
F7, F8, F9, F11

Using DCL to Interact with the System
2.10 Key Sequences

Moves the cursor to the beginning of the next page. This use of Ctrl/L
is ignored when line editing is enabled.

Repeats the current command line and leaves the cursor positioned
where it was when you pressed Ctrl/R.

Deletes all text in the current input line that is to the left of the cursor.

Turns off some of the line editing function keys. For example, if you
press Ctrl/V followed by Ctrl/D, a Ctrl/D is generated instead of the
cursor moving left one character. Ctrl/D is a line terminator at DCL
level.

When combined with Ctrl/V, characters that are not line terminators
have no effect. Examples are Ctrl/H and Ctrl/J. However, certain
control keys, such as Ctrl/U, retain their line editing functions.

Cancels the current line and deletes data in the type-ahead buffer.

Reserved by Compagq.

Table 2-5 To Control Screen Display

Key Sequence

Function

Ctrl/O

Ctrl/S
Ctrl/Q
Ctrl/W

Alternately suspends and continues display of output to the terminal.
Ctrl/O displays as Output off and Output on.

Suspends terminal output until Ctrl/Q is pressed.
Resumes terminal output suspended by Ctrl/S.

Refreshes the screen display.

Using DCL to Interact with the System 2-17

3

Storing Information with Files

A file is a system object that contains information. This information can be
machine-readable data that the computer understands. It can also be text that
you enter and manipulate. The contents of a file might be the text of a document,
a program, or a list of addresses. You can examine the contents of a text file by
displaying it online or by printing it.

A program, also called an image or an executable image, is a file that contains
instructions and data in machine-readable format. Some programs are associated
with a DCL command. For example, when you type the DCL command COPY,
the system runs the program SYS$SYSTEM:COPY.EXE. Some programs are
started by entering the DCL command RUN followed by the program name.

Image files can be supplied by the operating system or by you and usually have
the file type .EXE. You cannot examine an image file with the DCL commands
TYPE, PRINT, or EDIT because image files do not consist of ASCII characters.
(Text files contain ASCII characters, which are a standard method of representing
the alphabet, punctuation marks, numerals, and other special symbols.)

This chapter describes how to create and manipulate files locally, and over a
TCP/IP or DECnet for OpenVMS network. It includes information about:

¢ Understanding file names and file specifications
¢ Using wildcards with file names

e Other file names

¢ Creating and modifying files

e Displaying the contents of files

e Deleting files

e Protecting files from other users

e Printing files

For additional information, refer to the following:

e Chapter 5, for information about file names in an environment using extended
file specifications

e The OpenVMS DCL Dictionary and online help, for commands discussed in
this chapter

e The OpenVMS System Manager’s Manual, for information about accessing
remote nodes

e The Compaq TCP/IP Services for OpenVMS User’s Guide, for information
about using TCP/IP user utilities and commands

e The DECnet for OpenVMS Networking Manual, for information about
DECnet networks

Storing Information with Files 3-1

Storing Information with Files

e The DECnet-Plus for OpenVMS Introduction and User’s Guide, for
information about DECnet Phase V networks

3.1 Understanding File Names and File Specifications

A file is a unit that the OpenVMS operating system uses to store human-readable
and machine-readable data. When you create or name a file, you provide
information the system can use to locate and identify the file.

A filename consists of a file name and a file type. The name and type are
separated by a period (.). A file also has a version number. You can have
several versions of a file. Unless you specify a version number, the system uses
the highest existing version number of a file. When you edit a file, the system
does not modify the original version, but creates a new output file. By default,
the output file has the same name and file type as the original, but has a version
number that is one higher than the existing file(s) of the same name.

The file name, file type, and version number form a file specification.

3.1.1 Providing a Complete File Specification

A file is located on a specific computer (or node) in the network, on a specific
device or set of devices (known as a volume) connected to that computer, in a
particular directory on that volume. A complete file specification:

e Precisely describes the access path the system uses to locate and identify a
file

e (Can include the directory in which the file is located and the network node on
which the file resides

e Is also known as a network file specification

You do not have to include all the elements of a complete file specification.
However, you must specify enough of the file specification so that, when combined
with default components, the system can locate and identify the correct file.l

To override system defaults or to perform file operations over a network, you
must provide a complete file specification. A complete file specification has the
following format:

node::device:[root.](directory]file-name.file-type;version
The components are as follows:

Node A network node or host name; applicable only to systems that support
TCP/IP or DECnet. Does not apply to files stored on magnetic tape.
Should not be used to specify a file on the same system that you are
logged in to.

Device The term used to refer to a disk or tape drive or other peripheral
connected to a computer running the OpenVMS operating system.
Each device has a unique name that indicates its type and location.
Disks can be formatted as ODS-2 (the default) or ODS-5 (OpenVMS
Alpha only).

I Record Management Services (RMS) is the OpenVMS facility that assists application

programs in processing and managing files. RMS maintains the rules for file specification
parsing. Refer to the Guide to OpenVMS File Applications for more information on how
RMS applies defaults to partial file specifications.

3-2 Storing Information with Files

Storing Information with Files
3.1 Understanding File Names and File Specifications

Directory The name of the directory in which a file is stored. Square brackets

([D or angle brackets (<>) are used to delimit directories. Does not
apply to files stored on magnetic tape.

File name The name of the file.
File type Identifies the structure or the type of the file.
Version The version number of the file. Versions are identified by a decimal

number, which is incremented by 1 each time a new version of the
file is created. The system automatically assigns a version number
unless you specify one.

3.1.2 Rules for File Specifications

Use the following rules to specify the elements of a file specification:

Give the file a name that is meaningful to you. On OpenVMS Alpha and
OpenVMS VAX systems with ODS-2 disks, the file name can have up to

39 characters chosen from the letters A to Z (uppercase or lowercase), the
numbers 0 to 9, underscores (_), hyphens (-), tildes (~), and dollar signs ($).

Do not use a hyphen as the first character in the file name because some
older versions of OpenVMS do not allow it in all forms of a file specification.

The file type begins with a period (.). On Alpha and VAX systems with
ODS-2 disks, the file type can have up to 39 characters (including the period),
chosen from the letters A through Z (which may be specified in uppercase or
lowercase form), the numbers 0 through 9, underscores (_), hyphens (-), and
dollar signs ($).

A version component begins with a semicolon (;) or a period (.) When the
system displays file specifications, it displays a semicolon for the version
component.

Do not use a directory field to refer to files on magnetic tape. (Directories
apply only to files on disks.)

Include a node name only if your system is part of a network and if the file is
on a node other than the one you are logged in to.

On OpenVMS Alpha and OpenVMS VAX systems with ODS-2 disks, a UFD
(User File Directory) name or a subdirectory name can be 39 characters
long and can contain characters chosen from the letters A through Z (which
may be specified in uppercase or lowercase form), the numbers 0 through
9, underscores (_), hyphens (-), and dollar signs ($). A subdirectory name
beginning with a hyphen is not allowed.

On OpenVMS Alpha Version 7.2 or later, the sum of the numbers of
characters in all of the subdirectories of the directory and root components
(not including brackets and separator periods) should not exceed 512. In
addition, UFD and subdirectory names have the same constraints as those for
the file name, type, and version components, taking into account the fact that
directories are stored as files of the form <directory-name>.DIR;1.

In environments that consist of systems that support extended file
specifications and systems that do not, remember that files and directories
whose names are beyond the capabilities of the more limited systems will not
be accessible from those systems.

Storing Information with Files 3-3

Storing Information with Files
3.1 Understanding File Names and File Specifications

For more details, refer to the Guide to OpenVMS File Applications.

Note

Note that these rules differ for files in an environment with extended
file specifications. Refer to Chapter 5 for more specific information about
extended file names.

3.1.3 Default File Types Used by DCL Commands

With certain commands, if you omit the file type, the system applies a default
value. The following table lists some of the more common default file types used
by DCL commands:

File Type Contents

.CLD Command description file

.COM Command procedure file

.DAT Data file

.DIF Output file created by the DIFFERENCES command

.DIR Directory file

.DIS Distribution list file for the Mail utility

EXE Executable program image file created by the linker

HLB Help text library file

HLP Input source file for help libraries

NI Initialization file

.LIS Listing file created by a language compiler or assembler; default
input file for the PRINT and TYPE commands

.LOG Batch job output file

.MAI Mail message file

.PS PoSTSCRIPT format file

.SYS System image file

TJL Journal file created by the DECTPU and ACL editors

.TLB Text library file

.TMP Temporary file

.TPU Command file for the EVE editor

.TPU$JOURNAL Journal file created by the EVE editor

TXT Input file for text libraries or Mail utility output files

3.1.4 Default File Types for Language Source Programs
The following table lists the default file types for some high-level language source

programs:

File Type Contents

ADA Input source file for the Compaq Ada compiler
.BAS Input source file for the BASIC compiler

3-4 Storing Information with Files

Storing Information with Files
3.1 Understanding File Names and File Specifications

File Type Contents

.B32 Input source file for the VAX BLISS-32 compiler

.C Input source file for the Compaq C compiler

.COB Input source file for the VAX COBOL compiler on OpenVMS VAX
systems and the Compaq COBOL compiler on OpenVMS Alpha
systems

.FOR Input source file for Compaq Fortran (Compaq Fortran for
OpenVMS VAX systems was formerly VAX Fortran)

.M64 Input source file for the MACRO-64 assembler for OpenVMS
Alpha

.MAP Memory allocation map created by the Linker utility

.MAR Input source file for the VAX MACRO assembler or the MACRO-32
Compiler for OpenVMS Alpha

.MLB Macro library for the MACRO assembler

MSG Source file that specifies the text of messages

.OBJ Object file created by a language compiler or assembler

.OLB Object module library

.OPT Options file for input to the LINK command

.PAS Input source file for the Pascal compiler

.PLI Input source file for the PL/I compiler

.STB Symbol table file created by the Linker utility

.UPD Update file of changes for a VAX MACRO source program; also

input to the SUMSLP utility

3.1.5 File Versions

In addition to a file name and file type, every file has a version number. Version
numbers are decimal numbers from 1 to 32,767 that differentiate versions of a
file. When you create a file, the system assigns it the version number 1.

You can have several versions of the same file. Unless you specify a version
number, the system uses the highest existing version number of that file. If you
specify the version number 0, the system uses the highest existing version. When
you modify a file with a command, application, or text editor (such as EVE) that
creates a new version of the file, the file name remains the same but the version
number is incremented by one.

Precede version numbers with a semicolon or a period. When the system displays
file specifications, it displays a semicolon in front of the file version number.

You can refer to versions of a file in a relative manner by specifying a zero or a
negative version number. Specifying zero locates the latest (highest numbered)
version of the file. Specifying —1 locates the next-most-recent version, —2 the
version before that, and so on. To locate the earliest (lowest numbered) version of
a file, specify —0 as the version number. Note that you cannot create files with

a version number higher than 32767. If you attempt to create a new file with a
version number higher than 32767, you will receive an error message.

The /VERSION_LIMIT qualifier for the CREATE/DIRECTORY, SET
DIRECTORY, and SET FILE commands lets you control the number of versions
of a file. If you exceed the version limit, the system automatically purges the
lowest version file in excess of the limit. For example, if the version limit is 5
and you create the sixth version of a file (ACCOUNTS.DAT;6), the system deletes

Storing Information with Files 3-5

Storing Information with Files
3.1 Understanding File Names and File Specifications

the first version of the file (ACCOUNTS.DAT;1). To view the version limit on a
file, enter the DIRECTORY/FULL command. The version limit is listed in the
File attributes: field.

3.1.6 Network Node Names

A node is an individual computing system that is part of a computer network.

If your system is part of a network, the node that you access when you log in is
your local node. Other nodes in the network are remote nodes. Use a node name
when you want to specify a file on a remote node.

A node specification has the following format:
node["access-control-string"]::

Observe the following rules when entering a node name as part of a file
specification:

e Node names can contain 1 to 6 alphanumeric characters and must contain at
least one alphabetic character. For example:

AFTP1
F20TR2
MYNODE

¢ A node name (with or without an access control string) must always be
followed by a double colon (::).

e When you specify a node name, you can include a 0- to 42-character access
control string. An access control string contains login information to be
sent to the remote node. For more information on access control strings, see
Section 3.1.12.

Note that the required double colon follows the access control string.

¢ You can use a logical name in place of the node name. For information on
logical node names, see Chapter 11.

3.1.7 Specifying DECnet-Plus Node Full Names

On OpenVMS systems, you can specify node full names. However, you must
have DECnet-Plus software installed for full node names to be recognized.

Valid full node names can contain up to 255 characters and can include any
characters except the following:

e Spaces
e Tabs

e The characters: comma (,), quotation marks (“”), slash (/), exclamation
point (!), equal sign (=), plus sign (+), at sign (@), apostrophe (’),
parentheses (()), and double colons (::)

e A single colon (:) as the first or last character

If a full node name is enclosed in quotation marks (“ ”), it can contain any
characters except unmatched quotation marks. Note that if there are quotation
marks within the node name, the quotation marks must be doubled and the
entire string, including the quotation marks, must also be enclosed in quotation
marks.

3-6 Storing Information with Files

Storing Information with Files
3.1 Understanding File Names and File Specifications

Although the OpenVMS software enforces few rules on the syntax of node names,
the actual set of valid node names is constrained by the DECnet software running
on your system. For further information on full names, refer to the DECnet—Plus
documentation. The syntax rules, including valid character codes, are described
in detail in the DECnet-Plus DECdns Management Guide.

In the following example, the entire string is in quotation marks because there
are quotation marks in the node name:

"MARY: .UNIVERSITY.""SCIENCE LAB"""

Other examples of valid full node names are:

MYNODE
MASSACHUSETTS:.BUSINESS.YOURNODE
A.B;C

3.1.8 Specifying TCP/IP Names and Addresses

With TCP/IP, unless otherwise stated, whenever you specify a host on a command
line, you can use its host name, a fully qualified domain name, or its IP address.
The relative name of a host is a simple name that does not include the fully
qualified domain name; that is, it does not include one or more periods (.). Refer
to the Compaq TCP/IP Services for OpenVMS User’s Guide for the TCP/IP syntax
rules.

3.1.9 Accessing Files on Remote Nodes Using DECnet

When you access a file on a remote node, DECnet logs in at the remote node. To
do this, the system needs login information for that node. You can supply the
system with an access control string. If you omit the access control string, the
login information sent to the remote node is determined as follows:

e If a proxy login account exists for you on the remote node, then the system
logs you in using that account. A proxy login account allows selected users to
log in to a node.

e If a proxy login account does not exist, the system uses the default DECnet
account for that node as specified by the local system manager.

If you include an access control string, the system uses it to log you in to the
remote node. The remainder of the file specification is passed to the remote node
and is interpreted there.

If you specify a local node as part of a file specification, the system logs you in
over the network to perform the file operation, even though the file exists on your
local node. For information about additional ways to access remote systems, see
the OpenVMS System Manager’s Manual.

Note

Throughout the remainder of this chapter, examples that specify a node
name do not always include an access control string. This is because
proxy accounts enable users to perform operations on the remote systems
in these examples.

Storing Information with Files 3-7

Storing Information with Files
3.1 Understanding File Names and File Specifications

3.1.10 Accessing Files on Remote Nodes Using TCP/IP

Compaq TCP/IP Services for OpenVMS provides the File Transfer Protocol (FTP)
to access and transfer files to and from another host over a network. To use
FTP, you need a user account on the OpenVMS system with access to Compaq
TCP/IP Services for OpenVMS and a user account on the remote FTP host. In
some instances, TCP/IP allows you to connect to a remote host without specifying
an account and password. If that feature is not enabled, you must supply user
authentication information for a remote host. For information on using FTP
commands, refer to the Compag TCP/IP Services for OpenVMS User’s Guide.

3.1.11 Using Network File Specifications
There are three formats for network file specifications:
¢ Conventional
e Foreign
e Task

In each format, the node specification can include an access control string. For
more information, see the DECnet User’s Manual for your product and the
Compaq TCP/IP Services for OpenVMS User’s Guide.

3.1.11.1 Conventional File Specification
The conventional format for files is:
node::device:[directory]filename.type;version

3.1.11.2 Foreign File Specification

A foreign file specification is a file that does not conform to OpenVMS syntax.
The format used to provide a foreign file specification is:

node::"foreign-file-spec-string"

In the following example, this file name contains a question mark (?), which is
not recognized as a valid file name character. Therefore, the file name must be
enclosed in quotation marks (“ ”). It must also be in a format that is recognized
by the operating system of the remote node you are accessing:

§ COPY BOSTON::"TEST?.DAT" *

3.1.11.3 Task Specification Strings

A task specification string identifies a program to be executed on the remote node.
You can use task specification strings within a program to enable the program

to communicate with another program on a remote node. The format used to
indicate a task specification string is:

node::“task-spec-string”
This specification identifies the program TEST2 on the remote node BOSTON:
BOSTON: : "TASK=TEST2"

Note

There are some restrictions when you copy files to or from a UNIX
system. For more information, see the OpenVMS Record Management
Utilities Reference Manual.

3-8 Storing Information with Files

Storing Information with Files
3.1 Understanding File Names and File Specifications

3.1.12 Access Control String Format

Access control strings designate accounts that you can log in to on remote nodes.
Node names with access control strings have the following format:

node"access-control-string"::

Enclose the access control string in quotation marks (“”) and follow it with a
double colon (::).

On OpenVMS systems, the access control string consists of a user name, followed
by one or more spaces or tabs and a password. For additional information on
access control strings, see Chapter 10.

In the following example, BOSTON is the network node name. "HIGGINS
ETUHCARAP" is an access control string where:

e HIGGINS is a user name on the node BOSTON.
e ETUHCARAP is the password associated with that name:

$ DIR BOSTON"HIGGINS ETUHCARAP"::WEASEL2:[BORIS]ACCOUNTS.DAT

3.2 Using Wildcards with File Names

Use wildcard characters to apply a DCL command to multiple files rather than
to one file at a time. The command applies to all files that match the portion of
the file specification entered.

Many examples in this chapter show the use of wildcard characters in file
operations. The use of wildcard characters in DCL commands varies with the
individual command.

There are two wildcards available for use with many DCL commands: asterisks
(*) and percent signs (%). Both can be used as wildcard characters in directory
names, file names, and file types. (See Section 4.5 for information about wildcards
used with directories.) In version components, you can use an asterisk (;*), but
not a percent sign or a mix of wildcards and numerals.

On Alpha systems running OpenVMS Version 7.2 or greater, the question mark
(?) can be used in place of the percent sign (%).

If you are working in an environment with extended file specifications, refer to
Chapter 5 for information about additional wildcard options.

3.2.1 Asterisk (*) Wildcard Character
Use the asterisk (*) wildcard character to match the following:

¢ An entire field (or a portion of it) in the directory, file name, and file type
fields

e The entire version number field, but not a portion of it

You can use the asterisk (*) wildcard character as follows:

¢ To manipulate large numbers of files without naming them individually
e To limit the files selected to a more specific group

e In directory specifications

Storing Information with Files 3-9

Storing Information with Files
3.2 Using Wildcards with File Names

Examples

In the following example, the file specification selects all versions of all files in
the [FROGMAN] directory:

$ PRINT [FROGMAN]*.*;*

In the following example, only those files in the current default directory with the
file type .DAT are displayed:

§ TYPE *,DAT;*

The command in this example selects all files with the file type .DAT that exist in
subdirectories one level below [FROGMAN]:

$ DIRECTORY [FROGMAN.*]*,DAT

In the following example, the wildcard characters appear in the directory
specification:

§ TYPE [*.*,*]AVERAGE.*;*

This file specification selects all versions of all files named AVERAGE with
any file type that exists in any second-level subdirectory on the current default
disk. For example, this file specification selects [A.B.CIJAVERAGE.DAT but not
[X.YJAVERAGE.DAT.

3.2.2 Percent Sign (%) Wildcard Character

Use the percent sign (%) wildcard character as a substitute for any single
character in a file specification. You can use the percent sign in the directory,
file name, and file type fields. You cannot, however, use the percent sign in the
version number field or in ANSI magnetic tape file specifications. The percent
sign replaces one character position in a field, but there must be a character to
replace.

You can specify the percent sign as many times as necessary and in combination
with other wildcard characters.

The following example displays the latest versions of all .DAT files whose names
are DISTRICT followed by a single character:

§ TYPE [JONES.TAXES.PROPERTY]DISTRICT%.DAT

This display would include the files DISTRICT1.DAT, DISTRICT2.DAT, and
DISTRICT3.DAT. The file DISTRICT4_5.DAT would not be displayed because it
has more than one character after DISTRICT, nor would the file DISTRICT.DAT
be displayed.

The file specification in this example is valid:

$ [MA*]INS$33A%,J*;*

3.3 Other File Names

The following sections describe other types of file names supported in an
OpenVMS environment.

3-10 Storing Information with Files

Storing Information with Files
3.3 Other File Names

3.3.1 Null File Names and File Types

When a file specification component, such as the file name or the file type, is
missing, it is often replaced by a default value during the (built-in) parsing
operation of the DCL command or utility. For example, the FORTRAN command
uses a default file type or .FOR. The following command would cause the
FORTRAN compiler to attempt to compile the file FILE.FOR:

$ FORTRAN FILE

Also, the DIRECTORY command replaces any missing components with an
asterisk wildcard. For example, the following command would display all files
with the file name FILE, no matter what file type (including a period (.)):

$ DIRECTORY FILE

A file can have a name that is null (null value or have a file type that consists of
only the delimiter period (which is sometimes referred to as a null file type). For
example, the following are valid file names:

.TMP
TEMP.

3.3.1.1 File References with Null File Types

You can make a reference to a file with a type that consists of only the delimiter
period, as follows:

$ DIRECTORY TEMP. !

Because there is no file name delimiter, it is not possible to make a reference
to a file with a null file name. A file reference with no file name will always be
interpreted as having a missing file name.

The following command will display a list of all files with the type .TMP rather
than only the file .TMP because the directory utility will automatically replace
the missing file name with "*".

$ DIRECTORY .TMP

3.3.2 Alternate File Names for Magnetic Tapes

In addition to standard (ODS-2 compatible) file names, the operating system
supports an alternate file-naming convention for ANSI-labeled magnetic tapes.
The format is as follows:

"filename".;version

The file name can contain 1 to 17 characters from the ASCII "a" character set.
This set of characters includes numeric characters, uppercase letters, and a space,
as well as the following characters:

"% ()" +,-. /1 ;<=>7&_
In addition, asterisk (*) character is allowed in ANSI magnetic tape file names.

For details, refer to the Guide to OpenVMS File Applications.

Storing Information with Files 3-11

Storing Information with Files
3.4 Creating and Modifying Files

3.4 Creating and Modifying Files

The following sections describe how to create and modify files with tools and
commands supported in an OpenVMS environment.

You can create and modify text files with an interactive text editor. EVE and
EDT are two text editors included in the OpenVMS operating system; other text
editors may also be available on your system.

You can also create and modify files by using the DCL commands CREATE,
COPY, and RENAME. The following sections describe how to create and modify
files using these commands.

If you are working in an environment with extended file specifications, refer
to Chapter 5 for further information about creating and copying files in your
environment.

3.4.1 Creating Files

The CREATE command creates a text file. You cannot modify a file with the
CREATE command; after you have pressed Enter, you cannot return to a previous
line to modify a word. You must use a text editor to modify a file created with the
CREATE command. Pressing Ctrl/Z signals the end of the file and returns you to
DCL command level.

In the following example, a file named TEST.TXT is created by entering the
CREATE command and then typing lines of text:

S CREATE TEST.TXT
this is a test
12345678

3.4.2 Copying Files
You can use the COPY command to duplicate:
e The contents of an existing file in a new file
e Many files at a time

e Only those files that meet specified criterion by using the /SINCE qualifier
with the COPY command

Examples
In the following example, the file FEES.DAT is copied to RECORDS.DAT:

§ COPY FEES.DAT RECORDS.DAT

In the following example, all .TXT files in the default directory are copied to
another directory:

$ COPY *,TXT;* [SAVETEXT]*.*;*

In the following example, only those files in the directory
[JONES.LICENSES.DOG] that have been modified since December 11, 1999
are copied to the default directory:

$ COPY/SINCE=11-DEC-1999/MODIFIED [JONES.LICENSES.DOG]*.* *

3-12 Storing Information with Files

Storing Information with Files
3.4 Creating and Modifying Files

3.4.3 File Concatenation

The COPY command can also be used to concatenate files. For example, to
append FEES1.DAT to FEES.DAT (forming a new version of FEES.DAT) in your
default directory, enter the following command:

$ COPY FEES.DAT,FEES1.DAT FEES.DAT

Note that there is no space between the comma after FEES.DAT and the file
name FEES1.DAT.

3.4.4 Copying Files from a Remote Node to Your Node Using DECnet

Use the COPY command to copy files from another node to your node. For
example, to copy the latest version of all files in the directory DISK2:[PUBLIC]
on node CHAOS to files with the same names in your default directory, enter the
following command:

§ COPY CHAOS::DISK2:[PUBLIC]*.* *

3.4.5 Copying Files from Your Node to a Remote Node Using DECnet

Use the COPY command to copy files from your node to another node. If you
receive a protection violation or DECnet error message when you attempt to copy
a file across systems, you can either use mail to copy the file or you can use an
access control string.

In the following example, the latest version of all files in the default directory are
copied to files with the same names in the directory DISK2:[STAFF_BACKUP] on
node CHAOS:

$ COPY *.* CHAOS::DISK2:[STAFF BACKUP]

3.4.6 Copying Files on Remote Systems Using TCP/IP

TCP/IP uses the File Transfer Protocol (FTP) service to access and transfer files
to and from another host over a network. To copy files from a remote host to
your local host, use the GET command. To copy files from your local host to a
remote host, use the PUT command. To use these commands, you must have
an active FTP session with a remote host. You can enter any number of FTP
commands during the session. For information on using FTP commands, refer to
the Compaq TCP/IP Services for OpenVMS User’s Guide.

In the following example, the file FEES.DAT is sent to the JONES account on
node CHAOS:

$ MAIL/SUBJECT="Fee schedule" FEES.DAT CHAOS::JONES

3.4.7 Using Access Control Strings to Copy Files

To copy files after you have received a protection violation, you can follow the node
name in the file specification with an access control string (see Section 3.1.12).

In the following example, the user has an account on node CHAOS with the user
name SMITH and the password SPG96PRT. The user is copying the latest version
of all files in the default directory to the account on CHAOS.

$ COPY *.* CHAOS"SMITH SPGI6PRT"::DISK2:[STAFF_BACKUP]

Storing Information with Files 3-13

Storing Information with Files
3.4 Creating and Modifying Files

3.4.8 Renaming Files

Use the RENAME command to give the file a new name and optionally to locate it
in a different directory. Note that after being renamed, the original file no longer
exists. When you use the RENAME command, the input and output locations
must be on the same device.

In the following example, the file FEES.DAT is given the new name
RECORDS.DAT and it is moved from the default directory to the [SAVETEXT]
directory:

$ RENAME FEES.DAT;4 [SAVETEXT]RECORDS.DAT

3.5 Displaying the Contents of Files

The following sections describe how to display the contents of files with tools and
commands supported in an OpenVMS environment.

3.5.1 Using the TYPE Command

To display the contents of a file on your screen, enter the TYPE command and
the file name at the DCL prompt. You do not have to specify the version number
in the file specification because the system displays the latest version of a file by
default.

In the following example, the latest version of the file STAFF_VACATIONS.TXT
is displayed:

$ TYPE STAFF_VACATIONS.TXT

3.5.2 Controlling the Display

If you specify the /PAGE qualifier to the TYPE command, you can view one screen
at a time. The system prompts you to press Enter when you want to see the next
screen.

By invoking an interactive text editor (for example, EVE or EDT) with the
/READ_ONLY qualifier, you can use interactive editing commands to move
around in a file and search for specific sequences of characters. The /READ_
ONLY qualifier prevents you from creating a modified version of the file when you
exit from the interactive editor.

3.5.3 Displaying Files on Remote Nodes

When using DECnet to display the contents of a file on a remote node, include
the node name, disk, and directory in the file specification.

In the following example, the file COMPANY_HOLIDAYS.TXT (which is located
on remote node CHAOQOS) is displayed:

$ TYPE CHAOS::DISK2:[PUBLIC]COMPANY HOLIDAYS.TXT

When using TCP/IP to display the contents of a file on a remote node, use the
FTP VIEW command, and specify the file name. If the file is not in your current
working directory, include the directory name in the file specification. Refer to
the Compaq TCP/IP Services for OpenVMS User’s Guide for information on the
FTP VIEW command.

3-14 Storing Information with Files

Storing Information with Files
3.5 Displaying the Contents of Files

3.5.4 Displaying Files with Wildcards

You can use the asterisk (*) wildcard to display all versions of a specific file.

In the following example, all versions of the file LOGIN.COM in the directory
[JONES] are displayed:

$ TYPE [JONES]LOGIN.COM;*

In the following example, all versions and all file types of all files that begin with
the word STAFF in the directory [JONES] are displayed:

§ TYPE [JONES]STAFF*,*;*

3.5.5 Displaying Multiple Files

If you specify more than one file in the TYPE command line, the system displays
the files in the order you specify. If you use wildcard characters, the system
displays the files in alphabetical order.

3.6 Deleting Files

The DELETE command removes files from directories and releases the disk space
they occupy for use by other files. When you use the DELETE command, you
must specify a version number or the asterisk (*) wildcard character as a version
number in each file specification.

For example, to delete version 17 of the file POUND.LIS, enter the following
command:

$ DELETE POUND.LIS;17

To delete versions 16 and 17 of the file POUND.LIS, enter the following command:
$ DELETE POUND.LIS;16,;17

To delete all versions of the file POUND.LIS, enter the following command:

$ DELETE POUND.LIS;*

When you delete many files with wildcard characters, you might want to confirm
each deletion by using the /CONFIRM qualifier. Similarly, you might want to
display the names of files as they are deleted. To do this, specify the /[LOG
qualifier with the DELETE command.

In the following example, the deletion of all the files in the subdirectory
[JONES.LICENSES.DOG] is confirmed because the /CONFIRM qualifier is
specified:

$ DELETE/CONFIRM *.*;*
DISK1:[JONES.LICENSES.DOG]FEES.DAT;4, delete? [N]: Y
DISK1:[JONES.LICENSES.DOG])FEMALE.LIS;6, delete? [N]: Y
DISK1:[JONES.LICENSES.DOG]MALE.LIS;3, delete? [N]: N
DISK1:[JONES.LICENSES.DOG]POUND.LIS;17, delete? [N]: Y

In the following example, the system displays the names of the files after they
are deleted because the /LOG qualifier is specified:

$ DELETE/LOG *.LIS;*

$DELETE-I-FILDEL, DISK1:[JONES.LICENSES.DOG]FEMALE.LIS;6 deleted (35 blocks)

:%DELETE-I-FILDEL, DISK1:[JONES.LICENSES.DOG]MALE.LIS;3 deleted (5 blocks)
_%DELETE-I-FILDEL, DISKI1:[JONES.LICENSES.DOG]POUND.LIS;17 deleted (9 blocks)

Storing Information with Files 3-15

Storing Information with Files
3.6 Deleting Files

3.6.1 Using the PURGE Command

The PURGE command deletes all except the latest version of the specified file
(or all files) in the default directory or any other specified directory. Purging old
versions of files after updating them enables you to retain more free space on
your disk.

In the following example, all except the latest two versions of each file in the
default directory are purged:

$ PURGE/KEEP=2

3.7 Protecting Files from Other Users

The following sections provide an overview of file protection procedures. For
detailed security information, see the following:

e Chapter 4 for information on directory protection

e Chapter 10 for complete information on changing file protections

3.7.1 Access Control Lists (ACLSs)

To prevent other users from accessing your files, you can change the protection
or modify the access control list (ACL) of your files. To change the protection or
modify the ACL of a file, you must own the file, have control access to the file, or
have GRPPRYV, SYSPRV, BYPASS, or READALL privilege.

3.7.2 Types of Protection

There are two types of file protection: default and explicit. When a file is
created, it usually has the same protections as its parent directory; this is

the default protection. If you create a file using the CREATE/PROTECTION
command or if you change the protection on an existing file by issuing the SET
SECURITY/PROTECTION command, you are using explicit file protection.

Note that to protect a file completely, you must apply the same or greater
protection to the directory in which the file resides.

3.8 Printing Files

To print a file or files, use the PRINT command. The PRINT command places
your print job (all the files to be printed) in a list of jobs to be printed called a
print queue. The file types of the files named in the PRINT command default to
.LIS or the last explicitly named file type. The system displays the job name, the
queue name, the job number, and status of the job.

By default, the job name is the name of the first (or only) file specification in the
PRINT command. After a job is submitted to a queue, you reference it using the
job number. After the job is queued, it will be printed when no other jobs precede
it in the queue and when the printer is physically ready to print.

In the following example, a print job containing three files is placed in the default
print queue, SYS$PRINT:

$ PRINT POUND,MALE,FEES.DAT
Job POUND (queue SYSSPRINT, entry 202) started on SYS$PRINT

Because the default file type for the PRINT command is .LIS, the files
POUND.LIS, MALE.LIS, and FEES.DAT are queued. The job name is POUND,
the queue name is SYS$PRINT, and the job number is 202.

3-16 Storing Information with Files

Storing Information with Files
3.8 Printing Files

3.8.1 Print Job Priority

A print queue can execute only one job at a time. Print jobs are scheduled for
printing according to their scheduling priority, and the job with the highest
priority is printed first. If more than one job exists with the same priority, the
smallest job is usually printed first. Jobs of equal size having the same priority
are selected for printing according to their submission time. Priority may also
be determined by the system manger or by entering the /PRIORITY qualifier to
the PRINT command. For more information on scheduling priorities, refer to the
OpenVMS System Manager’s Manual.

3.8.2 Displaying Queue Information

The default print queue, SYS$PRINT, is usually started as part of the site-specific
system startup procedure. The following table shows commands you can use to
display information about queues:

To display... Enter this command...

The queues at your site SHOW QUEUE

The status of your print jobs SHOW ENTRY

Jobs queued by other users SHOW ENTRY/USERNAME= username
Information about a specific job SHOW ENTRY job-name

or jobs SHOW ENTRY entry-number

In the following example, the SHOW ENTRY command is used to display
information about a print job that has been queued:

$ SHOW ENTRY

Entry Jobname Username Blocks Status

202 POUND JONES 38 Pending
On stopped printer queue SYSSPRINT)

3.8.3 Print Forms
A print form serves the following functions:

e Determines certain page formatting attributes (such as margins and page
length)

¢ Determines whether a job is eligible to print depending on the paper stock
specified in the form

If your printing needs are limited, you do not need to use special forms because
Compaq supplies a systemwide default form (named DEFAULT) for all queues.
System managers can also create print forms. If you need to format output or if
certain print jobs require special paper, contact your system manager.

3.8.4 Stopping a Print Job

To stop a print job and delete it from the print queue, enter the entry number
parameter to the DELETE/ENTRY command.

In the following example, entry 202 is deleted:
$ DELETE/ENTRY=202

Storing Information with Files 3-17

Storing Information with Files
3.8 Printing Files

3.8.5 Printing Files on Other Nodes

DECnet or TCP/IP services allow you to print a file on another system.

Using TCP/IP, your system manager can configure your system with the Line
Printer Remote (LPR) and Line Printer Daemon (LPD) network services that
allow you to use the DCL PRINT command to send print jobs to a print queue
on a remote network host. The remote host can be a UNIX system or another
OpenVMS system running LPR/LPD. Using the LPR/LPD network services, you
can perform the following:

e Send print jobs to a printer connected to a remote network host
e Display print queue status
e (Cancel print jobs

e Receive on local OpenVMS system print queues print jobs initiated from a
user on a UNIX system

¢ Get a "finished" notification through SMTP mail

Refer to the Compaq TCP/IP Services for OpenVMS User’s Guide, which
describes how to print files using the LPR/LPD commands.

With DECnet, you can print a file on another system, copy that file to the remote
node and specify the /REMOTE qualifier to the PRINT command.

In the following example, the file COMPANY_HOLIDAYS.TXT is copied from the
local node to the remote node CHAOS and the file is queued for printing to the
default system print queue (SYS$PRINT) on node CHAOS:

$ COPY COMPANY HOLIDAYS.TXT CHAOS"JONES PANDEMONIUM"::DISK2:[JONES]*
$ PRINT/REMOTE CHAOS::DISK2: [JONES JCOMPANY_ HOLIDAYS.TXT

An access control string indicates that the user JONES is authorized to copy

files to the directory [JONES] on node CHAOS. The asterisk (*) wildcard at

the end of the file specification instructs the system to duplicate the file name
COMPANY_HOLIDAYS.TXT when that file is copied to the remote node.

Note

Not all qualifiers to the PRINT command are compatible with the
/REMOTE qualifier. For example, you cannot queue a job to a specific
print queue; all jobs are queued to the default system print queue
(SYS$PRINT). See the description of the /REMOTE qualifier to the DCL
command PRINT in the OpenVMS DCL Dictionary for a list of PRINT
command qualifiers compatible with /REMOTE.

3.8.6 PRINT Command Qualifiers

Print jobs can be controlled in various ways by using qualifiers to the PRINT
command. For example, you can specify the number of copies printed or you can
request that the system notify you when your print job is complete.

In addition to the qualifiers described in this manual, if you are running
DECprint Supervisor software on your system, you can use the /PARAMETER
qualifier to print landscape, two-sided, or many other ways. Contact your system
manager for a list of print options that are available on your system.

3-18 Storing Information with Files

Storing Information with Files
3.8 Printing Files

The following table lists a summary of PRINT command qualifiers. For complete
information on the PRINT command, refer to the OpenVMS DCL Dictionary or

online help.

Print Operations

Print Job Commands and Qualifiers

Number of copies:
By job
By file
Specified file only

Number of pages

Print features:
Flag pages
Type of forms (paper)
Special features
Double-spacing
Page heading

Notification of job execution

Delay execution of a job:
For a specified time
Indefinitely

Release a delayed job
Display your print jobs

Stop a print job:

Delete job

Stop current job
and begin printing
the next job
in the queue

Stop current job
and requeue it
for printing

Keep a job in a queue
after it has completed

PRINT/JOB_COUNT=n'
PRINT/COPIES=n'
file-spec/COPIES=n"'

PRINT/PAGES=!

PRINT/FLAG=!
PRINT/FORM="
PRINT/CHARACTERISTICS=!
PRINT/SPACE!
PRINT/HEADER!

PRINT/NOTIFY
PRINT/AFTER
PRINT/HOLD

SET QUEUE/ENTRY/RELEASE
SHOW ENTRY

DELETE/ENTRY=job-number
STOP/ABORT

STOP/REQUEUE

PRINT/RETAIN

1Parallel qualifiers for the SET QUEUE/ENTRY command allow you to specify these operations for
print jobs that are already queued but not yet printing.

3.8.7 WWPPS Utility (Alpha Only)

The World-Wide PostScript Printing Subsystem (WWPPS) is a utility that
allows you to print a text file with various language characters on any PostScript
printer. By embedding font data within the PostScript printable file, the language
characters can be printed even if the printer does not have the local language

fonts.

Note

Embedding font data in PostScript printable files may increase the size
of the file beyond the size that the printer memory can support. If this
happens, WWPPS appends an error page to the end of the printed output
to notify you that the file size exceeded the printer’s capacity.

To print local language characters such as Chinese, Korean, and
Japanese, it is recommended that a printer with a minimum of 24MB of

memory be used.

Storing Information with Files 3-19

Storing Information with Files
3.8 Printing Files

Supported Languages
WWPPS supports the following languages:

e (Cyrillic (ISO8859-5)

e Greek (ISO8859-7)

e Hebrew (ISO8859-8)

e Japanese (Super DEC Kanji)

e Korean (DEC Korean)

e Latin 1 (ISO8859-1)

e Latin 2 (ISO8859-2)

e Latin 4 (ISO8859-4)

e Simplified Chinese (DEC Hanzi)
e Thai (TACTIS)

e Traditional Chinese (Taiwanese EUC/DEC Hanyu)
e Turkish (ISO8859-9)

¢ Unicode

When processing a character, WWPPS checks to see if the character is printable
in the current locale. The locale setting is provided by the Compaq C for
OpenVMS Run-Time Library (RTL) during the OpenVMS installation. Except for
files in 16-bit Unicode or ISO 10646 (USC-4) format, you must set the appropriate
locale before printing files that contain characters in languages other than
English. If the locale setting for the process is not appropriate for the input file,
the locale can be set specifically for the print job by using the /[LOCALE qualifier.

Supported Codesets
The following codesets are supported on OpenVMS systems:

Codeset Codeset Name

DECHANYU DECHanyu for Traditional Chinese (Plane 1 and Plane 2 only)
DECHANZI DECHanzi for Simplified Chinese

DECKOREAN DECKorean for Korean

GB18030 GB18030-2000 for both Simplified Chinese and Traditional Chinese
IS0O8859-1 ISO Latin-1

1S08859-2 ISO Latin-2

1S08859-5 ISO Latin-5

1S08859-7 ISO Latin-7

IS0O8859-8 ISO Latin-8

1S08859-9 ISO Latin-9

SDECKANJI Super DEC Kanji for Japanese

TACTIS TIS-620 for Thai

All of these codesets are supported by WWPPS, but fonts can be associated with
only one language at a time for each codeset.

3-20 Storing Information with Files

Storing Information with Files
3.8 Printing Files

WWPPS also supports Unicode character conversion for all of these codesets
except Thai. A Unicode character is converted to a character in one of these
codesets; then the font supporting that codeset is used for the character in the
PostScript file. If a character cannot be converted, it is printed as a space.

3.8.7.1 Invoking WWPPS

The system manager may have already set up the foreign command for WWPPS,
but if not, you can do so by adding the following line to your LOGIN.COM:

$ WWPPS :== $SYSS$SYSTEM:WWPPS.EXE
To invoke the WWPPS utility from the DCL prompt, enter the following:
$ WWPPS

3.8.7.2 WWPPS Utility Commands

The following list contains descriptions of the commands, parameters, and
qualifiers available in the WWPPS utility. Examples follow each description.

EXIT

Exits from the WWPPS session and returns to the DCL command level. You can
also exit the WWPPS session by pressing Ctrl/Z or Ctrl/C.

WWPPS> EXIT

HELP

Enables you to obtain information about the World-Wide PostScript Printing
Subsystem (WWPPS).

WWPPS> HELP PRINT

To obtain information about individual commands or topics, enter the HELP
command followed by the command or topic name.

HELP [topic]

PRINT

Converts one text file at a time into a printable PostScript file and then submits
it to the printer queue. Characters can be printed in the standard font or in bold.

PRINT/QUEUE=queue-name [/qualifiers] file-spec

The /QUEUE qualifier is required on all PRINT commands to specify the name
of the queue to which the text file specified by file-spec should be sent. For
example, the following command submits file REPORT.TXT to the PRT_QUEUE
printer queue to be printed in American English (as designated by the /[LOCALE
qualifier):

WWPPS> PRINT/QUEUE=PRT_QUEUE/LOCALE=EN_US_IS08859-1 REPORT.TXT
The optional qualifiers for the PRINT command are:
e /COPIES

Specifies the number of copies to be printed. The default number of copies is
1.

e /INDENTATION

Specifies the number of characters to indent from the left margin. The default
is /INDENTATION=0 (no indentation). The maximum value allowed depends
on the specified (or default) values for /PAPER_SIZE and /ORIENTATION.

Storing Information with Files 3-21

Storing Information with Files
3.8 Printing Files

Maximum value for

/PAPER_SIZE /ORIENTATION /INDENTATION
LETTER PORTRAIT 39

A4 PORTRAIT 38

LETTER LANDSCAPE 65

A4 LANDSCAPE 67

/LENGTH

Specifies page length as the number of lines. The default length is 66 lines
for LETTER size and 68 lines for A4 size.

/LOCALE

Specifies the locale setting in which the WWPPS converts the input file. You
do not need to specify /[LOCALE for text files in Unicode format (UTF-20).

Locales are constructed using the following convention:
language_country codeset.LOCALE

The language and country are each two characters, as defined by the OSF
naming conventions. (See the /[LOCALE subtopics for possible values.) For
example, EN_US_IS0O8859-1 represents the locale for English spoken in the
United States.

By default, WWPPS uses the system-specified or process-specified locale.
If there is no system-specified or process-specified locale, the default is
/LOCALE=C.

To display the locale specified on your system, enter the following command:
$ LOCALE SHOW PUBLIC

Table 3-1 aligns language codes and country codes that are commonly
associated with each other.

Table 3-1 Commonly Associated Language Codes and Country Codes

Language Code Language Country Code Country

CA Catalan ES Spain

ES Spanish

CS Czech CZ Czech Republic

DA Danish DK Denmark

DE German CH Switzerland
DE Germany

EL Greek GR Greece

EN English GB Great Britain
US United States

FI Finnish FI Finland

FR French BE Belgium
CA Canada

(continued on next page)

3-22 Storing Information with Files

Storing Information with Files
3.8 Printing Files

Table 3-1 (Cont.) Commonly Associated Language Codes and Country Codes

Language Code Language Country Code Country
FR France

HE Hebrew 1L Israel

W Hebrew

HU Hungarian HU Hungary

IS Icelandic IS Iceland

IT Italian IT Italy

JA Japanese JP Japan

KO Korean KR Korea

LT Lithuanian LT Lithuania

NL Dutch NL Netherlands

NO Norwegian NO Norway

PL Polish PL Poland

PT Portuguese PT Portugal

RU Russian RU Russia

SK Slovak SK Slovakia

SL Slovene SI Slovenia

SV Swedish SE Sweden

TH Thai TH Thailand

ZH Chinese HK Hong Kong
™ Taiwan
CN People’s Republic of China

The codesets supported on OpenVMS systems are listed under Supported
Codesets in Section 3.8.7.

/ORIENTATION

Specifies the orientation of printed output on the logical page as PORTRAIT
(default) or LANDSCAPE.

/PAPER_SIZE

Specifies the size of the paper as LETTER (default) or A4.

/RANGE

Specifies the range of pages to be printed, starting with page number m and
ending with page number n. Or, instead of printing a range of pages, you can
specify ODD to print only odd-numbered pages or specify EVEN to print only
even-numbered pages. By default, the entire document is printed.

/VERTICAL

Specifies vertical writing mode for Chinese, Korean, and Japanese multibyte
characters. When /VERTICAL is specified, multibyte characters are rotated

counterclockwise by 90 degrees and printed in lines from left to right; when

the printed page is rotated 90 degrees clockwise, the characters can be read

in vertical lines from right to left. In vertical mode, single-byte characters in
languages such as English are still printed horizontally from left to right.

/WIDTH

Storing Information with Files 3-23

Storing Information with Files
3.8 Printing Files

Specifies the width of the page in columns. Valid values are as follows:
— 80 (for LETTER size paper and PORTRAIT orientation)

— 132 (for LETTER size paper and LANDSCAPE orientation)

— 78 (for A4 size paper and PORTRAIT orientation)

— 136 (for A4 size paper and LANDSCAPE orientation) The default value
is /WIDTH=80.

3-24 Storing Information with Files

4

Organizing Files with Directories

A directory is a special kind of file that contains the names and locations of
files. For example, when the system manager creates a user account for you, a
directory will also be created, often with the same name as your username. If
your user name is JONES, the directory would be [JONES].

A subdirectory is a directory file within another directory or subdirectory file.
Subdirectories let you organize files into meaningful groups. For example, you
might have one subdirectory that contains memos and another subdirectory for
status reports.

Like a directory, a subdirectory contains names and pointers for the files
cataloged within it. A subdirectory can contain an entry for another subdirectory,
which can contain an entry for another subdirectory, and so on. This structure
(a top-level directory plus subdirectories) is called a hierarchical directory
structure.

The files you commonly access are stored on disks. Each disk contains a main
directory, known as the master file directory (MFD). The MFD contains a
list of user file directories (UFDs). A UFD is referred to as a user’s top-level
directory. In most cases, a UFD exists for each user on the system. It contains
the names of and pointers to files cataloged in a user’s directory. Your top-level
directory is usually your process default directory. Unless your account has
been modified to do otherwise, the system automatically makes your top-level
directory your process-default directory when you log in.

The device (disk) and directory components of a complete file specification are
often referred to as the file path. The path, combined with the file name and file
type (and version) form a complete file specification. A complete file specification
contains all of the information that the system needs to locate and identify a file.!

Refer to the Guide to OpenVMS File Applications for more information about how
the system applies defaults to partial file specifications.

This chapter describes how to use directories to organize and manage files. It
includes information about:

¢ Directory structures

¢ Understanding directories

e Defaults

e Protecting directories from other users

e Using wildcards to search the directory structure

! Files can also be stored on magnetic tapes, but magnetic tapes do not have directory

structures. To access a file stored on tape, use a file specification that contains only file
information.

Organizing Files with Directories 4-1

Organizing Files with Directories

e Working with directories in UIC format

Note

Throughout this chapter, examples that specify a node name do not
always include an access control string. This is because proxy accounts
enable users to perform operations on the remote systems in these
examples.

If you are working in an environment with extended file specifications, directory
structures and syntax may differ from the traditional structures described here.
For information about working with directories in such an environment, refer to
Chapter 5.

4.1 Directory Structures

Figure 4-1 shows a sample directory hierarchy. At the top of the structure is
the master file directory (MFD). Its directory name is [000000]. The MFD shown
contains entries for user file directories including MARTINO.DIR, PUBLIC.DIR,
and JONES.DIR. The top-level directory [JONES] is a user file directory named
JONES.DIR;1 in [000000].

The sample directory structure in Figure 4-1 is the basis for many of the
examples in this chapter.

4-2 Organizing Files with Directories

Figure 4-1 Directory Structure

Master File

Directory (MFD):

Top Level Directory:

Second Level Directory:

Third Level Directory:

[000000]

MARTINO.DIR
PUBLIC.DIR

JONES.DIR,

[JONES]

LOGIN.COM;3
LOGIN.COM;4
STAFF.DIS;3

STAFF_VACATIONS.TXT;2
LICENSES.DIR;1

Organizing Files with Directories
4.1 Directory Structures

TAXES.DIR;1

I

l

[JONES. TAXES] [JONES.LICENSES]
BLLNG.DATST MAILING.LIS;6
LOoAL DISS TOTALDAT;2
RECEIPTS.DAT;15 DEPT.DAT3
;) DOG.DIR;1
PROPERINDIRT o MARRIAGEDIR;1 |
I I
[JONES.TAXES.SALES] [JONES.TAXES.PROPERTY] [JONES.LICENSES.MARRIAGE] [JONES.LICENSES.DOG]
. . FEES.DAT:4
FEDERAL.LIS;6 DRI oA CURRENT.DAT FEMALE.LIS:6
STATELIS2 DAT; DAT, MALE.LIS;3
: DISTRICT3.DAT:2 1980S.DAT:2 MALELSS o
ZK-1746-GE

Note the following about this directory structure:

e Assume that you are user JONES. When you log in, the system places you in
[JONES], your default directory.

e [JONES] contains the following four nondirectory files:

LOGIN.COM;3
LOGIN.COM;4
STAFF.DIS;3
STAFF_VACATIONS.TXT;2

[JONES] also contains the following two directory files:

LICENSES.DIR;1
TAXES.DIR;1

The directory file LICENSES.DIR;1 points to the [JONES.LICENSES]
subdirectory.

TAXES.DIR;1 points to the [JONES.TAXES] subdirectory.

The [JONES.LICENSES] subdirectory contains three nondirectory files and
two directory files.

The directory file DOG.DIR;1 points to the [JONES.LICENSES.DOG]
subdirectory.

Organizing Files with Directories 4-3

Organizing Files with Directories
4.1 Directory Structures

¢ MARRIAGE.DIR points to the [JONES.LICENSES.MARRIAGE] subdirectory.

4.2 Understanding Directories

The directory component of a file specification consists of a top-level directory
name (such as a UFD) that can be followed by a number of subdirectory names.
Subdirectory names are separated by periods (.).

Versions of OpenVMS Alpha prior to Version 7.2 and all versions of OpenVMS
VAX support directory components that contain the UFD and no more than seven
subdirectory names. OpenVMS Alpha Version 7.2 or later supports 255 names
(UFD plus subdirectories) in a directory component.

A directory specification has the following format:
[directory.subdirectory]

To add one or more levels of subdirectories, add a period and another subdirectory
name for each subdirectory (up to the limit). A subdirectory of another
subdirectory is specified by concatenating the subdirectory name (with the
preceding period) to the name of the subdirectory one level above it in the
hierarchy.

On versions prior to OpenVMS Alpha Version 7.2, on any version of OpenVMS
VAX, and on OpenVMS Alpha systems using ODS-2 disks, a subdirectory name
can contain no more than 39 characters.

On OpenVMS Alpha Version 7.2 or later with ODS-5 disks, subdirectory

names are limited by the filename limit since subdirectory files are stored as
<subdirectory-name>.DIR;1. The total number of characters within the directory
and root components of a file specification (excluding delimiter brackets and
periods) should not exceed 512.

4.2.1 Creating Directories

To create a directory, enter the CREATE/DIRECTORY command. If you want
to create a subdirectory under your current directory, you do not have to specify
the current directory name; you can enter the subdirectory name preceded by a
period.

In the following example, the directory [JONES.TAXES] is created:
$ CREATE/DIRECTORY [JONES.TAXES]

In the following example, the current default directory is [JONES], and the
subdirectory [JONES.LICENSES] is created:

$ CREATE/DIRECTORY [.LICENSES]

4.2.2 Displaying Directories

To display the names of files in a directory, enter DIRECTORY at the DCL
prompt. To list the files in a subdirectory, enter the DIRECTORY command and
the subdirectory name preceded by a period.

When you include certain command qualifiers along with the DIRECTORY
command, you can retrieve information in addition to the names of the files. For
more information on DIRECTORY command qualifiers, refer to the OpenVMS
DCL Dictionary or online help.

4-4 Organizing Files with Directories

Organizing Files with Directories
4.2 Understanding Directories

In the following example, the files in the directory [JONES] are listed. The
example shows that [JONES] contains two subdirectories, [JONES.LICENSES]
and [JONES.TAXES], four nondirectory files, STAFF.DIS, STAFF_
VACATIONS.TXT, and two versions of LOGIN.COM:

$ DIRECTORY

Directory DISK1:[JONES]

LICENSES.DIR;1
LOGIN.COM; 3
LOGIN.COM; 4
STAFF.DIS;3

STAFF VACATIONS.TXT;2
TAXES.DIR; 1

Total of 6 files.

In the following example, the default directory remains [JONES] and the contents
of the subdirectory [JONES.LICENSES] are displayed:

$ DIRECTORY [.LICENSES]

Directory DISK1:[JONES.LICENSES]

DEPT.DAT; 3
DOG.DIR;1
MAILING.LIS;6
MARRIAGE.DIR; 1
TOTAL.DAT; 2

Total of 5 files.

4.2.3 Deleting Directories

To delete a directory, use the following procedure:

Step Task

1 Make sure that the directory contains no files. To find out if the directory contains
files, enter the DIRECTORY command.

When there are no files in the directory, the system displays the following message:

$DIRECT-W-NOFILES, no files found

2 If the directory contains files, copy them to another directory to save them
or delete them if you do not want to save them. If the directory contains
subdirectories, examine those subdirectories, copy or delete their files, and delete
the subdirectories.

3 Move to the directory one level above the directory you want to delete. Remember
that subdirectories exist as files in directories. When you delete a directory, you
delete the file that points to that directory.

4 Change the file protection of a directory to allow delete access to the file. Directory
files in master file directories require SYSPRYV privilege to delete. (See Chapter 3
for more information about file protection.)

5 Delete the directory file using the DELETE command.

The following example shows how to delete the subdirectory [JONES.LICENSES]:

Organizing Files with Directories 4-5

Organizing Files with Directories
4.2 Understanding Directories

$ SET DEFAULT [JONES.LICENSES]

$ DIRECTORY

$DIRECT-W-NOFILES, no files found

$ SET DEFAULT [JONES]

$ SET SECURITY/PROTECTION=OWNER:D LICENSES.DIR
$ DELETE LICENSES.DIR;1

4.3 Setting Defaults

To change your default directory, use the SET DEFAULT command. The new
default remains in effect until you enter another SET DEFAULT command or log
out. To set default to a subdirectory, append the subdirectory name to the name
of the directory one level above it.

In the following example, default is set to the directory [JONES] and then the file
[JONES]STAFF_VACATIONS.TXT is displayed:

$ SET DEFAULT [JONES]
$ TYPE STAFF_VACATIONS.TXT

In the following example, the file BILLING.DAT, which is located in the
subdirectory [JONES.TAXES], is displayed:

$ SET DEFAULT [JONES.TAXES]
$ TYPE BILLING.DAT

4.3.1 Setting Default to Nonexistent Directories

Note that the operating system allows you to set default to a nonexistent disk
or directory. If you have set default to a nonexistent directory, when you try to
manipulate a file, the system displays a message stating that the directory does
not exist. If you find yourself in a nonexistent disk or directory and cannot carry
out a desired operation, set default to an existing disk or directory.

4.3.2 SHOW DEFAULT Command

To display your current default directory, enter the command SHOW DEFAULT,
as shown in the following example:

$ SHOW DEFAULT
DISK1:[JONES.TAXES]

$ SET DEFAULT [PUBLIC]

$ SHOW DEFAULT
DISK1:[PUBLIC]

You can use the SET DEFAULT command to change the default device. The
default remains in effect until you enter another SET DEFAULT command or
log out. You can also specify the device to which you want to set default without
including the directory in the command.

The following example shows how to change the default device:

$ SHOW DEFAULT
DISK1:[JONES]
$ SET DEFAULT DISK2:[GROUP]
$ SHOW DEFAULT
DISK2: [GROUP]

In the following example, the directory [JONES] is assumed and exists on DISK1
and DISK2:

4-6 Organizing Files with Directories

Organizing Files with Directories
4.3 Setting Defaults

$ SHOW DEFAULT
DISK1:[JONES]

$ SET DEFAULT DISK2:

$ SHOW DEFAULT
DISK2: [JONES]

4.3.3 Using Temporary Defaults

If you enter a list of files and do not give a complete file specification for each file
in the list, the system applies temporary defaults for node names, device names,
and directory names. To substitute your current default directory for a temporary
default, use empty square brackets. If you include a node name in a file that
appears in a list, you can override the temporary default by using a double colon.

In the following example, A.LIS and B.LIS are copied from the [STATS] directory
to the [RESULTS] directory:

§ COPY [STATS]A.LIS,B.LIS [RESULTS]

Note that the system uses the preceding file specification in the list,
[STATS]A.LIS, to determine that the temporary default directory for file B.LIS is
[STATS] as well.

In the following example, a temporary default device and two different directories
are used:

$ COPY BASE:[STATS]A.LIS,[TIME]B.LIS,C.LIS [RESULTS]

All three files (A.LIS, B.LIS, and C.LIS) are copied from the BASE device. The
A.LIS file is copied from the [STATS] directory. The other two files are copied
from the [TIME] directory.

In the following example, the current default directory is [BETA]. This command
copies [ALPHA]TEST.DAT and [BETA]JFINAL.DAT to the [RESULTS] directory:

§ COPY [ALPHA]TEST.DAT,[]FINAL.DAT [RESULTS]

4.4 Protecting Directories from Other Users

You cannot completely protect a file without applying at least the same protection
to the directory in which the file resides. For example, if you deny a user all
access to a file but allow that user read access to the file’s directory, the user
cannot access the contents of the file but can see that it exists. Conversely, a
user allowed access to a file and denied access to the file’s directory (or one of the
parent directories) cannot see that the file exists.

Note

To protect private files, directory protection alone is not adequate. You
must also protect each file within the directory.

By default, top-level directories receive UIC-based protection
(S:RWE,O:RWE,G:RE,W:E) and no ACL. Subdirectories receive UIC-based
protection from the parent directory. For more information on protection codes,
see Section 10.3.

Organizing Files with Directories 4-7

Organizing Files with Directories
4.4 Protecting Directories from Other Users

To specify UIC-based protection explicitly when creating a directory, use the
/PROTECTION qualifier with the CREATE/DIRECTORY command. You
cannot specify an ACL for the directory until the directory is created. To
change the UIC-based protection of an existing directory, apply the SET
SECURITY/PROTECTION command to the directory file.

You can limit but not prohibit directory access by specifying execute access but

not read access. Execute access on a directory permits you to examine and read
files that you know are contained in the directory; that means you can examine
a file if you already know what the file specification is, but you cannot display a
list of the files in the directory. For additional security information, refer to the
OpenVMS Guide to System Security.

4.5 Using Wildcards to Search the Directory Structure

From any point in a directory structure, you can refer to another directory or
subdirectory in the structure. Do this by specifically naming the directory or
subdirectory you want or by using the ellipsis (...) and hyphen (-) wildcard
characters. For additional information about wildcards, see Section 3.2.

If you are working in an environment with extended file specifications, refer
to Chapter 5 for further information about searching directory structures with

wildcards.
4.5.1 Ellipsis Wildcard Character
Use the ellipsis (...) wildcard character to search down into the directory

hierarchy. To search the current directory and all the subdirectories below it, use
the ellipsis by itself as shown:

$ DIRECTORY [...]

If you begin the directory specification with an ellipsis, the search begins from
your current directory. However, if you begin the directory specification with a
period, only the subdirectory that is one level lower than the current directory is
searched.

To search all top-level directories and their subdirectories from wherever you are
in the directory structure, use an asterisk (*) followed by an ellipsis (...).

In the following example, assuming the current directory is [JONES], the latest
versions of all files named FEES.DAT in [JONES] and all subdirectories under
[JONES] will be displayed:

§ TYPE [JONES...]FEES.DAT

In the following example, assuming the current default directory is [JONES], all
subdirectories that end in .SALES are searched, and the latest versions of the file
FEDERALL.LIS are displayed:

§ TYPE [...SALES]FEDERAL.LIS

In the following example, the latest versions of all files named DEPT.DAT in
[JONES] and all subdirectories under [JONES] are displayed:

$ TYPE [...]DEPT.DAT

In the following example, assuming the current directory is [JONES], the
[.LICENSES] subdirectory will be searched for the file MAILING.LIS, but
[JONES.LICENSES.MARRIAGE] will not:

$ TYPE [.LICENSES]MAILING.LIS

4-8 Organizing Files with Directories

Organizing Files with Directories
4.5 Using Wildcards to Search the Directory Structure

In the following example, assuming the current directory is [JONES], the
latest versions of all files named DEPT.DAT in the [LICENSES] subdirectory
under [JONES] and all subdirectories under the [LICENSES] subdirectory are
displayed:

$ TYPE [...LICENSES...]DEPT.DAT

In the following example, as many as eight levels of directory names (the top-
level directory and seven subdirectories) are searched (if they exist). Note that
the command shown requires READALL privilege.

$ DIRECTORY [*...]

4.5.2 Hyphen (-) Subdirectory Character

Hyphen characters are used as an abbreviated way to specify [sub-]directories
above the current process default directory. Each hyphen represents one level.
Hyphens can be followed by subdirectory names (with separating periods) to
specify other paths down the directory hierarchy.

If you enter so many hyphens that the reference points above the top-level
directory, the system displays an error message.

In the following example, the current process default directory is
[JONES.LICENSES]. The following command displays the latest version of
STAFF.DIS in [JONES]:

§ TYPE [-]STAFF.DIS

In the following example, the current directory is [JONES.LICENSES]. The
command shown displays the latest version of BILLING.DAT in [JONES.TAXES]:

§ TYPE [-.TAXES]BILLING.DAT

In the following example, the command shown changes the process default
directory to one that is two levels above the current level in the directory
hierarchy.

$ SET DEFAULT [--]

On OpenVMS Version 7.2 Alpha or later with ODS-5 disks, file names and
subdirectory names can consist solely of hyphens. To distinguish between a
(sub-)directory whose name consists of hyphens and a relative specification,
the former must be specified with at least one RMS escape character (*). The
following specification refers to the directory three levels above the current
process default.

[---1
The following specification refers to the directory (UFD) "—":

[*---]

4.6 Working with Directories in UIC Format

Although this chapter focuses on how to use named directories, you can also
specify directory names in UIC format. In UIC format, a 2-part octal number
forms a user identification code (UIC) that refers to a user file directory
(UFD). Almost every DCL command that accepts a file specification can recognize
directory names in UIC format. In general, you do not need to use this format
unless you are working with a real-time Resource Sharing Executive (RSX)
operating system.

Organizing Files with Directories 4-9

Organizing Files with Directories
4.6 Working with Directories in UIC Format

A UIC directory specification has the following format:
[group,member]

For example, [122,1] is a UIC directory specification representing member 1
in group 122. Directory names in UIC format generally, but not necessarily,
correspond to the UIC of the owner of the directory.

When you refer to a UIC directory, observe the following rules:
e Use an octal number in the range of 1 to 37776 to specify the group.
e Use an octal number in the range of 0 to 177776 to specify the member.

¢ Do not use the hyphen (-) or ellipsis (...) wildcard as part of the
specification.

4.6.1 Using Wildcards with UIC Directories

It is also possible to use the asterisk (*) wildcard to specify a UIC directory. For
example, [*,6] indicates all directories with any group number and a member
number of 6. The search is limited to directories in UIC format. The directory
specification [*,*] locates all directories in UIC format. To locate all named
directories as well as all directories in UIC format, use [*].

4.6.2 Translating to Named from UIC Format

Note that you can translate a directory name in UIC format to named format.
If necessary, add zeros to the left of the group and member numbers to create a
6-character name.

You cannot combine UIC format and named format. If you have a directory with
a name in UIC format and you want to specify one of its subdirectories, translate
the UIC format to named format.

The named equivalent of the UIC directory specification [122,1] is as follows:
[122001]

To refer to the subdirectory [122,1]SUB.DIR, use the named directory
[122001.SUB].

4-10 Organizing Files with Directories

O

Extended File Specifications

OpenVMS Alpha Version 7.2 implemented Extended File Specifications, which
consists of two major components:

e An optional volume structure, On—Disk Structure Level 5 (ODS-5) that
supports longer file names with a greater range of legal characters

¢ Deep directories

Taken together, these components provide much greater flexibility for OpenVMS
Alpha systems (using Advanced Server for OpenVMS) to store, manage, serve,
and access files that have names similar to those in a Windows environment.

Deep directories and extended file names provide the following benefits:

e OpenVMS users can make use of long file names, new character support,
and the ability to have lowercase and mixed-case file names. These new
capabilities make file activity on an OpenVMS file server more transparent to
Windows users.

e OpenVMS system managers can see files on OpenVMS systems with the
names specified by Windows users.

e Applications developers who are porting applications from other environments
that have support for deep directories can use a parallel structure on
OpenVMS.

5.1 ODS-5 Volume Structure

On-Disk Structure (ODS) refers to a logical stucture given to information
stored on a disk. ODS-2 is the default disk structure of the OpenVMS operating
system. ODS-5 is a superset of ODS-2 that is especially useful in multiplatform
environments. The ODS-5 volume structure provides:

¢ Long file names
e More characters legal within file names

e Preservation of case within file names

5.1.1 Long File Names

Traditional (ODS-2) file specifications follow the 39.39 format, supporting only a
single period (.) separating the file name and file type.

On an ODS-5 volume, the file name together with the file type can be up to 236
8-bit characters, or 118 16-bit characters, in length.! For example:

! Unmodified programs and utilities may limit or abbreviate complete file specifications to

255 bytes.

Extended File Specifications 5-1

Extended File Specifications
5.1 ODS-5 Volume Structure

$ CREATE This.File.Name.Has.A.Lot.Of.Periods.DAT
$ CREATE -

$ ThisIsAVeryLongFileName"&ItWillKeepGoingForLotsAndLotsOfCharacters.Exceed -
$ ingThe39",39presentInPreviousVersionsOfOpenVMS

$ DIRECTORY

Directory TEST$ODS5:[TESTING]

ThisIsAVeryLongFileName"&ItWillKeepGoingForLotsAndLotsOfCharacters.Exceeding
The39",39presentInPreviousVersions0fOpenvMS; 1
This".File".Name".Has".A".Lot".0f".Periods.DAT;1

Total of 2 files.

5.1.2 More Characters Legal Within File Names

Traditional (ODS-2-compliant) file names can use alphanumeric characters (A-Z,
a-z, 0-9), the dollar sign ($), underscore (_) and hyphen (-). ODS-5 offers a broader
set of characters for naming files.

ISO LATIN-1 and Unicode (UCS-2) Character Sets

ODS-5 supports file names that use the 8-bit ISO Latin-1 character and 16-bit
Unicode (UCS-2) character sets. The ISO Latin-1 Multinational character set is
a superset of the traditional ASCII character set. In extended file specifications,
you can use all characters from the 8-bit ISO Latin-1 Multinational character set
except the asterisk (*) and the question mark (?).

Special Characters

Some ISO Latin-1 characters require an escape character to precede them in a
file specification in order to be interpreted correctly. In extended file names, RMS
and DCL interpret the circumflex (*) as an escape character. The following list
contains rules for using the escape character:

The escape character (*) followed by an underscore (_) or a space represents a
space.

The escape character () followed by any of the following characters means
that the character is to be used as part of a file name, rather than having any
special meaning that it might otherwise have in a file specification:

[A D I S
You can enter a literal period (.) with or without the escape character (*)
in a file name. The system adds the escape character to any periods other

than those that act as delimiters for the file type and version number. Literal
periods (.) in directory names must be preceded by the escape character.

An escape character followed by a hexadecimal digit requires a second
hexadecimal digit. Interpret the two following characters as a hexadecimal
value for an arbitrary 1-byte character. For example, *20 represents a space.

An escape character followed by “U” within a file specification indicates that
the four hexadecimal digits that follow are to be interpreted as Unicode. For
example, "U012F.

All characters in file specifications that are not preceded by an escape
character (*) are presumed to be ISO Latin-1.

5-2 Extended File Specifications

Extended File Specifications
5.1 ODS-5 Volume Structure

Note

File names containing special characters cannot be accessed from a VAX
system. See Section 5.7 for more information about mixed-architecture
environments.

Interpretation of Period (.)

The use of the period (.) as a literal character in extended file names requires
RMS to determine which periods are file name characters and which are
delimiters.

When only one period (.) is used in an extended file name, that period is
interpreted as the delimiter. As in previous versions of OpenVMS, this behavior
also occurs if the single period is followed by a number:

$ CREATE Test.l
creates the file:
Test.l;1

Determination of Version Numbers

When there are multiple periods (.) in a file name, RMS looks at all the
characters after the last period.

If Then

The characters after the last period are The numeric string is determined to be a
all numeric version number

The characters after the last period are The numeric string is determined to be a
all numeric and preceded by a minus version number

sign (-)

There are more than 5 numeric RMS rejects the file name as illegal

characters after the last period

There is a nonnumeric character It is interpreted as a file type delimiter
following the last period

For example, the following command:

$ CREATE Test4.3.2.1

creates the file:

Testd4".3.2;1

where 2 is the file type and I is the file version.

A version number explicitly delimited by a semicolon (;) must also be 5 or fewer
numeric characters, and can be preceded by a minus sign (-).

5.1.3 Preservation of Case

In prior versions of OpenVMS, DCL, and RMS converted all file specifications to
uppercase.

On ODS-5 volumes, you can enter file names in uppercase, lowercase, or mixed
case. The case of all files names is preserved as created. For example:

Extended File Specifications 5-3

Extended File Specifications
5.1 ODS-5 Volume Structure

$ CREATE KitContents.Txt
$ DIRECTORY

Directory DISKI1:[USER1]
KitContents.Txt;1

When you create multiple files with the same name differing only in case, DCL
treats the subsequent files as new versions of the original file, and converts them
to the same case as the original file. For example:

$ CREATE CaPri
S CREATE CAPRI
$ CREATE capri
$ DIRECTORY

Directory DISKI1:[USER1]
CaPri.;1 CaPri.;2 CaPri.;3

5.1.4 Using Wildcards

Single- and multiple-character wildcards function as expected with ODS-5 files. A
single-character wildcard represents exactly one character in either the file name
or file type, but may not be used in the file version string. A multiple-character
wildcard can represent any number of characters (including zero characters) in
the file name or file type. A multiple-character wildcard can be used in place of a
version string.

5.1.4.1 Wildcard Characters
The following characters are always valid wildcard characters:

e The asterisk (*) is a multiple-character wildcard.
e The percent sign (%) is a single-character wildcard.
¢ The question mark (?) is a single-character wildcard.

The percent sign (%) continues to be a single-character wildcard to maintain
compatibility with existing applications. The percent sign (%) may be used as
a literal character when preceded by the circumflex (*) and is also a literal
character in Windows file names. In addition to the percent sign, RMS also
recognizes the question mark (?) as a single character wildcard. The question
mark functions identically to the percent sign as a wildcard character on
OpenVMS 7.2 and later. The percent sign and the question mark each matches
exactly one character in a search pattern.

Note

An escaped character (such as ”.) or an escape sequence (such as "EF
or ~U0101) is considered a single character for purposes of wildcard
matching.

5-4 Extended File Specifications

Extended File Specifications
5.1 ODS-5 Volume Structure

5.1.4.2 Wildcard Syntax
Although DCL preserves the case of extended file names, wildcard matching is
case blind.

A search operation with wildcards continues to match only against the
corresponding character in the same part of the target file. Table 5—1 contains
examples of some wildcard searches.

Table 5-1 Sample Wildcards and Matching Patterns

The pattern... matches... ...but does not match
A*B;* AHAB. ;1 A.B;1

A *B* A~ DISK.BLOCK;1 A~.CN.B.DAT;1
A?B.TXT;* AN B.TXT;5 AN B.TXT1

* DAT Lots”.of* Periods.dat;1 DAT;1

Mil?no.dat Milano.dat;1 Millaano.dat;1
NAPOLIL.?.DAT napoli.q.dat;1 napoli.abc77.dat;1

5.2 Deep Directory Structures

Both ODS-2 and ODS-5 volume structures support deep nesting of directories on
OpenVMS Alpha, as follows:

e There can be up to 255 levels of directories.
e On ODS-2 the format for a directory name is 39.39.

¢ On ODS-5 the name of each directory can be up to 236 8-bit or 118 16-bit
characters long.

For example, you can create the following deeply nested directory:
$ CREATE/DIRECTORY [.a.b.c.d.e.f.g.h.i.j.k.l.m]
You can create the following directory with a long name on an ODS-5 volume:

$ CREATE/DIRECTORY
[.AVeryLongDirectoryNameWhichHasNothingToDoWithAnythingInParticular]

Complete file specifications longer than 255 bytes are abbreviated by RMS when
presented to unmodified applications.

5.2.1 Directory Naming Syntax

On an ODS-5 volume, directory names conform to most of the same conventions
as file names when using the ISO Latin-1 character set. Periods and special
characters can be present in the directory name, but in some cases, they must
be preceded by a circumflex (*) in order to be recognized as literal characters, as
shown in Table 5-2.

Extended File Specifications 5-5

Extended File Specifications
5.2 Deep Directory Structures

Table 5-2 Directory Names on ODS-5 Volumes

CREATE/DIRECTORY. . . Result
[Hi*&Byel] Hi*&Bye.DIR;1
[Lots”.Of".Periods”.In”.This”.Name] Lots”.Of”*.Periods”.In”.This”.Name.DIR;1

5.2.2 Directory ID and File ID Abbreviation

Under some circumstances, a full file specification may contain more characters
than the 255 bytes allowed by unmodified applications. If a file specification that
such an application needs exceeds 255 bytes in length, RMS generates a shorter
file specification by abbreviating the directory to a Directory ID (DID), and if
necessary, the filename to a File ID (FID).

When the file specification is too long, RMS first attempts to generate a shorter
directory specification by identifying the directory with its directory ID. This
shorter specification is referred to as a DID.

TEST$0DS5:[5953,9,0]Alghero. TXT; 1

Note that this form of the directory name must have three numbers and two
commas to avoid ambiguity with UIC format directory names. With the
DIRECTORY command you can view the shorter DID version as well as the
full version of a file specification.

5.3 Using the Extended File Specifications Parsing Feature in DCL

The default DCL parsing style for file names is for ODS-2 style file names.

When using extended file names on the DCL command line, you need to set the
parsing style to EXTENDED to accept and display extended file specifications. To
set the parsing style, enter the command:

$ SET PROCESS/PARSE_STYLE=EXTENDED

Note that this command has no effect on an OpenVMS VAX system.

After you enter the command, DCL accepts a file name such as the following:
$ CREATE MY"[FILE

For additional information, see the description of the SET PROCESS/PARSE _
STYLE command in the OpenVMS DCL Dictionary: N-Z.

To reset DCL to the default parsing style, enter the following command:
$ SET PROCESS/PARSE_STYLE=TRADITIONAL

After you enter this command, DCL accepts only ODS-2 file name formats.

5.4 Where You Can Use Extended File Specifications

Some DCL commands and OpenVMS utilities fully support extended file
specifications. They have been modified to take advantage of all the features
of extended file names. They can accept and handle extended file specifications
without error and without modifying their expected case. In addition, they

5-6 Extended File Specifications

Extended File Specifications
5.4 Where You Can Use Extended File Specifications

can accept and produce long file specifications that exceed the traditional 255-
byte limit in their original form!—without requiring them to be abbreviated in
Directory ID (DID) or File ID (FID) format.

DCL commands and OpenVMS utilities with default support have had little
or no modification to take advantage of extended file names. These utilities
and commands are expected to handle most of the attributes of extended file
specifications (such as new characters and deep directory structures) correctly.
However, they might create or display file names with the wrong case.

In contrast with utilities that have full support, utilities with default support rely
on DID and FID abbreviation offered by RMS to handle long file specifications.
As a result, these utilities are subject to the following restrictions related to DID
and FID abbreviation:

e Matching operations in an environment where FID abbreviation is used may
not always work as expected. For example, wildcard matching operations
may not capture all target file names because the long file names may
be represented in their numeric FID-abbreviated form. This restriction
specifically applies to matching operations that are performed outside of
RMS.

e Wildcards and sticky defaults cannot be used with a FID abbreviation. For
example, the following commands are illegal:

$ DIRECTORY a[l,2,3]*.txt
$ COPY a[l,2,3].txt *.txt2

Because a FID abbreviation is a unique numeric representation of one file, it
cannot be used to represent or match any other file.

e Creating a file using a FID abbreviation is illegal.

For more information about DID and FID abbreviations, refer to the Guide to
OpenVMS File Applications.

For more information on a specific command or utility, refer to the appropriate
manual in the OpenVMS documentation set.

No Support for Extended File Naming

OpenVMS utilities and commands that do not support extended file names
can function on ODS-5 volumes; however, they are restricted to operating with
traditional file specifications only. These utilities and commands should be
used carefully on ODS-5 volumes because Compaq cannot ensure that they will
function successfully when they encounter extended file specifications.

No Support for ODS-5

OpenVMS utilities and commands that do not support the ODS-5 volume
structure cannot handle extended file names. These utilities and commands
should be used carefully on ODS-5 volumes because Compaq cannot ensure that
they will function successfully even when they only encounter traditional file
specifications.

Table 5-3 lists the OpenVMS utilities and commands that do not support
Extended File Specifications because of limitations with either extended file
names or ODS-5.

1 If you are typing a long file specification on a DCL command line, DCL still limits the

command line length to 255 bytes.

Extended File Specifications 5-7

Extended File Specifications
5.4 Where You Can Use Extended File Specifications

Table 5-3 Non-Supported OpenVMS Components

Component Notes

No ODS-5 Support

Disk defragmenters Unsupported unless a specific defragmentation tool
documents that it has been updated to support an ODS-5
volume. !

No Extended File Naming Support

Code compilers Cannot use extended file names for object files. However,
code compilers can create applications that support
extended names.

INSTALL Known images Do not install an image with an extended file name as a
known image.

LINK Cannot output an image with an extended file name.

MONITOR Cannot reliably process extended file names.

Network files (NET*.DAT) Do not rename to an extended file name.

Object modules (.OBdJ) Do not rename to an extended file name.

Page and swap files Do not use an extended file name.

SYSGEN Do not write a parameter file with an extended file name.

System startup files Do not rename to an extended file name.

INote that DFO has been modified to support ODS-5 volumes.

5.5 Displaying Files with Extended Names

Some DCL commands have the following new qualifier to control the display of
extended file names:

/STYLE= [CONDENSED | EXPANDED]

This qualifier allows you to control how the modified DCL commands display
extended file names and any associated prompts.

The keyword CONDENSED displays the file specification as it is generated

to fit within the 255-byte character string limit imposed by many utilities.
When necessary, this file specification may contain a DID abbreviation or a
FID abbreviation. The keyword EXPANDED displays the file specification that
is stored on disk in full and does not contain a DID abbreviation or a FID
abbreviation.

The following sections contain examples of using the /STYLE qualifier with the
DIRECTORY, TYPE, PURGE, and DELETE commands.

5.5.1 DIRECTORY Command

The DIRECTORY command allows you to select in what format the file name is
displayed when viewing the contents of a directory:

DIRECTORY/STYLE=(keyword[,keyword])

5-8 Extended File Specifications

Extended File Specifications
5.5 Displaying Files with Extended Names

The DIRECTORY command by default displays file names as you see in the
following example, using DIDs where necessary and switching back to the full
directory specification where DIDs are not necessary:

$ DIRECTORY
Directory TESTS$ODS5:[23,1,0]

abcdefghijklmnopgrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopgrs
tuvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcdefghijklmnopqrstuvwxyABCDEFGHIJKLM
NOPQRSTUVWXY . abcdefghijklmnopgrstuvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcdef
ghijklmnopqgrst;2

Total of 1 file.
Directory TEST$ODSS:[TEST.RANDOMTESTING.RANDOM]

AddressFiles.DIR;1 LOGIN.COM;3 test.1;1 test”.l.clue;l
Travel.LIS;1 whee. ;5 work.dat;8

Total of 8 files.

Grand total of 2 directories, 9 files.

The DIRECTORY command, using both keywords with the /STYLE qualifier,
produces a two-column directory list. Each column lists all the file names. The
CONDENSED column contains any needed DIDs or FIDs, while the EXPANDED
column contains full directory names and file names. Any file errors are displayed
in the CONDENSED column. The following example shows the results of the
DIRECTORY command with the /STYLE qualifier taking both keywords:

$ DIRECTORY/STYLE=(CONDENSED,EXPANDED)

Directory TESTS$ODS5:[23,1,0] TESTSODS5: [TEST . RANDOMTESTING. RANDO
M]

abcdefghijklmnopqrstuvwxyABCDEFGHIJ abcdefghijklmnopqrstuvwxyABCDEFGHIJ
KLMNOPQRSTUVWXYabcdefghijklmnopgrst KLMNOPQRSTUVWXYabcdefghijklmnopgrst
uvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcde uvwxyABCDEFGHIJKLMNOPQRSTUVWXYabcde
fghijklmnopqrstuvwxyABCDEFGHIJKLMNO fghijklmnopqrstuvwxyABCDEFGHIJKLMNO
PORSTUVWXY.abcdefghijklmnopgrstuvwx PQRSTUVWXY.abcdefghijklmnopgrstuvwx
yABCDEFGHIJKLMNOPQRSTUVWXYabcdefghi yABCDEFGHIJKLMNOPQRSTUVWXYabcdefghi

jklmnopgrst;2 jklmnopqrst;2
AddressFiles.DIR;1 AddressFiles.DIR;1
LOGIN.COM; 3 LOGIN.COM;3
test.l;1 test.1;1
test”.1l.clue;1l test”.1l.clue;1
Travel.LIS;1 Travel.LIS;1
whee.;5 whee.;5

work.dat;8 work.dat;8

Total of 8 files.
DIRECTORY can either use one or both keywords with the /STYLE qualifier.

5.5.2 TYPE Command

The TYPE command accepts the /STYLE qualifier to select the file name format
displayed in system messages while typing files and prompts:

$ TYPE/STYLE=(keyword)

This example shows the use of the TYPE command with the TYPE=EXPANDED
and CONFIRM qualifiers:

Extended File Specifications 5-9

Extended File Specifications
5.5 Displaying Files with Extended Names

$ TYPE/CONFIRM/STYLE=EXPANDED abc*.*rst;2

TYPE TESTSODS5:[TEST.RANDOMTESTING.RANDOM]abcdefghijklmnopgrstuvwxyzABCDEF
GHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYabc
defghijklmnopqrstuvwxyzGHIJKLMNOPQRSTUVWXYabcdefghijklmnopgrst;2 ? [N]: Y

[System outputs contents of file]

5.5.3 DELETE Command

The DELETE command accepts the /STYLE qualifier to select the file name
format for display purposes when performing the command:

$DELETE/STYLE= (keyword)

In the following examples, the ellipsis (...) represents many characters within
the file name. These examples use the CONFIRM qualifier to generate a system
message.

DELETE using default (CONDENSED):

$ DELETE/CONFIRM abc*.*.*

DELETE TESTS$SODS5:[TEST.RANDOMTESTING.RANDOM]abcAlphabet.stuff;1 ? [N]: Y
DELETE TEST$0DS5:[23,1,0] abcdefg. . .QRSTUVWXY.abcdefg. . .tuvw

xy;l ? [N]: Y

When the full file specification is required, use the DELETE command with the
/STYLE qualifier and the EXPANDED keyword:

$ DELETE/CONFIRM/STYLE=EXPANDED abc*.*,*

DELETE TESTSODS5:[TEST.RANDOMTESTING.RANDOM]abcAlphabet.stuff;1l ? [N]: Y
DELETE TESTS$ODS5:[TEST.RANDOMTESTING.RANDOM]abcdefg. . .QRSTUVWX
Y.abcdefg. . .tuvwxy;l ? [N]: Y

5.5.4 PURGE Command

The PURGE command accepts the /STYLE qualifier to select the file name format
for display purposes when performing the command:

$ PURGE/STYLE=(keyword)

In the following examples, the ellipsis (...) represents many characters within
the file name. These examples use the CONFIRM qualifier to generate a system
message.

PURGE using default (CONDENSED):

$ PURGE/CONFIRM
DELETE TEST$ODS5:[23,1,0]abcdefg. . .QRSTUVWXY.abcdefg. . .tuvwxy;l
? [N]: Y

When the full file specification is needed, use the PURGE command with the
/STYLE qualifier and the EXPANDED keyword:

$ PURGE/CONFIRM/STYLE=EXPANDED
DELETE TESTSODS5:[TEST.RANDOMTESTING.RANDOM]abcdefg. . .QRSTUVWXY.ab
cdefg. . .tuvwxy;l ? [N]: Y

5.6 Displaying Extended File Names on a Terminal

To display extended file names, your terminal must be set to display the ISO
Latin-1 character set. Otherwise, the characters displayed on the terminal might
not match those shown by a PC. To view or change the character set displayed on
your terminal, use the terminal setup dialog box. The options for selecting the
character set to display are usually found in the General tab.

5-10 Extended File Specifications

Extended File Specifications
5.6 Displaying Extended File Names on a Terminal

The characters that differ between the DEC Multinational and ISO Latin-1
character sets are listed in Appendix A.

5.7 Working in Mixed Environments

If your system is running OpenVMS Alpha Version 7.2 or higher, you can take
advantage of all extended file specifications capabilities on ODS-5 volumes. You
also can continue to access pre-Version 7.2 files and directories. For example, you
can do all of the following:

e Create and access deep directory structures on ODS-2 volumes
e Read a BACKUP saveset created on an earlier version of OpenVMS

e Copy a file with an ODS-5 name to a file with an ODS-2 name on a system
running an earlier version of OpenVMS

If you are working in a mixed-version or mixed-architecture OpenVMS Cluster,
there are some limitations. Systems running prior versions of OpenVMS cannot
mount ODS-5 volumes, correctly handle extended file names, or even see extended
file names. Users on a version of OpenVMS prior to Version 7.2 cannot access
any files on an ODS-5 volume. This is true regardless of whether the volume is
connected physically on a CI or SCSI bus, or by an MSCP or QIO server. Nor can
these users create or restore an ODS-5 image saveset. However, they can restore
ODS-2-compliant file names from an ODS-5 saveset.

OpenVMS Version 7.2 VAX systems are limited to the following extended file
specifications functionality:

e Ability to mount an ODS-5 volume.
e Ability to write and manage ODS-2-compliant files on an ODS-5 volume.

* See pseudonames (\pISO LATIN\.??? or \pUNICODE\.???) when accessing an
ODS-5 file specification.

When working in an environment that contains both OpenVMS Alpha and
OpenVMS VAX systems, it is important to know the following:

¢ Your system type and operating system version
e Whether your default directory is ODS-2 or ODS-5 based

e Whether the destination for a file you are creating is an ODS-2 or ODS-5
volume

OpenVMS 7.2 allows VAX systems to mount ODS-5 volumes; however, users on
OpenVMS VAX systems can access only files with ODS-2-compliant file names.

You can choose whether or not to convert a volume to ODS-5 on your OpenVMS
Alpha systems. When working in a mixed environment of ODS-2 and ODS-5
volumes, keep in mind the restrictions of ODS-2 file names when creating files on
ODS-5 volumes. If you copy a file that has special characters in its name from an
0ODS-5 to an ODS-2 volume, you must give it an ODS-2 compliant name.

Extended File Specifications 5-11

6

Using Disk and Tape Drives

This chapter describes general concepts about working with disk and tape drives
on an OpenVMS system. Any peripheral connected to an OpenVMS system,
including disk and tape drives, is referred to as a device. When you log in you are
automatically granted access to your default device and directory. You can also
access public devices and directories. In most cases, the system manager sets up
and maintains devices that are shared by a group of users.

If there is a drive available for your personal use, you need to know how to
allocate, initialize, and mount it. This chapter discusses the following concepts
for those who will be implementing their own disk and tape drive access:

e Physical device names

e Displaying device information

¢ Logical device names

® Generic device names

e OpenVMS Cluster device names
¢ Volumes and volume sets

e Device management

For additional information, refer to:

e The OpenVMS DCL Dictionary or online help, for information about the
commands discussed in this chapter

e The OpenVMS System Manager’s Manual, Volume 1: Essentials, for
information on using devices

e The OpenVMS System Management Utilities Reference Manual, for
information about the MOUNT command

e The OpenVMS Cluster Systems, for information about devices in OpenVMS
Cluster environments

6.1 Physical Device Names

Each physical device known to the system is uniquely identified by a physical
device name. The physical device name identifies the type of device; for
example, a disk drive or a terminal.

Most physical device names consist of:
e A device code, which represents the hardware type

e A controller designator, which identifies the hardware controller to which the
device is attached

Using Disk and Tape Drives 6-1

Using Disk and Tape Drives
6.1 Physical Device Names

e A unit number, which identifies a device on a particular controller.
VTA12, FX09, and DAD44 are examples of device names.
For information on specific device-naming formats, refer to the OpenVMS System
Manager’s Manual.
6.2 Displaying Device Information

To display information about devices that are on the system, enter the SHOW
DEVICES command. To obtain additional information or information about a
specific device, enter the SHOW DEVICES command in one of the following ways:

e To check the densities, volume labels, UICs, and relative volume numbers of
mounted volumes, enter the SHOW DEVICES/FULL command.

e To display information for all the drives of a particular type configured in the
system, specify a generic device code (for example, SHOW DEVICES DK).

e To display information for a volume mounted on a specific drive, specify the
physical device name (for example, SHOW DEVICES DKA1).

In the following example, the SHOW DEVICES command displays information
about DADA40:

$ SHOW DEVICES DAD40

Device Device Error Volume Free Trans Mnt
Name Status Count Label Blocks Count Cnt
DAD40: Mounted wrtlck 0 CHICAGO 540088 1 1

6.3 Logical Device Names

Your system manager can set up logical device names to represent the devices
on the system. Logical device names equate a somewhat cryptic device name to a
short, meaningful name. You can use these logical device names, rather than the
physical device names, to refer to devices.

Chapter 11 describes in detail how to use logical names.

6.4 Generic Device Names

A generic device name consists of the device code and omits the specific
controller or unit number. When you use a generic device name with a MOUNT
or ALLOCATE command, the system locates the first available controller or
device unit whose physical name satisfies the portions of the generic device name
you specified.

If you specify a generic device name for any other command, the following
defaults apply:

e If you omit the controller designation, it is assumed to be A.

e If you omit the unit number, it is assumed to be 0.

6—2 Using Disk and Tape Drives

Using Disk and Tape Drives
6.5 OpenVMS Cluster Device Names

6.5 OpenVMS Cluster Device Names

An OpenVMS Cluster device name includes the name of the node to which the
device is attached and the physical device name, separated by a dollar sign ($).
For example, ROXXY$DUALI refers to disk DUA1 on node ROXXY.

As a general rule, always use a node allocation class device name to identify
dual-pathed OpenVMS Cluster disks. It is the only name that all OpenVMS
Cluster nodes recognize at all times.

For more information about using the device name format in OpenVMS Cluster
environments, refer to OpenVMS Cluster Systems.

If a device is dual pathed (connected to two nodes), specify the OpenVMS Cluster
device name in the following format:

$node-allocation-class$ddcu

The elements are:

node- A value assigned to the nodes connecting a dual-pathed device. For

allocation- example, 1DJA16 identifies a disk that is dual pathed between two

class nodes that both have a node allocation class value of 1.

dd Represents device code of the hardware device type (for example, the
device code DK represents an RZ23 disk).

c Identifies the hardware controller to which the device is attached.

The controller designation, along with the unit number, identifies the
location of the device within the hardware configuration of the system.
Controllers are designated with alphabetic letters A to Z.

u Uniquely identifies the unit number of a device on a particular
controller. Unit numbers are decimal numbers from 0 to 65535.

6.6 Volumes and Volume Sets

The OpenVMS operating system recognizes disks and tapes, separate from the
actual hardware drives they occupy, as volumes. A volume is an organized
collection of data. The system also recognizes volume sets. A volume set consists
of two or more related volumes. Binding volumes into a volume set allows you
to extend the space available for your files by adding volumes to the same set,
rather than by defining multiple, new volumes. The procedures for creating
volume sets (as opposed to single volumes) are described in the OpenVMS System
Manager’s Manual.

6.7 Device Management

If you have a disk drive available for your private use, you should be familiar
with the steps for setting it up, as follows:

Step Task

1 Use the DCL command ALLOCATE to assign the disk drive to your process.

2 Use the DCL command INITIALIZE to format the disk volume and write an
identifying label on the volume, if needed.

3 Use the DCL command MOUNT to make a volume and the files or data it contains

accessible to your process.

Using Disk and Tape Drives 6-3

Using Disk and Tape Drives
6.7 Device Management

6.7.1 Allocating Devices

When you allocate a device, you reserve the device for exclusive use by your
process. The device remains allocated to your process until you explicitly
deallocate it (with the DCL command DEALLOCATE) or until you log out.

To allocate (locally assign) a disk or tape drive to your process, use the DCL
command ALLOCATE. The format for the ALLOCATE command is as follows:

ALLOCATE device-name[:]],...] [logical-namel[:]]
The elements are as follows:

device-name Specifies the drive on which the volume is loaded. The name can be a physical
name, a generic name, or a logical name.

logical-name Specifies an optional logical name to be associated with the device.

6.7.2 Initializing Volumes

Initializing a disk or magnetic tape volume formats it. You do not need to do this
prior to every use of a volume. Initialize a volume before its first use and anytime
you want to erase it entirely. To initialize a volume, use the DCL command
INITTIALIZE, which does the following:

e Creates a new file structure on the volume. Any data stored on the disk at
the time of initialization is deleted during the intialization process.

e Writes a label on the volume to identify it.

e Defines the owner UIC and the protection for the volume.

Note

The INITIALIZE command does not prevent you from initializing another
user’s volume; to be sure the volume you initialize is your own, allocate
the device before you initialize the volume.

If you give a volume to another user for initialization (for example, if you lack
sufficient privileges to do it yourself), you should provide the volume label, the
owner UIC, and the protection code for the volume.

The format for the INITIALIZE command is as follows:
INITIALIZE device-name[:] volume-label

The fields are as follows:

device-name Specifies the name of the device on which the volume is physically
mounted.

volume-label Identifies the volume. You can specify up to 12 alphanumeric characters
for a disk volume or up to 6 alphanumeric characters for a magnetic tape
volume.

Initializing Disk Volumes

By default, the INITIALIZE command builds a Files—11 structure on your
new volume. The default format for disk volumes initialized for or by the
OpenVMS operating system is called the Files—11 On-Disk Structure Level 2.
The INITIALIZE command can also initialize disk volumes in Files—11 On-Disk
Structure Level 1.

6—4 Using Disk and Tape Drives

Using Disk and Tape Drives
6.7 Device Management

You do not need special privileges to override logical protection on a blank disk
volume (that is, a volume that has never been written to) or on a disk volume
that is owned by your current UIC or by UIC [0,0]. In all other cases, you must
have user privilege VOLPRO to initialize a disk volume.

The following example initializes the volume on DKA300 and labels the volume
ACCOUNTS:

§ INITIALIZE DKA300: ACCOUNTS

6.7.3 Mounting Volumes

After allocating a disk volume, you need to mount it in order to use its files. The
DCL command MOUNT makes a volume and the files it contains accessible to
your process.

When you enter the MOUNT command, the system verifies that the following
conditions have been met:

¢ The device has not been allocated by another user.

¢ The device protection allows you to allocate the device.

¢ A volume is physically loaded on the specified device.

e The label on the volume matches the label you specified.

You can mount a single volume or a volume set. The procedures for creating
and mounting volume sets (as opposed to single volumes) are described in the
OpenVMS System Manager’s Manual.

The MOUNT command format is as follows:
MOUNT device-name[:][,...] [volume-label[,...]] [logical-namel[:]]
The elements are as follows:

device-name Specifies the physical device name or logical name of the device on which the
volume is to be mounted.

volume-label Specifies the label with which the volume was initialized. You do not need to
specify the volume label if you use one of the following MOUNT qualifiers:
/FOREIGN, /NOLABEL, or /OVERRIDE=IDENTIFICATION.

logical-name Defines a name to be associated with the device. If you omit the logical name,
the MOUNT command assigns the default logical names DISK$volume-label and
TAPE$volume-label to disk and tape drives, respectively.

6.7.4 Requesting Operator Assistance

Operators can perform the physical mounting (and dismounting) of both system
and private volumes. If a volume is already placed in the drive you are going to
use, you do not need operator assistance.

MOUNT messages are sent to all operators enabled to receive TAPE and DISK
messages. For example, if operator assistance is needed for mounting a disk
device, a message is sent to disk operators. If no operator is available (operator is
not enabled) to receive and respond to a MOUNT request, a message is displayed
to inform you of the situation. You can also specify the /NOASSIST qualifier to
avoid operator assistance.

The MOUNT command shown here notifies the operator of your mount request
and displays a message at your terminal:

$ MOUNT DKA300: DISK VOL1
%MOUNT-I-OPRQST, PLEASE MOUNT DEVICE _MARSSDKA300:

Using Disk and Tape Drives 6-5

Using Disk and Tape Drives
6.7 Device Management

After the device has been successfully mounted, you are notified with the
following message:

%MOUNT-I-MOUNTED, DISK mounted on _DKA300:
The following example shows how to allocate, initialize, and mount a disk volume:

$ ALLOCATE DKA300: TEMP

$DCL-I-ALLOC, MARS$DKA300: allocated

$ INITIALIZE TEMP: BACKUP FILE

$ MOUNT TEMP: BACKUP FILE

$MOUNT-I-MOUNTED, BACKUP FILE mounted on DKA300:
$ CREATE/DIRECTORY TEMP:[ARCHIE] B

Before you can place any files on the volume, you must create a directory, as
shown by the CREATE/DIRECTORY command.

Mounting a Foreign Disk Volume

To mount a foreign disk volume (that is, one having a file structure other than
Files—11), use the /FOREIGN qualifier. For example:

$ MOUNT/FOREIGN DISK
$MOUNT-I-MOUNTED, BACKUP_FILE mounted on DISKSDMA2:

The MOUNT/FOREIGN command makes the contents of your volume available
to the system but makes no assumptions concerning its file structure. In the
preceding example, MOUNT reports a volume label, indicating that the disk has
a Files—11 structure, even though it was mounted as a foreign device. If a disk
does not have a recognized file structure, MOUNT does not display a label.

Note that you need the user privilege VOLPRO to mount a Files—11 structured
disk with the /FOREIGN qualifier, unless its owner UIC matches your own.

6.8 Accessing Files on Private Devices

To access a file that is on a private device, you must either specify the device
name or use the SET DEFAULT command to set default to the device and the
directory name.

You can use physical, logical, or generic names to refer to devices. In addition, if
your system is part of an OpenVMS Cluster system, certain devices are accessible
to all members of an OpenVMS Cluster system. To access a file on a tape volume
set, specify any device that has been allocated to it.

Although you can print a file from a privately owned volume, the volume
containing the file to be printed must remain mounted until after the file has
completed printing.

Some commands accept output file specifications. You can replace an output file
specification with the name of a record-oriented device such as a printer or a
terminal. For example:

§ COPY DFILE.DAT TTB4:

The COPY command sends the file DFILE.DAT to the terminal named TTBA4.
The terminal accepts and displays the file one record at a time. When you use a
device name as a file specification, follow the device name with a colon (:).

6—6 Using Disk and Tape Drives

Using Disk and Tape Drives
6.8 Accessing Files on Private Devices

6.8.1 Dismounting Volumes

When you are done with the files on a disk or tape volume, you can use the
DISMOUNT command to dismount the volume. Before a volume is dismounted,
the DISMOUNT command checks for conditions that could prevent the dismount
from completing. For example, if the volume contains installed swap and page
files, installed images, or open user files, DISMOUNT displays an error message
indicating that the volume cannot be dismounted.

By default, the DISMOUNT command automatically unloads the volume from the
drive. If you plan to mount or initialize a volume again after you dismount it, you

can save time and eliminate unnecessary handling of that volume by using the
/NOUNLOAD qualifier. For example:

$ DISMOUNT/NOUNLOAD MTAl:

In this example, the magnetic tape volume is logically dismounted and the tape is
rewound but the tape remains physically loaded on drive MTA1.

You should always explicitly dismount a volume with the DISMOUNT command
before physically unloading the volume. Wait for the drive to unload before you
remove the volume. (You can verify that the dismount is complete by entering the
DCL command SHOW DEVICES.)

A volume is dismounted and unloaded automatically if you log out of the job from
which you had mounted the volume. If the system fails, however, the volume is
not automatically dismounted. If the device you are dismounting was allocated
with an ALLOCATE command, it remains allocated after it is dismounted with
the DISMOUNT command. If the device was implicitly allocated by the MOUNT
command, the DISMOUNT command deallocates it.

Using Disk and Tape Drives 6-7

I

Using Mail to Communicate with Others

The OpenVMS Mail utility (MAIL) lets you send messages to other users on your
system or on any other computer that is connected to your system with Compaq
TCP/IP for OpenVMS or a DECnet network. This chapter describes:

Invoking and exiting mail

Reading messages

Sending messages

Sending mail over networks
Sending messages to multiple users
Manipulating files in mail

Other ways to send messages
Organizing messages

Deleting messages

Printing mail messages

Protecting mail files

Using text editors in Mail
Customizing your Mail environment
Summary of Mail commands

Using the MIME Utility

For additional information, refer to the following:

Enter the HELP MAIL command at the DCL prompt or enter the HELP
command at the MAIL> prompt, for more information about Mail commands
and qualifiers.

The OpenVMS System Manager’s Manual, for more information about
controlling the use of Mail through user accounts.

Enter HELP TCPIP_SERVICES at the DCL prompt, for more information
about TCP/IP mail commands and qualifiers.

The Digital TCP/IP Services for OpenVMS User’s Guide, for more information
about sending and receiving mail using TCP/IP services.

Using Mail to Communicate with Others 7-1

Using Mail to Communicate with Others

The following figure shows a sample mail message and its components.

Message Number Date Time Folder Name
#1 11-DEC-1994 14:12:27 NEWMAIL

Information To: JONES
Subject Prompt — Subj: Sales presentation on April 20

Address { From: STONE::FELLINI

7/~ The meeting to discuss the Hubbub Cola account has been
moved from our conference room to the auditorium.
Message
Text See you there!

Joe
MAIL Prompt —# MAIL>

ZK-0980A-GE

7.1 Invoking and Exiting Mail

The following sections describe how to invoke and exit Mail.

7.1.1 Invoking Mail
To invoke the Mail utility, enter the DCL command MAIL, as follows:

$ MAIL
MAIL>

Once you are in the Mail utility, you perform the following operations by entering
the appropriate command at the MAIL> prompt and then pressing the Enter key:

¢ Read a mail message
¢ Send a mail message
e Reply to a mail message
e Forward a mail message
¢ Organize mail messages into files and folders
e Delete a mail message
e Print a mail message
7.1.2 Exiting from Mail
To exit from Mail, enter the EXIT command at the MAIL> prompt, as follows:

MAIL> EXIT
$

You can also exit from Mail by pressing Ctrl/Z or by using the QUIT command.

7-2 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.2 Reading Messages

7.2 Reading Messages

Mail stores the messages you receive in mail files, which have the default file type
.MALI. In this file, by default, Mail provides two folders that store old and new
messages. New messages are automatically placed in a folder called NEWMAIL,;
old messages are placed in a folder called MAIL. After you read a new message,
the message automatically moves from the NEWMALIL folder to the MAIL folder,
unless you enter the FILE, MOVE, or DELETE command. Mail deletes the
NEWMAIL folder after you have read all new mail messages and either select
another folder or exit from Mail.

7.2.1 Reading New Mail

When you are logged in to your account and receive a mail message, Mail notifies
you. For example, notification of a message sent by user FELLINI is displayed as
follows:

New mail on node DOODAH from STONE::FELLINI (10:02:23)

To read a new message, invoke Mail and press the Enter key at the MAIL>
prompt, as follows:

§ MAIL
You have 1 new message.

MAIL>

If you have more than one new message, press Enter at the MAIL> prompt to
read the other messages. When you have read all your new messages, Mail issues
the message “%MAIL-E-NOMOREMSG, no more messages” and continues to
prompt for commands until you exit Mail.

If you receive a mail message while you are in Mail, enter the READ/NEW
command to read the new message.

7.2.2 Reading Old Messages

To reread old mail messages in your default Mail folder, use the following

procedure:
Step Task
1 Enter the SELECT command at the MAIL> prompt. For example:

MAIL> SELECT MAIL
Mail places you in the folder named MAIL.

2 To read the first message in your default MAIL folder, press Enter at the MAIL>
prompt or enter the READ command.

Mail displays the first message (1) in your default mail file.
3 To display the next message, press Enter.

If the message is too long to display on one screen, press Enter to display the next
part of the message.

To skip the remainder of a message and display the next message, enter the NEXT
command.

To read a particular message in your default MAIL folder, use the following
procedure:

Using Mail to Communicate with Others 7-3

Using Mail to Communicate with Others
7.2 Reading Messages

Step Task

1 Enter the DIRECTORY command at the MAIL> prompt.

To select a subset of messages from the list, use the DIRECTORY command
qualifiers /FROM or /SUBJECT.

2 Enter the number of the message that you want to read at the MAIL> prompt.

Mail displays the message that you selected.

In the following example, the DIRECTORY command is used to display old
messages and then the message labeled 2 is selected for reading:

MAIL> DIRECTORY

MAIL
From Date Subject
1 STONE: :FELLINI 11-DEC-1999 Sales presentation on May 11
2 DOODAH: : JONES 11-DEC-1999 Status
MAIL> 2

7.2.3 Searching for Messages

If you have many messages, you can locate a particular message by using the
SEARCH command to find a string in one or more of the messages. To search for
a string, specify that string as a parameter to the SEARCH command.

Each time you specify a new string, the SEARCH command starts the search at
message number 1. To continue searching the folder for messages that contain
the specified string, use the SEARCH command without specifying a parameter.
To search for the same string in a different folder, enter the SELECT or SET
FOLDER folder-name command and continue using the SEARCH command
without specifying a parameter.

In the following example, messages in the current folder are searched for the first
message that contains the string appointment:

MAIL> SEARCH "appointment"

7.3 Sending Messages

To send a mail message to any user on your system, do the following:

Step Task
1 Enter SEND at the MAIL> prompt.

Mail prompts you for the name of the user to receive the message.

2 Enter the name of the user receiving the message and press Enter.
Mail prompts you for the subject of the message.

3 Enter the subject of the message and press Enter. Entering this information is
optional.

Mail prompts you for the text of the message.

4 Enter the text of a message, or just press Enter. Entering this information is
optional.
5 Press Ctrl/Z to send the message. If you decide not to send the message, press

Ctrl/C, which cancels the send operation without exiting from Mail.

In the following example, a message is sent to a user named THOMPSON:

7-4 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.3 Sending Messages

MAIL> SEND

To: THOMPSON

Subj: Meeting on April 20

Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
I have some new ideas about the Hubbub Cola account.

Let me know when you are available to talk about them.

--Jeff

7.4 Sending Mail Over Networks

The following sections describe how to send mail across the network.

7.4.1 Specifying Your Network Protocol

When you receive a message, Mail interprets the specified address as follows:

e If the node component of the address contains a period (.), the address is
interpreted as an Internet address. Mail uses the SMTP protocol by default
unless you have previously set up your system to use a different Internet
protocol by defining that alternate protocol with the MAIL$INTERNET_
TRANSPORT logical name.

e If the node component of the address does not contain a period, the address is
interpreted as a DECnet address.

However, you can customize your Mail environment to force the system to choose
a specific protocol. This option is helpful in cases where a mail address can be
interpreted as valid for either the Internet or DECnet protocol.

To specify protocols, you can define the MAILSINTERNET_MODE logical name
as follows:

e HYBRID (the default)

If the node component of the address contains a period (.), Mail uses an
Internet protocol. If there are no periods, Mail uses the DECnet protocol.

e DECNET
Mail always interprets the node component of the address as a DECnet node
specification.

e SMTP

Mail always interprets the node component of the address as an Internet
address specification. The default transport is SMTP unless you use the
MAIL$INTERNET_TRANSPORT logical to define an alternate Internet
transport.

To modify your Mail environment in any of these ways, Compaq recommends that
you define the MAIL$INTERNET _MODE and MAILSINTERNET TRANSPORT
logical names in your LOGIN.COM file. (See Chapter 11 for complete information
about using and defining logical names.)

For example, if your system is set up to use the default (HYBRID), the Mail
address smith@pluto is interpreted as a DECnet address because there are no
periods in that address. However, if you want Mail to use SMTP instead of
DECnet, you can add the following line to your LOGIN.COM file:

$ DEFINE MAILSINTERNET MODE SMTP

Using Mail to Communicate with Others 7-5

Using Mail to Communicate with Others
7.4 Sending Mail Over Networks

When you then specify smith@pluto, Mail interprets this address
as an Internet address and uses the SMTP protocol (for example,
SMTP%"smith@pluto.xyz.dec.com").

7.4.2 Specifying Node Names

If your computer system is part of a network, you can send mail to any other user
on the network. If you are sending mail to someone on a different node, enter the
user’s node name and user name at the To: prompt. If the user name contains
special characters or spaces, you must enclose the user name in quotation marks
(""). Use the following format:

nodename::username

Mail displays a message if the network connection to the remote node is not
available. Wait a while, and then try again to send the message.

For additional information on specifying node names, refer to Section 3.1.6.
In the following example, a message is sent to user HIGGINS on node CHEETA:
MAIL> SEND
To: CHEETA::HIGGINS
7.4.3 Using Internet Mail Addresses

You can also use full Internet mail addresses to send mail to users over a
network. These addresses are common, especially if you are sending mail outside
your organization.

username @company.com

At the To: prompt, enter the full Internet address of the user you want to send
mail to. These addresses are seldom case-sensitive.

MAIL> SEND
To: J_SMITH@COMPANYNAME.COM, Kate.Muir@school.edu

7.4.4 Using Logical Node Names

You can use a logical name to represent a user’s name and node; then you can
use the logical name to send mail. Note that Mail ignores any access control
information in the node name or logical name.

In the following example, HENRY is used in place of CHEETA::HIGGINS. First,
the logical name (HENRY) is defined, then it is used in place of the user name
and node:

$ DEFINE HENRY CHEETA::HIGGINS
§ MAIL

MAIL> SEND
To: HENRY

7.5 Sending Messages to Multiple Users

The following sections describe how to send mail to more than one user.

7-6 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.5 Sending Messages to Multiple Users

7.5.1 Using Individual Names

You can send mail to several users at the same time in one of two ways: using
individual user names at the To: prompt or using a distribution list. To send the
same message to several users on the same node by using their user names, enter
the user names at the To: prompt and separate them with commas or spaces.

In the following example, a message is sent to Thompson, Jones, and Barney:

MAIL> SEND
To: THOMPSON, JONES , BARNEY
Subj: Meeting on January 9

7.5.2 Creating Distribution Lists

A distribution list is a file that contains a list of users and their node names.
You must use a text editor to create distribution lists. Distribution lists are not
created within the Mail utility.

Your open file quota (a limit associated with your account) determines the
number of different nodes to which you can send mail (at one time) and the depth
to which you can nest distribution lists. If you exceed the quota, Mail displays an
error message. Ask your system manager to increase your quota or send mail in
batches to fewer nodes at one time.

By default, the system looks for a distribution list file with the file type .DIS. If
the file containing your distribution list has a different file type, specify the file
name and file type at the To: prompt. If you invoke Mail while in one directory
and the file containing the distribution list is in another, enter the distribution

list’s full directory name at the To: prompt.

To create a distribution list, use the following procedure:

Step Task

1 Use a text editor to create a distribution list file with the file type .DIS.

2 Type one user name per line in the file.

3 To include the names of other distribution lists in the file (to “nest” the lists),

specify an at sign (@) followed by the name of the distribution list.

4 To include comments in the file, enter an exclamation point (!) before the comment.

The following example shows a distribution list file:
! ALLBUDGET.DIS
|

! Budget Committee Members
@BUDGET ! listed in BUDGET.DIS.
! Staff

Thompson

BRUTUS: : JONES

PORTIA: :BARNEY

If the file BUDGET.DIS is not in the same directory as the new distribution
list file you are creating (ALLBUDGET.DIS), include the file specification for
BUDGET.DIS in the new distribution file. Depending on where you create
ALLBUDGET.DIS, you might have to specify the device and directory in
which BUDGET.DIS is located. (See Chapter 3 for more information about
file specifications.)

Using Mail to Communicate with Others 7-7

Using Mail to Communicate with Others
7.5 Sending Messages to Multiple Users

7.5.3 Sending Messages to Distribution Lists

To send mail to several users by using a distribution list, use the following

procedure:

Step Task

1 Invoke Mail.

2 Type SEND at the MAIL> prompt and press Enter.

3 Type an at sign (@) and the file name of the distribution list at the To: prompt.
Press Enter.

4 Type the subject of the message at the Subj: prompt and press Enter.

5 Enter the text of the message at the text prompt.

In the following example, a message is sent to the distribution list
ALLBUDGET.DIS:

MAIL> SEND

To: @ALLBUDGET

Subj: Tomorrow’s Meeting

Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:

The meeting about the Hubbub Cola account is tomorrow at 2:00.

--Jeff

You can also send a file to a distribution list from DCL level. If you omit the file
type .DIS, place quotation marks ("") around the at sign (@) and file name to

identify the file as a distribution list. To include a subject, use the /SUBJECT
qualifier with the MAIL command.

The following example sends the file MEETING.TXT to the user THOMAS and
the distribution list FRIENDS.DIS:

$ MAIL/SUBJECT="update" MEETING THOMAS,"@FRIENDS.DIS"

The following example sends the file NOTICE.TXT to the distribution list
WRITERS.DIS. Here, the /SUBJECT qualifier is not included so the message is
sent without a subject notation.

§ MAIL NOTICE "@WRITERS"

7.6 Manipulating Files in Mail

You can send a file to other users from within Mail or from DCL level. Use the
following procedure to send a file from within Mail:

Step Task

At the MAIL> prompt, enter SEND and the name of the file you want to send.

2 At the To: prompt, enter the user name of the person you want to receive the file.
3 At the Subj: prompt, enter the subject of the file.
4 Press Enter to send the file. To cancel the send operation, press Ctrl/C or Ctrl/Y.

Ctrl/C keeps you within Mail; Ctrl/Y returns you to DCL level.

In the following example, the file MEMO.TXT is sent to user EDGELL:

7-8 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.6 Manipulating Files in Mail

MAIL> SEND MEMO.TXT
To: EDGELL
Subj: Another memo

When sending files though mail, note the following restrictions:

e When files are copied using the COPY command, the operating system
performs data-integrity checking. This check does not occur when sending a
file through mail and can cause corrupted files to occur when sending foreign
(such as executable) files.

e Use discretion when sending large files. Users on some systems may not be
able to receive large files (such as POSTSCRIPT files).

7.6.1 Sending DDIF Files

If the file is a compound document structured according to the DIGITAL
Document Interchange Format (DDIF) specification, Mail preserves the OpenVMS
RMS file tags and DDIF semantics, for OpenVMS AXP Version 1.0 or VAX/VMS
Version 5.2-2 or later systems only. If you try to send mail messages containing
DDIF files to operating systems other than OpenVMS or to OpenVMS systems
earlier than OpenVMS AXP Version 1.0 or VAX/VMS Version 5.2-2, Mail returns
an error message.

7.6.2 Sending Files from DCL

When you send a file from DCL level, Mail is invoked but you do not enter an
interactive session, nor do you see the MAIL> prompt. When the file is sent, you
return to DCL level automatically. After you have typed the MAIL command with
the appropriate qualifiers, press Enter to send the file or press Ctrl/C to cancel
the send operation.

Note the following as well:

e No wildcard characters are allowed in the file specification. If you omit the
file type, the default file type is .TXT.

e If you specify SYS$INPUT as the file specification, you are prompted for
the text of the message (while still remaining at the DCL level). For more
information on using SYS$INPUT, see Chapter 11.

¢ When you are sending a file from DCL level, the argument to the optional
/SUBJECT qualifier must be enclosed in quotation marks if it contains any
spaces or nonalphanumeric characters.

In the following example, the file MEMO.TXT is sent to user EDGELL on node
CHEETA from the DCL level:

$ MAIL/SUBJECT="Another memo" MEMO.TXT CHEETA::EDGELL

In the following example, the user is prompted to input the text of the message
because the file name specified is SYS$INPUT:

$ MAIL SYSSINPUT:

To: ARMSTRONG

Enter your message below. Press CTRL/Z when complete, or CTRL/C to quit:
The text of the message is here.

$

Using Mail to Communicate with Others 7-9

Using Mail to Communicate with Others
7.6 Manipulating Files in Mail

7.6.3 Creating Files from Messages

To create a text file from a message, enter the EXTRACT command and the file
name at the MAIL> prompt while you are reading the message. When you exit
from Mail, the file is listed in your current directory (unless you specify another
directory). If the file is a DDIF file, Mail preserves the OpenVMS RMS file tags
and DDIF semantics (VAX/VMS Version 5.2-2 or later).

The mail header is composed of the From:, To:, and Subj: lines. To create a file
that does not include header information, specify the /INOHEADER qualifier to
the EXTRACT command. If the message has more than one header (for example,
a forwarded message), only the topmost header is deleted.

Use the /APPEND qualifier to the EXTRACT command to copy a message to the
end of an existing file. Use the /ALL qualifier to copy all the files in the current
folder to an existing file.

In the following example, a file named DEC_MEETINGS.TXT is created from the
mail message shown:

$1 01-DEC-1999 14:12:27 NEWMAIL
From: STONE::FELLINI
To: Thompson

Subj: Dates for December sales meetings

Sales meetings in December will be held on the following dates:
Wednesday Dec. 8, 1999
Tuesday Dec. 14, 1999
Monday Dec. 20, 1999
Thursday Dec. 30, 1999
MAIL> EXTRACT DEC MEETINGS.TXT
$MAIL-I-CREATED, EISK:[THOMPSON]DEC_MEETINGS.TXT

The following example shows how to create a file named JANUARY_
MEETINGS.TXT containing the text of message number 3:

MAIL> READ 3

MAIL> EXTRACT/NOHEADER JANUARY MEETINGS.TXT
%MAIL-I-CREATED, DISKI1:[JONES]JANUARY MEETINGS.TXT;l created
MAIL>

7.6.4 Appending Files to Messages

To append a small file to the end of a mail message automatically, use the SET
SIGNATURE_FILE command. The file you specify is automatically (by default)
appended to every mail message you send using the ANSWER, FORWARD,
MAIL, REPLY, or SEND command. An example of a signature file is a text
file that is formatted as a business card, containing the user’s company name,
address, telephone number, and Internet address.

If you want to selectively append a file to a message or override the default
signature file setting, use the /SIGNATURE_FILE[=file-name] qualifier with the
ANSWER, FORWARD, MAIL, REPLY, or SEND command.

Use the SHOW SIGNATURE_FILE command to show whether you specified a
default signature file. (The SHOW ALL command also displays signature file
information.)

You can also set the default signature file at the DCL level by using the
/SIGNATURE_FILE[=file-name] qualifier with the DCL command MAIL.

7-10 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.6 Manipulating Files in Mail

Note that when you create a mail message that includes a signature file, that
message requires more temporary disk space than a conventional message
because temporary files are created during the operation. After the message is
sent, those temporary files are deleted.

When specifying the signature file name, also note the following:
e If you do not specify a file type, the default is .SIG.

e If you do not specify a directory, the Mail utility searches for the signature
file in your mail directory.

In the following example, the file BUSINESS_CARD.SIG is designated as the
default file that will automatically be appended to every mail message sent using
the FORWARD, MAIL, REPLY, or SEND command.

MAIL> SET SIGNATURE FILE BUSINESS CARD.SIG

In the next example, the file GREETINGS.SIG is designated as the file that will
automatically be appended to that specific reply instead of the default signature
file.

MAIL> REPLY/SIGNATURE FILE=GREETINGS.SIG

7.7 Other Ways to Send Messages

The following sections describe other ways to use the Mail utility to send
messages.

7.7.1 Replying to Messages

To reply to a message you have received, use the following procedure:

Step Task
1 Type REPLY at the MAIL> prompt and press Enter.
2 Enter your message and press Ctrl/Z to send the message or press Ctrl/C to quit.

In the following example, a reply is being sent to STONE::THOMPSON. Note
that after the reply command is entered, Mail automatically displays the To: and
Subj: prompts:

To: STONE: : THOMPSON

Subj: RE: Budget Meeting
Enter your message below. Press CTRL/Z when complete. CTRL/C to quit:

7.7.1.1 Replying to an Address Containing Nested Quotation Marks

In most cases, you can use the Mail command REPLY to reply to mail received
from an address containing nested quotation marks. However, if your system
does not have this capability, contact your system manager.

7.7.2 Forwarding Messages

To forward a mail message to other users, enter the FORWARD command at the
MAIL> prompt after you have read the message. Mail prompts you for the name
of the addressee and a subject line. After you enter the requested information,
press Enter to send the message.

If you forward a message that consists of a .DDIF file, Mail sends the entire
.DDIF file, including .DDIF semantics and the .DDIF tag, to the addressee.

Using Mail to Communicate with Others 7-11

Using Mail to Communicate with Others
7.7 Other Ways to Send Messages

In the following example, a message is forwarded to user STONE::JONES:

MAIL> FORWARD
To: STONE::JONES
Subj: FYI - Status of proposed budget meeting

7.7.2.1 SET FORWARD Command

You can use the SET FORWARD command to redirect all mail messages sent
to you to another account on another OpenVMS cluster or on another system
entirely. Essentially this command creates an electronic forwarding address.
Only set a forwarding address for accounts you do not want to check regularly.
For example, you’d like to forward all your mail from your mail account on the
OLD cluster to your mail account on the STAR cluster. After you log into OLD,
enter the Mail utility and enter the following command:

MAIL> SET FORWARD STAR::SMITH

All messages sent OLD::SMITH will be automatically redirected to the mail
account on node STAR. You can also set your forwarding address to an Internet
mail address:

MAIL> SET FORWARD SMITH@Company.com
In this case, all mail sent to OLD::SMITH will be sent to SMITH@Company.com.

Always send a test message to the old account to confirm that the account is
forwarding correctly. To avoid creating forwarding loops where mail messages
forward infinitely and never arrive, never set an account to forward to itself or
another forwarding account. Do not forward OLD::SMITH to OLD::SMITH. Do
not forward OLD::SMITH to STAR::SMITH and then forward STAR::SMITH to
OLD::SMITH.

To check where an account is forwarding, enter the following command:

MAIL> SHOW FORWARD
Your mail is being forwarded to STAR::SMITH.

To remove a forwarding address, enter the following command:

MAIL> SET NOFORWARD
MAIL> SHOW FORWARD
You have not set a forwarding address.

Confirm that you have removed the forwarding address and send the account a
test message.

Note

In prior versions of the OpenVMS operating system, you had to specify an
extra pair of quotation marks if you wanted them included with the SET
FORWARD command because the command automatically removed the
first pair. Starting with OpenVMS Version 7.0, you need not specify an
extra pair of quotation marks because the SET FORWARD command no
longer removes the first pair.

7-12 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.8 Organizing Messages

7.8 Organizing Messages

The following sections describe how to organize mail messages.

7.8.1 Creating Folders

To organize your mail messages, you can create your own mail files and folders.
A mail file contains folders, and a folder contains mail messages. Each folder and
file can contain any number of messages.

Typically, you organize your messages by creating folders rather than by creating
mail files. As with the default mail folders (NEWMAIL, MAIL, WASTEBASKET),
the folders you create are normally stored in the mail file MAIL.MAI. The name
of the current folder is displayed in the top right corner of the screen each time
you enter a READ or DIRECTORY command. You can work only with messages
that are in your current folder.

If your mail file is very large (over 500 blocks), you might want to create separate
mail files for the larger folders to improve Mail’s performance.

7.8.2 Creating Mail Subdirectories

When you receive mail messages, they are written to files named
MAILS$xxxxxxxxxx. MAI by default and are located in your top-level directory.
(Note that the x characters represent a long, random file specification.) Your
default mail file, MAIL.MALI, is created in your top-level directory the first time
you receive a mail message.

To avoid the display of .MAI files in your top-level directory, use the Mail
command SET MAIL_DIRECTORY. This command creates a mail subdirectory
and moves all your .MAI files to that subdirectory. To move the .MAI files from a
subdirectory back to your top level directory, use the SET NOMAIL_DIRECTORY
command.

To display the name of the subdirectory that contains all your .MAI files, enter
SHOW MAIL_DIRECTORY at the MAIL> prompt.

In the following example, a user (FRED) creates the directory .MAIL:

MAIL> SET MAIL DIRECTORY [.MAIL]
MAIL> SHOW MAIL DIRECTORY
Your mail file directory is SYSLOGIN:[FRED.MAIL]

7.8.3 Moving Messages into Folders

You can use either the FILE command or the MOVE command to place the
current message in a different folder. If the folder does not exist, Mail displays a
message asking if you want to create it. After filing the message in the specified
folder, Mail automatically deletes the message from the current folder.

7.8.4 Copying Messages Between Folders

The Mail command COPY places a copy of the current message into the folder
you specify. If the folder does not exist, Mail displays a message asking if you
want to create it.

In the following example, all messages containing the word MEETING are copied
from the current folder to a folder named SCHEDULE. After the COPY command
completes, there are two copies of each message, one in the current folder and one
in the folder named SCHEDULE.

Using Mail to Communicate with Others 7-13

Using Mail to Communicate with Others
7.8 Organizing Messages

MAIL> SEARCH MEETING

MAIL> COPY SCHEDULE

Folder SCHEDULE does not exist.

Do you want to create it (Y/N, default is N)?Y
$MAIL-I-NEWFOLDER, folder SCHEDULE created

The following command selects and displays the next message containing the
word “meeting”:

MAIL> SEARCH

MAIL> COPY SCHEDULE

MAIL> SEARCH

$MAIL-E-NOTFOUND, no messages containing 'MEETING' found
7.8.5 Selecting Folders

To display a list of the folders in your current mail file, enter the
DIRECTORY/FOLDER command. To select a new folder as your current folder,
use one of the following commands:

e SELECT foldername

Selects the specified folder as the current folder. Subsequent Mail commands,
such as READ and DIRECTORY, use the selected folder. You do not need to
specify a folder name with each command.

e SET FOLDER foldername
This command works the same as the SELECT command.
e DIRECTORY foldername

Selects the specified folder as the current folder and lists the messages in the
folder.

e READ foldername

Selects the specified folder as the current folder and displays the specified
message (by default, the first message in the folder).

In the following example, the MEMOS folder is selected:

MAIL> DIRECTORY/FOLDER
Listing of folders in SYS$LOGIN:[FRED]MAIL.MAI;1
Press CTRL/C to cancel listing

MAIL MEETING MINUTES
MEMOS PROJECT_NOTES
STAFF

MAIL> SELECT MEMOS

7.8.6 Deleting Folders

To delete a mail folder, delete all the messages in the folder or move them to
another folder. When you delete all messages in a folder, the empty folder is
deleted automatically as soon as you select another folder.

In the following example, the messages in the MUSIC folder are deleted:

MAIL> SELECT MUSIC
$MAIL-I-SELECTED, 2 messages selected
MAIL> DELETE/ALL

7-14 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.8 Organizing Messages

7.8.7 Creating and Accessing Mail Files

You can also create files to organize your mail messages. You use the same
commands to create a mail file that you use to create a folder: COPY, MOVE, and
FILE. After Mail prompts you for the name of the folder, it also prompts you for
a file name. If you enter a new file name at the File: prompt, a new mail file is
created.

To work within a mail file other than the default mail file, use the Mail command
SET FILE to specify the alternate file. The Mail command SHOW FILE
displays the name of the current mail file. When you change mail files, the
WASTEBASKET folder of the current mail file is emptied and deleted (if AUTO_
PURGE is set) and the mail file is closed.

Figure 7-1 shows how a typical user might organize their mail.

Figure 7-1 Organizing Mail

Mail Directory

Mail Files

Mail Folders

Mail Messages

[FRED.MAIL]
.
MAIL.MAI ACCOUNTS.MAI
| | |
MAIL NEWMAIL WASTEBASKET FEED

ZK-5551A-GE

In the following example, the current message is moved into a folder named
FEED in the ACCOUNTS file. The MOVE command creates the mail file
ACCOUNTS.MAI, moves the current message into the FEED folder, and deletes
the message from its current folder and file.

MAIL> MOVE
_Folder: FEED
_File: ACCOUNTS

In the following example, the FEED folder (which is in the ACCOUNTS file) is
selected:

MAIL> SET FILE ACCOUNTS

MAIL> SET FOLDER FEED

MAIL> SHOW FILE

Your current mail file is SYS$LOGIN:[FRED.MAI]ACCOUNTS.MAI;1.

7.8.8 Correcting the Mail Message Count

If the number of new (unread) mail messages displayed on your screen is
inconsistent with the actual number of new messages, enter the READ/NEW
command when there is no new mail. You will know there is no new mail when
you enter the READ/NEW command and receive one of the following system
messages:

"$MAIL-W-NONEWMAIL, no new messages"
"$MAIL-E-NOMOREMSG, no more messages"

Using Mail to Communicate with Others 7-15

Using Mail to Communicate with Others
7.9 Deleting Messages

7.9 Deleting Messages

To delete a mail message from the current folder, either enter the DELETE
command while you are reading the message or enter the DELETE command
followed by the number (or range of numbers) of the message you want to delete.
You can use either the hyphen (-) or the colon (:) to define the range of messages
to be deleted.

In the following example, messages 4, 5, 6, 11, 12, 14, 15, 16, and 17 are deleted:
MAIL> DELETE 4-6,11,12,14:17

7.9.1 Recovering Deleted Messages

When you delete a message, the message is moved to a folder called
WASTEBASKET. Deleted messages collect in the WASTEBASKET folder until
you exit from the current mail file (either by exiting from Mail or by specifying
a different mail file). If you have issued the SET AUTO_PURGE command,
when you exit from the current mail file, WASTEBASKET is emptied and the
folder itself is deleted. During your interactive Mail session, you can recover any
deleted message by moving the message out of the wastebasket folder. You can
also empty the WASTEBASKET folder by entering the PURGE command.

In the following example, the mail message identified by the number 12 is deleted
and then recovered from the WASTEBASKET folder.

MAIL> DELETE 12

MAIL> SELECT WASTEBASKET
$MAIL-I-SELECTED, 1 message selected

MAIL> DIRECTORY
top
From Date Subject

1 FABLES::WEST 11-DEC-1999 Meeting this week
MAIL> MOVE MAIL

7.10 Printing Mail Messages

To print a mail message, enter the PRINT command at the MAIL> prompt. By
default, Mail sends your message to the SYS$PRINT queue. Mail files are not
sent to a print queue until you press Ctrl/Z, enter the EXIT command, or enter
the PRINT/PRINT command.

To specify a different queue, use the PRINT command qualifier /QUEUE. You can
also select a different queue by issuing the SET QUEUE queue-name command;
this queue will remain your default print queue until you enter another SET
QUEUE command, even if you exit Mail.

In the following example, the mail message is submitted to the AK34$PRINT
print queue:

MAIL> PRINT/QUEUE=AK34$PRINT

In the following example, the default print queue is changed from SYS$PRINT to
AK34$PRINT:

MAIL> SET QUEUE AK34$PRINT

7-16 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.11 Protecting Mail Files

7.11 Protecting Mail Files

The following sections describe how to protect mail files.

7.11.1 Default Protection

Mail files (for example, MAIL.MAI) are protected so that no one else can read
them and so that you cannot accidentally delete them. The protection code that
Mail gives .MALI files is: (S:RW,0:RW,G:,W:). The system (including Mail itself)
and the owner (you) can read and write to the file. The group and world are
denied all access.

The Mail utility also has default file protection to discourage mail tampering.
However, Mail is not completely secure from tampering. Anyone with sufficient
privileges can change protection and access mail files.

7.11.2 Security Measures

Mail files are within your own directory, so you have the option of applying the
file protection techniques for sensitive files described in Chapter 10. In addition:

e Use your judgment in responding to mail requests: if a node is outside your
local OpenVMS Cluster environment, it is possible that the source node is
incorrectly identified, either accidentally or intentionally.

e It is best to use discretion in the content of your mail messages and in the
selection of your audience.

e Never reveal your password or send details about how to use your account.
You have no control over information in a mail message once you have sent it.

7.12 Using Text Editors in Mail

The following sections describe how to use text editors in the Mail environment.

7.12.1 Using EVE

You can use a text editor to write a message before you send it. To do so, specify
the /EDIT qualifier with the SEND command. After you respond to the To: and
Subj: prompts, Mail invokes the text editor. Unless you have selected a different
editor, Mail invokes the DECTPU-based EVE editor.

The [End of file] marker moves down as you enter text. For more information
about the EVE editor, see Chapter 8. To send the message, press the Do key and
enter the EXIT command. To cancel the send operation, press the Do key and
enter the QUIT command.

In the following example, EVE is used to create a mail message:
MAIL> SEND/EDIT
[End of file]

Buffer: MAIN | Write | Insert | Forward

Note

Do not edit a .DDIF mail file because you will no longer be able to use the
file as a .DDIF file. If you edit a .DDIF mail file, you can access only the
text of the file.

Using Mail to Communicate with Others 7-17

Using Mail to Communicate with Others
7.12 Using Text Editors in Mail

7.12.2 Using /EDIT Qualifier Keywords

By specifying the /EDIT qualifier when you invoke Mail, you can use the editor
for sending, replying, and forwarding during the ensuing mail session. You can
also use keywords with the /EDIT qualifier to set the default for Mail.

To invoke the editor only when you are replying to a message, use the REPLY
keyword with the MAIL/EDIT command. To invoke the editor and display
the message to which you are replying, use the REPLY keyword with the
=EXTRACT option. If you do not specify a keyword with /EDIT, the default is
/EDIT=(SEND,REPLY).

To send or reply to a message, EXIT from the editor. To cancel a SEND or REPLY
command, enter the QUIT command to exit from the editor.

Examples

In the following example, the editor will be invoked for every mail message that
is sent or forwarded:

$ MAIL/EDIT=(SEND,FORWARD)

In the following example, the editor will be invoked for every message that is
replied to:

$ MAIL/EDIT=(REPLY)

In the following example, the editor will be invoked and the message to which
you are replying will be included as text every time you reply to a message:

$ MAIL/EDIT=(REPLY=EXTRACT)

7.12.3 Selecting an Editor

By default, Mail invokes the DECTPU-based EVE editor when you specify the
Mail command SEND/EDIT. By entering the Mail command SET EDITOR, you
can specify that a different editor be invoked instead of EVE. For example, to
select the EDT editor, issue the Mail command SET EDITOR EDT. The EDT
editor remains your default Mail editor (even if you log out of the system and log
back in) until you enter another SET EDITOR command.

To display the name of the selected Mail editor, enter the Mail command SHOW
EDITOR.

7.12.4 Using a Command File to Edit Mail

You can define the logical name MAIL$EDIT to be a command file before entering
Mail. Then, when you issue any Mail command that invokes an editor, the
command file will be called to perform the edit. In the command file, you can also
invoke other utilities such as the spell-checker and you can specify any function
that can be done in a command file. Refer to Appendix B for an annotated
example of a MAILEDIT.COM command procedure and refer to Chapter 13 and
Chapter 14 for more information on command files.

7.12.5 Overriding Your Selected Editor

If you wish to temporarily override your selected editor, you can define
MAILS$EDIT to be the string "CALLABLE_" with the desired editor name
appended. For example, to use callable EDT rather than callable EVE, you can
type the following command:

$ DEFINE MAILSEDIT CALLABLE EDT

7-18 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.12 Using Text Editors in Mail

If you issue the SET EDITOR command during a session that was invoked with
MAIL$EDIT defined, you override both your permanent selected editor and the
current editor setting. To use the command file defined by MAIL$EDIT again,
you must exit from Mail and restart it.

7.13 Using the Mail Keypad

You can use the numeric keypad on your keyboard to execute commands in Mail.
Most keypad keys can execute two commands.

Figure 7-2 shows the Mail keypad. To enter the top command for each key
shown, press the appropriate key. To enter the bottom command shown, press the
PF1 key first, and then the desired function key.

Figure 7-2 Mail Utility Keypad
PF1 PF2 PF3 PF4
GOLD HELP EXT/MAIL ERASE
DIR/FOLDER EXTRACT SEL MAIL
7 8 9 —
SEND REPLY FORWARD READ/NEW
SEND/EDIT REP/ED/EXT FORWD/EDIT SHOW NEW
4 5 6 3
CURRENT FIRST LAST DIR/NEW
ICURRENT/EDIT FIRST/EDIT LAST/EDIT DIR MAIL
1 2 3 ENTER
BACK PRINT DIR
BACK/EDIT PRINT/PR/NOT | | DIR/ST=99999
SELECT
0
NEXT FILE
NEXT/EDIT DELETE
ZK-1744-GE

To execute the Mail command SEND, press KP7. To execute the Mail command
SEND/EDIT, press the PF1 key first and then press KP7.
7.13.1 Redefining Keypad Keys

You can redefine the keypad keys to execute Mail commands when you are
in Mail. Note that the previous definition of the key is superseded when you
redefine a key.

Defining keypad keys in Mail is similar to defining keypad keys to execute DCL
commands.

In the following example, the key KP2 is defined as the Mail command
PRINT/PARAM=PAGE_ORIENT=LANDSCAPE. After KP2 is defined, you can
press it to display the PRINT/PARAM=PAGE_ORIENT=LANDSCAPE command:

MAIL> DEFINE/KEY KP2 "PRINT/PARAM=PAGE_ORIENT=LANDSCAPE"

Using Mail to Communicate with Others 7-19

Using Mail to Communicate with Others
7.13 Using the Mail Keypad

7.13.2 Assigning Additional Key Definitions

To increase the number of key definitions available on your terminal, use the
/STATE qualifier. You can assign many definitions to the same key as long as
each definition is associated with a different state. State names can be any
alphanumeric string. By specifying states, you can press a key once to enter a
command and a second time to enter a qualifier.

In the following example, PF1 (pressed twice) is defined as
DIRECTORY/FOLDER:

MAIL> DEFINE/KEY PF1 "DIRECTORY"/SET_STATE=FOLDER /NOTERMINATE
MAIL> DEFINE/KEY PF1 "/FOLDER" /IF_STATE=FOLDER /TERMINATE

Press PF1 twice to enter the command DIRECTORY/FOLDER. The /TERMINATE
qualifier ends the command line so you do not need to press the Enter key.

7.13.3 Creating Permanent Key Definitions

Any keypad keys that you define during a Mail session are lost when you exit
from Mail. To retain keypad key definitions from one Mail session to another,
create a file containing key definitions (for example, MAIL$KEYDEF.INI) in your
top-level directory. For example, the following MAIL$KEYDEF.INI file contains
six key definitions:

DEFINE/KEY PF1 "DIRECTORY " /NOTERMINATE /SET STATE=folder
DEFINE/KEY PF1 "/FOLDER" /TERMINATE /IF STATE=folder
DEFINE/KEY PF2 "SELECT " /NOTERMINATE /SET STATE=mail
DEFINE/KEY PF2 "MAIL" /TERMINATE /IF STATE=mail
DEFINE/KEY PERIOD "READ " /NOTERMINATE /SET STATE=new
DEFINE/KEY PERIOD "/NEW" /TERMINATE /IF STATE=new

To execute these commands each time you invoke Mail, enter the following
command line in your login command file (LOGIN.COM):

$ DEFINE MAILSINIT SYSSLOGIN:MAILSKEYDEF.INI

7.14 Summary of Mail Commands

This section contains a summary of all Mail utility commands. For complete
information on qualifiers used with these commands, refer to online help.

See also Section 7.15 for information about using the MIME utility to read and
compose MIME-encoded messages.

7.14.1 Reading Messages
Use the following commands to read messages:

e BACK

Displays the message preceding the current or last-read message when
the last command issued was READ. When the last command issued was
DIRECTORY, the BACK command displays the preceding screen of the
directory listing.

e CURRENT

Displays the beginning of the message you are currently reading.
e DIRECTORY |[folder-name]

Displays a list of the messages in the current mail file, including message
number, sender’s name, date, and subject.

7-20 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.14 Summary of Mail Commands

ERASE
Clears your terminal screen.
EXTRACT

Places a copy of the current message into the specified output file. To copy a
mail message to a folder in a Mail file, use either the COPY, FILE, or MOVE
command.

FIRST

Displays the first message in the current folder.
LAST

Displays the last message in the current folder.
NEXT

Skips to the next message and displays it.
READ [folder-name] [message-number]

Displays your messages. Pressing the Enter key is the same as entering the
READ command without parameters.

SEARCH search-string

Searches the currently selected folder for the message containing the first
occurrence of the specified text string.

SHOW NEW_MAIL_COUNT

Displays the number of unread mail messages.

7.14.2 Exchanging Messages

Use the following commands to exchange messages:

ANSWER [filespec]
REPLY [filespec]

Sends a message to the sender of the message you are currently reading or of
the one you last read.

FORWARD

Sends a copy of the message you are currently reading (or have just read) to
one oOr more users.

MALIL [filespec]
SEND [filespec]

Sends a message to one or more users.

7.14.3 Removing Messages

Use the following commands to remove messages:

DELETE [message-number]

Deletes either the message you are currently reading, a range of messages, or
the message you just read, and moves it to the WASTEBASKET folder.
PURGE

Deletes all the messages in the WASTEBASKET folder. When you exit
from Mail or enter a SET FILE command (to select a new mail file), an
implicit purge is done to empty the WASTEBASKET folder, unless you have
previously entered the SET NOAUTO_PURGE command.

Using Mail to Communicate with Others 7-21

Using Mail to Communicate with Others
7.14 Summary of Mail Commands

SET [NOJAUTO_PURGE

Determines whether Mail empties the WASTEBASKET folder when you enter
the EXIT or SET FILE command. When you use the SET NOAUTO_PURGE
command, you must enter the PURGE command periodically to delete the
messages in the WASTEBASKET folder.

SHOW AUTO_PURGE

Displays whether messages in the WASTEBASKET folder are deleted (purged
automatically) when you enter the EXIT or SET FILE command.

7.14.4 Printing Messages

Use the following commands to print messages:

PRINT

Adds a copy of the message you are currently reading to the print queue. The
files created by the PRINT command are released to the print queue when
you exit from Mail. Multiple messages are concatenated into one print job
unless you use the /NOW or /PRINT qualifier.

SET [NOJFORM form-name
SHOW FORM

Sets the default print form for printing done within Mail. The SET NOFORM
command clears the default print form. The SHOW FORM command displays
the default print form.

SET [NO]JQUEUE queue-name
SHOW QUEUE

Sets the default print queue to be used when you enter the PRINT command
from within Mail. SET NOQUEUE clears the previously defined print queue
and sets the queue to SYS$PRINT, the default print queue. The SHOW
QUEUE command displays your default print queue.

7.14.5 Organizing Messages

Use the following commands to organize messages:

COPY folder-name [filename]

Copies a message to another folder without deleting it from the current folder.
If the specified folder does not exist, it is created.

FILE folder-name [filename]
MOVE folder-name [filename]

Moves the current message to the specified folder and deletes the message
from the original folder.

SELECT [folder-name]
SET FOLDER [folder-name]

Establishes a set of messages that you can affect as a group. You can copy or
move this set of messages from one folder to another. You can also read and
delete, or search and extract a set of messages. In addition, you can use the
SELECT and SET FOLDER commands to move from one folder to another.

SET FILE filename

7-22 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.14 Summary of Mail Commands

Establishes (or opens) another file as the current mail file. By default, your
mail file is MAIL.MALI. If you use the COPY command, the FILE command, or
the MOVE command to create other mail files (for example, JOKES.MAI or
HISTORY.MAI), you can then use the SET FILE command to open the Mail
files.

SHOW FILE

Displays the name of the mail file that is currently open.
SHOW FOLDER [folder-name]

Displays the current folder name.

SET WASTEBASKET NAME folder-name

Changes the name of the WASTEBASKET folder, which contains messages
to be deleted. You can delete all the messages in the WASTEBASKET folder
by entering the PURGE command. If AUTO_PURGE is set, when you
enter the EXIT command, messages in the WASTEBASKET folder will be
deleted. If AUTO_PURGE is set, you can avoid deleting messages in the
WASTEBASKET folder by entering the QUIT command.

SHOW WASTEBASKET NAME
Displays the name of the WASTEBASKET folder.

SHOW DELETED

Displays the amount of deleted message space in the current mail file.

7.14.6 Marking Messages

The following commands are used for marking messages:

MARK [message-number]

Sets the current or specified message as marked. Marked messages are
displayed with an asterisk (*) in the left column of the directory listing. To
select or organize marked messages, use the SELECT command with the
/MARKED qualifier.

UNMARK [message-number]

Sets the current or specified message as unmarked. The asterisk (*) in the
left column of the directory listing is deleted.

7.14.7 Customizing the Mail Environment

The following commands are used for customizing the mail environment:

DEFINE/KEY key-name string

Defines a key to execute a Mail command. You can press the key to enter a
command instead of typing the command name.

SHOW KEY [key-name]
Displays the key definitions created by the DEFINE/KEY command.
EDIT [filename]

Invokes your selected editor and enables you to edit a message before you
send it.

HELP [topic]

Displays information about Mail. To obtain information about individual
commands or topics, enter HELP followed by the command or topic name.

Using Mail to Communicate with Others 7-23

Using Mail to Communicate with Others
7.14 Summary of Mail Commands

e SET [NOJCC_PROMPT

Sets the default for determining whether the carbon copy (CC:) prompt
appears when sending a message.

e SET COPY_SELF command[,command]

Sets the default for determining whether the SEND, REPLY, or FORWARD
commands return to the sender a copy of the message being sent.

e SHOW COPY_SELF

Displays which command (SEND, REPLY, or FORWARD) automatically sends
a copy of the message to you.

e SET [NOIJSIGNATURE_FILE

Sets the Mail utility to append a signature text file to the end of a mail
message automatically whenever you use the ANSWER, FORWARD, MAIL,
REPLY, or SEND command.

e SHOW SIGNATURE_FILE

Displays information that shows whether you specified a default signature
file and, if so, the name of that file. (The SHOW ALL command also displays
signature file information.)

e SET EDITOR editor-name

Selects the text editor to be used when you edit a message (for example, with
the Mail command SEND/EDIT). You can use any callable editor available
on your system. This command overrides any definition that the command
procedure MAIL$EDIT has set.

e SHOW EDITOR

Displays the name of your selected text editor.
e SET [NOJFORWARD address

Sets a forwarding address for your mail.
e SHOW FORWARD

Displays the name of your current forwarding address.
e SET [NOIMAIL_DIRECTORY [.subdirectory-name]

Specifies that all mail files (file type .MAI) be moved from your SYS$LOGIN
directory to the specified subdirectory.

e SHOW MAIL_DIRECTORY
Displays the name of the device and directory containing all your .MAI files.

e SET [NOJPERSONAL_NAME “text-string”

Appends a text string to the end of the From: field of mail messages you
send. You can fill this field with your full name or any other information.
Note that your personal name must begin with a letter and may not have two
consecutive spaces.

e SHOW PERSONAL_NAME

Displays the text string established with the SET PERSONAL_NAME
command.

e SHOW ALL

Displays detailed information about your current Mail settings.

7-24 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.14 Summary of Mail Commands

7.14.8 Exiting or Transferring Control

The following commands are used for exiting Mail or transferring control:

ATTACH [process-name]

Permits you to switch control of your terminal from your current process to
another process in your job. For example, while you are editing a file, you can
use the SPAWN command to move to a subprocess (Mail) to read a new mail
message. Then, you can enter the ATTACH command to move back to the
editing session.

EXIT

Exits from Mail. When you enter the EXIT command, any messages in the
WASTEBASKET folder are deleted unless you have issued the command SET
NOAUTO_PURGE. You can also exit from Mail by pressing Ctrl/Z.

QUIT

Exits from Mail without emptying the WASTEBASKET folder (deleted
messages are not destroyed unless you enter the EXIT command or press
Ctrl/Z). The QUIT command performs the same function as Ctrl/Y.

SPAWN [command]

Creates a subprocess of the current process. You can use the SPAWN
command to leave Mail temporarily, perform other functions (such as
displaying a directory listing or printing a file), and then return to Mail.

7.14.9 Mail File Compression

The following command is used for compressing mail files:

COMPRESS [filespec]

Makes an indexed mail file smaller. If you do not specify a file name, Mail
compresses the mail file that is currently open. If there is no open mail file,
Mail compresses the default mail file (MAIL.MAI).

7.14.10 System Management Commands

The following commands are used for system management:

REMOVE user name

Removes a user record from the system’s mail profile, data file
SYS$SYSTEM:VMSMAIL_PROFILE.DATA. Requires SYSPRV privileges.

SHOW FORWARD
Displays the name of a user’s current forwarding address.
SHOW PERSONAL_NAME

Displays the text string that a user has established with the SET
PERSONAL_NAME command.

Using Mail to Communicate with Others 7-25

Using Mail to Communicate with Others
7.15 MIME Utility

7.15 MIME Utility

The Multipurpose Internet Mail Extension (MIME) is the standard used to attach
nontext files to mail messages. The MIME utility allows you to compose and read
MIME-encoded mail messages. With MIME, nontext files, such as graphics or
sound files, are encoded and sent as plain text, although that text may not be
readable. The MIME utility decodes MIME files to their original form and allows
you to create MIME-encoded files, which can be sent as mail messages using the
OpenVMS Mail utility.

7.15.1 Invoking the MIME Utility

The system manager may have already set up the foreign command for MIME,
but if not, you can do so by adding the following line to your LOGIN.COM:

§ MIME :== SYSSSYSTEM:MIME.EXE

MIME will only open MIME encoded text files. You need to extract the
MIME-encoded message into a text file using Mail first. (See Section 7.6.3
for instructions.)

To invoke the MIME utility from the DCL prompt, enter the following:
$ MIME file-name.TXT

The file name qualifier is optional. If the file specified exists, it is opened READ_
ONLY.

e /READ_ONLY indicates that the file is the contents of a message received by
the user who intends to decode it. This is the default.

e /DRAFT indicates that the file contains a message that was created in a
previous session and was opened for WRITE_ACCESS.

The MIME utility does not construct any header information such as the To: or
From: fields. It creates only MIME headers and the body text of the message,
saving the text in a file to be sent by Mail later. If the file specified to be opened
contains such recognizable headers or any RFC822 headers, the file is opened and
the default is /READ_ONLY.

If the file specified does not contain any recognizable headers or does not exist, an
OPEN FILE ERROR message occurs.

You can establish system-wide defaults for displaying MIME-encoded messages
by creating two files: MIME$SMAILCAP.DAT and MIME$FILETYPES.DAT.

MIME$MAILCAP.DAT contains an application that defines each locally-
recognized content type of MIME-encoded files. MIME$FILETYPES.DAT
associates each content type with a file extension. A user can override the
defaults by creating these files in SYS$LOGIN.

7.15.2 Initializing the MIME Utility

When a user starts the MIME utility, the initialization process performs the
following steps:

1. In the user’s VMSmail profile, the MIME utility looks up the user’s mail
directory and default editor for use with the MIME utility.

2. The MIME utility reads files MIME$MAILCAP.DAT and
MIME$FILETYPES.DAT.

7-26 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.15 MIME Utility

3. The MIME utility refers to the following list of internal defaults:

Content types

The MIME utility refers to the list of content types before displaying
incoming messages. The list contains content types that the MIME utility
recognizes and the information needed to decode each content type into
its original format.

The following is an example of a MAILCAP entry, from RFC 1524:
image/*; xview %s

You can add content types to the list MIME recognizes by creating a
MIME$MAILCAP.DAT file. (Example 7-1 contains an example of a
MIME$MAILCAP.DAT file.)

File extensions

The MIME utility refers to the list of file extensions while composing
outgoing messages. The list contains OpenVMS file extensions and the
content type associated with each extension. The MIME utility needs
these extensions to be included in the MIME-formatted message body it
composes.

Each line in the file-extension list is made up of the following items:

extension, content type/subtype, (optionally) Content-Transfer-Encoding string

The following is an example of a line in a file-extension list:
doc, application/ms-word, base64

You can add file extensions and matching content types to the list the
MIME utility recognizes by creating a MIME$FILETYPES.DAT file,
which is described in Table 7-1.

7.15.3 Creating Optional MIME Utility Files

Table 7-1 lists and describes files you might want to create to customize the
MIME utility on your system.

Table 7-1 MIME Utility Optional Files

File

Purpose

MIME$MAILCAP.DAT For the display and parsing of incoming messages.
MIMES$FILETYPES.DAT For the assignment of content types to outgoing attached

files.

Place these files in the SYSSLOGIN directory.

7.15.3.1 MIMESMAILCAP.DAT File Processing
The format of the MIME$MAILCAP file originated in RFC 1524, A User Agent
Configuration Mechanism for Multimedia Mail Format Information, by N.
Borenstein, September, 1993. The MIME utility uses instructions in this file to
interpret and display messages and attachments. By following these instructions,
the MIME user agent calls external programs to display the content types found
in MIME messages.

Using Mail to Communicate with Others 7-27

Using Mail to Communicate with Others
7.15 MIME Utility

You can customize the MIME$MAILCAP.DAT file to specify a File Descriptor
Language (FDL) for a specific content type to extract message parts on your
system. Example 7-1 contains an example of a MIME$SMAILCAP.DAT file.

Note

References to program names must be logical names or valid file
specifications.

Example 7-1 MIMESMAILCAP.DAT File

#

MIMESMAILCAP.DAT

#

Local customizations of content types and processing options
#

Use xv.exe to display images

image/*; xv %s

#

Use Netscape for html attachments

text/html; netscape %s

#

7.15.3.2 MIMESFILETYPES.DAT File Processing

The optional MIME$FILE_TYPES.DAT file contains lists of OpenVMS file
extensions and the MIME content type associated with each one. ADD command
processing uses the FILETYPE structure to designate the content type of an
OpenVMS file to be attached to a composed message.

The syntax of the file format is similar to that of the MIME$MAILCAP.DAT file,
with the “#” character indicating comments. Each line in the file contains a single
file extension (without the leading ’.’), followed by the content type and subtype to
be associated with files that use that extension.

Optionally, the line can include the Content-Transfer-Encoding string (7bit, 8bit,
Base64 or Quoted-printable), which is used to encode the contents of the file

for transmission in the message. 7bit, 8bit, Base64 or Quoted-printable are the
standard MIME encodings and the only ones accepted. If no encoding is specified,
the MIME utility uses 7bit.

7.15.4 Extracting MIME-Encoded Files Using the MIME Utility

To extract a MIME-encoded file using the MIME utility, first, open the file you
want to decode. You can open the file in one of two ways: by invoking the
MIME utility specifying the file name or by opening the file in the MIME utility.
EXTRACT extracts the specified attachment to a file in its native file format or in
another format specified by the /FDL qualifier.

The following are typical MIME utility commands used to open a message file,
display the message in readable text, and list the message attributes:

MIME> OPEN file-name
MIME> READ
MIME> LIST

To extract the attachment, enter the following command:

MIME> EXTRACT /ATTACHMENT=n destination-file-name

7-28 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.15 MIME Utility

You can specify a single attachment by appending the /ATTACHMENT=n
qualifier, which specifies the number of the attachment to be extracted. You
can also use /FDL=filename, which specifies a File Descriptor Language (FDL)
definition file to use when converting the specified attachment into an output
file. The numbers for the individual attachments are displayed with the LIST
command.

See Section 7.15.6 for a complete list of commands used in the MIME utility.
7.15.5 Encoding Files Using the MIME utility

To encode files to be sent as attachments, you must first create a new file by
invoking the MIME utility and specifying the NEW command. If the file name is
not specified, NEW will prompt for a file name:

$ MIME NEW new-file-name

Or you can use the OPEN command in the MIME utility to open a draft message
file:

MIME> OPEN/DRAFT file-name

To open a file that you created in a previous session, specify the qualifier /DRAFT
in the command.

To add attachments to the file, enter the command:
MIME> ADD file-name
For a complete list of optional qualifiers for this command, see Section 7.15.6.

To write the current information to the file, use the SAVE command. Once saved,
the MIME-encoded file can be sent as a file by the OpenVMS Mail utility.

To exit the MIME utility, enter the QUIT or EXIT command.
See Section 7.15.6 for a complete list of commands used in the MIME utility.

7.15.6 MIME Utility Commands

The following list contains descriptions of the commands, parameters, and
qualifiers available in the MIME utility. Examples follow each description.

ADD — Adds a new body part or attachment to the message being edited. The
ADD command requires the name of the file you want to attach as a parameter.
The optional qualifiers are:

e /BINARY — Sets content type to "application/octet-stream" and content-
transfer-encoding to "base64". This format can be used to represent an
arbitrary binary data stream.

e /CONTENT_TYPE=type — Overrides the default content type with a specified
string, for example "IMAGE/JPEG."

e /ENCODING_TYPE=(7Bit | 8Bit | Base64 | Quoted-Printable} — Overrides
the default encoding with a specified encoding type.

e /MESSAGE — The attachment is a message file (standard RFC822).
e /TEXT — The attachment is content type text.

MIME> ADD file-name/TEXT

Using Mail to Communicate with Others 7-29

Using Mail to Communicate with Others
7.15 MIME Utility

CLOSE — Closes the current message file. If you have not saved your most
recent changes, the MIME utility will prompt you to save before closing. If the
file is /READ_ONLY, the file is left unchanged.

MIME> CLOSE

EDIT — Invokes the user’s default text editor for the specified attachment.

MIME> EDIT attachment-number

EXIT — Exits the MIME editor, saving any work in process.

MIME> EXIT

EXTRACT — Extracts the specified attachment to a file in its native file format.
e /ATTACHMENT=n — Specifies the number of the attachment to be extracted.

e /FDL=filename — Specifies a File Descriptor Language (FDL) definition file to
use when converting the specified attachment into an output file.

MIME> EXTRACT file-name/ATTACHMENT=n
HELP — Displays a help file for the MIME utility.
MIME> HELP

LIST — Displays information about the current message including a list of body
parts and attributes, such as the attachment number.

MIME> LIST
NEW — Creates a new message.
MIME> NEW file-name

OPEN — Opens the message with the specified file name. The qualifiers
available are:

e /DRAFT — The message file is a draft created in a previous session.
e /READ — The message is read-only and cannot be updated.
MIME> OPEN file-name/NEW

QUIT — Aborts the current MIME editing session without saving the current
message.

MIME> QUIT

READ — Displays the current message as readable text. Displays the
attachment, if applicable.

MIME> READ
REMOVE — Deletes a specified attachment from the current message.
MIME> REMOVE 1

SHOW — Displays information about the MIME environment, depending upon
what option is specified. Possible options are CONTENT_TYPE, FILE_TYPES,
and VERSION.

MIME> SHOW option

7-30 Using Mail to Communicate with Others

Using Mail to Communicate with Others
7.15 MIME Utility

SAVE — Writes the current message to a file. If a file name is specified, it will be
used.

MIME> SAVE file-name

7.15.7 Error Handling

Error conditions are reported using the OpenVMS signaling subsystem,
specifically lib$signal() and lib$stop(). Three levels of severity exist for error
conditions: Fatal, Error, and Warning. These levels indicate what results you can
expect from a condition. The severities and corresponding results are described in
the following list:

e Fatal (-F-) results in the immediate termination of the program.

e Error (-E-) results in the termination of the currently active command while
retaining the existing message context.

e Warning (-W-) results in the completion of the current command, without
interupting the MIME editing session. However, this does not mean that the
command accomplished all its tasks successfully. Check the results for errors.

Using Mail to Communicate with Others 7-31

8

Editing Text Files with EVE

Text editors allow you to create and modify text files. With a text editor, you can
enter text from a keyboard and modify the text using text editing commands. For
example, you can type in data for a report and then rearrange sections, duplicate
information, substitute phrases, or format text. You can use text editors to

create and modify source files for programming languages. The operating system
supports several text editors.

The Extensible Versatile Editor (EVE) is a general-purpose text editor based on
the DEC Text Processing Utility (DECTPU). This chapter includes information
about:

EVE features

Getting help

Beginning an editing session
Entering commands

Saving your edits and exiting from EVE
Moving the cursor

Entering text

Erasing and restoring text
Moving text

Copying text

Box editing

Using pending delete

Finding and replacing text

Using command line qualifiers
Alternate methods to invoke EVE
Journaling and recovery

EVE formatting commands
Using buffers

Creating a subprocess

For additional information about EVE, refer to online help in EVE and the

Extensible Versatile Editor Reference Manual.

For information about EDT, refer to the OpenVMS EDT Reference Manual.

Editing Text Files with EVE 8-1

Editing Text Files with EVE

Conventions

In this chapter, EVE key names are shown (with the SHOW KEY or HELP
KEYS command) by using a slash for control keys, shifted function keys, and Alt
key combinations, and a space or a dash for GOLD key sequences. Thus, key
combinations that require you to hold down one key (such as Ctrl) while pressing
another key are shown with a slash; key combinations in which you press one key
after another (such as GOLD-Help) are shown with a space or a dash.

8.1 EVE Features

DECTPU is a high-performance, programmable text processor. With EVE
software, you can create and edit text files such as business letters, technical
documents, and program source files.

EVE is the default editor on the OpenVMS operating system. Unless you define a
different default editor, EVE is invoked when you enter the EDIT command.

With EVE, you can do the following:

e C(Create and edit text files such as letters, reports, program sources, and other
documents.

e Perform text formatting operations, such as erase, cut, paste, fill, find,
replace, and paginate.

e Use multiple buffers and windows to view and edit different files in the same
editing session.

¢ Define keys for editing operations, including learn sequences (to bind several
commands or keystrokes to a single key) and setting the EDT keypad or
WPS-PLUS keypad.

e Select text in boxes or in linear ranges for cut-and-paste or other edits.
e Use wildcards to search for patterns of text.

e Execute DCL commands (such as DIRECTORY) from within the editor.
e Run DECspell to check a selection or an entire buffer.

e Spawn subprocesses or attach to other processes.

e Compile and execute DECTPU procedures to extend EVE.

e Add to or delete menu items from the DECwindows interface.

e Save compiled procedures, menu definitions, key definitions, and other
customizations for future sessions.

e Use initialization files at startup or during an editing session.

e Recover your work by using keystroke or buffer-change journaling when a
system failure interrupts your editing session.

e Get comprehensive online help on EVE commands, keys, menu items, and
other topics, including DECTPU built-in procedures.

Once you know how to invoke EVE and how to enter commands, you can use
EVE commands to create and edit files. Using editing keys and commands, you
can move the cursor, set buffer mode, and perform editing operations such as
entering, erasing, restoring, and moving text.

8-2 Editing Text Files with EVE

Editing Text Files with EVE
8.2 Getting Help

8.2 Getting Help

You can get online help at any time during your editing session. There are two
kinds of online help available with the EVE editor:

e Keypad help, which you access with the Help key on your terminal

e EVE help, which you access with the HELP command at the EVE command
prompt

8.2.1 Using Keypad Help

To access keypad help, follow these steps:

1. Press the Help key.
The Help utility displays a diagram of your keypad.

2. Follow the directions on the screen to get information on:
e EVE commands

To get help on EVE commands, enter a command name or a question
mark (?) and press the Enter key.

e Defined keys

To get help on a key that you have defined, press that key, or use the
SHOW KEY command.

e Listing key definitions

To list all key definitions, type the word keys and press the Enter key, or
press GOLD HELP. The GOLD key is the PF1 key or NumLock key on
the numeric keypad.

3. Press the Enter key to exit from Help.

8.2.2 Using EVE Help
To use the HELP command to access EVE Help, follow these steps:
1. Press the Do key.
2. Enter the command HELP.

Use the Prev Screen and Next Screen keys to scroll through the list of
available help topics.

3. Press the Enter key to exit from Help.

To get information about a particular command, enter HELP followed by the
command name and press the Enter key. The help text appears on the screen.
You can also get help on DECTPU built-in procedures by entering the command
HELP TPU.

The following example shows the help text for the MOVE BY LINE command:

MOVE BY LINE

Moves the cursor a line at a time in the current direction.

Keys: EVE Default VT100 Keypad
P2 MINUS on keypad
Steps:
1. 1If necessary, set the direction to move in --- forward or reverse.

2. Use MOVE BY LINE (see key list above).

Editing Text Files with EVE 8-3

Editing Text Files with EVE
8.2 Getting Help

Usage notes:

o In forward direction, moves to the end of the current line, or to the
end of the next line, if any.

o In reverse direction, moves to the start of the current line, or to
the start of the next line, if any.

Related topics:
CHANGE DIRECTION END OF LINE LINE START OF LINE

8.3 Beginning an Editing Session

EVE is the default editor for the OpenVMS operating system. The EDIT
command, as follows, automatically starts the EVE editor (unless the default
editor has been redefined by you or the system manager):

§ EDIT

On systems where EVE is not the default editor, start EVE with the EDIT/TPU
command. When you begin an editing session, you can specify the name of an
existing file or a new file you want to create. If you do not specify a file name,
EVE prompts you for a file name when you end your editing session if you
have added text to the default buffer called Main. See Section 8.18 for more
information on using buffers.

The following example invokes EVE to create a new file named NEWFILE.DAT:
$ EDIT NEWFILE.DAT
[End of file]@

(2]

Buffer: NEWFILE.DAT | write | Insert | Forward ©
Command: @
Editing new file. Could not find: FABLES.TXT ©

As you examine the EVE screen display, note the following:

© The end-of-file marker marks the end of an EVE buffer. It is visible only on
the screen and does not become part of your file. When you add text to the
buffer, the end-of-file marker moves down. Depending on the length of your
terminal screen, the marker may not be visible when you view the beginning
of a buffer that contains many lines of text.

® A window is an area of your screen that displays a buffer. EVE buffers exist
only during the editing session. When you end an editing session, you can
save your edits or discard them.

© A highlighted status line appears at the bottom of the EVE window and
provides information about the buffer you are viewing in the window. The
status line shows the buffer name, editing status (write or read-only), current
mode (insert or overstrike), and current direction (forward or reverse).

O You use the command line to enter line-mode commands (see Section 8.4).
You get the command line by pressing the Do key.

8-4 Editing Text Files with EVE

Editing Text Files with EVE
8.3 Beginning an Editing Session

® The message window contains an informational message that appears
beneath the highlighted status line when you invoke EVE and specify a file
name on the command line. The message states either that the file is a new
file or that a certain number of lines were read from an existing file. During
the editing session, EVE displays other messages in the message window.

8.4 Entering Commands
There are two ways to enter EVE commands:
e Type in commands on the command line interface.

e Use defined keys on either the EDT or WPS keypad.

8.4.1 Typing Commands

To type a command, follow these steps:

1. Press the Do key.

The cursor moves to the command window and EVE prompts you to type a
command.

2. Type a command. You can abbreviate the command by using the first
few letters of the command. EVE is not case sensitive. You can use any
combination of uppercase and lowercase characters in the command line
except when specifying strings for the FIND and REPLACE commands.

3. Press the Do key or the Enter key.

EVE executes the command or prompts you for further information.

8.4.2 Using Defined Keys

You can use defined keys to enter EVE commands. Each defined key performs one
editing command. You can also define your own keys to perform EVE functions.

EVE defines some keys by default. The predefined keys on VT200, VT300, and
VT400 series terminals include:

¢ The minikeypad (located between the main keyboard keys and the numeric
keypad, above the arrow keys)

e (Certain function keys
e Certain control key sequences

Control keys, arrow keys, and the Tab, Return, and Delete keys have the same
definitions on all three types of terminal.

Figure 8-1 shows the predefined keys for the VT200, VT'300, and VT400 series
terminal.

Editing Text Files with EVE 8-5

Editing Text Files with EVE
8.4 Entering Commands

Figure 8-1 EVE Keys — VT200, VT300, and VT400 Series Terminals

EVE Default Keys (SET KEYPAD NUMERIC)
2)
{

Help
. Change Move By Erase Change
Exit Direction Line Word Mode Keypad Do
2) Res Wor Keys
(
F9 F10 F11 F12 F13 F14

Xl Delete Ctrl/A CHANGE MODE

Tab Tab Ctrl/B- RECALL

Retun Return Ctrl/E END OF LINE Find Insert Remove

Enter Retun Ctrl/H START OF LINE Here

PF4 Do Ctrl/l TAB
Ctrl/d ERASE WORD Wild Find Restore Store Text
Ctrl/L INSERT PAGE BREAK
Ctrl/M RETURN P Next
Ctr/R REMEMBER Select s rev s ex
Ctrl/lU ERASE START OF LINE elec creen creen
Ctrl/V. QUOTE
Ctrl/W REFRESH Reset Prev Window | Next Window
Ctrl/z EXIT I

Top
— l - >
Sta of Li Bottom End of LI

GOLD key functions are shown in gray shading.

ZK-6300-GE

On VT100 series terminals, EVE automatically defines most of the numeric
keypad keys, the four arrow keys, and certain control keys. Figure 8-2 shows the
predefined keys for the VT'100 series terminal.

8-6 Editing Text Files with EVE

Editing Text Files with EVE
8.4 Entering Commands

Figure 8-2 EVE Keys — VT100 Series Terminals

EVE VT100 Keypad

Help Change

Keypad Direction Do

[N P (g

Start of End
Top Bottom Line of Line

Move
By
Line

Insert

Select Remove
Here

Delete Delete Ctrl/A° CHANGE MODE
Tab Tab Ctrl/B- RECALL
Return Return Ctrl/E END OF LINE
Backspace Start of Line Ctrl/H START OF LINE
Linefeed Erase Word Ctrl/l TAB
Ctrl/ld ERASE WORD
Ctrl/L INSERT PAGE BREAK
Ctrl/M RETURN l

Erase
Word

Ctl/R REMEMBER
Ctrl/U ERASE START OF LINE
Ctl/V QUOTE

Ctl/W REFRESH Change
Ctrl/z EXIT Mode

Next Prev
Screen Screen

GOLD key functions are shown in gray shading.

ZK-6301-GE

8.5 Saving Your Edits and Exiting from EVE

You can use one of the following methods to save your edits:

e WRITE FILE command

Saves a file without terminating your editing session

e EXIT command

Terminates your editing session and saves the changes to your file

e QUIT command

Terminates your editing session without saving changes to your file

8.5.1 Using the WRITE FILE Command

To save the text in your buffer by writing it to a file without exiting from EVE,
use the WRITE FILE command. If no file is associated with your buffer, EVE
prompts for a file name, as follows:

Type filename for buffer Main (press RETURN to not write it):
Type the name of the file and press the Enter key to write the buffer to a file.

8.5.2 Using the EXIT Command

To save your edited text, use the EXIT command. You can enter the EXIT
command by pressing the F10 key or by pressing Ctrl/Z.

If you have modified the current buffer, EVE creates a new version of the file with
the same file name and file type as the original version, with the version number
incremented by 1. For example, if you use the EXIT command after modifying a
file named FUN.DAT;1, the output file is named FUN.DAT;2.

Editing Text Files with EVE 8-7

Editing Text Files with EVE
8.5 Saving Your Edits and Exiting from EVE

8.5.3 Using the QUIT Command

To end a session without saving your edits, enter the QUIT command. Type YES
(Y) and press the Enter key if you want to quit without saving the edits. If you
change your mind and decide to save your edits, type N, press the Enter key, and
use the EXIT command to exit from the buffer.

If you have modified buffers other than the current one, EVE asks if you want to
save the contents of the other buffers. If you type Y, EVE creates a new version
of an existing file, incrementing the version number by 1. EVE prompts for a file
name if no file currently exists.

If no buffers have been modified, then EXIT and QUIT are the same. For
example, if you use EVE to inspect a file without making edits, you can quit by
pressing Ctrl/Z.

In the following example, there is a modified buffer named FUN.DAT and the
QUIT command is entered:

Command: QUIT
Buffer modifications will not be saved, continue quitting (Y or N)?

8.6 Moving the Cursor

When editing files with EVE, you move the cursor where you want to perform
an editing function. The more quickly and efficiently you move the cursor
through the text, the more time you save in your editing session. You can use the
keyboard or commands to move the cursor.

Table 8-1 shows EVE editing keys that move the cursor. For more information
about the GOLD key combinations listed, see the online help topic GOLD.

Table 8-1 EVE Editing Keys That Move the Cursor

Key or Key Sequence

Function

Up arrow key

Down arrow key

Left arrow key

Right arrow key

Ctrl/E
or GOLD right arrow key

Ctr/H
or GOLD left arrow key

GOLD up arrow key
GOLD down arrow key

8-8 Editing Text Files with EVE

Same as MOVE UP. Moves the cursor up one line. On VT100 series
terminals, KP5 is also defined as MOVE UP.

Same as MOVE DOWN. Moves the cursor down one line. On VT100
series terminals, KP2 is also defined as MOVE DOWN.

Same as MOVE LEFT. Moves the cursor one character or column to
the left. On VT100 series terminals, KP1 is also defined as MOVE
LEFT.

Same as MOVE RIGHT. Moves the cursor one character or column to
the right. On VT100 series terminals, KP3 is also defined as MOVE
RIGHT.

Same as END OF LINE. Moves the cursor to the end of the current
line.

Same as START OF LINE. Moves the cursor to the beginning of the
current line.

Same as TOP. Moves the cursor to the top of the current buffer.

Same as BOTTOM. Moves the cursor to the bottom of the current
buffer.

(continued on next page)

Editing Text Files with EVE
8.6 Moving the Cursor

Table 8-1 (Cont.) EVE Editing Keys That Move the Cursor

Key or Key Sequence

Function

GOLD Next Screen

GOLD Prev Screen

Same as NEXT WINDOW. Moves the cursor to the last position the
cursor occupied in the next window on your screen, if you are using
two or more windows.

Same as PREVIOUS WINDOW. Moves the cursor to the last position
the cursor occupied in the previous window on your screen, if you are
using two or more windows.

Table 8—2 shows EVE commands that move the cursor.

Table 8—2 EVE Commands That Move the Cursor

Command

Function

BOTTOM

CHANGE DIRECTION

END OF LINE

FORWARD

GO TO

LINE
MARK

MOVE BY LINE

MOVE BY PAGE

MOVE BY WORD

NEXT SCREEN

NEXT WINDOW or
OTHER WINDOW

Moves the cursor to the end of the current buffer. By default, EVE defines
GOLD down arrow key as BOTTOM.

Changes the direction of the current buffer. The direction of the buffer is
shown in the status line.

Moves the cursor to the end of the current line. By default, EVE defines
both Ctrl/E and GOLD right arrow key as END OF LINE.

Default setting. Sets the direction of the current buffer to forward; that is,
to the right and down. The direction of the buffer is shown in the status
line.

Moves the cursor to the position you specify, as previously labeled with
the MARK command.

Moves the cursor to the beginning of a line (specified by the line number).

Puts an invisible marker at the current position and associates it with the
name you specify. Later, you can return to the marked position by using
the GO TO command.

In forward direction: moves the cursor to the end of the current line or, if
the cursor is already at the end of a line, to the end of the next line. In
reverse direction: moves the cursor to the beginning of the current line
or, if the cursor is already at the beginning of a line, to the beginning of
the previous line. On VT200, VT300, and VT400 series terminals, EVE
defines the F12 key as MOVE BY LINE. On VT100 series terminals EVE
defines the Minus key on the keypad as MOVE BY LINE.

Moves the cursor to the next or previous page break (form feed),
depending on the current direction. If there is no page break in the
current direction, the cursor moves to the bottom or top of the buffer.

In forward direction: moves the cursor to the beginning of the next word
or, if the cursor is already at the end of a line, to the beginning of the
next line. In reverse direction: moves the cursor to the beginning of the
previous word or, if the cursor is already at the beginning of a line, to the
end of the previous line.

Scrolls forward in the current buffer by the number of lines in the current
window minus one. For example, if the current window is 12 lines long,
the NEXT SCREEN command scrolls the cursor forward 11 lines. On
VT200, VT300, and VT400 series terminals, EVE defines the E6 key (Next
Screen) as NEXT SCREEN. On VT100 series terminals, EVE defines the
KPO key on the keypad as NEXT SCREEN.

Moves the cursor to the next window on your screen, if there is one.
The cursor appears in the last location it occupied in that window. EVE
defines GOLD Next Screen as NEXT WINDOW.

(continued on next page)

Editing Text Files with EVE 8-9

Editing Text Files with EVE
8.6 Moving the Cursor

Table 8-2 (Cont.) EVE Commands That Move the Cursor

Command

Function

PREVIOUS SCREEN

PREVIOUS WINDOW

REVERSE

SET CURSOR BOUND

SET CURSOR FREE

SET SCROLL
MARGINS

SHIFT LEFT

SHIFT RIGHT

START OF LINE

TOP

Scrolls backward in the current buffer by the number of lines in the
current window minus one. For example, if the current window is 12 lines
long, the PREVIOUS SCREEN command scrolls the cursor backward 11
lines. On VT200, VT300, and VT400 series terminals, EVE defines the E5
key (Prev Screen) as PREVIOUS SCREEN. On VT100 series terminals,
EVE defines the Period key on the keypad as PREVIOUS SCREEN.

Moves the cursor to the previous window on your screen, if there is one.
The cursor appears in the last location it occupied in that window. EVE
defines GOLD Prev Screen as PREVIOUS WINDOW.

Sets the direction of the current buffer to reverse; that is, to the left and
up. The direction of the buffer is shown in the status line.

Makes the cursor follow the flow of text. The cursor cannot move into an
unused portion of the buffer. Similar to cursor behavior in EDT, WPS,
and other editors.

Default setting. You can move the cursor anywhere in the buffer and
enter text there.

Sets the top and bottom distances at which scrolling begins automatically
as you move the cursor up and down. You specify these distances as
numbers of lines or as a percentage of the window size. The default
setting is 0; that is, scrolling starts when you move past the top or the
bottom of the window.

Shifts the current EVE window to the left by the number of columns you
specify. With SHIFT RIGHT and SHIFT LEFT commands, you can view
the undisplayed portion of long lines of text without having to change
the width of the window or use 132-column mode. The SHIFT LEFT
command shifts the window only if you have used the SHIFT RIGHT
command.

Shifts the current EVE window to the right by the number of columns you
specify. With SHIFT RIGHT and SHIFT LEFT commands, you can view
the undisplayed portion of long lines of text without having to change the
width of the window.

Moves the cursor to the beginning of the current line. By default, EVE
defines both Ctrl/H and GOLD left arrow key as START OF LINE.

Moves the cursor to the beginning of the current buffer (upper left corner).
By default, EVE defines GOLD up arrow key as TOP.

Tutorial: Moving the Cursor in EVE
To move the cursor through a buffer:

1. Invoke EVE and create the buffer SCHEDULE.DAT with the following

command:

§ EDIT SCHEDULE.DAT

EVE puts the cursor at the top of the buffer and waits for you to enter text.

2. Enter the following text.

Schedule for 1 July

10:00 AM meeting with supervisor
Read and review memo from Sally
Work on Pascal program

The [End of file] marker moves down in the buffer as you enter text and the
cursor is positioned at the end of the text you inserted.

3. Enter the TOP command to move the cursor to the beginning of the file.

8-10 Editing Text Files with EVE

Editing Text Files with EVE
8.6 Moving the Cursor

4. Press Ctrl/E to move the cursor to the end of the first line of text. Ctrl/E
works the same way in EVE as it does in DCL.

Enter the BOTTOM command to move the cursor to the end of the buffer.

6. Press the up arrow key to move the cursor up one line to the fourth line of
text.

7. Press the Change Direction key to change the current buffer direction to
reverse.

8. Press the Move by Line key to move the cursor to the beginning of the third
line of text.

9. Enter the command LINE 1 to move the cursor to the beginning of the first
line of the buffer.

10. To exit from EVE, press Ctrl/Z.

8.7 Entering Text

You can enter keyboard characters, entire files, and special nonprinting characters
(such as control characters) into the buffer that you are currently editing. You
can use the keypad or commands to enter text. You can also add text, files, and
special characters to the buffer.

8.7.1 Adding Text

You can type characters at the keyboard and add them to the buffer at the current
cursor position. The characters you type either supplement or replace existing
characters, depending on whether the buffer is in insert or overstrike mode.

8.7.2 Including Files

You can add an entire file by pressing the Do key and entering the EVE command
INCLUDE FILE. Type the file specification at the File to include: prompt and
press the Enter key. Regardless of the current mode (insert or overstrike) of the
buffer, EVE inserts the entire contents of the specified file into the buffer just
before the line where the cursor currently appears.

You can use wildcards in the file specification. If there is more than one match
for a file specification with a wildcard, EVE displays a list of choices and prompts
you to provide a more complete file specification. If the specified file does not
exist, EVE displays a message stating that it could not include the file.

8.7.3 Special Nonprinting Characters

You can use the QUOTE command to add special nonprinting characters by
pressing Ctrl/V followed by the special character. For example, to insert an
escape character into the buffer, press Ctrl/V followed by Ctrl/[. The special
character either supplements or replaces existing characters, depending on
whether the buffer is in insert or overstrike mode.

Editing Text Files with EVE 8-11

Editing Text Files with EVE
8.7 Entering Text

8.7.4 EVE Editing Keys for Entering Text
The following table shows the EVE editing keys that you can use to enter text:

Key or Key
Sequence Function

Ctrl/A Same as the CHANGE MODE command. Changes the editing mode for the
current buffer as shown in the highlighted status line. In insert mode, EVE
inserts text at the character position, moving existing text to accommodate the
insertion. In overstrike mode, EVE overwrites text at the current position. On
VT200, VT300, and VT400 series terminals, EVE defines the F14 key as CHANGE
MODE. On VT100 series terminals, EVE defines the Enter key on the keypad as
CHANGE MODE.

Ctrl/V Same as the QUOTE command. You can insert nonprinting characters or control
codes. To search for special characters, first press the Find key, then press Ctrl/V
and the special character to be found. Activate the search by pressing the Enter
key.

8.7.5 EVE Commands for Entering Text

The following table shows the commands that you can use to enter text:

Command Function
CHANGE Same as Ctrl/A. Changes the current editing mode as shown in the highlighted
MODE status line. In insert mode, EVE inserts text at the current position, moving

existing text to accommodate the insertion. In overstrike mode, EVE overwrites
text at the current position. On VT200, VT300, and VT400 series terminals, EVE
defines the F14 key as CHANGE MODE. On VT100 series terminals, EVE defines
the Enter key on the keypad as CHANGE MODE.

INCLUDE FILE Inserts the contents of the specified file into the current buffer at the line above
the cursor position. This is useful for combining files.

INSERT MODE Sets the mode of the current buffer to insert, as opposed to overstrike. In
insert mode, EVE inserts text at the current position, moving existing text to
accommodate the insertion.

OVERSTRIKE Sets the mode of the current buffer to overstrike, as opposed to insert. In
MODE overstrike mode, EVE overwrites text at the current position.

QUOTE Same as Ctrl/V. Enters a nonprinting character or a control code that you specify
by pressing a key. You can quote a control code or other character when you enter
a string for the FIND or REPLACE commands. For example, you can quote the
Tab key to search for tab characters.

8.7.6 Setting Buffer Mode

Before you begin typing text, check whether your buffer is in insert mode or
overstrike mode.

To determine the mode your buffer is in, look at the highlighted status line. If
the buffer is in insert mode, text is inserted at the cursor position and text that
already appears in the buffer moves to accommodate your insertions. If the buffer
is in overstrike mode, text that you type at the keyboard is inserted at the cursor
position and the text that already appears in the buffer is overwritten as the
cursor moves through it.

To change from one mode to another, press Ctrl/A.

8-12 Editing Text Files with EVE

Editing Text Files with EVE
8.7 Entering Text

Tutorial: Adding Text in Insert or Overstrike Mode
To add text to a file in both insert mode and overstrike mode:

1.

2
3.
4

Invoke EVE to edit the existing file SCHEDULE.DAT.
Check the highlighted status line to ensure that EVE is in insert mode.
If EVE is in overstrike mode, press Ctrl/A to change to insert mode.

Move the cursor to the first letter s in the word supervisor, type Engineering,
and press the space bar.

The word Engineering is inserted in your text buffer, and the rest of the text
on the line moves to the right.

Schedule for 1 July

10:00 AM meeting with Engineering supervisor
Read and review memo from Sally

Work on Pascal program

[End of file]

Buffer: SCHEDULE.DAT | write | Insert | Forward

Press Ctrl/A to change to overstrike mode.

Move the cursor to the letter S in the word Sally and type Peggy.
The word Peggy is placed in the buffer, overwriting the word Sally.
Schedule for 1 July

10:00 AM meeting with Engineering supervisor

Read and review memo from Peggy

Work on Pascal program
[End of file]

Buffer: SCHEDULE.DAT | write | Overstrike | Forward

To exit from EVE, press Ctrl/Z.

8.8 Erasing and Restoring Text

With EVE, you can easily erase text or correct mistakes made during an editing
session. If you erase text by mistake, you can restore the most recently erased
text to its former location or, by moving the cursor, to another location.

To erase text from your buffer, move the cursor to the text you want to erase and
press the appropriate editing key or enter the appropriate EVE command.

Table 8-3 shows EVE editing keys that erase and restore text.

Table 8-3 EVE Editing Keys for Erasing and Restoring Text

Key or Key Sequence Function

Delete key or Delete Erases the character to the left of the cursor. Same as the

DELETE command. If pending delete is enabled, DELETE erases
text in the select range and puts it into the Restore Selection
buffer. For more information about using pending delete, see
Section 8.9.

(continued on next page)

Editing Text Files with EVE 8-13

Editing Text Files with EVE
8.8 Erasing and Restoring Text

Table 8-3 (Cont.) EVE Editing Keys for Erasing and Restoring Text

Key or Key Sequence

Function

Ctrl/J

Ctrl/U

GOLD Insert Here

GOLD F13

Same as ERASE WORD. Erases the current word or, if the cursor
is between words, erases the next word. On VT200, VT300, and
VT400 series terminals, EVE defines the F13 key as ERASE
WORD. On VT100 series terminals, EVE defines the Comma key
on the keypad as ERASE WORD.

Same as ERASE START OF LINE. Erases characters left of the
cursor to the start of the line.

Same as RESTORE. Reinserts, at the current position, the word,
line, or sentence that you just erased with an EVE command or
editing key.

Same as RESTORE WORD (except with the WPS keypad).
Reinserts, at the current position, the word that you last erased.

Table 8-4 shows EVE commands that erase and restore text.

Table 8-4 EVE Commands for Erasing and Restoring Text

Command

Function

DELETE

ERASE CHARACTER

ERASE LINE

ERASE PREVIOUS WORD

ERASE START OF LINE

ERASE WORD

8-14 Editing Text Files with EVE

Erases the character to the left of the cursor. In insert mode,
EVE moves existing text to accommodate the deleted character.
In overstrike mode, EVE replaces the character with a space. At
the start of a line, DELETE erases the carriage return for the
previous line (regardless of mode) and the current line moves up.
If pending delete is enabled, DELETE erases text in the select
range and puts it into the Restore Selection buffer. For more
information about using pending delete, see Section 8.9.

Erases the character the cursor is on. In insert mode, EVE moves
existing text to accommodate the deleted character. In overstrike
mode, EVE replaces the character with a space. If the cursor is
at the end of the line, the carriage return is erased—regardless of
the mode—and the next line moves up.

Erases from the current character to the end of the line,
appending the next line to the end of the current line. If the
cursor is at the end of the line, only the carriage return is erased
and the next line moves up.

Erases the previous word or the word the cursor is on. If the
cursor is between words or on the first character of a word, the
previous word is erased. If the cursor is in the middle of a word,
all of that word is erased (same as ERASE WORD). If the cursor
is at the start of a line, the carriage return at the end of the
previous line is erased and the current line moves up.

Erases the current line of text, starting with the character left
of the cursor until the start of the line. If you are already at the
start of a line, nothing is erased.

Erases the current word or, if the cursor is between words, erases
the next word. Same as Ctrl/J. On VT200, VT300, and VT400
series terminals, EVE defines the F13 key as ERASE WORD.
On VT100 series terminals, EVE defines the Comma key on the
keypad as ERASE WORD. If the cursor is at the end of the line,
only the carriage return is erased and the next line moves up.

(continued on next page)

Editing Text Files with EVE
8.8 Erasing and Restoring Text

Table 8-4 (Cont.) EVE Commands for Erasing and Restoring Text

Command Function

RESTORE Reinserts, at the current position, the word, line, or sentence that

you last erased with an EVE command or editing key. RESTORE
does not restore single characters. EVE defines GOLD Insert
Here as RESTORE.

RESTORE CHARACTER Reinserts, at the current position, the character you last erased

with an EVE command or editing key. In overstrike mode, the
restored character replaces the character the cursor is on. In
insert mode, the restored character is inserted at the cursor
position and existing text moves to accommodate it.

RESTORE LINE Reinserts, at the current position, the line that you last erased

with an EVE command or editing key.

RESTORE SELECTION Reinserts, at the current position, the text last erased with a

pending delete operation. For more information about using
pending delete, see Section 8.12.

RESTORE WORD Reinserts, at the current position, the word that you last erased

with an EVE command or editing key. EVE defines GOLD F13 as
RESTORE WORD (except with the WPS keypad).

Tutorial: Erasing and Restoring Text
To erase and restore text:

1.

Invoke EVE to create the buffer RHYMES.DAT and enter the following text:

She rhymes with tree,
also with bee,
and this one makes three.

Move the cursor to the letter [in the word also. Enter the ERASE LINE
command.

EVE erases all characters from the letter [in also to the end of the line and
appends the next line to the current line.

She rhymes with tree,
aand this one makes three.

Move the cursor to the letter y in the word rhymes. Enter the ERASE WORD
command.

EVE erases the word rhymes and shifts the remaining text to the left.

She with tree,
aand this one makes three.

Move the cursor to the second letter a on the second line. Enter the
RESTORE LINE command.

EVE restores the last line that was erased, in this case, lso with bee,.

She with tree,
also with bee,
and this one makes three.

Move the cursor to the letter w in the word with on the first line. Enter the
RESTORE WORD command.

EVE restores the last word that was erased, in this case, rhymes.

She rhymes with tree,
also with bee,
and this one makes three.

Editing Text Files with EVE 8-15

Editing Text Files with EVE
8.8 Erasing and Restoring Text

6. To exit from EVE, press Ctrl/Z.
Section 8.9 describes the functions of the SELECT and REMOVE commands,
which can be used together to erase text from a buffer.

8.9 Moving Text

You can use EVE commands to select sections of text for copying, moving,
deleting, or other editing operations. This section discusses how to move text.

For information on how to move text from one buffer to another, see Section 8.18.

You can also select a rectangular area (a box) of text rather than a linear range
of text to move, erase, or duplicate text. For information about using box editing
commands, see Section 8.11.

To move text, follow these steps:

Step Task

1 Once you have invoked a file in EVE, place the cursor on the first character you
want to move.

2 Press the Select key.

Move the cursor to one character beyond the last character you want to move. (In
reverse direction, move the cursor to the last character, not one beyond.) The text
to be moved is highlighted in reverse video. (If you decide not to remove text
from the buffer, press the Select key again to cancel the selection.)

4 Press the Remove key. EVE deletes the highlighted text from your screen and
places it in the Insert Here buffer.

5 Press the Insert Here key to insert text.

EVE inserts the text at the cursor location. You can insert the text contained in
the Insert Here buffer any number of times at any cursor location until you select
a new section of text and put that new text in the Insert Here buffer. The Insert
Here buffer contains whatever text was last copied or removed.

Table 8-5 describes EVE editing keys used to move text.

Table 8-5 EVE Editing Keys That Move Text

Key or Key Sequence Function

Insert Here Same as the INSERT HERE or PASTE command. Inserts, at the current
position, text that you removed or copied.

Remove Same as the REMOVE or CUT command. Removes the text that is
marked with SELECT or highlighted by FIND and places it in the Insert
Here buffer.

Select Marks text (highlighting it in reverse video) from the initial cursor

location to wherever you move the cursor. The text that is highlighted is
called the select range. To cancel the selection, press the Select key again
or use RESET.

(continued on next page)

8-16 Editing Text Files with EVE

Editing Text Files with EVE

8.9 Moving Text
Table 8-5 (Cont.) EVE Editing Keys That Move Text
Key or Key Sequence Function
GOLD Select Same as RESET. Cancels any of the following and resets the direction of

the buffer to forward:

e Highlighting of a select or found range

e A press of the GOLD key (or GOLD n combination for a repeat count)
e An incomplete or recalled command line, or Choices buffer display

e The output of SHOW, SHOW DEFAULTS BUFFER, SHOW

SUMMARY, or SHOW WILDCARDS, thereby returning you to
the buffer you were working in

GOLD Remove Same as the STORE TEXT or COPY command. Copies text that is
marked with SELECT or FIND, putting it in the Insert Here buffer. Text
that is copied is not removed from its original position.

Table 8—6 describes EVE commands used to move text.

Table 86 EVE Commands That Move Text

Command Function

INSERT HERE Inserts the text you copied or removed. By default, EVE defines the E2

or PASTE key (Insert Here on the minikeypad on VT200, VT300, and VT400 series
terminals) and the KP9 key (on VT100 series terminals) as INSERT
HERE.

REMOVE Removes the text that was marked with SELECT or highlighted by FIND,

or CUT and places it in the Insert Here buffer. By default, EVE defines the E3

key (Remove on the minikeypad on VT200, VT300, and VT400 series
terminals) and the KP8 key (on VT100 series terminals) as REMOVE.

RESET Cancels any of the following and resets the direction of the buffer to
forward:

e Highlighting of a select or found range
e A press of the GOLD key (or GOLD n combination for a repeat count)
e An incomplete or recalled command line, or Choices buffer display

e The output of SHOW, SHOW DEFAULTS BUFFER, SHOW
SUMMARY, or SHOW WILDCARDS, thereby returning you to
the buffer you were working in

RESTORE SELECTION Reinserts the text erased by a pending delete operation. For more
information about using pending delete, see Section 8.12.

SELECT Highlights text in reverse video from the initial cursor location to
wherever you move the cursor. The text that is highlighted is called
the select range. To cancel the selection, enter the SELECT command
again or use RESET. By default, EVE defines the E4 key (Select on the
minikeypad on VT200, VT300, and VT400 series terminals) and the KP7
key (on VT100 series terminals) as SELECT.

(continued on next page)

Editing Text Files with EVE 8-17

Editing Text Files with EVE

8.9 Moving Text

Table 8-6 (Cont.) EVE Commands That Move Text

Command Function

SELECT ALL Highlights all text in reverse video in the current buffer regardless of the
cursor position. The text that is highlighted is called the select range.
To cancel the selection, enter the SELECT command or use RESET. The
SELECT ALL command temporarily disables pending delete to avoid
accidentally erasing all of the buffer.

SET NOPENDING Default setting. Disables deletion of selected text when you use the Delete

DELETE key or type new text. If you select text in the buffer, typing new text adds
characters to the select range and using the Delete key erases only the
character to the left of the cursor.

SET PENDING Enables pending delete, which lets you quickly erase blocks of text. First

DELETE enable pending delete, then use the SELECT command to choose the text
you want to erase. Erase the text by pressing the Delete key (or any other
key on the alpha-numeric keypad). To reinsert what you deleted, move the
cursor to where you want the text and enter the RESTORE SELECTION
command. The default is SET NOPENDING DELETE.

STORE TEXT Copies text that was marked with SELECT or FIND, placing it in the

or COPY Insert Here buffer. Text that is copied is not removed from its original

position.

Tutorial: Moving Text
To select, remove, and insert text from one location to another:

1.
2.

Invoke EVE to edit the file RHYMES.DAT.

Move the cursor to the beginning of the second line of RHYMES.DAT and
press the Select key.

Press the down arrow key once.

The second line of text is highlighted.

Press the Remove key.

The second line of text is removed from the current buffer.

She rhymes with tree,
and this one makes three.
[End of file]

Press the Enter key twice and then press the Insert Here key.

The text in the Insert Here buffer is inserted at the current cursor location.

She rhymes with tree,

also with bee,
and this one makes three.
[End of file]

To exit from EVE, press Ctrl/Z.

8.10 Copying Text

With the COPY command, you can copy text elsewhere. The STORE TEXT
command is the same as the COPY command. You can substitute the STORE
TEXT command wherever the COPY command is used in the following example.

8-18 Editing Text Files with EVE

Editing Text Files with EVE
8.10 Copying Text

Tutorial: Copying Text
To copy text when the buffer is set in a forward direction:

1. Invoke EVE to edit the file RHYMES.DAT.

2. Move the cursor to the first line of text.

3. Press the Select key.

4. Press Ctrl/E to move the cursor to the end of the first line.
5

Enter the COPY command. The Insert Here buffer now contains a copy of the
selected text.

o

Move the cursor to the line above also with bee,.
7. Press the Insert Here key. Your buffer should now look as follows:

She rhymes with tree,

She rhymes with tree,
also with bee,

and this one makes three.
[End of file]

8. Move the cursor to the beginning of the first line of text. Use the Select key
and then the Remove key to delete the first line of text.

9. To exit from EVE, press Ctrl/Z.

8.11 Box Editing

You can edit text that has rectangular areas, or boxes, as well as standard linear
ranges. For example, you can select a box containing a list or columns in a table,
and then cut and paste the box or perform some other editing operation on the
box.

8.11.1 Selecting a Box of Text

To select a box of text, follow these steps:

1. Put the cursor where you want to start the selection—typically, where you
want the upper left corner of the box.

2. Enter the BOX SELECT command.

3. Move the cursor to where you want the diagonally opposite corner of the box
— typically, moving from upper left to lower right.

As you move the cursor, text that you cross is highlighted in bold video (a regular
selection uses reverse video). The box is defined by diagonally opposite corners.
If you move from upper left to lower right, the character that the cursor is on is
outside the box, that is, the lower right corner of the box is left of the cursor.

You can then edit the box by using any of the editing commands that ordinarily
work on a linear or a rectangular range. You need not redefine keys. Refer to the
Extensible Versatile Editor Reference Manual for further information.

You can use FIND SELECTED if the selection does not cross lines or OPEN
SELECTED. You can also use pending delete.

If you are going to make several box edits—for example, in editing multicolumn
tables and lists—use the SET BOX SELECT command. SET BOX SELECT
redefines several commands and keys as the corresponding BOX commands and
makes other editing operations work on boxes instead of linear ranges.

Editing Text Files with EVE 8-19

Editing Text Files with EVE
8.11 Box Editing

To cancel a box selection, repeat SELECT or BOX SELECT, or use RESET.

8.11.2 Cutting and Pasting a Box of Text

Cutting a box usually pads the area with spaces to keep the column alignment of
text to the right of the box. Pasting a box usually overwrites existing text. Tab
characters in the box, or that overlap the box, are converted to spaces to keep the

column alignment of text.

Table 8-7 lists the EVE commands for box editing.

Table 8-7 EVE Commands for Box Editing

Command Function

BOX COPY Copies a box of text without removing it, so you can paste it
elsewhere.

BOX CUT Cuts a box of text so you can paste it elsewhere, usually padding

BOX CUT INSERT

BOX CUT OVERSTRIKE

BOX PASTE

BOX PASTE INSERT

BOX PASTE OVERSTRIKE

BOX SELECT

RESTORE BOX SELECTION

SET BOX NOPAD

SET BOX NOSELECT

SET BOX PAD

SET BOX SELECT

the area with spaces to keep the column alignment of text to the
right of the box.

Cuts a box, making text to the right of the box “collapse” to the
left, closing the gap.

Cuts a box, padding the area with spaces to keep the column
alignment of text to the right of the box.

Pastes a box of text you copied or cut, usually overwriting
existing text.

Pastes a box, pushing existing text to the right.
Pastes a box, overwriting existing text.

Selects a box of text. Typically, you start at the upper left
corner of the box and move the cursor to where you want the
lower right corner.

Puts back (undeletes) a box erased with pending delete, usually
overwriting existing text.

Disables padding and overstriking for box editing unless the
buffer is in overstrike mode.

Default setting. Disables box selection, cutting, and pasting.
Commands such as SELECT, COPY, and REMOVE use
standard linear ranges. To edit boxes, use BOX commands.

Default setting. Enables automatic padding and overstriking for
box editing, regardless of the buffer mode.

Enables box selection, making commands such as SELECT,
REMOVE, and INSERT HERE the same as the corresponding
BOX commands, without having to redefine keys.

Tutorial: Cutting and Pasting Text
To select and then cut and paste a box of text:

1. Invoke EVE to create the buffer CITIES.DAT and enter the following text:

Rome Paris New York
London Tunis Boston
Tokyo Bonn Lisbon

2. Move the cursor to the left of the letter P in the word Paris. Enter the BOX
SELECT command.

3. Move the cursor two spaces to the right of the second letter n in the word
Bonn—the diagonally opposite corner of the box. The text that you cross is
highlighted in bold video. Enter the BOX CUT command.

8-20 Editing Text Files with EVE

Editing Text Files with EVE
8.11 Box Editing

EVE removes the box of text.

4. Move the cursor to the right of the column that begins with the words New
York.

5. Enter the BOX PASTE command.

EVE pastes the box of text into a new column, as follows:

Rome New York Paris

London Boston Tunis

Tokyo Lisbon Bonn
[End of file]

8.11.3 SET BOX SELECT Commands
Table 8-8 lists the SET BOX SELECT commands.

Table 8-8 SET BOX SELECT Commands

Command Effect with SET BOX SELECT
INSERT HERE or PASTE BOX PASTE

REMOVE or CUT BOX CUT

RESTORE SELECTION RESTORE BOX SELECTION
SELECT BOX SELECT

STORE TEXT or COPY BOX COPY

You can then select, cut, and paste a box by using the Select, Remove, and Insert
Here keys, without having to redefine the keys.
8.12 Using Pending Delete

You can use pending delete to erase selected text. Pending delete refers to
erasing a selection by typing new text, pressing the space bar, or by using delete
(typically, pressing the Delete key).

With a box selection, pending delete works like BOX CUT, usually padding the
area with spaces to keep the column alignment of text to the right of the box.

Pending delete gives you an alternative way of cutting and pasting text because
pending delete does not use the Insert Here buffer. For more information about
pending delete, see the EVE online help topic called Pending Delete.

8.12.1 Erasing a Selection with Pending Delete
To erase a selection using pending delete, follow these steps:
1. Invoke a file in EVE.

2. To enable pending delete, use the SET PENDING DELETE command. The
default setting is SET NOPENDING DELETE.

3. Select the text you want to erase. You can use SELECT or BOX SELECT.
(You cannot use SELECT ALL.)

4. Type new text or use the DELETE command.

Editing Text Files with EVE 8-21

Editing Text Files with EVE
8.12 Using Pending Delete

8.12.2 Restoring a Selection That Was Erased with Pending Delete
To put back (restore) the text you erased with pending delete, follow these steps:

1. Put the cursor where you want to restore the text. If restoring a box selection,
put the cursor where you want the upper left corner of the box to be.

2. Use RESTORE SELECTION. If a box selection was erased with pending
delete, use RESTORE BOX SELECTION. If you used SET BOX SELECT, you
can use RESTORE SELECTION (without having to redefine a key).

Restoring a box works like BOX PASTE, usually overwriting existing text. When
using the SET BOX NOPAD command, the effects of box editing depend on the
mode that the buffer is in (insert or overstrike, as shown in the status line):

e In insert mode, cutting a box makes text to the right of the box “collapse”
to the left, closing the gap. Tab characters to the right of the box are also
converted to spaces to keep the column alignment as the text collapses to the
left. This method is useful for removing columns from a table or list, such
as in turning a 4-column table into a 2-column table. Pasting a box pushes
existing text to the right, which is useful for adding columns in the middle of
a table.

e In overstrike mode, cutting a box pads the area with spaces to keep the
column alignment of text to the right of the box. Pasting a box overwrites
existing text. The effects are the same as with SET BOX PAD, which is the
default setting.

The buffer mode also affects erasing a box with pending delete and restoring an
erased box.

8.13 Finding and Replacing Text

With EVE commands, you can search for specific text in a buffer. You can search
for every occurrence of specific text, and you can search for text that is on a single
line or spans a line break. Also, you can search for text using wildcards. This
section describes methods for searching and replacing text.

Table 8-9 describes the EVE commands that locate text in a buffer.

Table 8-9 EVE Commands for Locating Text in a Buffer

Command Function

FIND Searches the current buffer for the text string you specify and
highlights the found text. The text that is highlighted is called the
found range.

FIND NEXT Searches for the string of text you last specified with the FIND,
REPLACE, or WILDCARD FIND command.

FIND SELECTED Searches for a string of text you have selected, rather than for a
typed string. The selection cannot cross more than one line.

SET FIND CASE EXACT Enables case-exact searches. This is particularly useful to find or

replace search strings in lowercase letters only.

SET FIND CASE NOEXACT Default setting. Disables case-exact searches so that EVE finds any
occurrence if you enter a search string in all lowercase letters.

(continued on next page)

8-22 Editing Text Files with EVE

Editing Text Files with EVE
8.13 Finding and Replacing Text

Table 8-9 (Cont.) EVE Commands for Locating Text in a Buffer

Command Function

SET FIND NOWHITESPACE Default setting. Sets FIND and WILDCARD FIND commands to
match tabs and spaces exactly as you specify in the search string and
to search for strings that are entirely on one line.

SET FIND WHITESPACE Sets FIND and WILDCARD FIND commands to treat spaces, tabs,
and up to one line break as “white space” so you can search for
strings of two or more words regardless of how they are separated.

SET WILDCARD VMS Default setting on OpenVMS. Enables OpenVMS patterns for
WILDCARD FIND.

SHOW WILDCARDS Lists the wildcard patterns you can use with WILDCARD FIND.

WILDCARD FIND Searches for a pattern of text, using wildcards.

8.13.1 Finding Text

Use the FIND command to locate specific text in the current buffer. By default,
EVE defines the E1 key (Find key on VT200, VT300, and VT400 series terminals
and the PF1 key on VT100 series terminals) as the FIND command.

If the search string contains all lowercase letters, EVE disregards the case of
letters and locates any occurrence of the string. Thus, the search string the
matches the, THE, THe, and thE. If the search string contains one or more
uppercase letters, EVE finds only the occurrences of the string in which the case
of each letter is exactly the same. Therefore, the only match for the search string
tHis is tHis. For example:

1. Enter the FIND command.
2. Type the text (called the search string) that you want to locate.

The current direction of the buffer determines whether EVE first searches in a
forward or reverse direction.

If EVE cannot find the string in the current direction but finds it in the opposite
direction, EVE prompts you to change direction.

To search in the opposite direction, type YES (Y) and press the Enter key. EVE
moves the cursor to the first occurrence of the string in the opposite direction.
The current direction in the highlighted status line does not change, however.

8.13.1.1 When a Search String Is Found
When EVE finds the search string, the editor highlights it and moves the cursor
to the first letter of the string. Refer to the Extensible Versatile Editor Reference
Manual for a listing of the editing commands you can use on a highlighted search
string.

To cancel the highlighting, move the cursor off the search string or use the
RESET command.

To find the next occurrence of the search string, press the Find key twice or enter
the FIND NEXT command.

Editing Text Files with EVE 8-23

Editing Text Files with EVE
8.13 Finding and Replacing Text

8.13.2 Setting Case-Exact Searches

If you want to match the case of your search exactly when searching for lowercase
occurrences of a string, enter the SET FIND CASE EXACT command. Then when
you enter a search string in all lowercase letters, EVE searches only for lowercase
occurrences, skipping occurrences that contain uppercase letters.

The setting applies to the FIND, REPLACE, and WILDCARD FIND commands.
You can save the setting in your section file or command file for future editing
sessions. The default setting is SET FIND CASE NOEXACT.

EVE is sensitive to diacritical (accent) marks and locates only those occurrences
of the string in which the diacritical marks are exactly the same. For example, in
searching for ¢, EVE does not find occurrences of e, é, ¢, or é.

In the following example, the commands enable case-exact searching and then
find digital when it appears in lowercase only, skipping occurrences such as
Digital or DIGITAL:

Command: SET FIND CASE EXACT
Command: FIND digital

Tutorial: Finding Text
To use the FIND command with the existing file RHYMES.DAT:

1. Invoke EVE to edit RHYMES.DAT. The cursor appears on the first letter of
the first line of the buffer, and the current direction is forward.

2. Press the Find key, type the letters ree, and press the Enter key. The cursor
moves to the letter r in the word ¢ree and highlights the letters ree.

3. Press the Find key twice to find the next occurrence of the string ree. The
cursor moves to the letter r in the word three and highlights the letters ree.

When a search string is found and highlighted, you can use any command
that works on a selected or found range except SPELL. Also, you cannot use
a pending delete operation on a found range.

4. Enter the UPPERCASE WORD command.
The UPPERCASE WORD command changes the case of the highlighted
letters from lowercase to uppercase, as shown in the following example:

She rhymes with tree,
also with bee,

and this one makes thREE.
[End of file]

Tutorial: Using the FIND SELECTED Command

To use FIND SELECTED to search for a string that is particularly complicated or
is easily misspelled or mistyped:

1. Copy the text (from the previous tutorial) so that it is displayed twice in the
buffer.

2. Move the cursor to the beginning of the string rhymes with tree, on the first
line.

Enter the SELECT command.

4. Move the cursor to highlight the string and select text. Note that the selection
cannot span more than one line.

5. Enter the command FIND SELECTED.

8-24 Editing Text Files with EVE

Editing Text Files with EVE
8.13 Finding and Replacing Text

The cursor moves to the next occurrence of the string rhymes with tree,. The
selection is canceled and the found string appears in bold video.

8.13.3 Using Wildcards
You can use wildcards to search for text. The SHOW WILDCARDS command
displays wildcard patterns for the current wildcard setting.
Tutorial: Using Wildcards
To learn how to use wildcards:

1. Position the cursor at the beginning of the buffer.

2. Enter the command WILDCARD FIND *ee to search for text strings ending
in ee.

She rhymes with tree,
also with bee,

and this one makes thREE.
[End of file]

EVE puts the cursor at the beginning of the line containing the r in tree.

8.13.4 Including White Space in a Search

Use the SET FIND WHITESPACE and SET FIND NOWHITESPACE commands
to specify how the WILDCARD FIND and FIND commands treat the blank spaces
between words, such as spaces, tabs, and line breaks.

The SET FIND NOWHITESPACE command enables the commands to search for
multiword strings on a single line, matching spaces and tabs exactly as they are
found. SET FIND NOWHITESPACE is the default search behavior.

The SET FIND WHITESPACE command enables the WILDCARD FIND and
FIND commands to search for a string of two or more words regardless of how
they are separated. It enables the FIND commands to search for a string that
contains a single line break and more than one space or tab between words.

8.13.5 Marking Locations in Text

The MARK and GO TO commands are useful for editing a large file and then
returning to a specific location later in the editing session. The following table
describes the MARK and GO TO commands:

Command Function

MARK Puts an invisible mark at the current cursor position. The mark exists
for the rest of an editing session or until you change it; it is not saved
when you exit.

GO TO Returns the cursor to the location labeled by the MARK command. If
the labeled location is found in another buffer, EVE moves the cursor
to the other buffer and puts that buffer into the current window.

To mark your position, enter the MARK command followed by a label name of
your choice. The label name can be one or more printable characters, including
alphanumeric and punctuation characters, spaces, and tab characters. To return
the cursor to the marked location, enter the GO TO command followed by the
label name.

Editing Text Files with EVE 8-25

Editing Text Files with EVE
8.13 Finding and Replacing Text

8.13.6 Replacing Text
With the REPLACE command, you can replace a text string in the current buffer

with another text string. This is useful if you have spelled a word incorrectly
throughout a long file and you want to fix every occurrence of the misspelled
word.

8.13.6.1 REPLACE Command and Case Sensitivity

The REPLACE command is case sensitive. If the old string has any uppercase
letters, EVE searches for exact case matches. If the old string is all lowercase,
EVE searches for any occurrence of the string regardless of its case. If the new
string has any uppercase letters, EVE replaces the string exactly. If the old and
new strings are all lowercase, EVE replaces the string according to the following
rules:

e A capitalized version of the old string (first letter uppercase, others lowercase)

is replaced by a capitalized version of the new string.

e An all-uppercase version of the old string is replaced by an all-uppercase
version of the new string (otherwise, the old string is replaced by an all-
lowercase version of the new string).

The following table shows how EVE uses the case of the strings:

Old String New String Highlight Replacement
butter margarine butter margarine
Butter Margarine
BUTTER MARGARINE
BUtteR margarine
Butter margarine Butter margarine
butter Margarine butter Margarine
Butter Margarine
BUTTER Margarine
BUtteR Margarine
Butter Margarine Butter Margarine

If you want to find or replace only lowercase occurrences of a string, enter the
SET FIND CASE EXACT command. Then if you enter a search string in all
lowercase, EVE searches for only lowercase occurrences, skipping occurrences
that contain uppercase letters. The setting applies to FIND, REPLACE, and
WILDCASE FIND commands.

The following table shows how EVE searches for and replaces only lowercase
strings when you enter the SET FIND CASE EXACT command:

Old String New String Highlight Replacement

butter margarine butter margarine

The default case setting is SET FIND CASE NOEXACT.

8-26 Editing Text Files with EVE

Editing Text Files with EVE
8.13 Finding and Replacing Text

8.13.6.2 REPLACE Command Responses

The following table shows the responses and their effect to the REPLACE
command query:

Response Effect

Yes Replace this occurrence and find the next one. This is the default
response. Press the Enter key.

No Skip this occurrence and find the next one.

All Replace all occurrences (no further prompting unless EVE finds an
occurrence in the opposite direction).

Last Replace this occurrence and stop here.

Quit Skip this occurrence and stop here.

8.14 Using Command Line Qualifiers

When you invoke EVE, you can use command line qualifiers to specify advanced
EVE editing features. When using the character-cell screen updater, the default
insert or overstrike mode is determined by your terminal setting.

Table 8-10 lists the qualifiers that you can use with the EDIT command to invoke
EVE.

Table 8-10 EDIT Command Line Qualifiers

Qualifier Default

Command file /COMMAND=TPU$COMMAND.TPU
File creation /CREATE

Debugging package /NODEBUG

Specifying display mode /DISPLAY=CHARACTER_CELL
Initialization file /INITIALIZATION=EVES$INIT.EVE
Journaling /JOURNAL

Modifying main buffer /MODIFY

Specifying output /OUTPUT=output-file

Read-only access /NOREAD_ONLY

Recovery /NORECOVER

Section files /SECTION=TPU$SECTION

Start position /START_POSITION=(1,1)

Work file /WORK=SYS$SCRATCH:TPU$WORK.TPU$§WORK

8.14.1 Starting in an Alternate Position

Start position qualifiers determine the row and column where the cursor first
appears in the buffer that you specified on the command line.

For EVE, the default start position is 1,1—row 1, column 1, which is the upper
left corner of the buffer. Use of start position qualifiers does not affect the initial
cursor position when you create another buffer during the editing session and
does not limit the buffer size.

Editing Text Files with EVE 8-27

Editing Text Files with EVE
8.14 Using Command Line Qualifiers

The format of the start position qualifier is as follows:
ISTART_POSITION=(row[,column]
The fields are as follows:

/START POSITION You must use the /START_POSITION= qualifier to the EDIT

command.
row The row that you want the cursor to be at when you invoke EVE.
column The column that you want the cursor to be at when you invoke
EVE.

Use the start position qualifier to begin editing at a particular line (or row) or at
a particular character position (or column). For example, when you want to skip
over a standard heading in a file or if a batch log file or error message tells you
there is an error on a given line of a program, you can specify that line number as
the starting row so that when you edit the program source file, the cursor moves
directly to that line. The following command edits a file named test.com and puts
the cursor on line 10, column 5:

$ EDIT TEST.COM /START POSITION=(10,5)

If you want to start at a particular line in a file, you can omit the second
parameter (the column).

8.14.2 Using Work Files

Work file qualifiers determine the work file that is used to swap memory for
editing very large files. There is one work file per editing session. The work file
is a temporary file that is automatically deleted when you exit.

The default work file is named TPUSWORK.TPU$WORK. EVE creates the work
file in SYS$SCRATCH unless you specify otherwise.

There are two ways to specify a different work file:

¢ Define the logical name TPU$WORK.
This is useful if you want the work file to be created in an area other than
SYS$SCRATCH, such as on a larger disk. You can put the definition in your
LOGIN.COM file.

e Use the /WORK= qualifier and specify the work file.

This overrides any definition of the TPU$WORK logical name. For example,
the following command invokes EVE and specifies the work file to be
SYS$SCRATCH:MYWORK.TPU$WORK:

$ EDIT /WORK=MYWORK

If you want the work file to be created in an area other than SYS$SCRATCH, use
a complete file specification, including the device (disk) and directory. You cannot
use wildcards to specify the work file.

8.14.3 Modifying the Main Buffer

Modifying qualifiers determine whether you can modify the buffers specified on
the command line. Modifications do not affect other buffers you create during the
editing session.

By default, you can modify the buffer by editing text in it. When you exit, EVE
writes out the buffer to a file if the buffer has been modified.

8-28 Editing Text Files with EVE

Editing Text Files with EVE
8.14 Using Command Line Qualifiers

Use /INOMODIFY to examine a file without making any changes. You can then
use cursor-movement commands but you cannot change the text.

If you specify neither /MODIFY nor /INOMODIFY, your application determines if
you can modify the buffer. EVE’s default behavior is to modify the buffer.

Use /MODIFY to override the effect of /READ ONLY or /INOWRITE. Use
/MODIFY with /READ_ONLY or /INOWRITE to practice editing operations
without writing a file on exiting. For example, the following command invokes
EVE, making the buffer you specified on the command line read-only (or no-write)
and making it modifiable:

$ EDIT /READ ONLY /MODIFY

In EVE, you can set or change the modification attribute of the buffer by using
SET BUFFER commands.

8.15 Alternate Methods to Invoke EVE

You can invoke EVE using four different methods: from search lists, with
wildcards, with wildcard directory names, or with multiple input files.

8.15.1 Invoking EVE from a Search List

You can use a search list to invoke EVE to edit a file from that search list. For
example:

$ DEFINE STAFFMEMOS HIRING.DAT,PROMOTION.LIS,SALARY.TXT
§ EDIT STAFFMEMOS

In the example, if the first file in the search list exists, EVE copies that

file (HIRING.DAT) into a buffer and uses the file name and file type as

the buffer name. If the file does not exist, EVE tries to get the second file
(PROMOTION.LIS), and so on. If none of the files in the search list exist, EVE
creates an empty buffer named HIRING.DAT because that is the first file in the
search list.

8.15.2 Invoking EVE with Wildcards

When you invoke EVE to edit an existing file, you can use the asterisk (*)
wildcard character as a substitute for some or all of the characters in the file
name and file type. To use wildcards in EVE, follow the same rules as using
wildcards in DCL. You can use the percent sign (%) wildcard character as a
substitute for a single character at a time, and you can use the ellipsis ([...])
wildcard character as a substitute for a directory specification. If only one match
is made, the file is displayed on your screen. If more than one match is made,
EVE displays a list of matching files and prompts you to provide a more complete
file specification. If no match is made, EVE creates a buffer named Main.

If more than one file matches your wildcard request, EVE displays the matching
files so you can choose the one you want.

If no matching file is found, EVE creates an empty buffer named Main. If you
use a search list or wildcard directory to specify an input file, EVE gets the first
matching file found without displaying the $CHOICES$ buffer. For information
about using the $CHOICESS$ buffer, see the EVE online help topic called Choices
Buffer.

Editing Text Files with EVE 8-29

Editing Text Files with EVE
8.15 Alternate Methods to Invoke EVE

In the following example, a list of all files with the file type .TXT will be
displayed:

§ EDIT *.TXT

If you specify *.TXT, EVE lists the files that match your wildcard request in a
second window in a system buffer named $CHOICESS$.

8.15.3 Invoking EVE with Wildcard Directory Names

You can use wildcards in a directory name ([...]) to invoke EVE and work either
in your current directory or in a subdirectory of the current directory.

This way of handling a search list or wildcard directory applies not only to the
EDIT command, but also to EVE commands that use a file specification as a
parameter. The following EVE commands use a file specification as a parameter:

@ (at sign)

GET FILE
INCLUDE FILE
OPEN

OPEN SELECTED
RECOVER BUFFER

In the following example, EVE searches through the directory tree and gets the
first PINK.TXT file found, if there is one.

$ EDIT [...]PINK.TXT

8.15.4 Invoking EVE with Multiple Input Files

You can specify multiple input files on the command line that invokes EVE. The
file names must be separated by commas with optional white space. If wildcard
characters are present in the file names, EVE displays the matching files only
for the first wildcard file name that has more than one match. For the other
ambiguous file names, EVE outputs a warning message.

8.16 Journaling and Recovery

Journal files record your edits so that if a system failure interrupts your editing
session, you can recover your work.

Buffer-change journaling creates a separate journal file for each text buffer

you create. This is the EVE default. Buffer-change journaling works both on
DECwindows and on character-cell terminals. You recover one buffer at a time,
typically by using RECOVER BUFFER commands in EVE. You can recover
buffers from different editing sessions. The recovery restores only your text—it
does not restore settings, key definitions, or the contents of system buffers (such
as the Insert Here buffer) before the system failure.

You can disable journaling when you invoke EVE by using the /NOJOURNAL
qualifier on your command line. This is useful when you use EVE to examine a
file without making any edits or for demonstration sessions.

EVE file backups are disabled and cannot be enabled because the OpenVMS file
system provides version numbers; therefore, no EVE mechanism is needed.

8-30 Editing Text Files with EVE

Editing Text Files with EVE
8.16 Journaling and Recovery

8.16.1 Using Buffer-Change Journaling

Buffer-change journaling creates a journal file for each text buffer. (EVE does
not create buffer-change journal files for system buffers such as the Insert Here
buffer, DCL buffer, or $RESTORE$ buffer.) As you edit a buffer, the journal file
records the changes you make, such as erasing, inserting, or reformatting text.
When you exit from EVE or when you delete the buffer, the journal files are
deleted. If a system failure interrupts your editing session, the journal files are
saved. Your last few keystrokes before the system failure may be lost.

Table 8-11 summarizes the EVE commands for buffer-change journaling and
recovery.

Table 8-11 EVE Commands for Buffer-Change Journaling and Recovery

Command Function or Effect

RECOVER BUFFER Recovers a specified buffer by using the journal file for
the buffer. You can specify the name of the buffer or
file you want to recover or the name of the journal file
for the buffer.

RECOVER BUFFER ALL Recovers all your text buffers, one at a time, by using
the journal files for the buffers, if there are any.

SET JOURNALING Enables buffer-change journaling for a buffer that you
specify.

SET JOURNALING ALL Enables buffer-change journaling for all your buffers.
This is the default setting.

SET NOJOURNALING Disables buffer-change journaling for a buffer that you
specify.

SET NOJOURNALING ALL Disables buffer-change journaling for all your buffers.

Buffer-change journal files are written in a directory defined by the logical name
TPU$JOURNAL. By default, this directory is SYS$SCRATCH, which is typically
your top-level (login) directory. You can redefine the TPU$JOURNAL logical
name to have the journal files written to a different directory. For example, the
following commands create a subdirectory called [USER.JOURNAL] and then
define TPU$JOURNAL as this subdirectory:

$ CREATE/DIRECTORY [USER.JOURNAL]
$ DEFINE TPU$SJOURNAL [USER.JOURNAL]

You can put the definition in your LOGIN.COM file.

Buffer-change journal files may be quite large (even larger than the text files
you edit). Because of the potential size of buffer-change journal files and
because there is a journal file for each text buffer, you may want to define
TPU$JOURNAL as a directory or subdirectory on a large disk, rather than as
SYS$SCRATCH.

Deriving Buffer-Change Journal Names

Buffer-change journal file names are derived from the name of the file or buffer
being edited and the default file type for the operating system. To find out the
name of the journal file for the current buffer, enter the SHOW command at the
EVE prompt. The SHOW command displays the name of your input file, output
file, your journal file, and other information about your current buffer.

Editing Text Files with EVE 8-31

Editing Text Files with EVE
8.16 Journaling and Recovery

Table 8-12 shows the buffer-change journal file names.

Table 8-12 Buffer-Change Journal File Names

Text Buffer Name Buffer-Change Journal File
JABBER.TXT JABBER_TXT.TPU$JOURNAL
GUMBO_RECIPE.RNO GUMBO_RECIPE_RNO.TPU$JOURNAL
MAIN MAIN.TPU$JOURNAL

LATEST NEWS LATEST NEWS.TPU$JOURNAL

Using Buffer-Change Journaling to Recover Edits
There are two ways to recover your edits with buffer-change journal files:

¢ Use the /RECOVER qualifier on the EDIT command line when you invoke
EVE.

e Use RECOVER BUFFER commands within EVE.

In the following example, you are editing a file named JABBER.TXT when a
system failure interrupts your editing session. You then use system recovery to
recover your edits.

$ EDIT JABBER.TXT
% gystem failure ***

$ EDIT JABBER.TXT/RECOVER

Using the RECOVER BUFFER Command
To use the recover buffer command, follow this procedure:

Step Task

1 Invoke EVE and enter the following command to recover your text:

Command: RECOVER BUFFER file-name.txt

If the buffer-change journal file is available, EVE shows the following information
and asks if you want to recover that buffer:

Name of the buffer

Original input file for the buffer, if any
Output file for the buffer, if any

Source file for recovery, if any

Starting date and time of the editing session
Journal file creation date and time

8-32 Editing Text Files with EVE

Editing Text Files with EVE
8.16 Journaling and Recovery

Step Task

2 Press the Enter key to recover your buffer.

If you do not want to recover your buffer, type No and press the Enter key. If you
delete or rename the source file for recovery, the recovery fails. The source file is
either the file initially read into the buffer (if any) or the last file written before
the system failure.

If the buffer you want to recover exists (usually the Main buffer), EVE first deletes
that buffer and then does the recovery. If the buffer you want to recover has been
modified, EVE asks you whether to delete the buffer before recovering.

How to Recover When You Are Unsure of the File Name

If you are unsure of the buffer names or journal file names, specify the asterisk
(*) wildcard, as follows:

Command: RECOVER BUFFER *

EVE then displays a list of all your available journal files so you can choose the
one you want. The list appears in an EVE system buffer named $CHOICES$ in a
second window. For information about using the $CHOICESS$ buffer, see the EVE
online help topic called Choices Buffer.

How to Recover All Buffers

To recover all your text buffers—one at a time—use the RECOVER BUFFER ALL
command. EVE then tries to recover each text buffer for which there is a buffer-
change journal available. The effect is the same as repeating the RECOVER
BUFFER command without having to specify buffer names or journal file names.
For each text buffer, EVE displays information such as the buffer name, the files
associated with the buffer, and the time and date the journal file was created.
EVE prompts you for one of the following:

Response Effect

Yes Recovers the buffer and then asks you whether to recover the next
buffer, if there is one. This is the default response. Press the Enter
key.

No Skips this recovery. If there is another buffer to recover, EVE asks you
about the other buffer.

Quit Cancels—does not recover the buffer and does not continue recovery
operations.

Disabling Buffer-Change Journaling

You can disable buffer-change journaling for a particular buffer by using the SET
NOJOURNALING command. To disable buffer-change journaling for all your
buffers, use the SET NOJOURNALING ALL command.

Enabling Buffer-Change Journaling

If you disabled buffer-change journaling, you can enable journaling by using the
SET JOURNALING command. The following command enables journaling for a
buffer named JABBER.TXT:

Command: SET JOURNALING JABBER.TXT

If you invoked EVE without journaling and then want to enable buffer-change
journaling during the editing session, use the SET JOURNALING ALL command
(which is the EVE default).

Editing Text Files with EVE 8-33

Editing Text Files with EVE
8.16 Journaling and Recovery

You cannot enable buffer-change journaling if the buffer has been modified. In
such a case, EVE displays the following message:

Command: SET JOURNALING MEMO.TXT
Buffer MEMO.TXT is not safe for journaling

You should first write (save) the buffer by using the WRITE FILE or SAVE FILE
command and then enable journaling.
8.17 EVE Formatting Commands

EVE provides commands that let you format your text by setting margins, tabs,
and word wrap. You can center lines, take extra white space out of text, and
insert page breaks.

Table 8-13 shows EVE editing keys and describes their functions.

Table 8-13 EVE Editing Keys and Their Functions

Key or Key Sequence Function

Return or Ctrl/M Inserts a carriage return at the current position either to start a
new line of text or to terminate a command you are typing. On
VT200, VT300, and VT400 series terminals, EVE also defines the
Enter key as Return.

Tab or Ctrl/I Inserts a tab character at the current position according to the tab
modes and at the tab stops currently set.

Ctrl/LL Inserts a form-feed character at the current position to mark the
beginning of a new page. A page break appears as a small double
F (FF) and is always on a line by itself. Same as INSERT PAGE

BREAK.

Table 8-14 shows EVE text formatting commands and describes their functions.

Table 8-14 EVE Text Formatting Commands and Their Functions

Command Function

CAPITALIZE WORD Changes the case of a word, making the first letter uppercase and
the rest of the letters lowercase. Works on a range, box, or single
word.

CENTER LINE Centers the current line between the left and right margins. The
cursor moves with the line, remaining on the same character as the
line moves.

CONVERT TABS Converts tab characters to the appropriate number of spaces in a

box, a range, or the entire buffer.

FILL Reformats the current paragraph, range, or box according to the
margins of the buffer, so the maximum number of words fits on
a line. When you fill a select range or found range, the FILL or
FILL RANGE command does not reformat a line that begins with
a page break, a DIGITAL Standard Runoff (DSR) command, or
DOCUMENT tag; it does reformat the other lines in the range.
Filling a range does not delete blank lines. For more information
about select range, see Section 8.9.

(continued on next page)

8-34 Editing Text Files with EVE

Editing Text Files with EVE
8.17 EVE Formatting Commands

Table 8-14 (Cont.) EVE Text Formatting Commands and Their Functions

Command

Function

FILL PARAGRAPH

FILL RANGE

INSERT PAGE BREAK

LOWERCASE WORD
PAGINATE

SET LEFT MARGIN

SET RIGHT MARGIN

SET PARAGRAPH INDENT

SET TABS AT

SET TABS EVERY

SET TABS INSERT

SET TABS MOVEMENT

SET TABS SPACES

Reformats the paragraph that the cursor is in according to the
margins set for the buffer. When you fill a paragraph, the FILL
command does not reformat a line that begins with a page break,
DSR command, or DOCUMENT tag; it does reformat the other
lines in the paragraph.

Reformats the range or box according to the current margin
settings. When you fill a select range or found range, the FILL
or FILL RANGE command does not reformat a line that begins
with a page break, DSR command, or DOCUMENT tag; it does
reformat the other lines in the range. Filling a range does not
delete blank lines.

Inserts a form-feed character at the current position to mark the
beginning of a new page. A page break appears as a small double F
(1*1?) and is always on a line by itself. By default, Ctrl/L is defined

as INSERT PAGE BREAK.
Changes the current word, range, or box to lowercase.

Inserts a “soft” page break for a 54-line page. A soft page break
appears as a form feed followed by the null character (Fi? %).

When you enter the PAGINATE command, EVE moves back to the
previous page break (if any) then checks ahead for page breaks
within the next 54 lines. If any soft breaks are found within those
54 lines, EVE removes them. EVE then moves down 54 lines,
inserts a soft break, and puts the cursor on the next line. The soft
break is inserted on a line by itself. If a hard page break (form feed
only) is found within the 54 lines, EVE stops on the line after the
hard break, in case you want to erase the break.

Sets the left margin in the current buffer. The left margin must be
greater than 0 but less than the right margin. By default, the left
margin is 1 (leftmost column).

Sets the right margin for the current buffer. The right margin
must be greater than the left margin. By default, the right margin
is one less than the width. The width is typically 80, so the default
margin is typically 79.

Specifies the number of spaces to be added to or subtracted from
the first line of paragraphs you create or reformat. The default is 0
(no indent).

Sets tab stops at the columns that you specify. The column
numbers must be in ascending order and separated by spaces.
By default, tab stops are set every eight columns. The command
does not affect the hardware tab settings of your terminal.

Sets tab stops at the specified interval. By default, tab stops are set
every eight columns. The command does not affect the hardware
tab settings of your terminal.

Default setting. Changes the tab mode so that EVE inserts a tab
character at the current column when you press the Tab key. The
cursor and text move to the next tab stop.

Changes the tab mode so the Tab key becomes a cursor-movement
key. Pressing the Tab key moves the cursor to the next tab stop but
does not insert a tab character.

Changes the tab mode to insert an appropriate number of
spaces, rather than a tab character, when the Tab key is pressed.
Previously existing tab characters are not affected.

(continued on next page)

Editing Text Files with EVE 8-35

Editing Text Files with EVE

8.17 EVE Formatting Commands

Table 8-14 (Cont.) EVE Text Formatting Commands and Their Functions

Command

Function

SET TABS INVISIBLE

SET TABS VISIBLE

SET NOWRAP

SET WRAP

UPPERCASE WORD

Default setting. Makes tab characters invisible on the screen,
appearing as white space.

Makes tab characters visible on the screen, appearing as a small HI‘
(horizontal tab).

Disables word wrapping at the right margin of the buffer. To start
new lines, press the Enter key or use the FILL command.

Default setting. Enables word wrapping at the right margin of the
buffer. EVE starts new lines without you pressing the Enter key or
using the FILL command.

Changes the current word, range, or box to uppercase.

8.18 Using Buffers

Buffers are storage areas that exist only during an editing session. When you edit
an existing file, EVE reads the contents of the file into a buffer. The highlighted
status line contains the name of the buffer, its editing status (read-only or write),
editing mode (insert or overstrike), and direction (forward or reverse).

Table 8-15 describes the EVE commands used to create, manipulate, and delete

buffers.

Table 8-15 EVE Commands to Manipulate Buffers

Command

Function

BUFFER

DELETE BUFFER

GET FILE
or OPEN

GO TO

INCLUDE FILE
NEW

NEXT BUFFER

OPEN SELECTED

8-36 Editing Text Files with EVE

Puts the specified buffer into the current window and moves the cursor to
the last location it occupied in that buffer. If the specified buffer does not
exist, creates a new buffer.

Deletes a buffer you specify by name.

Puts the specified file into the current EVE window, creating a new buffer
if necessary. If the file exists, EVE copies it into a new buffer in the
current window. If the file does not exist, EVE creates a new, empty
buffer, using the file name and file type for the buffer name. If there
already is a buffer by that name, EVE asks for a different name to use.

Returns the cursor to the location labeled by the MARK command. If the
labeled location is found in another buffer, EVE moves the cursor to that
buffer and puts it into the current window. (Section 8.18.5 explains how

to use multiple buffers in an editing session.)

Inserts the contents of the specified file into the current buffer at the line
above the cursor location. This is useful to combine files.

Creates a new buffer named Main and puts it into the current window. If
the buffer Main already exists, EVE asks for a name for the new buffer.

Puts the next buffer (if one exists) into the current window and moves the
cursor to the last position it occupied in that buffer. This command lets
you move from one buffer to another without specifying a buffer name.

Opens a file whose name you have selected or found. This command is the
same as using the GET FILE or OPEN command without having to type
the file name.

(continued on next page)

Editing Text Files with EVE
8.18 Using Buffers

Table 8—15 (Cont.) EVE Commands to Manipulate Buffers

Command Function

REMOVE If you are in the Buffer List buffer, same as DELETE BUFFER. Use the

or CUT REMOVE command as follows to delete a buffer without typing the buffer
name: enter the SHOW BUFFERS command (which puts you in the
Buffer List buffer), move the cursor to the name of the buffer you want to
delete, and enter the REMOVE command.

SAVE FILE Writes the contents of the current buffer to the file associated with the

SAVE FILE AS

SELECT
or RETURN

SET BUFFER

SHOW

SHOW BUFFERS

SHOW DEFAULTS
BUFFER

SHOW SYSTEM
BUFFERS

WRITE FILE

buffer without ending the editing session. If you do not specify a file
name with the SAVE FILE command, EVE prompts you for an output file
specification. Similar to WRITE FILE.

Writes the contents of the current buffer to the file you specify without
ending the editing session. For example, if you are editing a file named
FIRST.DAT, you can save it as SECOND.TXT. This command does not
change the name of the buffer. It does, however, associate the buffer with
the file you name so that any subsequent SAVE FILE, WRITE FILE, or
EXIT command writes the buffer to the file you named. This command
requires you to supply a file specification.

If you are in the Buffer List buffer, selects the buffer you specify. Use the
SELECT command as follows to select a buffer without typing the buffer
name: enter the SHOW BUFFERS command, move the cursor to the
name of the buffer you want to select, and enter the SELECT command.

Lets you specify the editing status of the buffer: whether the buffer can
be modified or can be written to a file when you exit from EVE.

Displays information about the buffers you have created during the
editing session. If more than one buffer is active in your editing session,
the SHOW command displays information about the buffer you are
currently editing. For information about the other active buffers, press
the Do key. To resume editing, press any other key.

Lists the buffers you have created during an editing session. You can
move the cursor through the list and specify a particular buffer for
viewing by pressing the Select key.

Shows information, such as margins, tab stops, direction, mode, and
maximum lines, about the EVE system buffer named $DEFAULTSS$.
These are the default settings used when you create new buffers.

Lists the system buffers created by EVE, such as the Message buffer,
Help buffer, Insert Here buffer, and $RESTORE$ buffer. You can move
the cursor through the list and specify a buffer for viewing by pressing
the Select key.

Writes the contents of the current buffer to the file associated with the
buffer or to the file you specify on the command line without ending the
editing session. If the current buffer does not have a file specification
associated with it, EVE prompts you for an output file specification.
Similar to SAVE FILE.

8.18.1 Obtaining Buffer Information

To display more information about the current buffer, enter the SHOW command.
The information displayed includes whether the buffer has been modified, in
addition to the following:

Buffer name

Names of the input, output, and buffer-change journal files

Current mode and direction

Number of lines

Margin and screen-width settings

Paragraph indent

Editing Text Files with EVE 8-37

Editing Text Files with EVE
8.18 Using Buffers

e WPS word wrap
e Wrap indent
e Tab stop

If more than one buffer is active during an editing session, EVE prompts you to
press the Do key to get information about other buffers.

8.18.2 Deleting a Buffer

To delete a buffer, enter the DELETE BUFFER command and specify the name of
the buffer you want to delete. If the buffer is empty or unmodified, EVE deletes
it. If, however, the buffer has been modified, EVE prompts you for a choice. Note
that the buffer name must be typed in full; no abbreviations are allowed. If you
are viewing a buffer that you want to delete, EVE replaces the buffer with the
oldest buffer existing in the editing session.

The following table lists the choices you can enter:

Keyword Effect

DELETE_ONLY Deletes the specified buffer.

WRITE_FIRST Writes out (saves) the specified buffer, then deletes it.
QUIT Default choice. The buffer is not deleted.

In the following example, deletion of the modified buffer MYFILE.TXT is
requested:

Command: DELETE BUFFER MYFILE.TXT
That's a modified buffer. Type delete only, write first, or quit:

8.18.3 Changing Buffer Status

Use the SET BUFFER command to change the editing status of the buffer; that
is, whether the buffer can be modified and whether the buffer will be written to a
file after you exit from EVE.

You can specify one of the following SET BUFFER command keywords for each

command:

Keyword Effect

MODIFIABLE Default setting. The buffer can be modified. Also restores the previous mode of
the buffer (insert or overstrike).

READ_ONLY The buffer is not saved (written out) on exiting, even if it has been modified

(opposite of WRITE). Also sets the buffer to unmodifiable. However, you can
set it to modifiable.

UNMODIFIABLE The buffer cannot be modified. Also overrides the mode of the buffer (insert or
overstrike).

WRITE Default setting. The buffer is saved (written out) on exiting if it has been
modified (opposite of READ_ONLY). If a buffer is read-only or unmodifiable,
SET BUFFER WRITE makes it modifiable and restores its previous mode
(insert or overstrike).

By default, buffer status is set to MODIFIABLE and WRITE, letting you change
the contents of a buffer and save the changed buffer in a file.

8-38 Editing Text Files with EVE

Editing Text Files with EVE
8.18 Using Buffers

To change the status of a buffer so that its contents cannot be inadvertently
changed, set the buffer to READ_ONLY (which implies unmodifiable) with the
following command:

Command: SET BUFFER READ ONLY

To change the status of a buffer so it becomes a temporary storage area (a
“scratchpad”), set the buffer to READ_ONLY and MODIFIABLE with the
following commands:

Command: SET BUFFER READ ONLY
Command: SET BUFFER MODIFIABLE

You then can edit the buffer, but it will not be saved when you exit from EVE.

8.18.4 Displaying the Messages Buffer

EVE uses the message window, which appears at the bottom of the screen, to
communicate error and informational messages during an editing session. The
message window displays the last message in the Messages buffer.

You can display these messages with the BUFFER command. To display the
contents of the Messages buffer, press Do and enter the command BUFFER
MESSAGES. To return to the buffer you were editing, press Do and enter the
BUFFER command followed by the name of the appropriate buffer.

You can also enter the SHOW BUFFERS command to display the buffers you
have created and press the Select key to choose a buffer.

8.18.5 Editing Multiple Buffers

You can use several buffers if you want to edit more than one file or if you want
temporary storage areas for manipulating blocks of text. You can use one of
the following commands to create a new buffer: GET FILE or OPEN, OPEN
SELECTED, or BUFFER.

Using the GET FILE Command

To create a new buffer with a file that already exists, enter the GET FILE (or
OPEN) command and the name of the file you want to copy to the new buffer.
You can use the asterisk (*) wildcard character as a substitute for all or some
of the characters in the file name and file type. You can use the percent sign
(%) wildcard character as a substitute for one character in the file name and file
type, and you can use the ellipsis ([...]) wildcard as a substitute for a directory
specification.

Using the OPEN SELECTED Command

You can also use the OPEN SELECTED command to create a new buffer as
follows:

1. Put the cursor on the name of the file you want to open.

2. Enter the OPEN SELECTED command.

Using the BUFFER Command

To put a specific buffer into the current EVE window, enter the BUFFER
command and the name of the buffer you want to put in the current window. You
cannot use wildcard characters in buffer names. The asterisk (*) and percent
sign (%) are treated as literal characters in a buffer name. If the buffer you
specify does not already exist, EVE creates a new buffer.

Editing Text Files with EVE 8-39

Editing Text Files with EVE
8.18 Using Buffers

If the specified file exists, EVE reads the contents of the file into a new buffer
and displays the buffer in the current window. If there is more than one match
for a file specification with a wildcard, EVE displays a list of choices in the
$CHOICES$ buffer and prompts you to provide a more complete file specification.
EVE will open the first file it matches if you use a search list or an ellipsis ([...])
wildcard. Otherwise, EVE creates an empty buffer and displays the buffer in the
current window.

To change the buffer in the current window, press the Do key, type BUFFER and
the name of the buffer you want to display on the screen, and then press the
Enter key. If you forget a buffer name, enter the SHOW BUFFERS command to
display the names of active buffers in your editing session and specify a buffer
with the Select key.

8.18.6 Reading Files into EVE

There are four ways to read a file into an EVE buffer:
¢ Invoke EVE with a file specification.

e Enter the INCLUDE FILE command and the name of the file you want to
include. EVE reads the entire contents of the file into the buffer just before
the line where the cursor is located. Using the INCLUDE FILE command
does not change the name of the buffer on the status line.

e Enter the GET FILE or OPEN command and the name of the file you want
to use. Either command creates a new buffer and reads the contents of an
existing file into the buffer. The name of the buffer on the status line is the
same as the file name you specify with the GET FILE or OPEN command
(see Section 8.18.5).

e Select or find a file name, then enter the OPEN SELECTED command.

8.18.7 Writing Files from EVE

To write the contents of the current buffer to a file, enter the WRITE FILE
command. You can include a file specification with the WRITE FILE command.
If you do not include a file specification, EVE uses the input file specification
to write the file. If you created the current buffer with the BUFFER or NEW
command, EVE prompts you for a file specification to which it writes the file.

The following example shows how to use the output file associated with the buffer
to write a buffer to the file:

Command: GET FILE RHYMES.DAT

Command: WRITE FILE
3 lines written to WORKDISK:[USER]RHYMES.DAT;2

8.18.8 Using Windows

During an EVE editing session, the buffer you are editing is displayed on the
screen in a window. A highlighted status line appears at the bottom of the
window identifying the name, current editing mode, and current direction of the
buffer.

EVE lets you view more than one window on your terminal screen at the same
time. For example, you can have two windows on the terminal screen to view and
edit different sections of the same buffer.

8-40 Editing Text Files with EVE

Editing Text Files with EVE
8.18 Using Buffers

Table 8-16 describes EVE keys used to create and manipulate windows.

Table 8-16 Keys Used with EVE Windows

Key or Key Sequence

Function in a Window Environment

GOLD Next Screen

GOLD Prev Screen

Puts the cursor in the next (or other) window. Same as the NEXT
WINDOW command.

Puts the cursor in the previous (or other) window. Same as the
PREVIOUS WINDOW command.

Table 8-17 describes EVE commands used to create and manipulate windows.

Table 8—-17 EVE Window Commands

Command

Function in a Window Environment

DELETE WINDOW
ENLARGE WINDOW

NEXT WINDOW
or OTHER WINDOW

ONE WINDOW

PREVIOUS WINDOW
SET WIDTH

SHIFT LEFT

SHIFT RIGHT

SHRINK WINDOW

SPLIT WINDOW

TWO WINDOWS

Deletes the current window, if you are using more than one window.

Enlarges the current window by a specified number of lines. For
example, ENLARGE WINDOW 5 enlarges the window by five lines.
The adjacent window shrinks accordingly.

Puts the cursor in the next (or other) window.

Restores the current window as a single, large window. EVE deletes
all other windows from the screen. The buffers associated with those
windows are not deleted.

Puts the cursor in the previous (or other) window.

Sets the width of lines displayed on the screen. Specify width as a
positive integer. By default, the screen width is your terminal setting
(usually 80 columns). If the width is set greater than 80, EVE sets the
terminal to 132-column mode for the current editing session. When
you exit from EVE, the terminal is restored to the default setting.
Setting the width changes the display of text in all windows.

Moves the current window to the left a specified number of columns.
You can use the SHIFT LEFT command only to reverse the effect of
the SHIFT RIGHT command.

Moves the current window to the right a specified number of columns,
so you can view columns of characters that do not currently appear on
the terminal screen.

Shrinks the current window by a specified number of lines. For
example, SHRINK WINDOW 5 shrinks the window by five lines. The
adjacent window expands accordingly.

Splits the current window, forming two smaller windows. You can
divide the window into more than two parts by specifying a number
with the command. For example, SPLIT WINDOW 3 splits the window
into three windows.

Same as the SPLIT WINDOW 2 command.

8.18.9 Viewing Two Sections of One Buffer

To view two sections of a file at the same time, use the SPLIT WINDOW
command. EVE splits your screen and creates two identical windows. The cursor
maintains its position in the buffer but appears only in the bottom window. The
buffer name is the same in both status lines.

Editing Text Files with EVE 8-41

Editing Text Files with EVE
8.18 Using Buffers

Displaying two sections of a long file makes moving text within a file efficient.
You can select and remove text from one part of the file and insert it into
the other. To move the cursor from one window to the other, enter the NEXT
WINDOW command.

To remove the second window from the screen and expand the current window
to occupy the whole editing area, press the Do key, enter the command ONE
WINDOW, and press the Enter key.

8.18.10 Editing Two Buffers

The following procedure describes how to edit two buffers containing different

files:
Step Task
1 Create two windows on your screen by entering the SPLIT WINDOW command.

EVE splits your screen and creates two windows. The cursor maintains its position
in the buffer but appears only in the bottom window. The buffer name in each of
the highlighted status lines is the same.

2 Use the GET FILE, OPEN, or OPEN SELECTED command to put a second file in
the current window.

To display a buffer that you created earlier in the editing session in the current
window, enter the BUFFER command and the name of the buffer you want to
display.

Your terminal screen now displays two different buffers. You can select and remove
text from one buffer and insert it into the other buffer. To move the cursor from
one window to the other, enter the command NEXT WINDOW.

8.19 Creating a Subprocess

You can create a subprocess to switch between an EVE editing session and DCL
command level without terminating your editing session. To create a subprocess,
enter the SPAWN command. EVE suspends the current editing session and
connects your terminal to a new subprocess. The DCL prompt ($) appears on
your terminal screen.

8.19.1 Spawning

The most common reasons to spawn a subprocess are to invoke the Mail utility
and to run screen-oriented programs, although your subprocess can invoke any
OpenVMS utility or execute any DCL command.

To return to your editing session, log out of the subprocess by entering the DCL
command LOGOUT. EVE resumes the editing session, and the cursor appears in
the location it occupied before you spawned the subprocess. You can also supply
a DCL command as a parameter to the SPAWN command to create a specific
subprocess.

In the following example, the Mail utility is spawned from EVE:
[End of file]

Buffer: MAIN | Write | Insert | Forward
Command: SPAWN MAIL

The prompt for the Mail utility (MAIL>) appears on the screen. When you exit
from Mail, you are automatically logged out of the subprocess and EVE resumes
the editing session.

8-42 Editing Text Files with EVE

Editing Text Files with EVE
8.19 Creating a Subprocess

8.19.1.1 Spawning to EVE from DCL

Rather than spawn a process to use DCL, you can spawn a process for an EVE
editing session and then attach to the parent DCL process to use DCL commands
and utilities.

When you want to return to the DCL command level, use the EVE command
ATTACH to return to the parent process.

To resume your editing session, reconnect to the editing subprocess by using the
DCL command ATTACH with the process name of the subprocess.

In the following example, a subprocess is created using the DCL command
SPAWN. The SPAWN command creates the subprocess SMITH_1. At the
subprocess level, EVE is invoked and the editing session is conducted. At the end
of the editing session, the ATTACH command is entered and you are returned to
DCL. Then, to resume the editing session,the DCL command ATTACH is entered
using the the process name of the subprocess SMITH_1:

$ SPAWN
%DCL-S-SPAWNED, process SMITH 1 spawned
%DCL-S-ATTACHED, terminal now attached to process SMITH 1

[End of file]

Buffer: MAIN Write Insert | Forward
Command: ATTACH SMITH

$ ATTACH SMITH_1

Editing Text Files with EVE 8-43

9

Sorting and Merging Files

This chapter describes how to use the OpenVMS Sort/Merge utility
(SORT/MERGE). The Sort/Merge utility performs two operations:

e Sorts records from one or more input files according to the fields you select
and generates one reordered output file

e Merges up to 10 (high-performance Sort/Merge utility supports up to 12)
input files that have been sorted previously according to the same key fields
and generates one output file.

On Alpha systems, you can also choose the high-performance Sort/Merge
utility. This utility takes advantage of the Alpha architecture to provide
better performance for most Sort and Merge operations. Refer to Section 9.1 for
information.

This chapter describes:

e High-performance Sort/Merge

e Sorting files

e Specifying collating sequences

e Running Sort as a batch job

e Merging files

¢ Entering records from a terminal

e Using a Sort/Merge specification file
¢ Optimizing a Sort or Merge operation
e Summary of Sort/Merge qualifiers
For additional information, see the following:

¢ For information on commands used in this chapter, refer to the OpenVMS
DCL Dictionary.

¢ For information on how a system manager can improve efficiency when using
the Sort/Merge utility, refer to the OpenVMS System Manager’s Manual.

9.1 High-Performance Sort/Merge

On Alpha systems, you can also choose the high-performance Sort/Merge
utility. This utility takes advantage of the Alpha architecture to provide better
performance for most Sort and Merge operations.

The high-performance Sort/Merge utility uses the same command line interface
as SORT/MERGE. Any differences between the high-performance Sort/Merge
utility and SORT/MERGE are noted throughout this chapter.

Sorting and Merging Files 9-1

Sorting and Merging Files
9.1 High-Performance Sort/Merge

Use the SORTSHR logical to select the high-performance Sort/Merge utility.
Define SORTSHR to point to the high-performance sort executable in
SYS$LIBRARY as follows:

$ define sortshr sys$library:hypersort.exe

To return to SORT/MERGE, deassign SORTSHR. The SORT/MERGE utility is
the default if SORTSHR is not defined.

Note

Memory allocation differences may limit the high-performance Sort/Merge
utility’s ability to perform the same number of concurrent sort operations
as the Sort/Merge utility can perform in the same amount of virtual
memory.

If this situation occurs, you can either increase the amount of virtual
memory that is available to the process, or reduce the working set extent.
For information on using system parameters to change the amount of
virtual memory or reduce the working set extent, refer to the OpenVMS
System Management Utilities Reference Manual.

The behavior of the high-performance Sort/Merge utility is the same as
SORT/MERGE, except as shown in Table 9-1.

If you attempt to use an unsupported qualifier or assign an unsupported value to
a qualifier, the high-performance Sort/Merge utility generates an error.

Table 9-1 High-Performance Sort/Merge: Differences in Behavior

Feature High-Performance Sort/Merge Behavior
Key data types The H-FLOATING and ZONED decimal data types are not
supported.

The size of a BINARY data type key must be 1, 2, 4, or 8 bytes.
A 16-byte binary key is not supported. (Implementation of this
feature is deferred to a future OpenVMS Alpha release.)

Collating sequences The National Character Set (NCS) collating sequences are not
supported. (Implementation of this feature is deferred to a
future OpenVMS Alpha release.) Do not specify the name of
an NCS collating sequence for the /COLLATING_SEQUENCE
qualifier. The ASCII, EBCDIC, and MULTINATIONAL
collating sequences are supported. The default is ASCII.

You cannot define or modify your own collating sequence
through the use of a specification file. (Implementation of this
feature is deferred to a future OpenVMS Alpha release.)

Specification files Specification files are not supported. (Implementation of this
feature is deferred to a future OpenVMS Alpha release.) Do
not use the /SPECIFICATION qualifier.

Internal sorting process Only the record sort process is supported. (Implementation of
this feature is deferred to a future OpenVMS Alpha release.)
You can specify /PROCESS=RECORD or omit the /PROCESS
qualifier. The TAG, ADDRESS, and INDEX values for the
/PROCESS qualifier are not supported.

(continued on next page)

9-2 Sorting and Merging Files

Sorting and Merging Files
9.1 High-Performance Sort/Merge

Table 9—-1 (Cont.) High-Performance Sort/Merge: Differences in Behavior

Feature High-Performance Sort/Merge Behavior
Statistical summary The following statistics are currently supported:
information

Records read
Records sorted
Records output
Input record length

The following statistics are unavailable:

Internal length

Output record length
Sort tree size

Number of initial runs
Maximum merge order
Number of merge passes
Work file allocation

Full implementation of this feature is deferred to a future
OpenVMS Alpha release.

9.2 Sorting Files

To sort files, use the DCL command SORT. Specify the names of the files to be
sorted, separated by commas, followed by the name of the ordered output file to
be created.

Optionally, you can specify a key for each field on which you want to sort. Each
key includes the following information:

e Starting position of the key field in a record (required)
e Size of the key (required)

e Data type of the key

¢ Order in which the records are sorted

e Priority of the key

If you do not specify any keys, Sort assumes there is only one key and that this
key field:

¢ Begins in the first position of a record

e Includes the entire record

e Contains character data

e Is sorted in ascending order

The following two examples use the default key.

1. In this example, the file NAMES.LST is sorted in ascending order:
$ SORT NAMES.LST BYNAME.LST

This command creates the ordered output file BYNAME.LST, as shown in
Figure 9-1.

Sorting and Merging Files 9-3

Sorting and Merging Files
9.2 Sorting Files

Figure 9—1 List Sorted in Ascending Order

——NAMES.LST—

MCMAHON JANE
IMPOSTER HARRY
ROSENBERG HARRY
KNIGHT MARTHA

——BYNAME.LST—

BENTLEY PETER
BENTLEY PETER
IMPOSTER HARRY
KNIGHT MARTHA

BENTLEY PETER
BENTLEY PETER
LOWELL FRANK

v

LOWELL FRANK
MCMAHON JANE
ROSENBERG HARRY

ZK-5055A-GE

2. In this example, the files NAMES.LST and NAMES2.LST are sorted into the
ordered output file BYNAME.LST. Sort treats the files as if they were one

large file:

$ SORT NAMES.LST,NAMES2.LST BYNAME.LST

See Section 9.9 for a complete list of SORT qualifiers.

9.2.1 Defining a Key

Use the /KEY qualifier to define a key. When specifying multiple keys, use a
separate /KEY qualifier for each key.

Table 9-2 describes the five elements that comprise a key.

Table 9-2 /KEY Qualifier Values

Key Element Value Description

Key position POSITION:n The position of the first byte of the key field within the record. The first
byte in a record is position 1. POSITION:n is required.

Key size SIZE:n The length of the key field. SIZE:n is required except for floating-point

9-4 Sorting and Merging Files

data.

The data type you specify for the key determines what values are
acceptable when specifying size. The following table lists the possible
values for each type of data and the units used to specify the size of the
key.

Data Valid Range Units

Characters

Bytes

Character 1 through 32,767

1, 2, 4, 8, or 16 (For the high-
performance Sort/Merge utility,
the size of a binary data type
key must be 1, 2, 4, or 8 bytes.
Support of a 16-byte binary key
is deferred to a future OpenVMS
Alpha release.)

1 through 31

Binary

Decimal Digits

Floating-point No value is necessary.

For decimal data, if the decimal sign is stored in a separate byte, that
byte is not counted toward the size of the data.

If you specify a key that extends beyond the end of a record, Sort treats
the missing characters as null characters.

(continued on next page)

Sorting and Merging Files
9.2 Sorting Files

Table 9-2 (Cont.) /KEY Qualifier Values

Key Element Value Description
Data type CHARACTER Character data. CHARACTER is the default data type.
BINARY Binary data.
SIGNED — Signed binary or decimal data. SIGNED is the default for
binary and decimal data.
UNSIGNED — Unsigned binary or decimal data.
F_FLOATING F_FLOATING format data.
D _FLOATING D_FLOATING format data.
G_FLOATING G_FLOATING format data.
H_FLOATING On VAX systems, H_FLOATING format data. (Not currently supported
by the high-performance Sort/Merge utility.)
S_FLOATING On Alpha systems, IEEE S_FLOATING format data.
T _FLOATING On Alpha systems, IEEE T_FLOATING format data.
DECIMAL Decimal data.
TRAILING_SIGN — Trailing sign decimal data. TRAILING_SIGN is the
default for decimal data.
LEADING_SIGN — Leading sign decimal data. The leading sign must
be in the first position of the field and the field must be left zero padded.
OVERPUNCHED_SIGN — Overpunched decimal data.
OVERPUNCHED_SIGN is the default for decimal data.
SEPARATE_SIGN — Separate sign decimal data.
ZONED Zoned decimal data. (Not currently supported by the high-performance
Sort/Merge utility.)
PACKED DECIMAL Packed decimal data.
Sort order ASCENDING Orders the sorting operation in ascending alphabetical or numerical
order. ASCENDING is the default order.
DESCENDING Orders the sorting operation in descending alphabetical or numerical
order.
Key priority NUMBER:n Specifies the order of priority of each key if you do not list multiple keys

in the order of their priority. A value of 1 to 255 can be specified.

If the data in the key fields is not character data, you must specify the data type.
The following data types are recognized by the Sort/Merge utility:

BINARY, [SIGNED]

BINARY, UNSIGNED

CHARACTER

DECIMAL, LEADING_SIGN, SEPARATE_SIGN [SIGNED]
DECIMAL, LEADING_SIGN, [OVERPUNCHED_SIGN, SIGNED]
DECIMAL [,SIGNED, TRAILING_SIGN, OVERPUNCHED_SIGN]
DECIMAL, [TRAILING SIGN], SEPARATE_SIGN, [SIGNED]
DECIMAL, UNSIGNED

D_FLOATING

F_FLOATING

G_FLOATING

H_FLOATING

S_FLOATING, IEEE (Alpha systems only)

T_FLOATING, IEEE (Alpha systems only)

PACKED_DECIMAL

Sorting and Merging Files 9-5

Sorting and Merging Files
9.2 Sorting Files

ZONED

The items in brackets are defaults and need not be specified.

Note

For decimal string data, the Sort/Merge utility reports an invalid digit in
the input string differently for VAX and Alpha systems. On VAX systems,
you receive a message that the invalid digit (or reserved operand) is
converted to a valid decimal string for comparison purposes. On Alpha
systems, Sort/Merge performs the same conversion but does not display
a message. In both cases, the data from the input file is written to the
output file without change.

In Figure 9-2, each record in the file EMPLOYEE.LST consists of three fields: (1)
a department name, (2) an account number, and (3) an employee name.

Figure 9-2 Record Fields in a List

EMPLOYEE.LST

BST 7828 MCMAHON JANE
ADM 7933 IMPOSTER HARRY
ADM 7933 ROSENBERG HARRY
COM 8102 KNIGHT MARTHA
ANS 8042 BENTLEY PETER
ANS 5243 BENTLEY PETER
BIO 7951 LOWELL FRANK

ZK-5056A-GE
The following examples illustrate how to sort the records in EMPLOYEE.LST
both with, and without, a key field:

1. In this example, EMPLOYEE.LST is sorted by account number, using the
/KEY qualifier to describe the account number field:

$ SORT/KEY=(POSITION:5,SIZE:4,DECIMAL) EMPLOYEE.LST BILLING1.LST

This command specifies that the key field (the account number) starts in
position 5, is 4 characters long, contains decimal data, and should be sorted
in ascending order (the default). Figure 9-3 shows the results of this Sort
operation.

9-6 Sorting and Merging Files

Figure 9-3 Sorting by Key Field

BST

ADM
ADM
COM
ANS
ANS
BIO

EMPLOYEE.LST

7828
7933
7933
8102
8042
5243
7951

MCMAHON JANE
IMPOSTER HARRY
ROSENBERG HARRY
KNIGHT MARTHA
BENTLEY PETER
BENTLEY PETER
LOWELL FRANK

ANS
BST
ADM
ADM
BIO
ANS
CcOoM

BILLING1.LST

5243
7828
7933
7933
7951
8042
8102

Sorting and Merging Files
9.2 Sorting Files

BENTLEY PETER
MCMAHON JANE
ROSENBERG HARRY
IMPOSTER HARRY
LOWELL FRANK
BENTLEY PETER
KNIGHT MARTHA

2. This example shows how to sort the file EMPLOYEE.LST without specifying

a key field:

$ SORT EMPLOYEE.LST BYDEPT.LST

Because no key is specified, Sort assumes the default characteristics.

ZK-5058A-GE

Figure 9-4 shows the result of this Sort operation.

Figure 9-4 Sorting with Default Key Records

BST

ADM
ADM
COM
ANS
ANS
BIO

EMPLOYEE.LST

7828
7933
7933
8102
8042
5243
7951

MCMAHON JANE
IMPOSTER HARRY
ROSENBERG HARRY
KNIGHT MARTHA
BENTLEY PETER
BENTLEY PETER
LOWELL FRANK

ADM
ADM
ANS
ANS
BIO
BST
COM

BYDEPT.LST

7933
7933
5243
8042
7951
7828
8102

IMPOSTER HARRY
ROSENBERG HARRY
BENTLEY PETER
BENTLEY PETER
LOWELL FRANK
MCMAHON JANE
KNIGHT MARTHA

ZK-5057A-GE

Sort treats each record in EMPLOYEE.LST as one key of character data. In
this example, each record includes a department name, an account number,
and an employee name. If Sort finds a duplicate department name, it sorts
the names by account number. If it then finds a duplicate account number, it
sorts by employee name. Note that the account number is part of the record.
Unless you specify otherwise, it is treated as character data.

9.2.2 Multiple Key Fields

You can sort with more than one key (up to a limit of 255 keys). You can
specify multiple keys in order of their priority with the primary key first, the
secondary key next, and so on. Alternately, you can specify a key’s priority using
NUMBER:n. Each key can be ascending or descending.

In the following example, the file EMPLOYEE.LST is sorted by the employee
name key first and then (where there are identical names), by the account
number:

$ SORT /KEY=(POSITION:10,SIZE:15,CHARACTER) -
_$ /KEY=(POSITION:5,SIZE:4,DECIMAL) EMPLOYEE.LST BILLING2.LST

Figure 9-5 shows the results of this Sort operation.

Sorting and Merging Files 9-7

Sorting and Merging Files
9.2 Sorting Files

Figure 9-5 Sorting with Multiple Key Fields

EMPLOYEE.LST— ———BILLING2.LST

BST 7828 MCMAHON JANE ANS 5243 BENTLEY PETER

ADM 7933 IMPOSTER HARRY ANS 8042 BENTLEY PETER

ADM 7933 ROSENBERG HARRY ADM 7933 IMPOSTER HARRY
COM 8102 KNIGHT MARTHA COM 8102 KNIGHT MARTHA

ANS 8042 BENTLEY PETER BIO 7951 LOWELL FRANK

ANS 5243 BENTLEY PETER BST 7828 MCMAHON JANE

BIO 7951 LOWELL FRANK ADM 7933 ROSENBERG HARRY

ZK-5059A-GE

In the following example, records are sorted first by the department name in
descending order, then by the employee name in ascending order:

$ SORT/KEY=(POSITION:1,SIZE:3,DESCENDING) -
_$ /KEY=(POSITION:10,SIZE:15) -
~$ EMPLOYEE.LST BILLING3.LST

Figure 9-6 shows the results of this Sort operation.

Figure 9-6 Sorting with Multiple Key Fields (Ascending and Descending Order)

EMPLOYEE.LST———— ———BILLING3.LST

BST 7828 MCMAHON JANE COM 8102 KNIGHT MARTHA
ADM 7933 IMPOSTER HARRY BST 7828 MCMAHON JANE
ADM 7933 ROSENBERG HARRY BIO 7951 LOWELL FRANK

COM 8102 KNIGHT MARTHA ANS 5243 BENTLEY PETER

ANS 8042 BENTLEY PETER ANS 8042 BENTLEY PETER

ANS 5243 BENTLEY PETER ADM 7933 IMPOSTER HARRY
BIO 7951 LOWELL FRANK ADM 7933 ROSENBERG HARRY

ZK-5060A-GE

9.2.3 Identical Key Fields

By default, Sort/Merge keeps records with identical key fields but does not
necessarily maintain the same order in which they appeared in the input file. To
control the way in which records with identical keys are sorted, specify one of the
following qualifiers:

e /STABLE

Maintains the input order of records with identical keys. If you use this
qualifier when sorting multiple input files, on output, records with equal keys
in the first file precede those from the second file and so on.

e /NODUPLICATES

Retains only one copy of records with identical keys. If you want to specify
which duplicate record to keep, invoke Sort at the program level and specify
an equal-key routine.

The /STABLE and /NODUPLICATES qualifiers are incompatible. You cannot
specify both qualifiers on the same command line.

In the following example, records with duplicate account numbers are eliminated
from the file EMPLOYEE.LST:

$ SORT /KEY=(POSITION:5,SIZE:4)/NODUPLICATES EMPLOYEE.LST BUDGET.LST

9-8 Sorting and Merging Files

Sorting and Merging Files
9.2 Sorting Files

Figure 9-7 shows the results of this Sort operation.

Figure 9-7 Sorting with Identical Key Fields

EMPLOYEE.LST

BST 7828 MCMAHON JANE —BUDGET.LST

ADM 7933 IMPOSTER HARRY ANS 5243 BENTLEY PETER

ADM 7933 ROSENBERG HARRY BST 7828 MCMAHON JANE
COM 8102 KNIGHT MARTHA ADM 7933 IMPOSTER HARRY
ANS 8042 BENTLEY PETER BIO 7951 LOWELL FRANK

ANS 5243 BENTLEY PETER ANS 8042 BENTLEY PETER

BIO 7951 LOWELL FRANK COM 8102 KNIGHT MARTHA

ZK-5061A-GE

9.2.4 Noncharacter Data

If you sort records that contain items other than character data, specify the data
type of each key. In addition, take care in calculating starting positions and sizes
because the items being compared can occupy more than 1 byte.

If you are sorting a file that contains 20 characters followed by 3 floating-point
numbers in F_floating format, the positions are as follows:

e The character data occupies positions 1 to 20 (20 characters).
e The first F_floating-point number occupies positions 21 to 24.
¢ The second F_floating-point number occupies positions 25 to 28.
e The third F_floating-point number occupies positions 29 to 32.
To sort the file by the third floating-point number, specify the key field as follows:
$ SORT/KEY=(POSITION:29,F_FLOATING) STATS.RAW STATS.SOR
You do not need to specify the size of the floating-point number because it is fixed
at four bytes.
9.2.5 Output File Organization

By default, Sort produces an output file with the same file organization as that
of the first input file. To specify a different output file organization, include one
of the following qualifiers after the output file specification on the Sort command
line:

e /FORMAT (record format)

When you use this output qualifier, you can define the file record format,
length, and block size.

e /INDEXED_SEQUENTIAL

Using this qualifier, you can define the output to have indexed sequential
file organization. If you specify indexed sequential as the output file
organization, you must also do the following:

— Before you perform the Sort operation, create an empty file to be used
as the output file. Sort requires an output file that already exists and is
empty.

— Include the /OVERLAY qualifier after the name of the output file on the
SORT command line. The /OVERLAY qualifier indicates the existing file
is to be overlaid with the sorted records of the input file.

Sorting and Merging Files 9-9

Sorting and Merging Files
9.2 Sorting Files

e /RELATIVE

Using this qualifier, you can define the output to have relative file
organization.

e /SEQUENTIAL

Using this qualifier, you can define the output to have sequential file
organization.

In the following example, a sequential file is produced after the indexed
sequential file EMPLOYEE.LST is sorted:

$ SORT/KEY=(POSITION:10,SIZE:15) -
_$ EMPLOYEE.LST BYNAME.LST/SEQUENTIAL

9.2.6 Sorting Process

Sort arranges files using one of the internal processes: record, tag, address,

or indexed. (The high-performance Sort/Merge utility supports only the record
process. Implementation of tag, address, and index processes is deferred to a
future OpenVMS Alpha release.) The process you specify can affect the efficiency
of the Sort operation. Refer to Section 9.8 for information about optimizing a Sort
or Merge operation.

The following table describes the four types of process. Use the /PROCESS=type
qualifier to specify the sort process.

Sort
Process type Description

Record RECORD Keeps records intact while sorting and produces an output file
consisting of complete records. Record is the default sorting process.

Tag TAG Sorts the key fields only and then rereads the input file to produce
an output file of complete records. The net result is the same as for a
complete record sort.

A tag sort is useful if disk space is low because it typically uses less

work file space during the sorting. In most cases, a tag sort is slower
than a record sort because it requires extra time to reread the input

file.

Address ADDRESS Sorts the key fields only and produces an output file that is an index
of record file addresses (RFAs) in binary format.

An address sort is faster than a record sort but you must write a
program to associate the record addresses with the records of the
input file.

Indexed INDEX Sorts the key fields only and produces an output file of keys and
RFAs (in binary format).

As with an address sort, an index sort is faster than a record sort,
but you must write a program to associate the record addresses with
the records of the input file.

9.3 Specifying a Collating Sequence

Characters are sorted according to a collating sequence. For files that contain
character data, you can use the /COLLATING_SEQUENCE=sequence qualifier
to specify the collating sequence. The following table describes the collating
sequence options:

9-10 Sorting and Merging Files

Sorting and Merging Files
9.3 Specifying a Collating Sequence

Collating

Sequence sequence Description

ASCII ASCII The default collating sequence for character data. The ASCII sequence
orders numbers (0 to 9) first, then uppercase letters (A to Z), and then
lowercase letters (a to z).

EBCDIC EBCDIC Generates an output file that is ordered in EBCDIC sequence. The data
remains in the ASCII representation. The EBCDIC sequence orders
lowercase letters (a to z) first, then uppercase letters (A to Z), and then
numbers (0 to 9).

DEC MULTINATIONAL The multinational collating sequence collates characters according to

Multinational the DEC Multinational character set (refer to Appendix A). In the

character set

National
character set
(NCS)

User-defined
sequence

Collating sequence
name

(sequence-string)

MULTINATIONAL character sequence, characters are ordered according
to the following rules:

e All diacritical forms of a character are given the collating value of the
character (A’, A", A’ collate as A).

e Lowercase characters are given the collating value of their uppercase
equivalents (a collates as A, a" collates as A").

e If two strings compare as equal, tie-breaking is performed. The strings
are compared to detect differences due to diacritical marks, ignored
characters, or characters that collate as equal although they are
actually different. If strings still compare as equal, another comparison
is done based on the numeric codes of the characters. In this final
comparison, lowercase characters are ordered before uppercase.

The named collating sequence must be defined in an NCS library. For more
information, see the OpenVMS National Character Set Utility Manual.

(The high-performance Sort/Merge utility does not support the National
Character Set (NCS) collating sequences. Support for NCS collating
sequences is deferred to a future OpenVMS Alpha release.)

Specifies a user-defined collating sequence. User-defined collating sequences
are supported only through specification files and not through the command
line interface.

(The high-performance Sort/Merge utility does not support user-defined
collating sequences. Support for user-defined collating sequences is deferred
to a future OpenVMS Alpha release.)

Sorting and Merging Files 9-11

Sorting and Merging Files

9.3 Specifying a Collating Sequence

Collating

Sequence sequence Description

Define a collating sequence by specifying a string of single or double
characters or ranges of single characters. (A double character is any set

of two single characters collated as if they were one character. For example,
"CH" can be defined to collate as "C".) This string should be enclosed in
parentheses.

You can also represent characters by their corresponding octal, decimal, or
hexadecimal values using the radix operators: %0, %D, %X.

You must observe the following rules when defining your collating sequence:

Enclose characters in quotation marks ("").

Separate each character and character range with a comma (,), and
enclose the entire list in parentheses.

Give all the characters appearing in the character keys in the Sort or

Merge operation a collating value. Any character not given a collating
value will be ignored unless the FOLD or MODIFICATION options are
specified.

Do not define a character more than once.

Do not specify the null character by using quotation marks (""). Instead,
use a radix operator such as %XO0.

Specify quotation marks by enclosing them within another set of
quotation marks ("" "") or by using a radix operator.

The following string defines a collating sequence in which the double
character LL collates as a single character between L and M.

(L\ , "L . "My)

Note

Exercise caution when using the multinational collating sequence to
sort or merge files for further processing. Sequence-checking procedures
in most programming languages compare numeric characters. Normal
sequence checking does not work because the multinational sequence

is based on actual graphic characters, not the codes representing those

characters.

The following examples demonstrate the creation of user-defined collating
sequences for use in specification files. See Section 9.7 for information about

specification files.

/COLLATING SEQUENCE= (SEQUENCE=ASCII,IGNORE=("-"," "))

This /COLLATING_SEQUENCE qualifier with an IGNORE option specified
results in the following fields being compared as equal before tie breaking:

1.
252-3412
252 3412
2523412
2.

/COLLATING_SEQUENCE=(SEQUENCE=("A"-"L","LL","M"-"R","RR","S"="2"))

9-12 Sorting and Merging Files

Sorting and Merging Files
9.3 Specifying a Collating Sequence

This /COLLATING_SEQUENCE qualifier defines a sequence in which the
double character LL collates as a single character between L and M, and the
double character RR collates as a single character between R and S. These
double characters would otherwise appear in their usual alphabetical order.
By default, this user-defined sequence does not define any other characters,
such as lowercase a to z.

9.4 Running Sort as a Batch Job

Batch jobs are programs or DCL command procedures that run independently of
your current session. If you are sorting large files, consider submitting the Sort
operation as a batch job because the sort will require some time. See Chapter 16,
Chapter 13, and Chapter 14 for more information about batch jobs and command
procedures.

9.4.1 Command Procedures

Specify the SORT command in your command procedure just as you would write
it on the screen. If your default directory does not contain the files to be sorted,
explicitly set your default directory in the command procedure or include the
directory in the command file specifications.

The following example submits the DCL command procedure SORTJOB.COM as
a batch job. The text of the command procedure is shown following the command
line:

$ SUBMIT SORTJOB

SORTJOB.COM

!

!

$ SET DEFAULT [USER.PER] ! Set default to location of input files
$ SORT/KEY=(POSITION:10,SIZE:15) EMPLOYEE.LST BYNAME.LST

$ TYPE BYNAME.LST

$ EXIT

9.4.2 Including Input Records

You can include the input records in the batch job by placing them after the
SORT command with one record per line. Individual sort records can be longer
than one line.

As with terminal input of records, specify the input file parameter as
SYS$INPUT. Use the /FORMAT qualifier to specify the record size in bytes
and the approximate file size in blocks. Approximately six 80-character lines
equal one block.

The following example demonstrates including input records in a command
procedure:

Sorting and Merging Files 9-13

Sorting and Merging Files
9.4 Running Sort as a Batch Job

$ SUBMIT SORTJOB

! SORTJOB.COM
!

$ SET DEFAULT [USER.PER]

$ SORT/KEY=(POSITION:10,SIZE:15) -
SYSSINPUT-

/FORMAT=(RECORD SIZE:24,FILE SIZE:10) -
BYNAME.LST - -

$ DECK

BST 7828 MCMAHON JANE

ADM 7933 ROSENBERG HARRY

COM 8102 KNIGHT MARTHA

ANS 8042 BENTLEY PETER

BIO 7951 LOWELL FRANK

$ EOD

9.5 Merging Files

The MERGE command combines up to 10 (the high-performance Sort/Merge
utility supports up to 12) sorted files into one ordered output file. You can merge
input files that have the same format and have been sorted by the same key
fields.

By default, Merge checks the sequence of the records in the input files to be sure
they are in order. Specify the /NOCHECK_SEQUENCE qualifier if you do not
want Merge to check the order. If you specify the /CHECK_SEQUENCE qualifier
and a record is out of order (for example, if you have not sorted one of the input
files), Merge reports the following error:

%SORT-W-BAD_ORDER, merge input is out of order

You can use the same qualifiers with the MERGE command as you use with the
SORT command with two exceptions:

¢ You cannot specify a process (/PROCESS) for a Merge operation.
e The /CHECK_SEQUENCE qualifier is used only for a merge operation.

In the following example, the files BYNAME1.LST and BYNAME2.LST have
already been sorted by employee name in ascending order. The command shown
merges them:

$ MERGE BYNAME1.LST,BYNAME2.LST BYNAME3.LST

The output file BYNAMES3.LST contains all the records from both files,
BYNAME1.LST and BYNAMEZ2.LST, as shown in the following figure:

9-14 Sorting and Merging Files

——BYNAME1.LST—

BENTLEY PETER
BENTLEY PETER
IMPOSTER HARRY
KNIGHT MARTHA
LOWELL FRANK
MCMAHON JANE
ROSENBERG HARRY

Sorting and Merging Files

——BYNAMES.LST—
BENTLEY PETER
BENTLEY PETER
COLE STUART
DUPUIS KIM
FLEMING MARIE

——BYNAME2.LST—

COLE STUART
DUPUIS KIM
FLEMING MARIE
MAHONEY RICK

9.5.1 Sorted Files

IMPOSTER HARRY
KNIGHT MARTHA
LOWELL FRANK
MAHONEY RICK
MCMAHON JANE
ROSENBERG HARRY

ZK-5062A-GE

9.5 Merging Files

To merge files that are sorted using a specific key, you must specify the same key
with the /KEY qualifier on the MERGE command line.

If you do not specify a key, Merge uses the default key described in Section 9.2.

In the following example, the files BILLING1.LST and BILLING4.LST were
sorted by account number (/KEY=POSITION:5,SIZE:4, DECIMAL). To merge the
files into the output file MAILING.LST, enter the following command line:

$ MERGE/KEY=(POSITION:5,SIZE:4,DECIMAL) -
_$ BILLING1.LST,BILLING4.LST MAILING.LST

The results of the merge are as follows:

ANS
BST

ADM
ADM
BIO

ANS
COM

BILLING1.LST

5243
7828
7933
7933
7951

8042
8102

BENTLEY PETER
MCMAHON JANE
ROSENBERG HARRY
IMPOSTER HARRY
LOWELL FRANK
BENTLEY PETER
KNIGHT MARTHA

BILLING4.LST:

COM 1192 DUPUIS KIM
ADM 2398 COLE STUART
BST 6342 MAHONEY RICK
ADM 7483 FLEMING MARIE

COM
ADM
ANS
BST

ADM

1192
2398
5243
6342
7483

BST
ADM
ADM
BIO
ANS
COM

7828
7933
7933
7951

8042
8102

MAILING.LST

DUPUIS KIM
COLE STUART
BENTLEY PETER
MAHONEY RICK
FLEMING MARIE
MCMAHON JANE
ROSENBERG HARRY
IMPOSTER HARRY
LOWELL FRANK
BENTLEY PETER
KNIGHT MARTHA

ZK-5063A-GE

If you want to merge files that you know are in sorted order, you can prevent
sequence checking by specifying the /NOCHECK_SEQUENCE qualifier.

Sorting and Merging Files 9-15

Sorting and Merging Files
9.5 Merging Files

9.5.2 Identical Key Fields

As with a Sort operation, when input files contain records with identical key
fields, Merge does not necessarily maintain the same order in which the records
had appeared in the input file. To maintain the input order of records with
identical keys, specify the /STABLE qualifier on the MERGE command line. To
retain only one copy of records with identical keys, specify the /NODUPLICATES
qualifier.

9.6 Entering Records from a Terminal

Records that you want to sort or merge do not have to be in a file. You can
enter the records directly from the terminal as you enter the SORT or MERGE
command. The following table describes the procedure:

Step Task

1 Specify SYS$INPUT as the input file on the SORT or MERGE command line.

Use the input file qualifier /FORMAT to specify the size of the longest record, in
bytes, and the approximate size of the input file, in blocks.

2 Enter the input records on successive lines.
End each record by pressing Return.
3 Press Ctrl/Z to end the file.

The following example demonstrates a Sort operation in which the input records
to be sorted are entered directly from the terminal:

$ SORT/KEY=(POSITION:8,SIZE:15) -
$ SYS$INPUT/FORMAT=(RECORD SIZE:24,FILE SIZE:10) BYNAME.LST
BST 7828 MCMAHON JANE - -
ADM 7933 ROSENBERG HARRY
COM 8102 KNIGHT MARTHA
ANS 8042 BENTLEY PETER
BIO 7951 LOWELL FRANK

This sequence of commands creates the output file BYNAME.LST, which contains
the sorted records.
9.7 Using a Sort/Merge Specification File

Sort/Merge allows you to maintain sort definitions and to specify more complex
sort criteria in specification files. (The high-performance Sort/Merge utility
does not support specification files. Implementation of this feature is deferred to
a future OpenVMS Alpha release.) You can use any standard editor, or the DCL
CREATE command to create a specification file.

A Sort/Merge specification file allows you to:

e Select records to be included in the Sort/Merge operation
¢ Reformat the records in the output file

e Use conditional keys or data

e Specify multiple record formats

e C(Create or modify a collating sequence

e Reassign work files

e Store frequently used Sort/Merge operations

9-16 Sorting and Merging Files

Sorting and Merging Files
9.7 Using a Sort/Merge Specification File

After you complete the specification file, specify the file name using the
/SPECIFICATION qualifier. The default file type for a specification file is
SRT.

Each command in the specification file should start with a slash (/). Continuation
characters are not required if a command spans more than one line.

Note

Many of the qualifiers used in the specification file are similar to the
DCL qualifiers used in the Sort/Merge command line. Note, however, that
the syntax of these qualifiers can be different. For example, the /KEY
qualifier at DCL level has different syntax than the /KEY qualifier in the
specification file. See Section 9.9.3 for a summary of the specification file
qualifiers.

Any DCL command qualifiers that you specify on the command line override
corresponding entries in the specification file. For example, if you specify the
/KEY qualifier in the DCL command line, Sort/Merge ignores the /KEY clause in
the specification file.

Generally, there is no required order in which you must specify the qualifiers in a
specification file. However, the order becomes significant in the following cases:

e Sorting by more than one key field if you do not specify the NUMBER:n key
element

e Describing the output format
¢ Defining multiple record types

When you specify the FOLD, MODIFICATION, and IGNORE keywords with the
/COLLATING_SEQUENCE qualifier, you should specify all MODIFICATION
and IGNORE clauses before any FOLD clauses. See Section 9.9.3 for more
information about the /COLLATING_SEQUENCE qualifier.

You can include comments in your specification file by beginning each comment
line with an exclamation point (!). Unlike DCL command lines, specification files
do not need hyphens (-) to continue the line.

Examples

1. This is an example of a specification file that can be used to sort negative and
positive data in ascending order:

! Specification file for sorting negative and positive data

! in ascending order

!

/FIELD=(NAME=SIGN,P0S:1,512:1) @

/FIELD=(NAME=AMT,P0S:2,512:4) @

/CONDITION=(NAME=CHECKI, (3)
TEST=(SIGN EQ "-"))

/CONDITION=(NAME=CHECK2, (4)
TEST=(SIGN EQ " "))

/INCLUDE= (CONDITION=CHECK1, (5]
KEY=(AMT,DESCENDING),
DATA=SIGN,

DATA=AMT)

/INCLUDE= (CONDITION=CHECK2, (6
KEY=(AMT, ASCENDING),
DATA=SIGN,

DATA=AMT)

Sorting and Merging Files 9-17

Sorting and Merging Files
9.7 Using a Sort/Merge Specification File

As you examine the specification file, note the following:

© This command line defines a field that begins in byte 1 of the record and
is 1 byte long. It assigns the field the name SIGN.

® This command line defines a field that begins in byte 2 of the record and
is 4 bytes long. It assigns the field the name AMT.

© This is a condition statement. If there is a negative sign (—) in the SIGN
byte, the CHECK1 condition is met.

O This is a condition statement. If the SIGN byte is blank, the CHECK2
condition is met.

© If the condition CHECKI is met, then the record is sorted in descending
order.

@ 1If the condition CHECK2 is met, then the record is sorted in ascending
order.

Figure 9-8 shows the result of using the specification file on an input file
named BALANCES.LIS.

Figure 9-8 Output from Using a Specification File

—BALANCES.LIS— —BALANCES_BYSIGN.LIS—

4124 -3359

-2355 -2355

2538 _ -1744

-3359 > 2538

3423 3423

-1744 4124

5264 5264
ZK-5448A-GE

2.
/FIELD=(NAME=RECORD TYPE,P0S:1,SI%:1) ! Record type, l-byte

/FIELD=(NAME=PRICE,P0S:2,SI%:8)
/FIELD=(NAME=TAXES,P0S:10,SI%:5)
/FIELD=(NAME=STYLE A,P0S:15,5I%:10)
/FIELD=(NAME=STYLE B,P0S:20,5I%:10)
/FIELD=(NAME=%IP A,P0S:25,SI%:5)
/FIELD=(NAME=%IP B,P0S:15,SIZ:5)
/CONDITION=(NAME=FORMAT A,
TEST=(RECORD TYPE EQ "A"))
/CONDITION=(NAME=FORMAT B,
TEST=(RECORD TYPE EQ "B"))
/INCLUDE= (CONDITION=FORMAT A,
KEY=ZIP A, -
DATA=PRICE,
DATA=TAXES,
DATA=STYLE A,
DATA=ZIP A)
/INCLUDE= (CONDITION=FORMAT B,
KEY=ZIP B, -
DATA=PRICE,
DATA=TAXES,
DATA=STYLE B,
DATA=ZIP B)

Price, both files

Taxes, both files

Style, format A file
Style, format B file

Zip code, format A file
Zip code, format B file
Condition test, format A

Condition test, format B

Output format, type A

Output format, type B

9-18 Sorting and Merging Files

Sorting and Merging Files
9.7 Using a Sort/Merge Specification File

In this example, two input files from two different branches of a real estate
agency are sorted according to the instructions specified in a specification file.
The records in the first file that begin with an A in the first position have this
format:

|A|PRICE | TAXES | STYLE | ZIP |
12 1 1

The records in the second file that begin with a B in the first position and
have the style and zip code fields reversed, are as follows:

|B| PRICE | TAXES | ZIP | STYLE|
12 10 15 2

To sort these two files on the zip code field in the format of record A, first
define the fields in both records with the /FIELD qualifiers. Then, specify a
test to distinguish between the two types of records with the /CONDITION
qualifiers. Finally, the /INCLUDE qualifiers change the record format of type
B to record format of type A on output.

Note that, if you specify either key or data fields in an /INCLUDE qualifier,
you must explicitly specify all the key and data fields for the Sort operation in
the /INCLUDE qualifier.

Also note that records that are not type A or type B are omitted from the sort.

/COLLATING SEQUENCE= (SEQUENCE=

(IIANII , IIEBII P IIARII B IIPRII , "AYII P IIUNII , IIUL" ,
IIUGII , IIEP" ’ llCTII ’ Ilovll , llEcll ’ ||0II_II9II) ,
MODIFICATION=("'"="19"),

FOLD)

This /COLLATING_SEQUENCE qualifier specifies a user-defined sequence
that gives each month a unique value in chronological order. For example, if
you want to order a file called SEMINAR.DAT according to the date, the file
SEMINAR.DAT would be set up as follows:

16 NOV 1983 Communication Skills

05 APR 1984 Coping with Alcoholism

11 Jan '84 How to Be Assertive

12 OCT 1983 Improving Productivity

15 MAR 1984 Living with Your Teenager
08 FEB 1984 Single Parenting

07 Dec 83 Stress --- Causes and Cures
14 SEP 1983 Time Management

The primary key is the year field; the secondary key is the month field.
Because the month field is not numeric and you want the months ordered
chronologically, you must define your own collating sequence. You can do
this by sorting on the second two letters of each month—in their chronological
sequence—giving each month a unique key value.

The MODIFICATION option specifies that the apostrophe (’) be equated to 19,
thereby allowing a comparison of ’83 and 1984. The FOLD option specifies
that uppercase and lowercase letters are treated as equal.

The output from this Sort operation appears as follows:

Sorting and Merging Files 9-19

Sorting and Merging Files
9.7 Using a Sort/Merge Specification File

14 SEP 1983 Time Management

12 OCT 1983 Improving Productivity

16 NOV 1983 Communication Skills

07 Dec '83 Stress --- Causes and Cures
11 Jan '84 How to Be Assertive

08 FEB 1984 Single Parenting

15 MAR 1984 Living with Your Teenager
05 APR 1984 Coping with Alcoholism

See Section 9.3 for other examples of creating user-defined collating
sequences.

/FIELD=(NAME=AGENT, POSITION:20,SIZE:15)
/CONDITION= (NAME=AGENCY,

TEST=(AGENT EQ "Real-T Trust"

OR

AGENT EQ "Realty Trust"))
/DATA=(IF AGENCY THEN "Realty Trust" ELSE AGENT)

In this example, two real estate files are being sorted. One file refers to an
agency as Real-T Trust; the other refers to the same agency as Realty Trust.
The /CONDITION and /DATA qualifiers instruct Sort to list the AGENT field
in the sorted output file as Realty Trust.

/FIELD=(NAME=Z%IP,POSITION:60,SIZE:6)
/CONDITION=(NAME=LOCATION,
TEST=(ZIP EQ "01863"))
/KEY=(IF LOCATION THEN 1
ELSE 2)

In this example, all the records with a zip code of 01863 will appear at the
beginning of the sorted output file. The conditional test is on the ZIP field,
defined with the /FIELD qualifier; the condition is named LOCATION. The
values 1 and 2 in this /KEY qualifier signify a relative order for those records
that satisfy the condition and those that do not.

/FIELD=(NAME=ZIP,POSITION:60,SIZE:6)
/CONDITION=(NAME=LOCATION,
TEST=(ZIP EQ "01863"))
/DATA=(IF LOCATION THEN "NORTH CHELMSFORD"
ELSE "Outside district")

In this example, the /CONDITION qualifier tests for the 01863 zip code. The
/DATA qualifier specifies that the name of town field will be added to the
output record, depending on the test results.

/FIELD=(NAME=FFLOAT,P0S:1,SI%:0,F FLOATING)
/CONDITION=(NAME=CFFLOAT,TEST=(FFLOAT GE 100))
/OMIT=(CONDITION=CFFLOAT)

In this example, the number 100 is considered to be an F_FLOATING
data type because field FFLOAT is defined as F_FLOATING in the /FIELD
qualifier.

9-20 Sorting and Merging Files

Sorting and Merging Files
9.7 Using a Sort/Merge Specification File

/FIELD=(NAME=AGENT,POSITION:1,SIZE:5)
/FIELD=(NAME=ZIP,POSITION:6,SIZE:3)
/FIELD=(NAME=STYLE,POSITION:10,SIZE:5)
/FIELD=(NAME=CONDITION,POSITION:16,SIZE:9)
/FIELD=(NAME=PRICE,POSITION:26,SIZE:5)
/FIELD=(NAME=TAXES,POSITION:32,SIZE:5)
/DATA=PRICE

/DATA=" "

/DATA=TAXES

/DATA=" "

/DATA=STYLE

/DATA=" "

/DATA=ZIP

/DATA=" "

/DATA=AGENT

The /FIELD qualifiers define the fields in the records from an input file that
has the following format:

AGENT ZIP STYLE CONDITION PRICE TAXES

The /DATA qualifiers, which use the field-names defined in the /FIELD
qualifiers, reformat the records to create output records of the following
format:

PRICE TAXES STYLE ZIP AGENT

9.8 Optimizing a Sort or Merge Operation

There are several ways in which you can improve the efficiency of a Sort or Merge
operation, based on your sorting environment. Use the /STATISTICS qualifier
with the SORT or MERGE command to get information about the variables in
your sorting environment.

After you examine the statistics display, consider any of the optimization options
presented in the following sections.

When you enter the SORT or MERGE command with the /STATISTICS qualifier,
you see output similar to the following:

$ SORT/STATISTICS PAGEANT.LIS DOCUMENT.LIS
OpenVMS Sort/Merge Statistics

Records read: 30 Input record length: 26
Records sorted: 3 Internal length: 28
Records output: 3 Output record length: 26
Working set extent: 16384 (2] Sort tree size: 42
Virtual memory: 392 Number of initial runs: 0
Direct I/0: 10 Maximum merge order: 0
Buffered I/0: 11 Number of merge passes: 0
Page faults: 158 © Work file allocation: 00
Elapsed time: 00:00:00.54 Elapsed CPU: 00:00:00.03 @

As you examine the fields, note the following:

@ Records read

Lists the number of records that were read during a Sort operation. See
Section 9.8.2 for information on selectively omitting records from a Sort
operation.

® Working set extent

Sorting and Merging Files 9-21

Sorting and Merging Files
9.8 Optimizing a Sort or Merge Operation

Shows how many blocks are reserved to perform the sort operation. See
Section 9.8.4 for information on making your working set larger.

© Page faults

Shows how many times the operating system has transferred parts of your
process from physical memory to your paging device. See Section 9.8.4 for
more information on preventing paging.

O Work file allocation

Shows how much disk space is reserved for your work file. See Section 9.8.3
for more information on work files.

O Elapsed CPU

Shows how much CPU time the operating system took to process the sort
operation. See Section 9.8.1 for information on saving time by choosing
different methods of sorting.

9.8.1 Sorting Process

Sort defines four processes for sorting data internally: record, tag, address and
indexed. (The high-performance Sort/Merge utility supports only the record
process. Implementation of tag, address, and index processes is deferred to a
future OpenVMS Alpha release.) RECORD is the default process. The type

of process you choose affects the performance of the Sort operation as well as
storage requirements. See Section 9.2.6 for information about the different sort
processes.

Before you select a sorting process, consider the following:
e How you will use the output file

— Because record and tag sorting generate files that contain entire sorted
records, these reordered files are ready to be used.

— Both address- and index-sorted output files can be processed by a program
written in a programming language such as Pascal, Fortran, MACRO, or
C.

— Address sorting creates an output file of pointers to the records in the
input file. This list consists of binary RFAs plus a file number when
sorting multiple input files. A program accesses the records by using the
pointers.

— Index sorting creates an output file containing both RFAs and key fields
plus a file number when sorting multiple files. The format of these key
fields is the same as in the input files. If the program needs the key
field contents for a decision during future processing, select index sorting
rather than address sorting.

If you need to reorder records from one file in several ways for different
purposes, store several output files from address or index sorting. Use the
output files to access the records in the main file in the sorted order that you
want.

e The temporary storage space available for sorting

Tag sorting uses less temporary storage space than record sorting. Because
record sorting keeps the record intact during the sort, it uses much more
work space when the files are large. Address and index sorting use little
temporary storage space.

9-22 Sorting and Merging Files

Sorting and Merging Files
9.8 Optimizing a Sort or Merge Operation

e The type of input and output device used

Record sorting is the only process that can accept input from cards, magnetic
tape, and disks. Output from tag and record sorting can go to any output
device. Output from address and index sorting must go to a device that
accepts binary data.

e The differences in speed

If you plan to retrieve the sorted records at some point in the operation,
record sorting is usually the fastest process. Otherwise, address and index
sorting are the fastest processes.

9.8.2 Omitting Records and Fields

From a specification file, you can improve Sort efficiency by using the
/CONDITION, /INCLUDE, and /OMIT qualifiers to process only those records
needed in the output file. (The high-performance Sort/Merge utility does not
support specification files. Implementation of this feature is deferred to a future
OpenVMS Alpha release.) You can also use specification file qualifiers to reformat
records, omitting unnecessary fields from the output file. These qualifiers are not
available as command line qualifiers.

9.8.3 Assigning Work Files

During a Sort operation, records from the input file are read into memory. If the
allocated memory cannot hold all the records, Sort transfers the sorted data to
one or more temporary work files. Merge does not use work files.

You can increase sort efficiency by changing the number of work files and by
assigning them to specific devices:

e The Sort command line qualifier /WORK_FILES=n overrides the number of
work files allocated.

e Normally, Sort places work files on the device SYS$SCRATCH and accesses
them in an arbitrary order. You can assign work files to specific devices in
two ways:

— In a specification file, the /IWORK_FILES=(device,...) qualifier places the
work files on the specified devices. See Section 9.9.3 for more information
about using the /WORK_FILES qualifier in a specification file.

— If you are not using a specification file, you can use the DCL command
ASSIGN to assign the work files to specific devices.

Sort uses the SORTWORK~ logical names to identify user-specified device
names for the workfiles, where n is a value from 0 through 9. (For the

high-performance Sort/Merge utility, n is a value from 0 to 254.) Define a
SORTWORKn logical as follows:

ASSIGN device: SORTWORKn
For example,

$ ASSIGN WORKS$2: SORTWORK1
§ ASSIGN WORKS$3: SORTWORK2

This example defines SORTWORK1 as the device WORK$2: and
SORTWORK2 as the device WORK$3:. For more information on logical
names, see Chapter 11.)

Sorting and Merging Files 9-23

Sorting and Merging Files
9.8 Optimizing a Sort or Merge Operation

Consider the following when you assign work files to devices:

e Assign work files to the fastest devices available. For example, random-
access, mass storage devices such as disks.

¢ Choose devices with the least activity and the most space available.

e Assign each work file to a different physical device to maximize overlapping
input and output.

9.8.4 Modifying the Working Set Extent

If Sort requires work files (for example, if you are sorting a large file), a larger
working set can increase sort efficiency. However, if your system is used heavily,
it might be unable to allocate all the pages in the working set extent to your
process. This can result in paging, which occurs when the operating system
transfers parts of a process between physical memory and memory on a paging
device; only the active part of the process remains in the physical memory. To
avoid excessive paging, you can decrease the working set extent for your process.
(Use the SET WORKING_SET command to decrease the working set extent.)

9.9 Summary of Sort/Merge Qualifiers

The following list describes command qualifiers used with the SORT and MERGE
commands. To use a command qualifier, include the qualifier immediately after
the SORT or MERGE command.

/INOJCHECK_SEQUENCE

Applies to the MERGE command only. Verifies the sequence of the records in
MERGE input files. Merge checks the sequence of records by default.

The /CHECK_SEQUENCE qualifier checks whether the records of one or
more files (up to 10; the high-performance Sort/Merge utility supports up

to 12) have been sorted. (The records will still be directed to an output file,
which you must specify.) If you are checking whether records are sorted on a
key field other than the entire record, you must specify key information, along
with the requesting sequence.

Use the /NOCHECK_SEQUENCE qualifier to prevent Merge from checking
the sequence of records.

Example

$ MERGE/KEY=(SIZE:4,POSITION:3)/NOCHECK_SEQUENCE -
_$ PRICE1.DAT,PRICE2.DAT PRICE.LIS

In this example, the /NOCHECK_SEQUENCE qualifier specifies that the
sequence of the input files, PRICE1.DAT and PRICE2.DAT, is not to be
checked.

/COLLATING_SEQUENCE=sequence

Selects one of three predefined collating orders for character key fields, or
specifies the name of a National Character Set (NCS) collating sequence to be
used in comparing character keys. (The high-performance Sort/Merge utility
does not support the NCS collating sequences. Support for NCS collating
sequences is deferred to a future OpenVMS Alpha release.) Sort can arrange
characters in ASCII (default), EBCDIC, or Multinational sequences.

9-24 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Example

$ SORT/COLLATING SEQUENCE=MULTINATIONAL -
_$ NAMES.DAT,NOM.DAT LIST.LIS

This SORT command arranges the input files NAMES.DAT and NOM.DAT
according to the Multinational collating sequence to create the output file
LIST.LIS.

/INOIDUPLICATES

By default, Sort retains all multiple records with duplicate keys. The
/NODUPLICATES qualifier eliminates all but one of multiple records with
duplicate keys. The retained records may not appear in the same order as
they appeared in the input file. If you want to specify which duplicate record
to keep, invoke Sort at the program level and specify an equal-key routine.

The /STABLE and the /NODUPLICATES qualifiers are mutually exclusive.

Example

$ SORT/KEY=(POSITION:3,SIZE:5,DECIMAL)/NODUPLICATES -
_$ ACCT1,ACCT2 ACCT.LIS

This SORT command arranges the two input files according to the key
supplied and eliminates all but one of multiple records with equal keys.

/KEY=(POSITION:n,SIZE:n[field,...])

Describes key fields, including the position, size, sorting order (ASCENDING
or DESCENDING), priority (NUMBER:n), and data type (such as character,
binary, h_floating). By default, Sort reorders a file by sorting entire records
with character data in ascending order.

See Section 9.2.1 for detailed information about the /KEY qualifier.
/PROCESS=type

(Applies to the SORT command only.) Defines the internal sorting process.
The /PROCESS qualifier allows you to choose one of four processes: record,
tag, address, or index. (The high-performance Sort/Merge utility supports
only the record process. Implementation of tag, address, and index processes
is deferred to a future OpenVMS Alpha release.)

See Section 9.2.6 for detailed information about the /PROCESS qualifier.

Example

$ SORT/KEY=(P0S:40,SI%:2,DESC)/PROCESS=TAG YRENDAVG.DAT -
_$ DESCYRAVG.LIS

This Sort operation uses a tag sorting process to create the output file

DESCYRAVG.LIS.
/SPECIFICATION=filespec

(The high-performance Sort/Merge utility does not support this qualifier.
Implementation of this feature is deferred to a future OpenVMS Alpha release.)

Identifies a Sort or Merge specification file to be used in a Sort or Merge
operation. The default specification file type is .SRT.

See Section 9.7 and Section 9.9.3 for information about using specification
files.

Sorting and Merging Files 9-25

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

/INOIJSTABLE

By default, records with equal keys are not guaranteed to be placed in the
output file in the order they appear in the input file. The /STABLE qualifier
maintains the records in that order.

The /STABLE and /NODUPLICATES qualifiers are mutually exclusive.

Example

$ SORT/KEY=(P0OS:1,SIZ:5,DECIMAL)/STABLE PRICESA.DAT, -
_$ PRICESB.DAT,PRICESC.DAT SUMMARY.LIS

In this Sort operation, records with equal keys from PRICESA.DAT will be
listed first, followed by those from PRICESB.DAT, followed by those from
PRICESC.DAT.

/INO]STATISTICS

Displays a statistical summary to SYSSOUTPUT that can be used for
optimization. To save these statistics in a file, use the following command:

$ DEFINE/USER SYSSERROR output-file

The statistical summary contains the following information:

Statistic

Description

Records read

Records sorted

Records output

Working set
extent

Virtual memory

Direct I/0 +
buffered I/0

Page faults

Elapsed time

Input record
length

Internal length

Output record

length

9-26 Sorting and Merging Files

The number of records read by Sort or Merge.

The number of records that have been processed using Sort.
This number could be less than the number of records read if a
specification file is used to select only certain records for the Sort
or Merge operation.

The number of records written to the output file. This
number could be less than the number of records sorted if
/NODUPLICATES was selected or if I/O errors occurred when
the output records were being written.

The number of pages in the process working set extent. This value
is used as an upper limit on the size of the sort data structure.
Adjusting this value is one way to improve the efficiency of a Sort
operation.

The number of pages of virtual memory added to the Sort image to
hold the data.

This total is the number of I/O movements needed to read and
write data. The lower this total value is, the more efficient the
ordering operation.

Indicates how well the data fits into memory: the higher the
number of page faults, the less efficient the ordering operation.

The total wall clock time used by the Sort or Merge operation in
hours, minutes, seconds, and hundredths of seconds.

This value is obtained from the Record Management Services
(OpenVMS RMS) unless the user supplies it.

The size in bytes of an internal format node. This includes any
keys, data, a word to store the length, record file addresses (RFAs),
and converted keys.

The length of the output record. The length is computed from the
input record length, the sort process, and the record reformatting
requested.

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Statistic Description

Sort tree size The number of records that fit in the Sort internal data structure.
Number of One indication of how well the data fits into memory.

initial runs

Maximum The maximum number of sorted strings that are merged at one
merge order time.

Number of The number of times the Sort utility merges strings until one
merge passes sorted output string is produced. The number of initial runs and

the number of merge passes indicate how well the data fits into
memory. The higher these numbers, the further the working set
size is from containing the data and the longer the sorting takes.

Work file The number of blocks used for the work files. When more than one
allocation merge pass is needed, this size is approximately twice the size of
the input file allocation.

Elapsed CPU The CPU time used by the ordering operation; it does not include
time spent waiting for I/O operations to complete or time spent
waiting while another process executes.

Example
$ SORT/STATISTICS PRICE1.DAT,PRICE2.DAT PRICE.LIS
This SORT /STATISTICS command results in the following statistical display:

OpenVMS Sort/Merge Statistics

Records read: 793 Input record length: 80
Records sorted: 793 Internal length: 80
Records output: 793 Output record length: 80
Working set extent: 100 Sort tree size: 412
Virtual memory: 433 Number of initial runs: 2
Direct I/0: 22 Maximum merge order: 2
Buffered I/0: 9 Number of merge passes: 1
Page faults: 3418 Work file allocation: 114

Elapsed time: 00:00:05.98 Elapsed CPU: 00:00:03.63
/WORK_FILES[=n]

(Applies to the SORT command only.) Increases the number of Sort work
files by any number, from 1 to 10 (the high-performance Sort/Merge utility
supports up to 255) inclusively, to make each work file smaller. If the
available disks are too small or too full for work files, increasing the number
of files can improve the efficiency of the Sort operation.

Sort does not create work files until it needs them. If Sort needs work files,
it creates two by default (SORTWORKO, SORTWORK1), which are placed in
the SYS$SCRATCH directory.

Example

$ ASSIGN DRA5: SORTWORKO

$ ASSIGN DBO: SORTWORKI

$ ASSIGN DBl: SORTWORK2

$ SORT/KEY=(P0S:1,SI%:80)/WORK FILES=3 -
_§ STATS1,STATS2,STATS3, STATS4 SUMMARY.LIS

Because the input files in this Sort operation are large files, specifying three
work files improves the efficiency of the sort operation.

Sorting and Merging Files 9-27

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Note that you can also assign the work files to a specific directory on a device
by including the directory name. For example, to assign SORTWORKO to the
[WORKSPACE] directory on DRAS5, enter the following command:

$ ASSIGN DRA5:[WORKSPACE] SORTWORKO

9.9.1 Input File Qualifier

The following input qualifier should be included immediately after the input file
specification in the SORT or MERGE command line:

/FORMAT=(RECORD_SIZE:n,FILE_SIZE:n)

Defines input file characteristics; allows you to specify or override record or
file size. It must be specified immediately after the input file specification in
the Sort or Merge command line.

Sort uses input file size information to determine the amount of memory
needed, as well as the size of the work files for the Sort operation. If the file
size is unknown (for example, you are sorting files that do not reside on disk
or standard ANSI magnetic tape), Sort assumes a fairly large file size.

Specify the following qualifier values:

RECORD_SIZE:n Specifies the input file’s longest record length (LRL) in
bytes. The maximum longest record length that can be
specified depends on the file organization:

Sequential 32,767
Relative 16,383
Indexed-sequential 16,362

These values include control bytes for variable records
with fixed-length control (VFC) format.

FILE_SIZE:n Specifies input file size in blocks. The maximum file size
accepted is 4,294,967,295 blocks.

You can also use /FORMAT as an output file qualifier. See Section 9.9.2 for
more information.

Example

$ SORT/KEY=(POS:40,SIZ:2,DESC) -
_$CRAQ: YRENDAVG . DAT/FORMAT= (RECORD SIZE:41,FILE SIZE:3) -
T$DESCYRAVG.LIS

Because the input file YRENDAVG.DAT does not reside on a disk device or
ANSI magnetic tape, file organization must be described by the /FORMAT
qualifier.

9.9.2 Output File Qualifiers

The following output qualifiers can be used with the SORT and MERGE
commands. To use an output file qualifier, include the qualifier immediately
after the output file specification in the SORT or MERGE command line.

/ALLOCATION=n

Specifies the number of blocks, from 1 through 4,294,967,295, to be
preallocated to the output file for optimization. Use this qualifier when
you know that the output file allocation will differ substantially from the
total input file allocation (for example, when reformatting data or omitting
records).

The /ALLOCATION qualifier is required if the /CONTIGUOUS qualifier is
used.

9-28 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Example

$ SORT/KEY=(P0OS:1,SIZ:80) STATS.DAT -
_$ SUMMARY.LIS/ALLOCATION=1000/CONTIGUOUS

This SORT command allocates 1000 contiguous blocks for the output file
SUMMARY.LIS.

/BUCKET_SIZE=n

Specifies OpenVMS RMS bucket size (the number of 512-byte blocks per
bucket) to be used by relative and indexed sequential output disk files for
optimization. A value of 1 through 32 is allowed.

If the output file organization is the same as for the input files, the default
value is the same as the bucket size of the first input file. If output file
organization is different, the default value is 1.

Example

$ SORT/KEY=(P0OS:1,SIZ:80) STATS1.DAT,STATS2.DAT -
_$ SUMMARY.LIS/BUCKET SIZE=16/RELATIVE

This SORT command results in the output file SUMMARY.LIS that has a
bucket size of 16 with relative organization.

/CONTIGUOUS

Requests that the output file be stored in contiguous disk blocks to decrease
access time. Must be used with the /ALLOCATION qualifier. By default,
Sort/Merge does not allocate contiguous disk blocks for the output file.

Example

$ SORT/KEY=(P0OS:1,SIZ:80) STATS.DAT -
_$ SUMMARY.LIS/ALLOCATION=1000/CONTIGUOUS

This SORT command allocates 1,000 contiguous blocks for the output file
SUMMARY.LIS.

/FORMAT=(type:nl,...])

Specifies the output file record format (FIXED:n, VARIABLE:n, or
CONTROLLED:n) if it differs from the input file format. You can also
specify the size (SIZE:n) or the block size (BLOCK_SIZE:n) of the file records.

If the Sort operation is a record or tag sort, the default output record format
is the same as the first input file record format. If the Sort operation is an
address or index sort, the default output record format is fixed record format.
If the input files have different record formats, Sort provides an output record
size that is large enough to contain the largest record in the input files.

You can specify the following qualifier values.

BLOCK_SIZE:n Specifies the output file’s block size, in bytes, if you have
directed the file to magnetic tape. If the input file is a tape
file, the block size of the output file defaults to that of the
input file. Otherwise, the output file block size defaults to
the size used when the tape was mounted.

Acceptable values for n range from 20 to 65,532. To ensure
correct data interchange with other Compaq systems,
however, specify a block size of not more than 512 bytes. For
compatibility with systems that are not made by Compaq,
the block size should not exceed 2,048 bytes.

Sorting and Merging Files 9-29

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

CONTROLLED:n Specifies variable with fixed-length control (VFC) records in
the output file.

FIXED:n Specifies fixed-length records in the output file.

SIZE:n Specifies the size, in bytes, of the fixed portion of VFC

(CONTROLLED) records, up to a maximum of 255 bytes. If
you do not specify SIZE, the default is the size of the fixed
portion of the first input file. If you specify this size as 0,
OpenVMS RMS defaults the value to 2 bytes.

VARIABLE:n Specifies variable-length records in the output file.
For any qualifier value, you can optionally specify n as the maximum record

size (in bytes) of the output records. The maximum record size allowed
depends on the file organization:

Sequential files 32,767
Relative files 16,383
Indexed-sequential files 16,362

These maximum record size values include control bytes for variable records
with fixed-length control (VFC) format.

Example
$ SORT/KEY=(P0S:1,SIZ:80) STATS.DAT SUMMARY.LIS/FORMAT=FIXED:80

The input file STATS.DAT consists of variable-length records that are 80
bytes in length. The /FORMAT qualifier specifies that the output file,
SUMMARY.LIS, consists of fixed-length records.

/INDEXED_SEQUENTIAL

Defines the file organization for the output file as indexed sequential. Note
that the output file must already exist and must be empty. In addition, you
must specify that the empty file is to be overlaid with the sorted records by
using the /OVERLAY qualifier.

Example

$ CREATE/FDL=NEW.FDL AVERAGE.DAT
$ SORT/KEY=(P0S:1,SIZ:80) DATA.DAT,STATS.DAT -
$ AVERAGE.DAT/INDEXED_SEQUENTIAL/OVERLAY

The CREATE/FDL command creates the empty file AVERAGE.DAT. The
SORT command specifies that the output file have an indexed-sequential
organization and be written to the empty file AVERAGE.DAT.

/OVERLAY

Specifies an existing empty file that the output file is to be overlaid on,
or written to. The /OVERLAY qualifier is required when you use the
/INDEXED_SEQUENTIAL qualifier.

If the input file organization is indexed-sequential, the output file must
already exist and be empty. If the output file is not empty, /OVERLAY does
not write over the file. Instead, it appends the result of the sort to the
existing output file.

You can use the CREATE/FDL utility to create an empty data file. Any
attributes that you specify when creating the empty file then become
attributes of the Sort output file.

9-30 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Example

$ CREATE/FDL=NEW.FDL AVERAGE.DAT
$ SORT/KEY=(P0OS:1,SIZ:80) STATS.DAT AVERAGE.DAT/OVERLAY

The FDL file NEW.FDL specifies special attributes for the file AVERAGE.DAT.
When Sort writes output to that file, the resulting Sort output file has the
attributes specified by the FDL file.

/RELATIVE

Defines the file organization for the output file as relative.

Example
$ SORT/KEY=(P0S:1,SIZ:80) STATS.DAT SUMMARY.LIS/RELATIVE

Because the input file STATS.DAT is not a relative file and the output file
SUMMARY.LIS will be, /RELATIVE qualifies the output file specification.

/SEQUENTIAL

Defines the file organization for the output file as sequential. This is the
default for address and index sorting operations. The default for record and
tag sorting operations is the organization of the first input file.

Example
$ SORT/KEY=(P0S:1,SIZ:80) STATS.DAT SUMMARY.LIS/SEQUENTIAL

Because the input file STATS.DAT is not a sequential file and the output file
SUMMARY.LIS will be, /SEQUENTIAL qualifies the output file specification.

9.9.3 Specification File Qualifiers

The following qualifiers can be used in specification files. (The high-performance
Sort/Merge utility does not support specification files. Implementation of this
feature is deferred to a future OpenVMS Alpha release.) Note that these
qualifiers are valid only within a Sort/Merge specification file.

/CDD_PATH_NAME=“cdd-path-name”

Identifies fields and attributes defined for use with the Common Data
Dictionary (CDD/Plus) using the CDD/Repository command. Once the fields
have been identified, they can then be used later with other specification file
qualifiers, such as /KEY, /CONDITION, /INCLUDE, or /OMIT.

/CDD_PATH_NAME can be used in place of or in conjunction with /FIELD
statements.

The “cdd-path-name” value is the CDD/Plus record definition within
CDD/Plus. You can use the /CDD_PATH_NAME qualifier only if your system
has CDD/Plus installed.

Example
/CDD_PATH NAME="employee"

The /CDD_PATH_NAME qualifier identifies the employee record, which had
been defined previously in CDD/Plus.

/INOJICHECK_SEQUENCE

(Applies to the MERGE command only.) Specifies whether or not the sequence
of records in the input file is checked. By default, Merge checks the sequence
of records.

Sorting and Merging Files 9-31

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Example
/NOCHECK_SEQUENCE

The /INOCHECK_SEQUENCE qualifier overrides the Merge utility’s default
behavior.

/COLLATING_SEQUENCE=(SEQUENCE=sequence-type
[,LMODIFICATION=(“charl” operator “char2”)]
[LIGNORE=character or character range,...]

[,LFOLD]

[,INOITIE_BREAK])

Specifies one of three predefined collating sequences (ASCII, EBCDIC, or
Multinational) or a user-defined sequence for character key fields. Allows you
to modify any of the predefined collating sequences or any previously defined
user-defined sequences.

See Section 9.3 for information about using the ASCII, EBCDIC, and
Multinational collating sequences.

You can specify the following qualifier values:

SEQUENCE Specification files support the ASCII, EBCDIC, multinational,
and user-defined collating sequences. See Section 9.3 for
information about these collating sequences.

MODIFICATION Specifies a change to the collating sequence specified in the
SEQUENCE option. You can modify the ASCII, EBCDIC,
Multinational, or user-defined sequence. The sequence being
modified must be specified with the SEQUENCE qualifier even
if the sequence is the default (ASCII).

character Specifies a character in the collating sequence.

operator Specifies the operator used to compare the
characters. You can specify greater than (>),
less than (<), or equal to (=).

The following kinds of changes are permitted in the
MODIFICATION option:

— A single or double character can be equated to a single
character that has already been assigned a collating value
(llallzllAll).

— A single or double character can collate after a single
character that has already been assigned a collating value
(llCHll>IICI|).

— A single or double character can collate before a single
character that has already been assigned a collating value
(IIDII<||AII)‘

— A double character can be equated to a previously defined
double character ("CH" = "SH").

— A single character can be equated to a double character
sequence ("C" = "CH").

IGNORE Specifies that Sort/Merge ignore a character or character range
in the collating sequence when making an initial comparison.
Note that, when tie-breaking takes place, Sort/Merge considers
the characters specified with the IGNORE value.

FOLD Specifies that all lowercase letters be given the collating value
of their uppercase equivalents. For ASCII, EBCDIC, and
user-defined sequences, the lowercase letters are a to z.

9-32 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

Because the lowercase letters in the Multinational sequence
already have the collating value of their uppercase equivalents,
using FOLD is unnecessary.

[NOJTIE_BREAK Specifies whether or not Sort/Merge should use numeric values
to break any ties between characters that have equivalent
values. By default, tie-breaking occurs with the Multinational
sequence. Specifying NOTIE_BREAK overrides this default and
ensures that no further comparisons are made after the initial
comparison.

A TIE_BREAK option must be specified for the ASCII, EBCDIC,
and user-defined sequences in order for tie-breaking to occur.
TIE_BREAK should be used when specifying the FOLD or
MODIFICATION value for the these sequences.

Examples

See Section 9.3 and Section 9.7 for examples of the use of collating sequences
in specification files.

/CONDITION=(NAME=condition-name,
TEST=(field-name operator test-condition
[logical-operator...]))

A specification file can be used to change the relative order of a record or
to alter the contents of certain fields in a record. You must first use the
/CONDITION qualifier to define a conditional test. Once you define a test
using the /CONDITIONAL qualifier, you can use that same test with the
/KEY or /DATA qualifier to change the order of record. You can also use
the test with the /OMIT or /INCLUDE qualifier to change the contents of a
record.

If you want to change the order of records in the output file, first specify a
condition name with the /CONDITION qualifier and set up a test for what
meets that condition. Then, specify the relative order with the /KEY qualifier
of the form:

/KEY=(IF condition-name THEN value ELSE value)

You can use any values to specify the relative order of the records.

The /CONDITION qualifier also permits you to change the contents of a field
in the output records. First specify a condition name, and then set up a test
for what meets the condition. Specify the contents you want in the field in a
/DATA qualifier of the form:

/DATA=(IF condition-name THEN "new-contents"
ELSE "new-contents")

You can specify the following qualifier values:

NAME Specifies the name of the condition that you are testing. This condition-
name can be used in /KEY, /DATA, /OMIT, and /INCLUDE qualifiers after
it has been defined using the /CONDITION qualifier.

Sorting and Merging Files 9-33

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

TEST Specifies the conditional test.

field-name Specifies the name of the field you are testing. The
field-name must be defined previously by the /FIELD
qualifier.

operator Specifies the logical or relational operator used in the

conditional test. The logical operators that you can use
are AND and OR. The relational operators that you can
specify are as follows:

EQ = Equal to

NE = Not equal to

GT = Greater than

GE = Greater than or equal to
LT = Less than

LE = Less than or equal to

test-condition Specifies the constant or field-name against which you
are testing. A constant is specified with the following
format:

Decimal_digits (default)
%Ddecimal_digits
%0octal_digits
%Xhexadecimal_digits
"character"

Normally, you do not need to specify the radix operator
(%D); however, test-condition will assume the same data
type as the field-name.

Examples

See Section 9.7 for examples of the use of the /CONDITION qualifier in
specification files.

/DATA=field-name
/DATA=(IF condition THEN “new contents”
ELSE “new contents”)

Use the /DATA qualifier to eliminate or reorder fields from the output record.
Specify the data fields in the order you want them to appear in the output
record. A /DATA qualifier must identify every field in the records you are
directing to the output file. Only those fields identified by the /DATA qualifier
are to be directed to the output file.

You can conditionally change the contents of a field in the output records by
first specifying a condition name and then setting up a test for what meets
the condition in a /CONDITION qualifier. You then specify the contents you
want in the field in a /DATA qualifier of the form:

/DATA=(IF condition-name THEN "new-contents" ELSE "new-contents")
You can specify the following qualifier values:

field-name Specifies the name of a field in a record. The field-name must be defined
previously in a /FIELD qualifier.

condition-name Specifies a condition-name that has been defined previously in a
/CONDITION qualifier.

new-contents Specifies how the record is to be altered. The new-contents can be a
constant or a field-name that has been defined in a /FIELD qualifier.

Examples

9-34 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

See Section 9.7 for examples of the use of the /DATA qualifier in specification
files.

/FIELD=(NAME-=field-name,POSITION:n,SIZE:N, [DIGITS:n,]data-type)
/FIELD=(NAME-=field-name,VALUE:n,SIZE:N,[DIGITS:n,] data-type)

Defines the fields in the input files when you are altering the order or format
of output records. These fields include key fields, fields to be compared, and

fields to be directed to the output file. You identify each field by specifying a
name, its position and size in the record, and its data type.

Field names must be unique; no duplicate field names are allowed. In
addition, you cannot use more than 255 field definitions.

You can also use /FIELD to define a constant and assign it a value of any
valid Sort/Merge data type for use in /CONDITION, /DATA, and /KEY
statements.

You can specify the following qualifier values:

NAME Specifies the name of the field. The field-name cannot have any embedded
spaces, must begin with an alphabetic character, and can be no longer than
31 characters.

POSITION:n Specifies the position of the field in the record.

VALUE:n Assigns a value to a constant field for use in a /CONDITION, /DATA, or /KEY
statement. If you specify VALUE:n, do not specify /POSITION:n because the
field is a constant and not part of an input record.

SIZE:n Specifies the size of a field containing character or binary data. In the
specification file, SIZE implies byte lengths. The data type determines what
values are acceptable, as follows:

— For character data, the size must not exceed 32,767 characters.
— For binary data, the size specified must be 1, 2, 4, 8, or 16 bytes.
— For floating-point data, no size is specified.

DIGITS:n Specifies the size of a field containing decimal data. The size of a field
containing decimal data must not exceed 31 digits. Note that DIGITS:n is
used only when describing a field containing decimal data.

data-type Specifies the data type of the field. You are not required to specify the data-
type if it is character; Sort assumes character data type by default. See
Section 9.2.1 for a list of the data types recognized by Sort/Merge.

Example
/FIELD=(NAME=SALARY,POSITION:10,DIGITS:8,DECIMAL)

This /FIELD qualifier identifies a field in a record by the name SALARY,
specifies that it starts in position 10 of the record, is 8 digits long, and
consists of decimal data.

/INCLUDE=(CONDITION=condition[,KEY=...] [, DATA=...])

You can specify that records are to be conditionally included in an output file.
After defining a condition in a /CONDITION qualifier, specify record selection
in an /INCLUDE qualifier requesting that records satisfying the condition are
to be included in the output file.

You can specify multiple INCLUDE and /OMIT qualifiers in a specification
file. The order in which you specify them determines the order the input
records are tested for inclusion. After the last /INCLUDE qualifier, all records
that have not already been included or explicitly omitted are omitted.

You can unconditionally include any records not previously omitted or
included by specifying the /INCLUDE qualifier without a condition.

Sorting and Merging Files 9-35

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

When sorting multiple record formats, one /INCLUDE qualifier should be
specified for each different record format among the records to be sorted. If
you do not specify a KEY option within the INCLUDE qualifier, Sort assumes
the default key definitions. If the KEY is specified in the /INCLUDE qualifier,
the default key definitions are not used. The order of the KEY fields in the
/INCLUDE qualifier determines how the internal key is built for sorting. The
order of the DATA fields in the /INCLUDE qualifier determines the way the
output record is formatted. If you specify a key or data field in an /INCLUDE
qualifier, you must define all other key or data fields in the record.

You can specify the following qualifier values:

CONDITION Refers to the condition-name specified in a previous /CONDITION qualifier.

KEY Defines a key field because the default record type defined in the /KEY qualifier
is not being used.
DATA Defines a data field because the default record type defined in the /DATA

qualifier is not being used.
Example

/FIELD=(NAME=ZIP,POSITION:20,SIZE:6)
/CONDITION=(NAME=LOCATION,

TEST=(ZIP EQ "01863"))
/INCLUDE=(CONDITION=LOCATION)

These /CONDITION and /INCLUDE qualifiers specify that records with the
zip code 01863 will be included in the output file.

/KEY=field-name
/KEY=(field-name,order)
/KEY=([IF condition THEN value ELSE]...) value [,order]

Specify the key fields to be used in the Sort operation. If you are sorting the
entire record using character data, there is no need to specify your key field.
Otherwise, specify a /KEY qualifier for each of the keys, in the order of their
priority. You can sort on as many as 255 key fields.

There are three ways to use the /KEY qualifier:
e To identify the key field name.

e To identify the key field name and to specify sorting order. In this case,
enclose the field name and the order option in parentheses.

e As a conditional qualifier, to change the order of records in the output file.
First, specify a condition-name in a /CONDITION qualifier, and set up a
test for what meets that condition. Then, specify the relative order in a
/KEY qualifier of the form:

/KEY=(IF condition-name THEN value ELSE value)

You can use any values to specify the relative order of the records.

You can specify the following qualifier values:

field-name Specifies the name of the key field. The field-name has been previously
specified in a /FIELD qualifier.
order Specifies the order of the sort. The ASCENDING option specifies ascending

order for a Sort or Merge operation. This option is the default. The
DESCENDING option specifies descending order for a Sort or Merge
operation.

9-36 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

value Specifies the key. The value can be a constant or a field-name that has been

defined in a /FIELD qualifier.

Examples

1.

/FIELD=(NAME=SALARY,POSITION:10,DIGITS:8,DECIMAL)
/KEY= (SALARY , DESCENDING)

This /KEY qualifier specifies that the key field is SALARY and that the
sorting order is descending.

/FIELD=(NAME=ZIP,POSITION:20,SIZE:6)
/CONDITION=(NAME=LOCATION,
TEST=(ZIP EQ "01863"))
/KEY=(IF LOCATION THEN 1
ELSE 2)

In this example, all the records with the zip code 01863 are to appear at
the beginning of the sorted output file. The conditional test LOCATION
(defined in a /CONDITION qualifier) is on the ZIP field (named in a
/FIELD clause). The values of 1 and 2 in this /KEY clause signify a
relative order for those records that satisfy the condition and those that
do not.

/OMIT=(CONDITION=condition-name)

Specifies that records are to be omitted from the output file based on a
condition defined with a /CONDITION qualifier.

First, you must define a condition with the /CONDITION qualifier.
Specify your records with an /OMIT qualifier to request any records that
satisfy the condition be omitted from your Sort operation. By default,
Sort/Merge includes all the other input records in the output file.

You can specify multiple /OMIT and /INCLUDE qualifiers in your
specification file. The order in which you specify them determines the
order in which the input records are tested for omission. All the records
that have not already been included or omitted after the last /OMIT
qualifier are included. You can unconditionally omit any records not
previously omitted or included by specifying the /OMIT qualifier only.

Example

/FIELD=(NAME=%IP,POSITION:20,SIZE:6)
/CONDITION= (NAME=LOCATION,

TEST=(ZIP EQ "01863"))
/OMIT=(CONDITION=LOCATION)

These /CONDITION and /OMIT qualifiers specify that records with the
zip code 01863 are to be omitted from your output file.

/PAD=single-character

Specifies the character Sort will use to expand, or “pad,” a string when
reformatting records or when comparing strings of unequal length. By
default, Sort uses the null character for padding, ensuring conformity with
the previous versions. Double characters that can be defined as single
characters ("ch" > "c¢") cannot be used as pad characters. Characters,
decimal, octal, or hexadecimal digits can be used.

Sorting and Merging Files 9-37

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

The pad character should be specified as follows:

e Use quotation marks for a character. For example, " # " would specify
the number sign.

e Use decimal radix for decimal digits. For example, %D35 would
specify the decimal number 35.

e Use octal radix for octal digits. For example, %0043 would specify the
octal number 043.

e Use hexadecimal radix for hexadecimal digits. For example, %X23
would specify the hexadecimal number 23.

Example
/PAD=".,"

This example of a /PAD qualifier specifies that records will be padded
with periods.

/PROCESS=type

(Applies to the SORT command only.) Defines the processing method
(record, tag, address, or index) for the sorting operation. If you intend to
reformat the output records, you cannot use address or index sort. Specify
the process type as RECORD, TAG, ADDRESS, or INDEX.

See Section 9.8.1 for a comparison of the four types of process.

Example
/PROCESS=tag

This example of the /PROCESS qualifier specifies that Sort use a tag
sorting process.

/INOJSTABLE

Specifies that records with equal keys are directed to the output file in
their input file order. The default condition is /NOSTABLE.

By default, when records are sorted with identical keys, the order of
those records in the output file may not be the same as they appeared

in the input file. Specifying the /STABLE qualifier in a specification file
arranges records with equal keys in the output file in the order of the
input files as specified in the command line. If you use this qualifier when
sorting multiple input files, on output, records with equal keys in the first
file will precede those from the second file and so on.

Example
/STABLE

This example of the /STABLE qualifier ensures that records with equal
keys will have the same order in the input and output files.

/WORK_FILES=(devicel,...])

(Applies to the SORT command only.) Reassigns work files to different
disk-structured devices to improve performance. Using the /WORK_
FILES qualifier in a specification file makes it unnecessary to assign
logicals prior to invoking Sort at the command or program level.

Unlike the DCL qualifier /WORK_FILES=n, the specification file qualifier
/WORK_ FILES=(devicel,...]) specifies work file assignments, not the
number of work files.

9-38 Sorting and Merging Files

Sorting and Merging Files
9.9 Summary of Sort/Merge Qualifiers

See Section 9.8.3 for more information about the use of work files.
Example
/WORK_FILES=("WRKD$:")

This example of a /WORK_FILES qualifier assigns one of Sort’s work files
to the device WRKD$: because that device has the most space available.

Sorting and Merging Files 9-39

10

Controlling Access to Resources

Each system site has unique security requirements. For this reason, every site
should have a system security policy that outlines physical and software security
requirements for system managers and users. To ensure system security, the
OpenVMS operating system controls both access to the system and access to

any object that contains shareable information. These objects, such as devices,
volumes, logical name tables, files, and queues, are known as protected objects.
All protected objects list a set of access requirements that specify who has a right
to access the object in a given manner.

The OpenVMS Guide to System Security describes the security features available
with the operating system and the tasks that system managers can perform to
maintain account and system security. This chapter describes some of the ways
OpenVMS protects and audits your system resources. It includes information
about:

e Displaying the rights identifiers of your process

e Security profile of objects

e Interpreting protection codes

e Default file protection

e Accessing files across networks

e Auditing access to your account and files

For additional security information, refer to the following:

e The OpenVMS Guide to System Security, for information about protecting
objects and system security in general

e The OpenVMS DCL Dictionary or online help, for information about
commands discussed in this chapter

Security Features

You can familiarize yourself with OpenVMS security features in the following

ways:

e Know the rights identifiers associated with your process — Rights identifiers
determine what resources you can access. If your process does not have the
appropriate identifiers, you may be unable to access certain protected objects.

See Section 10.1 for information about displaying your rights identifiers.

e Display security profiles of protected objects — A security profile contains
information about protected objects. You can change the security profile of
objects that you own to make them accessible or inaccessible to other users.

See Section 10.2 for information about security profiles.

Controlling Access to Resources 10-1

Controlling Access to Resources

e Know how to access files across networks — This can be accomplished by
using access control strings or proxy login accounts.

See Section 10.5 for information about accessing remote files.

e Audit access to your account and files — This can be accomplished by closely
observing any login messages and by working in conjunction with your system
manager to audit your files.

See Section 10.6 for information about auditing access to your account and
files.

10.1 Displaying the Rights Identifiers of Your Process

All processes that attempt to access protected objects carry credentials known

as rights identifiers. All protected objects list a set of access requirements that
specify who has a right to access the object in a given manner. If an accessing
process’ rights identifiers do not match those of the object, access is denied.

The following example shows how to display the identifiers for your current
process using the SHOW PROCESS command:

$ SHOW PROCESS/ALL

25-NOV-2002 15:23:18.08 User: GREG Process ID: 34200094
Node: ACCOUNTS Process name: "GREG"

Terminal: VTA2195: TNA2170: (Host: 16.32.123.45 Port: 6789)

User Identifier: [DOC,GREG]

Base priority: 4

Default file spec: WORKL:[GREG.FISCAL 96]
Number of Kthreads: 1
Devices allocated: ACCOUNTSS$TWA2:

Process Quotas:

Process rights:

INTERACTIVE
LOCAL
SALES

MINDCRIME resource @

System rights:
SYS$NODE_AcCOUNTS @

There are three types of rights identifiers: UIC, environmental, and general.
Output from the SHOW PROCESS command displays all three:

UIC identifier, indicating user Greg is a member of the DOC group
Environmental identifier, indicating user Greg is an interactive user
Environmental identifier, indicating user Greg is logged in locally

General identifier, indicating user Greg is also a member of the SALES group

General identifier, indicating Greg holds the MINDCRIME identifier with the
resource attribute so he can charge disk space to the identifier

@ 00000

Environmental identifier, indicating user Greg is working from the
ACCOUNTS node

10-2 Controlling Access to Resources

Controlling Access to Resources
10.2 Security Profile of Objects

10.2 Security Profile of Objects

Because the operating system supports many users simultaneously, it has built-
in security mechanisms to prevent one user’s activities from interfering with
another’s. Protection codes, access controls, and hardware design together protect
the use of memory, shareable devices, and data so many users can share the
system. An object’s security profile is comprised of the user identification code
(UIC), the ACL, and the protection codes assigned to that object. You can display
or modify the security profile of any object that you own.

To see the security profile of any protected object, use the DCL command SHOW
SECURITY. For example, the following command requests security information
about the file 95 FORECAST.TXT:

$ SHOW SECURITY 95 FORECAST.TXT

WORK DISKS$:[GREG]95 FORECAST.TXT;1 object of class FILE
Owner: [ACCOUNTING,GREG]
Protection: (System: RWED, Owner: RWED, Group: RE, World)
Access Control List: <empty>

The display indicates the file 95_FORECAST.TXT is owned by user Greg. It also
lists the file’s protection code, which gives read, write, execute, and delete access
to system users and to the owner. The code grants read and execute access to
group users and provides no access to world users. (See Section 10.3 for further
explanation.) There is no ACL on the file.

10.2.1 Modifying a Security Profile

You can provide new values for the owner, protection code, or ACL of a protected
object, or you can copy a profile from one object to another by using the SET
SECURITY command.

For example, the SHOW SECURITY display in Section 10.2 shows the file
95_FORECAST.TXT is owned by user Greg. As owner, he can change the
protection code for that file. Originally, the code gave no access to users in the
world category. Now, Greg has changed that to allow read and write access to
world users:

$ SET SECURITY/PROTECTION=(W:RW) 95_FORECAST.TXT
The SHOW SECURITY command verifies the new protection code for the file:

$ SHOW SECURITY 95_FORECAST.TXT
95_FORECAST.TXT object of class FILE

Owner: [GREG]
Protection: (System: RWED, Owner: RWED, Group: RE, World: RW)
Access Control List: <empty>

10.3 Interpreting Protection Codes

A protection code controls the type of access allowed (or denied) to a particular
user or group of users. It has the following format:

[category: list of access allowed (, category: list of access allowed,...)]

Categories include system (S), owner (O), group (G), and world (W). Each category
can be abbreviated to its first character. Categories have the following definitions:

Controlling Access to Resources 10-3

Controlling Access to Resources
10.3 Interpreting Protection Codes

System Any user process or application whose UIC is in the range 1 through 10 (octal), has
SYSPRYV privilege, or is in the same group as the owner and holds GRPPRV.

Owner Any user process or application whose UIC is identical to the UIC of the object.

Group Any user process or application whose group UIC is identical to the group UIC of the
object.

World Any user process or application on the system.

When specifying more than one user category, separate the categories with
commas and enclose the entire code in parentheses. You can specify user
categories and access types in any order.

A null access specification means no access, so when you omit an access type

for a user category, that category of user is denied that type of access. To deny
all access to a user category, specify the user category without any access types.
Omit the colon after the user category when you are denying access to a category
of users.)

For files, an access list includes read (R), write (W), execute (E), or delete (D)
access types. The access type is assigned to each ownership category and is
separated from its access types with a colon (:). File access types have the
following meanings:

Read Gives you the right to read, print, or copy a disk file. With directory files, read access
gives you the right to read or list a file and use a file name with wildcard characters to
look up files. Read access implies execute access.

Write Gives you the right to write to or change the contents of a file, but not delete it. Write
access allows modification of the file characteristics that describe the contents of the
file. With directory files, write access gives you the right to insert or delete an entry in
the catalog of files.

Execute Gives you the right to execute a file that contains an executable program image or DCL
command procedure. With a directory file, execute access gives you the right to look up
files whose names you know.

Delete Gives you the right to delete the file. To delete a file, you must have delete access to
the file and write access to the directory that contains the file.

10.4 Default File Protection

A new file receives the default UIC-based protection and the default access
control list (ACL) of its parent directory. An ACL is a collection of entries that
define the access rights a user or group of users has to a particular protected
object such as file, directory, or device.

You can use either default UIC protection or default ACL protection to override
the default UIC-based protection given to new files.

10.4.1 Default UIC Protection

The operating system provides each process with the following UIC-based
protection:

(S:RWED, O:RWED, G:RE, W)

By default, users with a system UIC and the owners of objects have full access
to the object, users in the same UIC group as the object owner have read

and execute access to the object, and all other users are denied access to the
object. To change the default protection for files that you create, enter the SET
PROTECTION command with the /DEFAULT qualifier. For example, if you enter
the following command in your login command procedure, you grant all processes
read and execute access to any files that you create. (Remember that you must
execute the login command procedure for this command to execute.)

10-4 Controlling Access to Resources

Controlling Access to Resources
10.4 Default File Protection

$ SET PROTECTION = (S:RWED,O:RWED,G:RE,W:RE)/DEFAULT

10.4.2 Default ACL Protection

You can override default UIC protection for specified directories or subdirectories
by placing a default protection access control entry (ACE) in the ACL of the
appropriate directory file. The default protection specified in the ACE is applied
to any new file created in the specified directory or subdirectory of the directory.
The following ACE, which must be in the ACL of a directory file, specifies that
the default protection for that directory and the directory’s subdirectories allow
system and owner processes full access, group processes read and execute access,
and world users no access.

$ SET SECURITY/ACL = (DEFAULT PROTECTION,S:RWED,O:RWED,G:RE,W:)
[JONES] PERSONAL . DIR

To specify a default identifier ACE to be copied to the ACL of any file
subsequently created in the directory, specify the DEFAULT option in the
directory file’s identifier ACL.

The ACE shown in the following example is applied to a directory file and denies
network users access to all files created in the directory:

$ SET SECURITY/ACL = (IDENTIFIER=NETWORK,OPTIONS=DEFAULT,ACCESS=NONE) -
_$ [JONES]PERSONAL.DIR

10.4.3 Renaming Files

A renamed file’s protection is unchanged. A new version of an existing file
receives the UIC-based protection and ACL of the previous version. (Use the
/PROTECTION qualifier of the BACKUP, COPY, CREATE, and SET FILE
commands to override the default UIC-based protection.)

10.4.4 Explicit File Protection

You can explicitly specify UIC-based protection for a new file with the
/PROTECTION qualifier (valid with the BACKUP, COPY, and CREATE
commands).

You can change the UIC-based protection on an existing file with the SET
SECURITY/PROTECTION command.

After a file is created and you have created an ACL for the file, you can modify
the ACL and add as many entries to it as you want. The protection specified by
the ACL overrides the file’s user identification code protection.

In the following example, UIC-based protection is specified:
$ CREATE MAST12.TXT/PROTECTION=(S:RWED,O:RWED,G,W)

In the following example, the UIC-based protection is changed on the file
MAST12.TXT:

$ SET SECURITY/PROTECTION=(S:RWED,O:RWED,G:RE,W) MAST12.TXT

10.5 Accessing Files Across Networks

The following sections describe how to access files across networks.

Controlling Access to Resources 10-5

Controlling Access to Resources
10.5 Accessing Files Across Networks

10.5.1 Access Control Strings

You can include network access control strings in the file specifications of DCL
commands that perform operations across the DECnet for OpenVMS network.
The access control strings permit a user on a local node to access a file on a
remote node.

An access control string consists of the user name for the remote account and the
user’s password enclosed within quotation marks, as follows:

NODE"username password":.disk:[directory]filename.filetype

Caution

Because access control strings include sufficient information to allow
someone to break in to the remote account, they create serious security
exposure.

10.5.2 Protecting Access Control Strings

To protect access control string information, do the following:

¢ Avoid revealing the information on either hardcopy or video terminals. If you
use a hardcopy terminal, dispose of the output properly. If you use a video
terminal, clear the screen and empty the recall buffer with the DCL command
RECALL/ERASE when the network job is completed. This prevents another
user from seeing the password, either by displaying the command line with
the Ctrl/B sequence or with the DCL command RECALL/ALL.

¢ Do not place networking commands that include access control strings in
command procedures where they would be likely targets for discovery.

e If you must put access control strings in your command procedures, provide
these files with optimum file protection.

10.5.3 Using Proxy Login Accounts to Protect Passwords

To avoid the need for access control strings, you might prefer to use proxy login
accounts. Proxy logins let you access files across a network without specifying a
user name or password in an access control string. Thus, proxy logins have the
following security benefits:

e Passwords are not echoed on the terminal where the request originates.

e Passwords are not passed between systems where they might be intercepted
in unencrypted form.

e Passwords are not needed in command files to perform the remote access
steps.

Before you can initiate a proxy login, the system or security administrator at the
remote node must create a proxy account for you. Proxy accounts, like regular
accounts, are created with the OpenVMS Authorize utility (AUTHORIZE). They
are usually nonprivileged accounts. Security administrators can allow you access
to one default proxy account and up to 15 other proxy accounts. While proxy
logins require more setup effort on the part of system managers, they provide
more secure network access and eliminate the need for users to enter access
control strings.

10-6 Controlling Access to Resources

Controlling Access to Resources
10.5 Accessing Files Across Networks

The following example illustrates the differences between a normal network login
request and a proxy login request. For each example, the following conditions
exist:

e The user KMAHOGANY has two user accounts:
— An account on node BIRCH with the password “XYZ123ABC”
— An account on node WALNUT with the password “A25D3255”
e KMAHOGANY has logged in to node BIRCH.

e KMAHOGANY wants to copy the file BIONEWS.MEM from the default
device and directory of the account on the node WALNUT.

The following figure shows these conditions.

At Home Node Remote Node
BIRCH WALNUT
Username: KMAHOGANY Username: KMAHOGANY
Password: XYZ123ABC Seeksfrom _ Password: A25D3255
STAFFDEV:[KMAHOGANY] STAFFDEV:[KMAHOGANY]
BIONEWS.MEM

_ Acopy of the file

ZK-2036-GE
e The user KMAHOGANY could use an access control string to copy the file
BIONEWS.MEM, as follows:
$ COPY WALNUT"KMAHOGANY A25D3255"::BIONEWS.MEM BIONEWS.MEM

Notice that the password A25D3255 echoes. Anyone who observes the screen
can see it.

e If KMAHOGANY has proxy access from node BIRCH to the account on node
WALNUT, the command for copying the file BIONEWS.MEM is as follows:

$ COPY WALNUT::BIONEWS.MEM BIONEWS.MEM

KMAHOGANY does not need to specify a password in an access control
string. Instead, the system performs a proxy login from her account on
node BIRCH into her account on node WALNUT. There is no exchange of
passwords.

10.5.4 General Access Proxy Accounts

Your security administrator can also authorize groups of users from foreign nodes
to share in the use of a general access proxy account. For example, the security
administrator at node WALNUT can create a general access account with the
following conditions:

e The user name GENACCESS.

e Access limited to network logins.

Controlling Access to Resources 10-7

Controlling Access to Resources
10.5 Accessing Files Across Networks

e A password known only to the owner of the account. (None of the remote
users need to know it.) This helps to protect the account.

e The default device and directory STAFFDEV:[BIOSTAFF].

If the security administrator grants BIRCH::KMAHOGANY proxy access to the
GENACCESS account, the user KMAHOGANY can copy the file BIONEWS.MEM
by entering the following command:

$ COPY WALNUT::[KMAHOGANY |BIONEWS.MEM BIONEWS.MEM

Note that KMAHOGANY must specify the directory [KMAHOGANY] because
the file BIONEWS.MEM is not in the default device and directory for the
GENACCESS account (STAFFDEV:[BIOSTAFF]). In addition, the protection
for the file BIONEWS.MEM must permit access to the GENACCESS account.
Otherwise, the command fails.

If you have access to more than one proxy account on a given node and you do
not want to use the default proxy account, specify the name of the proxy account.
For example, to use a proxy account called PROXY2 instead of the GENACCESS
account (the default), KMAHOGANY enters the following command:

$ COPY WALNUT"PROXY2"::[KMAHOGANY |BIONEWS.MEM BIONEWS.MEM

This command uses the PROXY2 account to copy the file BIONEWS.MEM from
the [KMAHOGANY] directory on node WALNUT.

10.6 Auditing Access to Your Account and Files

Although it is the security administrator’s job to monitor the system for possible
break-in attempts, you can assist the security administrator in auditing access to
your account and files.

10.6.1 Observing Your Last Login Time

The OpenVMS system maintains information in your UAF record about the last
time you logged in to your account. Your security administrator decides whether
the system should display this information at login time. Sites with medium to
high security requirements frequently display this information and ask users

to check it for unusual or unexplained successful logins and unexplained failed
logins.

If there is a report of an interactive or a noninteractive login at a time when
you were not logged in, report it promptly to your security administrator. Also
change your password. The security administrator can investigate further by
using accounting files and audit logs.

If you receive a login failure message and cannot account for the failure, it is
likely that someone has been trying to access your account unsuccessfully. Check
your password to ensure that it adheres to all recommendations for password
security described in Section 1.9. If not, change your password immediately.

If you expect to see a login failure message and it does not appear or if the count
of failures is too low, change your password. Report either of these indications of
login failure problems to your security administrator.

The security administrator can select one or more types of events that warrant
special attention when they occur. When such an event is detected, the security
administrator directs the system to send an audit to the system security audit
log file or an alarm to terminals enabled as security operator terminals. For
example, the security administrator might identify one or more files for which

10-8 Controlling Access to Resources

Controlling Access to Resources
10.6 Auditing Access to Your Account and Files

write access is prohibited. An audit can be enabled or an alarm can be set to
indicate attempted access to these files.

If you suspect a break-in to your account, change your password. You might
want to request that your security administrator implement auditing on sensitive
files.

10.6.2 Events That Can Trigger Security Alarms

Events triggering an audit or alarm can include the following:

Example of Events Initiating Security Audits or Alarms

Installation of images Modifications to system and user passwords, system
authorization file, network proxy file, or rights database
Certain types of file access

Volume mounts and dismounts

Access event requested by an ACL file Logins, logouts, login failures, break-in attempts
or global section

In the following example, assume you decide to audit the file
CONFIDREVIEW.MEM. If user ABADGUY accesses CONFIDREVIEW.MEM
and has delete access, the following audit record is written to the system security
audit log file.

2%%%%%%%%%% OPCOM 11-DEC-1999 09:21:11.10 %9%%%%%%%%%%

Message from user AUDITSSERVER on BOSTON
Security audit (SECURITY) on BOSTON, system id: 19424

Auditable event: Attempted file access

Event time: 11-DEC-1999 09:21:10.84

PID: 23E00231

Username: ABADGUY

Image name: BOSTONSDUAOQ : [SYSO.SYSCOMMON .] [SYSEXE] DELETE . EXE
Object name: _BOSTON$DUA1 : [RWOODS] CONFIDREVIEW.MEM; 1

Object type: file

Access requested: DELETE

Status: $SYSTEM-S-NORMAL, normal successful completion
Privileges used: SYSPRV

The auditing message reveals the name of the perpetrator, the method of access
(successful deletion accomplished by using the program [SYSEXE|DELETE.EXE),
time of access (9:21 AM.), and the use of a privilege (SYSPRV) to gain access to
the file. With this information, the security administrator can take action.

10.6.3 Security Audit Log Files

Security audit messages are written to the security audit log file every time any
file is accessed and meets the conditions specified in the audit entry of the ACL
for that file (see Section 10.6.4). Access to the file CONFIDREVIEW.MEM, as
well as access to any file on the system that is protected with security auditing,
prompts an audit record to be written to the security audit log file.

After auditing has been introduced, check with your security administrator
periodically to see if any additional break-ins have occurred.

Controlling Access to Resources 10-9

Controlling Access to Resources
10.6 Auditing Access to Your Account and Files

10.6.4 Adding ACEs to Sensitive Files

If you have key files that might have been accessed improperly, you might want
to develop a strategy with your security administrator to audit access to the files.

Once you review the situation and ensure that you have done everything possible
to protect your files with standard protection codes and general ACLs (described
in the OpenVMS Guide to System Security), you may conclude that security
auditing is required.

To specify security auditing, you can add special access control entries (ACEs) to
files you own or to which you have control access. Keep in mind, however, that
the audit log file is a systemwide mechanism, so Compaq recommends that a
site security administrator control the use of file auditing. Although you can add
auditing ACEs to files over which you have control, the security administrator
has to enable auditing of files on a system level.

If you suspect break-in attempts to your account, the security administrator may
temporarily enable auditing for all file access. The security administrator can
also enable auditing to monitor read access to your files to catch file browsers.

An access violation of one file frequently indicates access problems with other
files. Therefore, the security administrator may need to monitor access to all key
files having security-auditing ACEs. When undesired access is gained to key files,
the security administrator must take immediate action.

In the following example, user RWOODS and his security administrator concur
that they must know when a highly confidential file, CONFIDREVIEW.MEM,
is being accessed, so RWOODS adds an entry to the existing ACL for the file
CONFIDREVIEW.MEM:

$ SET SECURITY/ACL=(ALARM=SECURITY,ACCESS=READ+WRITE-
_$ +DELETE+CONTROL+FAILURE+SUCCESS) CONFIDREVIEW.MEM

10-10 Controlling Access to Resources

11

Defining Logical Names for Devices and Files

A logical name can be used in place of another name to represent system objects
such as files, directories, devices, or queues. For example, you might assign a
logical name to your default disk and directory. Logical names serve two main
functions: they increase readability and file independence.

You can define commonly used files, directories, and devices with short,
meaningful logical names. Such names are easier to remember and type than
the full file specifications. You can define names that you use frequently in your
login command procedure. A system manager can define names that people use
frequently in the system startup command procedure.

You can use logical names to keep your programs and command procedures
independent of physical file specifications. For example, if a command procedure
references the logical name ACCOUNTS, you can equate ACCOUNTS to any file
on any disk. This chapter includes information about the following:

e Logical name characteristics
e Using system-defined logical names
¢ Creating logical names
¢ Deleting logical names
e Logical name translation
¢ Displaying logical names
¢ Creating and using search lists
e Logical name table characteristics
e Default logical name tables
¢ Creating logical name tables
¢ Modifying the order of logical name translations
e Deleting logical name tables
¢ Process-permanent logical names
For additional information about the commands described in this chapter, refer to
the OpenVMS DCL Dictionary or online help.
11.1 Logical Name Characteristics
Logical names have the following characteristics:

e Are equated to strings (called equivalence strings or equivalence names) or a
list of equivalence strings (called search lists). When you use a logical name,
the equivalence string is substituted for the logical name.

Defining Logical Names for Devices and Files 11-1

Defining Logical Names for Devices and Files
11.1 Logical Name Characteristics

e Are stored in default logical name tables or logical name tables that you
create.

e (Can be shorthand for long file specifications.
e Can be defined by you or by the system.

e (Can be used to keep programs and command procedures independent of
physical file specifications. For example, if a command procedure references
the logical name ACCOUNTS, you can equate ACCOUNTS to any file on any
disk before executing the command procedure.

In general, when a command accepts a system object, the command checks
whether the name you provide is a logical name. If the name is a logical name,
the system replaces the logical name with its actual value and executes the
command.

In the following example, the logical name COMS is created to represent the
directory DISK7:[WALSH.COMMAND_PROC]:

$ DEFINE COMS DISK7:[WALSH.COMMAND PROC]

The logical name COMS can then be used in DCL commands, as shown in the
following examples:

$ SET DEFAULT COMS
$ TYPE COMS:PAYROLL.COM

11.2 Using System-Defined Logical Names

The system creates a set of systemwide logical names for you when you start the
system and log in. These logical names allow you to refer to commonly used files
or devices without using their physical device names. For a list of these names,
see Section 11.9.3.

Every time you log in, the system creates a group of logical names for your
process and places these names in your process table. For a list of these names,
see Section 11.9.1.

To list your operating system’s programs, you do not need to know the name of
the disk and directory where these programs are stored. Instead, you can use the
logical name SYS$SYSTEM, as follows:

$ DIRECTORY SYS$SYSTEM

The logical name SYS$LOGIN refers to your default device and directory
when you log in. If you have changed your current defaults by using the SET
DEFAULT command, you can use the following command to display a file from
your initial default directory:

$ TYPE SYS$LOGIN:DAILY_NOTES.DAT
11.3 Creating Logical Names

You can create logical names with either the DEFINE command or the ASSIGN
command. In this chapter, the DEFINE command is used in the examples.

11-2 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.3 Creating Logical Names

In general, you create logical names in your process table. Usually, you define
logical names in a login command procedure (LOGIN.COM) so you can use the
logical name each time you log in. You can also create logical names interactively.
However, you can use these logical names only while your current process is
active.

The logical names you create in your process table are not available to other
users’ processes. The system manager or another privileged user can create
names in shareable tables, which are accessible to other users. Group and system
tables are examples of shareable tables.

For more information about shareable tables, see Section 11.9.4.

11.3.1 Using the DEFINE Command
The format for defining a logical name with the DEFINE command is as follows:

DEFINE logical-name equivalence-string(,...]

You can use the same format to create logical names for node names, file
specifications, device names, application-specific information, or for other logical
names.

By default, the DEFINE command places logical names in your process logical
name table (see Section 11.8), where the logical name is available only to your
process and subprocesses. If you want to add logical names to a different logical
name table, you can specify a different table with one of the following qualifiers:
/JOB, /GROUP, /SYSTEM, or /TABLE=table_name. The first three qualifiers
specify the default job, group, and system logical names tables, respectively. The
/TABLE=table_name can be used to specify any type of table and is the only
qualifier to use when specifying a clusterwide table.

In the following example, the command creates the logical name WORKFILE
and equates it to the equivalence string DISK2:[WALSH.REPORTS]WORK_
SUMMARY.DAT:

$ DEFINE WORKFILE DISK2:[WALSH.REPORTS]WORK SUMMARY.DAT

After you define WORKFILE as a logical name, you can use the logical name
interchangeably with the equivalence string.

In the next example, the command creates the logical name MY_Q for the print
queue BLDGC_LPS20_ANSI:

$ DEFINE MY Q BLDGC LPS20 ANSI

You could then use the following command to print the file FABLES.TXT to the
BLDGC_LPS20_ANSI print queue:

$ PRINT/QUEUE=MY_Q FABLES.TXT

The next example shows the use of the /TABLE=table_name qualifier to create a
logical name in a table other than the process logical name table. By specifying
LNM$SYSCLUSTER, the logical name is placed in the default clusterwide table,
LNM$SYSCLUSTER_TABLE, and is therefore accessible to every user on the
cluster.

$ DEFINE/TABLE=LNM$SYSCLUSTER CUSTOMERS
DISK1:[CUSTOMER VISITS]CUSTOMERS.TXT

Defining Logical Names for Devices and Files 11-3

Defining Logical Names for Devices and Files
11.3 Creating Logical Names

11.3.2 Creating Logical Names in Command Procedures for File I/O

You can use logical names in command procedures to perform file I/O (input and
output). When you open a file with the OPEN command, you can also create a
logical name for the file. Subsequent READ, WRITE, and CLOSE commands can
use the logical name instead of the actual file specification to refer to the file.

In the following example, the OPEN command creates the logical name INFILE
and the CLOSE command deletes it:

$
$
$

OPEN INFILE DISK3:[WALSH]DATA.DAT
READ INFILE RECORD
CLOSE INFILE

11.3.3 Rules for Creating Logical Names

Observe the following rules when you create a logical name with the DEFINE
command:

Limit the equivalence string and the logical name to no more than 255
characters each. A logical name can contain alphanumeric characters, the
underscore (_), the dollar sign ($), and the hyphen (-).

When you specify an equivalence string, include the punctuation marks
(colons, brackets, periods) required by a file specification. For example, end
a device name with a colon, enclose a directory specification in brackets, and
precede a file type with a period.

If a logical name represents only part of a file specification, separate the name
from the rest of the file specification with a colon. When you use a logical
name to represent a complete file specification, the terminating colon is not
needed.

In addition, be sure the logical name is the leftmost component of a file
specification.

Optionally, end the logical name with a colon.

Note that the ASSIGN command removes the colon before placing the logical
name in a logical name table; the DEFINE command saves the colon as part
of the logical name.

If you equate a logical name to one equivalence string, then equate the same
logical name to a different equivalence string. The second definition will
supersede the first, unless you define them in different logical name tables
or define them with different access modes.

The following commands display the file DISK1:[SALES_STAFFIPAYROLL.DAT:

W W N W N

DEFINE PAY DISKI1:[SALES STAFF]PAYROLL.DAT
TYPE PAY

DEFINE PAY FILE DISKI1:[SALES STAFF]PAYROLL
TYPE PAY FILE:*.DAT

DEFINE PAY DIR DISKI1:[SALES STAFF]
TYPE PAY DIR:PAYROLL.DAT

DEFINE PAY DISK DISKI:
TYPE PAY DISK:[SALES STAFF]PAYROLL.DAT

11-4 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.3 Creating Logical Names

11.3.4 Translation Attributes

When you create a logical name, you can specify translation attributes that
modify how the system interprets the equivalence string.

To apply translation attributes to an equivalence string, use the /TRANSLATION_
ATTRIBUTES qualifier to the DEFINE command. This is a positional qualifier.
Depending on where you place it on a command line, it can apply translation
attributes to all equivalence strings or only to certain ones.

In the following example, the device name DJAS3: is concealed with the logical
name DISK:

$ DEFINE/TRANSLATION ATTRIBUTES=CONCEALED DISK DJA3:
$ SHOW DEFAULT -

DISK: [SAM.PUP]
$ SHOW LOGICAL DISK

"DISK" = "DJA3" (LNM$PROCESS TABLE)

The logical name DISK represents the physical device DJA3. Thus, the SHOW
DEFAULT command displays the logical name DISK rather than the physical
device name DJA3. The SHOW LOGICAL command reveals the translation of
DISK.

The CONCEALED attribute causes system messages to display the logical name
rather than the physical name of a device. Typically, you use the CONCEALED
attribute with logical names that represent physical devices. Using concealed
devices lets you write programs, write command procedures, and perform other
operations without being concerned about which physical device holds the disk
or tape. It also lets you use names that are more meaningful than the physical
device names.

The TERMINAL attribute prevents iterative translation of a logical name (that is,
the equivalence string is not examined to see whether it is also a logical name).
The translation is “terminal” (final or completed) after the first translation.

11.3.5 Access Modes

The OpenVMS operating system has the following four access modes:
e User mode (the outermost and least privileged mode)

e Supervisor mode

e Executive mode

e Kernel mode (the innermost and most privileged mode)

You can use the DCL commands DEFINE or ASSIGN to create logical names in
the first three modes (user, supervisor, and executive). By specifying different
access modes for each logical name definition, you can equate the same logical
name to different equivalence strings in the same logical name table. Note
that you must have SYSNAM or SYSPRYV privileges to create logical names in
executive mode in any logical name table.

User Mode

Logical names created in user mode are temporary. Define a logical name in user
mode when you want to use it only for the execution of the next command or
image.

Defining Logical Names for Devices and Files 11-5

Defining Logical Names for Devices and Files
11.3 Creating Logical Names

In the following example, the logical name ADDRESSES is deleted automatically
after the execution of the program PAYABLE:

$ DEFINE/USER_MODE ADDRESSES DISKI1:[SAM.ACCOUNTS]OVERDUE.LIS
$ RUN PAYABLE
Supervisor Mode

When you use the DEFINE command without specifying a mode, DCL creates the
logical name in supervisor mode.

In the following example, the commands equate the logical name ACCOUNTS
to two different equivalence strings in the process logical name table—one in
supervisor mode and one in executive mode:

$ DEFINE ACCOUNTS DISK1:[ACCOUNTS]CURRENT.DAT
$ DEFINE/EXECUTIVE_MODE ACCOUNTS DISKI1:[JANE.ACCOUNTS]OBSOLETE.DAT

Executive Mode

In looking up logical names, all privileged images and utilities such as
LOGINOUT bypass the user mode and supervisor mode names and tables. If

a logical name is to be used by a privileged image, including a utility, it must be
defined in executive or kernel mode in an executive or kernel mode table. Other
candidates for logical names defined in executive mode are the names of public
directories used by your work group and system resources, such as print queues
and system disks.

Kernel Mode
Only the operating system and privileged programs can create logical names in

kernel mode.
11.3.6 Creating Logical Node Names

You can use a logical node name in place of a network node name or in place of
a node name and an access control string. Once you define a logical node name,
you can use it to avoid typing (and displaying) your user name and password on
the screen.

To define a logical node name, observe the following rules:
¢ Do not begin the logical name with an underscore (_).

¢ End the equivalence string with a double colon (::) and enclose it in quotation
marks (" ").

e Use two sets of quotation marks ("' "") where you want quotation marks to
appear in the access control string.

(For information about access control strings, see Section 3.1.6, Section 3.1.12,
and Section 10.5 in this manual.)

e Specify a logical name that contains 1 to 255 characters.

Caution

Do not place a DEFINE command that includes a password in a file (your
login command procedure, for example). If others read the file, they will
see the password.

11-6 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.3 Creating Logical Names

In the following example, the command equates the logical name BOS to the node
name BOSTON and an access control string, where ADAMS is the user name and
OLMEKIKA is the password:

$ DEFINE BOS "BOSTON""ADAMS OLMEKIKA""::"

11.3.6.1 Using Logical Node Names in File Specifications

A file specification can contain both a logical node name (which the system
translates at the local node) and a logical device name (which the system
translates at the remote node). If you use a logical name to represent a node
name only, you must include a double colon (::) when you use the logical name in
the node position of a file specification.

After the system translates a logical node name at the local node, it parses the
rest of the file specification to determine whether the format is valid.

In the following example, the system translates the logical node name NYC at
the local node. It translates the logical device name (DOC:) at the remote node
(NEWYRK):

$ DEFINE NYC NEWYRK::
$ TYPE NYC::DOC:[PERKINS]TERM PAPER.DAT

11.3.6.2 Overriding Access Control Strings

To override the access control string in a logical node name, specify both the
logical name and an access control string in the command line.

In the following example, the access control string "REVERE HTEBAZILE"
overrides the access control string given in the equivalence string for BOS:

$ DEFINE BOS "BOSTON""ADAMS OLMEKIKA""::"
§ TYPE BOS"REVERE HTEBAZILE"::RIDE.DAT

When the system translates a logical node name iteratively, the access control
information in the logical node name that is first translated overrides the
following access control information. For example, the logical name TEST1
translates to TORONTO"TEST NAMWENLUAP"::DBA1: :

$ DEFINE TORONTO "TRNTO""TEST EIZNEKCAM""::"
$ DEFINE TEST1 "TORONTO""TEST NAMWENLUAP""::DBAl:"
$ TYPE TEST1:PROC.DAT

TORONTO is a logical node name, so iterative translation occurs. In other
words, the operating system searches the logical name tables until all levels of
logical names in a definition are found. However, the access control string in the
DEFINE TEST1 logical name assignment overrides the access control string in
the DEFINE TORONTO logical node name assignment. Therefore, the TYPE
command displays the following file:

TRNTO"TEST NAMWENLUAP"::DBAl:PROC.DAT

11.3.7 Creating Multiple Logical Names for the Same Object

By using multiple DEFINE commands, you can create multiple logical names
that refer to the same object. For example, the following commands equate the
logical names $TERMINAL and CONSOLE to the physical name of a terminal, so
that both logical names translate to the same device (LTA69):

$ DEFINE STERMINAL LTA69
$ DEFINE CONSOLE LTA69

Defining Logical Names for Devices and Files 11-7

Defining Logical Names for Devices and Files
11.4 Deleting Logical Names

11.4 Deleting Logical Names

To delete a logical name, use the DEASSIGN command. When you define logical
names in your process and job logical name tables, they are not deleted until
your process terminates or they are explicitly deleted by user actions. However,
if you specify the /USER_MODE qualifier to the DEFINE command, the logical
name is defined in the process logical name table and deleted automatically after
executing the next command image.

To delete a logical name ending with a colon, specify two colons. The DEASSIGN
command, like the ASSIGN command, removes one colon before it searches the
logical name table for a match.

11.5 Logical Name Translation

When the system reads a file specification or device name in a DCL command
line, it examines the file specification or device name to see whether the leftmost
component is a logical name. If the leftmost component ends with a colon,
space, comma, or a line terminator (for example, Enter), the system attempts to
translate it as a logical name. If the leftmost component ends with any other
character, the system does not attempt to translate it as a logical name.

After you enter the command shown in the following example, the system checks
to see whether PUP is a logical name because PUP is the leftmost component of
the file specification. Because the leftmost component is terminated with Enter,
the system attempts to translate PUP.

$ TYPE PUP

After you enter the command shown in the next example, the system checks
whether DISK is a logical name. The system attempts to translate DISK because
it is the leftmost component and ends with a colon. The system does not check
PUP:

$ TYPE DISK:PUP

In the third example, the system does not try to translate [DRYSDALE]PUP
because the leftmost component ends with a right square bracket (]):

$ TYPE [DRYSDALE]PUP

11.5.1 [lterative Translation

Logical name translation can be iterative: after the system translates a logical
name, it repeats the translation process for any logical names it finds contained
within the first logical name.

The system limits the number of levels to which it performs logical name
translation. The number of levels varies among system facilities but it is at least
nine. If you define more than the system-determined number of levels or if you
create a circular definition, an error occurs when the logical name is used.

In the following example, the first DEFINE command equates the
logical name DISK to the device name DUA1. The second DEFINE
command equates the logical name MEMO to the file specification
DISK:[JEFF.MEMOS|COMPLAINT.TXT:

$ DEFINE DISK DUAL:
$ DEFINE MEMO DISK:[JEFF.MEMOS]COMPLAINT.TXT

11-8 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.5 Logical Name Translation

When the system translates the logical name MEMO, it finds the equivalence
string DISK:[JEFF.MEMOS]COMPLAINT.TXT. It then checks to see whether the
leftmost component in this file specification ends in a colon, a space, a comma, or
an end-of-line terminator. It finds a colon after DISK. The system translates that
logical name also. The final translation of the file specification is:

DUAl: [JEFF.MEMOS] COMPLAINT. TXT

11.5.2 Missing Fields Filled in with System Defaults

When the system translates a logical name, it fills in any missing fields in a file
specification with the current default device, directory, and version number. When
you use a logical name to specify the input file for a command, the command uses
the logical name to assign a file specification to the output file as well.

If the equivalence string contains a file name and file type, the output file is
given the same file name and file type. If the equivalence string does not contain
a file type, a default file type is supplied. The file type supplied depends on the
command you are using.

When you use logical names in a list of input files, the equivalence string of each
logical name provides a temporary default.

In the following example, because a device name is not specified for the logical
name HIG, the device name for MAL defines DBA1 as the temporary default
device:

$ SET DEFAULT DBA2:[CASEY]

$ DEFINE MAL DBAL:[MALCOLM]

$ DEFINE HIG [HIGGINS]

$ PRINT ALPHA,MAL:BETA,HIG:GAMMA

The PRINT command looks for the following files:

DBA2:[CASEY]ALPHA.LIS
DBA1:[MALCOLM]BETA.LIS
DBA1:[HIGGINS]GAMMA.LIS

11.5.3 Default Search Order for Logical Name Translations

Identical logical names can exist in more than one logical name table. When the
system translates a logical name in a file specification, it searches a list of logical
name tables until it finds a match. The system uses the first match it finds.

The list of logical name tables that are searched is specified in the definition of
the logical name LNM$FILE_DEV. The default list consists of the process, job,
group, system, and clusterwide system logical name tables. The search order is
the same (process, job, group, system, and clusterwide system).

You can modify the search order, as described in Section 11.11.

11.6 Displaying Logical Names

Use the SHOW LOGICAL command to display logical names and their
equivalence strings.

Sometimes the definition of a logical name includes another logical name. The
SHOW LOGICAL command performs iterative translations. It then displays both
the equivalence string and the level of translation. Level numbers are zero based;
that is, 0 is the first level, 1 is the second, and so on. To display only the first
translation found for a specified logical name, use the SHOW TRANSLATION
command. (For more information, refer to the OpenVMS DCL Dictionary.)

Defining Logical Names for Devices and Files 11-9

Defining Logical Names for Devices and Files
11.6 Displaying Logical Names

If you use the SHOW LOGICAL command to determine the equivalence string
for a process-permanent file (see Section 11.13), the command displays only the
device portion of the string. For example:

§ SHOW LOGICAL SYS$SINPUT
"SYSSINPUT" = " TTB4:" (LNMSPROCESS_TABLE)

In the following example, the logical name MYDISK is displayed. Two
translations are performed; the number 1 indicates the second level of translation:

$ SHOW LOGICAL MYDISK
"MYDISK" = "WORK4" (LNMS$PROCESS TABLE)
1 "WORK4" = "255DUA17:" (LNM$SYSTEM TABLE)

In the next example, the equivalence string for the logical name WORKFILE is
displayed:

§ SHOW LOGICAL WORKFILE
"WORKFILE" = "DISK2:[WALSH.REPORTS]WORK SUMMARY.DAT" (LNM$PROCESS TABLE)

The system displays the logical name, its translation, and the name of the table
that contains the logical name.

11.6.1 Specifying a Logical Name Table to Search

By default, the SHOW LOGICAL command searches your process, job, group,
system, and clusterwide system tables and displays all matches. However, you
can specify a particular logical name table to be searched using the /TABLE
qualifier. You can also use the /GROUP, /SYSTEM, /JOB, and /PROCESS
qualifiers to display the logical names in the group, system, job, and process
logical name tables, respectively.

In the following example, the SHOW LOGICAL command, using the /TABLE
qualifier, displays the logical names in the process logical name table
(LNM$PROCESS):

$ SHOW LOGICAL/TABLE=LNM$PROCESS
(LNM$PROCESS TABLE)

"DECW$DISPLAY" = " WSA30:"
"SYS$COMMAND" = " FIFI$VTA65:"
"SYS$DISK" [super] = "WORKI:"
"SYSSDISK" [exec] = "WORKL:"
"SYS$ERROR" = " FIFISVTAG5:"
"SYSSINPUT" = " FIFISVTAG5:"
"SYS$OUTPUT" [super] = "_FIFI$VTAG5:"
"SYS$OUTPUT" [exec] = "_FIFI$VTAG5:"
"TT" = "_VTA65:" -

11.6.2 Displaying Translation Attributes and Access Modes

To display translation attributes and access modes of logical names, use the
SHOW LOGICAL/FULL command, as follows:

$ SHOW LOGICAL/FULL SYS$ERROR
"SYSSERROR" [exec] = " PADRAICSTDA824:" [terminal] (LNM$PROCESS TABLE)

This example displays the logical name SYS$ERROR in executive mode and
shows the translation attribute, terminal.

11-10 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.7 Creating and Using Search Lists

11.7 Creating and Using Search Lists

When a logical name is equated to several equivalence strings in a single
DEFINE (or ASSIGN) command, a search list is created.

When you use a search list in a file specification, the search list is translated as
follows:

e If the search list contains only a device, the original default directory is
searched.

e If the search list contains a device and a directory, both are used to construct
a complete file specification.

The system translates the logical name, in the order in which you specified the
equivalence strings, until it finds a match.

The command affects only the first file found. At that point, the search ends. If a
match is not found, the system reports an error only on the last file it attempts to
find.

Note that a search list is not a wildcard; it is a list of places to look.
In the following example, the logical name GETTYSBURG is a search list:

$ DEFINE GETTYSBURG [JONES.HISTORY],[JONES.WORKFILES]
$ SHOW LOGICAL GETTYSBURG

"GETTYSBURG" = "[JONES.HISTORY]" (LNM$PROCESS TABLE)
= "[JONES.WORKFILES]"

In the next example, the TYPE command searches the equivalence string
[JONES.HISTORY] before it searches [JONES.WORKFILES] (the order specified
in the preceding logical name definition for GETTYSBURG):

§ TYPE GETTYSBURG:SPEECH.TXT
DISK1:[JONES.HISTORY | SPEECH.TXT;2

Fourscore and seven years ago, our fathers brought
forth on this continent a new nation, conceived

in liberty, and dedicated to the proposition that
all men are created equal.

Once the TYPE command finds a file named SPEECH.TXT, it ends the search
and displays the file.

11.7.1 Using Search Lists with Commands That Accept Wildcards

You can use a search list with a command that accepts wildcards. When you use

wildcards, the system forms file specifications by using each equivalence string in
the search list. The command operates on each file specification that identifies an
existing file.

In the following example, the DIRECTORY command is specified with a wildcard
character in the version field. It finds all versions of SPEECH.TXT in the search
list defined by GETTYSBURG:

Defining Logical Names for Devices and Files 11-11

Defining Logical Names for Devices and Files
11.7 Creating and Using Search Lists

$ DIRECTORY GETTYSBURG:SPEECH.TXT;*

Directory DISK1:[JONES.HISTORY]
SPEECH.TXT; 2 SPEECH.TXT;1
Total of 2 files.

Directory DISK1:[JONES.WORKFILES]
SPEECH.TXT; 1
Total of 1 file.

Grand total of 2 directories, 3 files.

When you enter a search list (for example, using the DIRECTORY command), the
operating system uses elements in one part of the list to supply parts of the file
specification that are omitted from other parts of the list. If a file specification is
not complete (as shown by SYS$LOGIN in the following example), command lines
can produce multiple files and file-not-found conditions:

$ DIRECTORY SYS$SMANAGER:LOGIN.COM,SYSSLOGIN

You can avoid producing multiple files and file-not-found conditions by placing a
semicolon after the file specification, as shown:

$ DIRECTORY SYS$MANAGER:LOGIN.COM;,SYSSLOGIN

11.7.2 Using a Search List with the SET DEFAULT Command

When you specify a search list as the first part of the parameter for the SET
DEFAULT command, the system assigns the search list name, untranslated, to
SYS$DISK. (SYS$DISK is a logical name that translates to your default disk.)
Note that when you specify a search list as the first part of a parameter for the
SET DEFAULT command, each equivalence string in the search list must contain
a device name.

In the following example, both a device and a directory are specified; thus, both
are used to construct the file specifications:

$ DEFINE FIFI DISKl:[FRED],DISK2:[GLADYS],DISK3:[MEATBALL.SUB]
$ DIRECTORY FIFI:MEMO.LIS

This command displays the following list of files:

DISK1:[FRED]MEMO.LIS
DISK2:[GLADYS]MEMO.LIS
DISK3:[MEATBALL.SUB]MEMO.LIS

In the following example, the SHOW DEFAULT command shows the default disk
and directory as DISK2:[MEATBALL.SUB]. Next, the search list FIFI is defined.
The SET DEFAULT command uses the search list as its parameter. The second
use of the SHOW DEFAULT command shows that the default directory has not
changed. However, the search list FIFI is displayed as the default device along
with its equivalence strings. The SHOW DEFAULT command displays the search
list in the order in which the search list is evaluated by the system:

11-12 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.7 Creating and Using Search Lists

$ SHOW DEFAULT
DISK2: [MEATBALL.SUB]
DEFINE FIFI DISK1:[FRED], DISK2:[GLADYS], DISK3:
SET DEFAULT FIFI
SHOW DEFAULT
FIFI:[MEATBALL.SUB]
DISK1:[FRED]
DISK2: [GLADYS]
DISK3: [MEATBALL.SUB]

11.7.3 Using a Search List with the RUN Command

When the RUN command is followed by a search list, the system forms file
specifications as described previously. However, the system then checks to see
whether any of the files in the list are installed images. The system runs the
first file in the search list that is an installed image. Then, the RUN command
terminates.

U U >

If none of the file specifications are installed images, the system repeats the
process of forming file specifications. This time it looks for each file specification
on the disk. It runs the first file it finds there. An error message is displayed if
none of the specified files is found either in the known file list or on the disk.

11.7.4 Search Order for Multiple Search Lists

A file specification can contain more than one search list. When this occurs,
each item in the file name search list is used, while the first device name is held
constant. After all the items in the file name search list are combined with the
first device name, they are then combined with the second device name. This
process continues until each device has been searched.

You can also have iterative (nested) search lists when one name in a search list
translates to another search list. If this occurs, the system uses each name in a
sublist before continuing to the next upper-level name.

The following example shows a file specification that has a search list in the file
name and in the device name:

$ DEFINE FILE CHAP1.RNO, CHAP2.RNO

$ DEFINE DISK WORK1:[ROSE], WORK2:[THORN]
$ SET DEFAULT DISK

$ DIRECTORY FILE

Directory WORK1:[ROSE]
CHAP1.RNO;2 CHAP2.RNO; 1
Total of 2 files.

Directory WORK2:[THORN]
CHAP1.RNO;1 CHAP2.RNO;1
Total of 2 files.

Grand total of 2 directories, 4 files.

The directory listing for each file name is given, first for WORK1:[ROSE] and
second for WORK2:[THORN].

The following example shows iterative search lists:

$ DEFINE NESTED FRED.DAT, NEW LIST, RICKY.DAT
$ DEFINE NEW_LIST ETHEL.DAT, LUCY.DAT

Defining Logical Names for Devices and Files 11-13

Defining Logical Names for Devices and Files
11.7 Creating and Using Search Lists

The search order for the search list NESTED follows:

FRED.DAT
ETHEL.DAT
LUCY.DAT
RICKY.DAT

11.8 Logical Name Table Characteristics
A logical name table has the following characteristics:
e Scope (whether it is shareable or process-private)
e Access mode
e Name
e Parent logical name table
e Access control (shareable logical name tables only)
e Quota (to limit the amount of pool occupied by its logical names)

During system initialization, several shareable logical name tables are created.
When a new process is created, the system creates several other tables, shareable
and process-private, for that process. All these tables are shown in Table 11-1.

The access mode of a logical name table can be specified when it is created. If not
specified, the mode defaults to the access mode from which the table creation was
requested, typically supervisor or user mode. A logical name table can contain
logical names of its own access mode and of less privileged access modes. A
logical name table can be the parent table to another table of the same or less
privileged access mode.

A logical name table is identified by its name, which is itself a logical name. As
a logical name, each name table name must be contained within a logical name
table.

11.8.1 Logical Name Table Directories

Two special logical name tables called directories exist as containers for logical
name table names:

e Process directory, LNM$PROCESS_DIRECTORY

The process directory contains the names of all process-private tables for that
process and its own table name. Each process has its own process-private
directory.

e System directory, LNM$SYSTEM_DIRECTORY

The system directory contains the names of all shareable tables and its own
table name. There is only one LNM$SYSTEM_DIRECTORY per system.

These directories contain names that translate iteratively to table names. All
logical name table names and any logical names that translate to tables are kept
in these directories.

The parent table of a logical name table is not necessarily a directory table. That
is, this hierarchical structure is distinct from the location of logical name table
names.

11-14 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.8 Logical Name Table Characteristics

11.8.2 Displaying the Structure of Directory Tables

To display the relationship of logical name directory tables to logical name tables,
enter the SHOW LOGICAL/STRUCTURE command, as shown in the following
example:

$ SHOW LOGICAL/STRUCTURE

(LNM$SPROCESS DIRECTORY)
(LNM$PROCESS TABLE)

(LNM$SYSTEM DIRECTORY)
(LNM$SYSTEM TABLE)
(LMF$SLICENSE TABLE)
(LNM$CLUSTER TABLE)

(LNM$SYSCLUSTER TABLE)

(LNMSGROUP 000123)
(LNM$JOB 824E98E0)

This example shows the logical name table names that reside in each logical
name table directory. It also shows the relationship between LNM$CLUSTER_
TABLE and LNM$SYSCLUSTER_TABLE.

11.9 Default Logical Name Tables

The default tables created by the executive, including the system directory and
process directory tables, are shown in Table 11-1.

Table 11-1 Default Logical Name Tables
Full Table Name

Table Name

Logical Name

Description

Process Logical Name Tables

Process LNM$PROCESS_ (No other logical Contains definitions of process-private
Directory DIRECTORY name) logical name table names and names
that translate iteratively to table names.
Process Table LNM$PROCESS_ LNM$PROCESS Contains process-private logical names,
TABLE such as SYS$DISK and SYS$INPUT.

Shareable Logical Name Tables

System LNM$SYSTEM_ (No other logical Contains definitions of shareable logical
Directory DIRECTORY name) name table names and names that
translate iteratively to table names.
System Table LNM$SYSTEM_ LNM$SYSTEM Contains names shared by all
TABLE processes in the system, for example,
SYS$LIBRARY and SYS$SYSTEM.
Clusterwide LNM$SYSCLUSTER_ LNM$SYSCLUSTER Contains names shared by all processes
System Table TABLE in an OpenVMS Cluster system.
Clusterwide LNM$CLUSTER_ LNM$CLUSTER The parent table for all clusterwide
Parent Table TABLE logical name tables, including
LNM$SYSCLUSTER_TABLE.
Group Table LNM$GROUP_ LNM$GROUP Contains names shared by all processes
gggggg’ in that UIC group.

IThe string gggggg represents a six-digit octal number containing the process’s UIC group number.

(continued on next page)

Defining Logical Names for Devices and Files 11-15

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Table 11-1 (Cont.) Default Logical Name Tables

Table Name Full Table Name Logical Name Description

Shareable Logical Name Tables

Job Table LNM$JOB_xxaxxaxx’ LNM$JOB Contains names shared by all processes
in the job tree, for example, SYS$LOGIN
and SYS$SCRATCH

2The string xxxxxxxx represents an eight-digit hexadecimal number that is the address of the job information block.

11.9.1 Process Logical Name Directory

The process-private logical names that are created in the process logical name
directory table, LNM$PROCESS_DIRECTORY, when you log in are shown in
Table 11-2.

Table 11-2 Default Logical Names in Process Logical Name Directory

Name Description

LNM$GROUP Group logical name defined as LNM$GROUP_gggggg, where gggggg represents your
group number. LNM$GROUP_gggggg® is the logical name table used by your UIC
group. The table LNM$GROUP_gggggg is cataloged in the system directory table.
Therefore, LNM$GROUP is a logical name that translates iteratively to the name of
your group logical name table.

LNM$JOB Job logical name that is defined as LNM$JOB_xxxxxxxx, where xxxxxxxx? represents
a number unique to your job tree. LNM$JOB_xxxxxxxx is the logical name table
used by your job. The table LNM$JOB_xxxxxxxx is cataloged in the system directory
table. Therefore, LNM$JOB is a logical name that translates iteratively to the name
of your job logical name table.

LNM$PROCESS Process logical name that translates iteratively to LNM$PROCESS_TABLE, which is
the name of your process logical name table.

LNM$PROCESS_ Name of your process directory logical name table.
DIRECTORY

IThe string gggggg represents a six-digit octal number containing the process’s UIC group number.
2The string xxxxxxxx represents an eight-digit hexadecimal number that is the address of the job information block.

11.9.2 Process Logical Name Table

Every process on the system has a process logical name table named
LNM$PROCESS_TABLE. The names in your process table are available only
to your process and any subsequent subprocesses. When you log in, the system
creates logical names for your process and places them in your process table.

You can reference LNM$PROCESS_TABLE indirectly through the name
LNM$PROCESS. This indirect reference enables you to redefine LNM$PROCESS
as multiple equivalence names and thus include one or more of your own tables
in it, as shown in the following example:

$CREATE/NAME_TABLE APPLICATION NAMES
$DEFINE/TAB=LNM$PROCESS_DIRECTORY LNM$PROCESS APPLICATION NAMES,
LNM$PROCESS_TABLE

By default, the process table contains the logical names shown in Table 11-3.
Note that the logical names SYS$INPUT, SYS$OUTPUT, SYS$ERROR, and
SYS$COMMAND refer to process-permanent files (files that remain open for
the life of the process). For more information about process-permanent files, see
Section 11.13.

11-16 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Table 11-3 Default Logical Names in Process Logical Name Table

Name

Description

SYS$COMMAND The initial file (usually your terminal) from which DCL reads input.

A file from which DCL reads input is called an input stream. The
command interpreter uses SYSSCOMMAND to “remember” the original
input stream.

SYS$DISK The default device established at login or changed by the SET
DEFAULT command.

SYS$ERROR The default device or file to which DCL writes system error messages
generated by warnings, errors, and severe errors.

SYS$INPUT The default file from which DCL reads input.

SYS$SNET The source process that invokes a target process in DECnet for

OpenVMS task-to-task communication. When opened by the target
process, SYS$NET represents the logical link over which that process
can exchange data with its partner. SYS$NET is defined only during
task-to-task communication.

SYS$OUTPUT The default file (usually your terminal) to which DCL writes output. A

TT

file to which DCL writes output is called an output stream.

The default device name for terminals.

11.9.3 System Logical Name Directory

The default system logical names contained in the system directory table,
LNM$SYSTEM_DIRECTORY, are shown in Table 11-4.

Table 11-4 Default Logical Names in System Logical Name Directory

Name

Description

LNM$CLUSTER

LNM$DCL_LOGICAL

LNM$DIRECTORIES

LNMS$FILE_DEV

LNM$GROUP
LNM$JOB

Logical name of clusterwide parent table that translates iteratively to
LNM$CLUSTER_TABLE.

DCL logical name that is defined as LNM$FILE_DEV. LNM$DCL_LOGICAL
translates iteratively into the list of logical name tables searched and displayed
by the SHOW LOGICAL command, the SHOW TRANSLATION command,
and the F$TRNLNM lexical function. By default, these commands search and
display the process, job, group, system, and clusterwide system logical name
tables, in that order.

Directory logical name that is defined as LNM$PROCESS_DIRECTORY and
LNM$SYSTEM_DIRECTORY.

Logical name for the search list that is defined as the list of logical name
tables searched by the system when processing a file specification. Defined as
LNM$PROCESS, LNM$JOB, LNM$GROUP, and LNM$SYSTEM, the system
searches the process, job, group, system, and clusterwide system logical name
tables, in that order.

Group logical name that is defined for your group table, LNM$GROUP_gggggg.!
Job logical name that is defined as LNM$JOB_xxxxxxxx.

IThe string gggggg represents a six-digit octal number containing the process’s UIC group number.

2The string xxxxxxxx represents an eight-digit hexadecimal number that is the address of the job information block.

(continued on next page)

Defining Logical Names for Devices and Files 11-17

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Table 11-4 (Cont.) Default Logical Names in System Logical Name Directory

Name Description

LNM$PERMANENT _ Permanent mailbox logical name that is defined as LNM$SYSTEM. Logical

MAILBOX names associated with permanent mailboxes are entered in the logical name
table to which the logical name LNM$PERMANENT MAILBOX iteratively
translates.

LNM$SYSCLUSTER Logical name for the clusterwide system logical name table that translates
iteratively to LNM$SYSCLUSTER_TABLE.

LNM$SYSTEM System logical name table name that translates iteratively to LNM$SYSTEM _
TABLE, LNM$SYSCLUSTER.

LNM$TEMPORARY _ Temporary mailbox logical name that is defined as LNM$JOB. Logical names

MAILBOX associated with temporary mailboxes are entered in the logical name table to

which the logical name LNM$TEMPORARY_MAILBOX iteratively translates.

11.9.4 Shareable Logical Name Tables

This section describes the default shareable logical name tables:
¢ C(Clusterwide system table

¢ C(Clusterwide parent table

e Group table

e Job table

e System table

Clusterwide System Table, LNM$SYSCLUSTER_TABLE

LNM$SYSCLUSTER_TABLE is the name of the clusterwide system logical name
table. This table contains logical names that are available to all users of the
cluster.

You can reference LNM$SYSCLUSTER_TABLE indirectly through the
name LNM$SYSCLUSTER. An indirect reference allows you to redefine
LNM$SYSCLUSTER as multiple equivalence names and thus include your
own tables in it.

Clusterwide Parent Table, LNM$CLUSTER_TABLE

LNM$CLUSTER_TABLE is the parent table for all clusterwide logical
name tables, including LNM$SYSCLUSTER_TABLE. Use the logical name
LNM$CLUSTER to refer to it.

Group Table, LNM$GROUP_gggggg

The name for your group table is LNM$GROUP_gggggs (gggggg represents
your user identification code [UIC] group number). The names in this table are
available to all users with the same UIC group number. Every group on the
system has a corresponding group logical name table.

You can reference LNM$GROUP_gggggg indirectly through the name
LNM$GROUP. An indirect reference allows you to redefine LNM$GROUP_gggggg
as multiple equivalence names and thus include your own tables in it. It also
eliminates the need to remember your UIC group number and ensures that you
are using the most recently defined table.

11-18 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Job Table, LNM$JOB_ xxxxxxxx

The name for your job table is LNM$JOB _xxxxxxxx (xxxxxxxx represents the job
information block [JIB] address defined by the system for your job tree).

Your job table contains logical names that are available to all processes in your
job tree—your process and any of your subprocesses. There is one job table for
each job tree in the system. A job table is shareable so that all processes in a job
tree can access it.

You can reference LNM$JOB_xxxxxxxx indirectly through the name LNM$JOB.
This indirect reference allows you to redefine LNM$JOB as multiple equivalence
names and thus include your own tables in it. Furthermore, by using LNM$JOB,
you do not have to locate the JIB address, and you can be sure that you are using
the most recently defined job table.

The system places logical names created for mounted disks, mounted tapes,
and temporary mailboxes in the job logical name table. In addition, the system
creates the following logical names:

e SYS$LOGIN

Your default device and directory when you log in.

e SYS$LOGIN_DEVICE

Your default device when you log in.

e SYS$REM_ID

For jobs initiated through a DECnet for OpenVMS network connection, the
identification of the process on the remote node from which the job was
originated. On an OpenVMS operating system, if proxy logins are enabled,
this identification is the process’s user name; if proxy logins are not enabled,
this is the process identification (PID) number.

(Proxy logins to proxy accounts allow users to access files across the network
without specifying an access control string.)

e SYS$REM_NODE
For jobs initiated through a DECnet for OpenVMS network connection, the
name of the remote node from which the job was originated.

e SYS$SCRATCH

Default device and directory to which temporary files are written.

System Table, LNM$SYSTEM_TABLE

The name of the system table is LNM$SYSTEM_TABLE. The system table
contains logical names that are available to all users of the system at the system
level.

The system table is usually referred to indirectly through LNM$SYSTEM, which
is defined as the search list LNM$SYSTEM_TABLE, LNM$SYSCLUSTER. Use
the name LNM$SYSTEM to include system names local to this node and system
names common to all nodes on the cluster.

The logical names that are automatically defined in the system table when the
system starts up are shown in Table 11-5.

Defining Logical Names for Devices and Files 11-19

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Table 11-5 Default Logical Names in System Logical Name Table

Name Description Default Address
DBG$INPUT Default input stream for the Not applicable
OpenVMS Debugger, equated to
SYS$INPUT at the process level
DBG$OUTPUT Default output stream for the Not applicable
OpenVMS Debugger, equated to
SYS$OUTPUT at the process level
SYS$COMMON Device and directory name for the SYS$SYSDEVICE:[SYSn.SYSCOMMON.],
common part of SYS$SYSROOT where n is the root directory number of
your processor
SYS$ERRORLOG Device and directory name of error SYS$SYSROOT:[SYSERR]
log data files
SYS$EXAMPLES Device and directory name of system SYS$SYSROOT:[SYSHLP.EXAMPLES]
examples
SYS$HELP Device and directory name of system SYS$SYSROOT:[SYSHLP]
help files
SYS$INSTRUCTION Device and directory name of system SYS$SYSROOT:[SYSCBI]
instruction data files
SYS$LIBRARY Device and directory name of system SYS$SYSROOT:[SYSLIB]
libraries
SYS$LOADABLE Device and directory of operating SYS$SYSROOT:[SYS$LDR]
IMAGES system executive loadable images,
device drivers, and other executive-
loaded code
SYS$SMAINTENANCE Device and directory name of system SYS$SYSROOT:[SYSMAINT]
maintenance files
SYS$SMANAGER Device and directory name of system SYS$SYSROOT:[SYSMGR]
manager files
SYS$SMESSAGE Device and directory name of system SYS$SYSROOT:[SYSMSG]
message files
SYS$NODE Network node name for the local Not applicable
system if DECnet for OpenVMS is
active on the system and you are
connected to a network
SYS$PROCDMP Directory (set by user) into which No default setting
image dumps are to be written
SYS$SHARE Device and directory name of system SYS$SYSROOT:[SYSLIB]
shareable images
SYS$SPECIFIC Device and directory name for node- SYS$SYSDEVICE:[SYSn.], where n is the
specific part of SYS$SYSDEVICE root directory number of your processor
SYS$STARTUP Device and directory name of system A search list that points first to
startup files SYS$SYSROOT:[SYS$STARTUP] and
then to SYSSMANAGER
SYS$SYSDEVICE System disk containing system Usually SYS$DISK

directories

11-20 Defining Logical Names for Devices and Files

(continued on next page)

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Table 11-5 (Cont.) Default Logical Names in System Logical Name Table

Name Description Default Address
SYS$SYSROOT Device and root directory for system A search list that points first to
directories SYS$SYSDEVICE:[SYSn.], where n is the
root directory number of your processor,
and then points to SYS$COMMON
SYS$SYSTEM Device and directory of operating SYS$SYSROOT:[SYSEXE]
system programs and procedures
SYS$TEST Device and directory name of User SYS$SYSROOT:[SYSTEST]
Environment Test Package (UETP)
files
SYS$UPDATE Device and directory name of system SYS$SYSROOT:[SYSUPD]

update files

11.9.5 Default Protection of Shareable Logical Name Tables

The shareable logical name tables provided by the operating system are created
with default protection. The default protection for each type of shareable logical
name table is shown in Table 11-6.

Table 11-6 Default Protection of Shareable Logical Name Tables

Table Type Table Name Default Protection

Job Table LNM$JOB _xxxxaxxxa’ SYSTEM=RWCD,
OWNER=RWCD, GROUP=NO
ACCESS, WORLD=NO ACCESS

Group Table LNM$GROUP_gggggg® SYSTEM=RWCD, OWNER=R,

GROUP=R, WORLD=NO ACCESS
System Table LNM$SYSTEM_TABLE SYSTEM=RWC, OWNER=RWC,

GROUP=R, WORLD=R
Clusterwide System LNM$SYSCLUSTER._ SYSTEM=RWC, OWNER=RWC,
Table TABLE GROUP=R, WORLD=R
Clusterwide Parent LNM$CLUSTER_TABLE SYSTEM=RWC, OWNER=RWC,
Table GROUP=R, WORLD=R
User-Created Table User Specified SYSTEM=RWCD,

OWNER=RWCD, GROUP=NO
ACCESS, WORLD=NO ACCESS

IThe string xxxxxxxx represents an eight-digit hexadecimal number that is the address of the job
information block.

2The string gggggg represents a six-digit octal number containing the process’s UIC group number.

11.9.6 Privilege and Access Requirements for Managing Shareable Logical
Names

Table 11-7 shows the privileges and access rights that are required to create,
delete, and read (translate) logical names in each type of shareable logical name
table. For more information about privileges, access types, and access control, see
Chapter 10 in this manual.

Defining Logical Names for Devices and Files 11-21

Defining Logical Names for Devices and Files
11.9 Default Logical Name Tables

Table 11-7 Privilege or Access Type Required for Shareable Logical Name Tasks

Table Where
Name Resides

Table Name

Task

Privilege or Access Type Required

Job Table

Group Table

System Table

Clusterwide
System Table

Clusterwide
Parent Table

User-created
Table

LNM$JOB_xxxxxxxx’

LNM$GROUP_gggggg?

LNM$SYSTEM_TABLE

LNMS$SYSCLUSTER_
TABLE

LNM$CLUSTER_TABLE

User Specified

Create or delete
logical name

Read (translate)
logical name

Create or delete
logical name

Read (translate)
logical name

Create or delete
logical name

Read (translate)
logical name

Create or delete
logical name

Read (translate)
logical name

Create or delete
logical name

Read (translate)
logical name

Create or delete
logical name

Read (translate)
logical name

WRITE (W) access to the table where
the name will be created, or from where
it will be deleted

READ (R) access to the table where the
name resides

WRITE (W) access to the table where
the name will be created, or from where
it will be deleted, or GRPNAM privilege

READ (R) access to the table where the
name resides

System UIC group number (between 0
and the value of system parameter
MAXSYSGROUP), or SYSNAM
privilege

READ (R) access to the table where the
name resides

System UIC group number (between 0
and the value of system parameter
MAXSYSGROUP), or SYSNAM
privilege

READ (R) access to the table where the
name resides

System UIC group number (between
0 and the value of system parameter
MAXSYSGROUP)

READ (R) access to the table where the
name resides

WRITE (W) access to the table where
the name will be created, or from where
it will be deleted

READ (R) access to the table where the
name resides

IThe string xxxxxxxx represents an eight-digit hexadecimal number that is the address of the job information block.

2The string gggggg represents a six-digit octal number containing the process’s UIC group number.

11.10 Creating Logical Name Tables

The CREATE/NAME_TABLE command creates a logical name table and catalogs
it in one of the directory logical name tables. Logical names that identify logical
name tables or that translate iteratively to logical name tables must always be
entered into one of the directory logical name tables.

11.10.1 Creating Process-Private Logical Name Tables

To create a logical name table that is private to your process, create the table in

LNM$PROCESS_DIRECTORY (the default).

A name in a directory table can contain 1 to 31 characters. Only uppercase
alphanumeric characters, the dollar sign ($), and the underscore (_) are valid. If
you specify a lowercase table name, it is automatically converted to uppercase.

11-22 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.10 Creating Logical Name Tables

The following example creates a process-private logical name table named TAX,
places the definition for the logical name CREDIT in the table, and verifies the
table’s creation. The SHOW LOGICAL/TABLE command allows you to specify
the logical name table to display.

$ CREATE/NAME TABLE TAX
$ DEFINE/TABLE=TAX CREDIT [ACCOUNTS.CURRENT]CREDIT.DAT
$ SHOW LOGICAL/TABLE=TAX CREDIT

"CREDIT" = "[ACCOUNTS.CURRENT]CREDIT.DAT" (TAX)

To have the system search the new table automatically during file lookup, you
can redefine LNM$PROCESS, as shown in the following example:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$PROCESS LNM$PROCESS TABLE, TAX

11.10.2 Creating Shareable Logical Name Tables

To create a shareable logical name table, use the /PARENT_TABLE qualifier and
specify the name of a shareable table. For example:

$ CREATE/NAME TABLE/PARENT TABLE=LNM$SYSTEM DIRECTORY NEWTAB

11.10.3 Creating Clusterwide Logical Name Tables

You can create a clusterwide logical name table in the same way that you create
other shareable logical name tables. A clusterwide logical name table is a special
type of shareable logical name table and is subject to the privilege and access
requirements that apply to all shareable logical name tables (see Section 11.10.4).

The following example shows how to create a clusterwide logical name table:

$ CREATE/NAME_TABLE/PARENT_TABLE=LNM$CLUSTER_TABLE -
_$ new clusterwide logical name table

To create clusterwide logical names that will reside in the new clusterwide logical
name table, you define the new clusterwide logical name with the DEFINE
command, specifying the new table’s name with the /TABLE qualifier, as shown
in the following example:

$ DEFINE/TABLE=new clusterwide logical name_table
logical name -
_$ equivalence string

11.10.4 Privilege and Access Requirements

Users with privileges can create shareable logical name tables for special
purposes. For example, an application can create one or more shareable logical
name tables to communicate information such as file locations to the application
users:

$ CREATE/NAME TABLE APPX FILE LOCATOR /PARENT=LNM$SYSTEM DIRECTORY -
_$ /PROTECTION = (S:RWD,0:RWD,G:R,W:R)

To create a shareable logical name table, you must have:

e CREATE (C) access to the parent table

e SYSPRYV privilege or WRITE (W) access to LNM$SYSTEM_DIRECTORY
To delete a shareable logical name table, you must have:

e DELETE (D) access to the table

e SYSPRV privilege or WRITE (W) access to LNM$SYSTEM_DIRECTORY

Defining Logical Names for Devices and Files 11-23

Defining Logical Names for Devices and Files
11.10 Creating Logical Name Tables

11.10.5 Modifying the Default Protection

The operating system provides default protection for the shareable logical name
tables that it creates and that users create. The default protection is stored in
security profiles that a system manager or table owner can modify. For more
information, see the OpenVMS Guide to System Security.

You can modify the default protection of the tables that you create by:

e Using the /PROTECTION qualifier with the DCLL CREATE/NAME_TABLE
command. This command lets you set UIC-based protection.

e Applying ACL protection to a table already created with the ACL editor or
with the SET SECURITY/ACL/OBJECT_TYPE=LOGICAL_NAME_TABLE
command.

ACLs for shareable logical name tables are not saved between system boots. You
must reestablish ACLs on these logical name tables every time the system is
booted.

For more information about applying ACL protection to a shareable logical
name table, refer to the SET SECURITY/ACL command in the OpenVMS DCL
Dictionary.

11.10.6 Establishing Quotas for Logical Name Tables

Quotas are used to limit the amount of system resources that a given logical
name table can consume. The process, group, and system logical name tables
have an infinite quota. By default, when you create a logical name table, it too
has an unlimited quota.

You can specify a quota to limit the size, in bytes, of a logical name table that you
create. Before a logical name is created, the size of its data structure is checked
against the quota remaining for the table. If there is insufficient quota available
for the new entry, the system displays an error message.

Once you set the quota for a table, you cannot change it. If the table runs out of
room, use the DEASSIGN command to delete old logical names. This frees space
for your new logical names.

In the following example, the logical name table ABC is created and is given a
quota of 500 bytes:

$ CREATE/NAME_TABLE/QUOTA=500 ABC

11.10.6.1 Setting Job Table Quotas

The job logical name table is a shareable table. The quota for a job logical name
table is established when the table is created. The quota is determined by one or
more of the following criteria:

e The JTQUQOTA value established for the user in the system user authorization
file SYSUAF.DAT (if the first image activated by the process was the system
image LOGINOUT).

e The PQL$_JTQUOTA quota list value specified in the call to the Create
Process ($CREPRC) system service.

e The /JOB_TABLE_QUOTA qualifier value on the RUN command used to
create the detached process.

11-24 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.10 Creating Logical Name Tables

e The SYSGEN parameter PQL_DJTQUOTA (if none of the preceding
conditions applies). The standard default value for this parameter is
1024 bytes; however, the system manager can change it. The System
Generation utility (SYSGEN) can be used to display and set the values of
the parameters PQL_DJTQUOTA (default job logical name table quota) and
PQL_MJTQUOTA (minimum job logical name table quota).

A quota value of 0 for a job logical name table means there is no quota. For all
practical purposes, the quota is unlimited.

11.11 Modifying the Order of Logical Name Translations

LNMS$FILE_DEV defines both the logical name tables that will be searched and
the search order for all logical name translations. Generally, you do not need
to modify the default search order. However, you may want to add the name of
a new, process-private logical name table to be searched first, before the tables
specified by LNM$FILE_DEV. Similarly, system managers may want to add the
names of one or more shareable logical name tables to be searched before the
tables specified by LNM$FILE_DEV.

To create a process-private definition of LNM$FILE_DEV with a new table of
logical names that the system will search first, do the following:

1. Create a file that contains the new logical names.
2. Convert this new file to a new logical name table.

3. Create a private definition of LNM$FILE_DEV by specifying the process
logical name directory table as the parent table.

4. Add the new logical name table name to the beginning of the table name list
in the private definition of LNM$FILE_DEV.

In the following example, a new logical name table, NEWTAB, is created, and a
process-private definition of LNM$FILE_DEV is created with NEWTAB listed as
the first table to be searched:

$ CREATE/NAME TABLE NEWTAB
$ DEFINE/TABLE=LNM$PROCESS DIRECTORY LNM$FILE DEV -
_$ NEWTAB, LNM$PROCESS, LNM$JOB, LNM$GROUP, LNM$SYSTEM

In the example above, the system searches the NEWTAB table first for the
following reasons:

* The process-private definition of LNM$FILE_DEYV is used instead of the
default system version.

e Within LNM$FILE_DEV, NEWTAB is listed before the other logical name
tables.

To add a new logical name table to the system definition of LNM$FILE_DEV, you
must have SYSNAM or SYSPRYV privileges.

The following example is similar to the previous one except NEWTAB is created
as a shareable table rather than as a process-private table:

$ CREATE/NAME_TABLE/PARENT=LNM$SYSTEM_DIRECTORY NEWTAB
$ DEFINE/TABLE=LNM$SYSTEM DIRECTORY LNM$SFILE DEV -
_$ NEWTAB, LNM$SPROCESS, LNM$JOB, LNMSGROUP, LNM$SYSTEM

Defining Logical Names for Devices and Files 11-25

Defining Logical Names for Devices and Files
11.11 Modifying the Order of Logical Name Translations

You can also remove logical names tables from the search list defined by
LNMS$FILE_DEV. In the following example, a process-private definition of
LNMS$FILE_DEV is created that contains only the process and system logical
name tables. Because the process-private definition does not contain LNM$JOB
and LNM$GROUP, subsequent commands that need to translate a logical name
will not search the job or group tables.

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY -
_$ LNMSFILE DEV LNM$PROCESS,LNM$SYSTEM

11.12 Deleting Logical Name Tables

To delete a logical name table, specify the table that contains it (the system or
process directory logical name table) and the name of the table. All logical names
in descendant tables (and the descendant tables themselves) are deleted when
you delete a parent logical name table.

To delete a shareable logical name table, you must have DELETE access to the
table or SYSPRYV privilege.

In the following example, the command deletes the logical name WORKFILE:
$ DEASSIGN WORKFILE

In the following example, the command deletes the logical name table TAX from
the process directory table:

$ DEASSIGN/TABLE=LNM$PROCESS DIRECTORY TAX

11.13 Process-Permanent Logical Names

DCL creates process-permanent logical names when you log in. These names
remain defined for the life of your process. You cannot deassign these logical
names. You can redefine them (by specifying a different equivalence string
in a DEFINE command), but if the redefined name is later deassigned, the
process-permanent name is reestablished.

The following process-permanent logical names are available:
e SYSS$INPUT

Logical name that refers to the default input device or file
e SYS$OUTPUT

Logical name that refers to the default output device or file
* SYS$ERROR

Logical name that refers to the default device or file to which the system
writes messages

e SYS$COMMAND
Logical name that refers to the value of SYS$INPUT when you log in

11-26 Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.13 Process-Permanent Logical Names

11.13.1 Equivalence Name Differences Between Interactive and Batch
Processing

When you use the system interactively, DCL equates SYS$INPUT, SYS$OUTPUT,
SYS$ERROR, and SYS$COMMAND to your terminal. However, when

you execute command procedures and submit batch jobs, DCL creates new
equivalence strings for these logical names.

When you execute a command procedure interactively, the following occur:

e SYSS$INPUT is equated to the command procedure. Therefore, DCL obtains
data from the command procedure. This assignment is temporary. After the
command procedure terminates, SYS$INPUT regains its original value.

e SYS$OUTPUT, SYS$COMMAND, and SYS$ERROR remain equated to the
terminal.

When you submit a batch job, the following occur:

e SYS$INPUT and SYS$COMMAND are equated to the batch job command
procedure.

e SYS$OUTPUT and SYS$ERROR are equated to the batch job log file.

When you nest command procedures (that is, when you write a command
procedure that executes other command procedures), the equivalence string
for SYS$INPUT changes to point to the command procedure that is currently
executing. However, the equivalence strings for SYS$OUTPUT, SYS$ERROR,
and SYS§COMMAND remain the same unless you explicitly change them.

In addition, when you enter a command that opens a file, DCL opens the file as a
process-permanent file. For example, if you open a file with the OPEN command,
this file is opened as a process-permanent file. The file remains open until you
explicitly close the file or until you log out.

Process-permanent files are stored in a special area in memory. Note that if you
keep a large number of files open at the same time, you can exhaust this area. If
this occurs, close some of the files (or log out).

11.13.2 Redirecting File I/O Using Process-Permanent Logical Names

You can use process-permanent logical names to redirect file I/O. In command
procedures, you can use these names to read data from the terminal and to
display data (see Chapter 13 and Chapter 14). Note that DCL ignores new
definitions for SYS$INPUT and SYS$COMMAND.

In OpenVMS Version 7.1, the DCL PIPE command was introduced. The PIPE
command is an alternate way to redirect file I/O. For information about the PIPE
command, refer to the OpenVMS DCL Dictionary: N-Z.

11.13.2.1 Redefining SYSSINPUT

You can redefine SYS$INPUT so that an image, invoked by a command procedure,
reads input from the terminal or another file. Because DCL always obtains input
from the default input stream, DCL ignores a redefinition of SYS$INPUT.

In the following example, the commands are part of a new command procedure
file. The DEFINE command redefines SYS$INPUT to SYS$COMMAND.
SYS$COMMAND refers to the terminal, the initial input stream when you
logged in. With this new definition, the image invoked by the command procedure
obtains input from the terminal rather than from the command procedure file
(the default) but only for a certain period.

Defining Logical Names for Devices and Files 11-27

Defining Logical Names for Devices and Files
11.13 Process-Permanent Logical Names

The /USER_MODE qualifier tells the command procedure that SYS$INPUT is
redefined only for the duration of the next image. In this example, the next image
is the editor. When the editor is finished, SYS$INPUT resumes its default value.
In this case, the default value is the command procedure file.

$ DEFINE/USER_MODE SYSSINPUT SYS$COMMAND
$ EDIT/TPU MYFILE.DAT

11.13.2.2 Redefining SYSSOUTPUT

11-28

You can redefine SYS$OUTPUT to redirect output from your default device
to another file. When you redefine SYS§OUTPUT, the system opens a file
with the name you specify in the logical name assignment. When you define
SYS$OUTPUT, all subsequent output is directed to the new file.

Remember to deassign SYS$OUTPUT. Otherwise, output will continue to be
written to the file you specified. Note that you can redefine SYS§OUTPUT in
user mode (with DEFINE/USER_MODE) to redirect output from an image. This
definition is in effect only until the next command image is executed. Once the
command image is executed (that is, the output is captured in a file), the logical
name SYS$OUTPUT resumes its default value.

When you log in, the system creates two logical names called SYS$OUTPUT. One
name is created in executive mode; the other name is created in supervisor mode.
You can supersede the supervisor mode logical name by redefining SYS$OUTPUT.
If you deassign the supervisor mode name, the system redefines SYS$OUTPUT
in supervisor mode, using the executive mode equivalence string. You cannot
deassign the executive mode name.

When you redefine SYS$OUTPUT to a file, the logical name contains only the
device portion of the file specification even though the output is directed to the
file you specify.

If the system cannot open the file you specify when you redefine SYS$OUTPUT,
it displays an error message.

After you redefine SYS$OUTPUT, most commands direct output to the existing
version of the file. However, certain commands create a new version of the file
before they write output.

In the following example, SYS$OUTPUT is defined as MYFILE.LIS before

the SHOW DEVICES command is entered. The display produced by SHOW
DEVICES is directed to MYFILE.LIS in the current directory rather than to the
terminal. You can manipulate the data as you would any other text file:

$ DEFINE SYS$OUTPUT MYFILE.LIS
$ SHOW DEVICES

In the following example, SYS$OUTPUT is redefined to the file TEMP.DAT. When
SYS$OUTPUT is redefined, output from DCL and from images is directed to

the file TEMP.DAT. The output from the SHOW LOGICAL command and from
the SHOW TIME command is also sent to TEMP.DAT. When SYS$OUTPUT is
deassigned, the system closes the file TEMP.DAT and redefines SYS§OUTPUT

to the terminal. When the TYPE command is entered, the output collected in
TEMP.DAT displays on the terminal.

Defining Logical Names for Devices and Files

Defining Logical Names for Devices and Files
11.13 Process-Permanent Logical Names

DEFINE SYS$SOUTPUT TEMP.DAT
SHOW LOGICAL SYSSOUTPUT
SHOW TIME
DEASSIGN SYSSOUTPUT
TYPE TEMP.DAT
"SYS$OUTPUT" = "DISK1:" (LNMSPROCESS TABLE)
06-MAY-1996 13:26:53

When SYS$OUTPUT is redefined, the equivalence string contains the device
name DISK1, not the full file specification.

U U U U >

11.13.2.3 Redefining SYSSERROR
You can redefine SYS$ERROR to direct error messages to a specified file.
However, if you redefine SYS$ERROR so it is different from SYS$OUTPUT
(or if you redefine SYS$OUTPUT without also redefining SYS$ERROR), DCL
commands send informational, warning, error, and severe error messages to both
SYS$ERROR and SYS$OUTPUT. Therefore, you receive these messages twice—
once in the file indicated by the definition of SYSSERROR and once in the file
indicated by SYS$OUTPUT. Success messages are sent only to the file indicated
by SYS$OUTPUT.

DCL commands and images, which use standard error display mechanisms, send
error messages to both SYS$ERROR and SYS$OUTPUT even when SYSSERROR
is different from SYS$OUTPUT. However, if you redefine SYS$ERROR, then run
an image that references SYS$ERROR, the image sends error messages only to
the file indicated by SYS$ERROR. This is true even if SYS$ERROR is different
from SYS$OUTPUT.

11.13.2.4 Redefining SYSSCOMMAND

Although you can redefine SYS$COMMAND, DCL ignores your definition. DCL
always uses the default definition for your initial input stream. However, if you
execute an image that references SYSSCOMMAND, the image can use your new
definition.

Defining Logical Names for Devices and Files 11-29

12

Defining Symbols, Commands, and
Expressions

A symbol is a name that represents a numeric, character, or logical value (such
as true or false). When you use a symbol in a DCL command line, DCL replaces
the symbol with its value before executing the command.

Entering DCL command lines that include parameters, multiple qualifiers, and
values can make for much typing and can be time-consuming. To simplify your
interaction with DCL and to save time, you can establish symbols to use in place
of commands you type frequently.

You can also use symbols in command procedures to collect, store, and
manipulate certain types of data. For more information on command procedures,
see Chapter 13 and Chapter 14.

This chapter describes:

e Using symbols

e Displaying symbols

e Using symbols with other symbols

e Using symbols to store and manipulate data
e Character strings

e Using numeric values and expressions

¢ Using logical values and expressions

e Converting value types in expressions

¢ Understanding symbol tables

e Masking the value of symbols

¢ Understanding symbol substitution

e The three phases of command processing

e An alternative to using symbols: automatic foreign commands
For additional information, refer to the following:

e The OpenVMS DCL Dictionary, for additional information about symbols and
their usage

e The OpenVMS Command Definition, Librarian, and Message Utilities
Manual, for additional information about defining new commands

Defining Symbols, Commands, and Expressions 12-1

Defining Symbols, Commands, and Expressions

12.1 About Symbols

12.1 About Symbols

You can use symbols in the following ways:

e As synonyms for commands, parameters, or command lines. Instead of typing
a long command line, you can create a symbol to use instead.

e To define a foreign command, which allows you to execute an image by
entering only the symbol name. The command is “foreign” because it is
unknown to DCL.

e In command procedure files, to perform programming tasks such as
conditional execution and substitution of variables.

You can use symbols as variables in expressions or to pass parameters to
and from command procedures. In addition, DCL commands such as READ,
WRITE, and INQUIRE use symbols to refer to data records.

In the following example, a symbol is created to set default to a directory that is
accessed often. These commands show how to define and use the symbol WORK
to set default to the WORK1:[JONES.WORK] directory:

§ WORK :== SET DEFAULT DISK1:[JONES.WORK]

$ WORK

§ SHOW DEFAULT

DISK1:[JONES.WORK]

12.1.1 Comparing Logical Names and Symbols

Although logical names and symbols appear similar, they are used differently.
The following table compares the function, usage, and other characteristics of
logical names and symbols:

Characteristic

Logical Names

Symbols

Function

Usage

Storage

Creation

Display

Deletion

Represent device, directory, file,
queue, and other system object
specifications.

Are used in place of any
complete device, directory,

file, queue or other system
object specification. Logical
names must be used as part of
a command string parameter to
be passed to the file system for
translation.

Are stored in your process, job,
group, or system logical name
table. See Section 11.10.

Use either the ASSIGN or
DEFINE command to create
a logical name. See Section 11.3.

Use either the SHOW LOGICAL
or SHOW TRANSLATION
command to display a logical
name. See Section 11.6.

Use the DEASSIGN command
to delete a logical name. See
Section 11.4.

Represent commands or portions of
command strings.

Are used in place of any command string.
Symbols must be used as the first word in
a command string to be translated by the
command language interpreter.

Are stored in your global or local symbol
table. See Section 12.10.

Use an assignment statement (= or ==) to
create a symbol. See Section 12.2.

Use the SHOW SYMBOL command to
display a symbol. See Section 12.3.

Use the DELETE/SYMBOL command to
delete a symbol. See Section 12.2.5.

12-2 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.2 Using Symbols

12.2 Using Symbols

You can create two types of symbols, local and global. Local symbols are
accessible from the current command level and from command procedures
executed from the current command level. Global symbols are accessible at all
command levels.

You can define a symbol with a character string, a number, a lexical function,
a logical value, or another symbol. The symbol name can be 1 to 255 characters
long and must begin with a letter, an underscore (_), or a dollar sign ($). In a
symbol name, both lowercase and uppercase letters are treated as uppercase.

To create a symbol, use the assignment statement (= or ==) or the string
assignment (:= or :==). When you use the string assignment, all alphabetic
characters are converted to uppercase and multiple spaces and tabs are
compressed to a single space. You can use string assignments to create a
symbol that represents a DCL command or to define a foreign command (note
that in either case, there is a 255-character limit). To continue a character string
over two lines in a string assignment, use a single hyphen.

You can also create symbols by using the READ and INQUIRE commands (see
Chapter 13 and Chapter 14).

Creating Local Symbols

In the following example, the local symbol SS is assigned to the DCL command
SHOW SYMBOL:

$ SS = "SHOW SYMBOL"

In the following example, the local symbol DB is assigned to the DCL command
DIRECTORY ACCOUNTS:[BOLIVAR]:

$ DB := DIRECTORY ACCOUNTS:[BOLIVAR]

Creating Global Symbols

In the following example, the global symbol DC is used to represent a DCL
command line. The DCL command DIRECTORY is executed with the specified
qualifiers when you enter the symbol name:

$ DC == "DIRECTORY/SIZE=ALL DISK1:[JONES.TAX]MONEY.LIS"

In the following example, the global symbol READY is used to represent a
DCL command line. The DCL command PRINT is executed with the specified
qualifiers when you enter the symbol name:

$ READY :== PRINT/CONFIRM/QUEUE=AKI$LNO3/NOTIFY/RESTART
$ READY FILE.DAT

12.2.1 Using Symbols to Represent DCL Commands

You can define a symbol to represent a DCL command in your login command file
(LOGIN.COM) or interactively at DCL level. When you define the symbol in your
login command file, you can use the symbol each time you log in; when you define
the symbol interactively, you can use the symbol only during the current process.

If you define a symbol with the same name as a DCL command, your definition
overrides the DCL command name. For example, if you define the symbol HELP
as the command TYPE HELP.LST, you can no longer invoke the system’s Help
utility by typing HELP.

Defining Symbols, Commands, and Expressions 12-3

Defining Symbols, Commands, and Expressions
12.2 Using Symbols

12.2.2 Symbol Abbreviation

Use the asterisk (*) to create a symbol that can be abbreviated. Generally, you
can use abbreviated symbol definitions in any situation that allows a symbol
to be used. Symbols that involve substring replacement are an exception. See
Section 12.6.5 for more information.

Note that existing symbols might be superseded. If an existing symbol exactly
matches the new symbol at or past the asterisk, the new symbol replaces the
existing symbol. In addition, you cannot define another symbol whose name
partly matches the existing symbol at or past the asterisk.

The following example creates the local symbol PRINT, which can be abbreviated
as PR, PRI, or PRIN:

$ PR*INT = "PRINT/CONFIRM/QUEUE=AKI$LN03/NOTIFY/RESTART"
To execute the DCL command PRINT with the specified qualifiers, you can enter
the symbol or any of its abbreviations.

12.2.3 Defining Foreign Commands

If you equate the file specification of a non-DCL image to a symbol, you can run
the image by typing the symbol name. A symbol that runs an image is referred
to as a foreign command. A foreign command is an image that is not recognized
by the command interpreter as a DCL command. (Note that, like each element of
a DCL command, a foreign command has a 255-character limit.)

The formats for defining a symbol as a foreign command are as follows:

symbol-name :=[=] $image-file-spec
symbol-name =[=] "$image-file-spec"

Note that when the dollar sign ($) precedes a file specification at the beginning
of a symbol definition, without any space between the dollar sign and the file
specification, the request to run the image is implied.

For the image file specification, the default device and directory name is
SYS$SYSTEM, the default file type is .EXE, and the default file version number
is the highest version.

An alternative to using a foreign command is to define new commands with
the Command Definition utility. Refer to the OpenVMS Command Definition,
Librarian, and Message Utilities Manual for more information.

There is also a method for executing foreign commands automatically, without
specifying symbols. See Section 12.14 for more information.

In the following example, the global symbol PRINTALL is defined to execute the
image DISK1:[ACCOUNTS|PRINTALL.EXE:

$ PRINTALL :== $[ACCOUNTS]PRINTALL
In a command line, PRINTALL could be followed by a parameter.

In the following example, the file specification RAT.DAT is a parameter that is
passed to the image defined by PRINTALL:

$ PRINTALL RAT.DAT

12-4 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.2 Using Symbols

12.2.4 Symbol Substitution

The command interpreter looks for symbols enclosed by apostrophes () and
translates them. Thus, if you use symbols or lexical functions preceded by
apostrophes to specify parameters, symbol substitution occurs (see Section 12.12).
Otherwise, the command interpreter does not parse the line. The image must
obtain the parameter and perform any parsing or evaluation of the command
line.

12.2.5 Deleting Symbols

The DELETE/SYMBOL command deletes a symbol. To delete a global symbol,
include the /GLOBAL qualifier. For example, to delete the global symbol TEMP,
enter the following command:

$ DELETE/SYMBOL/GLOBAL TEMP

12.3 Displaying Symbols

The SHOW SYMBOL command displays the values of symbols. To display the
value of a particular symbol, enter the SHOW SYMBOL command followed by
the name of the symbol. To display the value of a particular global symbol,
include the /GLOBAL qualifier. The SHOW SYMBOL/ALL command displays all
local symbols. The command SHOW SYMBOL/ALL/GLOBAL displays all global
symbols.

Note that when a symbol has an integer value, the SHOW SYMBOL command
displays the value in decimal, hexadecimal, and octal notation.

In the following example, the symbol PR is displayed:

$ SHOW SYMBOL PR
PR*INT = "PRINT/CONFIRM/COPIES=2/QUEUE=DOCSLN03/NOTIFY/RESTART"

In the following example, the integer value for the symbol TOTAL is displayed:

$ SHOW SYMBOL TOTAL
TOTAL = 4 Hex = 00000004 Octal = 00000000004

12.4 Using Symbols with Other Symbols

After you define a symbol, you can use it as part of the definition of another
symbol. DCL interprets a symbol as a character string or a number, depending
on the context in which you use the symbol.

In the following example, the integer value 3 is assigned to the symbol COUNT:
$ COUNT = 3

The value of COUNT can then be used in other assignment statements. For
example, here the value of COUNT is added to 1:

§ TOTAL = COUNT + 1
The result (4) is equated to the symbol TOTAL.

Defining Symbols, Commands, and Expressions 12-5

Defining Symbols, Commands, and Expressions
12.4 Using Symbols with Other Symbols

12.4.1 Symbol Concatenation

You can concatenate several symbols to create a long character string by using
the plus sign (+). You can also concatenate two or more symbols by placing
apostrophes (') around each symbol name.

For more information about requesting symbol substitution, see Section 12.12.2.

In the following example, the symbols "Saturday" and "Sunday" are used to create
the symbol "WEEKEND":

$ DAYl = "Saturday, "
$ DAY2 = "Sunday"
$ WEEKEND = DAYl + DAY2
$ SHOW SYMBOL WEEKEND
WEEKEND = "Saturday, Sunday"

In the following example, apostrophes are used to concatenate the symbols NAME

and TYPE:
$ NAME = "MYFILE"
$ TYPE = ", DAT"

$ PRINT 'NAME''TYPE’
The PRINT command prints a copy of MYFILE.DAT.

12.4.2 Including Symbols in String Assignments

To include a local symbol in a string assignment, use a colon and an equal sign
(:=). To include a global symbol in a string assignment, use a colon and two equal
signs (:==). For either type of symbol (local or global), enclose the symbol in
apostrophes (© 7). Otherwise, DCL will not recognize it as a symbol.

If you define a null character string for a symbol, that symbol has a value of 0.

In the following example, the symbol COUNT is included in a string assignment
statement:

$ BARK := P'COUNT'

In a previous example, COUNT was assigned the integer value 3. In this
example, COUNT is converted to a string value and appended to the character P.
The local symbol BARK now has the value P3.

In the following example, the symbol A is null:

2
A+ B
OW SYMBOL C
= 2 Hex = 00000002 Octal = 00000000002

A
B
C
SH
C

12.5 Using Symbols to Store and Manipulate Data

You can use symbols as variables in command procedures. Variables hold values
that you calculate or assign as something other than a literal value. For example,
you might assign the value of a lexical function to a variable or read the value of
a file record into a variable.

An expression is a combination of values. In command procedures, expressions
are used in symbol assignment statements (on the right side of the equal sign), in
IF statements, in WRITE commands, and as arguments for lexical functions.

12-6 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.5 Using Symbols to Store and Manipulate Data

When you define a symbol, the left side of the assignment statement defines the
symbol name; the right side of the assignment statement contains an expression.
Each value (also called an operand) in an expression can be connected to another
value by an operator. DCL evaluates the expression and assigns the result to
the symbol. If an expression is evaluated as a character string, then the symbol
has a string value.

In the following example, the local symbol BARK is equated to an expression that
adds three numbers:

S$BARK =1+ 2+ 3

The operands are 1, 2, and 3. The operator is the plus sign (+). The evaluated
expression is an integer, so the symbol has an integer value.

12.6 Character Strings

A character string can contain any characters that can be printed. Appendix A
includes tables of the ASCII character set and the DEC Multinational character
set. These tables list characters you can include in a character string.

Characters fall into three main categories:

e Alphanumeric characters

The uppercase letters A to Z, lowercase letters a to z, digits 1 to 9, dollar sign
($), underscore (_), and hyphen (-).

e Special characters

All other characters that can be displayed or printed: exclamation point (!),
quotation marks ("), number sign (#), and so on.

e Nonprintable characters

All characters that cannot be printed or displayed. In general, nonprintable
characters are ignored for display and print purposes. However, several
nonprintable characters serve control functions as follows:

Character Function

HT Starts printing or typing at the next horizontal tab

LF Starts printing or typing on the next line

FF Starts printing or typing at the top of the next page

CR Starts printing or typing at the first space on the same line
ESC Introduces a terminal escape sequence

SP Inserts one space

12.6.1 Defining Character Strings

You can define a character string by enclosing it in quotation marks (" "). In this
way, alphabetic case and spaces are preserved when the symbol assignment is
made. Note the following:

e To include quotation marks (") within a string, type two consecutive
quotation marks.

e To continue a character string over two lines, use a plus sign (for string
concatenation) and a hyphen (for continuation).

Defining Symbols, Commands, and Expressions 12-7

Defining Symbols, Commands, and Expressions
12.6 Character Strings

You cannot use the hyphen continuation character within a quoted character
string.

In the following example, the string "YES" is quoted, so it must be defined within
quotation marks:

$ PROMPT = "Type "MYES"" or ""NO"""
$ SHOW SYMBOL PROMPT
PROMPT = "Type "YES" or "NO"*

In the following example, the character string is continued over two lines:

$ HEAD = "MONTHLY REPORT FOR" + -
$ " DECEMBER 1999"
§ SHOW SYMBOL HEAD
HEAD = "MONTHLY REPORT FOR DECEMBER 1999"

12.6.2 Character String Expressions

A character string expression can contain character strings, lexical functions
that are evaluated as character strings, or symbols that have character string
values. When you use a character string in an expression, you must enclose it
in quotation marks (" "). If you do not use quotation marks, DCL processes the
string as a symbol.

Character string expressions combine the following values (called string
operands):

e Character strings that must appear in quotation marks
e Symbols that represent character strings
e Lexical functions that are evaluated as character strings

If you perform an operation or comparison between a character string and a
number, DCL converts the character string to a number.

String operands can be added (string concatenation), subtracted (string
reduction), compared, or replaced with other character strings as described
in the following subsections.

In the following example, the character string "CAT" must appear in quotation
marks:

§ TEMP = "CAT"

In the following example, the symbol TEMP represents the character string
"CAT." The symbol TOPIC is a concatenation of the character string "THE" and
the character string that the symbol TEMP represents ("CAT"). The result is
"THE CAT".

$ TOPIC = "THE" + TEMP

In the following example, the symbol COUNT represents the lexical function
F$STRING(65):

§ COUNT = F$STRING(65)

12-8 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.6 Character Strings

12.6.3 Character String Operations

You can specify the following character string operations:
e Concatenation — The plus sign concatenates two character strings.

e Reduction — The minus sign removes the second character string from the
first character string.

If the second character string occurs more than once in the first character
string, only the first occurrence of the string is removed.

In the following example, the plus sign (+) is used to concatenate two character
strings:

$ COLOR = "light brown"
$ WEIGHT = "30 lbs."
$§ DOG2 = "No tag, " + COLOR + ", " + WEIGHT
$ SHOW SYMBOL DOG2
DOG2 = "No tag, light brown, 30 lbs."

In the following example, the minus sign (—) is used to remove a character string:

$ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown, 30 lbs."
$ DOG2 = DOG2 - ", 30 lbs."
§ SHOW SYMBOL DOG2

DOG2 = "No tag, light brown"

12.6.4 Comparing Character Strings

When you compare two character strings, the strings are compared character
by character. Strings of different lengths are not equal (for example, “dogs” is
greater than “dog”).

The comparison criteria are the ASCII values of the characters. Under these
criteria, the digits 0 to 9 are less than the uppercase letters A to Z, and the
uppercase letters A to Z are less than the lowercase letters a to z. A character
string comparison ends when either of the following conditions is true:

e All the characters have been compared, in which case the strings are equal.
e The first mismatch occurs.

Table 12-1 lists different types of string comparisons.

Table 12-1 String Comparisons

Comparison Operator Description

Equal to EQS. Compares one character string to another for equality.

Greater than .GES. Compares one character string to another for greater or

or equal to equal value in the first specified string.

Greater than .GTS. Compares one character string to another for a greater
value in the first specified string.

Less than or .LES. Compares one character string to another for a lesser or

equal to equal value in the first specified string.

Less than LTS. Compares one character string to another for a lesser value

in the first specified string.

(continued on next page)

Defining Symbols, Commands, and Expressions 12-9

Defining Symbols, Commands, and Expressions
12.6 Character Strings

Table 12-1 (Cont.) String Comparisons

Comparison Operator Description

Not equal .NES. Compares one character string to another for inequality.

In all of the following examples, assume that the symbol LAST_NAME has the
value “WHITFIELD”.

e In the following example, the symbol TEST NAME is evaluated as 0 (False);
the value of the symbol LAST _NAME does not equal the literal “HILL”:

$ TEST NAME = LAST NAME .EQS. "Hill"
$ SHOW SYMBOL TEST NAME
TEST NAME = 0

e In the following example, the symbol TEST NAME is evaluated as 1 (True);
the value of the symbol LAST_NAME is greater than or equal to the literal
“HILL”:

$ TEST NAME = LAST NAME .GES. "HILL"
$ SHOW SYMBOL TEST NAME
TEST NAME = 1

¢ In the following example, the symbol TEST NAME is evaluated as 1 (True);
the value of the symbol LAST_NAME is greater than the literal “HILL.”:

$ TEST NAME = LAST NAME .GTS. "HILL"
$ SHOW SYMBOL TEST NAME
TEST NAME = 1

¢ In the following example, the symbol TEST NAME is evaluated as 0 (False);
the value of the symbol LAST_NAME is not less than or equal to the literal
“HILL”:

$ TEST NAME = LAST NAME .LES. "HILL"
$ SHOW SYMBOL TEST NAME
TEST NAME = 0 ..

¢ In the following example, the symbol TEST NAME is evaluated as 0 (False);
the value of the symbol LAST_NAME is not less than the literal “HILL”:

$ TEST NAME = LAST NAME .LTS. "HILL"
$ SHOW SYMBOL TEST NAME
TEST NAME = 0 .

e In the following example, the symbol TEST NAME is evaluated as 1 (True);
the value of the symbol LAST _NAME does not equal the literal “HILL”:

$ TEST NAME = LAST NAME .NES. "HILL"
$ SHOW SYMBOL TEST NAME
TEST NAME = 1

12.6.5 Replacing Substrings

You can replace part of a character string with another character string by
specifying the position and size of the replacement string. The format for local
symbols is:

symbol-namefoffset,size] := replacement-string
The format for global symbols is:

symbol-namefoffset,size] := = replacement-string

12-10 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.6 Character Strings

The elements are as follows:

offset An integer that indicates the position of the replacement string relative
to the first character in the original string. An offset of 0 means the first
character in the symbol, an offset of 1 means the second character, and so
on.

size An integer that indicates the length of the replacement string.
To replace substrings, observe the following rules:

e The square brackets are required notation. No spaces are allowed between
the symbol name and the left bracket.

e Integer values for size and offset values can range from 0 to 768.
¢ The replacement string must be a character string.

¢ The symbol name you specify can be undefined initially. The assignment
statement creates the symbol name and if necessary, provides leading or
trailing spaces in the symbol value.

* You can specify an offset and size to create a symbol that represents a blank
line.

Lining up records in columns makes a list easier to read and sort. You can use
this format to specify how you want data to be stored.

In the following example, the first assignment statement gives the symbol A the
value PACKRAT. The second statement specifies that MUSK replace the first four
characters in the value of A. The result is that the value of A becomes MUSKRAT.

$ A := PACKRAT

$ A[0,4] := MUSK

$ SHOW SYMBOL A
A = "MUSKRAT"

In the following example, the symbol B does not have a previous value, so it is
given a value of four leading spaces followed by RAT:

$ B[4,3] := RAT

In the following example, a value of 80 blank spaces is assigned to the symbol
LINE:

$ LINE[0,80]:= " "

In the following example, the first statement fills in the first 15 columns of DATA
with whatever value NAME has. The second statement fills in column 18 with
whatever value GRADE has. Columns 16 and 17 contain blanks:

$ DATA[0,15] :
$ DATA[17,1] :

"NAME'
"GRADE’

12.7 Using Numeric Values and Expressions
A number can have the following values:
® Decimal — the ASCII characters 0 to 9
e Hexadecimal — the ASCII characters 0 to 9 and A to F
¢ Octal — the ASCII characters 0 to 7

Defining Symbols, Commands, and Expressions 12-11

Defining Symbols, Commands, and Expressions
12.7 Using Numeric Values and Expressions

The number you assign to a symbol must be in the range —2147483648 to
2147483647 (decimal). An error is not reported if a number outside this range is
specified or calculated but an incorrect value results.

12.7.1 Specifying Numbers

At DCL command level and within command procedures, specify a number as
follows:

e Positive numbers
Specify a positive number by typing the appropriate digits.
e Negative numbers

Precede a negative number with a minus sign (—).
e Radix

Specify a number in a radix other than decimal by preceding the number
(but not the minus sign) with %X for hexadecimal numbers and %0 for octal
numbers.

e Fractions

A number cannot include a decimal point. In calculations, fractions are
truncated. For example, 8 divided by 3 equals 2.

In the following example, the number 13 is assigned to the symbol DOG_COUNT:

$ DOG_COUNT = 13
$ SHOW SYMBOL DOG_COUNT
DOG_COUNT = 13 ~ Hex = 0000000D Octal = 00000000015

In the following example, the negative number (—15237) is represented with a
minus sign (—):

$ BALANCE = -15237
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

In the following example, the hexadecimal number D is represented with the
prefix %X:

$ DOG_COUNT = $XD
$ SHOW SYMBOL DOG COUNT
DOG COUNT = 13 ~ Hex = 0000000D Octal = 00000000015
$ BALANCE = -%X3B85
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 37777742173

12.7.2 Internal Storage of Numbers

Numbers are stored internally as signed 4-byte integers, called longwords;
positive numbers have values of 0 to 2147483647 and negative numbers have
values of 4294967296 minus the absolute value of the number. The number
—15237, for example, is stored as 4294952059. Negative numbers are converted
back to minus-sign format for ASCII or decimal displays; however, they are not
converted back for hexadecimal and octal displays. For example, the number
—15237 appears in displays as hexadecimal FFFFC47B (decimal 4294952059)
rather than hexadecimal —00003B85.

Numbers are stored in text files as a series of digits using ASCII conventions (for
example, the digit 1 has a storage value of 49).

12-12 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.7 Using Numeric Values and Expressions

In a numeric expression, the values involved must be literal numbers (such
as 3) or symbols with numeric values. In addition, you can use a character
string that represents a number (for example, "23" or "—51"). If you perform an
operation or comparison between a number and a character string, DCL converts
the character string to a number.

Numeric expressions combine the following values (called integer operands):

Integers. For example:

§ COUNT =1

Lexical functions that are evaluated as integers. For example:
$ B = F$INTEGER("-9" + 23)

Symbols that have integer values. For example:

§ A=B-6

In the preceding example, the symbol B represents the integer value returned
by the FSINTEGER function (—923).

These integer operands can be connected by arithmetic, logical, and comparison
operators, as described in the following sections.

12.7.3 Performing Arithmetic Operations

You can specify the following arithmetic operations:

Multiplication

The asterisk (*) multiplies two numbers.

Division

The slash (/) divides the first specified number by the second specified

number. If a number does not divide evenly, the remainder is lost. No
rounding takes place.

Addition
The plus sign (+) adds two numbers.

Subtraction

The minus sign (-) subtracts the second specified number from the first
specified number.

Unary plus and minus

The plus and minus signs change the sign of the number they precede.

Examples

The following example demonstrates using multiplication when assigning a
symbol:

$ BALANCE = 142 * 14
$ SHOW SYMBOL BALANCE
BALANCE = 1988 Hex = 000007C4 Octal = 00000003704

The following example demonstrates using division when assigning a symbol:

$ BALANCE = BALANCE / 14
$ SHOW SYMBOL BALANCE
BALANCE = 142 Hex = 0000008E Octal = 00000000216

Defining Symbols, Commands, and Expressions 12-13

Defining Symbols, Commands, and Expressions
12.7 Using Numeric Values and Expressions

The following example demonstrates using addition when assigning a symbol:

$ BALANCE = BALANCE + 37
$ SHOW SYMBOL BALANCE
BALANCE = 179 Hex = 000000B3 Octal = 00000000263

The following example demonstrates using subtraction when assigning a
symbol:

$ BALANCE = BALANCE - 15416
$ SHOW SYMBOL BALANCE
BALANCE = -15237 Hex = FFFFC47B Octal = 00000142173

The following example demonstrates using a unary minus sign to change the
sign of the number —142 :

$ BALANCE = -(- al42)
$ SHOW SYMBOL BALANCE
BALANCE = 142 Hex = 0000008E Octal = 00000000216

12.7.4 Comparing Numbers

Table 12-2 lists different types of numeric comparisons.

Table 12-2 Numeric Comparisons

Comparison Operator Description

Equal to EQ. Compares one number to another for equality.

Greater than or .GE. Compares one number to another for a greater or equal value in

equal to the first number.

Greater than .GT. Compares one number to another for a greater value in the first
number.

Less than or .LE. Compares one number to another for a lesser or equal value in

equal to the first number.

Less than .LT. Compares one number to another for a lesser value in the first
number.

Not equal to .NE. Compares one number to another for inequality.

In the following examples, assume that the symbol BALANCE has the value
—15237.

In the following example, TEST_BALANCE is evaluated as 1 (True);
BALANCE equals —15237:

$ TEST BALANCE = BALANCE .EQ. -15237
$ SHOW SYMBOL TEST BALANCE

TEST BALANCE = 1

In the following example, TEST BALANCE is evaluated as 1 (True);
BALANCE is greater than or equal to —15237:

$ TEST BALANCE = BALANCE .GE. -15237
§ SHOW SYMBOL TEST BALANCE

TEST BALANCE = 1

In the following example, TEST BALANCE is evaluated as 0 (False);
BALANCE is not greater than —15237:

$ TEST BALANCE = BALANCE .GT. -15237
$ SHOW SYMBOL TEST BALANCE
TEST_BALANCE = 0

12-14 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.7 Using Numeric Values and Expressions

¢ In the following example, TEST BALANCE is evaluated as 1 (True);
BALANCE is less than or equal to —15237:

$ TEST BALANCE = BALANCE .LE. -15237
$ SHOW SYMBOL TEST BALANCE
TEST BALANCE = 1

e In the following example, TEST _BALANCE is evaluated as 0 (False);
BALANCE is not less than —15237:

$ TEST BALANCE = BALANCE .LT. -15237
$ SHOW SYMBOL TEST BALANCE
TEST_BALANCE = 0

e In the following example, TEST_BALANCE is evaluated as 0 (False);
BALANCE equals —15237:

$ TEST BALANCE = BALANCE .NE. -15237
$ SHOW SYMBOL TEST BALANCE
TEST BALANCE = 0

12.7.5 Performing Numeric Overlays

You can perform binary (bit-level) overlays of the current symbol value by using a
special format of the assignment statement. For local symbols, the format is:

symbol-namefbit-position,size] = replacement-expression
For global symbols, the format is:
symbol-namefbit-position,size] = = replacement-expression
The elements are as follows:

bit-position An integer that indicates the location relative to bit 0 at which the
overlay is to occur.

size An integer that indicates the number of bits to be overlaid.
To use numeric overlays, observe the following rules:

e The square brackets ([]) are required notation. No spaces are allowed
between the symbol name and the left bracket.

e Literal values are assumed to be decimal.
¢ The maximum length for size is 32 bits.
e Replacement expression must be a numeric expression.

e When symbol-name is either undefined or defined as a string, the result of
the overlay is a string. Otherwise, the result is an integer.

The following example defines the symbol BELL as the value 7. The low-order
byte of BELL has the binary value 00000111. By changing the 0 at offset 5 to
1 (beginning with 0, count bits from right to left), you create the binary value
00100111 (decimal value 39):

$ BELL = 7

$ BELL[5,1] = 1

$ SHOW SYMBOL BELL

BELL = 39 Hex = 00000027 Octal = 00000000047

Defining Symbols, Commands, and Expressions 12-15

Defining Symbols, Commands, and Expressions
12.8 Using Logical Values and Expressions

12.8 Using Logical Values and Expressions

The following sections describe how to use logical values and expressions.

12.8.1 Logical Operations

Some operations interpret numbers and character strings as logical data with
values as follows:

e True

A number has a logical value of true if it is odd (that is, the low-order bit is
1). A character string has a logical value of true if the first character is an
uppercase or lowercase T or Y.

e TFalse

A number has a logical value of false if it is even (that is, the low-order bit is
0). A character string has a logical value of false if the first character is not
an uppercase or lowercase T or Y.

In the following examples, DOG_COUNT is assigned the value 13. IF STATUS
means if the logical value of STATUS is true.

§ STATUS =1

$ IF STATUS THEN DOG_COUNT = 13
§ STATUS = "TRUE"

$ IF STATUS THEN DOG_COUNT = 13

12.8.2 Logical Expressions

A logical operation affects all the bits in the number being acted upon. The
values for logical expressions are integers, and the result of the expression is
an integer as well. If you specify a character string value in a logical expression,
the string is converted to an integer before the expression is evaluated.

Typically, you use logical expressions to evaluate the low-order bit of a logical
value; that is, to determine whether the value is true or false. You can specify the
following logical operations:

e NOT.

The operator .NOT. reverses the bit configuration of a logical value. A true
value becomes false and a false value becomes true.

e _AND.

The operator .AND. combines two logical values as follows:

Bit Level Entity Level

1.AND.1=1 true .AND. true = true

1.AND.0=0 true .AND. false = false

0.AND.1=0 false .AND. true = false

0.AND.0=0 false .AND. false = false
e .OR.

12-16 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.8 Using Logical Values and Expressions

The operator .OR. combines two logical values as follows:

Bit Level Entity Level

10R. 1=1 true .OR. true = true
1. 0R.0=1 true .OR. false = true
0.OR. 1=1 false .OR. true = true
0.0R.0=0 false .OR. false = false

The following example reverses a true value to false. The expression is evaluated
as —2; the value is even and is therefore false:

§ SHOW SYMBOL STATUS

STATUS = 1 Hex = 00000001 Octal = 00000000001
§ STATUS = .NOT. STATUS
$ SHOW SYMBOL STATUS

STATUS = -2 Hex = FFFFFFFE Octal = 37777777776

The following example combines a true value and a false value to produce a false

value:
$ STAT1 = "TRUE"
$ STAT2 = "FALSE"

§ STATUS = STAT1 .AND. STAT2
$ SHOW SYMBOL STATUS
STATUS = 0 Hex = 00000000 Octal = 00000000000

The following example combines a true value and a false value to produce a true

value:
$ STAT1 = "TRUE"
$ STAT2 = "FALSE"

§ STATUS = STAT1 .OR. STAT2
$ SHOW SYMBOL STATUS
STATUS = 1 Hex = 00000001 Octal = 00000000001

12.8.3 Logical Operation Results

The following tables demonstrate the results of logical operations on a bit-by-bit
basis and a number-by-number basis. In logical operations, a character string
beginning with an uppercase or lowercase T or Y is treated as the number 1; a
character string beginning with any other character is treated as the number 0.
In logical operations, odd numbers are true and even numbers and zero are false.

Defining Symbols, Commands, and Expressions 12-17

Defining Symbols, Commands, and Expressions
12.8 Using Logical Values and Expressions

Given That: The Results Are:

Bit A Bit B .NOT. A A .AND. B A .OR.B
1 1 0 1 1

1 0 0 0 1

0 1 1 0 1

0 0 1 0 0

Given That: The Results Are:

Number A Number B .NOT. A A .AND. B A .OR.B
odd odd even odd odd

odd even even even odd
even odd odd even odd
even even odd even even

12.8.4 Using Values Returned by Lexical Functions

Typically used in command procedures, lexical functions retrieve information
from the system, including information about system processes, batch and print
queues, and user processes. You can also use lexical functions to manipulate
character strings and translate logical names. When you assign a lexical function
to a symbol, the symbol is equated to the information returned by the lexical
function (for example, a number or character string). At DCL level, you can
then display that information with the DCL command SHOW SYMBOL. In a
command procedure, the information stored in the symbol can be used later in
the procedure. See Chapter 15 for additional information on lexical functions.

To use a lexical function, specify the name of the lexical function (which always
begins with F$) and its argument list. Use the following format:

F$function-name(args,...])

The argument list follows the function name with any number of intervening
spaces and tabs.

When you use a lexical function, observe the following rules:
e Enclose the argument list in parentheses.

e Within the list, specify arguments in exact order and separate them with
commas; even if you omit an optional argument, do not omit the comma.

e Ifno arguments are required, type an empty set of parentheses.

e Follow the rules for writing expressions: enclose character strings in
quotation marks; do not enclose integers, symbols, and lexical functions
in quotation marks.

Use lexical functions the same way you would use character strings, integers, and
symbols. When you use a lexical function in an expression, DCL automatically
evaluates the function and replaces the function with its return value.

In the following example, the FSLENGTH function returns the length of the
value specified as BUMBLEBEE as its argument. DCL automatically determines
the return value (9) and uses this value to evaluate the expression.

12-18 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.8 Using Logical Values and Expressions

Therefore, the result of the expression (9 + 1) is 10 and this value is assigned to
the symbol SUM:

$ SUM = FSLENGTH("BUMBLEBEE") + 1
§ SHOW SYMBOL SUM
SUM = 10 Hex = 0000000A Octal = 00000000012

Note that each lexical function returns information as either an integer or a
character string. In addition, you must specify the arguments for a lexical
function as either integer or character string expressions.

For example, the FSLENGTH function requires an argument that is a character
string expression and it returns a value that is an integer. In a previous example,
the argument "BUMBLEBEE" is a character string expression and the return
value (9) is an integer.

You can use a lexical function in any position that you can use a symbol. In
positions where symbol substitution must be forced by enclosing the symbol in
apostrophes (see Section 12.12), lexical function evaluation must be forced by
placing the lexical function within apostrophes. Lexical functions can also be
used as argument values in other lexical functions.

The following examples show different ways you can specify the argument for
the FSLENGTH function. In each example, the argument is a character string
expression.

¢ The following example shows a symbol that is used as an argument:

$ BUG = "BUMBLEBEE"
$ LEN = F$LENGTH (BUG)
$ SHOW SYMBOL LEN
LEN = 9 Hex = 00000009 Octal = 00000000011

When you use the symbol BUG as an argument, do not place quotation
marks around it. The lexical function automatically substitutes the value
"BUMBLEBEE" for BUG, determines the length, and returns the value 9.

e The following example shows an argument that contains both a symbol and a
character string:

$ BUG = "BUMBLEBEE"
$ LEN = F$LENGTH(BUG)
$ SHOW SYMBOL LEN
LEN = 9 Hex = 00000009 Octal = 00000000011
$ LEN = FSLENGTH(BUG + "S")
$ SHOW SYMBOL LEN
LEN = 10 Hex = 00000002 Octal = 00000000012

The symbol BUG is not enclosed in quotation marks but the string "S" is. The
argument must be evaluated before the FSLENGTH function can determine
the length. The value represented by the symbol BUG ("BUMBLEBEE")

is concatenated with the string "S"; the result is "BUMBLEBEES". The
F$LENGTH function determines the length of the string "BUMBLEBEES"
and returns the value 10.

e The following example uses another lexical function as the argument for the
F$LENGTH function. The F$DIRECTORY function returns the name of your
current default directory, including the square brackets. In the following
example, the current default directory is [SALMON].

$ LEN = F$LENGTH(F$DIRECTORY())
$ SHOW SYMBOL LEN
LEN = 8 Hex = 00000008 Octal = 00000000010

Defining Symbols, Commands, and Expressions 12-19

Defining Symbols, Commands, and Expressions
12.8 Using Logical Values and Expressions

Do not place quotation marks around the F$DIRECTORY function when it is
used as an argument; the function is automatically evaluated. The result of the
F$DIRECTORY function must be returned before the F$LENGTH function can
determine the length. Then, the FSLENGTH function determines the length of
your default directory, including the square brackets.

12.8.5 Order of Operations

An expression can contain any number of operations and comparisons. The
following table lists the operators in the order in which they are evaluated

if there are two or more operators in an expression. The operators are listed
from highest to lowest precedence; that is, operators at the top of the table are
performed before operators at the bottom.

Precedence Operation

Unary plus (+) and minus (-)

Multiplication (*) and division (/)

Addition (concatenation) and subtraction (reduction)
All numeric and character comparisons

Logical .NOT. operations

Logical .AND. operations

H N W ks O3

Logical .OR. operations

If an expression contains operators that have the same order of precedence, the
operations are performed from left to right. You can override the normal order of
precedence (the order in which operation and comparison would be evaluated) by
placing operations to be performed first in parentheses. Parentheses can also be
nested.

In the following example, the parentheses force the addition to be performed
before the multiplication. Without the parentheses, the multiplication is
performed first and the result is 26:

$ RESULT = 4 * (6 + 2)
$ SHOW SYMBOL RESULT
RESULT = 32 Hex = 00000020 Octal = 00000000040

12.8.6 Evaluating Data Types

The result of DCL’s evaluation of a symbol is either a character string or an
integer value. The data type (character or integer) of a symbol is determined by
the data type of the value currently assigned. The data type is not permanent: if
the value changes data type, the symbol changes data type.

An expression has either an integer or a string value, depending on the types of
values and the operators used.

In the following example, the local symbol NUM is first assigned a character
value and then converted to an integer value when assigned an integer

expression:
$ NUM = "ABC"
$ NUM =2 + 5

12-20 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.8 Using Logical Values and Expressions

The following table summarizes how DCL evaluates expressions. The first column
lists the different values and operators that an expression might contain. The
second column tells, for each case, what the entire expression is equated to.
Within the table any value stands for a string or an integer.

Resulting

Expression Value Type
Integer value Integer
String value String
Integer lexical function Integer
String lexical function String
Integer symbol Integer
String symbol String

+, —, or .NOT. any value Integer
Any value .AND. or .OR. any value Integer
String + or — string String
Integer + or — any value Integer
Any value + or — integer Integer
Any value * or / any value Integer
Any value (string comparison) any value Integer
Any value (numeric comparison) any value Integer

12.9 Converting Value Types in Expressions

All the operands in an expression must be of the same value data type before
DCL can evaluate the expression. Values either have string or integer data types.
String data includes character strings, symbols with string values, and lexical
functions that return string values. Integer data includes integers, symbols

with integer values, and lexical functions that return integer values. When an
expression contains both number and string operands, DCL either converts all
strings to integers or all integers to strings.

In general, if you use both string and integer values, the string values are
converted to integers. The only exception is when DCL performs string
comparisons. In these comparisons, integers are converted to strings.

In addition, the following lexical functions let you determine or change the value
of an expression:

e F$TYPE — Determines the current value type of a symbol
e F$INTEGER — Converts a string expression to an integer value

e F$STRING — Converts an integer expression to a string value

Defining Symbols, Commands, and Expressions 12-21

Defining Symbols, Commands, and Expressions
12.9 Converting Value Types in Expressions

12.9.1 Converting Strings to Integers

Character strings are converted to integers in the following ways:

e Strings containing numbers are converted to their integer values. For
example, the string "45" is converted to the integer 45.

e If a character string begins with T, t, Y, or y, it is converted to the integer 1.
e If a string begins with any other letter, it is converted to the integer 0.

The following table shows examples of strings converted to integer values:

String Resulting Integer
“123” 123

“12XY” 0 (False)

“Test” 1 (True)

“hello” 0 (False)

12.9.2 Converting Integers to Strings

When integers are converted to character strings, the resulting string contains
numbers that correspond to the integer value. The following table shows how
integers are converted to string values:

Integer Resulting String
123 “123”

1 “1”

0 “0”

12.10 Understanding Symbol Tables

Symbols are stored in local or global symbol tables, which are maintained by the
operating system.

12.10.1 Local Symbol Tables

DCL maintains a local symbol table for your main process and for every command
level that you create when you execute a command procedure, use the CALL
command, or submit a batch job. When you create a local symbol, DCL places the
symbol in the local symbol table for the current command level. As long as the
command level is active, DCL maintains the local symbol table for that command
level; when a command level is no longer active, its local symbol table (and all
the symbols it contains) is deleted. See Chapter 16 for more information about
processes, command procedures, and batch jobs.

In addition to the local symbols you create, a local symbol table contains eight
symbols that are maintained by DCL. These symbols, named P1, P2, and so
on through P8, are used for passing parameters to a command procedure.
Parameters passed to a command procedure are regarded as character strings.
Otherwise, P1 to P8 are defined as null character strings (""). They are stored
in the local symbol table.

12-22 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.10 Understanding Symbol Tables

12.10.2 Global Symbol Tables

DCL maintains only one global symbol table for the duration of a process and
places all global symbols in that table. In addition to the global symbols you
create, the global symbol table contains the reserved global symbols. These global
symbols give you status information on your programs and command procedures
as well as on system commands and utilities.

$STATUS Reserved Global Symbol

$STATUS is the condition code returned by the most recently executed command.
The symbol $STATUS conforms to the format of an OpenVMS operating system
message code. Applications programs can set the value of the global symbol
$STATUS by including a parameter value to the EXIT command. The system
uses the value of $STATUS to determine which message, if any, to display and
whether to continue execution at the next higher command level. The value of
the lowest three bits in $STATUS is placed in the global symbol $SEVERITY.

$SEVERITY Reserved Global Symbol

$SEVERITY is the severity level of the condition code returned by the most
recently executed command. The symbol $SEVERITY, which is equal to the
lowest three bits of $STATUS, can have the following values:

0 Warning

1 Success

2 Error

3 Information

4 Severe (fatal) error

$RESTART Reserved Global Symbol

$RESTART has the value TRUE if a batch job was restarted after it was
interrupted by a system failure. Otherwise, $RESTART has the value FALSE.

12.10.3 Symbol Table Search Order

When the command interpreter determines the value of a symbol, it searches
symbol tables in the following order:

1. The local symbol table for the current command level

2. Local symbol tables for each previous command level, searching backwards
from the current level

3. The global symbol table

12.11 Masking the Value of Symbols

The following sections describe how to mask the value symbols.

12.11.1 SET SYMBOL Command

By default, all symbols (both global and local) defined in an outer command
procedure level are accessible to inner procedure levels. However, you can isolate
the local or global symbols in a command procedure from the symbols defined

in other command procedures by using the SET SYMBOL command. The SET
SYMBOL command masks the values of local and global symbols without deleting
them. Thus, if a command procedure executes another command procedure,

you can use the same symbol names in both procedures if you specify the SET
SYMBOL command in the second procedure.

Defining Symbols, Commands, and Expressions 12-23

Defining Symbols, Commands, and Expressions
12.11 Masking the Value of Symbols

The SET SYMBOL command also controls whether DCL attempts to translate the
verb string (the first word on the command line) as a symbol before processing the
line. The default behavior is that the translation is attempted. The advantage

to changing this behavior is that a command procedure is not affected by
outer-procedure-level environments when it invokes a command.

12.11.2 Symbol Scoping State

The symbol scope is different for local and global symbols. When you exit a
procedure level to return to a previous procedure, the symbol scoping context
from the previous level is restored for both local and global symbols.

To display the current, general symbol scoping state, use the lexical function
F$ENVIRONMENT("SYMBOL_SCOPE"). To display the current verb scoping
state, use the lexical function F$ENVIRONMENT("VERB_SCOPE").

Local Symbol Scope

Local symbols are procedure-level dependent. If you define a local symbol in

an outer procedure level, the symbol can be read (but not written to) at any
inner procedure level. If you assign a value to a symbol that is local to an outer
procedure level, a new symbol is created at the current procedure level. However,
the symbol in the outer procedure level is not modified.

The SET SYMBOL/SCOPE=NOLOCAL command causes all local symbols defined
at an outer procedure level to be inaccessible to the current procedure level and
any inner levels. For example, if you specify SET SYMBOL/SCOPE=NOLOCAL
at procedure levels 2 and 4:

e Procedure level 2 can read and write to level 2 local symbols only.

e Procedure level 3 can read (but not write to) level 2 local symbols. Level 3
can also read and write to level 3 local symbols.

e Procedure level 4 can read and write to level 4 local symbols only.

Global Symbol Scope

Global symbols are procedure-level independent. The current global symbol
scoping context is applied subsequently to all procedure levels.

The /SCOPE=NOGLOBAL qualifier causes all global symbols to become
inaccessible for all subsequent commands until either the /SCOPE=GLOBAL
qualifier is specified or the procedure exits to a previous level at which global
symbols were accessible. In addition, specifying the /SCOPE=NOGLOBAL
qualifier prevents you from creating any new global symbols until the
/SCOPE=GLOBAL qualifier is specified.

12.12 Understanding Symbol Substitution

In certain contexts, DCL uses a string of characters beginning with a letter as

a symbol name or a lexical function. In these contexts, DCL tries to replace the
symbol or lexical function with its value. Replacing a symbol with its current
value is referred to as symbol substitution. If you use a symbol or lexical function
in any other context, you must use a substitution operator to request symbol
substitution.

DCL automatically evaluates symbols and lexical functions when they are used
as follows:

¢ On the right side of an assignment (=) statement

e In an argument for a lexical function

12-24 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.12 Understanding Symbol Substitution

e In a DEPOSIT, EXAMINE, IF, or WRITE command

e At the beginning of a command line when the string is not followed by an
equal sign or a colon

e In the brackets on the left side of an assignment statement when you are
performing substring substitution or numeric overlays (see Section 12.6.5)

In the following examples, the command interpreter uses any character string
beginning with an alphabetic character as a symbol name and any string
beginning with a number or with the radix operator (%) as a literal numeric
value.

¢ In the following example, COUNT is automatically recognized and evaluated
as a symbol:

$ TOTAL = COUNT + 1

e In the second line of this example, the symbol QUERY is automatically
evaluated when it is used with the FSLENGTH function. In addition, the
F$LENGTH function is automatically evaluated because it is on the right side
of an assignment statement:

S QUERY = "Have we met before?"
$ LEN = FSLENGTH(QUERY) + 5
$ SHOW SYMBOL LEN
LEN = 27 Hex = 0000001B Octal = 000033

e In the following example, the IF command uses both A and B as symbol
names and uses their current values:

$ IF A .EQ. B THEN WRITE SYS$SOUTPUT "DONE"

¢ In the second line of this example, the command interpreter automatically
replaces PDEL with its current value and executes the resulting command:

$ PDEL = "DELETE SYS$PRINT/ENTRY="
$ PDEL 181

¢ In the following example, DCL automatically defines the symbol BELL as the
value of 7 and then assigns a new value based on the bracketed values on the
left side of the assignment statement.

$ BELL = 7

$ BELL[5,1] = 1

$ SHOW SYMBOL BELL

BELL = 39 Hex = 00000027 Octal = 00000000047

12.12.1 Forced Symbol Substitution

To force substitution of a symbol that is not in one of the positions listed, enclose
the symbol with apostrophes (’), as follows:

§ TYPE ‘B’

To force substitution of a symbol within a quoted character string, precede that
symbol with two apostrophes () and follow it with a single apostrophe (') as
follows:

s T = "TYPE IIBIII

When processing a command line, DCL replaces symbols with their values in the
following order:

e Forced substitution

Defining Symbols, Commands, and Expressions 12-25

Defining Symbols, Commands, and Expressions
12.12 Understanding Symbol Substitution

From left to right, DCL replaces all strings delimited by apostrophes (or
double apostrophes for strings within quotation marks). Symbols preceded
by single apostrophes are translated iteratively; symbols preceded by double
apostrophes are not.

e Automatic substitution

From left to right, DCL evaluates each value in the command line, executing
it if it is a command and evaluating it if it is an expression. Symbols in
expressions are replaced by their assigned values; this substitution is not
iterative.

The following example demonstrates the effect of the order in which DCL
substitutes symbols. First, the symbols PN, FILE1, and NUM are defined:

$ PN = "PRINT/NOTIFY"
$ FILE1 = "[BOLIVAR]TEST CASE.TXT"
§ NUM =1

Given the preceding symbol definitions, the following commands print the file
named [BOLIVAR|TEST_CASE.TXT:

§ FILE = "'FILE’'NUM'’'"
§ PN 'FILE’

In the first command, forced substitution causes NUM to become 1, making
FILE''NUM' become FILE1. If you enter the command SHOW SYMBOL FILE,
you see that FILE =" 'FILE1- ".

The second command performs two substitutions. First, 'FILE is substituted
with 'FILE1'. 'FILE1’ also requires substitution because it is enclosed

in apostrophes ('). Automatic substitution causes FILE1 to become
[BOLIVAR]TEST_CASE.TXT. This file name is then appended to the value of
PN, which is PRINT/NOTIFY. The resulting string is as follows:

$ PRINT/NOTIFY [BOLIVAR]TEST CASE.TXT

12.12.2 Symbol Substitution Operators

You can use a substitution operator to request symbol substitution in places
where DCL does not usually perform it. DCL accepts two substitution operators:

e Apostrophe (")
¢ Ampersand (&)

The difference between these two operators is the time when the substitution
occurs. Symbols preceded by apostrophes are substituted during the first phase
of DCL command processing; symbols preceded by ampersands are substituted
during the second phase. For more information on the phases of command
processing, see Section 12.13.

The Apostrophe (')

The apostrophe (') is the most frequently used substitution operator. Use it

to request symbol substitution when you use a symbol in place of a command
parameter or qualifier. Use the apostrophes to request symbol substitution on the
right side of a string assignment (:=) statement.

To request symbol substitution within a quoted character string, place two
apostrophes before the symbol name and one apostrophe after it.

12-26 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.12 Understanding Symbol Substitution

When you use apostrophes to request symbol substitution, you cannot continue
the line (with the hyphen continuation character) in the middle of the value that
is being substituted.

In the following example, the TYPE command requires a file specification. The
apostrophes indicate that LIT is a symbol that must be evaluated. If you omit the
apostrophes, DCL looks for a file called LIT.LIS (LIS is the default file type for
the TYPE command):

$ LIT = "LIGHT.BILLS"
§ TYPE 'LIT’

In the following example, the value for NAME is substituted so that FILE
becomes REPORT.DAT:

$ NAME := REPORT

§ FILE := 'NAME'.DAT

$ SHOW SYMBOL FILE
FILE = "REPORT.DAT"

In the following example, the current value of the symbol NAME is FRED:

§ MESSAGE = "Creating file ''NAME’.DAT"
Therefore, MESSAGE has the following value:
Creating file FRED.DAT

The Ampersand (&)

The ampersand (&) is also a substitution operator that the command interpreter
recognizes. In many cases, the apostrophe and the ampersand perform the same
function. Ampersands are most effective as substitution operators when they are
used with apostrophes to affect the order in which substitution is performed.

The action the command interpreter takes when a symbol is undefined depends
on the context of the command. For more information, see Section 12.13.5.

In the first command shown here, the command interpreter replaces the symbol
NAME with its current value during the first phase of command processing
(scanning). The second command replaces the symbol NAME with its current
value during the second phase of command processing (parsing). The result is the
same, even though the methods are different:

§ TYPE 'NAME’
§ TYPE &NAME

In the following example, the ampersand (&) is used with apostrophes to affect
the substitution order:

§ P1 = "FRED.DAT"
$ COUNT = 1
§ TYPE &P'COUNT’

First, the command interpreter evaluates the symbol enclosed by apostrophes
(*COUNT?"). The result is as follows:

TYPE &P1

Second, the command interpreter evaluates the symbol preceded by an ampersand
(P1). The result is as follows:

TYPE FRED.DAT

Defining Symbols, Commands, and Expressions 12-27

Defining Symbols, Commands, and Expressions
12.12 Understanding Symbol Substitution

In the following example, apostrophes are used with both P and COUNT:
$ TYPE 'P'’'COUNT’

Working left to right, the command interpreter attempts to evaluate P. Because P
is not a defined symbol, DCL gives it a null value. Next, it evaluates the symbol
COUNT. The result is as follows:

TYPE 1

In the following example, A is equated to the current value of B:

$§ B = "MYFILE.DAT"
$ A = II&BII
$ TYPE 'A’

The ampersand (&) does not cause symbol substitution when it is used inside
quotation marks (" "). Therefore, when the assignment is made, the value of B
is not substituted. However, the TYPE command displays MYFILE.DAT. This
occurs because the command interpreter first substitutes the value &B for A.
Next, it substitutes MYFILE.DAT for the symbol &B. If you were to redefine B,
the result of the TYPE command would change accordingly.

Observe the following rules for using ampersands:
e Place the ampersand before, but not after, the symbol name.
e An ampersand must follow a delimiter (any blank or special character).

¢ You cannot use ampersands to request substitution within character strings
enclosed in quotation marks (" ").

¢ You cannot use ampersands to concatenate two or more symbol names.

¢ In general, do not use the ampersand for symbol substitution unless it is
required to translate your symbols correctly.

12.13 The Three Phases of Command Processing

The command interpreter performs symbol substitution in three phases.

12.13.1 Phase 1: Command Input Scanning

In command input scanning (also called the lexical input phase), the command
interpreter evaluates symbols preceded by apostrophes from left to right. Symbols
that are preceded by single apostrophes are translated iteratively, as described in
Phase 1 Substitution. Symbols preceded by two apostrophes are not translated
iteratively.

12.13.2 Phase 2: Command Parsing

In the command parsing phase:

¢ The command interpreter analyzes the command line. It checks the first item
on the line to see if it is a symbol. If it is, it is evaluated.

¢ The command interpreter evaluates symbols preceded by ampersands from
left to right.

Symbol substitution during this phase is not iterative.

12-28 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.13 The Three Phases of Command Processing

12.13.3 Phase 3: Expression Evaluation

During the expression evaluation phase:

¢ The command interpreter evaluates symbols that are preceded by the
DEPOSIT, EXAMINE, IF, and WRITE commands.

¢ The command interpreter evaluates symbols within lexical functions.
Symbol substitution during this phase is not iterative.

Note that the command interpreter does not scan any lines that are read as
input data by commands or programs executed within a command procedure.
Therefore, the command interpreter does not perform symbol substitution within
these data lines.

In the following example, the program AVERAGE reads 55, 57, and 9999 from
SYS$INPUT (the command input stream). These data lines are never read by
the command interpreter. If you enter symbol names as input, they are not
evaluated:

$ RUN AVERAGE
55

57

9999

12.13.4 Repetitive and Iterative Substitution

Symbol substitution can be repetitive or iterative:

e Repetitive substitution results when more than one type of substitution
occurs in a single command line.

e Iterative substitution occurs when the command interpreter examines a
substituted value to see if the value itself is a symbol. Iterative substitution
occurs only when symbols preceded by apostrophes are translated during the
first phase of command processing.

Phase 1 Substitution

When you use an apostrophe () to request symbol substitution, the command
interpreter performs iterative substitution during the first phase of command
processing.

Substitution using apostrophes is not iterative when a symbol is included in a
quoted character string.

In the following example, the substitution is iterative:

$ MAC = n5u
$ A = IIIMACIU
$ B ="'A'

$ SHOW SYMBOL B
B =5 Hex = 00000005 Octal = 00000000005

After the statement B = A’ the resulting value of the symbol B is 5 because:

e The symbol name A is enclosed in apostrophes, so it is replaced with its
current value (- MAC).

e Because this value ("MAC") is also enclosed in apostrophes, the command
interpreter replaces MAC with its current value (5).

Defining Symbols, Commands, and Expressions 12-29

Defining Symbols, Commands, and Expressions
12.13 The Three Phases of Command Processing

e Because this value (5) has no apostrophes, the first phase of command
processing is complete. No further substitution is required during the second
or third phases. Therefore, 5 is the final value given to the symbol name B.

Note, however, what happens when you include A in a quoted character string:

$ B = "rrprn
$ SHOW SYMBOL B
B = "'MAC'"

In this case, B has the value 'MAC'. The symbol name A is replaced only once
because substitution is not iterative within quoted character strings.

Phase 2 Substitution

The command interpreter performs iterative substitution automatically only
when an apostrophe is in the command line. In some cases, you may want to nest
command synonym definitions.

In the following example, when EXEC is processed, the command interpreter
performs substitution only once:

$ MAC = "TYPE A.B"
$ EXEC = "'MAC'"
$ EXEC

The result is the string *MAC'. The command interpreter displays an error
message because it does not recognize MAC as a command. This error occurs
because during the first phase of command processing, no substitution is
performed (the string EXEC is not delimited by apostrophes). During the second
phase, the string 'MAC-" is substituted for EXEC because EXEC is the first value
on the command line. This substitution is not iterative. Therefore, even though
"MAC" is delimited by apostrophes, no additional substitution is performed.

To use the command synonym EXEC correctly, enclose it in apostrophes:
$ 'EXEC’

In this case, the symbol EXEC is evaluated during the first phase of command
processing. Because this substitution is iterative, (MAC") is also evaluated and
the string TYPE A.B is substituted.

Phase 3 Substitution

When the command interpreter analyzes an expression in a command, any
symbols specified in the expression are replaced only once. You can, however,
force iterative substitution by using an apostrophe or an ampersand in the
expression. When you force iteration in this way, you must remember the
following:

e The command interpreter performs all substitutions requested by apostrophes
and ampersands before the command string is executed.

e Commands that automatically perform symbol substitution do so after the
first and second phases of command processing.

Note, however, that if substitution does not result in a valid symbol name, the
command fails.

The following example shows iterative substitution in an IF command:

$ P1 = "FRED.DAT"
$ COUNT = 1
$ IF P'COUNT' .EQS. "" THEN GOTO END

12-30 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions
12.13 The Three Phases of Command Processing

When the command interpreter scans this line, it replaces the symbol COUNT
with its current value. The result is as follows:

IF P1 .EQS. "" THEN GOTO END

Because this string has no apostrophes, the command interpreter does not
perform any more substitution. However, when the IF command executes, it
automatically evaluates the symbol name P1 and replaces it with its current
value.

In the following example, the symbol name FILENAME is invalid:

$ FILENAME = "A.B"
§ IF 'FILENAME’ .NES. "" THEN TYPE 'FILENAME’

The command interpreter replaces the symbol FILENAME with its current value
(A.B). The result is as follows:

IF A.B .NES. "" THEN TYPE A.B

When the IF command executes the command line, A.B is not a valid symbol
and an error occurs. For this IF command to be processed correctly, omit the
apostrophes, as follows:

§ IF FILENAME .NES. "" THEN TYPE 'FILENAME’

12.13.5 Undefined Symbols

If a symbol is not defined when it is used in a command line, the command
interpreter either displays an error message or replaces the symbol with a null
string, depending on the context. The rules are as follows:

¢ During the first and second phases of command processing, the command
interpreter replaces all undefined symbols that are preceded by apostrophes
or ampersands with null strings.

¢ During the third phase of command processing, if the command interpreter
finds an undefined symbol, it displays a warning message and does not finish
processing.

The following example shows how the command interpreter processes an
undefined symbol that is preceded by an apostrophe:

$ FILE := MYFILE'FILE TYPE'

$ SHOW SYMBOL FILE
FILE = "MYFILE"

$ PRINT 'FILE’

When the symbol FILE is created, the symbol FILE_TYPE is replaced with its
current value. If FILE_TYPE is not defined, the command interpreter replaces
FILE_TYPE with a null string. The absence of a file type in the file specification
causes the PRINT command to use the default file type .LIS. Thus, the file
specification is interpreted as MYFILE.LIS.

In the following example, the expression is evaluated during the third phase of
command processing:

$A=1
§C=A+8B
$DCL-W-UNDSYM, undefined symbol - check validity and spelling

The symbol B is undefined, so the command interpreter cannot evaluate the
expression.

Defining Symbols, Commands, and Expressions 12-31

Defining Symbols, Commands, and Expressions
12.14 An Alternative to Using Symbols: Automatic Foreign Commands

12.14 An Alternative to Using Symbols: Automatic Foreign
Commands

You can also invoke a command procedure (.COM file type) or executable image
(.EXE file type) from DCL level without defining a symbol for that procedure.
Using automatic foreign commands, DCL can search a specific set of directories
for a command procedure or executable image and run it automatically.

When you enter a command verb that is not a DCL symbol and that is not in the
DCL command tables, the system usually displays the following message:

DCL-W-IVVERB, unrecognized command verb - check validity and spelling

However, if the logical name DCL$PATH is defined (and is not blank), DCL
instead performs an RMS $SEARCH for any file that contains the invalid verb in
its file name and DCL$PATH:.* as the default file specification.

If DCL finds a .COM or .EXE file, DCL will automatically execute that file with
the rest of the command line as its parameters. (This behavior is similar to the
PATH options found in DOS, UNIX, and other operating systems.)

In the following example, the DCL symbol SYSGEN is no longer needed. DCL
looks in the SYS$SYSTEM directory and finds SYSGEN.EXE. DCL acts like the
symbol "SYSGEN" was defined as "SYSSYSTEM:SYSGEN" which causes the
SYSGEN image to be activated as a foreign command.

$ SYSGEN

$DCL-W-IVVERB, unrecognized command verb - check validity and spelling
\SYSGEN\

$ DEFINE DCL$PATH SYSSSYSTEM,SYSSDISK:[]F0O

$ SYSGEN SHOW MAXPROCESSCNT

Parameter Name Current Default Min. Max. Unit Dynamic

MAXPROCESSCNT 157 32 12 8192 Processes

In the following example, SS does not need to be defined as "@SS.COM" because
DCL will automatically search the SYS$SYSTEM directory for SS.COM or
SS.EXE. If that fails, DCL will search the current directory for SS.COM or
SS.EXE.

$ TYPE SS.COM

$ SHOW SYMBOL/LOCAL/ALL

$ EXIT

$ SS "This is a parameter"
Pl = "This is a parameter"
P2 nn
P3
P4
P5
P6
P7
P8

$ SS.EXE "This is a parameter"
P1 " EXE"
P2 = "This is a parameter"
p3 ="
P4
P5
P6
P7
P8

12-32 Defining Symbols, Commands, and Expressions

Defining Symbols, Commands, and Expressions

12.14 An Alternative to Using Symbols: Automatic Foreign Commands

In the example, DCL locates SS.COM and acts like "SS" had been a symbol
defined as "@SS.COM". The command procedure is activated with the rest of the
command line parsed as parameters. Note that "SS.EXE" does not invoke the
image SS.EXE, but instead invokes SS.COM with two parameters, the first being
the text string ".EXE". This is consistent with the way command parsing and
symbol substitution is performed by the OpenVMS operating system.

12.14.1 Using Automatic Foreign Commands
Note the following:

The logical name DCL$PATH can be a search-list type logical.

Only the node, device, and directory portions of each translation of the logical
name are used.

Normal logical precedence takes place. Users can override a system definition
of DCL$PATH by defining their own. If a system definition exists and the
user does not want the feature, it can be turned off by overriding the logical
with a definition of " ".

The set of valid characters for DCL verbs and symbol names differs from
the set of valid characters for file names. For example, DCL symbols cannot
contain a hyphen (-) or start with a dollar sign ($). If the image or procedure
you wish to execute is not valid as a DCL symbol name, it cannot be directly
invoked by this new feature.

DCL has not parsed the command. It is up to the image being invoked to
perform its own command parsing. For C programs, use the "argc" and "argv"
parameters to the main() routine. For programs written in other languages,
call LIB$GET _FOREIGN to obtain the entire command line, which must then
be parsed by the program.

If a directory contains both a command procedure and an executable image,
whichever file is found first will be invoked. On OpenVMS systems,
directories are in alphabetical order, so a ".COM" file will be found before

a ".EXE" file. A network file specification in the DCL$PATH logical pointing
to a node running some other operating systems could result in a ".EXE" file
being found before a ".COM" file.

Because DCL performs the search with the invalid verb as the file
specification and "DCL$PATH:.*" as the default file specification, it is possible
to define a logical in such a way that a specific file is found. For example,

if you define the logical FOO to be "FOO.EXE", and type "FOO" at the DCL
prompt, you will never invoke FOO.COM, only FOO.EXE.

Caution

If you are a privileged user and set your default device and directory to
other user accounts, you should not place "SYS$DISK:[]" in the definition
of the DCL$PATH logical name. Doing so will cause DCL to search the
current directory, where a typographical error or poor placement of the
translation within the search list could cause user images in the current
directory to be found and mistakenly invoked with privileges.

Defining Symbols, Commands, and Expressions 12-33

Defining Symbols, Commands, and Expressions
12.14 An Alternative to Using Symbols: Automatic Foreign Commands

12.14.2 Automatic Foreign Command Restrictions

Note the following restrictions:

¢ You cannot use automatic foreign commands on any versions of the OpenVMS
operating system prior to Version 6.2.

e Because new verbs can be added to the DCL command table at any time,
a command that works with automatic foreign commands one day may not
work at a later date.

e The automatic foreign commands feature does not work in all cases. In the
following example, DCL (which looks only at the first four characters of any
verb) finds a match with the SHOW verb (the first four letters of SHOWME)
and executes the SHOW USERS command instead of the SHOWME.COM
procedure. If you defined SHOWME as a DCL symbol, then the SHOWME
command would invoke SHOWME.COM.

$ DEFINE DCL$PATH SYSS$SYSTEM,SYSSDISK:[]FOO
$ TYPE SHOWME.COM
$ SHOW SYMBOL P1
$ EXIT
$ SHOWME USERS
OpenVMS User Processes at MARCH 2, 1999 01:40 PM
Total number of users = 1, number of processes = 11

Username Interactive Subprocess Batch
RSMITH 9 2

12-34 Defining Symbols, Commands, and Expressions

13

Introduction to Command Procedures

A command procedure is a file that contains DCL commands and data lines
used by DCL commands. Some simple command procedures might contain
only one or two DCL commands; complex command procedures can function as
sophisticated computer programs. When a command procedure runs, the DCL
interpreter reads the file and executes the commands it contains.

If your system manager has set up a system login command procedure, it
is executed whenever you log in. A system login command procedure lets your
system manager ensure that certain commands are always executed when you
and other users on the system log in.

After running the system login command procedure, the system runs your
personal login command procedure, if one exists. Your personal login
command procedure lets you customize your computing environment. The
commands contained in it are executed every time you log in. When you log

in, the system automatically executes up to two login command procedures (the
systemwide login command procedure and your own login command procedure, if
it exists).

The person who sets up your account might have placed a login command
procedure in your top-level directory. If a login command procedure is not in your
top-level directory, you can create one yourself. Name it LOGIN.COM and place
it in your top-level directory. Unless your system manager tells you otherwise,
the LOGIN.COM file that you create will run whenever you log in.

This chapter is divided into major sections that include the following:

Basic information for writing command procedures
Step-by-step procedure for writing command procedures
Executing command procedures

Exiting, interrupting, and error handling command procedures

Login command procedures

There are two types of DCL command procedures:

Simple
Execute a series of DCL commands in the order in which they are written
Complex

Perform program-like functions

Introduction to Command Procedures 13-1

Introduction to Command Procedures
13.1 Basic Information for Writing Command Procedures

13.1 Basic Information for Writing Command Procedures
There are two ways to create command procedures:
e Use a text editor such as EVE to create a new file
e Use the DCL command CREATE to create a new file

The file that you create can contain command lines, labels, comments, conditional
statements, and variables.

13.1.1 Default File Type

The default file type for command procedures is .COM. If you specify the .COM
file type when you name a command procedure, you can execute the procedure by
specifying the file name only. The SUBMIT and execute procedure (@) commands
assume the file type is .COM unless you specify otherwise.

13.1.2 Writing Commands

The following are suggestions for including commands in command procedures:

e Use complete names for commands and qualifiers. This will help to ensure
that your command procedure is upwardly compatible to future releases of
OpenVMS.

e Use continuation lines to make a procedure easier to read. Note that
continuation lines do not begin with dollar signs. For example:

$ PRINT LAB.DAT -
/AFTER=17:00 -
/COPIES=20 -
/NAME="COMGUIDE"

13.1.3 Writing Command Lines

When writing command lines:

e You must use a dollar sign ($) to begin each line containing a command,
comment, or label.

e If you want to include a line containing data, omit the dollar sign ($) on that
line.

e If you need to include a data line that begins with a dollar sign ($), use the
DCL commands DECK and EOD. For example:

$ | Everything between the commands DECK and EOD
$ | is written to the file WEATHER.COM
$!

$ CREATE WEATHER.COM

$ DECK

$ FORTRAN SUMMER

$ LINK SUMMER

$ RUN SUMMER

$ EOD

$!

$ | Now execute WEATHER.COM

$ @WEATHER

$ EXIT

Note that command lines that do not begin with a dollar sign might be correctly
interpreted by DCL, but Compaq strongly recommends that any DCL command
line start with a dollar sign.

13-2 Introduction to Command Procedures

Introduction to Command Procedures
13.2 Using Labels in Command Lines

13.2 Using Labels in Command Lines

Labels are used in DCL command procedures to mark the beginning of loops,
sections of code, or subroutines. Note the following rules when using labels:

e Put labels on separate lines to make loops, subroutines, and conditional code
more visible.

e Use label names that contain fewer than 255 characters and no blank spaces.

e Differentiate labels from commands by placing labels immediately after the
dollar sign ($) and by preceding commands with spaces.

e End each label with a colon.

¢ You cannot delete labels.

13.2.1 Labels in Local Symbol Tables

As the command interpreter encounters labels, it enters them in a special section
of the local symbol table. The amount of space available for labels is limited. If a
command procedure uses many symbols and contains many labels, the command
interpreter might run out of symbol table space and issue an error message. If
this occurs, include the DELETE/SYMBOL command in your procedure to delete
symbols as they are no longer needed. (Note, however, that you cannot delete
labels.)

13.2.2 Duplicate Labels

If a command procedure uses the same label more than once, the new definition
replaces the existing one in the local symbol table.

When duplicate labels exist, the GOTO command transfers control to the label
that DCL has processed most recently. The GOTO command also uses the
following rules when processing duplicate labels:

e If all duplicate labels precede the GOTO command, control transfers to the
label nearest the GOTO command.

e If duplicate labels precede and follow the GOTO command, control transfers
to the preceding label nearest the GOTO command.

e If all duplicate labels follow the GOTO command, control transfers to the
label nearest the GOTO command.

13.3 Using Comments in Command Procedures

It is good programming practice to include comments in command procedures.
Comments can be helpful when updating or troubleshooting the command
procedure. Comments can be used as follows:

e At the beginning of a procedure to describe the procedure and the parameters
passed to it.

e At the beginning of each block of commands to describe that section of the
procedure.

e To separate command sequences with lines containing both a dollar sign
and an exclamation point ($!). This makes it easier to see the outline of
the command procedure. If you insert blank lines, the command interpreter
interprets them as data lines and produces a message warning you that the
data lines were ignored.

Introduction to Command Procedures 13-3

Introduction to Command Procedures
13.3 Using Comments in Command Procedures

The following rules apply when writing comments in command procedures:

e Use an exclamation point (!) to indicate the beginning of a comment; the
command interpreter ignores all text to the right of an exclamation point
when the command procedure executes.

e To include a literal exclamation point in a command line, enclose the
exclamation point in quotation marks (" ").

13.4 How to Write Command Procedures

Before you begin writing a command procedure, perform the tasks interactively
that the command procedure will execute. As you type the necessary commands,
note any variables and conditionals that are used, and any iterations that occur.

The following sections contain the steps to write a simple command procedure.
The example used throughout these sections is a command procedure called
CLEANUP.COM. This procedure can be used to clean up a directory.

Definitions
e Variable

Data that changes each time you perform a task.
¢ Conditional

Any command or set of commands that can vary and therefore must be tested
each time you perform the task.

e Jteration

Any command or set of commands that are performed repetitively until a
condition is met.

13.5 Steps for Writing Command Procedures

Follow these steps to write a command procedure:

Step Task

Design the command procedure.
Assign variables and test conditionals.
Add loops.

End the command procedure.

Test and debug the program logic.
Add cleanup tasks.

<N O Ok W N

Finish the procedure.

13-4 Introduction to Command Procedures

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

13.5.1 Step 1: Design the Command Procedure

Follow these steps to design a command procedure:

Step Task

1 Decide which tasks your procedure will perform.

2 Determine any variables your command procedure will use and how they will be
loaded.

3 Determine what conditionals the command procedure requires and how you will
test them.

4 Decide how you will exit from the command procedure.

There are certain commands that are usually executed during clean up
operations. The following table lists those commands and the tasks that they

perform:

Command Task Performed

DIRECTORY Displays the contents of the current directory
TYPE filespec Displays a file

PURGE filespec Purges a file

DELETE filespec Deletes a file

COPY filespec new-filespec Copies a file

Variables

Any data that changes when you perform a task is a variable. If you create or
delete files in your directory, the file names will be different each time you clean
your directory; therefore, the file names in CLEANUP.COM are variables.

Conditionals

Any command that must be tested each time you execute a command procedure
is considered conditional. Because any or all of the commands in CLEANUP.COM
might be executed, depending on the operation you need to perform, each
command is conditional.

Design Decisions

After you have determined what variables and conditionals you will use in
the CLEANUP.COM command procedure, you must decide how to load the
variables, test the conditionals, and exit from the command procedure. For the
CLEANUP.COM command procedure, the following decisions have been made:

Task How Accomplished
Load variables The command procedure gets the file names from the terminal.
Test conditionals The command procedure:

e Gets a command name from the terminal and executes the
appropriate statements based on the command name.

e Ensures that the first two characters of each command
name are read to differentiate between the DELETE and
DIRECTORY commands.

Introduction to Command Procedures 13-5

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

Task How Accomplished

Exit from loop You must enter the EXIT command to exit from the loop.

To make command procedures easier to understand and maintain, write
statements so the procedures execute from the first command to the last
command.

13.5.2 Step 2: Assign Variables and Test Conditionals

There are many ways to assign values to variables. In this section, we will
discuss using the INQUIRE command. For additional methods, see Chapter 14.

Follow these steps to assign values to variables and test conditionals:

Step Task

Assign values to variables using the INQUIRE command.

2 Determine which action should be taken.

3 Test the conditional using IF and THEN statements.

4 Write program stubs and insert them into the command procedure as placeholders
for commands.

5 Write error messages, if necessary.

13.5.2.1 Using the INQUIRE Command

The INQUIRE command prompts for a value, reads the value from the terminal,
and assigns the value to a symbol.

By default, the INQUIRE command:

e Converts responses to uppercase

e Replaces multiple blanks and tabs with a single space
e Removes leading and trailing spaces

e Performs apostrophe substitutions if the response includes symbols or lexical
functions

The following command line is used in CLEANUP.COM to prompt the user for
a command name. The INQUIRE command equates the value entered to the
symbol COMMAND.

$ INQUIRE COMMAND-
"Enter command (DELETE, DIRECTORY, PRINT, PURGE, TYPE)"

13.5.2.2 Preserving Literal Characters

13-6

To preserve lowercase characters, multiple spaces and tabs when using the
INQUIRE command, enclose your response in quotation marks (" "). To include
quotation marks in your response, enclose the quoted text in quotation marks
(Hlltext"ll).

Introduction to Command Procedures

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

13.5.2.3 Testing Conditionals Using IF and THEN

After the INQUIRE command prompts for a variable, the command procedure
must include a statement that determines what action is to be taken. For
example, to determine which command to execute, you must include statements
in the command procedure that check the command entered by the user against
each possible command.

To test whether a condition is true, use the IF and THEN commands. The
following table shows the possibilities that you must check for in CLEANUP.COM:

If... Then...
a match is found, execute the command.
a match is not found, go on to the next command.

no match is found after all valid output an error message.
commands have been checked,

13.5.2.4 Writing Program Stubs
A program stub is a temporary section of code that you use in your procedure
while you test the design. Usually, a program stub outputs a message stating the
function that it is replacing. After the overall design works correctly, replace each
stub with the correct coding.

Example: Assigning Variables and Testing Conditionals
The following example shows how to assign variables and test conditionals:

$ INQUIRE COMMAND-
"Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE)"
$ IF COMMAND .EQS. "EXIT" THEN EXIT

$!

$! Execute if user entered DELETE

$ DELETE:

S IF COMMAND .NES "DELETE" THEN GOTO DIRECTORY ‘) 6)
S WRITE SYSSOUTPUT "This is the DELETE section." (3]

$! Execute if user entered DIRECTORY

$ DIRECTORY: (4]

$ IF COMMAND .NES "DIRECTORY" THEN GOTO PRINT
$ WRITE SYSSOUTPUT "This is the DIRECTORY section."”

$! Execute if user entered TYPE

$ TYPE:

S IF COMMAND .NES "TYPE" THEN GOTO ERROR (5]
WRITE SYSSOUTPUT "This is the TYPE section."

As you examine the example, note the following:

O This IF statement tests to see if the command that the user entered
(COMMAND) is equal to "DELETE". If COMMAND is equal to DELETE,
then the command procedure executes the next command.

Introduction to Command Procedures 13-7

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

® This statement also includes a GOTO command. A GOTO command is used
to change the flow of execution to a label in the procedure. In this case, the
procedure will go to the DIRECTORY label if COMMAND is not equal to
DELETE.

© This statement is a program stub. After the logic of the command procedure
is tested, this line will be replaced with the actual commands required for a
DELETE operation.

O This is the label for the DIRECTORY subroutine. Note that the labels that
identify each command block are the same as the commands on the option
list. This allows you to use the symbol COMMAND (which is equated to the
user’s request) in the GOTO statement.

O This IF statement tests to see if the "TYPE" command was entered. If "TYPE"
was entered, the procedure will output "This is the TYPE section." However,
because this is the last command you will be testing for, if the command
entered is not "TYPE," the program will display an error message.

@® If all commands have been tested and no valid command name is found, then
the program will output, "You have entered an invalid command."

13.5.3 Step 3: Add Loops

13-8

A loop is a group of statements that execute repeatedly until a condition is met.
A loop works as follows:

1. Obtains a value from user input
2. Processes the command
3. Repeats the process until the user exits the command procedure

To write a loop, follow this procedure:

Step Action

1 Begin the loop with a label.

2 Test a variable to determine whether you need to execute the commands in the
loop.

3 If you do not need to execute the loop, go to the end of the loop.

If you need to execute the loop, perform the commands in the body of the loop, then
return to the beginning of the loop.

5 End the loop.

The following example shows the usage of loops in the CLEANUP.COM command
procedure:

Introduction to Command Procedures

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

$ GET COM LOOP:

S INQUIRE COMMAND-

$ "Enter command (DELETE, DIRECTORY. EXIT, PRINT, PURGE, TYPE)"
$ IF COMMAND .EQS. "EXIT" THEN GOTO END_LOOP

$!

$! Execute if user entered DELETE

$ DELETE:

S IF COMMAND .NES. "DELETE" THEN GOTO DIRECTORY

$ WRITE SYSSOUTPUT "This is the DELETE section."

$ GOTO GET_COM_LOOP

$ END LOOP:

$ “WRITE SYS$OUTPUT "Directory ’’F$DIRECTORY()’ has been cleaned"
$ EXIT

Once a command executes, control is passed back to the GET_COM_LOOP label
until a user enters the EXIT command. When an EXIT command is entered, the
procedure outputs a message stating that the directory has been cleaned.

13.5.4 Step 4: End the Command Procedure

To end a command procedure, follow this procedure:

Step Action
1 Decide where you might need to exit or quit from the command procedure.
2 Place EXIT or STOP commands as appropriate.

13.5.4.1 Using the EXIT Command
You can put an EXIT command in your command procedure to:

e Ensure that a procedure does not execute certain lines
e End procedures that have more than one execution path
e End a command procedure

The following is an example of using an EXIT command to avoid executing an
error handling routine that is located at the end of a procedure:

$ EXIT ! End of normal execution path
S ERROR_ROUTINE

The following is an example of using the EXIT command to end a procedure that
has more than one execution path:

Introduction to Command Procedures 13-9

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

$ START:

$ IF P1 .EQS. "TAPE" .OR. Pl .EQS. "DISK" THEN GOTO 'Pl’
$ INQUIRE P1 "Enter device (TAPE or DISK)"

$ GOTO START

$

TAPE: !Process tape files

S EXIT
$ DISK: ! Process disk files

$ EXIT

The commands following each of the labels (TAPE and DISK) provide different
paths though the procedure. The EXIT command before the DISK label ensures
that the commands after the DISK label do not execute unless the procedure
branches explicitly to the label.

The EXIT command is not required at the end of procedures because the end-
of-file of the procedure causes an implicit EXIT command. However, Compaq
recommends use of the EXIT command.

13.5.4.2 Using the STOP Command

You can use the STOP command in a command procedure to ensure that the
procedure terminates if a severe error occurs. If the STOP command is in a
command procedure that is executed interactively, control is returned to the DCL
level. If a command procedure is being executed in batch mode, the batch job
terminates.

This command line tells the procedure to stop if a severe error occurs:

$ ON SEVERE_ERROR THEN STOP

13.5.5 Step 5: Test and Debug the Program Logic

13-10

Once you have written the code using program stubs, you should test the overall
logic of the command procedure. You should test all possible paths of execution.

Follow this procedure to test and debug command procedures:

Step Action

1 Test the program logic by entering each valid command in the command procedure.

2 Continue testing the program logic by entering an invalid command.

3 Finish testing the program logic by exiting from the command procedure using the
EXIT command.

4 If necessary, debug the program using the SET VERIFY, SET PREFIX, or SHOW

SYMBOL commands.

The following example shows how to test the command procedure by entering and
executing every possible command, an invalid command, and then exiting:

Introduction to Command Procedures

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

$ @CLEANUP
Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE): DELETE
This is the DELETE section.
Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE): DIRECTORY
This is the DIRECTORY section.

Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE): PRINF

You have entered an invalid command.

Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE): EXIT
$

13.5.5.1 Debugging Command Procedures
You can use the following commands to help debug command procedures:

e SET VERIFY

Displays each line before it is executed. When an error occurs with
verification set, you see the error and the line that generated the error.
You can use keywords with the SET VERIFY command to indicate that only
command lines or data lines are to be verified.

The SET VERIFY command remains in effect until you log out, you enter
the SET NOVERIFY command, or you use the F§VERIFY lexical function
to change the verification setting. (Chapter 15 contains more information on
changing verification settings.)

e SET PREFIX

If verification is in effect, you can also use the DCL command SET PREFIX to
time-stamp a procedure log file by prefixing each command line with the time
it is executed.

e SHOW SYMBOL

The SHOW SYMBOL command can be used to determine how symbols in the
procedure are defined.

Example: Debugging Using the SET VERIFY Command

In the following example, the label END_LOP is spelled incorrectly. You can see
exactly where the error is because verification is turned on:

$ SET VERIFY
$ @CLEAN
$ GET COM LOOP:
$ INQUIRE COMMAND -
"Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE)"
Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE): EXIT
$ IF COMMAND .EQS. "EXIT" THEN GOTO END LOP
$DCL-W-USGOTO, target of GOTO not found -
check spelling and presence of label

To correct the error, change the label to END_LOOP.

Example: Debugging Using the SET PREFIX Command
The following example illustrates the use of time-stamping:

SET VERIFY
@TEST
SET DEFAULT SYS$LOGIN
SHOW DEFAULT
USERS : [SMYTHE |
SET PREFIX "(!5%T) "
@TEST
(17:52) $ SET DEFAULT SYS$LOGIN
(17:52) $ SHOW DEFAULT
USERS : [SMYTHE |

2 U

Introduction to Command Procedures 13-11

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

Example: Debugging Using the SHOW SYMBOL Command

The following example shows how the SHOW SYMBOL command is used to
determine how the symbol COMMAND is defined:

§ SET VERIFY
$ @CLEAN
$ GET_COM_LOOP:
$ INQUIRE COMMAND -
"ENTER COMMAND (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE)"
ENTER COMMAND (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE): EXIT
§ SHOW SYMBOL COMMAND
COMMAND = "EXIT"
$ IF COMMAND .EQS. "exit" THEN GOTO END_LOOP

The SHOW SYMBOL command reveals that the symbol COMMAND has the
value "EXIT". Because the INQUIRE command automatically converts input

to uppercase and the IF statement that tests the command uses lowercase
characters in the string "exit", DCL determines that the strings are not equal. To
correct the error, make sure that the quoted string in the IF statement is written
in capital letters. The rest of the string can use either uppercase or lowercase
letters.

13.5.5.2 Enabling Verification During Execution

You can also interrupt a command procedure while it is executing to enable
verification. As long as the command procedure does not contain the SET
VERIFY command or a Ctrl/Y key sequence, you can enable verification by
following these steps:

Step Action

1 Press Ctrl/Y to interrupt execution.

2 Enter the SET VERIFY command.

3 Enter the CONTINUE command to continue execution of the command procedure

(with verification enabled).

13.5.6 Step 6: Add Cleanup Tasks

13-12

In general, execution of a command procedure should not change the user’s
process state. Therefore, a command procedure should include a set of commands
that return the process to its original state. This set of commands is usually part
of a subroutine that is labeled "CLEAN_UP". Common cleanup operations include
closing files and resetting the default device and directory.

Follow this procedure to add cleanup tasks to your command procedure:

Step Task

Begin the cleanup subroutine with a label, such as CLEAN_UP.

2 Test for any open files using the F$GETJPI lexical function.
3 Delete any temporary or extraneous files using the DELETE or PURGE command.
4 If you have changed any defaults (such as the device or directory), restore them to

their original state using the SET DEFAULT command.

Introduction to Command Procedures

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

Step Task

5 Include an ON CONTROL_Y statement to ensure that the cleanup operations are
performed.

13.5.6.1 Closing Files

If you have any open files, make sure that they are closed before the procedure
exits. You can use the lexical function F§GETJPI to examine the remaining open
file quota (FILCNT) for the process. If FILCNT is the same at the beginning and
end of the command procedure, you know that no files have been left open.

These are the commands that you would use to warn a user that a file has been

left open:
$ FIL COUNT = FSGETJPI ("","FILCNT")
§ IF FILCNT .NE. F$GETJPI ("", "FILCNT") THEN-

WRITE SYSSOUTPUT "WARNING -- file left open)

13.5.6.2 Deleting Temporary or Extraneous Files
If you have created temporary files, delete them. In general, if you have updated
any files, you should purge them to delete the previous copies. Before you delete
files you have not created, make sure you want to delete them. For example, if
you have updated a file that contains crucial data, you might want to make the
purging operation optional.

If you change the default device, the directory, or both, reset the original defaults
before the command procedure exits. To save the name of the original default
directory, use the DEFAULT keyword of the FSENVIRONMENT lexical function.
At the end of the command procedure, include a SET DEFAULT command that
restores the saved device and directory.

The command lines shown in this example save and restore the device and
directory defaults:

$ SAV_DEFAULT = FSENVIRONMENT ("DEFAULT")

$ SET DEFAULT "SAV_DEFAULT'

13.5.6.3 Commonly Changed Process Characteristics

The following table lists other commonly changed process characteristics, the
lexical functions used to save them, and the lexical function or command used to
restore them:

Introduction to Command Procedures 13-13

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

Lexical Function Lexical Function
Characteristic Used to Save Used to Restore
DCL prompt F$ENVIRONMENT SET PROMPT
Default protection F$ENVIRONMENT SET PROTECTION/DEFAULT
Privileges F$SETPRV F$SETPRV or SET PROCESS/PRIVILEGES
Control characters F$ENVIRONMENT SET CONTROL
Verification F$VERIFY F$VERIFY
Message format F$ENVIRONMENT SET MESSAGE
Key state F$ENVIRONMENT SET KEY

For complete descriptions of these lexical functions, refer to the OpenVMS DCL
Dictionary.

13.5.6.4 Ensuring Cleanup Operations Are Performed

To ensure that cleanup operations are performed even if the command procedure
is aborted, begin each command level in the command procedure with the
following statement:

S ON CONTROL_Y THEN GOTO CLEANUP
For additional information on using the ON CONTROL_Y command, see
Chapter 14.

13.5.7 Step 7: Complete the Command Procedure

When your general design works correctly, follow these steps to complete your
command procedure:

Step Task

Substitute commands for the first program stub in the command procedure.

2 Test the command procedure to make sure that the new commands work properly.
3 Debug the command procedure, if necessary.
4 When the first program stub works, move to the next one, and so on, until all

program stubs have been replaced.

Example: Replacing a Program Stub with Commands
The following example shows the code for the TYPE section of CLEANUP.COM:

$! Execute if user entered TYPE

$! TYPE:

$ IF COMMAND .NES. "TYPE THEN GOTO ERROR
$ INQUIRE FILE "File to type"

$ TYPE 'FILE’

$ GOTO GET_COM_LOOP

This would replace the existing code:

§ WRITE SYSSOUTPUT "This is the TYPE section."

13-14 Introduction to Command Procedures

Introduction to Command Procedures
13.5 Steps for Writing Command Procedures

Example: CLEANUP.COM Command Procedure
Following is an example of the completed CLEANUP.COM command procedure:

$ GET COM LOOP:
$ TINQUIRE COMMAND -
"Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE)"
IF COMMAND .EQS. "EXIT" THEN GOTO END_ LOOP
|
|Execute if user entered DELETE
DELETE:
IF COMMAND .NES. "DELETE" THEN GOTO DIRECTORY
INQUIRE FILE "File to delete? "
DELETE 'FILE’
GOTO GET_COM_LOOP

|Execute if user entered DIRECTORY

DIRECTORY:
IF COMMAND .NES. "DIRECTORY" THEN GOTO PRINT
DIRECTORY

GOTO GET COM_LOOP
!

|Execute if user entered PRINT

PRINT:
IF COMMAND .NES. "PRINT" THEN GOTO PURGE
INQUIRE FILE "File to print? "
PRINT SYSSOUTPUT 'FILE’

GOTO GET COM_LOOP
|

|Execute if user entered PURGE

PURGE:
IF COMMAND .NES. "PURGE" THEN GOTO TYPE
PURGE

GOTO GET COM_LOOP
|

|Execute if user entered TYPE

TYPE:
IF COMMAND .NES. "TYPE" THEN GOTO ERROR
INQUIRE FILE "File to type"

TYPE 'FILE’
GOTO GET_COM_LOOP

!

ERROR:

WRITE SYSSOUTPUT "You entered an invalid command."
GOTO GET_COM_LOOP
|
END LOOP:
WRITE SYSSOUTPUT "Directory ''F$DIRECTORY()’ has been cleaned."

2

=1
>
HH
=]

13.6 Executing Command Procedures

To make a command procedure run, you must execute it. You can execute
command procedures:

¢ From within another command procedure

¢ On remote nodes

e As parameters or qualifiers to DCL commands
¢ Interactively

e As batch jobs

¢ On disk and tape volumes

The following sections describe each of these methods.

Introduction to Command Procedures 13-15

Introduction to Command Procedures
13.6 Executing Command Procedures

13.6.1 Executing Command Procedures from Within Other Command

Procedures

You can execute another command procedure from within a command procedure
by including an execute procedure (@) command .

The following command procedure, WRITEDATE.COM, invokes the command
procedure GETDATE.COM:

$! WRITEDATE.COM

$!

S INQUIRE TIME "What is the current time in hh:mm format?"
$ @GETDATE [JONES.COM]GETDATE.COM

13.6.2 Executing Command Procedures on Remote Nodes

13-16

You can use the TYPE command to execute command procedures in the top-
level directory of another account on a remote node. You can execute command
procedures that:

e Display the status of services in the local OpenVMS Cluster system that are
not provided clusterwide

e List the users logged in to the remote node

Enter the TYPE command followed by an access control string. Use the following
format:

$ TYPE nodename"username password"::"TASK=command_procedure"

The variables username and password are the user name and password for the
account on the remote node.

This command procedure displays the users logged in to the remote node on
which the command procedure resides:

$ | SHOWUSERS . COM

$!
$ IF F$MODE() .EQS. "NETWORK" THEN DEFINE/USER SYS$OUTPUT SYS$NET
$ SHOW USERS

In the following example, SHOWUSERS.COM is located in the top-level
directory of BIRD’s account on node ORIOLE, and the password is BOULDER.
SHOWUSERS.COM executes the DCL command SHOW USERS on the remote
node ORIOLE. The TYPE command displays the output from SHOWUSERS.COM
on the local node; that is, on the terminal from which you enter the type
command:

$ TYPE ORIOLE"BIRD BOULDER"::"TASK=SHOWUSERS"

OpenVMS User Processes at 11-DEC-1999 17:20:13.30
Total number of users = 4, number of processes = 4

Username Node Interactive Subprocess Batch
FLICKER AUTOMA 2 1

ROBIN FABLES 1 2 1
DOVE MURMUR 1

DUCK FABLES 1 1

Introduction to Command Procedures

Introduction to Command Procedures
13.6 Executing Command Procedures

13.6.2.1 Security Note

Your password will be visible on your terminal when you use the TYPE command
with an access control string. Take the appropriate security precautions as
described in Chapter 18.

13.6.3 Executing Command Procedures with DCL Qualifiers or Parameters

You can create a command procedure that specifies DCL command parameters
or qualifiers. This type of command procedure is useful when there is a set of
parameters or qualifiers that you use frequently with one or more commands.

Enter the execute procedure command (@) in a command line where you would
normally specify qualifiers or parameters.

This command procedure can be used to enter a set of qualifiers to the LINK
command:

$! This command procedure contains command
$! qualifiers for the LINK command.

$!
/DEBUG/SYMBOL_TABLE/MAP/FULL/CROSS_REFERENCE

This command line links an object named SYNAPSE.OBJ, using the qualifiers
specified in DEFLINK.COM:

§ LINK SYNAPSEEDEFLINK

This command procedure can be used to enter the parameters CHAP1.TXT,
CHAP2.TXT, and CHAP3.TXT with a DCL command:

$! PARAM.COM

$! This command procedure contains a list of
§$! parameters that can be used with commands.
$!

CHAP1, CHAP2, CHAP3

This command line specifies the command procedure PARAM in place of a list of

parameters. In the following example, the parameters are the file names listed in
PARAM.COM:

$ DIRECTORY/SIZE @PARAM

Note

When using the execute procedure command (@), the entire specified file
is treated as command input by DCL.

13.6.3.1 Restrictions
The following restrictions apply when executing command procedures:

e You cannot include a space before an execute procedure command (@) when
the command procedure begins with a qualifier name.

¢ You must precede the execute procedure command (@) with a space when the
command procedure begins with a parameter.

Introduction to Command Procedures 13-17

Introduction to Command Procedures
13.6 Executing Command Procedures

13.6.4 Executing Command Procedures Interactively

To execute a command procedure interactively, enter an execute procedure
command (@) followed by the file specification of the command procedure.

For example, this command executes the procedure SETD.COM in the
[MAINT.PROCEDURES] directory on the WORKDISK: disk:

§ @WORKDISK: [MAINT.PROCEDURES]SETD [Retum

You can define a symbol name to represent long command lines. You can then use
the symbol to execute a command procedure.

To use a symbol to execute the command procedure shown in the previous
example, include this line in your login command procedure:

$ SETD == "@WORKDISK:[MAINT.PROCEDURES]SETD"

Then, to execute the procedure SETD.COM, enter the symbol name as you would
any command:

$ SETD

By default, when you execute a command procedure interactively, the operating
system displays output at your terminal. However, you can redirect output to a
file by using the /OUTPUT qualifier to the execute command.

When you redirect command procedure output to a file, the procedure sends any
error messages to the terminal and to the file that is receiving the output.

This command writes the output from SETD.COM to the file RESULTS.TXT
instead of to the terminal:

$ @SETD/OUTPUT=RESULTS.TXT

Always place the /OUTPUT qualifier immediately after the command procedure
name, with no intervening spaces. Otherwise, DCL interprets the qualifier as a
parameter to be passed to the procedure.

13.6.5 Executing Command Procedures as Batch Jobs

13-18

If you use command procedures that require lengthy processing time (for example,
compiling or assembling large programs), submitting these procedures as batch
jobs will allow you to continue using your terminal interactively.

To execute a command procedure in batch mode, submit your command procedure
to a batch queue (a list of batch jobs waiting to execute) by entering the DCL
command SUBMIT. When you submit a job, it is directed to the default batch
queue SYS$BATCH where it is added to the end of the queue of jobs waiting to
be executed. When the jobs preceding yours are completed, your job is executed.
On OpenVMS systems, the number of batch jobs that can execute simultaneously
is specified when the batch queue is created by the system manager.

The following example shows how to execute the command procedure named
JOB1.COM. The SUBMIT command uses the default file type .COM; therefore
you do not have to enter the file type if your command procedure has the file type
.COM:

$ SUBMIT JOB1
Job JOBl (queue SYSSBATCH, entry 651, started on SYS$BATCH))

Introduction to Command Procedures

Introduction to Command Procedures
13.6 Executing Command Procedures

13.6.5.1 Remote Batch Jobs

If your system is part of a network, you can submit a command procedure as

a batch job on a remote node. Within a command procedure, you can use DCL
commands to open and close files on remote notes and to read and write records
in those files, using the same commands and qualifiers for local files.

13.6.5.2 Restarting Batch Jobs

By default, if the system fails before the job is finished, batch jobs are reexecuted
beginning with the first line. However, you can use the following symbols in your
command procedure to specify a different restarting point:

e 3$RESTART

A global symbol whose value is true if the batch job has been started at least
once before this execution. Do not specify a value for SRESTART; the system
will assign the appropriate value.

e BATCH$RESTART
A global symbol whose value you specify using the SET RESTART_VALUE
command.

Using SRESTART and BATCH$SRESTART

The following procedure describes how to use the $RESTART and the
BATCH$RESTART symbols:

Step Action
1 Begin each possible starting point of the procedure with a label.
2 As the first step in each section, equate the value of BATCH$RESTART to the

label using the SET RESTART VALUE command.
At the beginning of the procedure, test $RESTART.

If $RESTART is true, issue a GOTO statement using BATCH$RESTART as the
transfer label.

The following command procedure extracts a number of modules from a library,
concatenates those modules, and then sorts the resulting file:

Sl SORT_MODULES.COM

!

$! Set default to the directory containing

$! the library whose modules are to be sorted
$ SET DEFAULT WORKDISK:[ACCOUNTS.DATA83]

$!

§$! Check for restarting

$ IF SRESTART THEN GOTO "BATCHSRESTART"

$!

Introduction to Command Procedures 13-19

Introduction to Command Procedures
13.6 Executing Command Procedures

$ EXTRACT LIBRARIES:
$ SET RESTART VALUE=EXTRACT LIBRARIES

$ CONCATENATE LIBRARIES:
$ SET RESTART VALUE=CONCATENATE LIBRARIES

$ SORT FILE:
$ SET RESTART VALUE=SORT FILE

§ EXIT

If this command procedure aborts, it reexecutes from the beginning of the file,
from the statement labeled CONCATENATE_LIBRARIES, or from the statement
labeled SORT_FILE, depending on the value of BATCH$RESTART. If you were
extracting a number of separate modules, you could make each extraction a
separate section.

13.6.6 Executing Command Procedures on Disk and Tape Volumes

The following sections describe how to execute command procedures on disk and
tape volumes.

13.6.6.1 Executing on Private Disks

When you submit a command procedure with the SUBMIT command, you cannot
access files on allocated devices. You can, however, execute a command procedure
that is located on a private disk that is mounted with the /SHARE qualifier.

13.6.6.2 Executing on Tape Volumes

You can execute command procedures that reside on tape volumes if:
e The procedure does not invoke any other procedures.

¢ The procedure does not issue any GOTO commands that refer to labels in the
procedure preceding the GOTO command.

If either of these conditions occur, you can execute the command procedure by
doing the following:

Step Action
1. Copy the command procedure to a shared disk volume.
2. Execute the command procedure on the shared disk volume.

13.7 Exiting and Interrupting Command Procedures

13-20

When you use any of the methods described in this section to exit from a
command procedure, you need to be aware of command levels.

A command level is an input stream for the DCL level interpreter. When you
enter commands at your terminal, you are entering commands at command level
0. A simple interactive command procedure (such as CLEANUP.COM) executes at
command level 1. When the procedure terminates and the DCL prompt reappears
on your screen, you are back at command level 0.

Introduction to Command Procedures

Introduction to Command Procedures
13.7 Exiting and Interrupting Command Procedures

13.7.1 Methods of Exiting

There are three ways to exit from a command procedure while it is executing:
¢ Place an EXIT command in the command procedure

e Place a STOP command in the command procedure

e Enter Ctrl/Y during the execution of the program

Exiting with the EXIT Command

If an exit is caused by the end of the procedure or an EXIT command, control
returns to the next higher command level. You can return a status value to the
next higher command level by specifying the value as the parameter of the EXIT
command.

If you invoke the command procedure called SUB at the DCL level and SUB calls
the subroutine SUB1, the following occurs:

1. Exiting from SUB1 returns you to SUB at the command line following the
call to SUB1.

2. Exiting from SUB returns you to DCL command level.

Exiting with the STOP Command

If an exit is caused by a STOP command, control always returns to DCL command
level, regardless of the command level in which the STOP command executes.

If you execute the STOP command in a batch job, the batch job terminates.

Exiting with Ctrl/Y

You can interrupt a command procedure by pressing Ctrl/Y and then using the
EXIT or STOP command to terminate the procedure. In this case, both the EXIT
and STOP command return you to the DCL level.

In the following example, the TESTALL procedure is interrupted by pressing
Ctrl/Y. The EXIT command terminates processing of the procedure and returns
you to DCL level. (Note that you can also enter the STOP command after you
interrupt the procedure.)

$ @TESTALL [Return]

$ EXIT [Retum]
$

13.7.2 Exit-Handling Routines

When you interrupt a command procedure, if the command (or image) that you
interrupt declares any exit-handling routines, the EXIT command gives these
routines control. However, the STOP command does not execute these routines.

13.8 Handling Errors

By default, the command interpreter executes an EXIT command when a
command results in an error or severe error. This causes the procedure to exit
to the previous command level. For other severity levels (success, warning, and
informational), the command procedure continues.

There is one exception to the way that the command interpreter handles errors.
If you reference a label in a command procedure and the label does not exist (for
example, if you include the command GOTO ERR1 and ERR1 is not used as a
label in the procedure), the GOTO command issues a warning and the command
procedure exits.

Introduction to Command Procedures 13-21

Introduction to Command Procedures
13.8 Handling Errors

When the system issues an EXIT command as part of an error-handling routine,
it passes the value of $STATUS back to the previous command level, with one
change. The command interpreter sets the high-order digit of $STATUS to 1 so
that the command interpreter does not redisplay the message associated with the
status value.

In the following example, the command procedure TEST.COM contains an error
in the output file specification:

$ CREATE DUMMY.DAT\
THIS IS A TEST FILE
§ SHOW TIME

When you execute this procedure, the CREATE command returns an error in
$STATUS and displays the corresponding message. The command interpreter
then examines the value of $STATUS, determines that an error occurred, issues
an EXIT command, and returns the value of $STATUS. When the procedure
exits, the error message is not redisplayed because the CREATE command
already displayed the message once. At DCL command level, you can see that
$STATUS contains the error message but the high-order digit has been set to 1.
For example:

$ @TEST
%CREATE-E-OPENOUT, error opening DUMMY.DAT\ as output
-RMS-F-SYN, file specification syntax error
$DCL-W-SKPDAT, image data (records not beginning with "$") ignored
§ SHOW SYMBOL S$STATUS
$STATUS = "$X109110A2"
$ WRITE SYSSOUTPUT F$MESSAGE(%X109110A2)
%CREATE-E-OPENOUT, error opening !AS as output

13.8.1 Default Error Actions

The following table describes the default action taken when an error condition
or a Ctrl/Y interruption occurs while a command procedure is executing.

You can override these default actions with the ON, SET [NOJON, and SET
[NO]JCONTROL=Y commands.

Interrupt Default Action

Error or severe error Procedure exits to the next command level.

Ctrl/Y at DCL command level or Procedure is interrupted; the procedure can continue if
command level 1 no other image forces it to exit.

Ctrl/Y at command level lower Procedure exits to the next higher command level.

than level 1

13.9 Other Methods of Error Handling

The following sections describe other methods of handling errors.

13.9.1 ON Command

13-22

The ON command specifies an action to be performed if an error of a certain
severity or greater severity occurs. If such an error occurs, the system takes the
following actions:

e Performs the action specified by the ON command.

e Sets $STATUS and $SEVERITY to indicate the result of the specified ON
action. In general, they are set to success.

Introduction to Command Procedures

Introduction to Command Procedures
13.9 Other Methods of Error Handling

e Resets the default error action (to exit if an error or severe error occurs).

An ON command action is executed only once. Therefore, after a command
procedure performs the action specified in an ON command, the default error
action is reset.

The action specified by an ON command applies only within the command level
in which the command is executed. Therefore, if you execute an ON command
in a procedure that invokes another procedure, the ON command action does not
apply to the nested procedure.

The format of the ON command is as follows:
ON condition THEN [$] command

Where "condition" is one of the following keywords:

ON Keyword Action Taken

WARNING Command procedure performs the specified action if a warning,
error, or severe error occurs.

ERROR Command procedure performs the specified action if an error
or severe error occurs. The procedure continues if a warning
occurs.

SEVERE_ERROR Command procedure performs the specified action if a severe

(fatal) error occurs. The procedure continues if a warning or
error occurs.

If an ON command action is established for a specific severity level, the command
interpreter performs the specified action when errors of the same or worse
severity occur. When less severe errors occur, the command interpreter continues
processing the file.

Example: Using the ON Command
This command can be used to override the default error handling so that a
procedure exits when warnings, errors, or severe errors occur:

$ ON WARNING THEN EXIT

Example: Resuming After an Error

If your command procedure includes this command, the command procedure
executes normally until an error or severe error occurs:

$ ON ERROR THEN GOTO ERR1

If such an error occurs, then the procedure resumes executing at ERR1.
$STATUS and $SEVERITY are set to success and the default error action is
reset. If a second error occurs before another ON or SET NOON command

is executed, the procedure exits to the previous command level. The action
specified by an ON command applies only within the command level in which the
command is executed. Therefore, if you execute an ON command in a procedure
that invokes another procedure, the ON command action does not apply to the
nested procedure.

Figure 13-1 illustrates ON command actions.

Introduction to Command Procedures 13-23

Introduction to Command Procedures
13.9 Other Methods of Error Handling

13-24

Figure 13-1 ON Command Actions

_.$

DBA1:[HIGGINS]JFORT.COM

é @FORT

v

$ ON ERROR THEN CONTINUE a
$ FORTRAN A ~\

A

: } 2]
$ FORTRAN B

$ ON WARNING THEN EXIT e

A

$ FORTRAN C o

(3]

4]

$ EXIT

ZK-0826-GE

This ON command overrides the default command action (on warning,
continue; on error or severe error, exit). If an error or severe error occurs
while A.FOR is being compiled, the command procedure continues with the
next command.

The default command action is reset if the previous ON command takes
effect. Thus, if an error or severe error occurs while both A.FOR and B.FOR
are being compiled, the command procedure exits.

If a warning, error, or severe error occurs while C.FOR is being compiled, the
command procedure exits.

If the command procedure does not exit before a command is executed, the
command action takes effect.

The sample command procedures FORTUSER.COM and CALC.COM in
Appendix B also illustrate the use of the ON command to establish error
handling.

13.10 Using the SET NOON Command

You can prevent the command interpreter from checking the status returned from
commands by using the SET NOON command in your command procedure, which
sets the ON command to NO status. When you use the SET NOON command,
the command interpreter continues to place values in $STATUS and $SEVERITY
but does not perform any error checking. You can restore error checking with the
SET ON command or with an ON command.

When a procedure disables error checking, it can explicitly check the value of
$STATUS following the execution of a command or program.

In the following example, the SET NOON command preceding the RUN
commands ensures that the command procedure continues if either of the
programs TESTA or TESTB return an error condition. The SET ON command
restores the default error checking by the command interpreter.

Introduction to Command Procedures

Introduction to Command Procedures
13.10 Using the SET NOON Command

$ SET NOON
$ RUN TESTA
$ RUN TESTB
$ SET ON

In the following example, the first IF command checks whether $STATUS has a
true value (that is, if it is an odd numeric value). If so, the FORTRAN command
was successful and the LINK command executes. After the LINK command
executes, $STATUS is tested again. If $STATUS is odd, the RUN command
executes; otherwise, the RUN command does not execute. The SET ON command
restores the current ON condition action; that is, whatever condition was in effect
before the SET NOON command was executed:

$ SET NOON

$ FORTRAN MYFILE

$ IF $STATUS THEN LINK MYFILE
§ IF $STATUS THEN RUN MYFILE
$ SET ON

The SET ON or SET NOON command applies only at the current command
level; that is, the command level at which the command is executed. If you
use the SET NOON command in a command procedure that calls another
command procedure, the default error-checking mechanism will be in effect
within the nested procedure. Note that SET NOON has no meaning when
entered interactively at DCL level.

13.11 Handling Ctrl/Y Interruptions

By default, when you press Ctrl/Y while a command procedure is executing, the
command interpreter prompts for command input at a special command level
called Ctrl/Y command level. From Ctrl/Y command level, you can enter DCL
commands that are executed within the command interpreter and then resume
execution of the command procedure with the CONTINUE command. In addition,
you can stop the procedure by entering a DCL command that forces the command
procedure to stop executing.

This section describes methods of overriding the way that command procedures
process Ctrl/Y interruptions by using the ON command.

13.11.1 Stopping Command Procedures

You can interrupt a command procedure that is executing interactively by
pressing Ctrl/Y. When you press Ctrl/Y, the command interpreter establishes a
new command level, called the Ctrl/Y level, and prompts for command input.
When the interruption occurs depends on the command or program that is
executing:

e Ifthe command is executed by the command interpreter itself (for example,
IF, GOTO, or an assignment statement), the command completes execution
before the command interpreter prompts for a command at the Ctrl/Y level.

e If the command or program is a separate image (that is, an image other than
the command interpreter), the command is interrupted and the command
interpreter prompts for a command at the Ctrl/Y level.

At the Ctrl/Y level, the command interpreter stores the status of all previously
established command levels so that it can restore the correct status after any
Ctrl/Y interrupt.

Introduction to Command Procedures 13-25

Introduction to Command Procedures
13.11 Handling Ctrl/Y Interruptions

After you interrupt a procedure, you can do the following:

Enter a DCL command that is executed within the command interpreter.

Among these commands are the SET VERIFY, SHOW TIME, SHOW
TRANSLATION, ASSIGN, EXAMINE, DEPOSIT, SPAWN and ATTACH
commands. After you enter one or more of these commands, you can
resume the execution of the procedure with the CONTINUE command.

See Section 14.7.2 for a complete list of commands that are executed within
the command interpreter.

When you enter the CONTINUE command, the command procedure resumes
execution with the interrupted command or program or with the line after the
most recently completed command.

Enter a DCL command that executes another image.

When you enter any command that invokes a new image, the command
interpreter returns to command level 0 and executes the command. This
terminates the command procedure’s execution. Any exit handlers declared
by the interrupted image are allowed to execute before the new image is
started.

Enter the EXIT or STOP command to terminate the command procedure’s
execution.

If you use the EXIT command, exit handlers declared by the interrupted
image are allowed to execute. However, the STOP command does not execute
these routines.

Note

If you do not exit from a command procedure (either explicitly from
the command level or as part of an ON routine) following a Ctrl/Y, the
next command you enter is interpreted in the context of the command
procedure. For example, suppose you define the following symbol at the
interactive level:

$ MAIL = "mail/edit=(send,reply,forward)"

If you enter Ctrl/Y to interrupt a command procedure that does not
include this definition and then enter the command MAIL to send a
message, your editor is not invoked automatically.

13.11.2 Stopping Privileged Images

If you interrupt the execution of a privileged image, you can enter only the
CONTINUE, SPAWN, or ATTACH commands if you want to save the context of
the image. If you enter any other commands (except from within a subprocess
that you have spawned or attached to), the privileged image is forced to exit.

13.12 Setting Ctrl/Y Action Routines

The following sections describe how to set Ctrl/Y action routines.

13-26 Introduction to Command Procedures

Introduction to Command Procedures
13.12 Setting Ctrl/Y Action Routines

13.12.1 Using the ON Command

The ON command, which defines an action to be taken in case of error conditions,
also provides a way to define an action routine for a Ctrl/Y interruption that
occurs during execution of a command procedure. The action that you specify
overrides the default Ctrl/Y action (that is, to prompt for command input at the
Ctrl/Y command level). For example:

$ ON CONTROL Y THEN EXIT

If a procedure executes this ON command, a subsequent Ctrl/Y interruption
during the execution of the procedure causes the procedure to exit. Control is
passed to the previous command level.

When you press Ctrl/Y to interrupt a procedure that uses ON CONTROL_Y, the
following actions are taken:

e If the command currently executing is a command executed within the
command interpreter, the command completes and the Ctrl/Y action is taken.

e If the current command or program is executed by an image other than the
command interpreter, the image is forced to exit and the Ctrl/Y action is
taken. If the image has declared an exit handler, however, the exit handler
is executed before the Ctrl/Y action is taken. The image cannot be continued
following the Ctrl/Y action.

13.12.2 Effects of Entering Ctrl/Y

The execution of Ctrl/Y does not automatically reset the default Ctrl/Y action
(that is, to prompt for command input at the Ctrl/Y command level). A Ctrl/Y
action remains in effect until one of the following conditions occurs:

e The procedure terminates (as a result of pressing Ctrl/Y, executing an EXIT
or STOP command, or a default error condition handling action).

e Another ON CONTROL_Y command is executed.

e The procedure executes the SET NOCONTROL=Y command (see
Section 13.13).

A Ctrl/Y action can be specified in each active command level and affects only the
command level in which it is specified.

When the command procedure shown in the following example executes, each
Ctrl/Y interruption results in the execution of the SHOW TIME command. After
each SHOW TIME command executes, the procedure resumes execution at the
command following the command that was interrupted.

$ ON CONTROL Y THEN SHOW TIME

Introduction to Command Procedures 13-27

Introduction to Command Procedures
13.12 Setting Ctrl/Y Action Routines

Figure 13-2 illustrates the flow of execution following Ctrl/Y interruptions.

Figure 13-2 Flow of Execution Following Ctrl/Y Action

DBA1:[HIGGINS]FILES.COM

$ @FILES .
. $ ON CONTROL Y THEN GOTO CLEAN UP

cv] @

$

TYPE STATUS.OUT;1
IF $STATUS THEN DELETE STATUS.OUT;1

B 7, I

EXIT

CLEAN UP:

DELETE STATUS.OUT;1
DELETE *.TMP; *

EXIT

nnnne .

DBAT1:[HIGGINS] PRIV.COM

$ ON CONTROL Y THEN WRITE SYS$OUTPUT-

$ @PRIV "Interruption not allowed...continuing"

(4] $ TYPE STATUS.OUT;1

e $ IF $STATUS THEN DELETE STATUS.OUT;1
Interruption not allowed...continuing .

ZK-0827-GE

The Ctrl/Y interruption occurs during the execution of the TYPE command.
Control is then transferred to the label CLEAN_UP.

After executing the routine, the command procedure exits and returns to the
interactive command level.

The Ctrl/Y interruption occurs during the execution of the TYPE command.

The WRITE command specified in the ON command is executed.

@606 o000

The command procedure continues execution at the command following the
interrupted command.

13-28 Introduction to Command Procedures

Introduction to Command Procedures
13.12 Setting Ctrl/Y Action Routines

Figure 13-3 illustrates what happens when Ctrl/Y is pressed during the execution
of nested command procedures.

Figure 13-3 Ctrl/Y in Nested Procedures

$ @SEARCH DBA1:[HIGGINS]SEARCH.COM
'Ctrl N c $ ON CONTROL_Y THEN GOTO CLEAN UP

$ @SUBSEARCH
$ NEXT STEP: e

$ EXIT
$ CLEAN UP:

DBA1:[HIGGINS] SUBSEARCH.COM

(2] $ @SUBSUB

DBA1:[HIGGINS] SUBSUB.COM

e $ ON CONTROL Y THEN SHOW TIME
$ EXIT
ZK-0828-GE

© If a Ctrl/Y interruption occurs while SEARCH.COM is executing, control is
transferred to the label CLEAN_UP.

@ If a Ctrl/Y interruption occurs while SUBSEARCH.COM is executing, control
is transferred to the label NEXT STEP in SEARCH.COM.

© Because no Ctrl/Y action is specified in SUBSEARCH.COM, the procedure
exits to the previous command level when a Ctrl/Y interruption occurs.

O If a Ctrl/Y interruption occurs while SUBSUB.COM is executing, the SHOW

TIME is executed.

13.13 Disabling and Enabling Ctrl/Y Interruptions

The following sections describe how to disable and enable Ctrl/Y interruptions.

Introduction to Command Procedures 13-29

Introduction to Command Procedures
13.13 Disabling and Enabling Ctrl/Y Interruptions

13.13.1 Using SET NOCONTROL=Y

The SET NOCONTROL=Y command disables Ctrl/Y handling. That is, if a
command procedure executes the SET NOCONTROL=Y command, pressing
Ctrl/Y has no effect.

The SET NOCONTROL=Y command also cancels the current Ctrl/Y action
established with the ON CONTROL_Y command. To reestablish the default
Ctrl/Y action, use the following two commands:

$ SET NOCONTROL=Y
§ SET CONTROL=Y

The SET NOCONTROL=Y command disables Ctrl/Y handling and cancels the
current ON CONTROL_Y action. The SET CONTROL=Y command enables
Ctrl/Y handling. At this point, the default action is reinstated. That is, if Ctrl/Y
is pressed during the execution of the procedure, the command interpreter
prompts for a command at the Ctrl/Y command level.

You can use the SET NOCONTROL=Y command at any command level. It affects
all command levels until the SET CONTROL=Y command reenables Ctrl/Y
handling.

13.13.2 Using SET CONTROL=Y

An ON CONTROL_Y command remains in effect until another ON CONTROL_Y
or a SET NOCONTROL=Y command executes or the command procedure exits.

To exit from a nonterminating loop when Ctrl/Y is disabled, you must delete
your process from another terminal using the DCL command STOP. If you
disable the default Ctrl/Y action, reset it as soon as possible. To reset the default
Ctrl/Y action, execute the SET NOCONTROL=Y command followed by the SET
CONTROL=Y command.

In this command procedure, pressing Ctrl/Y while a file is being typed passes
control to the label END_TYPE:

$! Type a file

$ IF COMMAND .NES. "TY" THEN GOTO END TYPE
$ ON CONTROL Y THEN GOTO END TYPE -

$ TYPE 'FILESPEC’ -

SEND TYPE:

1

$! Reset default

$ SET NOCONTROL=Y

$ SET CONTROL=Y

Note

The ON CONTROL_Y and SET NOCONTROL=Y commands are intended
for special applications. Compaq does not recommend, in general, that
you disable Ctrl/Y interruptions. To exit from a nonterminating loop when
Ctrl/Y is disabled, you must delete (from another terminal) the process
from which the looping procedure is executing.

13-30 Introduction to Command Procedures

Introduction to Command Procedures
13.14 Detecting Errors in Command Procedures Using Condition Codes

13.14 Detecting Errors in Command Procedures Using Condition
Codes

When each DCL command in a command procedure completes execution, the
command interpreter saves a condition code that describes the reason why the
command terminated. This code can indicate successful completion or it can
identify an informational or error message.

The command interpreter examines the condition code after it performs each
command in a command procedure. If an error that requires special action has
occurred, the system performs the action. Otherwise, the next command in the
procedure executes.

13.14.1 Displaying Condition Codes ($STATUS)

The command interpreter saves the condition code as a 32-bit longword in the
reserved global symbol $STATUS. The $STATUS symbol conforms to the format
of a system message code as follows:

e Bits 0-2 contain the severity level of the message.
e Bits 3-15 contain the message number.

e Bits 1627 contain the number associated with the facility that generated the
message.

e Bits 28-31 contain internal control flags.

When a command completes successfully, $STATUS has an odd value. (Bits 0—2
contain a 1 or a 3.) When any type of warning or error occurs, $STATUS has an
even value. (Bits 0-2 contain a 0, 2, or 4.) The command interpreter maintains
and displays the current hexadecimal value of $STATUS. You can display the
ASCII translation of $STATUS by entering the SHOW SYMBOL $STATUS
command.

In the following example, the file name (%FRED.LIS) is entered incorrectly:

$ CREATE $FILE.LIS
$CREATE-E-OPENOUT, error opening $FRED.LIS; as output
-RMS-F-WLD, invalid wildcard operation
$ SHOW SYMBOL $STATUS
SSTATUS = " %X109110A2"
$ WRITE SYS$OUTPUT FS$MESSAGE (%X109110A2)
$CREATE-E-OPENOUT, error opening !AS as output

13.14.2 Condition Codes with the EXIT Command

When a command procedure exits, the command interpreter returns the condition
code for the previous command in $STATUS. The condition code provides
information about whether the most recent command executed successfully.

When you use the EXIT command in a command procedure, you can specify a
value that overrides the value that DCL would have assigned to $STATUS. This
value, called a status code, must be specified as an integer expression.

When a command procedure contains nested procedures to create multiple
command levels, you can use the EXIT command to return a value that explicitly
overrides the default condition codes.

Introduction to Command Procedures 13-31

Introduction to Command Procedures
13.14 Detecting Errors in Command Procedures Using Condition Codes

Examine the following two command procedures:

$! This is file A.COM
S
$ @B

$! This is file B.COM
S
$ ON WARNING THEN GOTO ERROR

$ ERROR:
§ EXIT 1

The ON command in B.COM means that if any warnings, errors, or severe errors
occur when B.COM is executing, the procedure is directed to the label ERROR.
Here, the condition code is explicitly set to 1, indicating success. Therefore, when
B.COM terminates, it passes a success code back to A.COM regardless of whether
an error occurred.

13.14.3 Determining Severity Levels

The low-order three bits of $STATUS represent the severity of the condition that
caused the command to terminate. This portion of the condition code is contained
in the reserved global symbol $SEVERITY. The $SEVERITY symbol can have the
values 0 to 4, with each value representing one of the following severity levels:

Value Severity

0 Warning

1 Success

2 Error

3 Information

4 Fatal (severe) error

Note that the success and information codes have odd numeric values, and
warning and error codes have even numeric values.

13.14.4 Testing for Successful Completion

13-32

You can test for the successful completion of a command with IF commands that
perform logical tests on $SEVERITY or $STATUS as follows:

§ IF $SEVERITY THEN GOTO OKAY
$ IF $STATUS THEN GOTO OKAY

These IF commands branch to the label OKAY if $SEVERITY and $STATUS have
true (odd) values. When the current value in $SEVERITY and $STATUS is odd,
the command or program completed successfully. If the command or program did
not complete successfully, then $SEVERITY and $STATUS are even; therefore,
the IF expression is false.

Introduction to Command Procedures

Introduction to Command Procedures
13.14 Detecting Errors in Command Procedures Using Condition Codes

Instead of testing whether a condition is true, you can test whether it is false.
For example:

$ IF .NOT. $STATUS THEN

The command interpreter uses the severity level of a condition code to determine
whether to take the action defined by the ON command as described in
Section 13.9.

13.15 Using Commands That Do Not Set $STATUS

Most DCL commands invoke system utilities that generate status values and
error messages when they complete. However, there are several commands
that do not change the values of $STATUS and $SEVERITY if they complete
successfully. These commands are as follows:

CONTINUE DECK DEPOSIT

EOD EXAMINE GOTO

IF RECALL SET SYMBOL/SCOPE
SHOW STATUS SHOW SYMBOL STOP

WAIT

If any of these commands result in a nonsuccessful status, the condition code is
placed in $STATUS and the severity level is placed in $SEVERITY.

13.16 Login Command Procedures

A login command procedure is a command procedure that the operating system
automatically executes each time you log in. The system also executes this
procedure at the beginning of every batch job that you submit.

There are two types of login command procedures:
e Systemwide (or group-defined)

e Personal

13.16.1 Systemwide Login Command Procedures

Systemwide login command procedures have the following characteristics:
e They are executed before your personal login command procedure.

e When a systemwide login command procedure terminates, it passes control to
your personal login command procedure.

e They allow your system manager to make sure that certain commands are
always executed when you log in.

To establish a systemwide login command procedure, your system manager
equates the logical name SYS$SYLOGIN to the appropriate login command
procedure. Your system manager can specify that this login command procedure
be used for all system users or for a certain group of users.

Introduction to Command Procedures 13-33

Introduction to Command Procedures
13.16 Login Command Procedures

13.16.2 Personal Login Command Procedures

You can create a personal login command procedure to execute the same
commands each time you log in.

Your system manager assigns the file specification for your login command
procedure. In most installations, the login command procedure is called
LOGIN.COM. Therefore, you should name your login command procedure
LOGIN.COM unless your system manager tells you otherwise.

The following is an example of a LOGIN.COM procedure:

$IF FSMODE() .NES. "INTERACTIVE" THEN EXIT
$SET TERMINAL/INSERT

$DIR :== DIR/DATE/SIZE
$SEDIT :== EDIT/EDT
SEXIT

13.16.3 Login Command Procedures in Captive Accounts

Your system manager can set up captive accounts by placing the name of a
special command procedure in the LGICMD field for your account. If you log in
to a captive account, you can perform only functions specified in the command
procedure for your account; you cannot use the complete set of DCL commands.
For more information about captive accounts, refer to the OpenVMS System
Manager’s Manual.

13.17 Extended File Specifications and Parsing Styles

A command procedure that requires a specific file name parsing style can
include commands within the procedure to switch between styles. The following
command procedure saves the current parsing style, sets the parsing style to
TRADITIONAL, performs (unspecified) commands, then restores the saved
parsing style.

$ original style= f$getjpi("","parse_style perm")
$ SET PROCESS/PARSE_STYLE=TRADITIONAL

$ SET PROCESS/PARSE STYLE='original style’

The first command equates ’original_style’ with the current parse style. The
second command sets the parsing style to TRADITIONAL. The last command
resets the parsing style to the original style.

13.18 Using Extended File Names in DCL Command Parameters

13-34

Command procedures that use file names as parameters can produce different
results in an ODS-5 environment.

You can switch from the TRADITIONAL to the EXTENDED parsing style, and

this section describes the following areas that may be affected if you choose to do
so:

e Command procedure file specification
e Case preservation and $FILE
e Ampersand versus apostrophe substitution

See Section 5.3 for more information on switching between parsing styles.

Introduction to Command Procedures

Introduction to Command Procedures
13.18 Using Extended File Names in DCL Command Parameters

13.18.1 Command Procedure File Specification

If indirect command procedures are used, you may need to put quotes around
some procedure arguments.

The following examples show the differences in output between TRADITIONAL
and EXTENDED parsing styles when using the same command file, SS.COM:

$ create ss.com

$ if pl .nes. "" then write sys$output "pl = ",pl
$ if p2 .nes. "" then write sys$output "p2 = ",p2
$ if p3 .nes. "" then write sys$output "p3 = ",p3

e Setting the parsing style to TRADITIONAL and running SS.COM produces
the following output:

$ set process/parse style=traditional
$ @ss * parg2 parg3

pl =
p2 = PARG2
p3 = PARG3

Note that the circumflex (*) is the first argument (not an escape character),
and that case is not preserved for the p2 and p3 procedure arguments.

e Setting the parsing style to EXTENDED produces the following output when
running the same command procedure:

$ set process/parse style=extended
$ @ss " parg2 parg3

pl = " PARG2

p2 = PARG3

Note that the command procedure recognizes the circumflex (*) as the escape
character that identifies the space as a literal character rather than an
argument separator, and that "* PARG2" is the first argument. Case is not
preserved.

¢ Adding quotes to the circumflex () produces the following results:

$ @ss """ parg2 parg3

pl =
p2 = PARG2
p3 = PARG3

Because the circumflex () is within a quoted string, it is not treated as an
escape character.

e Adding quotes to the p3 argument produces the following result:
$ @ss """ parg2 "parg3"

pl =
p2 = PARG2
p3 = parg3

Note that case is preserved for the p3 procedure argument.

e When the parsing style is set to TRADITIONAL, the following command
treats the circumflex (*) and the parg2 and parg3 strings as procedure
arguments, and the command procedure produces the following results:

$ set process/parse style=traditional
$ @ss” parg2 parg3

pl =
p2 = PARG2
p3 = PARG3

Introduction to Command Procedures 13-35

Introduction to Command Procedures
13.18 Using Extended File Names in DCL Command Parameters

e When the parsing style is set to EXTENDED, the circumflex (#) is treated as
an escape character that identifies the space as a literal character. DCL looks
for the file "SS*_PARG2.COM" and produces the error shown in the following
example:

$ set process/parse style=extended
$ @ss” parg2 parg3
-RMS-E-FNF, file not found

13.18.2 Case Preservation and $FILE

DCL attempts to preserve the case of file specifications. It can do this only for
commands defined with the Command Definition Utility (CDU). DCL preserves
case for any item defined in the command definition file (.CLD) with the $FILE
parse type.

Refer to the OpenVMS Command Definition, Librarian, and Message Utilities
Manual for more information.

13.18.3 Ampersand Versus Apostrophe Substitution

13-36

You can use ampersand (&) substitution, as opposed to apostrophe substitution,
to preserve case during traditional parsing.

The following traditional parsing example shows a series of commands that
change the case of a character string:

$ set process/parse _style=traditional
$ x = "string"
$ define y 'x’
$ sho log y
"y" = "STRING" (LNMSPROCESS TABLE)
$ define y &x -
$DCL-I-SUPERSEDE, previous value of Y has been superseded
$ sho log y
"Y" = "string" (LNM$PROCESS_TABLE)

Note that the use of the ampersand (&) preserved the case of the character string
assigned to the x variable.

Apostrophe substitution takes place before the command line is set to uppercase,
and ampersand substitution takes place after the command line is set to
uppercase.

The following extended parsing example shows the same series of commands:

$ set process/parse style=extended

$ define y 'x’
$DCL-I-SUPERSEDE, previous value of Y has been superseded
$ sho log y

"Y" = "string" (LNM$PROCESS_TABLE)

$ define y &x
$DCL-I-SUPERSEDE, previous value of Y has been superseded
$ sho log y

"Y" = "string" (LNM$PROCESS_TABLE)

Note that both character strings for the y variable are returned lowercase. This
happens because the DEFINE command uses $FILE, which preserves the case.

Ampersand substitution can therefore be used to specify EXTENDED file names
even though the parsing style is set to TRADITIONAL, as shown in the following
example:

Introduction to Command Procedures

Introduction to Command Procedures
13.18 Using Extended File Names in DCL Command Parameters

$ set process/parse=extended
$ cre file” name.doc
Contents of an ODS5 file
Exit

$ set process/parse=traditional

$ a = "file” name.doc"

$ type file” name.doc

$DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters
\"NAME\

$ type 'a’

$DCL-W-PARMDEL, invalid parameter delimiter - check use of special characters
\"NAME\

$ type &a

Contents of an 0DS5 file

Note

Ampersand substitution does not work for foreign commands.

Introduction to Command Procedures 13-37

14

Advanced Programming with DCL

Advanced DCL programming includes the use of complex command procedures
and the DCL command PIPE. You should read this chapter if you have read
Chapter 13 and have basic knowledge of programming in DCL and want to learn
more advanced methods.

Complex command procedures can perform programlike functions. You can use
variable input in a command procedure, execute sections of the procedure only
if certain conditions are true, execute subroutines, or invoke other command
procedures.

You can also use the DCL command PIPE to perform programlike functions. For
example, using the PIPE command, you can execute one or more of the following
operations from the same DCL command line:

e Pipelining (a sequence of commands)

e Input/output redirection

e Multiple and conditional command execution

e Background processing

This chapter includes information about the following:
¢ Performing command procedure input

e Using parameters to pass data to nested command procedures
e Performing command procedure output

e Reading and writing files (file I/O)

e Handling file I/O errors

e Techniques for controlling execution flow

e Creating new command levels

e Writing Case statements

e Using the PIPE command

14.1 Performing Command Procedure Input

Command procedures frequently require data provided by a user. This data,
or input, can be obtained either interactively (as described in Chapter 13) or
noninteractively. This chapter discusses noninteractive input methods, and
different interactive methods than those described in Chapter 13.

You can use the same data each time a command procedure executes. To do this,
place the data in the command procedure on data lines following the command
that requires the data.

Advanced Programming with DCL 14-1

Advanced Programming with DCL
14.1 Performing Command Procedure Input

This command procedure executes the command procedure CENSUS.EXE.
CENSUS.EXE reads the data 1993, 1994, and 1995 each time the procedure
executes:

$ | CENSUS.COM

$!

$ RUN CENSUS

1993

1994

1995

$ EXIT

14.1.1 Restrictions to Including Data in Command Procedures

DCL passes the text on a data line directly to the command procedure. Therefore,
it will not process data that must be translated such as:

e Symbols
e Logical names

e Arithmetic expressions

14.1.2 Other Methods of Inputting Data

Other methods of obtaining input data for command procedures that are described
in the following sections include:

e Using parameters to pass data

e Using parameters to pass data to batch jobs

e Using parameters to pass data to nested command procedures
e Using the INQUIRE and READ commands to prompt for data
e Using the SYS$INPUT logical name to obtain data

14.2 Using Parameters to Pass Data

The following list contains guidelines for passing parameters as data to command
procedures:

¢ Place the parameters after the file specification of the command procedure.
¢ You can pass up to eight parameters to a command procedure.

e Ifyou pass fewer than eight parameter values, the extra symbols are assigned
null values. A null value is a string with no characters and is represented by
quotation marks (" ").

e Separate the parameters with one or more spaces or tabs.

DCL places parameters passed to command procedures in the local symbols P1
to P8. P1 is assigned to the first parameter value, P2 the second, P3 the third,
and so on. For example, the following command invokes the command procedure
SUM.COM and passes eight parameters to the procedure:

$ @SUM 34 52 664 89 2 72 87 3

14-2 Advanced Programming with DCL

Advanced Programming with DCL
14.2 Using Parameters to Pass Data

14.2.1 Specifying Parameters as Integers

When you specify an integer as a parameter, it is converted to a string. In the
following example, P1 is the string value 24; P2 is the string value 25:

$ @ADDER 24 25

You can use the symbols P1 to P8 in both integer and character string
expressions; DCL performs the necessary conversions automatically.

14.2.2 Specifying Parameters as Character Strings

To preserve spaces, tabs, or lowercase characters in a character string, place
quotation marks (" ") before and after the string. For example:

$ @DATA "Paul Cramer"

In the following example, P1 is Paul Cramer and P2 is null. If you omit the
quotation marks, each character string is passed as a separate parameter. For
example:

$ @DATA Paul Cramer

In this example, the strings Paul and Cramer are converted to uppercase letters;
P1 is PAUL and P2 is CRAMER.

As another example, if you invoke DATA.COM with the following command:
$ @DATA "Paul Cramer" 24 "(555) 111-1111")
P1 to P8 are defined in DATA.COM as follows:

P1 = Paul Cramer

P2 =24
P3 = (555) 111-1111
P4-P8 = null

14.2.3 Specifying Parameters as Symbols

To pass the value of a symbol, place an apostrophe before and after the symbol.
To preserve spaces, tabs, and lowercase characters in the symbol value, enclose
the value in three sets of quotation marks. You must also use three sets of
quotation marks to include a quotation mark as part of a string.

An alternative is to enclose the text in quotation marks and where a symbol
appears, precede the symbol with two apostrophes and follow it with one
apostrophe.

In the following example, P1 is Paul and P2 is Cramer because DCL removes
quotation marks when you pass a symbol to a command procedure:

$ NAME = "Paul Cramer"
S @DATA 'NAME’

In the following example, P1 is “Paul Cramer” and P2 is null:

$ NEW NAME = """Paul Cramer"""
$ @DATA "NEW_NAME'

In the following example, P1 is translated to Paul Cramer:

$ | DATA.COM
s @NAME llIIPllll

Advanced Programming with DCL 14-3

Advanced Programming with DCL
14.2 Using Parameters to Pass Data

14.2.4 Specifying Parameters as Null Values

To pass a null parameter, use one set of quotation marks as a placeholder in
the command string. In the following example, the first parameter passed to
DATA.COM is a null parameter:

$ @DATA "" "Paul Cramer"

In this example, P1 is null and P2 is Paul Cramer.

14.3 Using Parameters to Pass Data to Batch Jobs

To pass parameters to a command procedure executed in batch mode, use the
SUBMIT command qualifier /PARAMETERS.

If you execute more than one command procedure using a single SUBMIT
command, the specified parameters are used for each command procedure in the
batch job.

In the following example, the command passes three parameters to the command
procedures ASK.COM and GO.COM, which are executed as batch jobs:

$ SUBMIT/PARAMETERS=(TODAY, TOMORROW,YESTERDAY) ASK.COM, GO.COM)

In the following example, the SUBMIT command passes two parameters to the
command procedures: LIBRARY.COM and SORT.COM:

$ SUBMIT-
$ /PARAMETERS=(DISK:[ACCOUNT.BILLS]DATA.DAT,DISK: [ACCOUNT |NAME.DAT) -

_$ LIBRARY.COM, SORT.COM

The batch job executes as if you had logged in and executed each of the command
procedures. This SUBMIT command executes a batch job that logs in under your
account, executes your login command procedure, and then executes the following
commands:

$ QLIBRARY DISK:[ACCOUNT.BILLS]DATA.DAT DISK:[ACCOUNT |NAME.DAT)
$ @SORT DISK:[ACCOUNT.BILLS]DATA.DAT DISK:[ACCOUNT]NAME.DAT)

You can also pass data to a batch job by including the data in a command
procedure or by defining SYS$INPUT to be a file. The specified parameters are
used for each command procedure in the batch job.

14.4 Using Parameters to Pass Data to Nested Command
Procedures
You can pass up to eight parameters to nested command procedures. The local

symbols P1 to P8 in the nested procedure are not related to the local symbols P1
to P8 in the invoking procedure.

In the following example, DATA.COM invokes the nested command procedure
NAME.COM:

S | DATA.COM
$ @NAME 'P1’ Joe Cooper

If P1 in DATA.COM is the string Paul Cramer, which contains no quotation
marks, it is passed to NAME.COM as two parameters. In NAME.COM, P1 to P8
are defined as follows:

P1 = PAUL
P2 = CRAMER
P3 = JOE

14-4 Advanced Programming with DCL

Advanced Programming with DCL
14.4 Using Parameters to Pass Data to Nested Command Procedures

P4 = COOPER
P5-P8 = null

If P1 in DATA.COM is "Paul Cramer" (quotation marks included), you can pass
the value to NAME.COM as one parameter by enclosing P1 in three sets of
quotation marks, as follows:

$! DATA.COM
$ QUOTE = nnn
§ P1 = QUOTE + P1 + QUOTE
$ @NAME 'P1’ "Joe Cooper"

In this example, P1 is Paul Cramer and P2 is Joe Cooper in the command
procedure NAME.COM.

14.5 Prompting for Data

You can use the INQUIRE command (as described in Chapter 13) or the READ
command to obtain data for command procedures interactively. Both commands
prompt for input and assign the response to a symbol.

The READ command is different from the INQUIRE command in the following

ways:

The INQUIRE command... The READ command...

Prompts for a value Prompts for a value

Reads the value from the terminal Reads the value from the source specified by
the first parameter

Assigns the value to a symbol Assigns the value to the symbol named as the

second parameter

The READ command accepts all characters typed on the terminal in response
to the prompt, as an exact character string value (case, spaces, and tabs are
preserved). If you omit the /PROMPT qualifier, the READ command displays
Data: as the default prompt.

You can also write command procedures that can either accept parameters or
prompt for user input if the required parameters are not specified.

In the following example, the command issues the prompt Filename: to the
terminal, reads the response from the source specified by the logical name
SYS$COMMAND (by default, the terminal), and assigns the response to the
symbol FILE:

$ READ/PROMPT="Filename: " SYS$SCOMMAND FILE

In the following example, if a file name is not specified when the procedure is
invoked, the user is prompted for a file name:

$! Prompt for a file name if name
§ ! is not passed as a parameter

$ IF P1 .EQS. "" THEN INQUIRE Pl "Filename"
$ COPY 'P1l’ DISKS5:[RESERVED]*.*
§ EXIT

Advanced Programming with DCL 14-5

Advanced Programming with DCL
14.5 Prompting for Data

Note

If you submit a command procedure for execution as a batch job, DCL
reads the value for a symbol specified in an INQUIRE command from the
data line following the INQUIRE command. If you do not include a data
line, the symbol is assigned a null value.

14.6 Using the SYSSINPUT Logical Name to Obtain Data

Commands, utilities, and other system images get their input from the source
specified by the logical name SYS$INPUT, which is the default input stream.
In a command procedure, SYS$INPUT is defined as the command procedure file;
commands or images that require data look for data lines in the file. However,
by redefining SYS$INPUT, you can provide data from your terminal or from a
separate input file.

14.6.1 Redefining SYSSINPUT as Your Terminal

You can redefine SYS$INPUT to be your terminal. This enables images called
from command procedures to obtain input interactively, rather than from data
lines in command procedures.

Note that you must redefine SYS$INPUT to be your terminal if you want to use a
DCL command or utility that requires interactive input in command procedures.

In the following example, the command procedure allows you to provide input
interactively to the image CENSUS.EXE:

$! Execute CENSUS getting data from the terminal
$ DEFINE/USER MODE SYSSINPUT SYS$COMMAND

$ RUN CENSUS

$ EXIT

The DEFINE/USER_MODE command temporarily redefines SYS$INPUT while
CENSUS.EXE is running, so CENSUS.EXE obtains its input from the terminal.
After CENSUS.EXE completes, SYS$INPUT reverts to its original definition (the
command procedure file).

In the following example, the command procedure uses EVE as the text editor:

$! Obtain a list of your files
S DIRECTORY

$!

$! Get file name and invoke the EVE editor

$ EDIT LOOP:

$ INQUIRE FILE "File to edit (Press Return to end)"
$ IF FILE .EQS. "" THEN EXIT

S DEFINE/USER MODE SYSSINPUT SYSSCOMMAND

$ EDIT/TPU 'FILE’

S GOTO EDIT_LOOP

The command procedure prompts for file names until you terminate the loop by
pressing the Return key. When you enter a file name, the procedure automatically
invokes EVE to edit the file. While the editor is running, SYS$INPUT is defined
as the terminal so you can enter your edits interactively.

14-6 Advanced Programming with DCL

Advanced Programming with DCL
14.6 Using the SYSSINPUT Logical Name to Obtain Data

14.6.2 Defining SYSSINPUT as a Separate File

A command procedure can also get input from a file by defining SYS$INPUT
as a file. Note that DCL does not process data lines; command procedures pass
text on data lines directly to commands or images. If you include DCL symbols
or expressions on data lines, DCL will not substitute values for the symbols or
evaluate the expressions. If you use an exclamation point (!) in a data line, the
image to which you pass the data processes the exclamation point.

You can also place programs in the command procedure file by specifying the
name of the data file as SYS$INPUT. This causes the compiler to read the
program from the command procedure rather than from another file.

The following example shows a command procedure that contains a FORTRAN
command followed by the program’s statements:

$ FORTRAN/OBJECT=TESTER/LIST=TESTER SYS$SINPUT
C THIS IS A TEST PROGRAM
A=1
B =2
STOP
END
$ PRINT TESTER.LIS
$ EXIT

The FORTRAN command uses the logical name SYS$INPUT to identify the file
to be compiled. Because SYS$INPUT equates to the command procedure, the
FORTRAN compiler compiles the statements following the FORTRAN command
(up to the next line that begins with a dollar sign). When the compilation
completes, two output files are created: TESTER.OBJ and TESTER.LIS. The
PRINT command then prints the file.

14.7 Performing Command Procedure Output

Output from command procedures such as data, error messages, and verification
of command lines can be directed to either terminals or other files. The following
methods of directing output are covered in this section:

¢ Displaying data
¢ Redirecting output from commands and images
¢ Returning data from command procedures

¢ Redirecting error messages

14.7.1 Displaying Data

Use the TYPE command to display text that is several lines long and does not
require symbol substitution. The TYPE command writes data from the file you
specify to SYS$OUTPUT.

In the following example, SYS$INPUT is specified as the data file. The TYPE
command reads data from the data lines that follow and displays the lines on the
terminal.

Advanced Programming with DCL 14-7

Advanced Programming with DCL
14.7 Performing Command Procedure Output

$! Using TYPE to display lines

$ TYPE SYSSINPUT

REPORT BY MARY JONES

PREPARED APRIL 15, 2002

SUBJECT: Analysis of Tax Deductions for 2002

$ EXIT

Use the WRITE command to write data that contains symbols or lexical functions.
Unless you enclose the data in quotation marks (" "), the WRITE command
performs symbol substitution automatically.

To use the WRITE command to display a character string as literal text, enclose
the string in quotation marks (" "). For example:

$ WRITE SYSSOUTPUT "Two files are written."
Two files are written.

To include quotation marks in character strings, use two sets of quotation marks
(" ""). For example:

$ WRITE SYS$OUTPUT "Summary of ""Q & A"" Session"
Summary of "Q & A" Session

To continue a line of text on more than one line, concatenate the two strings with
a plus sign (+) and a hyphen (-). For example:

$ WRITE SYS$SOUTPUT "Report by Mary Jones" + -
" Prepared April 15, 2002"
Report by Mary Jones Prepared April 15, 2002

The WRITE command performs symbol substitutions automatically and displays
the values of symbols. To force symbol substitutions within character strings,
enclose the symbol in apostrophes. For example:

$ AFILE "STAT1.DAT"

$ BFILE "STAT2 .DAT"

$ WRITE SYS$OUTPUT "'’'AFILE’ and '’'BFILE’ ready."
STAT1.DAT and STAT2.DAT ready.

In this example, STAT1.DAT is the translation of the symbol AFILE; STAT2.DAT
is the translation of the symbol BFILE.

14.7.2 Redirecting Output from Commands and Images

Commands, utilities, and other system images write their output to the source
specified by the logical name SYS$OUTPUT. By default, SYS$OUTPUT equates
to the terminal. However, you can redirect the output in one of the following
ways:

e Use the /OUTPUT qualifier when you invoke the command. DCL commands
that accept the /OUTPUT qualifier include: ACCOUNTING, CALL,
DIRECTORY, HELP, LIBRARY, RUN (process), SPAWN, and TYPE.

e Temporarily redefine SYS$OUTPUT as a file by using the DEFINE/USER_
MODE command.

e Temporarily define SYS$OUTPUT as a null device (using the DEFINE/USER_
MODE command) to suppress output from a command.

14-8 Advanced Programming with DCL

Advanced Programming with DCL
14.7 Performing Command Procedure Output

In the following example, the command procedure redirects the output from the

SHOW USERS command to a file. The new definition for SYS$OUTPUT is in
effect only for the execution of the SHOW USERS command.

$ DEFINE/USER_MODE SYS$OUTPUT SHOW USER.DAT

$ SHOW USERS
$!

$ | Process the information in SHOW USER.DAT

$ OPEN/READ INFILE SHOW USER.DAT

$ READ INFILE RECORD

§ CLOSE INFILE
$ EXIT

In the following example, SYS$OUTPUT is defined as a null device (NL:).

$ DEFINE/USER_MODE SYSSOUTPUT NL:
$ APPEND NEW_DATA.DAT STATS.DAT

The /USER_MODE qualifier is used to create a temporary logical name
assignment that is in effect only until the next image completes. After the
command executes, SYS$OUTPUT reverts to the default definition (usually the

terminal).

You cannot use the DEFINE/USER_MODE command to redirect output from DCL
commands that are executed within the command interpreter. Instead, use the
DEFINE command to redefine SYS$OUTPUT and use the DEASSIGN command
to delete the definition when you are through with it.

The following is a complete list of DCL commands that are performed within the

command interpreter:

= ALLOCATE ASSIGN
ATTACH CALL CANCEL
CLOSE CONNECT CONTINUE
CREATE/LOGICAL_NAME _ DEALLOCATE DEASSIGN
TABLE

DEBUG DECK DEFINE
DEFINE/KEY DELETE/SYMBOL DISCONNECT
ELSE ENDIF ENDSUBROUTINE
EOD EXAMINE EXIT

GOSUB GOTO IF

INQUIRE ON OPEN

READ RECALL RETURN

SET CONTROL SET DEFAULT SET KEY

SET ON SET OUTPUT_RATE SET PROMPT
SET PROTECTION/DEFAULT SET SYMBOL/SCOPE SET UIC

Advanced Programming with DCL 14-9

Advanced Programming with DCL
14.7 Performing Command Procedure Output

SET VERIFY SHOW DEFAULT SHOW KEY

SHOW PROTECTION SHOW QUOTA SHOW STATUS
SHOW SYMBOL SHOW TIME SHOW TRANSLATION
SPAWN STOP SUBROUTINE

THEN WAIT WRITE

The following example shows the commands that would be used to redirect
output from the SHOW TIME command to the file TIME.DAT. After you deassign
SYS$OUTPUT, it reverts to the default definition (the terminal).

$ DEFINE SYSSOUTPUT TIME.DAT
§ SHOW TIME
$ DEASSIGN SYSSOUTPUT

14.7.3 Returning Data from Command Procedures

Global symbols and logical names return data from a command procedure to a
calling procedure or to DCL command level. You can read a global symbol or a
logical name at any command level. Logical names can return data from a nested
command procedure to the calling procedure.

The following example shows how a command procedure passes a value with a
global symbol created with a global assignment statement:

@DATA "Paul Cramer"
DATA.COM

|
!
! P1 is a full name.

! NAME.COM returns the last name in the

! global symbol LAST NAME.

|

@NAME 'P1’

$ | NAME.COM

$! Pl is a first name

$! P2 is a last name

$! return P2 in the global symbol LAST NAME
$ LAST NAME == P2 -

LUy »n

$ EXIT
$! write LAST NAME to the terminal
S WRITE SYSSOUTPUT “LAST_NAME = ”LAST_NAME"'

LAST NAME = CRAMER

DATA.COM invokes the command procedure NAME.COM, passing NAME.COM a
full name. NAME.COM places the last name in the global symbol LAST NAME.
When NAME.COM completes, DCL continues executing DATA.COM, which
reads the last name by specifying the global symbol LAST_NAME. The command
procedure NAME.COM would be in a separate file. It is shown indented in this
example for clarity.

In this command procedure, REPORT.COM obtains the file name for a report,
equates the file name to the logical name REPORT_FILE, and executes a program
that writes a report to REPORT_FILE:

$! Obtain the name of a file and then run
$! REPORT.EXE to write a report to the file
$!

$ INQUIRE FILE "Name of report file"

$ DEFINE/NOLOG REPORT FILE 'FILE’

$ RUN REPORT -

S EXIT

14-10 Advanced Programming with DCL

Advanced Programming with DCL
14.7 Performing Command Procedure Output

In the following example, the command procedure REPORT.COM is invoked from
another procedure. The calling procedure uses the logical name REPORT_FILE
to refer to the report file.

$! Command procedure that updates data files
$! and optionally prepares reports

$!

$ UPDATE:

INQUIRE REPORT "Prepare a report [Y or N]"
IF REPORT THEN GOTO REPORT SEC
EXIT

REPORT SEC:
¢REPORT
WRITE SYS$OUTPUT "Report written to ", F$TRNLNM('REPORT FILE")

$
$
$
$!
$
$
$
$ EXIT

14.7.4 Redirecting Error Messages

The following sections describe how to redirect error messages.

14.7.4.1 Redefining SYSSERROR

By default, command procedures send system error messages to the file indicated
by SYS$ERROR. You can redefine SYSSERROR to direct system error messages
to a specified file. However, if you redefine SYSSERROR to be different from
SYS$OUTPUT (or if you redefine SYS$OUTPUT without also redefining
SYS$ERROR), DCL commands and images that use standard system error
display mechanisms send system error level and system severe level error
messages to both SYSSERROR and SYS$OUTPUT. Therefore, you receive these
messages twice—once in the file indicated by the definition of SYS$ERROR and
once in the file indicated by SYS$OUTPUT. Success, informational, and warning
level messages are sent only to the file indicated by SYS$OUTPUT. If you want
to suppress system error messages from a DCL command, be sure that neither
SYS$ERROR nor SYS$OUTPUT is equated to the terminal.

If you run one of your own images from a command procedure and the image
references SYS$ERROR, the image sends system error messages only to

the file indicated by SYSSERROR — even if SYS$ERROR is different from
SYS$OUTPUT. Only DCL commands and images that use standard system error
display mechanisms send messages to both SYS$ERROR and SYS$OUTPUT
when these files are different.

This command procedure accepts a directory name as a parameter, sets
the default to that directory, and purges files in the directory. To suppress
system error messages, the procedure temporarily defines SYS$SERROR and
SYS$OUTPUT as the null device:

$ | Purge files in a directory and suppress messages
$!

$ SET DEFAULT 'Pl’

§ | Suppress messages

$!

$ DEFINE/USER_MODE SYSSERROR NL:

$ DEFINE/USER_MODE SYSSOUTPUT NL:

$ PURGE

$ EXIT

Advanced Programming with DCL 14-11

Advanced Programming with DCL
14.7 Performing Command Procedure Output

14.7.4.2 Suppressing System Error Messages

You can also use the SET MESSAGE command to suppress system messages. By
using the qualifiers /NOFACILITY, /INOIDENTIFICATION, /NOSEVERITY, or
/NOTEXT, you can suppress the facility name, message identification, severity
level, or the message text.

In the following example, the facility, identification, severity, and text messages
are temporarily suppressed, until the second SET MESSAGE command is issued:

$ | Purge files in a directory and suppress system messages
$!

$ SET DEFAULT 'P1l’

$! Suppress system messages

!

$ SET MESSAGE/NOFACILITY -
/NOIDENTIFICATION -
/NOSEVERITY -
/NOTEXT

$ PURGE

$ SET MESSAGE/FACILITY -
/IDENTIFICATION -
/SEVERITY
/TEXT

$ EXIT

14.8 Reading and Writing Files (File 1/O)

The basic steps in reading and writing files from command procedures are:

Step Action

1 Use the OPEN command to open files.

This assigns a logical name to the file and specifies whether the file is to be
read, written, or both read and written. Subsequent READ, WRITE, and CLOSE
commands use this logical name to refer to the file.

2 Use the READ or WRITE commands to read or write records to files.

Input and output to files is usually accomplished by designing a loop to read a
record, process the record, and write the modified record to either the same file or
to another file.

3 Use the CLOSE command to close files.
If you do not include the CLOSE command, files remain open until you log out.

Note

You do not have to open process-permanent files such as SYS$INPUT,
SYS$OUTPUT, SYS$COMMAND, and SYS$ERROR explicitly to read or
write to them because the system opens these files for you when you log
in.

The following sections describe:
e Using the OPEN command

e Writing to files

e Using the WRITE command
e Using the READ command

14-12 Advanced Programming with DCL

Advanced Programming with DCL
14.8 Reading and Writing Files (File 1/O)

e Using the CLOSE command
¢ Modifying files

— Updating records

— Creating new output files

— Appending records to files

14.9 Using the OPEN Command

The OPEN command opens sequential, relative, or indexed sequential files.

The files are opened as process-permanent; they remain open for the duration

of your process unless you explicitly close them (with the CLOSE command).
While the files are open, they are subject to OpenVMS RMS restrictions on using
process-permanent files.

When you open a file, the OPEN command assigns a logical name (specified as
the first parameter) to the file (specified as the second parameter) and places the
name in the process logical name table. Subsequent READ, WRITE, and CLOSE
commands use this logical name to refer to the file.

In the following example, the OPEN command assigns the logical name INFILE
to the file DISK4:[MURPHY]STATS.DAT:

$ OPEN/READ INFILE DISK4:[MURPHY]STATS.DAT

Note

The logical name in the OPEN command must be unique. If the OPEN
command does not work and your commands seem correct, change the
logical name in the OPEN command. To display a list of logical name
definitions, use the SHOW LOGICAL command.

To ensure that the command procedure can access the correct files, use complete
file specifications (for example, DISK4:[MURPHY]STATS.DAT) or use the SET
DEFAULT command to specify the proper device and directory before you open a
file.

You can also specify shareable files. The /SHARE qualifier enables other opened
files. In addition, users can access shareable files with the DCL commands TYPE
and SEARCH.

The OPEN/READ command opens the files, assigns logical names to the files,
and places record pointers at the beginning of the files. When you open files for
reading, you can read but not write records. Each time you read a record, the
pointer moves to the next record.

The OPEN/READ command in this command procedure opens the file
STATS.DAT and assigns the logical name INFILE to the file:

$ OPEN/READ INFILE DISK4:[MURPHY]STATS.DAT
$ READ FILE:
$ READ/END OF FILE=DONE INFILE DATA

$ GOTO READ FILE
S DONE:

$ CLOSE INFILE

$ EXIT

Advanced Programming with DCL 14-13

Advanced Programming with DCL
14.9 Using the OPEN Command

Use the OPEN/WRITE command when you want to write to a new file. The
OPEN/WRITE command creates a sequential file in print file format. The record
format for the file is variable with fixed control (VFC), with a 2-byte record
header. The /WRITE qualifier cannot be used with the /APPEND qualifier.

If you specify a file that already exists, the OPEN/WRITE command opens a new
file with a version number that is one greater than the existing file.

The command procedure in the following example creates a new file
(NAMES.DAT) that can be used for writing:

$ OPEN/WRITE OUTFILE DISK4:[MURPHY]NAMES.DAT
$ UPDATE:
$ INQUIRE NEW RECORD "Enter name"

$ WRITE OUTFILE NEW RECORD

$ IF NEW RECORD .EQS. "" THEN GOTO EXIT CODE
$ GOTO UPDATE

$ EXIT CODE:

$ CLOSE OUTFILE

$ EXIT

The OPEN/APPEND command appends records to the end of an existing file. If
you attempt to open a file that does not exist, an error occurs and the file is not
opened. The /APPEND qualifier cannot be used with the /WRITE qualifier.

In the following example, records are appended to the end of an existing file,
NAMES.DAT:

$ OPEN/APPEND OUTFILE DISK4:[MURPHY]NAMES.DAT
$ INQUIRE NEW_RECORD "Enter name"
$ WRITE OUTFILE NEW_RECORD

$ CLOSE OUTFILE

The OPEN/READ/WRITE command places the record pointer at the beginning of
a file so you can read the first record. When you use this method to open a file,
you can replace only the record you have read most recently; you cannot write
new records to the end of the file. In addition, a revised record must be exactly
the same size as the record being replaced.

In the following example, the record pointer is placed at the beginning of the file
STATS.DAT so the first record can be read:

$ OPEN/READ/WRITE FILE DISK4:[MURPHY]STATS.DAT

14.10 Writing to Files

To write to files, use the following procedure:

Step Action
1 Open the file for writing.
2 Begin the write loop with a label.

File I/O is always done in a loop unless you are writing or reading a single record.
3 Read the data to be written.
Use the INQUIRE command or the READ command to read data into a symbol.

14-14 Advanced Programming with DCL

Advanced Programming with DCL
14.10 Writing to Files

Step Action

4 Test the data.

Check the symbol containing the data. If the symbol is null (for example, if you
press Return and enter no data on the line), you have reached the end of the
data to be written to the file and you should go to the end of the loop. Otherwise,

continue.
5 Write the data to the file.

Use the WRITE command to write the value of the symbol (one record) to the file.
6 Return to the beginning of the loop.

You remain within the loop until there is no more data to be written to the file.
7 End the loop and close the file.

The following command procedure writes data to the new file STATS.DAT. If a
file of that name exists, a new version is created.

$! Write a file

$ ON ERROR THEN EXIT ! Exit if the command

! procedure cannot

! open the file

PEN/WRITE IN FILE DISK4:[MURPHY]STATS.DAT ! Open the file

CONTROL_Y THEN GOTO END WRITE ! Close the file if you
quit execution with
Ctrl/y

Close the file if an
error occurs

Begin the loop

Prompt for input

Test for the end of
the file

Write to the file

Go to the beginning

End the loop

!
!
(03
ON
!
!
ON ERROR THEN GOTO END WRITE
!
R
INQUIRE STUFF "Input data"

IF STUFF .EQS. "" THEN GOTO END WRITE
!

WRITE IN_FILE STUFF

GOTO WRITE

$
$
$
$
$
$
$
$
SWRITE:
$
$
$
$
$
$END WRITE:
$!
$

CLOSE IN FILE Close the file

14.10.1 Creating Files with Unique File Names

To create a file with a unique name, use the F$SEARCH lexical function to see if
the name is already in the directory. (Refer to the lexical function descriptions in
the OpenVMS DCL Dictionary for more information about F$SEARCH.)

This command procedure prompts the user for a file name, then uses the
F$SEARCH lexical function to search the default directory for the name. If a
file with that name already exists, control is passed to ERROR_1, the procedure
prints the message “The file already exists” and control returns to the label
GET_NAME. The procedure then prompts for another file name as shown in the
following example:

$ | FILES.COM

$!

$GET_NAME:

$ INQUIRE FILE "File" ! Prompt the user for a file name
$ IF FSSEARCH (FILE) .NES. "" ! Make sure the file name is unique
$ THEN

$ WRITE SYS$SOUTPUT "The file already exists"

$ GOTO GET_NAME

$ ELSE

$ OPEN/WRITE IN FILE 'FILE’ ! Open the file with WRITE access
$ ENDIF

§ EXIT

Advanced Programming with DCL 14-15

Advanced Programming with DCL
14.11 Using the WRITE Command

14.11 Using the WRITE Command

The following sections describe how to use the WRITE command.

14.11.1 Specifying Data

When you specify data for the WRITE command, follow the rules for character
string expressions described in Chapter 12. You can specify data in the following
ways:

e Specify data to be written as a character string expression. The WRITE
command automatically substitutes symbols and lexical functions.

e Write a string to an output file as a literal character string. The WRITE
command does not perform symbol substitution on strings enclosed in
quotation marks.

e Combine literal strings with symbol names. To force symbol substitution,
place the entire string within quotation marks and use double apostrophes
before the symbol to identify it and a single apostrophe following it.

Another way to combine literal strings with symbol names is to insert a
comma before and after the symbol, place quotation marks around the
delimited symbol, and enclose the entire character string in quotation marks.
For example:

$ WRITE OUTFILE "Count is ",COUNT,"."
e Use apostrophes in the WRITE command line to force symbol substitution.

e Combine literal strings and lexical functions by using apostrophes to force
symbol substitution within character strings.

Example

$! Define symbols

$!

$ CREATED = "File created April 15, 2002"
$ COUNT = 4

$ P4 = "fourth parameter"

$!

$! Open the file DATA.OUT for writing

$!

$ OPEN/WRITE OUTFILE DISK4:[MURPHY]DATA.OUT
$!

$ WRITE OUTFILE CREATED (1)
$ WRITE OUTFILE "CREATED" (2]
$!

$ WRITE OUTFILE "Count is ’‘'COUNT'." (3]
$ WRITE OUTFILE P’COUNT'’ o
$!

$ WRITE OUTFILE "Mode is '’f$mode()’" @
$!

$ CLOSE OUTFILE

$ TYPE DISK4:[MURPHY]DATA.OUT [Retim] @
File created April 15, 2002

CREATED

Count is 4.

fourth parameter

Mode is INTERACTIVE

$

As you examine the example, note the following:

@ Specifies the data to be written as a character string expression.

14-16 Advanced Programming with DCL

Advanced Programming with DCL
14.11 Using the WRITE Command

Writes the string CREATED to the output file as a literal character string.

Combines literal strings with symbol names.

© 00

Uses an apostrophe in the WRITE command line to force symbol substitution.
In this example, the WRITE command substitutes a value for the symbol
COUNT and performs symbol substitution on the resulting command string
(P4).

©® Combines literal strings and lexical functions.
O Displays the data written to the output file DATA.OUT by the preceding
WRITE commands.
14.11.2 Using the /SYMBOL Qualifier

When the WRITE command writes a record, it positions the record pointer after
the record just written. The WRITE command can write a record that is up to
2,048 bytes long.

Use the /SYMBOL qualifier to write a record if either of the following conditions
exist:

e The record is longer than 1,024 bytes.
¢ An expression in the WRITE command is longer than 255 bytes.
Refer to the description of the WRITE command in the OpenVMS DCL Dictionary

for more information on writing long records.

14.11.3 Using the /UPDATE Qualifier

You can use the WRITE command with the /UPDATE qualifier to change a record
rather than insert a new one. To use the /UPDATE qualifier, you must open the
file for both reading and writing.

14.12 Using the READ Command

Use the READ command to read a record and assign its contents to a symbol.
You can use the READ command to read records that are less than or equal to
1,024 characters in length. To read data from a file, use the following procedure:

Step Action
1 Open the file for reading.
2 Begin the read loop with a label.

File I/O is always done in a loop unless you are reading or writing a single record.
3 Read the data from the file.

Use the READ command with the /END_OF_FILE qualifier to read a record and
assign its contents to a symbol. The /END_OF_FILE qualifier causes DCL to pass
control to the label specified by the /END_OF_FILE qualifier when you reach the
end of the file. Generally, you specify the label that marks the end of the read loop.

4 Process the data.
When you read a file sequentially, process the current record before reading the
next one.

5 Return to the beginning of the loop.

You remain in the loop until you reach the end of the file.

Advanced Programming with DCL 14-17

Advanced Programming with DCL
14.12 Using the READ Command

Step Action

6 End the loop and close the file.

The following command procedure reads and processes each record in the file
STATS.DAT. The procedure executes the READ command repeatedly until the
end-of-file status is returned. Then, the procedure branches to the line labeled

END_READ.

$ OPEN/READ INFILE DISK4:[MURPHY]STATS.DAT !0pen the file

$!

SREAD DATA: !Begin the loop

$ READ/END_OF_FILE=END_READ INFILE RECORD IRead a record; test for
$! end of file

$! Process the data

$ GOTO READ_DATA !Go to the beginning
$! of the loop
SEND_READ: !End of loop

$ CLOSE INFILE IClose the file

$ EXIT

When you specify a symbol name for the READ command, the command
interpreter places the symbol name in the local symbol table for the current
command level. If you use the same symbol name for more than one READ
command, each READ command redefines the value of the symbol name. For
example, in the preceding example, the READ command reads a new record from
the input file (STATS.DAT) each time through the loop. It then uses this record
to redefine the value of the symbol RECORD.

14.12.1 Using the /END_OF_FILE Qualifier

When you read from files, you generally read and process each record until you
reach the end of the file. By using the /END_OF_FILE qualifier with the READ
command, you can construct a loop to read records from a file, process the records,
and exit from the loop when you have finished reading all the records.

Note that the labels you specify for /END_OF_FILE qualifiers are subject to the
same rules as labels specified for a GOTO command. (See Chapter 13 for more
information on using the GOTO command.)

You should always use the /END_OF_FILE qualifier when you use the READ
command in a loop. Otherwise, when the error condition indicating the end-of-file
is returned by the OpenVMS Record Management Services (OpenVMS RMS),
the command interpreter performs the error action specified by the current ON
command. For example, OpenVMS RMS returns the error status %RMS-E-EOF.
This causes a command procedure to exit unless the procedure has established its
own error handling.

14.12.2 Using the /INDEX and /KEY Qualifiers

To read records randomly from indexed sequential files, use the READ command
qualifiers /INDEX and /KEY. These qualifiers specify that a record should be read
from the file by finding the specified key in the index and returning the record
associated with that key. If you do not specify an index, the primary index (0) is
used.

After you read a record randomly, you can read the remainder of the file
sequentially by using READ commands without the /KEY or /INDEX qualifiers.

14-18 Advanced Programming with DCL

Advanced Programming with DCL
14.12 Using the READ Command

14.12.3 Using the /DELETE Qualifier

You can use the READ command with the /DELETE qualifier to delete records
from indexed sequential files. The /DELETE qualifier causes a record to be
deleted from a file after it has been read. Use the /DELETE qualifier with the
/INDEX and /KEY qualifiers to delete a record specified by a given key.

For more information about the /DELETE, /INDEX, and /KEY qualifiers, refer to
the description of the READ command in the OpenVMS DCL Dictionary.
14.13 Using the Close Command

The CLOSE command closes a file and deassigns the logical name created by
the OPEN command. Be sure to close all files you open in a command procedure
before the command procedure terminates. If you fail to close an open file, the
file remains open when the command procedure terminates and the logical name
assigned to the open file is not deleted from the process logical name table.

In the following example, the CLOSE command closes the file STATS.DAT and
deassigns the logical name INFILE:

$ OPEN INFILE DISK4:[MURPHY]STATS.DAT

§ CLOSE INFILE

14.14 Modifying Files

This section describes three methods of modifying files:
e Updating records
e Creating new output files

e Appending records
14.14.1 Updating Records

When you use the updating method to modify records, you can make minor
changes to a small number of records in a file. Because this method does not
allow you to change the size of a record or the number of records in the file, use it
only for files with formatted records (for example, in a data file).

To make minor changes in a file, use this procedure:

Step Action

1 Open the file for both read and write access.

2 Use the READ command to read through the file until you reach the record that
you want to modify.

3 Modify the record.

In a sequential file, the text of this record must be exactly the same size as the
original record. If the text of the modified record is shorter, pad the record with
spaces, adding spaces to the end of the modified record until it is the same length
as the original record. If the text of the modified record is longer, you need to
create a new file.

4 Use the WRITE/UPDATE command to write the modified record back to the file.

Advanced Programming with DCL 14-19

Advanced Programming with DCL
14.14 Modifying Files

Step Action

Repeat steps 2 to 4 until you have changed all records you intend to change.
Use the CLOSE command to close the file.

After you close the file, it contains the same version number as when you started,
even though individual records have been changed.

The following command procedure shows how to make changes to a sequential
file by reading and updating individual records:

$! Open STATS.DAT and assign it the logical name FILE
$!
$ OPEN/READ/WRITE FILE DISK4:[MURPHY]STATS.DAT

§ BEGIN LOOP:

$! Read the next record from FILE into the symbol RECORD

$ READ/END OF FILE=END LOOP FILE RECORD

Display the record and see if the user wants to change it
If yes, get the new record. If no, repeat loop

PROMPT:
WRITE SYS$OUTPUT RECORD
INQUIRE/NOPUNCTUATION OK "Change? Y or N [Y] "
IF OK .EQS. "N" THEN GOTO BEGIN LOOP
INQUIRE NEW _RECORD "New record"
Compare the old and new records
If old record is shorter than new record, issue an
error message. If old record and new record are the
same length, write the record. Otherwise pad the new
record with spaces so it is correct length

OLD LEN = F$LENGTH(RECORD)

NEW LEN = F$LENGTH(NEW RECORD)

IF OLD LEN .LT. NEW LEN THEN GOTO ERROR

IF OLD LEN .EQ. NEW LEN THEN GOTO WRITE RECORD
SPACES = " oo -

PAD = F$EXTRACT(0,0LD LEN-NEW LEN,SPACES)
NEW_RECORD = NEW RECORD + PAD

WRITE_RECORD:
WRITE/UPDATE FILE NEW RECORD
GOTO BEGIN_LOOP

ERROR:
WRITE SYSSOUTPUT "Error -- New record is too long"
GOTO PROMPT

END_LOOP:
CLOSE FILE
EXIT

W U U U2 U2 U 2 U U U O O U O O O U O U U

The system displays the record on the terminal and you are asked whether the
record needs to be modified. If you choose to modify the record, a new record is
read from the terminal and its length is compared to the length of the original
record. If the original record is longer, extra spaces make the new record the
same size. If the original record is shorter, the system displays an error message
and you are again prompted for a new record.

14.14.2 Creating New Output Files

To make extensive changes to a file, open that file for read access and open a new
file for write access. Because you are creating a new output file, you can modify
the size of records, add records, delete records, or insert records.

14-20 Advanced Programming with DCL

Advanced Programming with DCL
14.14 Modifying Files

The OPEN/WRITE command opens a new file for write access. The new file can
have the same name as the original file and a version number one higher than
the version number of the old file.

Note

To ensure that the correct file is opened for reading, you must open the
existing file for read access before you open the new version for write
access.

To create files that you can modify, use the following procedure:

Step Action

1 Open the file for read access.
This is the input file, the file you are modifying.
2 Open a new file for write access.

This is the output file, the file that you are creating. If you give the output file the
same name as the input file, the output file will have a version number one greater
than the input file.

3 Use the READ command to read each record from the file you are modifying.

As you read each record from the original file, decide how the record is to be
treated.

Continue reading and processing records until you have finished.
Use the CLOSE command to close both the input file and the output file.

In the following table, the symbol RECORD contains the record read from the
original file:

If The Record is Then

Not changed Write the same symbol to the new file.

Changed Use the INQUIRE command to read a different record into the symbol,
then write the modified symbol to the new file.

Deleted Do not write the symbol to the new file.

Inserted Use a loop to read records into the symbol and to write the symbol to
the new file.

Examples: Modifying Records
¢ In the following example, the symbol NEW_FILE is written to a new file:

$! No change
$ WRITE NEW_FILE RECORD

¢ In the following example, the INQUIRE command is used to write a modified
symbol to a new file:

$! Change

$ INQUIRE NEW _RECORD "New record"
S WRITE NEW FILE NEW_RECORD

Advanced Programming with DCL 14-21

Advanced Programming with DCL
14.14 Modifying Files

e In the following example, a loop is used to write the symbol to a new file:

$ | Insertion

SLOOP:

$!Get new records to insert

$ INQUIRE NEW RECORD "New record"

$ IF RECORD .EQS. "" THEN GOTO END LOOP
$ WRITE NEW_FILE NEW_RECORD -

$ GOTO LOOP

$END_LOOP:

Example: Creating Output Files

The following example shows a command procedure that reads a record from an
input file, processes the record, and copies the record into an output file:

§! Open STATS.DAT for reading and assign it

$! the logical name INFILE

$! Open a new version of STATS.DAT for writing

§! and assign it the logical name OUTFILE

$!

$ OPEN/READ INFILE DISK4:[MURPHY]STATS.DAT

$ OPEN/WRITE OUTFILE DISK4:[MURPHY]STATS.DAT

$!

$ BEGIN LOOP:

$! Read the next record from INFILE into the symbol RECORD
$!

$ READ/END_OF_FILE=END_LOOP INFILE RECORD

$! Display the record and see if the user wants to change it
§! If yes, get the new record

$! If no, write record directly to OUTFILE

S

$ PROMPT:

$ WRITE SYSSOUTPUT RECORD

$ INQUIRE/NOPUNCTUATION OK "Change? Y or N [Y] "
$ IF OK .EQS. "N" THEN GOTO WRITE RECORD
$ INQUIRE RECORD "New record" -

S

$ WRITE RECORD:

$ WRITE OUTFILE RECORD

$ GOTO BEGIN LOOP

S

§! Close input and output files

$ END LOOP:

$ ~ CLOSE INFILE

$ CLOSE OUTFILE

$ EXIT

14.14.3 Appending Records to Files

Use the following procedure (OPEN/APPEND command) to append records to the
end of existing files:

Step Action

1 Use the OPEN command with the /APPEND qualifier to position the record pointer
at the end of the file.

The /APPEND qualifier does not create a new version of the file.
Use the WRITE command to write new data records.

Continue adding records until you are finished.

Use the CLOSE command to close the file.

14-22 Advanced Programming with DCL

Advanced Programming with DCL
14.14 Modifying Files

The following command procedure appends records to the end of the file named
STATS.DAT:

$! Open STATS.DAT to append files and assign

§! it the logical name FILE

$!

$ OPEN/APPEND FILE DISK4:[MURPHY]STATS.DAT

$!

$ BEGIN_LOOP:

$! Obtain record to be appended and place this
§! record in the symbol RECORD

$!

$ PROMPT:

$ INQUIRE RECORD -

"Enter new record (press RET to quit) "
IF RECORD .EQS. "" THEN GOTO END LOOP
! Write record to FILE

|

WRITE FILE RECORD
GOTO BEGIN_LOOP

Close FILE and exit

END_LOOP:
CLOSE FILE
EXIT

U U U U U U D U U

14.15 Handling File I/O Errors

Use the /ERROR qualifier with the OPEN, READ, or WRITE command to
suppress system error messages and to pass control to a specified label. If an
error occurs during an input or output operation, the /ERROR qualifier overrides
all other error-control mechanisms (except the /END_OF_FILE qualifier on the
READ command).

The following example uses the /ERROR qualifier with the OPEN command:
$ OPEN/READ/ERROR=CHECK FILE CONTINGEN.DOC

$ CHECK:
§ WRITE SYSSOUTPUT "Error opening file"

The OPEN command requests that the file CONTINGEN.DOC be opened for
reading. If the file cannot be opened (for example, if the file does not exist), the

OPEN command returns an error condition and transfers control to the CHECK
label.

The error path specified by the /ERROR qualifier overrides the current ON
condition established for the command level. If an error occurs and the target
label is successfully given control, the reserved global symbol $STATUS retains
the code for the error. You can use the FSMESSAGE lexical function in your
error-handling routine to display the message in $STATUS.

In the following example, the lexical function F$MESSAGE is used to display the
contents of the F$STATUS lexical:

Advanced Programming with DCL 14-23

Advanced Programming with DCL
14.15 Handling File 1/0O Errors

$ OPEN/READ/ERROR=CHECK FILE 'P1’

S CHECK:

$ ERR MESSAGE = F$MESSAGE($STATUS)

$ WRITE SYSSOUTPUT "Error opening file: ",Pl1
$ WRITE SYSSOUTPUT ERR_MESSAGE

14.15.1 Default Error Actions

If an error occurs while you are using the OPEN, READ, WRITE, or CLOSE
command and you do not specify an error action, the current ON command action
is taken.

When a READ command receives an end-of-file message, the error action is
determined as follows:

e If you use the /END_OF_FILE qualifier, control is passed to the specified
label.

e Ifyou do not use the /END_OF_FILE qualifier, control is passed to the label
specified with the /ERROR qualifier.

e If you do not specify either qualifier (END_OF_FILE or /ERROR), the current
ON command action is taken.

14.16 Techniques for Controlling Execution Flow

The normal flow of execution in a command procedure is sequential: the
commands in the procedure execute in order until the end of the file is reached.
However, you can also control whether certain statements are executed or the
conditions under which the procedure should continue executing.

The following sections discuss:

¢ The DCL commands that you can use to control or alter the flow of execution:
— IF, THEN, ELSE
- GOTO
- GOSUB
- CALL

e Using command blocks

e Writing case statements

e Writing loops

14.16.1 Using the IF Command

The IF command tests the value of an expression and executes a command or
block of commands when the result of the expression is true. When the result of
the expression is false, one of the following occurs:

¢ When one command follows the THEN command, it is not executed and the
following command executes.

14-24 Advanced Programming with DCL

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

e When a block of commands follows the THEN command and the ELSE
command is not specified, the command immediately following the ENDIF
command executes.

e When the ELSE command is specified, the command or block of commands
following the ELSE command executes.

DCL provides two distinct formats for the IF command. The first format executes
a single command when the expression specified to the IF command is true, as
discussed in Chapter 13.

DCL also provides a block-structured IF format. The block-structured IF
command executes more than one command if the expression specified is true and
accepts an optional ELSE statement, which executes one or more commands if
the expression is false.

14.16.2 Using the THEN Command

To execute more than one command when an expression is true, specify the
THEN command as a verb (a DCL command preceded by a dollar sign) and
terminate the resulting block-structured statement with an ENDIF statement.

In the following example, the THEN statement is used as a verb:

§ IF expression

S THEN

$ command
S command
$ ENDIF

14.16.3 Using the ELSE Command

To execute one or more commands when an expression is false, specify the ELSE
statement as a verb and terminate the resulting block-structured statement with
an ENDIF statement.

In the following example, the ELSE command is used as a verb:

$ IF expression

S THEN

S command
$ command
S ELSE

S command
$ command
$ ENDIF

Advanced Programming with DCL 14-25

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

14.16.4 Using Command Blocks

Command blocks can be executed in several ways, depending on whether you
leave the commands in the same command procedure or put them in another
command procedure and execute them there. The guidelines are as follows:

e If you leave the commands in the command procedure, place them after the
THEN statement. For example:

$ IF condition
$ THEN command
command

$ ENDIF

e If you place the commands in a separate procedure, make the call to that
command procedure as part of the THEN statement. For example:

$ IF condition

§ THEN @command procedure
$ ELSE command

$ command

$ ENDIF

¢ You can continue to specify the nonblock-structured IF format and direct flow
to a labeled region when the condition specified is met. For example:

$ IF not condition THEN GOTO END LABEL

SEND_LABEL:

You can execute a block of commands after the THEN command when the result
of the IF expression is true. When you use a block of commands, place the THEN
command as the first command on the line following the IF command.

In the following example, two SET TERMINAL commands execute and the
procedure transfers control to the label PROCEED when F$MODE equals
“INTERACTIVE”. When F$MODE does not equal “INTERACTIVE”, the
procedure exits.

$ IF FSMODE () .EQS. "INTERACTIVE"
§ THEN

$ SET TERMINAL/DEVICE=VT320

$ SET TERMINAL/WIDTH=132

$ GOTO PROCEED

$ ENDIF

$ EXIT

$PROCEED:

The following example illustrates how to use a block of commands with the IF
command in conjunction with the ELSE command:

14-26 Advanced Programming with DCL

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

INQUIRE DEV "Device to check"
IF F$GETDVI(DEV, "EXISTS")
THEN
WRITE SYSSOUTPUT "The device exists."
SHOW DEVICE 'DEV’
SET DEVICE/ERROR LOGGING 'DEV’
ELSE -
WRITE SYSSOUTPUT "The device does not exist."
WRITE SYS$OUTPUT "Error logging has not been enabled."”
ENDIF
EXIT

When the condition is true, the procedure writes a message to SYS$OUTPUT and
executes the SHOW DEVICE and SET DEVICE commands. When the condition
is not true, the procedure writes two messages to SYS$OUTPUT.

U U U U U U U U U

When you use the IF-THEN-ELSE language construct, observe the following
restrictions:

e Include no more than 15 levels of nested IF statements.

e Terminate a command block started by a THEN statement with either an
ELSE or an ENDIF statement.

e Terminate a command block started by an ELSE statement with an ENDIF
statement.

¢ Include a THEN statement as the first executable statement following an IF
statement.

¢ Do not specify a label on a line containing a THEN or an ELSE statement.
You can, however, specify a label on a line containing an ENDIF statement.
Programs can branch within the current command block but branching into
the middle of another command block is not recommended.

True Expressions

The expression following the IF command can consist of one or more numeric
constants, string literals, symbolic names, or lexical functions separated by
logical, arithmetic, or string operators. An expression is true when it has one of
the following values:

¢ An odd integer value
e A character string value that begins with any of the letters Y, y, T, or t

e A character string value that contains numbers that form an integer with an
odd value (for example, the string "27")

False Expressions
An expression is false when it has one of the following values:

e An even integer value
e A character string value that begins with any letter other than Y, y, T, or t

e A character string value that contains numbers that form an integer with an
even value (for example, the string "28")

Advanced Programming with DCL 14-27

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

Writing Expressions
When you write an expression for an IF command, adhere to the following rules:

e When you use symbols in IF statements, their values are automatically
substituted. Do not use apostrophes (*) as substitution operators unless you
need to force iterative translation.

e String comparison operators end in the letter S. For example, use operators
such as .EQS., .LTS., and .GTS. to compare strings. By contrast, the operators
.EQ., .LT., and .GT. are used for comparing integers.

e When you test to see whether two strings are equal, the strings must use the
same case in order for DCL to find a match. That is, the string “COPY” does
not equal the string “copy” or the string “CoPy.”

The following examples illustrate expressions that can be used with the IF
command. For additional examples, refer to the description of the IF command in
the OpenVMS DCL Dictionary.

The first example uses a logical operator and executes only one command
following the THEN statement. When the symbol CONT is not true, the
procedure exits.

$ INQUIRE CONT "Do you want to continue [Y/N]"
$ IF .NOT. CONT THEN EXIT

The following example uses a symbol and a label within the IF expression:

$ INQUIRE CHANGE "Do you want to change the record [Y/N]"
$ IF CHANGE THEN GOTO GET_CHANGE

$ GET CHANGE:

When the symbol CHANGE is true, the procedure transfers control to the label
GET_CHANGE. Otherwise, the procedure executes the command following the IF
command.

The next example illustrates two different IF commands:

$ COUNT = COUNT + 1
$ IF COUNT .EQ. 9 THEN EXIT
$ IF P'COUNT’ .EQS. "" THEN EXIT

§ GOTO LOOP

The first IF command compares two integers; the second IF command compares
two strings. Note that the .EQ. operator is used for the integer comparison and
the .EQS. operator is used for the string comparison.

14-28 Advanced Programming with DCL

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

First, the value of COUNT is compared to the integer 9. When the values
are equal, the procedure exits; when the values are not equal, the procedure
continues. The loop terminates after eight parameters (the maximum number
allowed) have been processed.

In the second IF expression, the string value of the symbol P COUNT" is
compared to a null string to see whether the symbol is undefined. Note that
you must use apostrophes to force iterative substitution of the symbol COUNT.
For example, when COUNT is 2, the result of the first translation is P2. Then,
the value of P2 is used in the string comparison.

You can also execute a separate command procedure when the result of the IF

expression is true. The following example executes the command procedure
EXIT_ROUTINE.COM when the result of the IF expression is true:

$ GET_COMMAND LOOP:
$ INQUIRE COMMAND -

"Enter command (DELETE, DIRECTORY, EXIT, PRINT, PURGE, TYPE)"
$ IF COMMAND .EQS. "EXIT" THEN @EXIT ROUTINE

14.16.5 Using the GOTO Command

The GOTO command passes control to a labeled line in a command procedure.
(For additional information on label usage, refer to Chapter 13.) The GOTO
command is especially useful within a THEN clause to cause a procedure

to branch forward or backward. For example, when you use parameters in

a command procedure, you can test the parameters at the beginning of the
procedure and branch to the appropriate label.

The target label of a GOTO or GOSUB command cannot be inside either a
separate IF-THEN-ELSE construct or a separate subroutine.

In the following example, the IF command checks that P1 is not a null string:

$ IF P1 .NES. "" THEN GOTO OKAY
$ INQUIRE Pl "Enter file spec"
$ OKAY:

$ PRINT/COPIES=10 'P1’

If P1 is a null string, the GOTO command is not executed and the INQUIRE
command prompts for a parameter value. Otherwise, the GOTO command causes
a branch around the INQUIRE command. In either case, the procedure executes
the PRINT command following the line labeled OKAY.

In the following example the GOTO command returns an error message because
its target (TEST 1) is within an IF-THEN construct:

GOTO TEST 1
EXIT -
IF 1.EQ.1
THEN WRITE SYSSOUTPUT "What are we doing here?"

TEST 1:

~ WRITE SYSSOUTPUT "Got to the label"
ENDIF
EXIT

U U U >

Advanced Programming with DCL 14-29

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

14.16.5.1 Avoiding Reexecution

You can also use the GOTO command to avoid reexecuting parts of the job that
have completed successfully. To do this, follow these steps:

Step Action
1 Begin each possible starting point in the procedure with a label.
2 After the label, use the SET RESTART_VALUE = label-name command to set the

restarting point to that label.

If the batch job is interrupted after the SET RESTART VALUE = label-name
command executes, the system assigns the appropriate label name to the global
symbol BATCH$RESTART when the batch job restarts.

3 At the beginning of the procedure, test the value of the symbol $RESTART.

If $RESTART is true, execute a GOTO statement using the symbol
BATCHS$RESTART as the transfer label.

SRESTART Global Symbol

$RESTART is a reserved global symbol that the system maintains for you.
$RESTART is true if one of your batch jobs was restarted after it was interrupted.
Otherwise, $RESTART is false. You cannot delete the reserved global symbol
$RESTART.

If a command procedure has SET RESTART VALUE commands in it but you
want the job to reexecute in its entirety, enter the SET ENTRY/NOCHECKPOINT
command to delete the global symbol BATCH$RESTART. If you restart a job that
was interrupted, the job starts executing in the section where it was interrupted.

This command procedure shows how to use restart values in a batch job:

! Set default to the directory containing
! the file to be updated and sorted
SET DEFAULT DISK1:[ACCOUNTS.DATA84]

! Check for restarting
IF $RESTART THEN GOTO 'BATCH$RESTART'

UPDATE FILE:
SET RESTART VALUE

U U

UPDATE FILE

$ SORT FILE:
$ SET RESTART VALUE

SORT FILE

EXIT

To submit this command procedure as a batch job that can be restarted, use the
/RESTART qualifier to the SUBMIT command when you submit the job. Because
interrupted jobs begin executing in the section where they are interrupted, if this
job is interrupted during the SORT_FILE routine, it starts executing at the label
SORT_FILE when it is restarted.

Most of your process environment is not maintained when the system fails.

The only symbols maintained across a system failure are $RESTART and
BATCHS$RESTART. Therefore, you should redefine any symbols or process logical
names used in your command procedure after each SET RESTART VALUE
command or in a THEN block that executes if SRESTART is true.

14-30 Advanced Programming with DCL

Advanced Programming with DCL
14.16 Techniques for Controlling Execution Flow

If you define symbols and logical names in a THEN block, the command GOTO
'BATCH$RESTART" should be the last command in the THEN block.

14.16.6 Using the GOSUB and RETURN Commands

The GOSUB command transfers control to a labeled subroutine in a command
procedure. If the label does not exist in the command procedure, the procedure
cannot continue executing and is forced to exit. (For complete information on
labels, refer to Chapter 13.) You can nest the GOSUB command up to 16 times
per procedure level.

The GOSUB command is a local subroutine call; it does not create a new
procedure level. Consequently, all labels and local symbols defined in the current
command level are available to a subroutine invoked with GOSUB.

The RETURN command terminates a subroutine and returns control to the
command following the GOSUB command. You can specify a value for $STATUS
with the RETURN command that overrides the value that DCL assigns to
$STATUS at the end of the subroutine. This value must be an integer between
zero and four or an equivalent expression. If you specify a value for $STATUS,
DCL interprets this value as a condition code. If you do not specify a value for
$STATUS, the current value of $STATUS is saved.

The following example shows how you can use the GOSUB command to transfer
control to subroutines:

$!

$! GOSUB.COM

$!

$ SHOW TIME

$ GOSUB TEST1 (1)
$ WRITE SYS$OUTPUT "GOSUB level 1 has completed successfully."
$ SHOW TIME

$ EXIT

$!

$! TEST1 GOSUB definition
$!

$ TEST1:

WRITE SYSSOUTPUT "This is GOSUB level 1."
GOSUB TEST2
RETURN %X1

TEST2:
WRITE SYSSOUTPUT "This is GOSUB level 2."
WAIT 00:00:02
RETURN

$

$

$

$!

$! TEST2 GOSUB definition
$!

$

$

$

$

As you examine the example, note the following:

@ The first GOSUB command transfers control to the subroutine labeled TEST1.

® The procedure executes the commands in subroutine TEST1, branching to the
subroutine labeled TEST2.

©® The RETURN command in subroutine TEST1 returns control to the main
command procedure and passes a value of 1 to $STATUS, indicating
successful completion.

O The RETURN command in subroutine TEST2 returns control to subroutine
TEST1. Note that this command executes before command 3.

Advanced Programming with DCL 14-31

Advanced Programming with DCL
14.17 Creating New Command Levels

14.17 Creating New Command Levels
There are two ways to create new command levels:

e Nest command procedures by using an execute procedure (@) command inside
one command procedure to invoke another command procedure (as described
in Chapter 13).

e Use the CALL command to call a subroutine that exists within the command
procedure.

14.17.1 Using the CALL Command

The CALL command transfers control to a labeled subroutine in a command
procedure and creates a new procedure level. The CALL command allows you
to keep more than one related command procedure in a single file, making the
procedures easier to manage. The subroutine label, which must be unique, can
precede or follow the CALL command in the command procedure. Chapter 13
contains rules for entering subroutine labels.

In addition to the label, you can pass up to eight optional parameters to the
subroutine. For complete information on parameters, refer to Section 14.2.

Following are rules for using the CALL command:
e Sends output to SYS$OUTPUT

e Has an optional /OUTPUT qualifier that allows you to direct output from the
subroutine to a file

e Uses a default file type .LIS for the output file

¢ Does not accept wildcard characters in the output file specification

14.17.1.1 CALL Command Defaults
Following are additional defaults associated with using the CALL command:

¢ You can nest subroutines called with the CALL command and procedures
called with the execute procedure (@) command to a maximum of 32
command levels.

e Unless they are masked using the SET SYMBOL command, local symbols
defined in an outer level are available to any inner procedure or subroutine
level. Global symbols are available at any command level.

e Labels are valid only for the level in which they are defined.

14.17.1.2 Beginning and Ending Subroutines

The SUBROUTINE and ENDSUBROUTINE commands define the beginning
and the end of a CALL subroutine. The label defining the entry point to the
subroutine immediately precedes the SUBROUTINE command. You can place
the EXIT command immediately before the ENDSUBROUTINE command but it
is not required to terminate the subroutine. The ENDSUBROUTINE command
terminates the subroutine and transfers control to the command line immediately
following the CALL command.

Command lines in a subroutine execute only when the subroutine is called
with the CALL command. During the line-by-line execution of the command
procedure, the command language interpreter skips all commands between the
SUBROUTINE and the ENDSUBROUTINE commands.

14-32 Advanced Programming with DCL

Advanced Programming with DCL
14.17 Creating New Command Levels

The following restrictions apply to defining the scope of subroutine entry points
and the use of label references:

e Subroutine entry points that are defined within another subroutine are local
to that subroutine. You cannot call a subroutine if the subroutine entry point
is within a separate subroutine block.

e If a subroutine entry point is located within an IF-THEN-ELSE block, you
cannot call this subroutine from outside the IF-THEN-ELSE block.

e Every SUBROUTINE command must have a matching ENDSUBROUTINE
command to end the subroutine.

In the following example, the call is not valid because the CALL BAR command
is located outside of the MAIN subroutine:

$ CALL BAR

$
$ MAIN: SUBROUTINE

BAR: SUBROUTINE
ENDSUBROUTINE

U U U >

$ ENDSUBROUTINE

For this CALL command to work, it must be placed within the SUBROUTINE
and ENDSUBROUTINE points.

The call shown in this example in not allowed because it is within an IF-THEN-
ELSE block:

§IF 1

$ THEN

$ BOB:SUBROUTINE
$ ENDSUBROUTINE
$ ENDIF

$ CALL BOB

The following example includes two subroutines called SUB1 and SUB2. The
subroutines do not execute until they are called with the CALL command.

Advanced Programming with DCL 14-33

Advanced Programming with DCL
14.17 Creating New Command Levels

$
$! CALL.COM

$

$! Define subroutine SUBI.
$!
$ SUBl: SUBROUTINE

$ CALL SUB2 !Invoke SUB2 from within SUBI.
$ @FILE !Invoke another command procedure file.
$ EXIT

$ ENDSUBROUTINE !End of SUB1 definition.

$!

$! Define subroutine SUB2.

$!

$ SUB2: SUBROUTINE

S EXIT

$ ENDSUBROUTINE !End of SUB2 definition.

$!

$! Start of main routine. At this point, both SUBl and SUB2
$! have been defined but none of the previous commands have
$! been executed.

$!
$ START:
$ CALL/OUTPUT=NAMES.LOG SUBl "THIS IS P1"

$ CALL SUB2 "THIS IS P1" "THIS IS P2"

$ EXIT !Exit this command procedure file.

The CALL command invokes the subroutine SUB1 and directs output to the file
NAMES.LOG. Subroutine SUBI1 calls subroutine SUB2. The procedure executes
SUB2, invoking the command procedure FILE.COM with the execute procedure
(@) command. When all the commands in SUB1 have executed, the CALL
command in the main procedure calls SUB2 a second time. The procedure exits
when SUB2 finishes executing.

14.18 Writing Case Statements

A case statement is a special form of conditional code that executes one out of

a set of command blocks, depending on the value of a variable or expression.
Typically, the valid values for the case statement are labels at the beginning of
each command block. The case statement passes control to the appropriate block
of code by using the specified value as the target label in a GOTO statement.

To write a case statement, you must:
1. List the labels.
2. Write the case statement.

3. Write the command blocks.

14-34 Advanced Programming with DCL

Advanced Programming with DCL
14.18 Writing Case Statements

14.18.1 Listing the Labels

To list the labels, equate a symbol to a string that contains a list of the labels
delimited by slashes (or any character you choose to act as a delimiter). This
symbol definition should precede the command blocks.

The following example equates the symbol COMMAND_LIST to the labels
PURGE, DELETE and EXIT:

$ COMMAND LIST = "/PURGE/DELETE/EXIT/"

14.18.2 Writing the Case Statement

To write the case statement, follow this procedure:

Step Action
1 Use the INQUIRE command to get the value of the case variable.
2 Use the IF command with F§LOCATE and FSLENGTH to determine whether the

value of the case variable is valid.

3 If the case variable is valid, execute the case statement (with a GOTO command)
to pass control to the appropriate block of code.

Otherwise, display a message and exit or request a different case value.

In the following example, the label is equated to the full command name.
Therefore, F$LOCATE includes the delimiters in its search for the command
name to ensure that the command is not abbreviated.

$GET_COMMAND:

$ INQUIRE COMMAND -
"Command (EXIT,PURGE,DELETE)"

$ IF FSLOCATE ("/"+COMMAND+"/", COMMAND LIST) .EQ. -
F$LENGTH (COMMAND LIST) THEN GOTO ERROR I

$ GOTO ’COMMAND’

$ERROR_1:
$ WRITE SYS$OUTPUT "No such command as ’’COMMAND’."
$ GOTO GET_COMMAND

14.18.3 Writing the Command Blocks

Each block of commands may contain one or more commands. Begin each
command block with a unique label. End each command block by passing control
to a label outside the list of command blocks.

In the following example, each block of commands begins with a unique label
(PURGE:, DELETE:) and is ended by passing control to a label (GOTO GET_
COMMAND) outside of the current command block:

Advanced Programming with DCL 14-35

Advanced Programming with DCL
14.18 Writing Case Statements

$GET_COMMAND:

$PURGE:

$ INQUIRE FILE

$ PURGE 'FILE’

$ GOTO GET COMMAND
$!

$DELETE:

$ INQUIRE FILE

$ DELETE 'FILE’

$ GOTO GET COMMAND
$! -
$EXIT:

14.19 Writing Loops

You can write loops that test variables at the beginning of the command block
(as described in Chapter 13). However, you can also write loops that test the
termination variable at the end of the loop, by following this procedure:

Step Action
1 Begin the loop.
2 Perform the commands in the body of the loop.
3 Change the termination variable.
4 Test the termination variable.
If the condition is not met, go to the beginning of the loop.
5 End the loop.

Note that when you test the termination variable at the end of the loop, the
commands in the body of the loop are executed at least once, regardless of the
value in the termination variable.

Both of the command blocks shown in this example execute a loop that terminates
when COMMAND equals "EX" (EXIT). FSEXTRACT truncates COMMAND to its
first two characters. In the first example, COMMAND, the termination variable,
is tested at the beginning of the loop; in the second, it is tested at the end of the
loop.

14-36 Advanced Programming with DCL

Advanced Programming with DCL
14.19 Writing Loops

$ | EXAMPLE 1
S !
$GET COMMAND:
$ INQUIRE COMMAND-
"Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = F$EXTRACT(0,2,COMMAND)
$ IF COMMAND .EQS. "EX" THEN GOTO END_LOOP

$§ GOTO GET COMMAND

$END LOOP:
$ | EXAMPLE 2
$!

SGET COMMAND:
$ INQUIRE COMMAND-

"Command (EXIT,DIRECTORY,TYPE,PURGE,DELETE,COPY)"
$ COMMAND = FSEXTRACT(0,2,COMMAND)

$ IF COMMAND .NES. "EX" THEN GOTO GET_COMMAND
$! End of loop

To perform a loop a specific number of times, use a counter as the termination
variable. In the following example, 10 file names are input by the user and placed
into the local symbols FIL1, FIL2, ..., FIL10:

$ NUM = 1 ! Set counter

SLOOP: ! Begin loop

$ INQUIRE FIL'’NUM’ "File" ! Get file name

$ NUM = NUM + 1 ! Update counter

$ IF NUM .LT. 11 THEN GOTO LOOP ! Test for termination
SEND_LOOP: ! End loop

The following example uses a counter to control the number of times a loop
executes. The loop executes 10 times; the termination variable is tested at the
end of the loop:

$! Obtain 10 file names and store them in the
$! symbols FILE 1 to FILE_10
$!
$ COUNT = 0
$ LOOP:
COUNT = COUNT + 1
INQUIRE FILE ’'COUNT’ "File"

$
> _
$ IF COUNT .LT. 10 THEN GOTO LOOP
Sl
$

PROCESS_FILES:

The symbol COUNT is used to record the number of times the commands in
the loop are executed. COUNT is also used to create the symbol names FILE_1,
FILE_2, and so on to FILE_10. Note that the value of COUNT is incremented
at the beginning of the loop but is tested at the end of the loop. Therefore, when
COUNT is incremented from 9 to 10, the loop executes a last time (obtaining a
value for FILE_10) before the IF statement finds a false result.

Advanced Programming with DCL 14-37

Advanced Programming with DCL
14.19 Writing Loops

To perform a loop for a known sequence of values, use the FSELEMENT lexical
function. The FSELEMENT lexical function obtains items from a list of items
separated by delimiters. You must supply the item number, the item delimiter,
and the list as arguments for FSELEMENT.

For more information on how to use the FSELEMENT lexical function, refer to
the OpenVMS DCL Dictionary.

In the following example, the files CHAP1, CHAP2, CHAP3, CHAPA, CHAPB,
and CHAPC are processed in order:

$ FILE LIST = "1,2,3,A,B,C"

$ INDEX = 0

$PROCESS :

$ NUM = F$ELEMENT (INDEX,",",FILE LIST)
$ IF NUM .EQS. "," THEN GOTO END LOOP

$ FILE = "CHAP''NUM'"
$! process file named by FILE

$ INDEX = INDEX + 1
$ GOTO PROCESS

$SEND LOOP:

$ EXIT

In the following example, the command procedure uses a loop to copy the files
listed in the symbol FILE_LIST to a directory on another node:

$ FILE LIST = "CHAP1/CHAP2/CHAP3/CHAP4/CHAP5"
$ NUM = 0

$!

$! Process each file listed in FILE LIST

$ PROCESS LOOP:

$ FILE = F$ELEMENT(NUM,"/",FILE LIST)

$ IF FILE .EQS. "/" THEN GOTO DONE

$ COPY 'FILE’.MEM MORRIS::DISK3:[DOCSET]*.*
$ NUM = NUM + 1

$ GOTO PROCESS_LOOP

$

$ WRITE SYS$OUTPUT "Finished copying files."
$ EXIT

The first file returned by the FSELEMENT lexical function is CHAP1, the next
file is CHAP2, and so on. Each time through the loop, the value of NUM is
increased so that the next file name is obtained. When the F§$ELEMENT returns
a slash, all the items from FILE_LIST have been processed and the loop is
terminated.

14.20 Using the PIPE Command

The PIPE command executes one or more DCL command strings from the same
command line. It enables you to perform UNIX-style command processing, such
as command pipelining, input/output redirection, and conditional and background
execution.

This style of command processing supports the development and use of Internet
software, which often expects some form of pipeline command parsing to be
present on both host and target systems.

14-38 Advanced Programming with DCL

Advanced Programming with DCL
14.20 Using the PIPE Command

The following sections describe different methods of using the PIPE command to
execute DCL commands, how to interrupt a PIPE command, and how to improve
subprocess performance. There are also examples.

For complete information about the PIPE command, refer to the OpenVMS DCL
Dictionary: N-Z.

You can specify multiple DCL commands in a single PIPE command. The DCL
commands are then executed sequentially. Use the following format:

PIPE command-sequence ; command-sequence [; command-sequences]...

14.20.1 Using the PIPE Command for Conditional Command Execution

A command sequence is executed conditionally depending on the execution result
of the preceding command sequence. Use the format:

PIPE command-sequencel && command-sequence2

Note that command-sequence2 executes if and only if command-sequencel
succeeds. If you use the following format, command-sequence2 executes if and
only if command-sequencel fails.

PIPE command-sequencel || command-sequence2

14.20.2 Using the PIPE Command for Pipeline Execution

A pipeline is a sequence of pipeline-segment commands connected by pipes,
represented by the vertical-bar (|) separator. A pipeline-segment command is a
DCL command that appears in a pipeline. The pipe connects the SYS$OUTPUT
of one pipeline-segment command to the SYS$INPUT of the next command. The
format of a pipeline is as follows:

PIPE pipeline-segment-command | pipeline-segment-command [| .. . |

Each pipeline-segment command runs in a separate subprocess with its
SYS$OUTPUT connected to the SYS$INPUT of the next pipeline-segment
command. These subprocesses execute in parallel; however, they are synchronized
to the extent that each pipeline-segment command, except the first, reads the
standard output of its predecessor as its standard input. A pipeline completes
execution when the last pipeline-segment command is finished.

It is very common to use "filter applications" in a pipeline. A filter application is
a program that takes data from SYS$INPUT, transforms it in a specific way, and
writes it to SYS$OUTPUT.

Some aspects of DCL function differently in the context of a pipeline. For
example:

e Using SYS$COMMAND

The SYS$COMMAND of a subprocess is normally the same as its
SYS$INPUT (if no command procedures are involved). In a pipeline, however,
the SYS$COMMAND of a subprocess is set to the SYS$COMMAND of the
parent process rather than to the preceding pipe (which is the SYS$INPUT of
the pipeline-segment command).

e File access methods

A pipeline segment command can only use the RMS sequential file access
method to read and write to the pipes. Certain OpenVMS utilities may access
their input and output files using methods other than sequential access.

Advanced Programming with DCL 14-39

Advanced Programming with DCL
14.20 Using the PIPE Command

These operations are not supported in a pipeline, and will fail, as in the
following example:

$ PIPE CC/NOOBJ/NOLIS TEST.C | SEARCH SYS$INPUT/WIND=(1,1) "%cc-w-"

$SEARCH-F-RFAERR, RMS error using RFA access
-RMS-F-RAC, invalid record access mode

In this example, the /WINDOW qualifier for the SEARCH command requires
the relative file access method.

e Symbol substitution

Be aware of the order in which DCL translates symbols. Symbol substitution
takes place during phase 1 of command processing. If you define a symbol
as part of a PIPE command, DCL attempts to translate the symbol before
performing the command in which the symbol is actually defined. Use the
ampersand (&) to defer symbol substitution. For more information, see
Section 12.12.2.

e Using SYS$PIPE

In most cases, input from the pipe can be obtained by reading the data from
SYS$INPUT. However, when a command procedure is invoked as a pipeline
segment command, SYS$INPUT is redirected to the command procedure
file. To obtain data from the pipe inside a command procedure, the logical
SYS$PIPE can be used.

The following is an example of a pipeline DCL application TEE.COM:

! TEE.COM - command procedure to display/log data flowing through
! a pipeline
! Usage: @TEE log-file

OPEN/WRITE tee file 'P1’

LOOP: -

READ/END OF FILE=EXIT SYS$PIPE LINE

WRITE SYSSOUTPUT LINE ! Send it out to the next stage of the pipeline
WRITE tee file LINE ! Log output to the log file

GOTO LOOP

EXIT:

CLOSE tee file

EXIT -

To use TEE.COM, enter the following PIPE command:
$ PIPE SHOW SYSTEM | @TEE showsys.log | SEARCH SYS$SINPUT LEF

U U U U U U

The command procedure TEE.COM is used to log the data flowing through
the pipeline. It reads in the data from SYS$PIPE instead of SYS$INPUT.

¢ Image verification

In a pipeline, image verification is turned off by default, even when the
command SET VERIFY=IMAGE is executed before the PIPE command is
entered. This prevents duplication of data records going through the pipeline.

To turn on image verification in a pipeline, an explicit SET VERIFY=IMAGE
command must precede the pipeline segment command. You can use a
subshell to do this, as follows:

$ PIPE ... | (SET VERIFY=IMAGE ; ...) | ...

14-40 Advanced Programming with DCL

Advanced Programming with DCL
14.20 Using the PIPE Command

14.20.3 Using the PIPE Command for Subshell Execution

A subshell is one or more command sequences separated by separators and
enclosed in parentheses. The format of a subshell is as follows:

PIPE (command-sequence [separator command-sequence]...)

The command sequences in a subshell are executed in a subprocess environment.
DCL waits for the subshell to complete before executing the next command
sequence. The () separator is similar to the SPAWN/WAIT command.

When using the PIPE command in this format, handle symbol substitution
carefully. After defining a symbol, precede subsequent references to that
symbol with an ampersand (&) to delay symbol substitution. Otherwise symbol
substitution takes place during phase 1 of command processing, at which time
the symbol definition is unreliable.

14.20.4 Using the PIPE Command for Background Execution

Command sequences can be executed in a subprocess environment by using the
following form:

PIPE command-sequence [separator command-sequence]... &

DCL does not wait for the command sequences to finish. Control passes back to
DCL once the background subprocess is created.
14.20.5 Using the PIPE Command for Input/Output Redirection

A command sequence can redirect its SYS$INPUT, SYS$OUTPUT, or
SYS$ERROR to a file during execution of the command as follows:

e To redirect SYS$INPUT:

PIPE command-sequence < redirected-input-file
e To redirect SYS$OUTPUT:

PIPE command-sequence > redirected-output-file
e To redirect SYS$ERROR:

PIPE command-sequence 2> redirected-error-file

A pipeline-segment command can also redirect its SYS$INPUT, SYS$OUTPUT
or SYS$ERROR. However, SYS$OUTPUT redirection is allowed only for the last
pipeline-segment command, and SYS$INPUT redirection is allowed only for the
first pipeline-segment command.

Note that a PIPE command redirection is different from one created using the
DEFINE or ASSIGN command. The differences are as follows:

¢ Redirections are created in supervisor mode. This means that both user-mode
applications and DCL commands are affected by the redirections.

¢ The redirected environment only applies to the command sequence or the
pipeline-segment command that specifies the redirection syntax. After
the execution of the command sequence or pipeline-segment command,
the original process input/output environment (for example, SYS$INPUT,
SYS$OUTPUT and SYS$SERROR) is restored before command execution
continues.

Advanced Programming with DCL 14-41

Advanced Programming with DCL
14.20 Using the PIPE Command

When SYS$OUTPUT is redirected, the redirected output file is always created,
whether or not the command sequence actually writes to SYS$OUTPUT. If a
version of a file with the same name as the redirected output file already exists,
a new version of that file is created. (This behavior is the same as using the
DEFINE or ASSIGN command to redefine SYS$OUTPUT in supervisor mode.)
Note that the redirected file is created before the command sequence is executed.
If the redirected file is also used in the command sequence, the operation may
fail, as in the following example:

$ PIPE SEARCH TRANS.LOG "alpha" > TRANS.LOG

$SEARCH-W-OPENIN, error opening TRANS.LOG;2 as input
-RMS-E-FLK, file currently locked by another user

In this example, a new version of TRANS.LOG is created and opened for write
access; the SEARCH command then tries to get read access to the most recent
version of TRANS.LOG instead of the expected previous version.

When SYS$ERROR is redirected, the redirected error file is only created when
the command sequence actually writes to the SYS$ERROR during execution,
and there is no existing file with the same name as the redirected error file. If
a file with the same name as the redirected error file already exists, that file is
opened as the redirected error file. The error output generated by this command
sequence is then appended to the end of the redirected error file. (This behavior
is the same as using the DEFINE or ASSIGN command to redefine SYS$ERROR
in supervisor mode.)

14.20.6 Interrupting a PIPE Command

You can interrupt a PIPE command by pressing Ctrl/Y. If the PIPE command is
executing in a pipeline or a subshell command sequence, the command sequence
and the PIPE command are deleted. In this case, a CONTINUE command
entered immediately after the interrupt will not resume the execution of the
PIPE command.

If the PIPE command is executing a command sequence other than a subshell or
a pipeline command sequence, DCL behaves as if the command sequence were
entered as a DCL command without the PIPE command verb and interrupted by
Ctrl/Y. See Section 13.11 for more information about the Ctrl/Y interrupt.

14.20.7 Improving Subprocess Performance

A PIPE command can generate a number of subprocesses during execution.
Often, the applications invoked by command sequences do not depend on

the process logical names and symbol names. In this case, the spawning

of subprocesses can be accelerated by using the /NOLOGICAL_NAMES and
/NOSYMBOLS qualifiers, which suppress the passing of process logical names
and symbols to the subprocesses created by the PIPE command.

The following examples use the PIPE command:

¢ The fo