HP COBOL

User Manual

Order Number: AA-Q2G1H-TK

January 2005

This manual provides information that helps you develop HP COBOL
programs for the OpenVMS Alpha, OpenVMS Industry Standard 64,
OpenVMS VAX, and Tru64 UNIX platforms.

Revision/Update Information:

Operating System and Version:

Software Version:

Hewlett-Packard Company
Palo Alto, California

This manual supersedes the

Compaq COBOL User Manual,
Version 2.8 and the VAX COBOL User
Manual, Version 5.4, as well as the
online-only Compagq COBOL User
Manual, Version 2.8 and Version 5.7.

OpenVMS 164 Version 8.2

OpenVMS Alpha Version 6.2 or higher
OpenVMS VAX Version 6.2 or higher
Tru64 UNIX Version 5.1 or higher

HP COBOL for OpenVMS 164
Version 2.8

HP COBOL for OpenVMS Alpha
Version 2.8

HP COBOL for Tru64 UNIX
Version 2.8

HP COBOL for OpenVMS VAX
Version 5.7A

PS Conditioner
Processed on 10/22/2004

Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Motif, UNIX and X/Open are trademarks of The Open Group in the U.S. and/or other countries.
All other product names mentioned herein may be trademarks of their respective companies.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

7ZK6297
This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface xxiii

1 Developing HP COBOL Programs

1.1 Developing Programs on Tru64 UNIX 1-1
1.1.1 Creating an HP COBOL Program on Tru64 UNIX 1-1
1.1.2 Compiling an HP COBOL Program on Tru64 UNIX 14
1.1.2.1 Format of the COBOL Command on Tru64 UNIX 1-4
1.1.2.2 COBOL Command Flags 1-5
1.1.2.3 External File Handler Support 1-8
1.1.2.4 Specifying Multiple Files and Flags 1-8
1.1.2.5 Compiling Multiple Files 1-9
1.1.2.6 Debugging a Program 1-9
1.1.2.7 Output Files: Object, Executable, Listing, and Temporary

Files . .o 1-10
1.1.2.8 Naming Output Files 1-10
1.1.2.9 Temporary Files 1-10
1.1.2.10 Examples of the COBOL Command 1-11
1.1.2.11 Other Compilers. e 1-11
1.1.2.12 Interpreting Messages from the Compiler 1-11
1.1.3 Linking an HP COBOL Program on Tru64 UNIX 1-12
1.1.3.1 Specifying Object Libraries for Linking 1-12
1.1.3.2 Specifying Additional Object Libraries 1-13
1.1.3.3 Specifying Types of Object Libraries 1-14
1.1.34 Creating Shared Object Libraries 1-14
1.1.3.5 Shared Library Restrictions 1-15
1.1.3.6 Installing Shared Libraries, 1-15
1.1.3.7 Interpreting Messages from the Linker 1-16
1.1.4 Running an HP COBOL Program on Tru64 UNIX................ 1-16
1.1.41 Accessing Command-Line Arguments 1-16
1.1.4.2 Accessing Environment Variables 1-17
1.1.4.3 Errors and Switches. 1-18
1.1.5 Program Development Stages and Tools 1-18
1.2 Developing Programs on OpenVMS 1-20
1.2.1 Creating an HP COBOL Program on OpenVMS 1-20
1.2.2 Compiling an HP COBOL Program on OpenVMS 1-22
1.2.2.1 Format of the COBOL Command on OpenVMS 1-22
1.2.2.2 Compiling Multiple Files 1-23
1.2.2.3 Debugging a Program, 1-23
1.2.24 Separately Compiled Programs (Alpha, 164) 1-24
1.2.2.5 COBOL Qualifiers i 1-24
1.2.2.6 Common Command-Line Errors to Avoid 1-29
1.2.2.7 Compiling Programs with Conditional Compilation 1-29

1.2.2.8 Interpreting Messages from the Compiler 1-29

1.2.2.9
1.2.3

1.2.3.1
1.2.3.2
1.2.3.3
1.2.34
1.2.35
1.2.3.6
1.24

1.2.41

1.24.2
1.2.4.3
1.24.4
1.2.4.5
1.3
1.3.1
1.3.2

1.3.2.1
1.3.2.2
1.3.2.3

1.3.3
1.3.3.1
1.3.3.2
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.5
1.5.1
15.2
1.6

Using Compiler Listing Files
Linking an HP COBOL Program
The LINK Commandttt
LINK Qualifiers
Specifying Modules Other than HP COBOL Modules
Specifying Object Module Libraries
Creating Shareable Images
Interpreting Messages from the Linker
Running an HP COBOL Program
Accessing Command-Line Arguments at Run Time (Alpha,
164) ..
Accessing System Logicals at Run Time (Alpha, 164)...........
Accessing Input and Output Devices at Run Time
Debugging Environment
Interpreting Run-Time Messages
HP COBOL and Alpha and 164 Architecture System Resources
Compilation Performance
Tuning OpenVMS Alpha and OpenVMS 164 for Large HP COBOL
Compiles
Optimizing Virtual Memory Usage.
Optimizing Physical Memory Usage.
Improving Compile Performance with Separate Compilation
(Alpha, I64)
Choosing a Reference Format
Terminal Reference Format
Converting Between Reference Formats
Program Run Messages
Data Errors
Program Logic Errors.
Run-Time Input/Output Errors
I/O Errors and RMS (OpenVMS)
Using Program Switches
Setting and Controlling Switches Internally
Setting and Controlling Switches Externally
Special Information for Year 2000 Programming

2 Handling Numeric Data

2.1
2.2
2.3
2.4
2.5
2.5.1
252
2.5.3
2.54
2.6
2.6.1
26.2
2.6.3
2.6.4
2.7
2.71

How the Compiler Stores NumericData
Specifying Alignment
Sign Conventionst
Invalid Values in Numeric Items
Evaluating NumericItems
Numeric Relation Test
Numeric Sign Test e
Numeric Class Tests.ot e
Success/Failure Tests
Using the MOVE Statement
Elementary Numeric Moves
Elementary Numeric-Edited Moves
Subscripted Movest e
Common Move Errors
Using the Arithmetic Statements.
Temporary Work Items.

1-31
1-32
1-33
1-33
1-34
1-35
1-37
1-42
1-43

1-43
1-44
1-45
1-46
1-46
1-47
1-47

1-49
1-49
1-50

1-51
1-51
1-52
1-52
1-52
1-52
1-54
1-55
1-56
1-60
1-60
1-60
1-63

|
OO O ONOCOUPAE,PA,WWNN = =

NDNDMNPDMNDPDMNDDMNPDMNDMNDNDNDNDNDNDNDNDND

2.7.2
2.7.21
2722
2.7.3
2.7.4
2.7.41
2.7.5
2.7.6
2.7.7
2.7.8

Standard and Native Arithmetic (Alpha, 164)
Using the /MATH_INTERMEDIATE Qualifier (Alpha, 164)
Using the /ARITHMETIC Qualifier (Alpha, 164)

Specifying a Truncation Qualifier.............................

Using the ROUNDED Phrase,
ROUNDED with REMAINDER

Using the SIZE ERROR Phrase

Using the GIVING Phrase

Multiple Operands in ADD and SUBTRACT Statements...........

Common Errors in Arithmetic Statements......................

3 Handling Nonnumeric Data

3.1

3.2
3.2.1
3.2.2
3.3

3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.2
3.5

3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.3
3.6.4
3.6.5
3.6.6

3.6.7

How the Compiler Stores Nonnumeric Data

Data Organization . .
Group Items. . ..

Elementary Items

Special Characters . .

Testing Nonnumeric Items
Relation Tests of Nonnumeric Items
Classesof Data,
Comparison Operationsu i,

Class Tests for Nonnumeric Items

Data Movement

Using the MOVE Statement

Group Moves . ..

Elementary Moves

Edited Moves

Justified Moves
Multiple Receiving Items,
Subscripted Moves
Common Nonnumeric Item MOVE Statement Errors
Using the MOVE CORRESPONDING Statement for Nonnumeric

Items

Using Reference Modification.

4 Handling Tables

41
411
41.2
4.1.3
41.4
41.41
4.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

Defining Tables

Defining Fixed-Length, One-Dimensional Tables
Defining Fixed-Length, Multidimensional Tables
Defining Variable-Length Tables
Storage Allocation for Tables
Using the SYNCHRONIZED Clause
Initializing Values of Table Elements.
Accessing Table Elements

Subscripting
Subscripting with
Subscripting with
Subscripting with
Relative Indexing
Index Data Items

Literals e
DataNames
Indexes

2-10
2-10
2-12
2-13
2-13
2-13
2-14
2-14
2-15
2-15

3-2
3-2
3-2
3-3
3-3
3-3
3-4
3-5
3-5
3-6
3—7
3—7
3-7
3-9
3-9
3-10
3-10
3—-11

3-11
3-12

4.3.7 Assigning Index Values Using the SET Statement................

4.3.7.1 Assigning an Integer Index Value with a SET Statement
4.3.7.2 Incrementing an Index Value with the SET Statement
4.3.8 Identifying Table Elements Using the SEARCH Statement
4.3.8.1 Implementing a Sequential Search
4.3.8.2 Implementing a Binary Search

5 Using the STRING, UNSTRING, and INSPECT Statements
5.1 Concatenating Data Using the STRING Statement

5141 Multiple Sending Items
5.1.2 Using the DELIMITED BY Phrase
5.1.3 Using the POINTER Phrase
514 Using the OVERFLOW Phrase
5.1.5 Common STRING Statement Errors
5.2 Separating Data Using the UNSTRING Statement
5.2.1 Multiple Receiving Items
5.2.2 Controlling Moved Data Using the DELIMITED BY Phrase
5.2.2.1 Multiple Delimiters i
5.2.3 Using the COUNT Phrase
5.24 Saving UNSTRING Delimiters Using the DELIMITER Phrase
5.25 Controlling UNSTRING Scanning Using the POINTER Phrase
5.2.6 Counting UNSTRING Receiving Items Using the TALLYING

Phrase
5.2.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase . . .
5.2.8 Common UNSTRING Statement Errors
5.3 Examining and Replacing Characters Using the INSPECT Statement . . .
5.3.1 Using the TALLYING and REPLACING Options of the INSPECT

Statement
5.3.2 Restricting Data Inspection Using the BEFORE/AFTER Phrase
5.3.3 Implicit Redefinition
5.34 Examining the INSPECT Operation
5.3.4.1 Setting the Scanner
5.3.4.2 Active/Inactive Arguments
5.34.3 Finding an Argument Match
5.3.5 The TALLYING Phrase
5.3.51 The Tally Counter,
5.3.5.2 The Tally Argument
5.3.5.3 The Tally Argument List
5.3.5.4 Interference in Tally Argument Lists
5.3.6 Using the REPLACING Phrase
5.3.6.1 The Search Argument
5.3.6.2 The Replacement Value
5.3.6.3 The Replacement Argument.
5.3.6.4 The Replacement Argument List
5.3.6.5 Interference in Replacement Argument Lists.................
5.3.7 Using the CONVERTING Option.viine....
5.3.8 Common INSPECT Statement Errors

vi

[¢20¢2 ¢, BN ¢, BN I BN, INe) |

|
|
A WONNOCOOOPA BN

U'I(IJ'IO'IU'I
—_ -

6 Processing Files and Records

6.1 Defining Files and Records, 6-1
6.1.1 File Organization iy 62
6.1.2 Record Format 6-8
6.1.3 Print-Control Records 6-12
6.1.4 File Design e 6-13
6.2 Identifying Files and Records from Within Your HP COBOL Program . .. 6-14
6.2.1 Defining a File Connector, 6-14
6.2.2 Specifying File Organization and Record Access Mode. 6-20
6.3 Creating and Processing Files 625
6.3.1 Opening and Closing Files 6—25
6.3.2 File Handling for Sequential and Line Sequential (Alpha, 164)

Files . . .o 6—26
6.3.3 File Handling for Relative Files 6—29
6.3.4 File Handling for Indexed Files 6-32
6.4 Reading Files 6-37
6.4.1 Reading a Sequential or Line Sequential (Alpha, 164) File 6-37
6.4.2 Reading a Relative File, 6-38
6.4.3 Reading an Indexed File 6—41
6.5 Updating Files 649
6.5.1 Updating a Sequential File or Line Sequential (Alpha, 164) File 6-49
6.5.2 Updating a Relative File 6-51
6.5.2.1 Rewriting a Relative File 6-51
6.5.2.2 Deleting Records from a Relative File 6-54
6.5.3 Updating an Indexed File 6-56
6.6 Backing Up Your Files 661

7 Handling Input/Output Exception Conditions

71 Planning for the AT END Condition 7-1
7.2 Planning for the Invalid Key Condition 72
7.3 Using File Status Values and OpenVMS RMS Completion Codes 7-3
7.3.1 File Status Values 7-3
7.3.2 RMS Completion Codes (OpenVMS) 7-5
7.4 Using Declarative USE Procedures 7-8

8 Sharing Files and Locking Records

8.1 Controlling Access to Filesand Records 8-1
8.2 Choosing a File Sharing and Record Locking Standard (Alpha, 164) 8-3
8.3 Ensuring Successful File Sharing 84
8.3.1 Providing Disk Residency., 84
8.3.2 Using File Protection 8—4
8.3.3 Determining the Intended Access Modetoa File................. 8-6
8.3.4 Specifying File Access Using X/Open Standard File Sharing (Alpha,

164) . e 8-6
8.3.5 Specifying File Access Using Hewlett-Packard Standard File

Sharing e 8-8
8.3.6 Error Handling for File Sharing 8-12
8.4 Ensuring Successful Record Locking 8-17
8.4.1 X/Open Standard Record Locking (Alpha, 164)................... 8-17
8.4.2 Hewlett-Packard Standard Record Locking 8-19
8.4.3 Error Handling for Record Locking 8-23

Vii

9 Using the SORT and MERGE Statements

10

viii

9.1 Sorting Data with the SORT Statement

9.1.1 File Organization Considerations for Sorting
9.1.2 Specifying Sort Parameters with the ASCENDING and
DESCENDING KEY Phrases.t ..
9.1.3 Resequencing Files with the USING and GIVING Phrases
9.14 Manipulating Data Before and After Sorting with the INPUT
PROCEDURE and OUTPUT PROCEDURE Phrases
9.1.5 Maintaining the Input Order of Records Using the WITH
DUPLICATES IN ORDER Phrase
9.1.6 Specifying Non-ASCII Collating Sequences with the COLLATING
SEQUENCE IS Alphabet-Name Phrase.
9.1.7 Multiple Sortingt
9.1.8 Sorting Variable-Length Records
9.1.9 Preventing I/O Aborts
9.1.10 Sorting Tables (Alpha, 164)
9.1.11 Sorting at the Operating System Level

9.2 Merging Data with the MERGE Statement
9.3 Sample Programs Using the SORT and MERGE Statements

Producing Printed Reports

10.1 Designing a Report e
10.2 Components ofa Report......... i
10.3 Accumulating and Reporting Totals
10.4 The Logical Page and the Physical Page
10.5 Programming a Conventional File Report
10.5.1 Defining the Logical Page in a Conventional Report
10.5.2 Controlling the Spacing in a Conventional Report
10.5.3 Advancing to the Next Logical Page in a Conventional Report

10.5.31 Programming for the Page-Overflow Condition in a Conventional
Report
10.5.3.2 Using a Line Counter.,

10.5.4 Printing the Conventional Report
10.5.5 A Conventional File Report Example
10.6 Programming a Linage-File HP COBOL Report
10.6.1 Defining the Logical Page in a Linage-File Report................
10.6.2 Controlling the Spacing in a Linage-File Report
10.6.3 Using the LINAGE-COUNTER
10.6.4 Advancing to the Next Logical Page in a Linage-File Report........
10.6.5 Programming for the End-of-Page and Page-Overflow Condition
10.6.6 Printing a Linage-File Report
10.6.7 A Linage-File Report Example
10.7 Modes for Printing Reports,
10.7.1 Spooling to a Mass Storage Device.
10.8 Programming a Report Writer Report
10.8.1 Using the REPORT Clause in the File Section
10.8.2 Defining the Report Section and the Report File
10.8.3 Defining a Report Writer Logical Page with the PAGE Clause
10.8.4 Describing Report Group Description Entries
10.8.5 Vertical Spacing for the Logical Page
10.8.6 Horizontal Spacing for the Logical Page
10.8.7 Assigning a Valueina Print Line
10.8.8 Defining the Source for a Print Field

© © O OO

|
|
OO OO OOowN~N

CIOCO
—_

10-1
10-1
10-4
10-5
10-6
10-6
10-7
10-7

10-7

10-8

10-9

10-9
10-12
10-13
10-14
10-14
10-14
10-15
10-19
10-20
10-23
10-23
10-24
10-24
10-24
10-25
10-25
10-28
10-29
10-30
10-30

1

10.8.9
10.8.10
10.8.11
10.8.11.1
10.8.11.2
10.8.11.3
10.8.11.4
10.8.11.5
10.8.12
10.8.13
10.8.13.1
10.8.13.2
10.8.13.3
10.8.13.4
10.8.13.5
10.8.13.6
10.8.14
10.8.14.1
10.8.14.2

Specifying Multiple Reports,
Generating and Controlling Report Headings and Footings
Defining and Incrementing Totals
Subtotaling
Crossfooting i e
Rolling Forward
RESET Option e e e
UPON Option.t e e e e e e
Restricting Print Items
Processing a Report Writer Report.
Initiating the Report
Generating a Report Writer Report
Automatic Operations of the GENERATE Statement
Ending Report Writer Processing
Applying the USE BEFORE REPORTING Statement
Suppressing a Report Group
Selecting a Report Writer Report Type.
Detail Reporting.
Summary Reporting

10.9 Report Writer Examples.

10.9.1
10.9.2
10.9.3
10.9.4
10.9.5
10.9.6

Input Data
EX1006—Detail Report Program
EX1007—Detail Report Program
EX1008—Detail Report Program
EX1009—Detail Report Program
EX1010—Summary Report Program

10.10 Solving Report Problems

10.10.1
10.10.2
10.10.3
10.10.4
10.10.5
10.10.6

Printing More Than One Logical Line on a Single Physical Line.
Group Indicating
Fitting Reportsonthe Page
Printing Totals Before Detail Lines
Underlining Items in Your Reports
Bolding Items in Your Reports

Using ACCEPT and DISPLAY Statements for Input/Output and
Video Forms

11.1 Using ACCEPT and DISPLAY for I/O
11.2 Designing Video Forms with ACCEPT and DISPLAY Statement
ExXtensions

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.5.1
11.2.5.2

11.2.5.3
11.254
11.2.5.5
11.2.6
11.2.7

Clearing a Screen Areaiuiiemie e,
Horizontal and Vertical Positioning of the Cursor
Assigning Character Attributes to Your Format Entries
Using the CONVERSION Phrase to Display Numeric Data
Handling Data with ACCEPT Options.........................
Using CONVERSION with ACCEPT Data...................
Using ON EXCEPTION When Accepting Data with
CONVERSION e e
Protecting the Screen
Using NO ECHO with ACCEPT Data
Assigning Default Values to Data Fields
Using Terminal Keys to Define Special Program Functions
Using the EDITING Phrase

10-31
10-31
10-33
10-33
10-34
10-34
10-35
10-35
10-36
10-37
10-37
10-38
10-38
10-39
10-40
10-41
10-41
10-41
1042
1042
10-42
10-43
10-48
10-56
10-64
10-73
10-82
10-82
10-87
10-88
10-88
10-89
10-89

11-3
1-4
11-5
11-8
11-9

11-12

11-13

11-13
11-13
11-15
1-17
11-20
11-28

12

13

11.83 Designing Video Forms with Screen Section ACCEPT and DISPLAY
(Alpha, I64)
11.3.1 Using Screen Section Options (Alpha, 164).
11.3.1.1 Comparison of Screen Section Extensions (Alpha, 164) with Other
Extensions of ACCEPT and DISPLAY

Interprogram Communication

12.1 Multiple COBOL Program Run Units
12.1.1 Examples of COBOL Run Units.
12.1.2 Calling Procedures e
12.2 COBOL Program Attributes.
12.2.1 The INITIAL Clausettt e
12.2.2 The EXTERNAL Clause.o vttt
12.3 Transferring Flow of Control
12.3.1 The CALL Statement
12.3.2 Nesting CALL Statements
12.3.3 The EXIT PROGRAM Statement
12.3.4 CALL Literal Versus CALL Data Name........................
12.4 Accessing Another Program’s Data Division.
12.41 The USING Phrase
12.4.2 The Linkage Section
12.5 Communicating with Contained COBOL Programs
12.5.1 The COMMON Clause cvv it
12.5.2 The GLOBAL Clauset

12.5.2.1 Sharing GLOBAL Data
12.5.2.2 Sharing GLOBAL Files
12.5.2.3 Sharing USE Procedures
12.5.2.4 Sharing Other Resources

12.6 Calling HP COBOL Programs from Other Languages (Alpha, 164)
12.6.1 Calling COBOL Programs from C (Alpha, I64)
12.7 Calling Non-COBOL Programs from HP COBOL.
12.7.1 Calling a Fortran Program.
12.7.2 Calling a BASIC Program i,
12.7.3 Calling a C Program,
12.8 Special Considerations for Interprogram Communication
12.8.1 CALL and CANCEL Argumentsciuiinieen...
12.8.2 Calling OpenVMS Alpha and 164 Shareable Images (OpenVMS).
12.8.3 Calling Tru64 UNIX Shareable Objects (Tru64 UNIX).............
12.8.4 Case Sensitivity on Tru64 UNIX

12.8.4.1 Linker Case Sensitivity,
12.8.4.2 Calling C Programs from HP COBOL on Tru64 UNIX
12.8.4.3 Calling COBOL Programs from C on Tru64 UNIX

12.8.5 Additional Information.

Using HP COBOL in the Alpha, 164, or VAX Common Language
Environment

13.1 Routines, Procedures, and Functions
13.2 The OpenVMS Calling Standard (OpenVMS)
13.2.1 Register and Stack Usage (Alpha, 164)
13.2.2 Return of the Function Value
13.2.3 The Argument List.
13.3 OpenVMS System Routines (OpenVMS)

121
121
12-2
12-3
12-4
12-5
12-5
12-5
12-6
12-8
12-9
12-10
12—-11
12-13
12-14
12-15
12-16
12-16
12-16
12-17
12-19
12-20
12-20
12-26
12-27
12-28
12-30
12-31
12-31
12-32
12-32
12-32
12-32
12-33
12-33
12-34

131
13-2
13-2
13-3
13-3
13-3

13.3.1

OpenVMS Run-Time Library Routines

13.3.2 System Services e
13.4 Calling Routines it
13.4.1 Determining the Type of Call (OpenVMS)
13.4.2 Defining the Argument (OpenVMS)
13.4.3 Calling the External Routine (OpenVMS)
13.4.4 Calling System Routines (OpenVMS).
13.4.4.1 System Routine Arguments (OpenVMS)
13.4.4.2 Calling a System Routine in a Function Call (OpenVMS)
13.4.4.3 Calling a System Routine in a Procedure Call (OpenVMS)
13.4.5 Checking the Condition Value (OpenVMS)......................
13.4.5.1 Library Return Status and Condition Value Symbols

(OpenVMS) ...
13.4.6 Locating the Result (OpenVMS).
13.5 Establishing and Removing User Condition Handlers (OpenVMS)
13.6 Examples (OpenVMS) e

14 Using the REFORMAT Utility

14.1 Running the REFORMAT Utility
14.2 ANSI-to-Terminal Format Conversion
14.3 Terminal-to-ANSI Format Conversion
144 REFORMAT Error Messagesottt

15 Optimizing Your HP COBOL Program

15.1
15.2
15.3
15.4

15.4.1
15.4.2
15.4.3
15.4.4
15.5

15.5.1
15.5.2
15.5.3
15.5.4

15.6
15.6.1
15.6.1.1
15.6.1.2
15.6.1.3
15.6.1.4
15.6.1.5

15.6.2
15.6.3

Specifying Optimization on the Compiler Command Line (Alpha, 164) . ..
Specifying Alignment of Data for Optimum Performance (Alpha, 164). . ..
Using COMP Data Items for Speed
Other Ways to Improve the Performance of Operations on Numeric
Data . . .
Mixing Scale Factors and Data Types
Limiting Significant Digits.
Reducing the Compexity of Arithmetic Expressions...............
Selection of Data Types (OpenVMS).
Choices in Procedure Division Statements
Using Indexing Instead of Subscripting
Using SEARCH ALL Instead of SEARCH
Selecting Hypersort or SORT-32 for Sorting Tasks
Minimizing USE Procedures with LINKAGE SECTION References
/O Operations it e
Using the APPLY Clause,
Using the PREALLOCATION Phrase of the APPLY Clause
(OpenVMS) ...
Using the EXTENSION Phrase of the APPLY Clause
(OpenVMS) ...
Using the DEFERRED-WRITE Phrase of the APPLY Clause
(0pPenVMS) . .ot
Using the FILL-SIZE ON Phrase of the APPLY Clause
(OpenVMS) ...
Using the WINDOW Phrase of the APPLY Clause (OpenVMS) . ..
Using Multiple Buffers.
Sharing Record Areas

13-4
13-4
13-5
13-5
13-6
13—7
13-8
13-8
13—11
13-13
13-13

13-15
13-15
13-15
13-19

141
14-2
14-3
14-4

151
15-5
15-6

15-7
15-7
15-8
15-8
15-8
15-9
15-9
15-9
15-10

15-10
15-10
15-11
1511
15-12
15-12
15-12
15-13

15-13
15-13

xi

15.6.4 Using COMP Unsigned Longword Integers 15-15

15.7 Optimizing File Design (OpenVMS) 15-15
15.7.1 Sequential Files 15-15
15.7.2 Relative Files 15-16
15.7.21 Maximum Record Number (MRN) 15-16
15.7.2.2 Cell Size. e 15-16
15.7.2.3 Bucket Size 15-17
15.7.2.4 File Size 15-18
15.7.3 Indexed Files 15-19
15.7.3.1 Optimizing Indexed File /O 15-20
15.7.3.2 Calculating Key Index Levels. 15-24
15.7.3.3 Caching Index Roots 15-25
15.8 Image Activation Optimization (Tru64 UNIX) 15-25

16 Managing Memory and Data Access

16.1 Managing Memory Granularity (Alpha, 164) 16-1
16.2 Using the VOLATILE Compiler Directive (Alpha, 164) 16-3
16.3 Aligning Data for Performance and Compatibility (Alpha, 164) 16-3
16.3.1 Data Boundaries (Alpha, 164) 164
16.3.2 Data Field Padding (Alpha, 164) 16—4
16.3.3 Alignment Directives, Qualifiers, and Flags (Alpha, 164) 16-4
16.3.4 Specifying Alignment at Compile Time (Alpha, 164) 16-5
16.4 Using Alignment Directives, Qualifiers, and Flags (Alpha, 164)......... 16-6
16.4.1 Order of Alignment Operations (Alpha, 164) 166
16.4.2 Nesting Alignment Directives (Alpha, 164). 16-7
16.4.2.1 SYNCHRONIZED Clauseouuiniueiiinannnnn.. 16-8
16.4.3 Comparing Alignment Directive Effects 16-9

A Compiler Implementation Specifications

B HP COBOL on Four Platforms: Compatibility and Migration

B.1 Compatibility Matrix e B-1
B.2 Differences in Extensions and Other Features...................... B-3
B.3 Command-Line Qualifiers (Options or Flags) B—4
B.3.1 Qualifiers and Flags Shared by HP COBOL on Alpha, 164, and

VA L B-4
B.3.2 Alpha- and 164-Specific COBOL Qualifiers and Flags B-6
B.3.3 Qualifiers Only on HP COBOL for OpenVMS VAX B-7
B.4 HP COBOL Behavior Differences on VAX and Alpha and 164 B-9
B.4.1 Program Structure Messages B-9
B.4.2 Program Listing Differences B-10
B.4.2.1 Machine Codet B-10
B.4.2.2 Module Namesot B-10
B.4.2.3 COPY and REPLACE Statements B-10
B.4.2.4 Multiple COPY Statements B-11
B.4.2.5 COPY Insert Statement B-12
B.4.2.6 REPLACE and COPY REPLACING Statements B-13
B.4.2.7 DATE COMPILED Statement B-14
B.4.2.8 Compiler Listings and Separate Compilations (OpenVMS) B-14
B.4.3 Output Formatting. B-15

Xii

B.4.4
B.4.4.1
B.4.4.2
B.4.4.3
B.4.4.4
B.4.5
B.4.6
B.4.7
B.4.8
B.4.9
B.4.10
B.4.11
B.4.12
B.5
B.5.1
B.5.2
B.5.3
B.5.4
B.5.5
B.5.6
B.6

B.7

B.8

B.9
B.10
B.11
B.11.1
B.11.2

HP COBOL Statement Differences on Alpha, 164, and VAX
ACCEPT and DISPLAY Statements........................

LINAGE Clause . .
MOVE Statement .

SEARCH Statement.

System Return Codes .
Diagnostic Messages .

Storage for Double-Precision Data Items

File Status Values . ..

RMS Special Registers (OpenVMS)
Calling Shareable Images
Sharing Common Blocks (OpenVMS)

Arithmetic Operations

Differences Between Releases and Across Operating Systems

REWRITE

File Sharing and Record Locking

VFC File Format

File Attribute Checking (Tru64 UNIX).........................

Indexed Files

RMS Special Register References in Your Code
File Compatibility Across Languages and Platforms
LIB$INITIALIZE Interaction Between C and COBOL.

Reserved Words

Debugger Support Differences
DECset/LSE Support Differences

DBMS Support.........

Compiling on Tru64 UNIX
Multistream DBMS DML.

C Programming Productivity Tools

Debugging Tools for HP COBOL Programs
Ladebug Debugger (Tru64 UNIX)
OpenVMS Debugger (OpenVMS) i
Notes on HP COBOL Support,
Notes on Debugging Optimized Programs (Alpha, 164)
Sample Debugging Session (Alpha, 164)........................
Separately Compiled Programs
Language-Sensitive Editor and the Source Code Analyzer (OpenVMS) . ..
Notes on HP COBOL Support,
Preparing an SCA Library
Starting and Terminating an LSE or an SCA Session
Compiling from Within LSE
Using Oracle CDD/Repository (OpenVMS)
Creating Record and Field Definitions
Accessing Oracle CDD/Repository Definitions from HP COBOL

C.1
c.z2
C.3
C.3.1
C.32
C.33
C.3.3.1
C.4
C.4.1
c4.2
C43
C4.4
C.5
C5.1
C52

C.53
C5.4
C55

Programs

Recording Dependencies.

Data Types.........

For More Information

B-15
B-15
B-16
B-16
B-17
B-17
B-19
B-20
B-21
B-21
B-22
B-22
B-22
B-24
B-24
B-24
B-25
B-25
B-26
B-26
B-26
B-27
B-28
B-28
B-28
B-28
B-28
B-29

C-1
C-3
C-6
C-6
C-7
C-7
C-11
c-12
Cc-12
C-13
C-13
C-14
C-15
C-15

Cc-16
C-17
Cc-19
Cc-21

xiii

D Porting to HP COBOL from Other Compilers (Alpha, 164)

D.1 Porting Assistance D1
D.2 Flagged Foreign Extensions i, D-3
D.3 Implemented Extensions D-3
Index
Examples

1-1 Accessing Environment Variables and Command-Line Arguments . . . 1-17
1-2 Main Program and Subprograms 1-38
1-3 Command Procedure to Compile and Link Subprograms as Shareable

Images (Alpha, I64) 1-38
1-4 Command Procedure to Compile, Link, and Install Subprograms as

Shareable Images (VAX)ttt 1-40
1-5 Transfer Vectors (VAX)o e 1-41
1-6 Accessing Logicals and Command-Line Arguments (Alpha, 164) 1-44
1-7 Using RMS Special Registers to Detect Errors (OpenVMS) 1-56
1-8 Using RMS-CURRENT Special Registers to Detect Errors

(Open VM) . ..o 1-59
2-1 Success/Failure Test 2-5
3-1 Item Concatenation Using Two MOVE Statements 3-6
3-2 Sample Record Description Using the MOVE CORRESPONDING

Statement 3-11
4—1 One-Dimensional Table 4-2
4-2 Multiple Data Items in a One-Dimensional Table 4-2
4-3 Defining a Table with an Index and an Ascending Search Key 4-3
4-4 Defining a Two-Dimensional Table............................ 4-4
4-5 Defining a Three-Dimensional Table 4-5
4-6 Defining a Variable-Length Table. 46
4-7 Sample Record Description Defining a Table 4-7
4-8 Record Description Containing a COMP SYNC Item 4-8
4-9 Adding an Item Without Changing the Table Size 4-8
4-10 How Adding 3 Bytes Adds 4 Bytes to the Element Length 4-9
4-11 Initializing Tables with the VALUE Clause 4-10
4-12 Initializing a Table with the OCCURS Clause 4-10
4-13 Initializing Mixed Usage Items 4-11
4-14 Initializing Alphanumeric Items 4-12
4-15 Using a Literal Subscript to Accessa Table 4-13
4-16 Subscripting a Multidimensional Table 4-13
4-17 Subscripting with Index Name Items. 4-15
4-18 Sample Table 4-19
4-19 A Serial Search 4-20
4-20 Using SEARCH and Varying an Index Other than the First Index . . . 4-21
4-21 Using SEARCH and Varying an Index Data Item 4-21
4-22 Using SEARCH and Varying an Index not Associated with the Target

Table 4-22

Xiv

4-23
4-24
5-1
5-2
6—-1
62
6-3

6-10
611

6-12
6-13

6-14

6-15

6-16

6-17

6-18

6-19

6—20

6-21
622
6—23
624
6—-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32

Doing a Serial Search Without Using the VARYING Phrase
A Multiple-Key, Binary Search.
Using the STRING Statement and Literals
Sample Overflow Condition
Sample Record Description
Determining Fixed-Length Record Size

Determining Fixed-Length Record Size for Files with Multiple Record
Descriptions o e

Creating Variable-Length Records with the DEPENDING ON
Phrase

Creating Variable-Length Records with the RECORD VARYING
Phrase

Creating Variable-Length Records and Using the OCCURS Clause
with the DEPENDING ON Phrase

Defining Fixed-Length Records with Multiple Record Descriptions . . .
Defininga Disk File
Defining a Magnetic Tape File (OpenVMS)
Defining a Magnetic Tape File (Tru64 UNIX)

Using Environment Variables (Tru64 UNIX) or Logical Names
(OpenVMS) for File Specification

Using Environment Variables

Specifying Sequential File Organization and Sequential Access Mode
for a Sequential File

Specifying Relative File Organization and Random Access Mode for a
Relative File.

Specifying Indexed File Organization and Dynamic Access Mode for
anIndexed File

Specifying Line Sequential File Organization with Sequential Access
Mode (Alpha, I64)

SELECT Statements for Sequential Files with Sequential Access
Mode . .. e

SELECT Statements for Relative Files with Sequential and Dynamic
Access Modes

SELECT Statements for Indexed Files with Dynamic and Default
Sequential Access Modes,

SELECT Statements for Line Sequential Files with Sequential Access
Modes (Alpha, I64) e

OPEN and CLOSE Statements
Creating a Sequential File
Creating a Line Sequential File (Alpha, 164)
Creating a Relative File in Sequential Access Mode
Creating a Relative File in Random Access Mode
Creating and Populating an Indexed File
Using Segmented Keys
Reading a Sequential File
Reading a Relative File Sequentially
Reading a Relative File Randomly
Reading a Relative File Dynamically
Reading an Indexed File Sequentially

4-22
4-23
5-2
5-5
6-9
6-9

6-10

6-10

611

611
6-12
6-15
6-16
6-16

6-19
6—20

6-21

6—-22

622

6—23

624

624

624

6-24
625
6—26
627
6-30
6-31
6-33
6-35
6-38
6-39
6-40
6—41
6-42

XV

6-33 Reading an Indexed File Randomly 643

6-34 Reading an Indexed File Dynamically 644
6-35 Reading an Indexed File Dynamically, with READ PRIOR

(Alpha, I64) e 6-45
6—-36 Another Example of READ PRIOR (Alpha, 164).................. 647
6-37 Rewriting a Sequential File 6-50
6-38 Extending a Sequential File or Line Sequential File (Alpha, 164) 6-51
6-39 Rewriting Relative Records in Sequential Access Mode 6-52
6—40 Rewriting Relative Records in Random Access Mode 6-53
6—41 Deleting Relative Records in Sequential Access Mode 6-55
642 Deleting Relative Records in Random Access Mode 6-56
643 Updating an Indexed File Sequentially 6-57
6—44 Updating an Indexed File Randomly 6-59
7-1 Handling the AT END Condition 7-2
72 Handling the Invalid Key Condition 7-3
7-3 Defining a File Status fora File 74
7-4 Using the File Status Value in an Exception Handling Routine 7-5
7-5 Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS, and

RMS-CURRENT-STV Codes (OpenVMS) 7-6
7-6 The Declaratives Skeleton 7-9
7-7 A Declarative USE Procedure Skeleton 7-9
7-8 Five Types of Declarative USE Procedures 7-10
8-1 X/Open Standard Lock Modes and Opening Files (Alpha, 164). 8-7
8-2 Program Segment for File Status Values 8-13
8-3 Program Segment for RMS-STS Values (OpenVMS) 8-15
8-4 X/Open Standard Record Locking (Alpha, 164)................... 8-18
8-5 Automatic Record Locking (HP Standard) 8-19
8-6 Sample Program Using Manual Record Locking (HP Standard) 821
87 Program Segment for Record-Locking Exceptions 8-25
9-1 INPUT and OUTPUT PROCEDURE Phrases 9-4
9-2 USING Phrase Replaces INPUT PROCEDURE Phrase 9-6
9-3 Overriding the COLLATING SEQUENCE IS Phrase.............. 9-7
94 Using Two Sort Files i 9-7
9-5 The Declarative USE AFTER STANDARD ERROR PROCEDURE . . 9-9
9-6 Using the MERGE Statement 9-10
9-7 Sorting a File with the USING and GIVING Phrases 9-11
9-8 Using the USING and OUTPUT PROCEDURE Phrases 9-12
9-9 Using the INPUT PROCEDURE and OUTPUT PROCEDURE

Phrases 9-14
9-10 Using the COLLATING SEQUENCE IS Phrase 9-16
9-11 Creatinga New Sort Key 9-17
9-12 Merging Files 9-19
10-1 Componentsof a Report 10-2
10-2 Checking for the Page-Overflow Condition...................... 10-8
10-3 Page Advancing and Line Skipping 10-9
104 Checking for End-of-Page on a 28-Line Logical Page 10-16

XVi

10-5 Programming a 20-Line Logical Page Defined by the LINAGE Clause

with Automatic Page Overflow 10-22
10-6 Sample Program EX1006 10-44
10-7 Sample Program EX1007 10-48
10-8 Sample Program EX1008 10-57
10-9 Sample Program EX1009 10-64
10-10 Sample Program EX1010 10-74
10-11 Printing Labels Four-Up 10-83
10-12 Printing Labels Four-Up in Sort Order 10-85
11-1 Erasing a Screen 11-5
11-2 Cursor Positioning 11-6
11-3 Using PLUS for Cursor Positioning 11-8
11-4 Using Character Attributes 11-9
11-5 Using the CONVERSION Phrase., 11-10
11-6 Using the ON EXCEPTION Phrase 11-14
11-7 Using the SIZE and PROTECTED Phrases 11-16
11-8 Using the NO ECHO Phrase 11-17
11-9 Using the DEFAULT Phrase i, 11-18
11-10 Using the CONTROL KEY IN Phrase 11-25
11-11 EDITING Phrase Sample Code 11-29
11-12 Designing a Video Form for a Daily Calendar (Alpha, 164) 11-36
121 Run Unit with Three Separately Compiled Programs 12-2
12-2 Run Unit with a Main Program and Two Contained Programs 12-3
12-3 Run Unit with Three Separately Compiled Programs, One with Two

Contained Programs i 12-4
12-4 Execution Sequence of Nested CALL Statements 12-6
12-5 Sequence of Messages Displayed When Example 12-4 Is Run 12-8
12-6 CALL Literal Versus CALL Data Name........................ 12-9
12-7 Using the COMMON Clausec.uuiiiiiinennnnn.. 12-15
12-8 Calling a COBOL Program from C (Alpha, 164).................. 12-21
12-9 C Include File cobfunc.h (Alpha, 164) 12-21
12-10 COBOL Called Program "CALLEDFROMC" (Alpha, 164) 12-22
12-11 C Program Using cobcall, cobfunc, and cobcancel (Alpha, 164)....... 12-23
12—-12 COBOL Called Program "PROGCOB" (Alpha, 164) 12-24
12-13 Calling a Fortran Program from a COBOL Program 12-27
12-14 Fortran Subroutine SQROOT 12-28
12-15 Calling a BASIC Program from a COBOL Program............... 12-29
12-16 BASIC Program "APP" and OQutput Data....................... 12-30
12-17 C Routine to Be Called from a COBOL Program 12-30
12-18 Calling a C Program from a COBOL Program 12-31
13-1 User-Written Condition Handler 13-17
13-2 Random Number Generator (OpenVMS) 13-19
13-3 Using the SYS$SETDDIR System Service (OpenVMS) 13-20
13-4 Using $ASCTIM (OpenVMS) . . .ot i it e e e 13-20
13-5 Sample Run of CALLTIME (OpenVMS) 13-21
13-6 Using LIB$K_* and LIB$_* Symbols (OpenVMS) 13-22
16-1 Using *DC SET ALIGNMENT Directives 16-8

Xvii

16-2 Using /ALIGNMENT with SYNCHRONIZED 16-9

16-3 Comparing /NOALIGN, /ALIGN and /ALIGN=PADDING

(Alpha, I64) 16-11
16—4 Data Map for /NOALIGNMENT (Alpha, 164).................... 16-11
16-5 Data Map for /ALIGNMENT, -align (Alpha, 164) 16-12
16-6 Data Map for /ALIGNMENT=PADDING, -align pad (Alpha, 164) 16-12
B-1 Signed and Unsigned Differences. B-17
B-2 Illegal Return Value Coding, B-18
C-1 Source Code Used in the Sample Debug Sessions Cc-2

Figures

1-1 Commands for Developing HP COBOL Programs on Tru64 UNIX ... 1-2
1-2 DCL Commands for Developing Programs 1-21
4-1 Organization of the One-Dimensional Table in Example 4-1........ 4-2
4-2 Organization of Multiple Data Items in a One-Dimensional Table. . . . 4-3
4-3 Organization of a Table with an Index and an Ascending Search

Key .o e 4-4
4-4 Organization of a Two-Dimensional Table 4-5
4-5 Organization of a Three-Dimensional Table 4-5
4-6 Memory Map for Example 4—7 4-7
4-7 Memory Map for Example 4-8 4-8
4-8 Memory Map for Example 4-9 4-9
4-9 Memory Map for Example 4-10 4-9
4-10 Memory Map for Example 4-11 ou.... 4-10
4-11 Memory Map for Example 4-13 4-11
4-12 Memory Map for Example 4—14 4-12
5-1 Results of the STRING Operation 5-3
5-2 Matching Delimiter Characters to Characters ina Field 5-19
5-3 Sample INSPECT Statement 5-21
5-4 Typical REPLACING Phrase 0., 5-22
5-5 The Replacement Argument. 5-31
6—1 Sequential File Organization 6-3
6-2 A Multiple-Volume, Sequential File 6-4
6-3 Line Sequential File Organization (Alpha, 164) 6-5
64 Relative File Organization, 66
6-5 Indexed File Organization 6-7
8-1 Multiple Accesstoa File 8-1
8-2 Relationship of Record Locking to File Sharing 8-2
8-3 Why a Record-Already-Exists Error Occurs 8-16
10-1 Sample Layout Worksheet 10-2
10-2 Subtotals, Crossfoot Totals, and Rolled Forward Totals 10-5
10-3 Logical Page Area for a Conventional Report.................... 106
104 A 20-Line Logical Page, 10-11
10-5 A Double-Spaced Master Listing 10-12
10-6 Logical Page Areas for a Linage-File Report 10-13
10-7 A 28-Line Logical Page 10-16

xviii

10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
11-1
11-2
11-3
11-4
11-5
11-6
1-7
11-8
11-9
11-10

11-11

11-12
11-13
11-14
11-15
12-1
12-2

12-3
124
12-5
12-6
12-7
151
152

A 20-Line Logical Page
Presentation Order for a Logical Page
Sample Report Using All Seven Report Groups
First GENERATE Statement
Subsequent GENERATE Statements
TERMINATE Statement,
Sample MASTER.DAT File
EX1006.LIS Listingottt e et e e
EX1007. LIS Listingot e e
EX1008. LIS Listingottt i
EX1009.LIS Listingt e
EX1010.LIS Listingt e e
Printing Labels Four-Up
Printing Labels Four-Up in Sort Order
Video Form to Gather Information for a Master File Record
Screen After the ERASE Statement Executes
Positioning the Data on Line 19, Column 5
Cursor Positioning Using the PLUS Option
Screen Display with Character Attributes
Sample Run of Program CONVERT...........................
Accepting Data with the ON EXCEPTION Option................
Screen Display of NUM-DATA Using the PROTECTED Option.
Accepting Data with the DEFAULT Phrase

HP COBOL Control Keys on the Standard VT100 Keypad and
Keyboard e

HP COBOL Control Keys on a Typical VT200 or Later Keypad and
Keyboard e

Screen Display of Program SPECIAL
Form with ACCEPT WITH EDITING Phrase
MENU-SCREEN Output (Alpha, I164)
SCHEDULE-SCREEN Output (Alpha, I164)
Nesting CALL Statements

Transfer of Control Flow from a Main Program to Multiple
Subprograms e

Accessing Another Program’s Data Division.
Defining Data Names in the Linkage Section
Sharing USE Procedures
Executing Declaratives with Contained Programs (Rule 1)
Executing Declaratives Within Contained Programs (Rule 2)
Sharing Record Areas
Two-Level Primary Index

10-20
10-26
10-27
10-38
10-39
10-40
10-43
10-47
10-55
10-64
10-72
10-81
10-83
10-85

11-4

11-6

1-7

11-8
11-10
11-12
11-14
11-16
11-19

11-23

11-24
11-28
11-31
11-40
11-40

12-6

12-9
12-11
12-14
12-17
12-18
12-19
15-14
15-19

Xix

XX

5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11

5-12
5-13

10-1
10-2
11-1

Other File Name Suffixes. 1-3
HP COBOL Command Flags on Tru64 UNIX 1-5
Main Tools for Program Development and Testing 1-19
COBOL Command Qualifiers 1-25
Commonly Used LINK Qualifiers 1-34
Numeric Relational Operator Descriptions. 2-3
Sign Tests 2-4
Numeric Editing 2-8
ROUNDINGot e e e e 2-13
Relational Operator Descriptions 34
Nonnumeric Elementary Moves 3-7
Data Movement with Editing Symbols......................... 3-9
Data Movement with the JUSTIFIED Clause 3-10
Subscripting Rules for a Multidimensional Table. 4-14
Subscripting with Data Names 4-14
Results of Sample Overflow Statements. 5-5
Values Moved into the Receiving Items Based on the Sending Item

Value 5-7
Handling a Short Sending Item 5-8
Results of Delimiting with an Asterisk 5-9
Results of Delimiting Multiple Receiving Items 5-10
Results of Delimiting with Two Asterisks 5-10
Results of Delimiting with ALL Asterisks 5-11
Results of Delimiting with ALL Double Asterisks 5-11
Results of Multiple Delimiters 5-12
Values Resulting from Implicit Redefinition..................... 5-20
Relationship Among INSPECT Argument, Delimiter, Item Value, and

Argument Active Position 5-23
LEADING Delimiter of the Inspection Operation 5-25
Results of the Scan with Separate Tallies 5-26
HP COBOL File Organizations—Advantages and Disadvantages 62
Record Format Availability 6-8
Valid I/O Statements for Sequential Files 6—28
Valid I/O Statements for Line Sequential Files (Alpha, 164) 6-28
Valid I/O Statements for Relative Files 6-32
Valid I/O Statements for Indexed Files 6-34
Indexed File—ISAM Mapping, 648
File-Sharing Options (OpenVMS). 8-10
File-Sharing Options (Tru64 UNIX) 8-11
File Status Values Used in a File-Sharing Environment 8-12
RMS-STS Values Used in a File-Sharing Environment (OpenVMS). . . 8-14
Manual Record Locking Combinations 8-21
Report Writer Report Group Types 1026
Results of Group Indicating 10-87
Available Character Attributes by Terminal Type 11-9

11-2

11-3
11-4

11-5
121
12-2
12-3
13-1
13-2
13-3
13-4
16-1
16-2
B—1

B-2

B-4
c—1

HP COBOL Characters Returned for Cursor Positioning, Program
Function, Function, Keypad, and Keyboard Keys.................

Key Functions for the EDITING Phrase

Character Attribute Clauses for Screen Description Formats
(Alpha, I64)

Color Table.
Calls to COBOL Programs (Alpha, 164)
C Routine Called by Statement: CALL “Job1”...................
C Invocation to Call COBOL PROGRAM-ID “Job2”
OpenVMS Alpha and 164 Register Usage
Run-Time Library Facilities (OpenVMS)
System Services (OpenVMS)
COBOL Implementation of the OpenVMS Data Types (OpenVMS) . . .
Boundaries for Naturally Aligned Binary Data (Alpha, 164)
Alignment and Padding Order of Precedence (Alpha, 164)
Cross-Platform Compatibility of COBOL Features................

Qualifiers Shared by HP COBOL for OpenVMS Alpha, 164, and VAX
and Equivalent Tru64 UNIX Flags and Options

HP COBOL on Alpha and 164 Options Not Available on VAX
HP COBOL for OpenVMS VAX Specific Qualifiers................

Oracle CDD/Repository Data Types: Level of Support
in HP COBOL on OpenVMS

Recognized Foreign Reserved Words

11-20
11-28

11-32
11-34
12-20
12-33
12-33
13-2
13-4
13-4
13-8
16-4
16-7
B-1

XXi

Preface

This manual provides information to help you develop HP COBOL programs
for the OpenVMS Alpha, OpenVMS Industry Standard 64, OpenVMS VAX, and
Tru64 UNIX platforms.

HP COBOL is the new name for what has formerly been known as Compaq
COBOL, DEC COBOL, DIGITAL COBOL, and VAX COBOL. HP COBOL,
unmodified, refers to the following products:

HP COBOL for OpenVMS Industry Standard 64
HP COBOL for OpenVMS Alpha

HP COBOL for Tru64 UNIX

HP COBOL for OpenVMS VAX

Any references to the former names in product documentation or other
components should be construed as references to the HP COBOL names.

Intended Audience

This manual is intended for experienced applications programmers who have a
thorough understanding of the COBOL language. Some familiarity with your
operating system is also recommended. This is not a tutorial manual.

If you are a new COBOL user, you may need to read introductory COBOL
textbooks or take COBOL courses. Additional prerequisites are described at the
beginning of each chapter or appendix, if appropriate.

Document Structure
This manual is organized as follows:

e Chapter 1 describes how to create, compile, link, and run HP COBOL
programs and how to develop programs at the command level.

e Chapter 2 describes how the HP COBOL compiler stores, represents, moves,
and manipulates numeric data.

e Chapter 3 describes how the HP COBOL compiler stores, represents, moves,
and manipulates nonnumeric data.

e Chapter 4 describes how to define, initialize, and access tables.

¢ Chapter 5 describes how to perform text manipulation using the STRING,
UNSTRING, and INSPECT statements.

e Chapter 6 describes I/0 services provided by the operating systems, including
record management services.

e Chapter 7 describes how to include exception handling routines in HP COBOL
programs.

XXiii

e Chapter 8 describes file sharing and record locking for sequential, relative,
and indexed files.

e Chapter 9 describes how to sort and merge files using the SORT and MERGE
statements.

e Chapter 10 describes how to produce printed reports.

e Chapter 11 describes screen handling using the HP COBOL ACCEPT and
DISPLAY statements.

e Chapter 12 describes how HP COBOL programs communicate with each other
or with non-COBOL programs through the CALL statement and external
data.

¢ Chapter 13 describes the use of HP COBOL in the OpenVMS Common
Language Environment.

¢ Chapter 14 describes how to use the REFORMAT utility, which converts
terminal format source programs to conventional ANSI format and converts
conventional ANSI format source programs to terminal format.

e Chapter 15 presents guidelines for using the HP COBOL compiler
optimization features.

e Chapter 16 describes how to use compile-time and run-time features to
optimize the use of system resources while also maximizing run-time
performance.

e Appendix A contains a list of HP COBOL specifications and limits on the
Tru64 UNIX and OpenVMS systems.

e Appendix B describes compatibility and portability issues between HP
COBOL for OpenVMS VAX and HP COBOL on the OpenVMS 164, Tru64
UNIX and OpenVMS Alpha systems.

e Appendix C describes optional programming productivity tools available on
OpenVMS systems and Tru64 UNIX systems.

e Appendix D describes porting assistance for migrating applications between
other COBOL compilers and HP COBOL.

e The Index indexes and references terms in this manual.

Associated Documents

The following documents contain additional information directly related to
various topics in this manual:

HP COBOL Reference Manual

This manual describes the concepts and rules of the HP COBOL programming
language under the supported operating systems.

Release Notes

Consult the HP COBOL release notes for your installed version for late
corrections and new features.

On the OpenVMS operating systems, the release notes are in:

SYS$HELP:COBOLnnn. RELEASE_NOTES (ASCII text)
SYS$HELP:COBOLnnn_RELEASE_NOTES.PS

XXiv

where nnn is the version and release number, for example, 028 for Version
2.8.

On the Tru64 UNIX operating system, the release notes are in:
/usr/lib/cmplrs/cobol/relnotes

HP COBOL for OpenVMS Alpha and 164 Systems Installation Guide

This manual provides information on how to install HP COBOL on the OpenVMS
Alpha and OpenVMS 164 operating systems.

Compaq COBOL for OpenVMS VAX Systems Installation Guide

This manual provides information on how to install HP COBOL on the OpenVMS
VAX operating system.

Compaq COBOL for Tru64 UNIX Systems Installation Guide

This manual provides information on how to install HP COBOL on the Tru64
UNIX operating system.

HP COBOL DBMS Database Programming Manual

This manual provides information on using HP COBOL for database
programming with Oracle CODASYL DBMS on the OpenVMS Alpha, OpenVMS
164, and OpenVMS VAX operating systems.

The OpenVMS Documentation Set

This set contains information about using the features of the OpenVMS Alpha,
OpenVMS 164, and OpenVMS VAX operating systems and their tools, including
the OpenVMS Debugger.

The DECset Documentation
This documentation contains information about using DECset.

The Tru64 UNIX Documentation Set
This set contains information about using the features of the Tru64 UNIX

operating system and its tools.
Related Documents

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Conventions Used in This Document
The following product names may appear in this manual:
e HP OpenVMS Industry Standard 64 for Integrity servers
e OpenVMS 164
e J64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

XXV

XXVi

The following table lists the conventions used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

¢ A diamond signals the end of a section of system-specific

RECORD KEY IS

sortfile

{}

format of examples

information. The beginning of a system-specific section is
identified in the text or header as Alpha (meaning both
OpenVMS Alpha and Tru64 UNIX Alpha, and excluding
OpenVMS VAX); 164 (meaning OpenVMS 164); as OpenVMS
(meaning OpenVMS Alpha, OpenVMS 164, and OpenVMS
VAX); or as Tru64 UNIX.

Underlined uppercase words are required when used in a
general format. Uppercase words not underlined are optional.

Lowercase words used in a general format are generic terms
that indicate entries you must provide.

Braces used in a general format enclose lists from which you
must choose only one item. For example:

SEQUENTIAL
{ RANDOM }
DYNAMIC

Brackets used in a general format enclose optional items from
which you can choose none or one. For example:

RECORD
ALL RECORDS

Choice indicators, vertical lines inside a set of braces, used in a
general format enclose lists from which you must choose one or
more items, using each item chosen only once. For example:

INITIAL

COMMON ‘

A horizontal ellipsis indicates that the item preceding the
ellipsis can be repeated. For example:

{ switch-name } ...

A vertical ellipsis indicates that not all of the statements are
shown.

Program examples are shown in terminal format, rather than
in ANSI standard format.

Convention

Meaning

special-character words

quotation mark
apostrophe
user input

extensions

report file

italics

full-file-name

compiler option

COBOL

o

b

&

The following symbols, when used in a general format,
constitute required special-character words:

Plus sign (+)

Minus sign (-)

Single (=) and double (==) equal signs
Less than (<) or greater than (>) symbols
Less than or equal to (<=) and greater than or equal to
(>=) symbols

Period (.)

Colon (:)

Single (*) and double (**) asterisks

Slash (/)

Left parenthesis (() or right parenthesis ())

The term quotation mark is used to refer to the double
quotation mark character (").

The term apostrophe is used to refer to the single quotation
mark character (/).

In examples, user input (what you enter) is shown as
monospaced text.

Hewlett-Packard extensions to the 1985 ANSI COBOL
Standard are color coded in blue or gray. Note that the term
extension in this manual means an HP extension to the ANSI
COBOL Standard. (Some of the Alpha extensions are included
in the X/Open CAE Standard for the COBOL language.)

Bold type indicates a new term.

Italic type indicates important information, complete titles
of manuals, or variables. Variables include generic terms
(lowercase variable elements in syntax) when referred to in
text; and information that varies in system output (error
number) and in command lines (BASIC file-name) in text.

This syntax term refers to the name of a file and the device
and directory, or path, in which it is located. For example:
DISK2$:[HOME.PUBLIC]FILENAME.TXT; (OpenvMS file
specification)

/disk2/home/public/filename.txt (Tru64 UNIX

file specification)

This term refers to command-line qualifiers (OpenVMS
systems) or flags (Tru64 UNIX systems). For example:
/LIST (OpenVMS qualifier)

-list (Tru64 UNIX flag)

This term refers to language information common to ANSI-85
COBOL and HP COBOL.

A boxed symbol indicates that you must press a key on the
terminal; for example, indicates that you press the Enter
key.

This symbol indicates a nonprinting tab character.

The symbol indicates that you hold down the key labeled
CTRL while you press another key, for example, or [Ctrl[0].

The dollar sign ($) represents the OpenVMS system prompt.

XXVii

Convention Meaning

% The percent sign (%) represents the Tru64 UNIX system
prompt.

References

The following table shows certain references and their respective meanings in
this manual:

Reference Meaning

Alpha OpenVMS Alpha or Tru64 UNIX operating system

OpenVMS OpenVMS Alpha or OpenVMS 164 or OpenVMS VAX operating
system

Tru64 UNIX Tru64 UNIX operating system

DECset DECset for OpenVMS

Tru64 UNIX was formerly known as Compaq Tru64 Unix, DEC OSF/1, or as
DIGITAL UNIX. HP COBOL was formerly known as Compaq COBOL, DIGITAL
COBOL, or DEC COBOL. HP COBOL for OpenVMS VAX was formerly known as
Compaq COBOL for OpenVMS VAX, VAX COBOL, or as DIGITAL VAX COBOL.

Acknowledgment

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by
any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are
as follows: FLOW-MATIC (trademark of Unisys Corporation), Programming
for the UNIVAC (R) I and II, Data Automation Systems, copyrighted 1958,
1959, by Unisys Corporation; IBM Commercial Translator Form No. F28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell.

They have specifically authorized the use of this material, in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

How to Order Additional Documentation

XXviii

For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

XXiX

1

Developing HP COBOL Programs

HP COBOL is a family of powerful COBOL compilers produced by Hewlett-
Packard Company. HP COBOL operates comfortably in the HP common
language environment; on Alpha, it is based on GEM, which is the highly
advanced code generator and optimizer that Hewlett-Packard uses in its Alpha
family of languages, which includes COBOL, C, C++, FORTRAN, BASIC, Ada,
and PASCAL. In addition to standard COBOL features, HP COBOL includes
extensions that make new application development efficient and effective,
with features helpful in porting legacy COBOL programs to OpenVMS Alpha,
OpenVMS 164, and Tru64 UNIX systems.

Developing software applications with HP COBOL will be a familiar process. You
set up your development environment, create your source, compile, link, and run.
A few of the specific tasks are:

¢ Choosing a reference format: terminal or ANSI

e Carefully considering Alpha and Itanium® architecture system resources;
for example, you might invest more system resources at compile time to get
faster execution at run time

e Using various system-independent features for program development

1.1 Developing Programs on Tru64 UNIX

This section briefly describes the Tru64 UNIX commands (commands used at
the operating system prompt) that you use to create, compile, link, and run HP
COBOL programs on Tru64 UNIX systems.

1.1.1 Creating an HP COBOL Program on Tru64 UNIX

Use a text editor, such as vi or emacs, to create and revise your source files. For
instance, to edit the file progl.cob using the vi editor, type:

$ vi progl.cob

Figure 1-1 shows the basic steps in HP COBOL program development on Tru64
UNIX systems.

Developing HP COBOL Programs 1-1

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Figure 1-1 Commands for Developing HP COBOL Programs on Tru64 UNIX

COMMANDS

% vi prog1.cob

Use the file type of cob
to indicate the file contains
a COBOL program.

% cobol -c prog1.cob
The cobol command
assumesno file type.
(If you use the -list flag,
the compiler creates a
listing file; if you use the
-c flag, the compiler
creates an object file.)

% cobol prog1.0

The link command
assumesno file type.

% a.out

Type the output file name
to run the image.

Create a
source program

Compile the
source program

Link the
object module

/

Run the
executable
image

[INPUT/OUTPUT FILES |

~———— prog1.cob

(prog1.o,
prog1.lis)

t : libraries

a.out

N——

Note: case of file names is significant.

VM-0610A-Al

When naming a source file, choose one of the four file name extensions that the
cobol compiler recognizes as COBOL file suffixes. These suffixes are:

.cob
.COB
.cbl
.CBL

Table 1-1 shows other file name suffixes.

1-2 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Table 1-1 Other File Name Suffixes

Suffix Description

.C Identifies C language files passed to the C compiler driver cc, which performs
additional command line parsing before invoking the C language compiler.

Identifies assembler files passed to cc. HP COBOL does not generate .s files.
Identifies object files passed to cc, which are in turn passed to 1d.

Identifies archive object libraries passed to cc, which are in turn passed to 1d.
All routines in the specified object library will be searched during linking to
resolve external references. This is one method of specifying special libraries
for which the cobol command does not automatically search.

.50 Identifies shared object libraries passed to cc, which are in turn passed to 1d.
All routines in the specified object library will be searched during linking to
resolve external references. This is one method of specifying special libraries
for which the cobol command does not automatically search.

The following cobol command compiles the program named progl.cob and
automatically uses the linker 1d to link the main program into an executable
program file named a.out (the name used if you do not specify a name):

% cobol progl.cob

The cobol command automatically passes a standard default list of Tru64 UNIX
and HP COBOL libraries to the 1d linker. If all external routines used by a
program reside in these standard libraries, additional libraries or object files are
not specified on the cobol command line.

If your path definition includes the directory containing a.out, you can run the
program by simply typing its name:

% a.out

If the executable image is not in your current directory path, specify the directory
path in addition to the file name.

The COPY Statement and Libraries

As you write a program, you can use the COPY statement in your source program
to include text from another file. With the COPY statement, separate programs
can share common source text kept in libraries, reducing development and testing
time as well as storage. The HP COBOL Reference Manual explains how to use
the COPY statement.

Special Considerations for Routines Named “main”

If you have a program or routine named “main,” declared either in an HP COBOL
or other module, your application may not work correctly. The HP COBOL library
contains a routine named “main,” which initializes the run-time environment

for the CALL by data name statements, extended ACCEPT and DISPLAY
statements, and some error handling. When your application also declares

a “main,” your routine preempts the HP COBOL routine, and the run-time
initialization is not performed.

Hewlett-Packard recommends that you not name an HP COBOL program “main.”

If you have a C routine named “main,” you can work around this problem by
having the “main” routine directly call the HP COBOL initialization routine,
cob_init. The cob_init routine interface (in C) is as follows:

Developing HP COBOL Programs 1-3

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

void cob init (/* init the RTL */
int argc, /* argument count */
char **argv, /* arguments */
char **envp /* environment variable pointers */)

1.1.2 Compiling an HP COBOL Program on Tru64 UNIX

Compilation does the following for you:

¢ Detects errors in your program syntax

e Displays compiler messages on your terminal screen

¢ Generates machine language instructions from valid source statements
e Groups the instructions into an object module for the linker 1d

To compile your program, use the cobol command.

The COBOL Command Driver

The cobol command invokes a compiler driver that is the actual user interface to
the HP COBOL compiler. It accepts a list of command flags and file names and
causes one or more processors (compiler, assembler, or linker) to process each file.

After the HP COBOL compiler processes the appropriate files to create one

or more object files, the compiler driver passes a list of files, certain flags,

and other information to the cc compiler. After the cc compiler (the default

C compiler on your system) processes relevant files and information, it passes
certain information (such as .o object files) to the 1d linker. The cobol command
executes each processor; if any processor returns other than normal status,
further processing is discontinued and the HP COBOL compiler displays a
message identifying the processor (and its returned status, in hexadecimal) before
terminating its own execution.

1.1.2.1 Format of the COBOL Command on Tru64 UNIX
The cobol command has the following format:

cobol [-flags [options])... filenamel.suffix] [filenamel.suffix]]... [-flags [options]]...

-flags [options]

Indicates either special actions to be performed by the compiler or linker, or
special properties of input or output files. For details about command-line flags,
see Section 1.1.2.2. If you specify the -1string flag (which indicates libraries to be
searched by the linker) or an object library file name, place it after the file names
and after other flags.

filename.suffix

Specifies the source files containing the program units to be compiled, where the
file name has a suffix that indicates the type of file used. The recognized COBOL
suffix characters are .cob, .COB, .cbl, and .CBL.

Note that the compiler driver checks for a valid suffix on filename. If you omit
suffix, or if it is not one of the types recognized by the cobol command, the file is
assumed to be an object file and is passed directly to the linker.

An example cobol command line would be:
% cobol -v test.cob pas.o
This command specifies the following:

e The -v flag displays the compilation and link passes with their arguments
and files, including the libraries passed to 1d.

1-4 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

e The file test.cob is passed to the HP COBOL compiler for compilation. The

resulting object file is then linked.

e The object file pas.o is passed directly to the linker.

As an additional example, you might find that your compiler command lines are
getting rather long, as shown in the following example:

% cobol -rsv foreign extensions -flagger high fips -warn information zeroes.cob

To work around this, you may truncate compiler flag options (arguments) to their

shortest unambiguous form, as follows:

% cobol -rsv for -flagger high -warn info zeroes.cob

1.1.2.2 COBOL Command Flags

Flags to the cobol command affect how the compiler processes a file. The
simplest form of the cobol command is often sufficient.

If you compile parts of your program (compilation units) using multiple cobol
commands, flags that affect the execution of the program should be used
consistently for all compilations, especially if data will be shared or passed

between procedures.

For a complete list of HP COBOL flags, see Table 1-2. For more information
about the HP COBOL flags, access the reference (man) page for COBOL at the

Tru64 UNIX system prompt. For example:

% man cobol

Table 1-2 HP COBOL Command Flags on Tru64 UNIX

Flag Default

-align [padding] off

-ansi off

-arch -arch generic

-arithmetic native
-arithmetic standard

-C

-c

-call shared

-check all

-check [no]bounds

-check [no]decimal
-check [no]perform
-check none
-conditionals [selector]
-convert [no]leading blanks
-Copy

-copy list

-arithmetic native
-arithmetic native
off

on

on

off

-check nobounds
-check nodecimal
-check noperform
on

off

-convert noleading_blanks
off

off

(continued on next page)

Developing HP COBOL Programs 1-5

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Table 1-2 (Cont.) HP COBOL Command Flags on Tru64 UNIX

Flag Default
-cord off
-cross_reference off
-cross_reference alphabetical off
-cross_reference declared off

=D num off
-display formatted off
-feedback file off
-fips 74 off
-flagger [option] off
-granularity byte, -granularity quad

-granularity long,
-granularity quad

-g0 off
-gl on
-g2 or -g off
-g93 off
-include off
-K off
-L off
-Ldir off
-list off
-lstring off
-mach or -machine_code off
-map off
-map alphabetical off
-map declared off
-math intermediate cit3, -math_intermediate float

-math_intermediate cit4,
-math_intermediate float

-names as 1is, -names lowercase
-names lower,

-names lowercase,

-names upper,

-names uppercase

-nationality japan, -nationality us
-nationality us

-nolocking off

-noobject off

-non_shared -call shared
-nowarn off

-00 off

(continued on next page)

1-6 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Table 1-2 (Cont.) HP COBOL Command Flags on Tru64 UNIX

Flag Default

-01 off

-02 off

-03 off

-04 or -0 on

-0 output a.out

-p0 on

-pl or -p off
-relax key checking or -rkc off

-rsv [no]200x -rsv no200x

-rsv [no]foreign_extensions
-rsv [no]xopen

-seq or -sequence_check
-shared

-show code

-show copy

-show xref

-std or -std 85

-std [no]mia

-std [no]syntax

-std [no]v3

-std [no]xopen

-T num

-taso

-tps

-trunc

-tune

-V

-V

-w

-warn

-warn all

-warn [no]information
-warn [no]other

-warn none

-xref, -xref stdout

-rsv noforeign extensions
-rsv xopen
off

-call shared
off

off

off

on

-std nomia
-std nosyntax
-std nov3
-std xopen
off

off

off

off

-tune generic
off

off

off

-warn other
off

-warn noinformation
-warn other
off

off

Technical Notes:

1. If your program compile generates Errors (E-level diagnostics on OpenVMS),
the link phase of the two steps taken by the compiler driver will be aborted
and the object file(s) deleted. You can override this deletion by specifying the

-c flag:

Developing HP COBOL Programs 1-7

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

% cobol -c test.cob
% cobol test.o

The HP COBOL compiler driver (see Section 1.1.2) controls a sequence of
operations (as required): compiling, assembling, linking. The -c flag signals
the compiler driver to break the sequence.

(For additional information, see The COBOL Command Driver description
(earlier in this chapter), Section 1.1.2.12, and the -c description under man
cobol.)

2. The -tps flag causes the HP COBOL compiler to use an external file handler
(produced by a third party), providing increased flexibility in cross platform,
transaction processing application development. See Section 1.1.2.3 for more
information.

3. Specifying the -xref stdout option directs the compiler to output the data
file to standard output.

4. Any copy file that contains a PROGRAM-ID or END PROGRAM statement
for a program must contain that entire program.

1.1.2.3 External File Handler Support

The -tps flag allows HP COBOL applications to make use of ACMSxp, the
Application Control and Management System/Cross-Platform Edition.

-tps specifies that files are part of a transaction processing system, and enables
Encina Structured File System (SFS) record storage for applicable files. It is
intended to be used in conjunction with the Transarc Encina external file handler
and ACMSxp, allowing access to data in a wide variety of databases, without
the need to write code in the language of the databases. This approach provides
access to transaction processing technology, and incorporates industry standards
for data communications and distributed computing. ACMSxp conforms to the
the Multivendor Integration Architecture (MIA).

COBOL is one of the languages approved by MIA for transaction processing
(TP) client programs, customer-written presentation procedures, and processing
procedures. For database access, Structured Query Language (SQL) is the
MIA-required access language. The SQL is embedded in COBOL and C.

Refer to the ACMSxp documentation for full details. Additional information
can also be found in published Distributed Computing Environment (DCE)
documentation.

1.1.2.4 Specifying Multiple Files and Flags

The cobol command can specify multiple file names and multiple flags. Multiple
file names are delimited by spaces. If appropriate, each file name can have a
different suffix. The file name suffix could result in the following actions:

e (Calling another language compiler, such as the C compiler

e Passing object files directly to the linker, which the linker combines with
other object files

e Passing an object library to the linker, which the linker uses to search for
unresolved global references

When a file is not in your current working directory, specify the directory path
before the file name.

1-8 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

1.1.2.5 Compiling Multiple Files

An entire set of source files can be compiled and linked together using a single
cobol command:

% cobol -o calc mainprog.cob array calc.cob calc aver.cob

This cobol command:

e Uses the -o flag to specify the name of the executable program as calc
e Compiles the file array calc.cob

¢ Compiles the file calc_aver.cob

e Compiles the file mainprog.cob, which contains the main program

e Uses 1d to link both the main program and object files into an executable
program file named calc

The files can also be compiled separately, as follows:

% cobol -c array calc.cob
% cobol -c calc_aver.cob
% cobol -o calc mainprog.cob array calc.o calc_aver.o

In this case, the -c option prevents linking and retains the .o files. The first
command creates the file array calc.o. The second command creates the file
calc_aver.o. The last command compiles the main program and links the object
files into the executable program named calc.

If your path definition includes the directory containing calc, you can run the
program by simply typing its name:

% calc
You can compile multiple source files by concatenating them:

% cat progal.cob proga2.cob proga3.cob > coml.cob
% cat progbl.cob progb2.cob > com2.cob
% cobol -c coml.cob com2.cob

The resulting file names are com1l.0 and com2.0. The OpenVMS Alpha and 164
equivalent to this is:

$ COBOL progal+proga2+proga3,progbl+progb2

1.1.2.6 Debugging a Program
To debug a program using the Ladebug Debugger, compile the source files
with the -g flag to request additional symbol table information for source line
debugging in the object and executable program files. The following cobol
command also uses the -o flag to name the executable program file calc_debug:

% cobol -g -o calc debug mainprog.cob array calc.cob calc_aver.cob
To debug an executable program named calc_debug, type the following command:
% ladebug calc_debug

For more information on running the program within the debugger, refer to the
Ladebug Debugger Manual.

Pay attention to compiler messages. Informational and warning messages (as
well as error-level messages) do not prevent the production of an object file, which
you can link and execute. However, the messages sometimes point out otherwise
undetected logic errors, and the structure of the program might not be what you
intended.

Developing HP COBOL Programs 1-9

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

1.1.2.7 Output Files: Object, Executable, Listing, and Temporary Files
The output produced by the cobol command includes:

¢ An object file, if you specify the -c flag on the command line
e An executable file, if you omit the -c flag
e A listing file, if you specify the -V flag

If the environment variable TMPDIR is set, the value is used as the directory for
temporary files.

You control the production of these files by specifying the appropriate flags on
the cobol command line. Unless you specify the -c flag, the compiler generates a
single temporary object file, whether you specify one source file or multiple source
files separated by blanks. The 1d linker is then invoked to link the object file into
one executable image file.

The object file is in Tru64 UNIX extended coff format. The object file provides
the following information:

e The name of the entry point. It takes this name from the program name in
the first PROGRAM-ID paragraph in the source program.

e A list of variables that are declared in the module. The linker uses this
information when it binds two or more modules together and must resolve
references to the same names in the modules.

e A symbol table and a source line correlation table (if you request them
with the -g flag, for debugging). A symbol table is a list of the names of all
external and internal variables within a module, with definitions of their
locations. The source line correlation table associates lines in your source file
with lines in your program. These tables are of use in debugging.

If severe errors are encountered during compilation or if you specify certain flags
such as -c, linking does not occur.

1.1.2.8 Naming Output Files
To specify a file name (other than a.out) for the executable image file, use the
-0 output flag, where output specifies the file name. You can also use the mv
command to rename the file. The following command requests a file name of
progl.out for the source file testl.cob:

% cobol -o progl.out testl.cob

Besides specifying the name of the executable image file, you can use the -o
output flag to rename the object file if you specified the -c flag. If you specify the
-c flag and omit the -o output flag, the name of the first specified file is used with
a .o suffix substituted for the source file suffix.

1.1.2.9 Temporary Files
Temporary files created by the compiler or a preprocessor reside in the /tmp
directory and are deleted (unless the -K flag is specified). You can set the
environment variable TMPDIR to specify a directory to contain temporary files if
/tmp is not acceptable.

To view the file name and directory where each temporary file is created, use
the -v flag. To create object files in your current working directory, use the -c
flag. Any object files (.o files) that you specify on the cobol command line are
retained.

1-10 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

1.1.2.10 Examples of the COBOL Command

The following examples show the use of the cobol command. Each command is
followed by a description of the output files that it produces.

1. % cobol -V aaa.cob bbb.cob ccc.cob

The HP COBOL source files aaa.cob, bbb.cob, and ccc.cob are compiled
into temporary object files. The temporary object files are passed to the 1d
linker. The 1d linker produces the executable file a.out. The -V flag causes
the compiler to create the listing files aaa.lis, bbb.1lis, and ccc.lis.

2. % cobol -V *.cob

HP COBOL source files with file names that end with .cob are compiled into
temporary object files, which are then passed to the 1d linker. The 1d linker
produces the a.out file.

When the compilation completes, the cobol driver returns one of the following
status values:

0—SUCCESS

1—FAILURE
2—SUBPROCESS_FAILURE (cobol or cc)
3—SIGNAL

1.1.2.11 Other Compilers
You can compile and link multilanguage programs using a single cobol command.

The cobol command recognizes C or Assembler program files by their file
suffix characters and passes them to the cc compiler for compilation. Before
compilation, cc applies the cpp preprocessor to files that it recognizes, such as
any file with a .c suffix.

Certain flags passed to cc are passed to the 1d linker.

1.1.2.12 Interpreting Messages from the Compiler
The HP COBOL compiler identifies syntax errors and violations of language rules
in the program. If the compiler finds any errors, it writes messages to the stderr
output file and any listing file. If you enter the cobol command interactively, the
messages are displayed on your terminal.

Compiler messages have the following format:

cobol: severity: filename, line n, message-text
[text-in-error]

The pointer (--") indicates the exact place on the source line where the error was
found. For example, the following error message shows the format and message
text in a listing file when an END DO statement was omitted:

cobol: Severe: disp.cob, line 7: Missing period is assumed
05 VAR-1 PIC X.

The severity level is one of the following:

Severe The compiler does not produce an object module. You must correct
the error before you can compile the program to produce an object
module.

Developing HP COBOL Programs 1-11

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Error The compiler makes an assumption about what you intended and
continues. However, the compiler’s assumption may not relate to
your intention. Correct the error.

Warning The compiler attempts to correct the error in the statement,
but you should verify that the compiler’s action is acceptable.
Otherwise, your program may produce unexpected results.

Informational This message usually appears with other messages to inform you
of specific actions taken by the compiler. No action is necessary on
your part.

Any messages issued during the compilation are inserted in the listing file. A
listing file is useful for debugging the source code. Use the -V or -1list flag to
produce a listing; you may also use -cross_reference, -copy list, -flagger,
-machine_code, -map, and/or -warn, all of which affect the contents of the listing
file.

Diagnostic messages provide information for you to determine the cause of an
error and correct it. If the compiler creates a listing file, it writes the messages to
the listing file.

1.1.3 Linking an HP COBOL Program on Tru64 UNIX

Once your program has compiled successfully, the system passes the resulting
object file (which has the suffix .0 by default) to the linker to create an executable
image file. By default, the executable image file has the name a.out. (To change
this default, specify -o filename on the cobol command line.) This file can be run
on the Tru64 UNIX system.

The 1d linker provides the following primary functions:

e Generates appropriate information in the executable image for virtual
memory allocation

e Resolves symbolic references among object files being linked, including
whether to search in archive or shared object libraries

e Assigns values to relocatable global symbols
e Performs relocation
The linker produces an executable program image with a default name of a.out.

When you enter a cobol command, the 1d linker is invoked automatically unless
a compilation error occurs or you specify the -c flag on the command line.

1.1.3.1 Specifying Object Libraries for Linking
You can specify object libraries on the COBOL command line by using certain
flags or by providing the file name of the library. These object libraries are also
searched by 1d for unresolved external references.

When cobol specifies certain libraries to 1d, it provides a standard list of COBOL
library file names to 1d. The 1d linker tries to locate each of these library file
names in a standard list of library directories. That is, 1d attempts to locate each
object library file name first in one directory, then in the second, and then in the
third directory on its search list of directories.

To display a list of the compilers invoked, files processed, and libraries accessed
during linking, specify the -v flag.

1-12 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

In addition to an object file created by the compiler, any linker flags and object
files specified on the cobol command are also passed to the 1d linker. The
linker loads object files according to the order in which they are specified on the
command line. Because of this, you must specify object libraries after all source
and object files on the cobol command line.

To help identify undefined references to routines or other symbols in an object
module, consider using the nm command. For instance, in the following example
the nm command filtered by the grep command lists all undefined (U) symbols:

% cobol -c ex.cob
$ nm -0 ex.o | grep U

If the symbol is undefined, U appears in the column before the symbol name. Any
symbols with a U in their names can also be displayed by this use of grep.

1.1.3.2 Specifying Additional Object Libraries
You can control the libraries as follows:

e To specify additional object library file names for 1d to locate, use the
-1string flag to define an additional object library for 1d to search. Thus, each
occurrence of the -1string flag specifies an additional file name that is added
to the list of object libraries for 1d to locate. The standard COBOL library file
names searched (shown in the form of the appropriate -1string flag) are:

-lcob
-lcurses
-1Futil
-lots2
-lots
-lisam
-lsort
-lexc
-1m

For instance, the file name of -1cob is 1ibcob.

The following example specifies the additional library 1ibX:
% cobol simtest.cob -1X

e In addition to the standard directories in which 1d tries to locate the library
file names, you can use the -Ldir flag to specify another directory. The
-1string flag and -Ldir flag respectively adds an object library file name
(-1string) or directory path (-Ldir) that 1d uses to locate all specified library
files. The standard 1d directories are searched before directories specified by
the -Ldir flag.

The following example specifies the additional object library path
/usr/lib/mytest:

% cobol simtest.cob -L/usr/lib/mytest

* You can indicate that 1d should not search its list of standard directories at
all by specifying the -L flag. When you do so, you must specify all libraries
on the cobol command line in some form, including the directory for cobol
standard libraries. To specify all libraries, you might use the -L flag in
combination with the -Ldir flag on the same cobol command line.

Developing HP COBOL Programs 1-13

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

e You can specify the pathname and file name of an object library as you
would specify any file. Specifying each object library that resides in special
directories in this manner is an alternative to specifying the library using the
-1string or -Ldir flag. This method can reduce the amount of searching the
linker must do to locate all the needed object files.

In certain cases, you may need to specify the pathname and file name instead
of using the -1string or -Ldir flags for the linker to resolve global symbols
with shared libraries.

When processing a C source file (.c suffix) using the cobol command, you may
need to specify the appropriate C libraries using the -1string flag.

1.1.3.3 Specifying Types of Object Libraries

Certain cobol flags influence whether 1d searches for an archive (.a) or shared
object (.so) library on the standard list of COBOL libraries and any additional
libraries specified using the -1string or -Ldir flags. These flags are the following:

* The -call_shared flag, the default, indicates that .so files are searched
before .a files. As 1d attempts to resolve external symbols, it looks at the
shared library first before the corresponding archive library. References
to symbols found in a .so library are dynamically loaded into memory at
run time. References to symbols found in .a libraries are loaded into the
executable image file at link time. For instance, /usr/shlib/libc.so is
searched before /usr/1ib/libc.a.

¢ The -non_shared flag indicates that only .a files are searched, so the object
module created contains static references to external routines and are loaded
into the executable image at link time, not at run time. Corresponding .so
files are not searched.

The following example requests that the standard cobol .a files be searched
instead of the corresponding .so files:

% cobol -non shared mainprog.cob rest.o

External references found in an archive library result in that routine being
included in the resulting executable program file at link time.

External references found in a shared object library result in a special link to
that library being included in the resulting executable program file, instead of the
actual routine itself. When you run the program, this link gets resolved by either
using the shared library in memory (if it already exists) or loading it into memory
from disk.

1.1.3.4 Creating Shared Object Libraries

To create a shared library, first create the .o file, such as octagon.o in the
following example:

% cobol -03 -c octagon.cob

The file octagon.o is then used as input to the 1d command to create the shared
library, named octagon.so:

% 1d -shared -no_archive octagon.o \
-lcob -lcurses -1Futil -lots2 -lots -lisam -lsort -lexc -1mld -1lm

A description of each 1d flag follows:

e The -shared flag is required to create a shared library.

1-14 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

The -no_archive flag indicates that 1d should not search archive libraries to
resolve external names (only shared libraries).

The name of the object module is octagon.o. You can specify multiple .o files.

The -1cob and subsequent flags are the standard list of libraries that the
COBOL command would have otherwise passed to 1d. When you create a
shared library, all symbols must be resolved. For more information about the
standard list of libraries used by HP COBOL, see Section 1.1.3.2.

1.1.3.5 Shared Library Restrictions
When creating a shared library using 1d, be aware of the following restrictions:

Programs that are installed setuid or setgid will not use any libraries that
have been installed using the inlib shell command, but only systemwide
shared libraries (for security reasons).

For other restrictions imposed by the operating system, refer to your
operating system documentation. If you create a shared library that contains
routines written in C, refer to your operating system documentation for any
restrictions associated with the cc command.

1.1.3.6 Installing Shared Libraries
Once the shared library is created, it must be installed before you run a program
that refers to it. The following describes how you can install a shared library for
private or systemwide use:

To install a private shared library, such as for testing, set the environment
variable LD_LIBRARY_PATH, as described in 1d(1).

To install a systemwide shared library, place the shared library file in one of
the standard directory paths used by 1d (see 1d(1)).

For complete information on installing shared libraries, refer to your operating
system documentation.

Specifying Shared Object Libraries

When you link your program with a shared library, all symbols must be
referenced before 1d searches the shared library, so you should always specify
libraries at the end of the cobol command line after all file names. Unless
you specify the -non_shared flag, shared libraries will be searched before the
corresponding archive libraries.

For instance, the following command generates an error if the file rest.o
references routines in the library 1ibX:

%

cobol -call shared test.cob -1X rest.o

The correct order follows:

%

cobol -call shared test.cob rest.o -1X

Link errors can occur with symbols that are defined twice, as when both an
archive and shared object are specified on the same command line. In general,
specify any archive libraries after the last file name, followed by any shared
libraries at the end of the command line.

Before you reference a shared library at run time, it must be installed.

Developing HP COBOL Programs 1-15

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

1.1.3.7 Interpreting Messages from the Linker
If the linker detects any errors while linking object modules, it displays messages
about their cause and severity. If any errors occur, the linker does not produce an
image file.

Linker messages are descriptive, and you do not normally need additional
information to determine the specific error. The general format for 1d messages
follows:

1d:
message-text

The message-text may be on multiple lines and is sometimes accompanied by a
cobol error.

Some common errors that occur during linking resemble the following:

e An object module has compilation errors. This error occurs when you attempt
to link a module that had warnings or errors during compilation. Although
you can usually link compiled modules for which the compiler generated
messages, you should verify that the modules will actually produce the output
you expect.

¢ The modules being linked define more than one transfer address. The linker
generates a warning if more than one main program has been defined. This
can occur, for example, when an extra END statement exists in the program.
The image file created by the linker in this case can be run; the entry point to
which control is transferred is the first one that the linker found.

e A reference to a symbol name remains unresolved. This error occurs when
you omit required module or library names from the cobol or 1d command
and the linker cannot locate the definition for a specified global symbol
reference.

If an error occurs when you link modules, you may be able to correct it by
retyping the command string and specifying the correct routines or libraries
(-1string flag, -Ldir flag), or specify the object library or object modules on the
command line.

1.1.4 Running an HP COBOL Program on Tru64 UNIX

The simplest form of the run command to execute a program is to type its file
name at the operating system prompt, as follows:

% myprog.out

In addition to normal IO accesses, your HP COBOL programs can read command-
line arguments and access (read and write) environment variables.

1.1.4.1 Accessing Command-Line Arguments

Command-line arguments allow you to provide information to a program at

run time. Your program provides the logic to parse the command line, identify
command-line options, and act upon them. For example, you might develop a
program that will extract a given amount of data from a specified file, where both
the number of records to read and the file name are highly dynamic, changing
for each activation of your program. In this case your program would contain
code that reads a command-line argument for the number of records to read, and
a second argument for the file specification. Your program execution command
could look like the following:

1-16 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

% myprog 1028 powers.dat

In the preceding example the program myprog would read 1028 records from the
file powers.dat.

Multiple command-line arguments are delimited by spaces, as shown in the
preceding example. If an argument itself contains spaces, enclose that argument
in quotation marks (" ") as follows:

% myprog2 "all of this is argument 1" argument2

You provide definitions for the command-line arguments with the SPECIAL-
NAMES paragraph in your program’s Environment Division, and you include
ACCEPT and DISPLAY statements in the Procedure Division to parse the
command line and access the arguments. Detailed information about command-
line argument capability is in the ACCEPT and DISPLAY sections in the HP
COBOL Reference Manual.

1.1.4.2 Accessing Environment Variables

You can read and write environment variables at run time through your HP
COBOL program.

Example 1-1 allows you to specify a file specification by putting the directory
in the value of the environment variable COBOLPATH, and the file name in a
command-line argument:

Example 1-1 Accessing Environment Variables and Command-Line Arguments

identification division.

PROGRAM-ID. MYPROG.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.
SYSERR IS STANDARD-ERROR
ENVIRONMENT-NAME IS NAME-OF-ENVIRONMENT-VARIABLE
ENVIRONMENT-VALUE IS ENVIRONMENT-VARIABLE
ARGUMENT-NUMBER IS POS-OF-COMMAND-LINE-ARGUMENT
ARGUMENT-VALUE IS COMMAND-LINE-ARGUMENT.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 howmany-records PIC 9(5).
01 env-dir PIC x(50).
01 file-name PIC x(50).
01 file-spec PIC x(100).
PROCEDURE DIVISION.
BEGIN.
ACCEPT howmany-records FROM COMMAND-LINE-ARGUMENT
ON EXCEPTION
DISPLAY "No arguments specified"
UPON STANDARD-ERROR
END-DISPLAY
STOP RUN
END-ACCEPT.

(continued on next page)

Developing HP COBOL Programs 1-17

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Example 1-1 (Cont.) Accessing Environment Variables and Command-Line
Arguments

DISPLAY "COBOLPATH" UPON NAME-OF-ENVIRONMENT-VARIABLE.
ACCEPT env-dir FROM ENVIRONMENT-VARIABLE
ON EXCEPTION
DISPLAY "Environment variable COBOLPATH is not set"
UPON STANDARD-ERROR
END-DISPLAY
NOT ON EXCEPTION
ACCEPT file-name FROM COMMAND-LINE-ARGUMENT
ON EXCEPTION
DISPLAY
"Attempt to read beyond end of command line"
UPON STANDARD-ERROR
END-DISPLAY
NOT ON EXCEPTION

STRING env-dir "/" file-name delimited by " " into file-spec
DISPLAY "Would have read " howmany-records " records from " file-spec
END-ACCEPT
END-ACCEPT.

This example requires that the following command has been executed to set an
environment variable:

% setenv COBOLPATH /usr/files
When you execute the following command lines:

% cobol -0 myprog myprog.cob
% myprog 1028 powers.dat

The following will result:

e howmany-records will contain “1028”

e env-dir will contain “/usr/files”

e file-name will contain “powers.dat”

e file-spec will contain “/usr/files/powers.dat”

For additional information, refer to the ACCEPT and DISPLAY statements in the
HP COBOL Reference Manual.

1.1.4.3 Errors and Switches
See Section 1.4 for a discussion of errors that can cause incorrect or undesirable
results when you run a program.

See Section 1.5 for a discussion of controlling program execution with switches.

1.1.5 Program Development Stages and Tools

This manual primarily addresses the program development activities associated
with development and testing phases. For information about topics usually
considered during application design, specification, and maintenance, refer to
your operating system documentation, appropriate reference pages, or appropriate
commercially published documentation.

1-18 Developing HP COBOL Programs

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

Table 1-3 lists and describes some of the software tools you can use when
developing and testing a program.

Table 1-3 Main Tools for Program Development and Testing

Task or Activity Tool and Description

Manage source files Use RCS or sccs to manage source files. For more information,

refer to the Tru64 UNIX documentation on programming
support tools or the appropriate reference page.

Create and modify Use a text editor, such as vi, emacs, or another editor.

source files For more information, refer to your operating system
documentation.

Analyze source code Use searching commands such as grep and diff. For more

information, refer to the Tru64 UNIX documentation on
programming support tools or the appropriate reference page.

Build program (compile You can use the cobol command to create small programs,
and link) perhaps using shell scripts, or use the make command to build

your application in an automated fashion using a makefile.
For more information on make, refer to the make(1) reference
page and the Tru64 UNIX documentation on programming
support tools.

Debug and test program Use the Ladebug Debugger to debug your program or run it for

general testing. For more information on Ladebug Debugger,
refer to the Ladebug Debugger Manual.

Install program Use setld and related commands such as tar. For more

information, refer to the Tru64 UNIX documentation on
programming support tools.

In addition, you might use the following shell commands at various times during
program development:

To view information about an object file or an object library, use the following
commands:

— The file command shows the type of a file (such as which programming
language, whether it is an object library, ASCII file, and so forth).

— The nm command (perhaps with the -a or -o flag) shows symbol table
information, including the identification field of each object file.

— The odump command shows the contents of a file and other information.

— The size command shows the size of the code and data sections.

For more information on these commands, refer to the appropriate reference
page or the Tru64 UNIX documentation on programming support tools.

Use the ar command to create an archive object library (-r flag), maintain
the modules in the library, list the modules in the library (-t), and perform
other functions. Use -ts to add a table of contents to the object library for
linking purposes. For more information, refer to ar(1) or the Tru64 UNIX
programmer’s documentation.

To create shared libraries on Tru64 UNIX systems, use 1d, not the ar
command. For more information, see Section 1.1.3.4 and refer to the Tru64
UNIX programmer’s documentation.

Developing HP COBOL Programs 1-19

Developing HP COBOL Programs
1.1 Developing Programs on Tru64 UNIX

e The strip command removes symbolic and other debugging information
to minimize image size. For additional information, refer to the strip(1)
reference page.

Note

The CALL dataname, CANCEL, and the Hewlett-Packard extensions to
the ACCEPT and DISPLAY statements will not work correctly if you use
the strip command on your image.

In most instances, use the cobol command to invoke both the HP COBOL
compiler and the 1d linker. To link one or more object files created by the HP
COBOL compiler, you should use the cobol command instead of the 1d command,
because the cobol command automatically references the appropriate HP COBOL
Run-Time Libraries when it invokes 1d. If the executable image is not in your
current working directory, specify the directory path in addition to the file name.

Compilation does the following for you:

e Detects errors in your program syntax

e Displays compiler messages on your terminal screen

¢ Generates machine language instructions from valid source statements
e Groups the instructions into an object module for the linker

¢ Launches the linker with the compiled file or files

e Creates an executable image

You use the cobol command to compile and link your program. The cobol
command invokes the HP COBOL compiler driver that is the actual user interface
to the HP COBOL compiler. The compiler driver can accept command options
and multiple file names, and normally causes the compiler and linker to process
each file. A variety of qualifiers to the compile command are available to specify
optional processing and to specify the names of output files.

After the HP COBOL compiler processes the source files to create one or more
object files, the compiler driver passes a list of object files and other information
to the linker. ¢

1.2 Developing Programs on OpenVMS

You use DCL commands (commands used at the OpenVMS system prompt) to
create, compile, link, and run HP COBOL programs on OpenVMS systems.

1.2.1 Creating an HP COBOL Program on OpenVMS

To create and modify an HP COBOL program, you must invoke a text editor. The
default editor for OpenVMS is the Text Processing Utility (TPU). Other editors,
such as EDT or the Language-Sensitive Editor (LSE), may be available on

your system. Check with your system administrator and refer to the OpenVMS
EDT Reference Manual (this manual has been archived but is available on the
OpenVMS Documentation CD-ROM) for more information about EDT or the
Guide to Language-Sensitive Editor for additional information about LSE.

1-20 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Figure 1-2 DCL Commands for Developing Programs

COMMANDS ACTION | INPUT/OUTPUT FILES

$ EDIT/TPU PROG_1.COB PROG_1.COB
Use the file type of COB to Creat
indicate the file contains reate a
a COBOL program. source program
$ COBOL PROG_1
The COBOL Command
assumes the file type of an] PROG_1.0BJ
input file is COB . Compilethe | ——> (PROG_1.LIS)
source program -
(if you use the /LIST N libraries
qualifier, the compiler tj
creates a listing file.)
N
$ LINK PROG_1 / —
The LINK command assumes Link the PROG_1.EXE
the file type of an input file object module > (PROG_1.MAP)
is OBJ.
(If you use the /MAP qualifier,
the linker creates a map file.) —
$ RUN PROG_1
The RUN command assumes e)? elJCrLtt;]; e
the file type of an image is image
EXE.
VM-0611A-Al

Figure 1-2 shows the basic steps in HP COBOL program development.

Use the text editor of your preference to create and revise your source files. For

example, the following command line invokes the TPU editor and creates the
source file PROG_1.COB:

$ EDIT PROG_1.COB

The file type .COB is used to indicate that you are creating an HP COBOL
program. COB is the default file type for all HP COBOL programs.

The COPY Statement, Dictionaries, and Libraries

Including the COPY statement in your program allows separate programs to
share common source text, reducing development and testing time as well as
storage requirements. You can use the COPY statement to access modules in
libraries. The COPY statement causes the compiler to read the file or module
specified during the compilation of a program. When the compiler reaches the
end of the included text, it resumes reading from the previous input file.

By using the /INCLUDE qualifier on the COBOL command line, you can set up a
search list for files specified by the COPY statement. For more information, refer
to the HP COBOL Reference Manual.

Developing HP COBOL Programs 1-21

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

You can use the COPY FROM DICTIONARY statement in your program to access
a data dictionary and copy Oracle CDD/Repository record descriptions into your
program as COBOL record descriptions. Before you can copy record descriptions
from Oracle CDD/Repository, you must create the record descriptions using the

Common Data Dictionary Language (CDDL) or Common Dictionary Operator
(CDO).

For more information about using Oracle CDD/Repository and creating and
maintaining text libraries, refer to the HP COBOL Reference Manual and Using
Oracle CDD/ Repository on OpenVMS Systems.

1.2.2 Compiling an HP COBOL Program on OpenVMS

To compile your program, use the COBOL command. The HP COBOL compiler
performs these primary functions:

e Detects errors in your program.

¢ Displays each compiler message on your terminal screen.

¢ Generates machine language instructions from valid source statements.
e Groups these language instructions into an object module for the linker.

e Creates an analysis file if you request it with the /ANALYSIS_DATA qualifier.
SCA uses this file to display information about program symbols and source
files.

The compiler outputs an object module that provides the following information:

e The name of the entry point. It takes this name from the program name in
the first PROGRAM-ID paragraph in the program.

e A list of variables that are declared in the module. The linker uses this
information when it binds two or more modules together and must resolve
references to the same names in the modules.

e Traceback information. This information is used by the system default
condition handler when an error occurs that is not handled by the program.
The traceback information permits the default handler to display a list of the
active blocks in the order of activation; this is an aid in program debugging.

e A symbol table and a source line correlation table, only if you request them
with the /DEBUG qualifier. A symbol table is a list of the names of all
external and internal variables within a module, with definitions of their
locations. The source line correlation table associates lines in your source file

with lines in your program. These tables are of primary help when you use
the OpenVMS Debugger.

To invoke the HP COBOL compiler, use the COBOL command (explained in
Section 1.2.2.1). You can specify qualifiers with the COBOL command. The
following sections discuss the COBOL command and its qualifiers.

1.2.2.1 Format of the COBOL Command on OpenVMS
The COBOL command has the following format:

COBOL [/qualifier] ... {file-spec [/qualifier] ...} ...

1-22 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Iqualifier

Specifies an action to be performed by the compiler on all files or specific files
listed. When a qualifier appears directly after the COBOL command, it affects
all the files listed. By contrast, when a qualifier appears after a file specification,
it affects only the file that immediately precedes it. However, when files are
concatenated, these rules do not apply.

file-spec

Specifies an input source file that contains the program or module to be compiled.
You are not required to specify a file type; the HP COBOL compiler assumes the
default file type COB. If you do not provide a file specification with the COBOL
command, the system prompts you for one.

1.2.2.2 Compiling Multiple Files

You can include more than one file specification on the same command line by
separating the file specifications with either a comma (,) or a plus sign (+). If
you separate the file specifications with commas, you can control which source
files are affected by each qualifier. In the following example, the HP COBOL
compiler creates an object file for each source file but creates only a listing file for
the source files entitled PROG _1 and PROG _3:

$ COBOL/LIST PROG 1, PROG_2/NOLIST, PROG 3

If you separate file specifications with plus signs, the HP COBOL compiler
concatenates each of the specified source files and creates one object file and one
listing file. In the following example, only one object file, PROG_1.0BdJ, and one
listing file, PROG_1.LIS, are created. Both of these files are named after the first
source file in the list, but contain all three modules.

$ COBOL PROG_1 + PROG_2/LIST + PROG 3

Any qualifiers specified for a single file within a list of files separated with plus
signs affect all files in the list.

1.2.2.3 Debugging a Program

To effectively debug an HP COBOL program, you must first make symbol and
traceback information available by adding the DEBUG option to the compile
command line. You specify the /DEBUG option as follows:

$ COBOL/DEBUG myprog
$ LINK/DEBUG myprog
$ RUN/DEBUG myprog

This enables you to examine and modify variables, monitor flow of control, and
perform various other debugging techniques. See Section C.3 or type HELP
COBOL/DEBUG or HELP DEBUG for additional information.

On Alpha and 164, when you compile a program with /DEBUG, you should

also specify /INOOPTIMIZE to expedite your debugging session. (The default is
/OPTIMIZE.) Optimization often changes the order of execution of the object code
generated for statements in a program, and it might keep values in registers
and deallocate user variables. These effects can be confusing when you use

the debugger. (A diagnostic message warns you if you compile an HP COBOL
program with /DEBUG without specifying anything about optimization on the
command line.)

Developing HP COBOL Programs 1-23

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Pay attention to compiler messages. Informational and warning messages (as
well as error-level messages) do not prevent the production of an object file, which
you can link and execute. However, the messages sometimes point out otherwise
undetected logic errors, and the structure of the program might not be what you
intended.

1.2.2.4 Separately Compiled Programs (Alpha, 164)
If a compilation unit consists of multiple separately compiled programs (SCPs),
by default the HP COBOL compiler produces a single object file that consists of a
single module with multiple embedded procedures. This object file can be inserted
into an object library. If your build procedure requires that the linker extract any
part of the module, the linker must extract the entire object.

If you use /SEPARATE_COMPILATION on the compile command line, HP
COBOL will compile multiple SCPs into a single object file that consists of a
concatenation of modules, each containing a single procedure. This object may
then be inserted into an object library from which the linker can extract just the
procedures that are specifically needed. ¢

1.2.2.5 COBOL Qualifiers
COBOL options (also known as qualifiers or flags) control the way in which the
compiler processes a file. You can process your file with the COBOL command
alone or you can select options that offer you alternatives for developing,
debugging, and documenting programs.

If you compile parts of your program (compilation units) using multiple COBOL
commands, options that affect the execution of the program should be used
consistently for all compilations, especially if data will be shared or passed
between procedures.

Table 1-4 lists the COBOL command options and their defaults. For more
information about COBOL options, invoke online help for COBOL at the system
prompt.

Note

Brackets ([]) indicate that the enclosed item is optional. If you specify
more than one option for a single qualifier, you must separate each option
with a comma and enclose the list of options in parentheses.

1-24 Developing HP COBOL Programs

Table 1-4 COBOL Command Qualifiers

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Alpha,
164 VAX
Qualifier Default Only Only
/ALIGNMENT[=[NOJPADDING] or /NOALIGNMENT X
/NOALIGNMENT
/ANALYSIS_DATA[=file-spec] or /NOANALYSIS_DATA
/NOANALYSIS_DATA
/ANSI_FORMAT or /NOANSI_FORMAT /NOANSI_FORMAT
GENERIC /ARCHITECTURE=GENERIC
HOST
EV4 X
_ EV5
/ARCHITECTURE= EV56
EV6
EV67, EV68
PCA56
/ARITHMETIC=NATIVE X
_] STANDARD
/ARITHMETIC= { NATIVE }
/AUDIT or /NOAUDIT /NOAUDIT X
[NOJPERFORM
[NOIBOUNDS
_ | INOIDECIMAL (Alpha only)
/CHECK= | \NOIDUPLICATES. Y 1.+ /NOCHECK or /CHECK=NONE
ALL!
NONE
or /NOCHECK
/CONDITIONALS=(character,...) or /NOCONDITIONALS
/NOCONDITIONALS
/CONVERT=[NO]LEADING_BLANKS or /NOCONVERT X

/NOCONVERT
/COPY_LIST or /NOCOPY_LIST

/CROSS_REFERENCE=

[ALPHABETICAL!]
DECLARED

or /NOCROSS_REFERENCE

/NOCOPY_LIST

/NOCROSS_REFERENCE

1This is the default keyword when using the named option with no keywords.

(continued on next page)

Developing HP COBOL Programs 1-25

Developing HP COBOL Programs

1.2 Developing Programs on OpenVMS

Table 1-4 (Cont.) COBOL Command Qualifiers

Alpha,
164 VAX
Qualifier Default Only Only
[NOISYMBOLS /DEBUG=TRACEBACK
/DEBUG= | [NOITRACEBACK /DEBUG=ALL!
= | ALL s /DEBUG=(TRACEBACK,SYMBOLS)!
NONE
or /NODEBUG
/DEPENDENCY_DATA or /NODEPENDENCY_DATA
/NODEPENDENCY_DATA
/DESIGN or /NODESIGN /NODESIGN X
/DIAGNOSTICS|=file-spec] or /NODIAGNOSTICS
/NODIAGNOSTICS
/DISPLAY_FORMATTED or /NODISPLAY_FORMATTED X
/NODISPLAY_FORMATTED
/FIPS=74 or /INOFIPS /NOFIPS
HIGH_FIPS!
INTERMEDIATE_FIPS
MINIMUM_FIPS
_ | OBSOLETE
/FLAGGER= OPTIONAL, FIPS /NOFLAGGER
REPORT WRITER
SEGMENTATION
SEGMENTATION_1
or /NOFLAGGER
D_FLOAT /FLOAT=D_FLOAT X
/FLOAT= | G_FLOAT]
IEEE_FLOAT
BYTE /GRANULARITY=QUADWORD X
/GRANULARITY= [LONGWORD :|
QUADWORD
/INCLUDE-=file-spec or /NOINCLUDE /NOINCLUDE X
/INSTRUCTION_SET or /INSTRUCTION_SET=DECIMAL_ X

/NOINSTRUCTION_SET

STRING

IThis is the default keyword when using the named option with no keywords.

1-26 Developing HP COBOL Programs

(continued on next page)

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Table 1-4 (Cont.) COBOL Command Qualifiers

Alpha,
164 VAX
Qualifier Default Only Only
/KEEP or /NOKEEP /NOKEEP
/LIST[=filename.ext] or /NOLIST /NOLIST
/LIST (batch)
/MACHINE_CODE or /NOMACHINE_CODE
/NOMACHINE_CODE
/MAP= | ALPHABETICAL!]
[DECLARED ’ /NOMAP
or /NOMAP
CIT3 /MATH_INTERMEDIATE=FLOAT X
/MATH_INTERMEDIATE= { CIT4 }
FLOAT
AS IS /NAMES=LOWERCASE X
LOWER
/NAMES= LOWERCASE
UPPER
UPPERCASE
/NATIONALITY=US X

/NATIONALITY= [%‘;PAN]

/OBJECT|=filename.ext] or /NOOBJECT /OBJECT

1This is the default keyword when using the named option with no keywords.

(continued on next page)

Developing HP COBOL Programs 1-27

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Table 1-4 (Cont.) COBOL Command Qualifiers

Alpha,
164 VAX
Qualifier Default Only Only
/OPTIMIZE[= /OPTIMIZE= X
(LEVEL=4,TUNE=GENERIC)
02
1
LEVEL= 2
3
41
GENERIC!]
HOST
EV4
TUNE= { EV6
EV56
EVé6
EV67, EV68
PCA56
or /NOOPTIMIZE
/RESERVED_WORDS= /RESERVED_WORDS=(XOPEN, X
NO200X
[NOJ200X 3
[NOJXOPEN NOFOREIGN_EXTENSIONS)
[NOJFOREIGN_EXTENSIONS
/SEPARATE_COMPILATION or /NOSEPARATE_COMPILATION X
/NOSEPARATE_COMPILATION
/SEQUENCE_CHECK or /NOSEQUENCE_CHECK
/NOSEQUENCE_CHECK
/SOURCE|[=filename.ext] Source is filename.COB X
85 /STANDARD=851
[NOIMIA
/STANDARD= | [NOJSYNTAX e
[NOJV3
[NOIXOPEN (Alpha)
or /NOSTANDARD
/TIE or /NOTIE /NOTIE X
/TRUNCATE or /NOTRUNCATE /NOTRUNCATE
/VFC or INOVFC /VFC X

IThis is the default keyword when using the named option with no keywords.
2/0PTIMIZE=0 is functionally equivalent to /NOOPTIMIZE.

1-28 Developing HP COBOL Programs

(continued on next page)

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Table 1-4 (Cont.) COBOL Command Qualifiers

Alpha,
164 VAX
Qualifier Default Only Only

ALL! /WARNINGS=0THER

NONE
or /NOWARNINGS

[NOJINFORMATION
/WARNINGS= l [NOJOTHER l,

1This is the default keyword when using the named option with no keywords.

1.2.2.6 Common Command-Line Errors to Avoid

The following are some common errors to avoid when entering COBOL command
lines:

e Omitting /ANSI_FORMAT for programs that are in ANSI format (AREA A,
AREA B, and so forth)

¢ Including contradictory options
¢ Omitting a necessary qualifier, such as /LIST if you specify /MAP

¢ Omitting version numbers from file specifications when you want to compile a
program that is not the latest version of a source file

e Forgetting to use a file suffix in the file specification, or not specifying
/SOURCE when your source file suffix is not .COB or .CBL

1.2.2.7 Compiling Programs with Conditional Compilation
To debug source code that contains conditional compilation lines, you can use
either the /CONDITIONALS qualifier or the WITH DEBUGGING MODE
clause. The /CONDITIONALS qualifier is listed in Table 1-4. For more
information about the /CONDITIONALS qualifier, invoke the online help facility
for HP COBOL at the system prompt. For more information about the WITH
DEBUGGING MODE clause, refer to the HP COBOL Reference Manual.

Using the WITH DEBUGGING MODE clause as part of the SOURCE-
COMPUTER paragraph causes the compiler to process all conditional compilation
lines in your program as COBOL text. If you do not specify the WITH
DEBUGGING MODE clause, and if the /CONDITIONALS qualifier is not in
effect, all conditional compilation lines in your program are treated as comments.

The WITH DEBUGGING MODE clause applies to: (1) the program that specifies
it, and (2) any contained program within a program that specifies the clause.

1.2.2.8 Interpreting Messages from the Compiler
If there are errors in your source file when you compile your program, the HP
COBOL compiler flags these errors and displays helpful messages. You can
reference the message, locate the error, and, if necessary, correct the error in your
program.

On Alpha and 164, the general format of compiler messages shown on your screen
is as follows:

Developing HP COBOL Programs 1-29

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

%COBOL-s-ident, message-text

At line number n in name ¢
On VAX, the general format of compiler messages is as follows:
%COBOL-s-ERROR nnn, (m) message-text
.

%COBOL
The facility or program name of the HP COBOL compiler. This prefix indicates
that the HP COBOL compiler issued the message.

S

The severity of the error, represented in the following way:

F Fatal error. The compiler does not produce an object module. You must correct the
error before you can compile the program to produce an object module.

E Error. The compiler makes an assumption about what you intended and continues.
However, the compiler’s assumption may not relate to your intention. Correct the
error.

W Warning. The compiler attempts to correct the error in the statement, but you

should verify that the compiler’s action is acceptable. Otherwise, your program
may produce unexpected results.

I Informational. This message usually appears with other messages to inform you of
specific actions taken by the compiler. No action is necessary on your part. Note
that these messages are suppressed by default. You must invoke /WARN=ALL or
/WARN=INFO to enable them.

ident (Alpha, 164)
The message identification. This is a descriptive abbreviation of the message text.
¢

nnn (VAX)
The message identification number.

m (VAX)
The message pointer number. ¢

message-text

The compiler’s message. In many cases, it consists of no more than one line of
output. A message generally provides you with enough information to determine
the cause of the error so that you can correct it.

At line number n in name (Alpha, 164)
The integer n is the number of the line where the diagnostic occurs. The number
is relative to the beginning of the file or text library module specified by name.

On Alpha and 164, a sample compiler message with two diagnostics looks like this
in the listing file:

12 PROCEDURE DIVISION.
13 P-NAME
14 MOVE ABC TO XYZ.

%$COBOL-E-NODOT, Missing period is assumed

1-30 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

14 MOVE ABC TO XYZ.

%$COBOL-F-UNDEFSYM, Undefined name

In the sample, the first diagnostic pointer () points to the MOVE statement
in source line number 14, which is the closest approximation to where the error
(P-NAME is not followed by a period) occurred. The second diagnostic pointer
points to XYZ, an undefined name in source line number 14. Each diagnostic
pointer is followed by a message line that identifies, in this order:

e The HP COBOL compiler generated the message

e The severity code of the message

e The message identification (a mnemonic of the message text)
¢ The text of the message

Although most compiler messages are self-explanatory, some require additional
explanation. The online help facility for HP COBOL contains a list and
descriptions of these HP COBOL compiler messages. Use the HELP COBOL
Compiler Messages command to access this list. ¢

On OpenVMS VAX, diagnostic messages look like this example:

12 PROCEDURE DIVISION.

13 P-NAME

14 MOVE ABC TO XYZ.
1 2

$COBOL-E-ERROR 65, (1) Missing period is assumed
$COBOL-F-ERROR 349, (2) Undefined name

Here, error pointer (1) points to the approximate place where the error occurred
(P-NAME has no period). Error pointer (2) points to an undefined name in source
line number 14. The two error pointers are followed by two error message lines
that each identify, in this order:

e That the COBOL compiler generated the error message

e The severity code: Fatal (F), Error (E), Warning (W), or Informational (I)
e The error message number

e The error pointers

e The error message ¢

To examine messages that occurred during compilation, you can search for each
occurrence of %COBOL in the compiler listing file. Section 1.2.2.9 describes
listing files.

1.2.2.9 Using Compiler Listing Files

A compiler listing file provides information that can help you debug or
document your HP COBOL program. It consists of the following sections:

e Program listing

The program listing section contains the source code plus line numbers
generated by the compiler. Any diagnostics will appear in this section.

e Storage map

The storage map section is optional (produced by the /MAP qualifier); it
contains summary information on program sections, variables, and arrays.

e Compilation summary

Developing HP COBOL Programs 1-31

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

The compilation summary section lists the qualifiers used with the COBOL
command and the compilation statistics.

e Machine code

The machine code section is optional; it displays compiler-generated object
code.

To generate a listing file, specify the /LIST qualifier when you compile your HP
COBOL program interactively as in the following example for PROG_1.COB:

$ COBOL/LIST PROG_1.COB

If you compile your program as a batch job, the compiler creates a listing file by
default. You can specify the /NOLIST qualifier to suppress creation of the listing
file, if that suits your purposes. (In either case, however, the listing file is not
automatically printed.) By default, the name of the listing file is the name of your
source file followed by the file type .LIS. You can include a file specification with
the /LIST qualifier to override this default.

When used with the /LIST qualifier, the following COBOL command qualifiers
supply additional information in the compiler listing file:

e /COPY_LIST—Includes source statements specified by the COPY command.

e /CROSS_REFERENCE—Creates a cross-reference listing of user-defined
names and references.

e /MACHINE_CODE—Includes a list of compiler-generated machine code.

e /MAP—Produces maps, data names, procedure names, file names, and
external references.

For a description of each qualifier’s function, invoke the online help facility for
COBOL at the system prompt as follows:

$ HELP COBOL

Compiler Listing File for a Contained Program

A contained COBOL program listing file includes two additional program
elements that provide nesting level information about the main program and

the contained program. For additional information about contained programs, see
Chapter 12, Interprogram Communication.

1.2.3 Linking an HP COBOL Program

After you compile an HP COBOL source program or module, use the LINK
command to combine your object modules into one executable image that the

OpenVMS system can execute. A source program or module cannot run until it is
linked.

When you execute the LINK command, the OpenVMS Linker performs the
following functions:

e Resolves local and global symbolic references in the object code
e Assigns values to the global symbolic references

e Signals an error message for any unresolved symbolic reference
e Allocates virtual memory space for the executable image

The LINK command produces an executable image by default. However, you
can specify qualifiers and qualifier options with the LINK command to obtain
shareable images and system images.

1-32 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

See Table 1-5 for a list of commonly used LINK command qualifiers. For a
complete list and for more information about the LINK qualifiers, invoke the
online help facility for the LINK command at the system prompt.

For a complete discussion of linker capabilities and for detailed descriptions
of LINK qualifiers and qualifier options, refer to the OpenVMS Linker Utility
Manual.

1.2.3.1 The LINK Command
The format of the LINK command is as follows:

LINK[/qualifier] ... {file-spec|/qualifier] ...} ...

/qualifier...
Specifies output file options when it is positioned after the LINK command.
Specifies input file options when it is positioned after file-spec.

file-spec...
Specifies the input files to be linked.

If you specify more than one input file, you must separate the input file
specifications with a plus sign (+) or a comma (,).

By default, the linker creates an output file with the name of the first input
file specified and the file type EXE. If you link multiple files, specify the file
containing the main program first. Then the name of your output file will have
the same name as your main program module.

The following command line links the object files MAINPROG.OBJ,
SUBPROG1.0BdJ, and SUBPROG2.0BJ to produce one executable image called
MAINPROG.EXE:

$ LINK MAINPROG, SUBPROG1, SUBPROG2

1.2.3.2 LINK Qualifiers
LINK qualifiers allow you to control various aspects of the link operation such
as modifying linker input and output and invoking the debugging and traceback
facilities.

Table 1-5 summarizes some of the more commonly used LINK qualifiers. Refer to
the OpenVMS Linker Utility Manual for a complete list and explanations of the
LINK qualifiers or invoke the online help facility for the LINK command at the
OpenVMS prompt.

Note

Brackets ([]) indicate that the enclosed item is optional. If you specify
more than one option for a single qualifier, you must separate each option
with a comma and enclose the list of options in parentheses.

Developing HP COBOL Programs 1-33

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Table 1-5 Commonly Used LINK Qualifiers

Function Qualifier Default

Indicate that an input file /LIBRARY Not applicable.
is a library file.

Indicate that an input file /OPTIONS Not applicable.
is a linker options file.

Request output file, /EXECUTABLE|=file-spec] /EXECUTABLE=

define a file specification, /SHAREABLE|[=file-spec] name.EXE

and specify whether the

image is shareable. where name is the name of
the first input file.
/NOSHAREABLE

Request and specify the /BRIEF /NOCROSS_REFERENCE

contents of an image map /INO]JCROSS_REFERENCE /NOMAP (interactive)

(memory allocation) listing. /FULL /MAP=name.MAP (batch)

/MAP|=file-spec] or NOMAP
where name is the name of
the first input file.

Specify the amount of /DEBUGI=file-spec] or /NODEBUG /NODEBUG
debugging information. /INOJITRACEBACK /TRACEBACK

1.2.3.3 Specifying Modules Other than HP COBOL Modules

When you link HP COBOL modules with other modules, your application will not
work correctly if a non HP COBOL module contains a LIB$INITIALIZE routine

that:
1. Is invoked before the HP COBOL LIB$INITIALIZE routine (COB_NAME
START) and

2. Calls an HP COBOL program that contains CALL by data name, extended
ACCEPT, or extended DISPLAY statements.

HP COBOL uses the LIBSINITIALIZE routine, COB_NAME_START, to initialize
the run-time environment for the CALL by data name and extended ACCEPT
and DISPLAY statements. Therefore, the COB_NAME_START routine must be
invoked before any CALL, ACCEPT, or DISPLAY statements are performed.

The order in which LIBSINITIALIZE routines are invoked is determined during
the link and is shown in the image map. To ensure that the HP COBOL
LIB$INITIALIZE routine is invoked first, change your link command to the
following:

$ LINK/EXE=name SYS$SHARE:STARLET/INCL=COB NAME START,your modules...

See Appendix B for information on a problem with LIBSINITIALIZE when you
call a C program.

1-34 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

1.2.3.4 Specifying Object Module Libraries
Linking against object modules allows your program to access data and routines
outside of your compilation units. You can create your own object module libraries
or they can be supplied by the system.

User-Created Object Module Libraries

You can make program modules accessible to other programmers by storing them
in object module libraries. To link modules contained in an object module
library, use the INCLUDE qualifier with the LINK command? and specify

the modules you want to link. The following example links the subprogram
modules EGGPLANT, TOMATO, BROCCOLI, and ONION (contained in the
VEGETABLES library) with the main program module GARDEN:

$ LINK GARDEN, VEGETABLES/INCLUDE=(EGGPLANT, TOMATO,BROCCOLI,ONION)

An object module library also contains a symbol table with the names of the
global symbols in the library, and the names of the modules in which the symbols
are defined. You specify the name of the object module library containing these
symbol definitions with the /[LIBRARY qualifier. When you use the /LIBRARY
qualifier during a linking operation, the linker searches the specified library for
all unresolved references found in the included modules during compilation.

The following example uses the library RACQUETS to resolve undefined symbols
in the BADMINTON, TENNIS, and RACQUETBALL libraries:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

For more information about the /INCLUDE and /LIBRARY qualifiers, invoke the
online help facility for the LINK command at the DCL prompt or refer to the
OpenVMS Linker Utility Manual.

You can define one or more of your private object module libraries as default
user libraries. The following section describes how to accomplish this using the
DEFINE command.

Defining Default User Object Module Libraries

You can define one or more of your private object module libraries as your default
user libraries using the DCL DEFINE command, as in the following example:

$ DEFINE LNKSLIBRARY DEFLIB

The linker searches default user libraries for unresolved references after it
searches modules and libraries specified in the LINK command.

In this example, LNK$LIBRARY is a logical name and DEFLIB is the name of
an object module library (having the file type OLB) that you want the linker to
search automatically in all subsequent link operations.

You can establish any object module library as a default user library by creating a
logical name for the library. The logical names you must use are LNK$LIBRARY
(as in the preceding example), LNK$LIBRARY_1, LNK$LIBRARY_2, and so on,
to LNK$SLIBRARY_999. When more than one of these logical names exists when
a LINK command executes, the linker searches them in numeric order beginning
with LNK$LIBRARY.

2 The /INCLUDE qualifier on the LINK command is not to be confused with the INCLUDE
qualifier on the COBOL compile command, which specifies a search list for COPY files.

Developing HP COBOL Programs 1-35

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

When one or more logical names exist for default user libraries, the linker uses
the following search order to resolve references:

e The process, group, and system logical name tables (in that order) are
searched for the name LNK$LIBRARY. If the logical name exists in any
of these tables and if it contains the desired reference, the search is ended.

e The process, group, and system logical name tables (in that order) are
searched for the name LNK$LIBRARY_1. If the logical name exists in any of
these tables, and if it contains the desired reference, the search is ended.

This search sequence occurs for each reference that remains unresolved.

System-Supplied Object Module Libraries

All HP COBOL programs reference system-supplied object module libraries
when they are linked. These libraries contain routines that provide I/O and
other system functions. Additionally, you can use your own libraries to provide
application-specific object modules.

To use the contents of an object module library, you must do the following:

e Refer to a symbol in the object module by name in your program in a CALL
statement or VALUE EXTERNAL reference.

e Make sure that the linker can locate the library that contains the object
module by ensuring that required software is correctly installed.

e Make sure that your default directory (or LINK/EXE directory) is valid and
that you have write privileges to it.

To specify that a linker input file is a library file, use the /[LIBRARY qualifier.
This qualifier causes the linker to search for a file with the name you specify and
the default file type .OLB. If you specify a file that the linker cannot locate, a
fatal error occurs and linking terminates.

The sections that follow describe the order in which the linker searches libraries
that you specify explicitly, default user libraries, and system libraries.

For more information about object module libraries, refer to the OpenVMS Linker
Utility Manual.

Defining the Search Order for Libraries

When you specify libraries as input for the linker, you can specify as many as you
want; there is no practical limit. More than one library can contain a definition
for the same module name. The linker uses the following conventions to search
libraries specified in the command string:

e A library is searched only for definitions that are unresolved in the previously
specified input files.

e If you specified more than one object module library, the libraries are searched
in the order in which they are specified.

For example:
$ LINK METRIC,DEFLIB/LIBRARY,APPLIC

The library DEFLIB will be searched only for unresolved references in the object
module METRIC. It is not searched to resolve references in the object module
APPLIC. However, this command can also be entered as follows:

$ LINK METRIC,APPLIC,DEFLIB/LIBRARY

1-36 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

In this case, DEFLIB.OLB is searched for all references that are not resolved
between METRIC and APPLIC. After the linker has searched all libraries
specified in the command, it searches default user libraries, if any, and then
the default system libraries.

1.2.3.5 Creating Shareable Images

You can create HP COBOL subprograms as shareable images by using the LINK
qualifier /SHARE. A shareable image is a single copy of a subprogram that can
be shared by many users or applications. Using shareable images provides the
following benefits:

e Saves system resources, since one physical copy of a set of procedures can be
shared by more than one application or user

e Facilitates the linking of very large applications by allowing you to break
down the whole application into manageable segments

e Allows you to modify one or more sections of a large application without
having to relink the entire program

The following steps describe one way to create an HP COBOL subprogram as a
shareable image:

1. Create the main program used to call the subprogram.
2. Create the subprogram.

3. Link the subprogram as a shareable image by using the /SHARE qualifier and
including the options file containing the symbol vector in the LINK command
as an input file. (See the sections Using Symbol Vectors with Shareable
Images (Alpha, 164) and Using Transfer Vectors (VAX) for information about
vectors.)

4. Define a logical name to point to your shareable image.

Install the shareable image subprogram, using the OpenVMS Install utility
(INSTALL).

6. Link the main program with the shareable image.

Once you have completed these steps, you can run the main program to access
the subprogram installed as a shareable image.

Refer to the OpenVMS Linker Utility Manual and the Guide to Creating
OpenVMS Modular Procedures for more information about shareable images.

The following sample programs and command procedures provide an example of
how to create and link a subprogram as a shareable image, as described in the
preceding steps.

Note

Do not use the /SHARE qualifier when you link a main program. Creating
a main program as a shareable image is unsupported.

Example 1-2 shows the main program CALLER.COB and the two subprograms
(SUBSHR1.COB and SUBSHR2.COB). Only the subprograms are shareable
images.

Developing HP COBOL Programs 1-37

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Example 1-2 Main Program and Subprograms

* CALLER.COB
IDENTIFICATION DIVISION.
PROGRAM-ID. CALLER.

EEEE RS EEEEEEEE R SRS EEEEEEEEE SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* This program calls a subprogram installed as a shareable image.*
khkkkhkkhkkhkhkhkhkkhhkhkhhhhhkhhkhhkhhhdhhdhhhhhdkhhhdhkhhkdkddddxrdkdkrdx
PROCEDURE DIVISION.
0.

CALL "SUBSHR1"

ON EXCEPTION
DISPLAY "First CALL failed. Program aborted."

END-CALL.

STOP RUN.
END PROGRAM CALLER.

* SUBSHR1.COB
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBSHRI.

EEEE RS EEEEEEEEE SRS EEEEEEEEE SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

* This subprogram is linked as a shareable image. When it is called,*
* it calls another subprogram installed as a shareable image. *
khkkkkkhkkhkkhkkkhkhkkhhkhhkkhhkhhkhhkhhhhdhhkhhkdhhkkhkkhkkdhkddkkdkkdxx
PROCEDURE DIVISION.
0.

DISPLAY "Call to SUBSHRI successful. Calling SUBSHR2.".

CALL "SUBSHR2"

ON EXCEPTION
DISPLAY "Second call failed. Control returned to CALLER."

END-CALL.

END PROGRAM SUBSHRI.

* SUBSHR2.COB
IDENTIFICATION DIVISION.

PROGRAM-ID. SUBSHR2.
Kk kkkkkkhhhhhhhhhhh kA kAR AR AR AR AR AR AR AR ARk hkkkkkhhhhhhhhhkhk

* This subprogram is linked as a shareable image and is called by *

* another shareable image.
kkkkkkkkhkkkhkkkhkkkhkkkhkhkkhkhkkkhkkkhkkkhkhkkhkhkkhkhkkkhkkkhkkkkkkkkkkkkkkkkk%x

PROCEDURE DIVISION.
0.

DISPLAY "Call to SUBSHR2 successful!".
END PROGRAM SUBSHR2.

Example 1-3 shows a command procedure that compiles and links the sample
program and subprograms in Example 1-2 on an OpenVMS Alpha system.
(Example 1-4 shows an equivalent command procedure for OpenVMS VAX.)

Example 1-3 Command Procedure to Compile and Link Subprograms as
Shareable Images (Alpha, 164)

§! Create the main program and subprograms.

$! In this example CALLER.COB is the main program.

$! SUBSHR1.COB and SUBSHR2.COB are the subprograms to be installed
$! as shareable images.

(continued on next page)

1-38 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Example 1-3 (Cont.) Command Procedure to Compile and Link Subprograms
as Shareable Images (Alpha, 164)

Compile the main program and subprograms.

COBOL CALLER.COB
COBOL SUBSHR1.COB
COBOL SUBSHR2.COB

Create an options file containing all the universal symbols
(entry points and other data symbols) for the subprograms.

COPY SYS$SINPUT OPTIONSL1.OPT

DECK
SYMBOL_VECTOR= (SUBSHR1=PROCEDURE , SUBSHR2=PROCEDURE
EOD

Link the subprograms using the /SHARE qualifier to the
shareable library and the options file. For more information
on options files, refer to the OpenVMS Linker Utility Manual.

LINK/SHARE=MYSHRLIB SUBSHRI,SUBSHR2,0PTIONS1/OPT

Assign a logical name for the shareable images.

ASSIGN DEVICE:[DIRECTORY]MYSHRLIB.EXE MYSHRLIB

Create a second options file to map the main program to the
shareable image library.

COPY SYS$SINPUT OPTIONS2.OPT
DECK
MYSHRLIB/SHAREABLE

EOD

Uy U U > > U U O O Uy U U > U

§! Link the main program with the shareable image subprograms
§! through the options file.

$ LINK CALLER,OPTIONS2/OPT

§! Now you can run the main program.

Using Symbol Vectors with Shareable Images (Alpha, 164)

To make symbols in the shareable image available for other modules to link
against, you must declare the symbols as universal. You declare universal
symbols by creating a symbol vector. You create a symbol vector by specifying
the SYMBOL_VECTOR=option clause in a linker options file. List all of the
symbols you want to be universal in the order in which you want them to appear
in the symbol vector.

If you use symbol vectors, you can modify the contents of shareable images and
avoid relinking user programs bound to the shareable image when you modify the
image. Once you have created the symbol vector, you can install the subprograms
using the OpenVMS Install utility (INSTALL) and link the main program to the
shareable library. Symbol vectors, if used according to the coding conventions,
can also provide upward compatibility.

For more information about symbol vectors, refer to the OpenVMS Linker Utility
Manual. e

Developing HP COBOL Programs 1-39

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Linking a Subprogram as a Shareable Image (VAX)

Example 1-4 shows a command procedure that compiles, links, and installs the
sample programs in Example 1-2 on OpenVMS VAX systems.

Example 1-4 Command Procedure to Compile, Link, and Install Subprograms
as Shareable Images (VAX)

Create the main program and subprograms to be installed as shareable
images. In this example CALLER.COB is the main program. SUBSHR1.COB
and SUBSHR2.COB are the subprograms to be installed as

shareable images.

Compile the main program and subprograms.

COBOL CALLER.COB
COBOL SUBSHR1.COB
COBOL SUBSHR2.COB

Create an options file to map the entry points of the subprograms.

COPY SYSSINPUT OPTIONSI1.OPT
DECK

UNIVERSAL=SUBSHR1, SUBSHR2
EOD

|
! Link the subprograms using the /SHARE qualifier to the shareable library
! and the options file. For more information on options files, refer to

! the documentation on the OpenVMS Linker.

|

LINK/SHARE=MYSHRLIB SUBSHRI,SUBSHR2,0PTIONS1/OPT

|
! Copy the shareable images to SYSSLIBRARY. To perform this

! you must have [SYSLIB] access privileges. Alternatively,

! you can perform the same function by doing a local assignment.
|

|

|

! COPY MYSHRLIB.EXE SYS$LIBRARY:*
or
ASSIGN DEVICE:[DIRECTORY]MYSHRLIB.EXE MYSHRLIB

Install the shareable images in a shareable library.
This will allow multiple users to use a single copy of the
shareable image.

If you do not install the shareable library,
multiple users will each link to their own run-time copy of
the image.

Note that to install an image in a shareable library, you must have
PRMGBL, SYSGBL, or CMKRNL privileges.

Prior to installing the shareable image, check to see if there is
enough global symbol space.

MCR INSTALL

/GLOBAL

"z

U - U

(continued on next page)

1-40 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Example 1-4 (Cont.) Command Procedure to Compile, Link, and Install
Subprograms as Shareable Images (VAX)

Also check to see if there are available global sectors and pages.
MCR SYSGEN

/GBLSE

/GBLPA

i/

The /WRITE qualifier is required if you want to install writable PSECTS.
MCR INSTALL
device:[directory]MYSHRLIB/SHARE/WRITE

Create a second options file to map the main program to the shareable
image library.

COPY SYS$INPUT OPTIONS2.OPT

DECK

MYSHRLIB/SHAREABLE

EOD

U U U U > U

$! Link the main program with the shareable image subprograms through the
$! options file.
$ LINK CALLER,OPTIONS2/OPT

§! Now you can run the main program.

Using Transfer Vectors (VAX)

Using transfer vectors can be helpful when creating shareable images for the
following reasons:

e They make it easy for you to modify the contents of shareable images.

e They allow you to avoid relinking user programs bound to the shareable
image if you modify the image.

The command procedure in Example 1-5 shows how to create a transfer
vector table and how to link the main program and subprograms (shown in
Example 1-2) with the transfer vector table.

Example 1-5 Transfer Vectors (VAX)

$!
§! Create a transfer vector table (TRAVEC.MAR).
$ MACRO /OBJ=TRAVEC SYS$INPUT

.PSECT TRANSFER VECTOR

The transfer vector table is used to map entry points at
run time to a shareable library. If you make changes to the
shareable library, you only have to relink the library.

You do not have to relink all the programs linked to the
library.

~e ~e ~e ~e¢ =~e =e =o

(continued on next page)

Developing HP COBOL Programs 1-41

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Example 1-5 (Cont.) Transfer Vectors (VAX)

This example transfer vector table maps the entry points
of the shareable subprograms: SUBSHR1, SUBSHR2.

~e ~e ~e =o

.TRANSFER SUBSHR1

.MASK SUBSHR1
BRW SUBSHR1+2
RET

.QUAD

.TRANSFER SUBSHR2
.MASK SUBSHR2
BRW SUBSHR2+2
RET

.QUAD

7
; Note that there must be an entry point for each shareable image.

; Any future additions should be made at the end of the vector.

; The order of the entries must remain intact once established.

; Do not delete any entries (even if the shareable image is deleted).

$

$ LINK/SHARE=MYSHRLIB SUBSHR1,SUBSHR2, TRAVEC

Once you have created the transfer vector table, you can install the subprograms
and link the main program to the shareable library as shown in Example 1-4.

For more information on transfer vectors, refer to the documentation on the
OpenVMS Linker. ¢

1.2.3.6 Interpreting Messages from the Linker

If the linker detects any errors while linking object modules, it displays system
messages indicating their cause and severity. If any error or fatal error conditions
occur, the linker does not produce an image file. Refer to the OpenVMS Linker
Utility Manual for complete information about the format of linker options.

Linker messages are self-explanatory; you do not usually need additional
information to determine the specific error.

Common Linking Errors to Avoid
The following are some common errors to avoid when linking COBOL programs:

¢ Trying to link a module that produced warning or error messages during
compilation. Although you can usually link compiled modules for which the
compiler generated system messages, you should verify that the modules
actually produce the expected output during program execution.

e Forgetting to specify a file type for an input file that has a file type other than
the default on the command line. The linker searches for a file that has a file
type .OBJ by default. When the linker cannot locate an object file and you
have not identified your input file with the appropriate file type, the linker
signals an error message and does not produce an image file.

e Trying to link a nonexistent module. The linker signals an error message
if you misspell a module name on the command line or if the compilation
contains fatal messages.

e Omitting required module or library names from the command line. The
linker cannot locate the definition for a specified global symbol reference.

1-42 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Consider, for example, the following LINK command for a main program
module, OCEAN.OBJ, that calls the subprograms REEF, SHELLS, and
SEAWEED:

$ LINK OCEAN,REEF,SHELLS

If the routine SEAWEED.OBJ does not exist in the directory from which
the command is issued, an error occurs and the linker issues the following
diagnostic messages:

$LINK-W-NUDFSYMS, 1 undefined symbol
$LINK-I-UDFSYMS, SEAWEED
$LINK-W-USEUNDEF, undefined symbol SEAWEED referenced
in psect $CODE offset $X0000000C
in module OCEAN file DEVICES:[COBOL.EXAMPLES]PROG.OBJ;1
$LINK-W-USEUNDEF, undefined symbol SEAWEED referenced
in psect $CODE offset %X00000021
in module OCEAN file DEVICES:[COBOL.EXAMPLES]PROG.0BJ;1

If an error occurs when you link modules, you can often correct it by
reentering the command string and specifying the correct modules or
libraries. For a complete list of linker options, refer to the OpenVMS Linker
Utility Manual. For further information on a particular linker message, refer
to the online OpenVMS Help Message utility.

1.2.4 Running an HP COBOL Program

After you compile and link your program, use the RUN command to execute it.
In its simplest form the RUN command has the following format:

$ RUN myprog

In the preceding example MYPROG.EXE is the file specification of the image
you want to run. If you omit the file type from the file specification, the system
automatically provides a default value. The default file type is .EXE. If you omit
a path specification, the system will expect MYPROG.EXE to be in the current
directory.

When you run your application it makes calls to the HP COBOL Run-Time
Library (RTL) installed on your system. If your application is run on a
system other than the one where the application was compiled, there are two
requirements that must be met:

e The HP COBOL Run-Time Library must be installed.

e The RTL version must match (or be higher than) the version of the RTL
on the system where the application was compiled. Otherwise, the system
displays a diagnostic message each time you run the application.

1.2.4.1 Accessing Command-Line Arguments at Run Time (Alpha, 164)

Your HP COBOL programs can read command-line arguments and access (read
and write) system logicals. Command-line arguments enable you to provide
information to a program at run time. Your program provides the logic to parse
the command line, identify command-line options, and act upon them. For
example, you might develop a program named MYPROG that will extract a
given amount of data from a specified file, where both the number of records to
read and the file name are highly dynamic, changing for each activation of your
program. In this case your program would contain code that reads a command-
line argument for the number of records to read and a second argument for the
file specification.

Developing HP COBOL Programs 1-43

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

To run the program with command-line arguments, you must define it as a foreign
command, as follows:

§ MYPROG :== "$device:[dir]MYPROG.EXE"

When you use this command, you will replace device and dir with the valid
device:[dir] names where MYPROG.EXE is located. Your program execution
command could then look like the following:

§ MYPROG 1028 POWERS.DAT

In this hypothetical case, the program MYPROG would read 1,028 records from
the file POWERS.DAT.

Multiple command-line arguments are delimited by spaces, as shown in the
preceding example. If an argument itself contains spaces, enclose that argument
in quotation marks (" ") as follows:

$ myprog2 "all of this is argument 1" argument2

In this example the returned value of argumentl will be the entire string “all of
this is argument1”, and argument2 will be simply “argument2”.

You provide definitions for the command-line arguments with the
SPECIAL-NAMES paragraph in your program’s Environment Division, and
include ACCEPT and DISPLAY statements in the Procedure Division to parse the
command line and access the arguments. Detailed information about command-
line argument capability is in the ACCEPT and DISPLAY sections in the HP
COBOL Reference Manual.

1.2.4.2 Accessing System Logicals at Run Time (Alpha, 164)

You can read and write system logicals at run time through your HP COBOL
program.

Example 1-6 allows the user to specify a file specification by putting the directory
in the value of the logical COBOLPATH and the file name in a command-line
argument.

Example 1-6 Accessing Logicals and Command-Line Arguments (Alpha, 164)

IDENTIFICATION DIVISION.

PROGRAM-ID. EXAMPLE.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.
SYSERR IS STANDARD-ERROR
ENVIRONMENT-NAME IS NAME-OF-LOGICAL
ENVIRONMENT-VALUE IS LOGICAL-VALUE
ARGUMENT-NUMBER IS POS-OF-COMMAND-LINE-ARGUMENT
ARGUMENT-VALUE IS COMMAND-LINE-ARGUMENT.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 howmany-records PIC 9(5).

01 env-dir PIC x(50).

01 file-name PIC x(50).

01 file-spec PIC x(100).

(continued on next page)

1-44 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

Example 1-6 (Cont.) Accessing Logicals and Command-Line Arguments
(Alpha, 164)

PROCEDURE DIVISION.
BEGIN.
ACCEPT howmany-records FROM COMMAND-LINE-ARGUMENT
ON EXCEPTION
DISPLAY "No arguments specified"”
UPON STANDARD-ERROR
STOP RUN
END-ACCEPT.

DISPLAY "COBOLPATH" UPON NAME-OF-LOGICAL.
ACCEPT env-dir FROM LOGICAL-VALUE
ON EXCEPTION
DISPLAY "Logical COBOLPATH is not set"
UPON STANDARD-ERROR
END-DISPLAY

NOT ON EXCEPTION
ACCEPT file-name FROM COMMAND-LINE-ARGUMENT
ON EXCEPTION
DISPLAY
"Attempt to read beyond end of command line"
UPON STANDARD-ERROR
END-DISPLAY
NOT ON EXCEPTION

STRING env-dir file-name delimited by " " into file-spec
DISPLAY "Would have read " howmany-records " records from " file-spec
END-ACCEPT
END-ACCEPT.

Example 1-6 assumes that the logical COBOLPATH is set as follows:
$ define COBOLPATH MYDEV:[MYDIR]

When you execute the following command line:

$§ MYPROG 1028 powers.dat

The following will result:

¢ howmany-records will contain 1028.

e file-path will contain MYDEV:[MYDIR]

e file-name will contain powers.dat

e file-spec will contain MYDEF:[MYDIR]powers.dat

For additional information, refer to the ACCEPT and DISPLAY statements in the
HP COBOL Reference Manual. ¢

1.2.4.3 Accessing Input and Output Devices at Run Time

ACCEPT and DISPLAY statements may interact with the input and output
devices by referring to them through the environment variables COBOL_INPUT
and COBOL_OUTPUT, respectively. See Chapter 11 for more information.

Developing HP COBOL Programs 1-45

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

1.2.4.4 Debugging Environment

Perhaps the most common qualifier added to the RUN command line is DEBUG.
The form of the RUN command with DEBUG is as follows:

RUN [/[NO]DEBUG] file-spec

In the preceding syntax format, file-spec is the name of the executable image to
be run. A typical example would be:

$ RUN /DEBUG MYPROG

In this example, MYPROG is the name of the executable image to be run. You
would specify the /DEBUG qualifier to invoke the OpenVMS Debugger if the
image was not linked with it. You cannot use /DEBUG on images linked with the
/NOTRACEBACK qualifier. If the image (in this case, MYPROG) was linked with
the /DEBUG qualifier and you do not want the debugger to prompt you, use the
/NODEBUG qualifier. The default action depends on whether or not the file was
linked with the /DEBUG qualifier.

Note

Using the /DEBUG qualifier with the RUN command does not produce
symbol table information if you did not specify the /DEBUG qualifier
when you compiled and linked your program.

The following example executes the image MYPROG.EXE without invoking the
debugger:

$ RUN MYPROG/NODEBUG

See Appendix C for more information about debugging programs.

1.2.4.5 Interpreting Run-Time Messages
During execution, an image can generate a fatal error called an exception
condition. When an exception condition occurs, the system displays a message.
Run-time messages can also be issued by the OpenVMS system or by other
utilities such as SORT. Other kinds of errors that can occur at run time include
program run errors and run-time input/output errors.

Run-time messages have the following format:

%CO0B-s-ident, message-text

%COB
The program name of the HP COBOL Run-Time Library. This prefix indicates a
run-time message.

s
The severity of the error. As with messages from the compiler and the linker, the
severity indicator can be F (Fatal), E (Error), W (Warning), or I (Informational).

ident
The message identification. This is a descriptive abbreviation of the message text.

message-text

The run-time message. This portion may contain more than one line of output. A
message generally provides you with enough information to determine the cause
of the error so that you can correct it.

1-46 Developing HP COBOL Programs

Developing HP COBOL Programs
1.2 Developing Programs on OpenVMS

The following example shows a run-time message issued for an illegal divide:
$COB-E-DIVBY-ZER, divide by zero; execution continues

Both the compiler and the OpenVMS Run-Time Library include facilities for
detecting and reporting errors. You can use the OpenVMS Debugger and the
traceback facility to help you locate errors that occur during program execution.
For a description of HP COBOL run-time messages, use the HELP COBOL
Run-Time Messages command.

Run-Time Messages

Faulty program logic can cause abnormal termination. If errors occur at run time,
the Run-Time Library (RTL) displays a message with the same general format as
system error messages. In addition, the system traceback facility displays a list
of the routines that were active when the error occurred.

When an error occurs, TRACEBACK produces a symbolic dump of the active call
frames. A call frame represents one execution of a routine. For each call frame,
TRACEBACK displays the following information:

1. The module name (program-id)

2. The routine name (program-id)

3. The source listing line number where the error or CALL occurred
4. Program-counter (PC) information

You can also use the OpenVMS Debugger to examine the machine code
instruction. To do this, compile and link the program using the /DEBUG qualifier.
When you run the program, you automatically enter the debugger. Once in the
debugger, you could use the EXAMINE/INSTRUCTION command to examine
the contents of the failed instruction. You could also use the debugger in screen
mode, which would indicate where the error occurred.

For more information about the OpenVMS Debugger, refer to Appendix C and the
OpenVMS Debugger Manual.

1.3 HP COBOL and Alpha and 164 Architecture System Resources

For many user applications, the HP COBOL compiler requires significantly more
system resources than HP COBOL for OpenVMS VAX. In fact, unless you have
adjusted your system resource parameters accordingly, the attempt to compile
may fail because of insufficient virtual memory. Also, for very large programs
(greater than 10,000 lines), you might experience extremely long compile times.
Knowing why HP COBOL requires more memory can help you take actions to
avoid resource problems.

1.3.1 Compilation Performance

The Alpha and 164 architectures are RISC (reduced instruction set computer)
architectures. Many other processor architectures, including the VAX, are CISC
(complex instruction set computer) architectures. The main distinguishing
characteristic of a RISC machine is that it has few instructions and each
instruction does a small amount of work. A CISC machine generally has many
instructions, most of which perform many complicated operations in one step.

Developing HP COBOL Programs 1-47

Developing HP COBOL Programs
1.3 HP COBOL and Alpha and 164 Architecture System Resources

By reducing the amount of work that is done in each instruction (and by reducing
the number of instructions), the complexity of the hardware is reduced. These
hardware changes, plus others, result in an increase in the number of instructions
per second that can be completed. The result is much faster overall system
performance.

A tradeoff of RISC systems is that compilers for these architectures generally
must do a great deal more work than a corresponding compiler for a CISC
architecture. For example, the compiler must compute the best way to use all of
the functional units of the processor, and it must determine how to make the best
use of registers and on-chip data cache because reads and writes to main memory
are generally slow compared to the speed of the processor.

The code generation portion of the HP COBOL for OpenVMS VAX compiler was
developed for the CISC architecture of the VAX. The compiler examines one
COBOL statement at a time, determines the VAX instructions to be constructed
to execute that statement, and then moves on to the next one. Subsequently

it uses "Peephole" optimization to enhance the performance of the generated
machine code.

On the other hand, the HP COBOL compiler was developed for the Alpha

and 164 architectures. It is a globally optimizing compiler based on the most
recent compiler technology. It does many optimizations including Peephole, loop
unrolling, and instruction pipelining. Also, the compiler uses mathematical graph
theory to construct an internal representation of the entire COBOL program,
and it repeatedly traverses this structure at compile time, to produce the most
efficient machine code for the program. This results in very high performance
code, to the benefit of your users at run time. Although the HP COBOL compiler
on OpenVMS Alpha and 164 requires more resources than some other compilers to
do this additional work at compile time, this cost is offset by better performance
during the many run times that follow.

To reduce the impact on system resources at compile time, do the following:

e Use /NOOPTIMIZE or -00 on the compile command line when initially
developing and testing programs. The optimizer is one of the heaviest users
of system resources in the COBOL compiler and is turned on by default. Also,
the higher the optimization level, the more memory required by the compiler.

¢ Check system tuning. Because the HP COBOL compiler often needs a
great deal of virtual memory, you may need to increase virtual memory
for developers who use the compiler. This results in decreased paging and
improvements in compile time.

e Check program sizes. Larger amounts of system resources are used during
compilation for large monolithic source files. It is possible that your
application is already composed of several separately compiled program
units (different PROGRAM IDs not nested), but all in the same .COB. On
Alpha and 164 systems with HP COBOL, compilation performance improves
if you split the program units into separate (smaller) .COB files (possibly one
for each separately compiled program unit).

Note

Large arrays (tables) can have a significant impact on compile time and
resource requirements. In addition to the size of the program source, you
should also examine the amount of space allocated in your Data Division,
particularly for arrays. The number of array elements as well as the

1-48 Developing HP COBOL Programs

Developing HP COBOL Programs
1.3 HP COBOL and Alpha and 164 Architecture System Resources

size of the array elements is significant. This impact can be minimized
in two ways: by system tuning (as suggested in this section), which

will optimize system resources for the compile, and by using INITIALIZE
instead of VALUE in your data definitions, which will improve compilation
performance.

1.3.2 Tuning OpenVMS Alpha and OpenVMS 164 for Large HP COBOL
Compiles

The recommendations that follow were determined by compiling one set of very
large HP COBOL modules on OpenVMS Alpha and 164. While your results
may vary, the principles are generally applicable. For more detailed information
on OpenVMS Alpha tuning, refer to the OpenVMS System Manager’s Manual,
particularly the sections on Managing System Parameters and Managing System
Page, Swap, and Dump Files.

Note that many tuning exercises are more beneficial if you work with a relatively
quiet system, submit batch jobs, and retain the log files for later analysis.

1.3.2.1 Optimizing Virtual Memory Usage

If your system does not have enough virtual memory allocated, the compile may
fail, with the “%LIB-E-INSVIRMEM, insufficient virtual memory” error reported.

OpenVMS has two parameters that control the amount of virtual

memory available to a process. One is the system generation parameter
VIRTUALPAGECNT, which sets an upper bound on the number of pagelets

of virtual memory for any process in the system. The other control is the
AUTHORIZE parameter PGFLQUOTA, which determines the number of pagelets
a process can reserve in the system’s page file(s).

After an “insufficient virtual memory” error, you can issue the DCL command
$SHOW PROCESS/ACCOUNTING to see the “Peak virtual size” used by the
process (or look at the “Peak page file size” at the end of a batch job log file).
If the peak size is at the system generation parameter VIRTUALPAGECNT,
you will need to raise this value. If the peak size is below VIRTUALPAGECNT,
and at or above PGFLQUOTA, run AUTHORIZE to increase PGFLQUOTA for
the COBOL users. (Peak size can exceed PGFLQUOTA because some virtual
memory, such as read-only image code, is not allocated page file space.)

It is difficult to predict precisely how much virtual memory will be required

for a compilation, but a starting point for system tuning may be computed by
multiplying 250 times the size of the largest program in disk blocks (including all
COPY files referenced). Alternatively, multiply 25 times the number of lines in
the program (including all COPY files).

The resulting figure can then be used as a starting point for the system
generation parameter VIRTUALPAGECNT. Put that figure in the parameter
file SYS$SYSTEM:MODPARAMS.DAT. For example, if you estimate 370,000
pages, add the following line in MODPARAMS, run AUTOGEN and reboot:

MIN VIRTUALPAGECNT = 400000

If the compilation now completes successfully, use the command $SHOW
PROCESS/ACCOUNTING to determine the Peak Virtual Size; if the actual
peak is significantly less than the value computed above, you can reduce
VIRTUALPAGECNT.

Developing HP COBOL Programs 1-49

Developing HP COBOL Programs
1.3 HP COBOL and Alpha and 164 Architecture System Resources

When modifying VIRTUALPAGECNT and PGFLQUOTA, you may also need to
increase the size of the page file.

1.3.2.2 Optimizing Physical Memory Usage

In any evaluation of your system’s physical memory, two of the questions to
consider are:

Is there enough memory on the system?
Is enough available to the process running the compilation?

More specifically:

e If the physical memory on the system is too small, the command
$LOGOUT/FULL (which is automatically issued at the end of a batch job)
will show a high number of faults (>100,000 for a single compilation) and an
elapsed time value that greatly exceeds the Charged CPU time value, as the
system waits for disk I/Os to resolve page faults. In this situation, tuning
attempts may be of limited benefit.

e If the physical memory on the system is adequate, but the physical memory
allotted to the process running the compilation is too small, you may still
observe a large number of faults, but elapsed time may remain closer to CPU
time. This is because OpenVMS Alpha and OpenVMS 164 resolve page faults
from the page caches (free list, modified list) whenever possible, avoiding
the relatively slow disk I/Os. In this situation, basic tuning may also be
beneficial.

The amount of physical memory required will vary, but it should be a large
percentage of the process peak virtual size—as close to 100% as practical.
The reason is that the compiler makes multiple passes over the internal
representation of the program. A page that falls out of the working set in one
pass is probably going to be needed again on the very next pass.

The physical memory present on the system can be determined by the DCL
command $SHOW MEMORY/PHYSICAL. The physical memory used by the
compilation is reported as “Peak working set size” by the command SHOW
PROCESS/ACCOUNTING or at the end of a batch log file.

More physical memory can be made available to a process by minimizing the
number of competing processes on the system (for example, by compiling one
module at a time or by scheduling large compiles for off-peak time periods; late at
night is a good time in some situations).

More physical memory can also be made available to a process (if it is present
on the machine) by adjusting the system generation parameter WSMAX and
the corresponding WSEXTENT (in AUTHORIZE). Approach such adjustments
with great caution, as the system may hang if memory is oversubscribed and you
create a situation where OpenVMS Alpha and OpenVMS 164 effectively have no
options to reclaim memory. The following guidelines can help:

e Set the COBOL user WSEXTENT (in AUTHORIZE or INITIALIZE/QUEUE)
to match WSMAX.

e Keep WSQUOTA (in AUTHORIZE or INITIALIZE/QUEUE) low. Make sure
that no process or batch queue has a WSQUOTA of more than approximately
20% of physical memory. The difference between WSEXTENT and WSQUOTA
allows the operating system to manage memory to meet varying demands.

e Use AUTOGEN. AUTOGEN will attempt to make a consistent set of changes
that do not interfere with each other.

1-50 Developing HP COBOL Programs

Developing HP COBOL Programs
1.3 HP COBOL and Alpha and 164 Architecture System Resources

By default, AUTOGEN will set the maximum working set (system generation
parameter WSMAX) to 25% of physical memory. This value is reasonable for
a workstation or multi-user system with many active processes.

WSMAX can be increased to a somewhat larger value by editing
MODPARAMS.DAT. For a system with 64 MB! of physical memory, set
WSMAX to no more than approximately 40% of physical memory, or 52000
pagelets (1 MB = 2048 pagelets). With 128 MB or more of physical memory, a
setting of 50% of physical memory can be attempted.

The effects of physical memory on compilation time were studied for a set of
seven large modules. These modules ranged in size from approximately 1600 to
3300 disk blocks. Your results may differ, but to give a rough appreciation for the
effect of physical memory on compilation time, note that:

e When the amount of physical memory available to the processes matched the
amount of virtual memory, the elapsed times were close to the CPU times.

¢ As the physical memory was reduced, CPU times rose only slightly—
approximately 10%.

e As the physical memory was reduced, elapsed times were elongated, at the
rate of approximately 1 hour for each 100 MB of difference between Peak
Virtual Size and the actual memory available. For example, when compiling
a program that used a Peak Virtual Size of 947760 pagelets, or 463 MB, on
a system where approximately 180 MB of physical memory was available to
user processes, the compile required approximately 3 hours more than on a
512 MB system.

Your results may differ from those shown in this section and will be strongly
affected by the speed of the devices that are used for paging.

Note that the requirements for virtual memory and physical memory can also be
reduced by breaking large modules into smaller modules.

1.3.2.3 Improving Compile Performance with Separate Compilation (Alpha, 164)

The /SEPARATE_COMPILATION qualifier can improve compile-time performance
for large source files that are made up of multiple separately compiled programs
(SCPs). For programs compiled without this qualifier, the compiler engine parses
the entire compilation unit and uses system resources (sized for the total job) for
the duration of this compilation. When you use the /SEPARATE_COMPILATION
qualifier, the compilation is replaced by a smaller series of operations, and
memory structures that are needed for individual procedures are reclaimed and
recycled. See Section 1.2.2.4 for additional information. ¢

1.3.3 Choosing a Reference Format

You need to choose a reference format before you set out to write an HP COBOL

program, and you must be aware of the format at compile time. The HP COBOL
compiler accepts source code written in either terminal or ANSI reference format.
You cannot mix reference formats in the same source file.

On OpenVMS, when copying text from Oracle CDD/Repository, the HP COBOL
compiler translates the record descriptions into the reference format of the source
program. ¢

1 MB= megabytes

Developing HP COBOL Programs 1-51

Developing HP COBOL Programs
1.3 HP COBOL and Alpha and 164 Architecture System Resources

1.3.3.1 Terminal Reference Format

Hewlett-Packard recommends using terminal format, an HP optional format,
when you create source files from interactive terminals. The compiler accepts
terminal format as the default reference format.

Terminal format eliminates the line number and identification fields of ANSI
format and allows horizontal tab characters and short lines. Terminal format
saves disk space and decreases compile time. It is easier to edit source code
written in terminal format.

The following table shows the structure and content of a terminal reference source
line: To select ANSI format, specify the -ansi flag (on Tru64 UNIX systems) or
the /ANSI_FORMAT qualifier (on OpenVMS systems) at compile time. You can
choose this format if your COBOL program is written for a compiler that uses
ANSI format.

For ANSI format, the compiler expects 80-character program lines. The following
table shows the structure and content of an ANSI reference source line:

Character Positions Contents

1to 6 Optional sequence numbers
7 Indicators

8 to 11 Area A

12 to 72 Area B

73 to 80 Optional Area

For more information about the two reference formats, refer to the HP COBOL
Refference Manual.

1.3.3.2 Converting Between Reference Formats

1.4

The REFORMAT utility allows you to convert a terminal format program to ANSI
format and vice versa. You can also use REFORMAT to match the formats of HP
COBOL source files and library files when their formats are not the same. See
Chapter 14 for a description of the REFORMAT utility.

Program Run Messages

Incorrect or undesirable program results are usually caused by data errors or
program logic errors. You can resolve most of these errors by desk-checking your
program and by using a debugger.

1.4.1 Data Errors

1-52

Faulty or incorrectly defined data often produce incorrect results. Data errors can
sometimes be attributed to one or more of the following actions:

e Incorrect picture size. As shown in the following sample of a partial program,
if the picture size of a receiving data item is too small, your data may be
truncated:

Developing HP COBOL Programs

Developing HP COBOL Programs
1.4 Program Run Messages

77 COUNTER PIC S9.
PROCEDURE DIVISION.

LOOP.
ADD 1 TO COUNTER
IF COUNTER < 10 GO TO LOOP.

The IF clause will produce an infinite loop because of the one-digit size limit
of COUNTER, which is PIC S9. If COUNTER were PIC S99, or if the clause
used 9 instead of 10, the condition could be false, causing a proper exit from
the loop.

e Incorrect record field position. The record field positions that you specify in
your program may not agree with a file’s record field positions. For example,
a file could have this record description:

01 PAY-RECORD.
03 P-NUMBER PIC X(5).
03 P-WEEKLY-AMT PIC S9(5)V99 COMP-3.
03 P-MONTHLY-AMT PIC S9(5)V99 COMP-3.
03 P-YEARLY-AMT PIC S9(5)V99 COMP-3.

Incorrectly positioning these fields can produce faulty data.

In the following example, a program references the file incorrectly. The field
described as P-YEARLY-AMT actually contains P-MONTHLY-AMT data, and vice
versa.

01 PAY-RECORD.
03 P-NUMBER PIC X(5).
03 P-WEEKLY-AMT PIC S9(5)V99 COMP-3.
03 P-YEARLY-AMT PIC S9(5)V99 COMP-3.
03 P-MONTHLY-AMT PIC S9(5)V99 COMP-3.

PROCEDURE DIVISION.
ADD-TOTALS.
ADD P-MONTHLY-AMT TO TOTAL-MONTHLY-AMT.

You can minimize record field position errors by writing your file and record
descriptions in a library file and then using the COPY statement in your
programs. On OpenVMS systems, you can also use the COPY FROM
DICTIONARY statement.

Choosing your test data carefully can minimize faulty data problems. For
instance, rather than using actual or ideal data, use test files that include data
extremes.

Determining when a program produces incorrect results can often help your
debugging effort. You can do this by maintaining audit counts (such as total
master in = nnn, total transactions in = nnn, total deletions = nnn, total master
out = nnn) and displaying the audit counts when the program ends. Using

Developing HP COBOL Programs 1-53

Developing HP COBOL Programs
1.4 Program Run Messages

conditional compilation lines (see Section 1.2.2.7) in your program can also help
you to debug it.

1.4.2 Program Logic Errors

When checking your program for logic errors, first examine your program for
some of the more obvious bugs, such as the following:

Hidden periods. Periods inadvertently placed in a statement usually produce
unexpected results. For example:

050-DO-WEEKLY-TOTALS.
IF W-CODE = "W"
PERFORM 100-WEEKLY-SUMMARY
ADD WEEKLY-AMT TO WEEKLY-TOTALS.
GO TO 000-READ-A-MASTER.
WRITE NEW-MASTER-REC.

The period at the end of ADD WEEKLY-AMT TO WEEKLY-TOTALS
terminates the scope of the IF statement and changes the logic of

the program. Including the extra period before the GO TO statement
transforms GO TO 000-READ-A-MASTER from a conditional statement to
an unconditional statement. Because the GO TO statement is not within the
scope of the IF statement, it will always be executed. In addition, the WRITE
statement following the GO TO will never be executed.

Tests for equality, which can cause an infinite loop if the procedure is to be
executed until the test condition is met, for example:

* This is a test for equality
PERFORM ABC-ROUTINE UNTIL A-COUNTER = 10.

If, during execution, the program increments A-COUNTER by a value other
than 1 (2 or 1.5, for example), A-COUNTER may never equal 10, causing a

loop in ABC-ROUTINE. You can prevent this type of error by changing the

statement to something like this:

* This is a test for inequality
PERFORM ABC-ROUTINE UNTIL A-COUNTER > 9

Testing two floating point numbers (for example, COMP-1 and COMP-2 fields)
for equality. The calculations of your program might never produce exact
numerical equality between two floating point values.

Two negative test conditions combined with an OR. The object of the following
statement is to execute GO TO 200-PRINT-REPORT when TEST-FIELD
contains other than an A or B. However, the GO TO always executes because
no matter what TEST-FIELD contains, one of the conditions is always true.

IF TEST-FIELD NOT = "A" OR NOT = "B"
GO TO 200-PRINT-REPORT.

The following statement does not contain the logic error:

IF TEST-FIELD NOT = "A" AND NOT = "B"
GO TO 200-PRINT-REPORT.

1-54 Developing HP COBOL Programs

Developing HP COBOL Programs
1.4 Program Run Messages

1.4.3 Run-Time Input/Output Errors

An input/output error is a condition that causes an I/O statement to fail. These
I/O errors are detected at run time by the I/O system. Each time an I/O operation
occurs, the I/O system generates a two-character file status value. One way to
determine the nature of an I/O error is to check a file’s I/O status by using file
status data items. (Refer to the HP COBOL Reference Manual for a list of file
status values.) See Chapter 7, Handling Input/Output Exception Conditions for
additional information about I/O exception condition handling.

Checking a file’s I/O status within a Declarative USE procedure or in an INVALID
KEY imperative condition can help you determine the nature of an I/O error. For
example:

FD INDEXED-MASTER
ACCESS MODE IS DYNAMIC
FILE STATUS IS MASTER-STATUS
RECORD KEY IN IND-KEY.

WORKING-STORAGE SECTION.
01 MASTER-STATUS PIC XX VALUE SPACES.

PROCEDURE DIVISION.

050-READ-MASTER.
READ INDEXED-MASTER
INVALID KEY PERFORM 100-CHECK-STATUS
GO TO 200-INVALID-READ.

100-CHECK-STATUS.
IF MASTER-STATUS = "23"
DISPLAY "RECORD NOT IN FILE".
IF MASTER-STATUS = "24"
DISPLAY "BOUNDARY VIOLATION OR RELATIVE RECORD
NUMBER TOO LARGE".

If your program contains a Declarative USE procedure for a file and an I/O
operation for that file fails, the I/O system performs the USE procedure, but does
not display an error message.

A Declarative USE procedure can sometimes avoid program termination. For
example, File Status 91 indicates that the file is locked by another program,;
rather than terminate your program, you can perform other procedures and then
try reopening the file. If program continuation is not desirable, the Declarative
USE procedure can perform housekeeping functions, such as saving data or
displaying program-generated diagnostic messages.

If you specify an INVALID KEY phrase for a file and the I/O operation causes

an INVALID KEY condition, the I/O system performs the associated imperative
statement and no other file processing for the current statement. The Declarative
USE procedure (if any) is not performed. The INVALID KEY phrase processes
I/O errors due to invalid key conditions only.

Developing HP COBOL Programs 1-55

Developing HP COBOL Programs
1.4 Program Run Messages

If you do not specify an INVALID KEY phrase but declare a Declarative USE
procedure for the file, the I/O system performs the Declarative USE procedure
and returns control to the program.

If a severe error occurs and you do not have a Declarative Use procedure, your
program will terminate abruptly with a run-time diagnostic. For example, given
a program that looks for AFILE.DAT and that file is missing:

cobrtl: severe: file AFILE.DAT not found

In this case, program run ends because you have not handled the error with a
Declarative Use procedure.

1.4.4 1/O Errors and RMS (OpenVMS)

I/O errors are detected by the I/O system, which (for OpenVMS systems) consists
of Record Management Services (RMS) and the Run-Time Library (RTL). You can
use the RMS special registers, which contain the primary and secondary RMS
completion codes of an I/O operation, to detect errors. The RMS special registers
are as follows:

RMS-STS

RMS-STV

RMS-FILENAME
RMS-CURRENT-STS
RMS-CURRENT-STV
RMS-CURRENT-FILENAME

Refer to the HP COBOL Reference Manual and the OpenVMS Record
Management Services Reference Manual for more information about RMS special
registers.

Examples 1-7 and 1-8 show how to use RMS special registers to detect errors.

Example 1-7 Using RMS Special Registers to Detect Errors (OpenVMS)

IDENTIFICATION DIVISION.
PROGRAM-ID. RMSSPECREGS.
*
* This program demonstrates the use of RMS special registers to
* implement a different recovery for each of several errors with RMS files.
*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL EMP-FILE ASSIGN "SYS$DISK:ART.DAT".
SELECT REPORT-FILE ASSIGN "SYSS$SOUTPUT".

(continued on next page)

1-56 Developing HP COBOL Programs

Developing HP COBOL Programs
1.4 Program Run Messages

Example 1-7 (Cont.) Using RMS Special Registers to Detect Errors (OpenVMS)

DATA DIVISION.
FILE SECTION.
FD EMP-FILE VALUE OF ID IS VAL-OF-ID.
01 EMP-RECORD.
02 EMP-ID PIC 9(7).
02 EMP-NAME PIC X(15).
02 EMP-ADDRESS PIC X(30).
FD REPORT-FILE REPORT IS RPT.
WORKING-STORAGE SECTION.
01 VAL-OF-ID PIC X(20).

01 RMS$_EOF PIC S9(9) COMP VALUE EXTERNAL RMS$ EOF.
01 SS$ BADFILENAME PIC S9(9) COMP VALUE EXTERNAL SS$ BADFILENAME.
01 RMSS FNF PIC S9(9) COMP VALUE EXTERNAL RMS$ FNF.

01 RMS$ DNF PIC S9(9) COMP VALUE EXTERNAL RMSS$ DNF.
01 RMS$ DEV PIC S9(9) COMP VALUE EXTERNAL RMS$ DEV.
01 D-DATE PIC 9(6). B
01 EOF-SW PIC X.
88 E-O-F VALUE "E".
88 NOT-E-O-F VALUE "N".
01 VAL-OP-SW PIC X.
88 VALID-OP VALUE "V".
88 OP-FAILED VALUE "F".
01 op PIC X.
88 OP-OPEN VALUE "O".
88 OP-CLOSE VALUE "C".
88 OP-READ VALUE "R".
REPORT SECTION.
RD RPT PAGE 26 LINES HEADING 1 FIRST DETAIL 5.
01 TYPE IS PAGE HEADING.
02 LINE IS PLUS 1.
03 COLUMN 1 PIC X(16) VALUE "Emplyee File on".
03 COLUMN 18 PIC 99/99/99 SOURCE D-DATE.
02 LINE IS PLUS 2.
03 COLUMN 2 PIC X(5) VALUE "Empid".
03 COLUMN 22 PIC X(4) VALUE "Name".
03 COLUMN 43 PIC X(7) VALUE "Address".
03 COLUMN 60 PIC X(4) VALUE "Page".
03 COLUMN 70 PIC ZZ9 SOURCE PAGE-COUNTER.
01 REPORT-LINE TYPE IS DETAIL.
02 LINE IS PLUS 1.
03 COLUMN IS 1 PIC 9(7) SOURCE EMP-ID.
03 COLUMN IS 20 PIC X(15) SOURCE IS EMP-NAME.
03 COLUMN IS 42 PIC X(30) SOURCE IS EMP-ADDRESS.
PROCEDURE DIVISION.
DECLARATIVES.
USE-SECT SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON EMP-FILE.
CHECK-RMS-SPECIAL-REGISTERS.
SET OP-FAILED TO TRUE.
EVALUATE RMS-STS OF EMP-FILE TRUE
WHEN (RMS$ EOF) OP-READ
SET VALID-OP TO TRUE
SET E-O-F TO TRUE
WHEN (SS$ BADFILENAME) OP-OPEN
WHEN (RMS§ FNF) OP-OPEN
WHEN (RMS$ DNF) OP-OPEN
WHEN (RMS$_DEV) OP-OPEN
DISPLAY "File cannot be found or file spec is invalid"
DISPLAY RMS-FILENAME OF EMP-FILE
DISPLAY "Enter corrected file (control-Z to STOP RUN): "
WITH NO ADVANCING

(continued on next page)

Developing HP COBOL Programs 1-57

Developing HP COBOL Programs
1.4 Program Run Messages

Example 1-7 (Cont.) Using RMS Special Registers to Detect Errors (OpenVMS)

ACCEPT VAL-OF-ID
AT END STOP RUN
END-ACCEPT
WHEN ANY OP-CLOSE
CONTINUE
WHEN ANY RMS-STS OF EMP-FILE IS SUCCESS
SET VALID-OP TO TRUE
WHEN OTHER
IF RMS-STV OF EMP-FILE NOT = ZERO
THEN
CALL "LIBSSTOP" USING
BY VALUE RMS-STS OF EMP-FILE
END-IF
END-EVALUATE.
END DECLARATIVES.
MAIN-PROG SECTION.
000-DRIVER.
PERFORM 100-INITIALIZE.
PERFORM WITH TEST AFTER UNTIL E-O-F
GENERATE REPORT-LINE
READ EMP-FILE
END-PERFORM.
PERFORM 200-CLEANUP.
STOP RUN.
100-INITIALIZE.
ACCEPT D-DATE FROM DATE.
DISPLAY "Enter file spec of employee file: " WITH NO ADVANCING.
ACCEPT VAL-OF-ID.
PERFORM WITH TEST AFTER UNTIL VALID-OP
SET VALID-OP TO TRUE
SET OP-OPEN TO TRUE
OPEN INPUT EMP-FILE
IF OP-FAILED
THEN
SET OP-CLOSE TO TRUE
CLOSE EMP-FILE
END-IF
END-PERFORM.
OPEN OUTPUT REPORT-FILE.
INITIATE RPT.
SET NOT-E-O-F TO TRUE.
SET OP-READ TO TRUE.
READ EMP-FILE.
200-CLEANUP.
TERMINATE RPT.
SET OP-CLOSE TO TRUE.
CLOSE EMP-FILE REPORT-FILE.
END PROGRAM RMSSPECREGS.

1-58 Developing HP COBOL Programs

Developing HP COBOL Programs
1.4 Program Run Messages

Example 1-8 Using RMS-CURRENT Special Registers to Detect Errors
(OpenVMS)

IDENTIFICATION DIVISION.
PROGRAM ID. RMS-CURRENT-SPEC-REGISTERS.
*
* This program demonstrates the use of RMS-CURRENT special registers
* to implement a single recovery for RMS file errors with multiple files.
*
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FILE-1
ASSIGN TO "SYS$DISK:ART 1.DAT".
SELECT FILE-2 -
ASSIGN TO "SYS$DISK:ART 2.DAT".
SELECT FILE-3 -
ASSIGN TO "SYSSDISK:ART_3.DAT".

DATA DIVISION.
FILE SECTION.

FD FILE-1.
01 FILE-1-REC.

02 F1-REC-FIELD PIC 9(9).
FD FILE-2.
01 FILE-2-REC.

02 F2-REC-FIELD PIC 9(9).
FD FILE-3.
01 FILE-3-REC.

02 F3-REC-FIELD PIC 9(9).
PROCEDURE DIVISION.
DECLARATIVES.

USE-SECT SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT.
CHECK-RMS-CURRENT-REGISTERS.
DISPLAY Mhkkkkkkkdkhdkxdx ERROR **************".
DISPLAY "Error on file: " RMS-CURRENT-FILENAME.
DISPLAY "Status Values:".
DISPLAY " RMS-STS = " RMS-CURRENT-STS WITH CONVERSION.
DISPLAY " RMS-STV = " RMS-CURRENT-STV WITH CONVERSION.
DISPLAY "***********************************".
END DECLARATIVES.
MAIN-PROG SECTION.
MAIN-PARA.
OPEN INPUT FILE-1.
OPEN INPUT FILE-2.
OPEN INPUT FILE-3.

CLOSE FILE-1.
CLOSE FILE-2.
CLOSE FILE-3.
STOP RUN.
END-PROGRAM RMS-CURRENT-SPEC-REGISTERS. *

Developing HP COBOL Programs 1-59

Developing HP COBOL Programs
1.5 Using Program Switches

1.5 Using Program Switches

You can control program execution by defining switches in your HP COBOL
program and setting them internally (from within the image) or externally (from
outside the image). Switches exist as the environment variable COBOL_
SWITCHES (on the Tru64 UNIX operating system) or the logical name
COB$SWITCHES (on the OpenVMS operating system).

On OpenVMS systems, switches can be defined for the image, process, group, or
system. ¢

On Tru64 UNIX systems, switches can be defined for the image or process. ¢

1.5.1 Setting and Controlling Switches Internally

To set switches from within the image, define them in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION and use the SET statement in
the PROCEDURE DIVISION to specify switches ON or OFF, as in the following
example:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SWITCH 10 IS MY-SWITCH
ON IS SWITCH-ON
OFF IS SWITCH-OFF.

PROCEDURE DIVISION.
000-SET-SWITCH.
SET MY-SWITCH TO ON.
IF SWITCH-ON
THEN
DISPLAY "Switch 10 is on".

On OpenVMS systems, SET in COBOL will attempt to write a user mode logical
name (COB$SWITCHES) to the first entry in the LNM$FILE_DEV chain. It will
therefore fail if that logical name table denies WRITE access.

To change the status of internal switches during execution, turn them on or off
from within your program. However, be aware that this information is not saved
between runs of the program.

Refer to the HP COBOL Reference Manual for more information about setting
internal switches.
1.5.2 Setting and Controlling Switches Externally

Switches that are set externally are handled differently on Tru64 UNIX and
OpenVMS, as described in this section.

Switches on Tru64 UNIX

On Tru64 UNIX systems, to set switches from outside the image, use the SETENV
command to change the status of program switches, as follows:

% setenv COBOL_SWITCHES "switch-list"

1-60 Developing HP COBOL Programs

Developing HP COBOL Programs
1.5 Using Program Switches

To remove switch settings:

% unsetenv COBOL_SWITCHES

To check switch settings, enter this command:

% printenv COBOL SWITCHES Shows switch settings.

The switch-list can contain up to 16 switches separated by commas. To set a
switch on, specify it in the switch-list. A switch is off (the default) if you do not
specify it in the switch-list.

For example:

% setenv COBOL_SWITCHES "1,5,13" Sets switches 1, 5, and 13 ON.
% setenv COBOL_SWITCHES "9,11,16" Sets switches 9, 11, and 16 ON.
% setenv COBOL_SWITCHES " " Sets all switches OFF.

Following is a simple program that displays a message depending on the state of
the environment variable COBOL_SWITCHES (on Tru64 UNIX systems:

IDENTIFICATION DIVISION.
PROGRAM-ID. TSW.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SWITCH 12 IS SW12 ON IS SW12-ON OFF IS SW12-OFF.

PROCEDURE DIVISION.
01-s.
DISPLAY "**TEST SWITCHES**".
IF SW12-ON
DISPLAY "SWITCH 12 IS ON".
IF SW12-OFF
DISPLAY "SWITCH 12 IS OFF".

DISPLAY "**END**",
STOP RUN.
END PROGRAM TSW.

To test this program on a Tru64 UNIX system, compile and link it and then type
the following:

% setenv COBOL_SWITCHES 12
% tsw

The output is as follows:

TEST SWITCHES
SWITCH 12 IS ON

END .
Switches on OpenVMS

On OpenVMS systems, to set switches from outside the image or for a process,
use the DCL DEFINE or ASSIGN command to change the status of program
switches as follows:

$ DEFINE COB$SWITCHES "switch-list"

The switch-list can contain up to 16 switches separated by commas. To set a
switch ON, specify it in the switch-list. A switch is OFF (the default) if you do
not specify it in the switch-list.

Developing HP COBOL Programs 1-61

Developing HP COBOL Programs
1.5 Using Program Switches

For example:

$ DEFINE COBSSWITCHES "1,5,13" Sets switches 1, 5, and 13 ON.
$ DEFINE COB$SWITCHES "9,11,16" Sets switches 9, 11, and 16 ON.
$ DEFINE COB$SWITCHES " " Sets all switches OFF.

The order of evaluation for logical name assignments is image, process, group,
system. System and group assignments (including HP COBOL program switch
settings) continue until they are changed or deassigned. Process assignments
continue until they are changed, deassigned, or until the process ends. Image
assignments end when they are changed or when the image ends.

You should know the system and group assignments for COB$SWITCHES unless
you have defined them for your process or image. To check switch settings, enter
this command:

$ SHOW LOGICAL COBS$SWITCHES

Use the DCL DEASSIGN command to remove the switch-setting logical name
from your process and reactivate the group or system logical name (if any):

$ DEASSIGN COBS$SWITCHES
To change the status of external switches during execution, follow these steps:

1. Interrupt the image with a STOP (literal-string) COBOL statement. (Refer to
the HP COBOL Reference Manual for more information.)

2. Use the DCL DEFINE command to change switch settings.

3. Continue execution with the DCL CONTINUE command. Be sure not to force
the interrupted image to exit by entering a command that executes another
image.

For information about these DCL commands, refer to the OpenVMS DCL
Dictionary.

Following is a simple program that displays a message depending on the state of
the logical name COB$SWITCHES (on OpenVMS systems):

IDENTIFICATION DIVISION.
PROGRAM-ID. TSW.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
SWITCH 12 IS SW12 ON IS SW12-ON OFF IS SW12-OFF.

PROCEDURE DIVISION.
01-s.
DISPLAY "**TEST SWITCHES**".
IF SW12-ON
DISPLAY "SWITCH 12 IS ON".
IF SW12-OFF
DISPLAY "SWITCH 12 IS OFF".

DISPLAY "**END**",
STOP RUN.
END PROGRAM TSW.

On OpenVMS, to test the previous program, compile and link it and then type the
following:

$ DEFINE COB$SWITCHES 12
$ RUN TSW

1-62 Developing HP COBOL Programs

Developing HP COBOL Programs
1.5 Using Program Switches

The output is as follows:

TEST SWITCHES
SWITCH 12 IS ON
**END* * .

1.6 Special Information for Year 2000 Programming

Even subsequent to the turn of the millennium, there still exist potential
disruptions in previously problem-free software where there are instances of a
two-digit year field that should be a four-digit field. Programmers need to correct
all such fields, as Hewlett-Packard cannot prevent problems that originate in
application code.

Two-digit year formats used in controlling fields, or as keys in indexed files,
can cause program logic to become ambiguous. It is a fundamental rule to use
four-digit years instead of two-digit years in areas where sequential operations
are driven from these values or for comparison of these values.

HP COBOL provides programmer access to four-digit and two-digit year formats:

4-digit FUNCTION CURRENT-DATE
4-digit FUNCTION DATE-OF-INTEGER
4-digit FUNCTION DATE-TO-YYYYMMDD
4-digit FUNCTION DAY-OF-INTEGER
4-digit FUNCTION DAY-TO-YYYYDDD
4-digit FUNCTION INTEGER-OF-DATE
4-digit FUNCTION INTEGER-OF-DAY
4-digit FUNCTION TEST-DATE-YYYYMMDD
4-digit FUNCTION TEST-DAY-YYYYDDD
4-digit FUNCTION WHEN-COMPILED
4-digit FUNCTION YEAR-TO-YYYY

2-digit ACCEPT FROM DATE

2-digit ACCEPT FROM DAY

4-digit ACCEPT FROM DATE YYYYMMDD
4-digit ACCEPT FROM DAY YYYYDDD

HP COBOL offers date functions that can be used in program logic that makes
decisions about year order. The full four-digit year handled by the six functions
listed should be used in internal program logic decisions that are based on years.
External displays of year information can continue to use two-digit formats when
that is appropriate.

You should check program logic in code that uses ACCEPT, to verify that
millennium transition dates are properly handled.

The use of two-digit years in applications does not automatically create a problem,
but a problem could exist. Programmers need to inspect each of their applications
for two-digit year dependencies and change any such instances to check the full
four-digit year value.

Developing HP COBOL Programs 1-63

2

Handling Numeric Data

Numeric data in HP COBOL is evaluated with respect to the algebraic value of
the operands.

This chapter describes the following topics concerning numeric data handling:
e How the compiler stores numeric data (Section 2.1)

e Specifying alignment (Section 2.2)

e Sign conventions (Section 2.3)

¢ Invalid values in numeric items (Section 2.4)

e Evaluating numeric items (Section 2.5)

e Using the MOVE statement (Section 2.6)

e Using the arithmetic statements (Section 2.7)

2.1 How the Compiler Stores Numeric Data
Understanding how data is stored will help you in the following situations:

e When you define data items to participate in group moves or to be the subject
of a REDEFINES clause

e When you move a complex record consisting of several levels of subordination,
to be sure that the receiving item is large enough to prevent data truncation

e When you need to use data storage concepts to minimize storage space,
particularly when the data file is large

The storage considerations applicable to tables are described in Chapter 4.

For each numeric data item, HP COBOL stores the numeric value, and a sign (f
an S appears in the PICTURE clause).

The USAGE clause of a numeric data item specifies the data’s internal format in
storage. When you do not specify a USAGE clause, the default usage is DISPLAY.
For further information about internal representations, refer to the USAGE
clause tables in the HP COBOL Reference Manual.

2.2 Specifying Alignment

In HP COBOL, all records, and elementary items with level 01 or 77, begin at
an address that is a multiple of 8 bytes (a quadword boundary). By default, the
HP COBOL compiler will locate a subordinate data item at the next unassigned
byte location. However, the SYNCHRONIZED clause, the -align flag (on
Tru64 UNIX), the /ALIGNMENT qualifier (on OpenVMS Alpha and 164), and
alignment directives can be used to modify this behavior, causing some numeric
data items to be aligned on a 2-, 4-, or 8-byte boundary. You can thus tune
data alignment for optimum performance, compatibility with HP COBOL for

Handling Numeric Data 2-1

Handling Numeric Data
2.2 Specifying Alignment

OpenVMS VAX, or flexibility. (See Chapter 16, Managing Memory and Data
Access and Chapter 15, Optimizing Your HP COBOL Program in this manual,
and refer to the SYNCHRONIZED clause in the HP COBOL Reference Manual
for a complete discussion of alignment.)

2.3 Sign Conventions

HP COBOL numeric items can be signed or unsigned. Note the following sign
conventions:

e If you store a signed result in an unsigned item, only the absolute value is
stored. Thus, unsigned items only contain the value zero or a positive value.

e The way HP COBOL stores signed results in signed data items depends on
the usage and the presence or absence of the SIGN clause.

e When an unsigned result is stored in a signed data item, the sign of the
stored result is positive.

Do not use unsigned numeric items in arithmetic operations. They usually cause
programming errors and are handled less efficiently than signed numeric items.
The following example shows how unsigned numeric items can cause errors:

DATA DIVISION

01 A PIC 9(5) COMP VALUE 2.
01 B PIC 9(5) COMP VALUE 5.

Then:

SUBTRACT B FROM A. (A = 3)
SUBTRACT 1 FROM A. (A = 2)
However:

COMPUTE A = (A - B) - 1 (A = 4)

The absence of signs for the numeric items A and B results in two different
answers after parallel arithmetic operations have been done. This occurs because
internal temporaries (required by the COMPUTE statement) are signed. Thus,
the result of (A-B) within the COMPUTE statement is —3; —3 minus 1 is —4 and
the value of A then becomes 4.

2.4 Invalid Values in Numeric Items

All HP COBOL arithmetic operations store valid values in their result items.
However, it is possible, through group moves or REDEFINES, to store data in
numeric items that do not conform to the data definitions of those items.

The results of arithmetic operations that use invalid data in numeric items are
undefined. You can use the -check decimal flag (on the Tru64 UNIX operating
system) or the /CHECK=DECIMAL qualifier (on the OpenVMS Alpha or 164
operating systems) to validate numeric digits when using display numeric
items in a numeric context; note that this flag or qualifier causes a program to
terminate abnormally if there is invalid data. In the case of data with blanks
(typically, records in a file), you can use the -convert leading blanks flag

(on Tru64 UNIX) or the /CONVERT qualifier (on OpenVMS Alpha or 164) to
change all blanks to zeroes before performing the arithmetic operation. If you
specify both the -check decimal and the -convert leading blanks flags (on

2-2 Handling Numeric Data

Handling Numeric Data
2.4 Invalid Values in Numeric Items

Tru64 UNIX), or both the /CHECK=DECIMAL and the /CONVERT qualifiers

on OpenVMS Alpha or 164, the conversion of blanks will be done prior to the
validation of the resulting numeric digits. Note that the use of either or both of
these qualifiers increases the execution time of the program. Refer to HP COBOL
online help (at the OpenVMS system prompt), or man cobol (on Tru64 UNIX) for
more information.

2.5 Evaluating Numeric ltems

HP COBOL provides several kinds of conditional expressions used for evaluating
numeric items. These conditional expressions include the following:

¢ The numeric relation condition that compares the item’s contents to another
numeric value

e The sign condition that examines the item’s sign to see if it is positive or
negative

¢ The class condition that inspects the item’s digit positions for valid numeric
characters

e The success/failure condition that checks the return status codes of COBOL
and non-COBOL procedures for success or failure conditions

The following sections explain these conditional expressions in detail.

2.5.1 Numeric Relation Test

A numeric relation test compares two numeric quantities and determines if the
specified relation between them is true. For example, the following statement
compares item FIELD1 to item FIELD2 and determines if the numeric value of
FIELD1 is greater than the numeric value of FIELD2:

IF FIELD1 > FIELD2 ...

If the relation condition is true, the program control takes the true path of the
statement.

Table 2—1 describes the relational operators.

Table 2-1 Numeric Relational Operator Descriptions

Operator Description

IS [INOT] GREATER THAN The first operand is greater than (or not greater
IS [NOT] > than) the second operand.

IS [NOT] LESS THAN The first operand is less than (or not less than)
IS [NOT] < the second operand.

IS [NOT] EQUAL TO The first operand is equal to (or not equal to) the
IS [NOT] = second operand.

IS GREATER THAN OR The first operand is greater than or equal to the
EQUAL TO second operand.

IS >=

IS LESS THAN OR EQUAL TO The first operand is less than or equal to the

IS <= second operand.

Comparison of two numeric operands is valid regardless of their USAGE clauses.

Handling Numeric Data 2-3

Handling Numeric Data
2.5 Evaluating Numeric Items

The length of the literal or arithmetic expression operands (in terms of the
number of digits represented) is not significant. Zero is a unique value, regardless
of the sign.

Unsigned numeric operands are assumed to be positive for comparison. The
results of relation tests involving invalid (nonnumeric) data in a numeric item are
undefined.

2.5.2 Numeric Sign Test

The sign test compares a numeric quantity to zero and determines if it is greater
than (positive), less than (negative), or equal to zero. Both the relation test and
the sign test can perform this function. For example, consider the following
relation test:

IF FIELDL > 0 ...
Now consider the following sign test:
IF FIELD1 POSITIVE ...

Both of these tests accomplish the same thing and always arrive at the same
result. The sign test, however, shortens the statement and makes it more obvious
that the sign is being tested.

Table 2—2 shows the sign tests and their equivalent relation tests.

Table 2-2 Sign Tests

Sign Test Equivalent Relation Test
IF FIELD1 POSITIVE ... IF FIELD1 > 0 ...

IF FIELD1 NOT POSITIVE ... IF FIELD1 NOT > O ...
IF FIELD1 NEGATIVE ... IF FIELD1 <O ...

IF FIELD1 NOT NEGATIVE ... IF FIELD1 NOT < O ...
IF FIELD1 ZERO ... IF FIELD1 =0 ...

IF FIELD1 NOT ZERO ... IF FIELD1 NOT =0 ...

Sign tests do not execute faster or slower than relation tests because the compiler
substitutes the equivalent relation test for every correctly written sign test.

2.5.3 Numeric Class Tests

The class test inspects an item to determine if it contains numeric or alphabetic
data. For example, the following statement determines if FIELD1 contains
numeric data:

IF FIELD1 IS NUMERIC ...

If the item is numeric, the test condition is true, and program control takes the
true path of the statement.

Both relation and sign tests determine only if an item’s contents are within a
certain range. Therefore, certain items in newly prepared data can pass both the
relation and sign tests and still contain data preparation errors.

The NUMERIC class test checks alphanumeric or numeric DISPLAY or COMP-3
usage items for valid numeric digits. If the item being tested contains a sign
(whether carried as an overpunched character or as a separate character), the
test checks it for a valid sign value. If the character position carrying the sign

2-4 Handling Numeric Data

Handling Numeric Data
2.5 Evaluating Numeric Iltems

contains an invalid sign value, the NUMERIC class test rejects the item, and
program control takes the false path of the IF statement.

The ALPHABETIC class test check is not valid for an operand described as
numeric.

2.5.4 Success/Failure Tests

The success/failure condition tests the return status codes of COBOL and non-
COBOL procedures for success or failure conditions. You test status-code-id as
follows:

status-code-id IS { SUCCESS }

FAILURE

You can use the SET statement to initialize or alter the status of status-code-id
(which must be a word or longword COMP integer represented by PIC 9(1 to 9)
COMP or PIC S9(1 to 9) COMP), as follows:

SET status-code-id TO { SUCCESS }

FAILURE

The SET statement is typically in the called program, but the calling program
may also SET the status of status-code-id. The SUCCESS class condition is true
if status-code-id has been set to SUCCESS, otherwise it is false. The FAILURE
class condition is true if status-code-id has been set to FAILURE, otherwise it is
false. The results are unspecified if status-code is not set.

Example 2—-1 shows the significant COBOL code relevant to a success/failure test.

Example 2-1 Success/Failure Test
PROGRAM-ID. MAIN-PROG.

01 RETURN-STATUS PIC S9(9) COMP.

CALL "PROG-1" GIVING RETURN-STATUS.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.

PROGRAM-ID. PROG-1.

WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION GIVING RETURN-STATUS.

IF NUM-1 = NUM-2

SET RETURN-STATUS TO SUCCESS
ELSE

SET RETURN-STATUS TO FAILURE.

EXIT PROGRAM.

END PROGRAM PROG-1.
END PROGRAM MAIN-PROG.

Handling Numeric Data 2-5

Handling Numeric Data
2.6 Using the MOVE Statement

2.6 Using the MOVE Statement

The MOVE statement moves the contents of one item into another item. The
following sample MOVE statement moves the contents of item FIELD1 into item
FIELD2:

MOVE FIELDl1 TO FIELD2.

This section considers MOVE statements as applied to numeric and numeric
edited data items.

2.6.1 Elementary Numeric Moves

If both items of a MOVE statement are elementary items and the receiving item
is numeric, it is an elementary numeric move. The sending item can be numeric,
alphanumeric, or numeric-edited. The elementary numeric move converts the
data format of the sending item to the data format of the receiving item.

An alphanumeric sending item can be either of the following:
¢ An elementary alphanumeric data item

e Any alphanumeric literal other than the figurative constants SPACE,
QUOTE, LOW-VALUE, or HIGH-VALUE

The elementary numeric move accepts the figurative constant ZERO and
considers it to be equivalent to the numeric literal 0. It treats alphanumeric
sending items as unsigned integers of DISPLAY usage.

When the sending item is numeric-edited, de-editing is applied to establish the
unedited numeric value, which may be signed; then the unedited numeric value
is moved to the receiving field.

If necessary, the numeric move operation converts the sending item to the data
format of the receiving item and aligns the sending item’s decimal point on that of
the receiving item. Then it moves the sending item’s digits to the corresponding
receiving item’s digits.

If the sending item has more digit positions than the receiving item, the decimal
point alignment operation truncates the value of the sending item, with resulting
loss of digits.

The end truncated (high-order or low-order) depends upon the number of sending
item digit positions that find matches on each side of the receiving item’s decimal
point. If the receiving item has fewer digit positions on both sides of the decimal
point, the operation truncates both ends of the sending item. Thus, if an item
described as PIC 999V999 is moved to an item described as PIC 99V99, it loses
one digit from the left end and one from the right end.

In the execution part of the following examples, the caret () indicates the
assumed stored decimal point position:

01 AMOUNT1 PIC 99V99 VALUE ZEROS.

MOVE 123.321 TO AMOUNTI.

Before execution: 00700
After execution: 23"32

2-6 Handling Numeric Data

Handling Numeric Data
2.6 Using the MOVE Statement

If the sending item has fewer digit positions than the receiving item, the move
operation supplies zeros for all unfilled digit positions.

01 TOTAL-AMT PIC 999V99 VALUE ZEROS.

MOVE 1 TO TOTAL-AMT.
Before execution: 000700
After execution: 001700
The following statements produce the same results:
MOVE 001.00 TO TOTAL-AMT.
MOVE "1" TO TOTAL-AMT.

Consider the following two MOVE statements and their truncating and zero-
filling effects:

Statement TOTAL-AMT After Execution
MOVE 00100 TO TOTAL-AMT 100700
MOVE "00100" TO TOTAL-AMT 100700

Literals with leading or trailing zeros have no advantage in space or execution
speed in HP COBOL, and the zeros are often lost by decimal point alignment.

The MOVE statement’s receiving item dictates how the sign will be moved. When
the receiving item is a signed numeric item, the sign from the sending item is
placed in it. If the sending item is unsigned, and the receiving item is signed, a
positive sign is placed in the receiving item. If the sending item is signed and the
receiving item is unsigned, the absolute value of the sending item is moved to the
receiving item.

2.6.2 Elementary Numeric-Edited Moves

An elementary numeric move to a numeric-edited receiving item is considered an
elementary numeric-edited move. The sending item of an elementary numeric-
edited move can be numeric, numeric-edited, or alphanumeric. When the sending
item is numeric-edited, de-editing is applied to establish the item’s unedited
numeric value, which may be signed; then the unedited numeric value is moved
to the receiving field. Alphanumeric sending items in numeric-edited moves are
considered unsigned DISPLAY usage integers.

A numeric-edited item PICTURE can contain 9, V, and P, but to qualify as
numeric-edited, it must also contain one or more of the following editing symbols:

Z

B

Asterisk (*)
Period (.)

Plus sign (+)
Minus sign (-)
CR

DB

Currency symbol
Slash (/)
Comma (,)
Zero (0)

Handling Numeric Data 2-7

Handling Numeric Data
2.6 Using the MOVE Statement

For a complete description of these symbols, refer to the HP COBOL Reference
Manual.

The numeric-edited move operation first converts the sending item to DISPLAY
usage and aligns both items on their decimal point locations. The sending item
is truncated or zero-filled until it has the same number of digit positions on both
sides of the decimal point as the receiving item. The operation then moves the
sending item to the receiving item, following the HP COBOL editing rules.

The rules allow the numeric-edited move operation to perform any of the following
editing functions:

¢ Replace leading zeros with either spaces or asterisks.

¢ Float a currency sign and a plus or minus sign through suppressed zeros,
inserting the sign at either end of the item.

e Insert zeros, spaces, slashes, and/or the symbols CR or DB.

¢ Insert commas and a decimal point (or decimal points and a comma if

DECIMAL-POINT IS COMMA).

Table 2-3 illustrates several of these functions, which are invoked by the
statement:

MOVE FLD-B TO TOTAL-AMT.

Assume that FLD-B is described as S9999V99. Note that the caret (*) indicates
an assumed decimal point in Table 2—-3. In all but two of the examples, the sign
of FLD-B is leading separate. Trailing overpunch signs (the sign of the number
encoded into the rightmost digit) are used in the other two FLD-B data examples.

Table 2-3 Numeric Editing

FLD-B TOTAL-AMT
PICTURE String Contents After MOVE

+0023700 7777.99 23.00
-0023"00 7777.99 23.00

008579P ++++.99 -85.97
+1234700 7,777.99 1,234.00
+0012734 $,$$%.99 $12.34
+0000734 $,$$9.99 $0.34
+1234700 $$,$$$.99 $1,234.00
+0012734 $$9,999.99 $0,012.34
+0012734 $$$$,$$$.99 $12.34
+0000700 $$$,$$$.$$

001223M ++++.99 -12.34
+0012734 Gorw ik 9Q Gkt 12 34
+1234756 7,7.77.99+ 1,234.56+

2-8 Handling Numeric Data

(continued on next page)

Handling Numeric Data
2.6 Using the MOVE Statement

Table 2-3 (Cont.) Numeric Editing

FLD-B TOTAL-AMT
PICTURE String Contents After MOVE
-6543721 $,$$%$,$$$.99DB $6,543.21DB!

IThe output includes DB if a negative value is moved.

The currency symbol ($ or other currency sign) and the editing sign control
symbols (+ and —) are the only floating symbols. To float a symbol, enter a string
of two or more occurrences of that symbol, one for each character position over
which you want the symbol to float.

2.6.3 Subscripted Moves

Any item (other than a data item that is not subordinate to an OCCURS clause)
of a MOVE statement can be subscripted, and the referenced item can be used to
subscript another name in the same statement.

For additional information, see Section 3.6.4, Subscripted Moves in Chapter 3,
Handling Nonnumeric Data.

2.6.4 Common Move Errors

Programmers most commonly make the following errors when writing MOVE
statements:

¢ Placing an incorrect number of replacement characters in a numeric edited
item

e Moving nonnumeric data into numeric items with group moves

e Trying to float the currency sign ($) or plus (+) insertion characters past
the decimal point to force zero values to appear as .00 instead of spaces (use
$$.99 or .99)

e Forgetting that the currency sign ($), plus sign (+), minus sign (-), CR,
or DB insertion characters require one or two additional positions on the
leftmost end that cannot be replaced by a digit (unlike the asterisk (*)
insertion character, which can be completely replaced)

2.7 Using the Arithmetic Statements

The HP COBOL arithmetic statements allow programs to perform arithmetic
operations on numeric data. Large values present various problems, and COBOL
command qualifiers can help resolve or mitigate them. The following sections
discuss these topics.

2.7.1 Temporary Work Items

HP COBOL allows numeric items and literals with up to 31 decimal digits on
Alpha and 164, and up to 18 decimal digits on VAX. (See Section 2.7.2 for more
specific information.) It is quite easy to construct arithmetic expressions that
produce too many digits.

Handling Numeric Data 2-9

Handling Numeric Data
2.7 Using the Arithmetic Statements

Most forms of the arithmetic statements perform their operations in temporary
work locations, then move the results to the receiving items, aligning the decimal
points and truncating or zero-filling the resultant values. The actual size of a
temporary work item (also called an intermediate result item) varies for each
statement; it is determined at compile time, based on the sizes of the operands
used by the statement and the arithmetic operation being performed. Should the
temporary work item exceed the maximum size, truncation occurs.

On Alpha and 164 systems, the maximum temporary work item size is 31 digits
for standard arithmetic and for native CIT4 arithmetic, and is 38 digits for some
operations using native float or native CIT3. ¢

On VAX systems, the situation is different. The temporary work item has two
forms, a scaled integer form and a software floating-point form. The scaled
integer form has a maximum size of 31 numeric digits for a program compiled
with the /INSTRUCTION_SET = DECIMAL_STRING or GENERIC qualifier,
and a maximum of 38 digits for /INSTRUCTION_SET = NODECIMAL_STRING.
When the compiler determines that the size of the intermediate result exceeds the
maximum scaled integer size, it uses a software floating-point intermediate item
and keeps the most significant 18 digits (for all settings of the /INSTRUCTION_
SET qualifier).

Programs should not arbitrarily specify sizes significantly larger than the values
actually anticipated for the lifetime of the application. Although the generous
limits in HP COBOL are useful for many applications, specifying many more
digits than needed is likely to add extra processing cycles and complexity that is
wasteful.

2.7.2 Standard and Native Arithmetic (Alpha, 164)

HP COBOL supports two modes of arithmetic, standard and native. Standard
arithmetic is preferable for greater precision with large values and for
compatibility with other standard implementations of COBOL. These
considerations are sometimes overridden by the need for compatibility with
earlier versions of HP COBOL or for compatibility with HP COBOL for OpenVMS
VAX, in which case native arithmetic is the appropriate mode.

Native arithmetic has three submodes: FLOAT, CIT3, and CIT4. (CIT stands for
COBOL Intermediate Temporary).

You can specify the arithmetic mode and submode with the two COBOL
command-line qualifiers /ARITHMETIC (or -arithmetic) and /MATH_
INTERMEDIATE (or -math_intermediate). The use of these qualifiers is
described in this section.

2.7.2.1 Using the /IMATH_INTERMEDIATE Qualifier (Alpha, 164)

You can specify the intermediate data type to be used when the result of an
arithmetic operation cannot be represented exactly. This data type affects the
truncation of the intermediate result and the consequent precision. It also affects
compatibility of arithmetic results with previous versions of COBOL and other
implementations of COBOL.

The three options of the /MATH_INTERMEDIATE (or -math_intermediate)
qualifier are FLOAT (the default), CIT3, and CIT4, as follows:

2-10 Handling Numeric Data

Handling Numeric Data
2.7 Using the Arithmetic Statements

FLOAT Selects double-precision binary floating-point for the intermediate data type.
Intermediate values are truncated to the most significant 53 bits, with an 11-bit
exponent, resulting in approximately 15 decimal digits of precision. FLOAT
is the default, and it provides for compatibility with earlier versions of HP
COBOL, but not with HP COBOL for OpenVMS VAX. FLOAT has been used
since Version 1.0 of HP COBOL on Alpha.

CIT3 Selects Cobol Intermediate Temporary (design 3) for the intermediate data
type. Intermediate values are truncated to the most significant 18 decimal
digits, with a 2-digit exponent. CIT3 provides for increased compatibility with
HP COBOL for OpenVMS VAX; even with CIT3, however, there are still some
differences, which are described in Section B.4.12.

CIT4 Selects Cobol Intermediate Temporary (design 4) for the intermediate data
type. Intermediate values are truncated to the most significant 32 decimal
digits, with a 2-digit exponent. CIT4 has the greatest compatibility with the
draft ANSI Standard. CIT4 is the option of choice for greatest precision and for
conformance to future standards and compatibility with other implementations
of COBOL. CIT4 is strongly recommended for programs that use numeric items
with more than 18 digits or that have complicated expressions.

In addition to the precision difference, CIT4 arithmetic has the same differences
and restrictions as shown in Section B.4.12 for CIT3 arithmetic.

The default is /MATH_INTERMEDIATE=FLOAT (or -math_intermediate float).
If you specify /ARITHMETIC=STANDARD (discussed in Section 2.7.2.2), this will
force /MATH_INTERMEDIATE=CIT4.

Example of Different Arithmetic Results (Alpha, 164)

The following example illustrates the different results that you can get with
FLOAT, CIT3, and CIT4:

IDENTIFICATION DIVISION.
PROGRAM-ID. MUL31.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 XD PIC S9(31) VALUE 3.
01 YD PIC S9(31) VALUE 258718314234781388692555698765.
01 2D PIC S9(31).
PROCEDURE DIVISION.
0.
MULTIPLY XD BY YD GIVING ZD
ON SIZE ERROR DISPLAY "Size error raised"
NOT ON SIZE ERROR DISPLAY ZD WITH CONVERSION.

The compiler relies on the number of digits implied by the pictures of decimal and
integer operands. Here it assumes that XD has 31 digits and YD has 31 digits.
The product could require 62 digits, which is larger than the largest fixed-point
arithmetic type available to the compiler. Depending on the intermediate data
type chosen, this program gets several different results.

Intermediate maintains
MATH 7D the most significant
FLOAT 776154942704344283789821739008 53 bits
CIT3 776154942704344164000000000000 18 digits
CIT4 776154942704344166077667096295 32 digits

Handling Numeric Data 2-11

Handling Numeric Data
2.7 Using the Arithmetic Statements

Other Consequences of Intermediate Range Differences (Alpha, 164)

Because each intermediate data type has a different maximum magnitude, an
arithmetic statement can raise the size error condition with one arithmetic mode
but not with another.

For example, the value +0.999 999 999 999 999 999E+99 (spaces added for
readability) is representable in any of the intermediate data types. By contrast,
the larger value +0.999 999 999 999 999 999 9E+99 cannot be represented in a
CIT3 intermediate data item. Such an operation would cause an overflow, raising
the size error condition. This value is representable, however, in a FLOAT or
CIT4 intermediate data item; the size error condition would not be raised.

The value 1.0E+99 cannot be represented in either CIT3 or CIT4 form, but is
representable in FLOAT form.

Similarly, because each intermediate data type has a different minimum
magnitude, an arithmetic statement can raise the size error condition for
underflow with one arithmetic mode but not another. (Underflow does not raise
the size error condition when FLOAT arithmetic is used.)

A literal also can be valid with one arithmetic mode but not with another,
resulting in different HIGHTRUNC and LOWTRUNC informational diagnostics.
When a literal cannot be represented in an intermediate data item, the value
used is undefined.

Arithmetic expressions in nonarithmetic statements are also affected.
Nonarithmetic statements, such as the IF statement, allow arithmetic expressions
to be used, but do not provide a mechanism like the ON SIZE ERROR phrase to
detect errors in evaluation. If such an error occurs, the behavior of the statement
is unpredictable; in the case of an IF statement, result of the comparison is
undefined.

Similar considerations apply in other contexts, such as the use of arithmetic
expressions as subscript expressions or reference-modification components.

2.7.2.2 Using the /ARITHMETIC Qualifier (Alpha, 164)

You can specify /ARITHMETIC=NATIVE or STANDARD (-arithmetic native
or standard) on the COBOL command line to control whether native arithmetic
or standard arithmetic is used to evaluate arithmetic operations and statements.
These options have the following effects:

NATIVE Arithmetic operations will produce results that are reasonably compatible
with releases for HP COBOL for OpenVMS Alpha prior to Version 2.7 and
also with HP COBOL for OpenVMS VAX.

STANDARD Most common arithmetic operations will produce results that are
predictable, reasonable, and portable. In this context, portable means
that the results will be identical from implementation to implementation.
/ARITHMETIC=STANDARD forces /MATH_INTERMEDIATE=CIT4
(described in Section 2.7.2.1).

The default is /ARITHMETIC=NATIVE (-arithmetic native).

Using the OPTIONS Paragraph (Alpha, 164)

An alternative way to specify native or standard arithmetic is to use the
OPTIONS paragraph in the Identification Division of your HP COBOL program.
There you can specify ARITHMETIC IS NATIVE or STANDARD. Refer to the HP
COBOL Reference Manual for the syntax and details. ¢

2-12 Handling Numeric Data

Handling Numeric Data
2.7 Using the Arithmetic Statements

2.7.3 Specifying a Truncation Qualifier

The -trunc flag (on Tru64 UNIX) or the /[INOJTRUNCATE qualifier
(on OpenVMS) specifies how the HP COBOL compiler stores values in
COMPUTATIONAL receiving items.

By default (assuming that the -trunc flag is turned off, or /NOTRUNCATE is
set), HP COBOL truncates values according to the Alpha or 164 hardware storage
unit (word, longword, or quadword) allocated to the receiving item.

If you specify -trunc or /TRUNCATE, the compiler truncates values according to
the number of decimal digits specified by the PICTURE clause.

2.7.4 Using the ROUNDED Phrase

Rounding is an important option that you can use with arithmetic operations.

You can use the ROUNDED phrase with any HP COBOL arithmetic statement.
Rounding takes place only when the ROUNDED phrase requests it, and then
only if the intermediate result has low-order digits that cannot be stored in the
result.

HP COBOL rounds off by adding a 5 to the leftmost truncated digit of the
absolute value of the intermediate result before it stores that result.

Table 2—4 shows several ROUNDING examples.

Table 2-4 ROUNDING

PICTURE clause Initial Value

03 ITEMA PIC S9(5)V9999. 12345.2222

03 ITEMB PIC S9(5)V99. 54321.11

03 ITEMC PIC S9999. 1234

03 ITEMD PIC S9999P. 0

03 ITEME PIC S99V99 VALUE 9. 9.00

03 ITEMF PIC S99V99 VALUE 24. 24.00
Intermediate ROUNDED

Arithmetic Statement Result Result Value

ADD ITEMA TO ITEMB ROUNDED. 066666.3322 66666.33

MULTIPLY ITEMC BY 2 02468 024701

GIVING ITEMD ROUNDED.

DIVIDE ITEME INTO ITEMF 02.666 02.67

ROUNDED.

DIVIDE ITEME INTO ITEMF 02.666 0003

GIVING ITEMC ROUNDED.

IThe trailing 0 is implied by the P in the PICTURE clause.

2.7.4.1 ROUNDED with REMAINDER

The remainder computation uses an intermediate field that is truncated, rather
than rounded, when you use the DIVIDE statement with both the ROUNDED
and REMAINDER options.

Handling Numeric Data 2-13

Handling Numeric Data
2.7 Using the Arithmetic Statements

2.7.5 Using the SIZE ERROR Phrase

The SIZE ERROR phrase detects the loss of high-order nonzero digits in the
results of HP COBOL arithmetic operations. It does this by checking the absolute
value of an arithmetic result against the PICTURE character-string of each
resultant identifier. For example, if the absolute value of the result is 100.05,
and the PICTURE character-string of the resultant identifier is 99V99, the SIZE
ERROR phrase detects that the high-order digit, 1, will be lost, and the size error
condition will be raised.

You can use the phrase in any HP COBOL arithmetic statement.

When the execution of a statement with no ON SIZE ERROR phrase results in

a size error, and native arithmetic is used, the values of all resultant identifiers
are undefined. When standard arithmetic is used, or when the same statement
includes an ON SIZE ERROR phrase, receiving items for which the size error
exists are left unaltered; the result is stored in those receiving items for which no
size error exists. The ON SIZE ERROR imperative phrase is then executed.

If the statement contains both ROUNDED and SIZE ERROR phrases, the result
is rounded before a size error check is made.

The SIZE ERROR phrase cannot be used with numeric MOVE statements. Thus,
if a program moves a numeric quantity to a smaller numeric item, it can lose
high-order digits. For example, consider the following move of an item to a
smaller item:

01 AMOUNT-A PIC S9(8)V99.
01 AMOUNT-B PIC S9(4)V99.

MOVE AMOUNT-A TO AMOUNT-B.

This MOVE operation always loses four of AMOUNT-A’s high-order digits.
The statement can be tailored in one of three ways, as shown in the following
example, to determine whether these digits are zero or nonzero:

1. IF AMOUNT-A NOT > 9999.99
MOVE AMOUNT-A TO AMOUNT-B
ELSE ...
2. ADD ZERO AMOUNT-A GIVING AMOUNT-B
ON SIZE ERROR ...
3. COMPUTE AMOUNT-B = AMOUNT-A
ON SIZE ERROR ...

All three alternatives allow the MOVE operation to occur only if AMOUNT-A
loses no significant digits. If the value in AMOUNT-A is too large, all three avoid
altering AMOUNT-B and take the alternate execution path.

You can also use a NOT ON SIZE ERROR phrase to branch to, or perform,
sections of code only when no size error occurs.

2.7.6 Using the GIVING Phrase

The GIVING phrase moves the intermediate result of an arithmetic operation
to a receiving item. The phrase acts exactly like a MOVE statement in which
the intermediate result serves as the sending item, and the data item following
the word GIVING serves as the receiving item. When a statement contains a
GIVING phrase, you can have a numeric-edited receiving item.

The receiving item can also have the ROUNDED phrase. If the receiving item is
also numeric-edited, rounding takes place before the editing.

2-14 Handling Numeric Data

Handling Numeric Data
2.7 Using the Arithmetic Statements

The GIVING phrase can be used with the ADD, SUBTRACT, MULTIPLY, and
DIVIDE statements. For example:

ADD A,B GIVING C.

2.7.7 Multiple Operands in ADD and SUBTRACT Statements

Both the ADD and SUBTRACT statements can contain a series of operands
preceding the word TO, FROM, or GIVING.

If there are multiple operands in either of these statements, the operands are
added together. The intermediate result of that operation becomes a single
operand to be added to or subtracted from the receiving item. In the following
examples, TEMP is an intermediate result item:

1.

Statement: ADD A,B,C,D, TO E,F,G,H.

Equivalent coding: ADD A, B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING TEMP.
ADD TEMP, E, GIVING E.
ADD TEMP, F, GIVING F.
ADD TEMP, G, GIVING G.
ADD TEMP, H, GIVING H.

Statement: SUBTRACT A, B, C, FROM D.

Equivalent coding: ADD A, B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
SUBTRACT TEMP FROM D, GIVING D.

Statement: ADD A,B,C,D, GIVING E.

Equivalent coding: ADD A B, GIVING TEMP.
ADD TEMP, C, GIVING TEMP.
ADD TEMP, D, GIVING E.

As in all HP COBOL statements, the commas in these statements are optional.

2.7.8 Common Errors in Arithmetic Statements

Programmers most commonly make the following errors when using arithmetic
statements:

Using an alphanumeric item in an arithmetic statement. The MOVE
statement allows data movement between alphanumeric items and certain
numeric items, but arithmetic statements require that all items be numeric.

Writing the ADD or SUBTRACT statements without the GIVING phrase, and
attempting to put the result into a numeric-edited item.

Subtracting a 1 from a numeric counter that was described as an unsigned
quantity and then testing for a value less than zero.

Forgetting that the MULTIPLY statement, without the GIVING phrase,
stores the result back into the second operand (multiplier).

Performing a series of calculations that generates an intermediate result
larger than 18 digits when the final result will have 18 or fewer digits. You
can prevent this problem by interspersing divisions with multiplications or
by dropping nonsignificant digits after multiplying large numbers or numbers
with many decimal places. Also, avoid use of the COMPUTE statement to
keep from performing such calculations implicitly.

Handling Numeric Data 2-15

Handling Numeric Data
2.7 Using the Arithmetic Statements

e Forgetting that when an arithmetic statement has multiple receiving items
you must specify the ROUNDED phrase for each receiving item you want
rounded.

e Forgetting that the ON SIZE ERROR phrase applies to all receiving items
in an arithmetic statement containing multiple receiving items. Only those
receiving items for which a size error condition is raised are left unaltered.
The ON SIZE ERROR imperative statement is executed after all the receiving
items are processed.

¢ Controlling a loop by adding to a numeric counter that was described as PIC
9, and then testing for a value of 10 or greater to exit the loop.

¢ Forgetting that ROUNDING is done before the ON SIZE ERROR test.

2-16 Handling Numeric Data

3

Handling Nonnumeric Data

Nonnumeric data in HP COBOL is evaluated with respect to a specified
collating sequence of the operands.

The following information is in this chapter:

e How the compiler stores nonnumeric data (Section 3.1)
e Data organization (Section 3.2)

e Special characters (Section 3.3)

e Testing nonnumeric items (Section 3.4)

e Data movement (Section 3.5)

e Using the MOVE statement (Section 3.6)

3.1 How the Compiler Stores Nonnumeric Data

COBOL programs hold their data in items whose sizes are described in their
source programs. The size of these items is thus fixed during compilation for the
lifespan of the resulting object program.

Items in a COBOL program belong to any of the following three data classes:
e Numeric—Can contain only numeric values.

¢ Alphabetic—Can contain only A to Z (uppercase or lowercase) and space
characters.

e Alphanumeric—Can contain the following types of values:
— All alphabetic
— All numeric
— A mixture of alphabetic and numeric
— Any character from the ASCII character set
The data description of an item specifies which class that item belongs to.

Classes are further subdivided into categories. Alphanumeric items can be
numeric edited, alphanumeric edited, or alphanumeric. Every elementary item,
except for an index data item, belongs to one of the classes and its categories.
The class of a group item is treated as alphanumeric regardless of the classes of
subordinate elementary items.

If the data description of an alphanumeric item specifies that certain editing
operations be performed on any value that is moved into it, that item is called an
alphanumeric edited item.

As you read this chapter, keep in mind the distinction between the class or
category of a data item and the actual value that the item contains.

Handling Nonnumeric Data 3-1

Handling Nonnumeric Data
3.1 How the Compiler Stores Nonnumeric Data

Sometimes the text refers to alphabetic, alphanumeric, and alphanumeric edited
data items as nonnumeric data items to distinguish them from items that are
specifically numeric.

Regardless of the class of an item, it is usually possible at run time to store an
invalid value in the item. Thus, nonnumeric ASCII characters can be placed

in an item described as numeric, and an alphabetic item can be loaded with
nonalphabetic characters. Invalid values can cause errors in output or run-time
errors.

3.2 Data Organization

An HP COBOL record consists of a set of data description entries that describe
record characteristics; it must have an 01 or 77 level number. A data description
entry can be either a group item or an elementary item.

All of the records used by HP COBOL programs (except for certain registers and
switches) must be described in the source program’s Data Division. The compiler
allocates memory space for these items (except for Linkage Section items) and
fixes their size at compilation time.

The following sections explain how the compiler sets up storage for group and
elementary data items.

3.2.1 Group ltems

A group item is a data item that is followed by one or more elementary items or
other group items, all of which have higher-valued level numbers than the group
to which they are subordinate.

The size of a group item is the sum of the sizes of its subordinate elementary
items. The compiler considers all group items to be alphanumeric DISPLAY items
regardless of the class and usage of their subordinate elementary items.

3.2.2 Elementary Items

An elementary item is a data item that has no subordinate data item.

The size of an elementary item is determined by the number of symbols that
represent character positions contained in the PICTURE character-string. For
example, consider this record description:

01 TRANREC.
03 FIELD-1 PIC X(7).
03 FIELD-2 PIC S9(5)V99.

Both elementary items require seven bytes of memory; however, item FIELD-1
contains seven alphanumeric characters while item FIELD-2 contains seven
decimal digits, an operational sign, and an implied decimal point. Operations on
such items are independent of the mapping of the item into memory words (32-bit
words that hold four 8-bit bytes). An item can begin in the leftmost or rightmost
byte of a word with no effect on the function of any operation that refers to that
item. (However, the position of items in memory can have an effect on run-time
performance.)

In effect, the compiler sees memory as a continuous array of bytes, not words.
This becomes particularly important when you are defining a table using the
OCCURS clause (see Chapter 4).

3-2 Handling Nonnumeric Data

Handling Nonnumeric Data
3.2 Data Organization

In HP COBOL, all records, and elementary items with level 01 or 77, begin at an
address that is a multiple of 8 bytes (a quadword boundary). By default, the HP
COBOL compiler will locate a subordinate data item at the next unassigned byte
location.

Refer to Chapter 16, Chapter 15, and the SYNCHRONIZED clause in the
HP COBOL Reference Manual for a complete discussion of alignment.

3.3 Special Characters

HP COBOL allows you to handle any of the 128 characters of the ASCII character
set as alphanumeric data, even though many of the characters are control
characters, which usually direct input/output devices. Generally, alphanumeric
data manipulations attach no meaning to the 8th bit of an 8-bit byte. Thus, you
can move and compare these control characters in the same manner as alphabetic
and numeric characters.

Note

Some control characters have 0 in the high-order bit and are part of the
ASCII character set, while others have 1 in the high order bit and are not
part of the ASCII character set.

Although the object program can manipulate all ASCII characters, certain control
characters cannot appear in nonnumeric literals because the compiler uses them
to delimit the source text.

You can place special characters into items of the object program by defining
symbolic characters in the SPECIAL-NAMES paragraph or by using the
EXTERNAL clause. Refer to the HP COBOL Reference Manual for information
on these two topics.

The ASCII character set listed in the HP COBOL Reference Manual indicates the
decimal value for any ASCII character.

3.4 Testing Nonnumeric ltems

The following sections describe the relation and class tests as they apply to
nonnumeric items.

3.4.1 Relation Tests of Nonnumeric Items

An IF statement with a relation condition can compare the value in a nonnumeric
data item with another value and use the result to alter the flow of control in the
program.

An IF statement with a relation condition compares two operands. Either of
these operands can be an identifier or a literal, but they cannot both be literals.
If the stated relation exists between the two operands, the relation condition is
true.

When coding a relational operator, leave a space before and after each reserved
word. When the reserved word NOT is present, the compiler considers it and the
next key word or relational character to be a single relational operator defining
the comparison. Table 3—-1 shows the meanings of the relational operators.

Handling Nonnumeric Data 3-3

Handling Nonnumeric Data
3.4 Testing Nonnumeric Items

Table 3-1 Relational Operator Descriptions

Operator Description

IS [NOT] GREATER THAN The first operand is greater than (or not greater
IS [NOT] > than) the second operand.

IS [NOT] LESS THAN The first operand is less than (or not less than) the
IS [NOT] < second operand.

IS [INOT] EQUAL TO The first operand is equal to (or not equal to) the
IS [NOT] = second operand.

IS GREATER THAN OR The first operand is greater than or equal to the
EQUAL TO second operand.

IS >=

IS LESS THAN OR EQUAL TO The first operand is less than or equal to the second
IS <= operand.

3.4.1.1 Classes of Data
HP COBOL allows comparison of both numeric class operands and nonnumeric
class operands; however, it handles each class of data differently. For example, it
allows a comparison of two numeric operands regardless of the formats specified
in their respective USAGE clauses, but it requires that all other comparisons
(including comparisons of any group items) be between operands with the same
usage. It compares numeric class operands with respect to their algebraic values
and nonnumeric (or numeric and nonnumeric) class operands with respect to a
specified collating sequence. (See Section 2.5.1 for numeric comparisons.)

If only one of the operands is numeric, it must be an integer data item or an
integer literal, and it must be DISPLAY usage. In these cases, the manner
in which the compiler handles numeric operands depends on the nonnumeric
operand, as follows:

e If the nonnumeric operand is an elementary item or a literal, the compiler
treats the numeric operand as if it had been moved into an alphanumeric
data item the same size as the numeric operand and then compared. This
causes any operational sign, whether carried as a separate character or as
an overpunched character, to be stripped from the numeric item so that it
appears to be an unsigned quantity.

In addition, if the PICTURE character-string of the numeric item contains
trailing P characters, indicating that there are assumed integer positions that
are not actually present, they are filled with zero digits. Thus, an item with
a PICTURE character-string of S9999PPP is moved to a temporary location
where it is described as 9999999. If its value is 432J (—4321), the value in
the temporary location will be 4321000. The numeric digits take part in the
comparison.

e If the nonnumeric operand is a group item, the compiler treats the numeric
operand as if it had been moved into a group item the same size as the
numeric operand and then compared. This is equivalent to a group move.

The compiler ignores the description of the numeric item (except for length)
and, therefore, includes in its length any operational sign, whether carried as
a separate character or as an overpunched character. Overpunched characters
are never ASCII numeric digits. They are characters ranging from A to R,
left brace ({), or right brace (}). Thus, the sign and the digits, stored as
ASCII bytes, take part in the comparison, and zeros are not supplied for P
characters in the PICTURE character-string.

3—-4 Handling Nonnumeric Data

Handling Nonnumeric Data
3.4 Testing Nonnumeric Items

The compiler does not accept a comparison between a noninteger numeric operand
and a nonnumeric operand. If you try to compare these two items, you receive a
diagnostic message at compile time.

3.4.1.2 Comparison Operations

If the two operands are acceptable, the compiler compares them character by
character. The compiler starts at the first byte and compares the corresponding
bytes until it either encounters a pair of unequal bytes or reaches the last byte of
the longer operand.

If the compiler encounters a pair of unequal characters, it considers their relative
position in the collating sequence. The operand with the character that is
positioned higher in the collating sequence is the greater operand.

If the operands have different lengths, the comparison proceeds as though the
shorter operand were extended on the right by sufficient ASCII spaces (decimal
32) to make both operands the same length.

If all character pairs are equal, the operands are equal.

3.4.2 Class Tests for Nonnumeric ltems

An IF statement with a class condition tests the value in a nonnumeric data item
(USAGE DISPLAY only) to determine whether it contains numeric, alphabetic, or
user-defined data and uses the result to alter the flow of control in the program.
For example:

IF ITEM-1 IS NUMERIC...
IF ITEM-2 IS ALPHABETIC...
IF ITEM-3 IS NOT NUMERIC...

If the data item consists entirely of the ASCII characters 0 to 9, with or without
the operational sign, the class condition is NUMERIC. If the item consists

entirely of the ASCII characters A to Z (upper- or lowercase) and spaces, the class
condition is ALPHABETIC.

The ALPHABETIC-LOWER test is true if the operand contains any combination
of the lowercase alphabetic characters a to z, and the space. Otherwise the test is
false.

The ALPHABETIC-UPPER test is true if the operand contains any combination
of the uppercase alphabetical characters A to Z, and the space. Otherwise, the
test is false.

You can also perform a class test on a data item that you define with the CLASS
clause of the SPECIAL-NAMES paragraph.

A class test is true if the operand consists entirely of the characters listed in the
definition of the CLASS-NAME in the SPECIAL-NAMES paragraph. Otherwise,
the test is false.

When the reserved word NOT is present, the compiler considers it and the
next key word as one class condition defining the class test to be executed.
For example, NOT NUMERIC determines if an operand contains at least one
nonnumeric character.

If the item being tested is described as a numeric data item, it can only be tested
as NUMERIC or NOT NUMERIC. The NUMERIC test cannot examine either of
the following:

e An item described as alphabetic

Handling Nonnumeric Data 3-5

Handling Nonnumeric Data
3.4 Testing Nonnumeric Items

e A group item containing elementary items whose data descriptions indicate
the presence of operational signs

For further information on using class conditions with numeric items, refer to the
HP COBOL Reference Manual.

3.5 Data Movement

Three HP COBOL statements (MOVE, STRING, and UNSTRING) perform most
of the data movement operations required by business-oriented programs. The
MOVE statement simply moves data from one item to another. The STRING
statement concatenates a series of sending items into a single receiving item. The
UNSTRING statement disperses a single sending item into multiple receiving
items. Section 3.6 describes the MOVE statement. Chapter 5 describes STRING
and UNSTRING.

The MOVE statement handles most data movement operations on character
strings. However, it is limited in its ability to handle multiple items. For
example, it cannot, by itself, concatenate a series of sending items into a single
receiving item or disperse a single sending item into several receiving items.

Two MOVE statements will, however, bring the contents of two items together
into a third (receiving) item if the receiving item has been subdivided with
subordinate elementary items that match the two sending items in size. If other
items are to be concatenated into the third item, and they differ in size from the
first two items, then the receiving item requires additional subdivisions (through
redefinition).

Example 3-1 demonstrates item concatenation using two MOVE statements.

Example 3—-1 Item Concatenation Using Two MOVE Statements

01 SEND-1 PIC X(5) VALUE "FIRST".
01 SEND-2 PIC X(6) VALUE "SECOND".
01 RECEIVE-GROUP.

05 REC-1 PIC X(5).

05 REC-2 PIC X(6).
PROCEDURE DIVISION.
A00-BEGIN.

MOVE SEND-1 TO REC-1.

MOVE SEND-2 TO REC-2.

DISPLAY RECEIVE-GROUP.

STOP RUN.

The result of the concatenation follows:
FIRSTSECOND

Two MOVE statements can also disperse the contents of one sending item to
several receiving items. The first MOVE statement moves the leftmost end of
the sending item to a receiving item; then the second MOVE statement moves
the rightmost end of the sending item to another receiving item. (The second
receiving item must first be described with the JUSTIFIED clause.) Characters
from the middle of the sending item cannot easily be moved to any receiving item
without extensive redefinitions of the sending item or a reference modification
loop (as with concatenation).

3-6 Handling Nonnumeric Data

Handling Nonnumeric Data
3.5 Data Movement

The STRING and UNSTRING statements handle concatenation and dispersion
more easily than compound moves. Reference modification handles substring
operations more easily than compound moves, STRING, or UNSTRING.

3.6 Using the MOVE Statement

The MOVE statement moves the contents of one item into another. For example:

MOVE FIELD1 TO FIELD2
MOVE CORRESPONDING FIELD1 TO FIELD2

FIELDL1 is the sending item name, and FIELDZ2 is the receiving item name.

The first statement causes the compiler to move the contents of FIELD1 into
FIELD2. The two items need not be the same size, class, or usage; they can be
either group or elementary items. If the two items are not the same length, the
compiler aligns them on one end or the other. It also truncates or space-fills the
other end. The movement of group items and nonnumeric elementary items is
discussed in Section 3.6.1 and Section 3.6.2, respectively.

The MOVE statement alters the contents of every character position in the
receiving item.

3.6.1 Group Moves

If either the sending or receiving item is a group item, the compiler considers the
move to be a group move. It treats both the sending and receiving items as if
they were alphanumeric items.

If the sending item is a group item, and the receiving item is an elementary item,
the compiler ignores the receiving item description except for the size description,
in bytes, and any JUSTIFIED clause. It conducts no conversion or editing on the
sending item’s data.

3.6.2 Elementary Moves

If both items of a MOVE statement are elementary items, their PICTURE
character-strings control their data movement. If the receiving item was
described as numeric or numeric edited, the rules for numeric moves control the
data movement (see Section 2.6). Nonnumeric receiving items are alphanumeric,
alphanumeric edited, or alphabetic.

Table 3—2 shows the valid and invalid nonnumeric elementary moves.

Table 3-2 Nonnumeric Elementary Moves

Receiving Item Category

Sending Item Category Alphanumeric
Alphabetic Alphanumeric Edited

ALPHABETIC Valid Valid

ALPHANUMERIC Valid Valid

(continued on next page)

Handling Nonnumeric Data 3-7

Handling Nonnumeric Data
3.6 Using the MOVE Statement

Table 3-2 (Cont.) Nonnumeric Elementary Moves

Receiving ltem Category

Sending Item Category Alphanumeric
Alphabetic Alphanumeric Edited

ALPHANUMERIC EDITED Valid Valid
NUMERIC INTEGER Invalid Valid
(DISPLAY ONLY)

NUMERIC EDITED Invalid Valid

In all valid moves, the compiler treats the sending item as though it had been
described as PIC X(n). A JUSTIFIED clause in the sending item’s description has
no effect on the move. If the sending item’s PICTURE character-string contains
editing characters, the compiler uses them only to determine the item’s size.

In valid nonnumeric elementary moves, the receiving item controls the movement
of data. All of the following characteristics of the receiving item affect the move:

o [ts size

e Editing characters in its description

e The JUSTIFIED RIGHT clause in its description

The JUSTIFIED clause and editing characters are mutually exclusive.

When an item that contains no editing characters or JUSTIFIED clause in its
description is used as the receiving item of a nonnumeric elementary MOVE
statement, the compiler moves the characters starting at the leftmost position in
the item and proceeding, character by character, to the rightmost position. If the
sending item is shorter than the receiving item, the compiler fills the remaining
character positions with spaces. If the sending item is longer than the receiving
item, truncation occurs on the right.

Numeric items used in nonnumeric elementary moves must be integers in
DISPLAY format.

If the description of the numeric data item indicates the presence of an
operational sign (either as a character or an overpunched character), or if

there are P characters in its character-string, the compiler first moves the item to
a temporary location. It removes the sign and fills out any P character positions
with zero digits. It then uses the temporary value as the sending item as if it
had been described as PIC X(n). The temporary value can be shorter than the
original value if a separate sign was removed, or longer than the original value if
P character positions were filled with zeros.

If the sending item is an unsigned numeric class item with no P characters in its
character-string, the MOVE is accomplished directly from the sending item, and
a temporary item is not required.

If the numeric sending item is shorter than the receiving item, the compiler fills
the receiving item with spaces.

3-8 Handling Nonnumeric Data

Handling Nonnumeric Data
3.6 Using the MOVE Statement

3.6.2.1 Edited Moves
This section explains the following insertion editing characters:

B Blank insertion position
0 Zero insertion position
/ Slash insertion position

When an item with an insertion editing character in its PICTURE character-
string is the receiving item of a nonnumeric elementary MOVE statement, each
receiving character position corresponding to an editing character receives the
insertion byte value. Table 3—3 illustrates the use of such symbols with the
following statement, where FIELD1 is described as PIC X(7):

MOVE FIELDl1 TO FIELD2

Table 3-3 Data Movement with Editing Symbols

FIELD1 FIELD2
Character-String Contents After MOVE

070476 XX/99/XX 07/04/76

04JUL76 99BAAAB99 04sJULs76

2351212 XXXBXXXX/XX/ 235s1212/ss/

123456 0XB0XB0XB0X 01s02s03s04

Legend: s = space

Data movement always begins at the left end of the sending item and moves
only to the byte positions described as A, 9, or X in the receiving item PICTURE
character-string. When the sending item is exhausted, the compiler supplies
space characters to fill any remaining character positions (not insertion positions)
in the receiving item. If the receiving item is exhausted before the last character
is moved from the sending item, the compiler ignores the remaining sending item
characters.

Any necessary conversion of data from one form of internal representation to
another takes place during valid elementary moves, along with any editing
specified for, or de-editing implied by, the receiving data item.

3.6.2.2 Justified Moves

A JUSTIFIED RIGHT clause in the receiving item’s data description causes the
compiler to reverse its usual data movement conventions. It starts with the
rightmost characters of both items and proceeds from right to left. If the sending
item is shorter than the receiving item, the compiler fills the remaining leftmost
character positions with spaces. If the sending item is longer than the receiving
item, truncation occurs on the left. Table 3—4 illustrates various PICTURE
character-string situations for the following statement:

MOVE FIELD1 TO FIELD2

Handling Nonnumeric Data 3-9

Handling Nonnumeric Data
3.6 Using the MOVE Statement

Table 3—4 Data Movement with the JUSTIFIED Clause

FIELD1 FIELD2
PICTURE
PICTURE Character-String Contents After
Character-String Contents (and JUST-Clause) MOVE
XX AB
XXXXX ABCss
XXX ABC XX JUST BC
XXXXX JUST ssABC

Legend: s = space

3.6.3 Multiple Receiving Items

If you write a MOVE statement containing more than one receiving item, the
compiler moves the same sending item value to each of the receiving items. It
has essentially the same effect as a series of separate MOVE statements, all with
the same sending item.

The receiving items need have no relationship to each other. The compiler
checks the validity of each one independently and performs an independent move
operation on each one.

Multiple receiving items on MOVE statements provide a convenient way to set
many items equal to the same value, such as during initialization code at the
beginning of a section of processing. For example:

MOVE SPACES TO LIST-LINE, EXCEPTION-LINE, NAME-FLD.
MOVE ZEROS TO EOL-FLAG, EXCEPT-FLAG, NAME-FLAG.
MOVE 1 TO COUNT-1, CHAR-PTR, CURSOR.

3.6.4 Subscripted Moves

Any item (other than a data item that is not subordinate to an OCCURS clause)
of a MOVE statement can be subscripted, and the referenced item can be used to
subscript another name in the same statement.

For example, when more than one receiving item is named in the same MOVE
statement, the order in which the compiler evaluates the subscripts affects the
results of the move. Consider the following examples:

MOVE FIELDI1(FIELD2) TO FIELD2 FIELD3.

In this example, the compiler evaluates FIELD1(FIELD2) only once, before it
moves any data to the receiving items. It is as if the single MOVE statement
were replaced with the following three statements:

MOVE FIELDI1(FIELD2) TO TEMP.
MOVE TEMP TO FIELD2.
MOVE TEMP TO FIELD3.

3-10 Handling Nonnumeric Data

Handling Nonnumeric Data
3.6 Using the MOVE Statement

In the following example, the compiler evaluates FIELD3(FIELD2) immediately
before moving the data into it, but after moving the data from FIELD1 to
FIELD2:

MOVE FIELD1 TO FIELD2 FIELD3(FIELD2).

Thus, it uses the newly stored value of FIELD2 as the subscript value. It is as if
the single MOVE statement were replaced with the following two statements:

MOVE FIELD1 TO FIELD2.
MOVE FIELDl TO FIELD3(FIELD2).

3.6.5 Common Nonnumeric ltem MOVE Statement Errors

The compiler considers any MOVE statement that contains a group item (whether
sending or receiving) to be a group move. If an elementary item contains editing
characters or a numeric integer, these attributes of the receiving item have no
effect on the action of a group move.

3.6.6 Using the MOVE CORRESPONDING Statement for Nonnumeric ltems

The MOVE CORRESPONDING statement allows you to move multiple

items from one group item to another group item, using a single MOVE
statement. Refer to the HP COBOL Reference Manual for rules concerning the
CORRESPONDING phrase. When you use the CORRESPONDING phrase, the
compiler performs an independent move operation on each pair of corresponding

items from the operands and checks the validity of each. Example 3—2 shows the
use of the MOVE CORRESPONDING statement.

Example 3-2 Sample Record Description Using the MOVE CORRESPONDING

Statement
01 A-GROUP. 01 B-GROUP.
02 FIELDI. 02 FIELDI.

03 A PIC X. 03 A PIC X.
03 B PIC 9. 03 C PIC XX.
03 C PIC XX. 03 E PIC XXX.
03 D PIC 99.

03 E PIC XXX.

MOVE CORRESPONDING
A-GROUP TO B-GROUP.
Equivalent MOVE statements:
MOVE A OF A-GROUP TO A OF B-GROUP.
MOVE C OF A-GROUP TO C OF B-GROUP.
MOVE E OF A-GROUP TO E OF B-GROUP.

Handling Nonnumeric Data 3-11

Handling Nonnumeric Data
3.6 Using the MOVE Statement

3.6.7 Using Reference Modification

You can use reference modification to define a subset of a data item by specifying
its leftmost character position and length. Reference modification is valid
anywhere an alphanumeric identifier is allowed unless specific rules for a general
format prohibit it. The following is an example of reference modification:

WORKING-STORAGE SECTION.
01 ITEMA PIC X(10) VALUE IS "XYZABCDEFG".

MOVE ITEMA(4:3) TO...

IDENTIFIER VALUE
ITEMA (4:3) ABC

For more information on reference modification rules, refer to the HP COBOL
Reference Manual.

3-12 Handling Nonnumeric Data

4

Handling Tables

A table is one or more repetitions of one element, composed of one or more data
items, stored in contiguous memory locations.

In this chapter you will find:
¢ Defining tables (Section 4.1)
e Initializing values of table elements (Section 4.2)

e Accessing table elements (Section 4.3)

4.1 Defining Tables

You define a table by using an OCCURS clause following a data description
entry. The literal integer value you specify in the OCCURS clause determines the
number of repetitions, or occurrences, of the data description entry, thus creating
a table. HP COBOL allows you to define from 1- to 48-dimension tables.

After you have defined a table, you can load it with data. One way to load a table
is to use the INITIALIZE statement or the VALUE clause to assign values to the
table when you define it (see Figure 4-10).

To access data stored in tables, use subscripted or indexed procedural
instructions. In either case, you can directly access a known table element
occurrence or search for an occurrence based on some known condition.

You can define either fixed-length tables or variable-length tables, and they
may be single or multidimensional. The following sections describe how to
use the OCCURS clause and its options. For more information on tables and
subscripting, refer to the HP COBOL Reference Manual.

4.1.1 Defining Fixed-Length, One-Dimensional Tables

To define fixed-length tables, use Format 1 of the OCCURS clause (refer to the
HP COBOL Reference Manual). This format is useful when you are storing large
amounts of stable or frequently used reference data. Options allow you to define
single or multiple keys, or indexes, or both.

A definition of a one-dimensional table is shown in Example 4-1. The integer 2
in the OCCURS 2 TIMES clause determines the number of element repetitions.

For the table to have any real meaning, this integer must be equal to or greater
than 2.

Handling Tables 4-1

Handling Tables
4.1 Defining Tables

Example 4-1 One-Dimensional Table

01 TABLE-A.
05 ITEM-B PIC X OCCURS 2 TIMES.

The organization of TABLE-A is shown in Figure 4-1.

Figure 4-1 Organization of the One-Dimensional Table in Example 4-1

Longword number 1

Byte number 1 2 3 4
Level 01 A

Level 05 B B

Legend: A =TABLE-A
B =ITEM-B

ZK-6039-GE

Example 4-1 specifies only a single data item. However, you can specify as

many data items as you need in the table. Multiple data items are shown in
Example 4-2.

Example 4-2 Multiple Data Iltems in a One-Dimensional Table

01 TABLE-A.
05 GROUP-B OCCURS 2 TIMES.
10 ITEMC PIC X.
10 ITEMD PIC X.

The organization of this table is shown in Figure 4-2.

4-2 Handling Tables

Handling Tables
4.1 Defining Tables

Figure 4-2 Organization of Multiple Data ltems in a One-Dimensional Table

Longword number 1

Byte number 1 2 3 4

Level 01 A

Level 05 B B

Level 10 cC|D|C|D

Legend: A = TABLE-A C=ITEMC
B = GROUP-B D =ITEMD

ZK-6040-GE

Example 4-1 and Example 4-2 both do not use the KEY IS or INDEXED BY
optional phrases. The INDEXED BY phrase implicitly defines an index name.
This phrase must be used if any Procedure Division statements contain indexed
references to the data name that contains the OCCURS clause. The KEY IS
phrase means that repeated data is arranged in ascending or descending order
according to the values in the data items that contain the OCCURS clause. (The
KEY IS phrase does not cause the data in the table to be placed in ascending or
descending order; rather, it allows you to state how you have arranged the data.)
For further information about these OCCURS clause options, refer to the HP
COBOL Reference Manual.

If you use either the SEARCH or the SEARCH ALL statement, you must specify
at least one index. The SEARCH ALL statement also requires that you specify
at least one key. Specify the search key using the ASCENDING/DESCENDING
KEY IS phrase. (See Section 4.3.8 for information about the SEARCH statement
and Section 4.3.4 for information about indexing.) When you use the INDEXED
BY phrase, the index is internally defined and cannot be defined elsewhere.
Example 4-3 defines a table with an ascending search key and an index.

Example 4-3 Defining a Table with an Index and an Ascending Search Key

01 TABLE-A.
05 ELEMENTB OCCURS 5 TIMES
ASCENDING KEY IS ITEMC
INDEXED BY INDX1.
10 ITEMC PIC X.
10 ITEMD PIC X.

Handling Tables 4-3

Handling Tables
4.1 Defining Tables

The organization of this table is shown in Figure 4-3.

Figure 4-3 Organization of a Table with an Index and an Ascending Search

Key
Longword number 1 2 3
Byte number o|j0ojofo|j0|0O|jO|OfO
2|3|4|5]|6 8190
Level 01 TABLE-A
Level 05 B B B B B
Level 10 c|p|c|p|c|p|c|p|c|D

Legend: B =ELEMENTB
C=ITEMC
D =ITEMD

ZK-6041-GE

4.1.2 Defining Fixed-Length, Multidimensional Tables

HP COBOL allows 48 levels of OCCURS nesting. If you want to define a two-
dimensional table, you define another one-dimensional table within each element
of the one-dimensional table. To define a three-dimensional table, you define
another one-dimensional table within each element of the two-dimensional table,
and so on.

A two-dimensional table is shown in Example 4-4.

Example 4-4 Defining a Two-Dimensional Table

01 2D-TABLE-X.
05 LAYER-Y OCCURS 2 TIMES.
10 LAYER-Z OCCURS 2 TIMES.
15 CELLA PIC X.
15 CELLB PIC X.

The organization of this two-dimensional table is shown in Figure 4-4.
Example 4-5 shows a three-dimensional table.

The organization of this three-dimensional table is shown in Figure 4-5.

4-4 Handling Tables

Figure 4-4 Organization of a Two-Dimensional Table

Longword number 1 2

Byte number 1|2|3]|4[5|6]7]s

Level 01 2D-TABLE-X

Level 05 LY LY

Level 10 1z |z|wz |z

Level 15 AlBla|B[a[B]A|B

Legend: LY = LAYER-Y A= CELLA
LZ = LAYER-Z B=CELLB

ZK-6042-GE

Example 4-5 Defining a Three-Dimensional Table

01 TABLE-A.

05 LAYER-B OCCURS 2 TIMES.

10
10
10

ITEMC PIC X.

ITEMD PIC X OCCURS 3 TIMES.
ITEME OCCURS 2 TIMES.

15 CELLF PIC X.

15 CELLG PIC X OCCURS 3 TIMES.

Figure 4-5 Organization of a Three-Dimensional Table

Longword number

Byte number

Level 01
Level 05
Level 10
Level 15

Legend: A=
B=
C =
D =

Handling Tables
4.1 Defining Tables

1 2 3 4 6
o{o|ofofo|ofolofoft]|1[t]|1|1[1]1|1]1]1]2]|2]|2|2]|2
12|3|4|5|6|7|8|9lo|1]|2|3]4|5]|6|7|8|9]|0|1|2]3]4

A
c|lp[p|p] E E |c|p|p|D E
Fla[c[c|F[a[c]a Fla[c|c|F[a[c]c

TABLE-A E = ITEME

LAYER-B F=CELLF

ITEMC G=CELLG

ITEMD

ZK-6043-GE

4.1.3 Defining Variable-Length Tables

To define a variable-length table, use Format 2 of the OCCURS clause (refer to
the HP COBOL Reference Manual). Options allow you to define single or multiple
keys, or indexes, or both.

Example 4-6 illustrates how to define a variable-length table.

Handling Tables 4-5

Handling Tables
4.1 Defining Tables

It uses from two to four occurrences depending on the integer value assigned
to NUM-ELEM. You specify the table’s minimum and maximum size with the
OCCURS (minimum size) TO (maximum size) clause. The minimum size value
must be equal to or greater than zero and the maximum size value must be
greater than the minimum size value. The DEPENDING ON clause is also
required when you use the TO clause.

The data-name of an elementary, unsigned integer data item is specified in the
DEPENDING ON clause. Its value specifies the current number of occurrences.
The data-name in the DEPENDING ON clause must be within the minimum to
maximum range.

Unlike fixed-length tables, you can dynamically alter the number of element
occurrences in variable-length tables.

By generating the variable-length table in Example 4-6, you are, in effect, saying:
“Build a table that can contain at least two occurrences, but no more than four
occurrences, and set its present number of occurrences equal to the value specified
by NUM-ELEM.”

Example 4-6 Defining a Variable-Length Table

01 NUM-ELEM PIC 9.

01 VAR-LEN-TABLE.
05 TAB-ELEM OCCURS 2 TO 4 TIMES DEPENDING ON NUM-ELEM.

10 A PIC X.

10 B PIC X.

4.1.4 Storage Allocation for Tables

The compiler maps the table elements into memory, following mapping
rules that depend on the use of COMP, COMP-1, COMP-2, POINTER, and
INDEX data items in the table element, the presence or absence of the
SYNCHRONIZED (SYNC) clause with those data items, and the -align flag
(on the Tru64 UNIX operating system) or the /ALIGNMENT qualifier (on the
OpenVMS Alpha and 164 operating systems).

The HP COBOL compiler allocates storage for data items within records
according to the rules of the Major-Minor Equivalence technique. This technique
ensures that identically defined group items have the same structure, even when
their subordinate items are aligned. Therefore, group moves always produce
predictable results. For more information, refer to the description of record
allocation in the HP COBOL Reference Manual.

Note

To determine exactly how much space your tables use, specify the -map
flag (on Tru64 UNIX), or the /MAP qualifier (on OpenVMS). This gives
you an offset map of both the Data Division and the Procedure Division.

4-6 Handling Tables

Handling Tables
4.1 Defining Tables

Example 4-7 shows how to describe a sample record in a table.

Example 4-7 Sample Record Description Defining a Table

01 TABLE-A.
03 GROUP-G PIC X(5) OCCURS 5 TIMES.

Figure 46 shows how the table defined in Example 4-7 is mapped into
memory.

Figure 4-6 Memory Map for Example 4-7

Longword number 1 2 3 4 5 6 7

Byte number ofo|lojojojofofofo|t|t|1|1|{1|{1|1|1)1]1]|2(2]|2(|2]|2]|2]|2
1(2|13(4|5|6(7(8[9|0|1]2|3|4(5(6]|7|8]9|0(1|2|3|4]|5]|6

Level 01 TABLE-A

Level 03 GROUP-G GROUP-G GROUP-G GROUP-G GROUP-G

ZK-6050-GE

Alphanumeric data items require 1 byte of storage per character. Therefore, each
occurrence of GROUP-G occupies 5 bytes. The first byte of the first element is
automatically aligned at the left record boundary and the first 5 bytes occupy all
of word 1 and part of 2. A memory longword is composed of 4 bytes. Succeeding
occurrences of GROUP-G are assigned to the next 5 adjacent bytes so that
TABLE-A is composed of five 5-byte elements for a total of 25 bytes. Each table
element, after the first, is allowed to start in any byte of a word with no regard
for word boundaries.

4.1.4.1 Using the SYNCHRONIZED Clause

By default, the HP COBOL compiler tries to allocate a data item at the next
unassigned byte location. However, you can align some data items on a 2-, 4-, or
8-byte boundary by using the SYNCHRONIZED clause. The compiler may then
have to skip one or more bytes before assigning a location to the next data item.
The skipped bytes, called fill bytes, are gaps between one data item and the next.

The SYNCHRONIZED clause explicitly aligns COMP, COMP-1, COMP-2,
POINTER, and INDEX data items on their natural boundaries: one-word COMP
items on 2-byte boundaries, longword items on 4-byte boundaries, and quadword
items on 8-byte boundaries. Thus the use of SYNC can have a significant effect
on the amount of memory required to store tables containing COMP and COMP
SYNC data items.

Note

The examples in this section assume compilation without the -align flag
(on Tru64 UNIX systems) or the /ALIGNMENT qualifier (on Alpha and
164 systems).

Handling Tables 4-7

Handling Tables

4.1 Defining

Tables

Example 4-8 Record Description Containing a COMP SYNC ltem

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.
05 ITEMI PIC X.
05 ITEM2 PIC S9(5) COMP SYNC.

Figure 4-7 Memory Map for Example 4-8

Longword number

Byte number

Level 01

Level 03
Level 05

Legend: 1=ITEM1
2 =ITEM2
f =fill byte

1 2 3 4 5 6 7 8

ololo|olololo]olol1|1|1|1]1]{1|1[1]1]1]|2]2]|2]|2|2]2]2|2|2]2]3 3|3

1|2|3lals|e|7|8|9]|o|1|2|3|a|5|6|7|8|o]|o]|1]|2]|3|4|5|6|7|8]9]0]|1]2

A-TABLE
GROUP-G GROUP-G GROUP-G GROUP-G

1o]e]e]2]2]2]2]1]t |t]t]2]2]2]2]1]t]e]i]2]2]2]2]1]f]t]f[2]2]2]2

ZK-6044-GE

Example 4-8 describes a table containing a COMP SYNC data item. Figure 4-7
illustrates how it is mapped into memory.

Because a 5-digit COMP SYNC item requires one longword (or 4 bytes) of storage,
ITEM2 must start on a longword boundary. This requires the addition of 3

fill bytes after ITEM1, and each GROUP-G occupies 8 bytes. In Example 4-8,
A-TABLE requires 32 bytes to store four elements of 8 bytes each.

If, in the previous example, you define ITEM2 as a COMP data item of the same
size without the SYNC clause, the storage required will be considerably less.
Although ITEM2 will still require one longword of storage, it will be aligned on
a byte boundary. No fill bytes will be needed between ITEM1 and ITEM2, and
A-TABLE will require a total of 20 bytes.

If you now add a 3-byte alphanumeric item (ITEM3) to Example 4-8 and locate it
between ITEM1 and ITEM2 (see Example 4-9), the new item occupies the space
formerly occupied by the 3 fill bytes. This adds 3 data bytes without changing the
table size, as Figure 4-8 illustrates.

Example 4-9 Adding an Iltem Without Changing the Table Size

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.
05 ITEM1 PIC X.
05 ITEM3 PIC XXX.
05 ITEM2 PIC 9(5) COMP SYNC.

4-8 Handling Tables

Figure 4-8 Memory Map for Example 4-9

Longword number

Handling Tables
4.1 Defining Tables

3 4

5 6

Byte number

o1 1[1[1]1]1[1
9(0(1]12]3(4|5]|6

1(1]1]2]2]2(2(2
718(9(0]1]2]|3|4

Level 01

A-TABLE

Level 03

GROUP-G

GROUP-G

GROUP-G

GROUP-G

Level 05

1]3[3]3]2]2]2]2

1]3[3[3]2]2]2]2

1[3]3]3[2]2]2]2

1]3[3[3]2]2]2]2

Legend: 1=ITEM1
2 =ITEM2
3=ITEM3

ZK-6045-GE

Example 4-10 How Adding 3 Bytes Adds 4 Bytes to the Element Length

01 A-TABLE.
03 GROUP-G OCCURS 4 TIMES.
05 ITEMI PIC X.
05 ITEM2 PIC 9(5) COMP SYNC.
05 ITEM3 PIC XXX.

Figure 4-9 Memory Map for Example 4-10

Longword number

Byte number

Level 01

Level 03
Level 05

Legend: 1=ITEM1

2 = ITEM2
3=ITEM3
f = fill byte

3

ofofoftj1]1|1
7(8(9(0]|1]2(3

11111 (11
4151617 (819

A-TABLE

GROUP-G

GROUP-G

11 |r|r[2]2]2]2]3]3]3]f

1]t]|r|t]2]2]2]2]3]3]3]¢

ZK-6046-GE

If, however, you place ITEM3 after ITEM2, the additional 3 bytes add their own
length plus another fill byte. The additional fill byte is added after the third
ITEMS character to ensure that all occurrences of the table element are mapped
in an identical manner. Now, each element requires 12 bytes, and the complete
table occupies 48 bytes. This is illustrated by Example 4-10 and Figure 4-9.

Note that GROUP-G begins on a 4-byte boundary because of the way HP COBOL

allocates memory.

Handling Tables 4-9

Handling Tables
4.2 Initializing Values of Table Elements

4.2 Initializing Values of Table Elements

You can initialize a table that contains only DISPLAY items to any desired value
in either of the following ways:

® You can specify a VALUE clause in the record level preceding the record
description of the item containing the OCCURS clause.

¢ You can specify a VALUE clause in a record subordinate to the OCCURS
clause.

Example 4-11 and Figure 4-10 provide an example and memory map of a table
initialized using the VALUE clause.

Example 4-11 |Initializing Tables with the VALUE Clause

01 A-TABLE VALUE IS "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC".

03 MONTH-GROUP PIC XXX USAGE DISPLAY
OCCURS 12 TIMES.

Figure 4-10 Memory Map for Example 4-11

Longword number 1 2 3 7 8 9
ofofofofo|o]o]o|o|1|1]1 2|2]2]2|2|3|3|3|3]3]3]3
Byte number
2|3l4|s|6|7|8|o]o|1]2 5|6|7|8|9]o|1]2|3]4|5]6
Level 01 A-TABLE
Level 03 M M M M [] ™ M M M
Byte contents J|a|n|Fle|e|m|a[r]alrP[R]...[s|E|P|o|c|T|N]|o|V|D|E]|C

Legend: M = Month—-Group

ZK-6047-GE

If each entry in the table has the same value, you can initialize the table as
shown in Example 4-12.

Example 4-12 Initializing a Table with the OCCURS Clause

01 A-TABLE.
03 TABLE-LEG OCCURS 5 TIMES.
05 FIRST-LEG PIC X VALUE "A".
05 SECOND-LEG PIC S9(9) COMP VALUE 5.

In this example, there are five occurrences of each table element. Each element
is initialized to the same value as follows:

e FIRST-LEG occurs five times; each occurrence is initialized to A.

4-10 Handling Tables

Handling Tables
4.2 Initializing Values of Table Elements

e SECOND-LEG occurs five times; each occurrence is initialized to 5.

Often a table is too long to initialize using a single literal, or it contains numeric,
alphanumeric, COMP, COMP-1, COMP-2, or COMP SYNC items that cannot be
initialized. In these situations, you can initialize individual items by redefining
the group level that precedes the level containing the OCCURS clause. Consider
the sample table descriptions illustrated in Example 4-13 and Example 4-14.
Each fill byte between ITEM1 and ITEM2 in Example 4-13 is initialized to X.
Figure 4-11 shows how this is mapped into memory.

Example 4-13 Initializing Mixed Usage Items

01 A-RECORD-ALT.
05 FILLER PIC XX VALUE "AX".
05 FILLER PIC S99 COMP VALUE 1.
05 FILLER PIC XX VALUE "BX".
05 FILLER PIC S99 COMP VALUE 2.

01 A-RECORD REDEFINES A-RECORD-ALT.
03 A-GROUP OCCURS 26 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC S99 COMP SYNC.

Figure 4-11 Memory Map for Example 4-13

Longword number 1 2

Byte number 1 2 3 4 5 6 7 8
Level 01 A-RECORD

Level 03 A-GROUP A-GROUP
Level 05 1 f 2 2 1 f 2 2
Byte contents A | X B X

binary 1 A binary 2 A

Legend: 1 =ITEM1

2 =ITEM2

f = fill byte
ZK-6048-GE

As shown in Example 4-14 and in Figure 4-12, each FILLER item initializes
three 10-byte table elements.

Handling Tables 4-11

Handling Tables
4.2 Initializing Values of Table Elements

Example 4-14 Initializing Alphanumeric Iltems

01 A-RECORD-ALT.
03 FILLER PIC X(30) VALUE IS
"AAAAAAAAAABBBBBBBBBBCCCCCCCCCC".
03 FILLER PIC X(30) VALUE IS
"DDDDDDDDDDEEEEEEEEEEFFFFFFFFFF" .

01 A-RECORD REDEFINES A-RECORD-ALT.
03 ITEM1 PIC X(10) OCCURS 26 TIMES.

Figure 4-12 Memory Map for Example 4-14

Longword number 1 2 3 4 5 6

Byte number olofofofofofololo|t|t]|t|t|1|1][1]1]1]1]|2]|2]|2]|2]2
1|2|3|4|5|6|7|8|a]o|1|2]|3|4|5|6|7|8|o9]o]1]|2]3 |4

Level 01 A-RECORD

Level 03 ITEM 1 ITEM 1 ITEM 1

Byte contents at - [a|a[a[a[a[a]a|a|a|a|B]B[B[B]B]B|B|B|B[B[C|C]|C]|C

initialization time
ZK-6049-GE

When redefining or initializing table elements, allow space for any fill bytes that
may be added due to synchronization. You do not have to initialize fill bytes, but
you can do so. If you initialize fill bytes to an uncommon value, you can use them
as a debugging aid in situations where a Procedure Division statement refers to
the record level preceding the OCCURS clause, or to another record redefining
that level.

You can also initialize tables at run time. To initialize tables at run time, use the
INITIALIZE statement. This statement allows you to initialize all occurrences of
a table element to the same value. For more information about the INITIALIZE
statement, refer to the HP COBOL Reference Manual.

Sometimes the length and format of table items are such that they are best
initialized using Procedure Division statements such as a MOVE statement to
send a value to the table.

4.3 Accessing Table Elements

Once tables have been created using the OCCURS clause, the program must have
a method of accessing the individual elements of those tables. Subscripting and
indexing are the two methods HP COBOL provides for accessing individual table
elements. To refer to a particular element within a table, follow the name of that
element with a subscript or index enclosed in parentheses. The following sections
describe how to identify and access table elements using subscripts and indexes.

4.3.1 Subscripting

A subscript can be an integer literal, an arithmetic expression, a data name, or
a subscripted data name that has an integer value. The integer value represents
the desired element of the table. An integer value of 3, for example, refers to the
third element of a table.

4-12 Handling Tables

Handling Tables
4.3 Accessing Table Elements

4.3.2 Subscripting with Literals

A literal subscript is an integer value, enclosed in parentheses, that represents
the desired table element. In Example 4-15, the literal subscript (2) in the
MOVE instruction moves the contents of the second element of A-TABLE to
I-RECORD.

Example 4-15 Using a Literal Subscript to Access a Table

Table Description:

01 A-TABLE.
03 A-GROUP PIC X(5)
OCCURS 10 TIMES.

Instruction:

MOVE A-GROUP(2) TO I-RECORD.

If the table is multidimensional, follow the data name of the desired data item
with a list of subscripts, one for each OCCURS clause to which the item is
subordinate. The first subscript in the list applies to the first OCCURS clause
to which that item is subordinate. This is the most inclusive level, and is
represented by A-GROUP in Example 4-16. The second subscript applies to

the next most inclusive level and is represented by ITEM3 in the example.
Finally, the third subscript applies to the least inclusive level, represented by
ITEM5. (Note that HP COBOL can have 48 subscripts that follow the pattern in
Example 4-15.)

In Example 4-16, the subscripts (2,11,3) in the MOVE statements move the third
occurrence of ITEMS5 in the eleventh repetition of ITEMS3 in the second repetition
of A-GROUP to I-FIELD5. ITEM5(1,1,1) refers to the first occurrence of ITEM5
in the table, and ITEM5(5,20,4) refers to the last occurrence of ITEMS5.

Example 4-16 Subscripting a Multidimensional Table

Table Description:

01 A-TABLE.
03 A-GROUP OCCURS 5 TIMES.
05 ITEM1 PIC X.
05 ITEM2 PIC 99 COMP OCCURS 20 TIMES.
05 ITEM3 OCCURS 20 TIMES.
07 ITEM4 PIC X.
07 ITEMS PIC XX OCCURS 4 TIMES.
01 I-FIELD5 PIC XX.

Procedural Instruction:
MOVE ITEM5(2, 11, 3) TO I-FIELDS.

Handling Tables 4-13

Handling Tables
4.3 Accessing Table Elements

Note

Because ITEMS5 is not subordinate to ITEM2, an occurrence number for
ITEM2 is not permitted in the subscript list (when referencing ITEM3,
ITEM4, or ITEMS5). The ninth occurrence of ITEM2 in the fifth occurrence
of A-GROUP will be selected by ITEM2(5,9).

Table 4-1 shows the subscripting rules that apply to Example 4-16.

Table 4-1 Subscripting Rules for a Multidimensional Table

Number of Subscripts

Required to Refer to Size of Iltem in Bytes
Name of Item the Name ltem (Each Occurrence)
A-TABLE NONE 1105
A-GROUP ONE 221
ITEM1 ONE 1
ITEM2 TWO 2
ITEM3 TWO 9
ITEM4 TWO 1
ITEM5 THREE 2

4.3.3 Subscripting with Data Names

You can also use data names to specify subscripts. To use a data name as a
subscript, define it with COMP, COMP-1, COMP-2, COMP-3, or DISPLAY usage
and with a numeric integer value. If the data name is signed, the sign must be
positive at the time the data name is used as a subscript.

A data name that is a subscript can also be subscripted; for example, A(B(C)).
Note that for efficiency your subscripts should be S9(5) to S9(9) COMP.

The sample subscripts and data names used in Table 4-2 refer to the table
defined in Example 4-16.

Table 4-2 Subscripting with Data Names

Data Descriptions of Subscript Data Names Procedural Instructions

01 SUB1 PIC 99 USAGE DISPLAY. MOVE 2 TO SUBI.

01 SUB2 PIC S9(9) USAGE COMP. MOVE 11 TO SUB2.

01 SUB3 PIC S99. MOVE 3 TO SUBS3.
MOVE ITEM5(SUB1,SUB2,SUB3) TO
I-FIELDS5.

4.3.4 Subscripting with Indexes

The same rules apply for specifying indexes as for subscripts, except that the
index must be named in the INDEXED BY phrase of the OCCURS clause.

4-14 Handling Tables

Handling Tables
4.3 Accessing Table Elements

You cannot access index items as normal data items; that is, you cannot use them,
redefine them, or write them to a file. However, the SET statement can change
their values, and relation tests can examine their values. The index integer you
specify in the SET statement must be in the range of one to the integer value

in the OCCURS clause. The sample MOVE statement shown in Example 4-17
moves the contents of the third element of A-GROUP to I-FIELD.

Example 4-17 Subscripting with Index Name ltems

Table Description:

01 A-TABLE.
03 A-GROUP OCCURS 5 TIMES
INDEXED BY IND-NAME.
05 ITEMC PIC X VALUE "C".
05 ITEMD PIC X VALUE "D".
01 I-FIELD PIC X(5).

Procedural Instructions:

SET IND-NAME TO 3.
MOVE A-GROUP(IND-NAME) TO I-FIELD.

Note

HP COBOL initializes the value of all indexes to 1. Initializing indexes
is an extension to the ANSI COBOL standard. Users who write COBOL
programs that must adhere to standard COBOL should not rely on this
feature.

4.3.5 Relative Indexing

To perform relative indexing when referring to a table element, you follow the
index name with a plus or minus sign and an integer literal. Although it is
easy to use, relative indexing generates additional overhead each time a table
element is referenced in this way. The run-time overhead for relative indexing of
variable-length tables is significantly greater than that required for fixed-length
tables. If any of the range checks reveals an out-of-range index value, program
execution terminates, and an error message is issued. You can use the -check
flag (on Tru64 UNIX systems) or the /CHECK qualifier (on OpenVMS systems) to
check the range when you compile the program.

On Tru64 UNIX, see Chapter 1 or the cobol man page for more information about
the -check
flag. o

On OpenVMS, invoke the online help facility for HP COBOL at the OpenVMS
system prompt for more information about the /CHECK qualifier. o

The following sample MOVE statement moves the fourth repetition of A-GROUP
to I-FIELD:

SET IND-NAME TO 1.
MOVE A-GROUP(IND-NAME + 3) TO I-FIELD.

Handling Tables 4-15

Handling Tables
4.3 Accessing Table Elements

4.3.6 Index Data Items

Often a program requires that the value of an index be stored outside of that
item. HP COBOL provides the index data item to fulfill this requirement.

Index data items are stored as longword COMP items and must be declared with
a USAGE IS INDEX phrase in the item description. Index data items can be
explicitly modified only with the SET statement.

4.3.7 Assigning Index Values Using the SET Statement

You can use the SET statement to assign values to indexes associated with tables
to reference particular table elements. The following sections discuss the two
relevant SET statement formats. (All six SET statement formats are shown in
the HP COBOL Reference Manual.)

4.3.7.1 Assigning an Integer Index Value with a SET Statement

When you use the SET statement, the index is set to the value you specify. The
most straightforward use of the SET statement is to set an index name to an
integer literal value. This example assigns a value of 5 to IND-5:

SET IND-5 TO 5.

You can also set an index name to an integer data item. For example:

SET INDEX-A TO COUNT-1.

More than one index can be set with a single SET statement. For example:
SET TAB1-IND TAB2-IND TO 15.

Table indexes specified in INDEXED BY phrases can be displayed by using the
WITH CONVERSION option with the DISPLAY statement. Also, you can display,
move, and manipulate the value of the table index with an index data item. You
do this by setting an index data item to the present value of an index. You can,
for example, set an index data item and then display its value as shown in the
following example:

SET INDEX-ITEM TO TAB-IND.

DISPLAY INDEX-ITEM WITH CONVERSION.

4.3.7.2 Incrementing an Index Value with the SET Statement

You can use the SET statement with the UP BY/DOWN BY clause to
arithmetically alter the value of a index. A numeric literal is added to (UP
BY) or subtracted from (DOWN BY) a table index. For example:

SET TABLE-INDEX UP BY 12.
SET TABLE-INDEX DOWN BY 5.

4.3.8 Identifying Table Elements Using the SEARCH Statement

The SEARCH statement is used to search a table for an element that satisfies
a known condition. The statement provides for sequential and binary searches,
which are described in the following sections.

4-16 Handling Tables

Handling Tables
4.3 Accessing Table Elements

4.3.8.1 Implementing a Sequential Search

The SEARCH statement allows you to perform a sequential search of a table. The
OCCURS clause of the table description entry must contain the INDEXED BY
phrase. If more than one index is specified in the INDEXED BY phrase, the first
index is the controlling index for the table search unless you specify otherwise in
the SEARCH statement.

The search begins at the current index setting and progresses through the
table, checking each element against the conditional expression. The index is
incremented by 1 as each element is checked. If the conditional expression is
true, the associated imperative statement executes; otherwise, program control
passes to the next procedural sentence. This terminates the search, and the index
points to the current table element that satisfied the conditional expression.

If no table element is found that satisfies the conditional expression, program
control passes to the AT END exit path; otherwise, program control passes to the
next procedural sentence.

You can use the optional VARYING phrase of the SEARCH statement by
specifying any of the following:

e VARYING index name associated with table search
e VARYING index data item or integer data item
e VARYING index name not associated with table search

Regardless of which method you use, the index specified in the INDEXED BY
phrase of the table being searched is incremented. This controlling index, when
compared against the allowable number of occurrences in the table, dictates the
permissible search range. When the search terminates, either successfully or
unsuccessfully, the index remains at its current setting. At this point, you can
reference the data in the table element pointed to by the index, unless the AT
END condition is true. If the AT END condition is true, and if the -check flag
(on Tru64 UNIX systems) or the /CHECK qualifier (on OpenVMS systems) has
been specified, the compiler issues a run-time error message indicating that the
subscript is out of range.

When you vary an index associated with the table being searched, the index
name can be any index you specify in the INDEXED BY phrase. It becomes the
controlling index for the search and is the only index incremented. Example 4-18
and Example 4-20 show how to vary an index other than the first index.

When you vary an index data item or an integer data item, either the index data
item or the integer data item is incremented. The first index name you specify
in the INDEXED BY phrase of the table being searched becomes the controlling
index and is also incremented. The index data item or the integer data item you
vary does not function as an index; it merely allows you to maintain an additional
pointer to elements within a table. Example 4-18 and Example 4-21 show how
to vary an index data item or an integer data item.

When you vary an index associated with a table other than the one you are
searching, the controlling index is the first index you specify in the INDEXED
BY phrase of the table you are searching. Each time the controlling index is
incremented, the index you specify in the VARYING phrase is incremented. In
this manner, you can search two tables in synchronization. Example 4-18 and
Example 4-22 show how to vary an index associated with a table other than the
one you are searching.

Handling Tables 4-17

Handling Tables
4.3 Accessing Table Elements

When you omit the VARYING phrase, the first index you specify in the INDEXED
BY phrase becomes the controlling index. Only this index is incremented during
a serial search. Example 4-18 and Example 4-23 show how to perform a serial
search without using the VARYING phrase.

4.3.8.2 Implementing a Binary Search

You can use the SEARCH statement to perform a nonsequential (binary) table
search.

To perform a binary search, you must specify an index name in the INDEXED BY
phrase and a search key in the KEY IS phrase of the OCCURS clause of the table
being searched.

A binary search depends on the ASCENDING/DESCENDING KEY attributes. If
you specify an ASCENDING KEY, the data in the table must either be stored

in ascending order or sorted in ascending order prior to the search. For a
DESCENDING KEY, data must be stored or sorted in descending order prior

to the search.

On Alpha and 164 systems, you can sort an entire table in preparation for a
binary search. Use the SORT statement (Format 2, an HP extension), described
in the HP COBOL Reference Manual. ¢

During a binary search, the first (or only) index you specify in the INDEXED
BY phrase of the OCCURS clause of the table being searched is the controlling
index. You do not have to initialize an index in a binary search because index
manipulation is automatic.

In addition to being generally faster than a sequential search, a binary search
allows multiple equality checks.

The following search sequence lists the capabilities of a binary search. At
program execution time, the system:

1. Examines the range of permissible index values, selects the median value,
and assigns this value to the index.

2. Checks for equality in WHEN and AND clauses.

Terminates the search if all equality statements are true. If you use the
imperative statement after the final equality clause, that statement executes;
otherwise, program control passes to the next procedural sentence, the search
exits, and the index retains its current value.

4. Takes the following actions if the equality test of a table element is false:

a. Executes the imperative statement associated with the AT END statement
(if present) when all table elements have been tested. If there is no AT
END statement, program control passes to the next procedural statement.

b. Determines which half of the table is to be eliminated from further
consideration. This is based on whether the key being tested was specified
as ASCENDING or DESCENDING and whether the test failed because
of a greater-than or less-than comparison. For example, if the key values
are stored in ascending order, and the median table element being tested
is greater than the value of the argument, then all key elements following
the one being tested must also be greater. Therefore, the upper half of the
table is removed from further consideration and the search continues at
the median point of the lower half.

c. Begins processing all over again at Step 1.

4-18 Handling Tables

Handling Tables
4.3 Accessing Table Elements

A useful variation of the binary search is that of specifying multiple search
keys. Multiple search keys allow you to select a specified table element from
among several elements that have duplicate low-order keys. An example is
a telephone listing where several people have the same last and first names,
but different middle initials. All specified keys must be either ascending or
descending. Example 4—24 shows how to use multiple search keys.

The table in Example 4-18 is followed by several examples (Examples 4-19, 4-20,
4-21, 4-22, and 4-23) of how to search it.

Example 4-18 Sample Table

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TEMP-IND USAGE IS INDEX.

01 FED-TAX-TABLES.

02 ALLOWANCE-DATA.
03 FILLER PIC X(70) VALUE

"0101440

- "0202880

- "0304320

- "0405760

- "0507200

- "0608640

- "0710080

- "0811520

- "0912960

- "1014400".

02 ALLOWANCE-TABLE REDEFINES ALLOWANCE-DATA.
03 FED-ALLOWANCES OCCURS 10 TIMES

ASCENDING KEY IS ALLOWANCE-NUMBER
INDEXED BY IND-1.
04 ALLOWANCE-NUMBER PIC XX.
04 ALLOWANCE PIC 99999.

02 SINGLES-DEDUCTION-DATA.
03 FILLER PIC X(112) VALUE
"0250006700000016
- "0670011500067220
- "1150018300163223
- "1830024000319621
- "2400027900439326
- "2790034600540730
- "3460099999741736".
02 SINGLE-DEDUCTION-TABLE REDEFINES SINGLES-DEDUCTION-DATA.
03 SINGLES-TABLE OCCURS 7 TIMES
ASCENDING KEY IS S-MIN-RANGE S-MAX-RANGE
INDEXED BY IND-2, TEMP-INDEX.

04 S-MIN-RANGE PIC 99999.
04 S-MAX-RANGE PIC 99999.
04 S-TAX PIC 9999.
04 S-PERCENT PIC V99.

(continued on next page)

Handling Tables 4-19

Handling Tables
4.3 Accessing Table Elements

Example 4-18 (Cont.) Sample Table

02 MARRIED-DEDUCTION-DATA.
03 FILLER PIC X(119) VALUE
"04800096000000017
- "09600173000081620
- "17300264000235617
- "26400346000390325
- "34600433000595328
- "43300500000838932
- "50000999991053336".
02 MARRIED-DEDUCTION-TABLE REDEFINES MARRIED-DEDUCTION-DATA.
03 MARRIED-TABLE OCCURS 7 TIMES
ASCENDING KEY IS M-MIN-RANGE M-MAX-RANGE
INDEXED BY IND-0, IND-3.

04 M-MIN-RANGE PIC 99999.
04 M-MAX-RANGE PIC 99999.
04 M-TAX PIC 99999.
04 M-PERCENT PIC V99.

Example 4-19 shows how to perform a serial search.

Example 4-19 A Serial Search

01 TAXABLE-INCOME PIC 9(6) VALUE 50000.
01 FED-TAX-DEDUCTION PIC 9(6).
PROCEDURE DIVISION.
BEGIN.
PERFORM SINGLE.
DISPLAY FED-TAX-DEDUCTION.
STOP RUN.
SINGLE.
IF TAXABLE-INCOME < 02500
GO TO END-FED-COMP.
SET IND-2 TO 1.
SEARCH SINGLES-TABLE AT END
GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGE(IND-2)

MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME < S-MAX-RANGE (IND-2)
COMPUTE FED-TAX-DEDUCTION =
S-TAX(IND-2) + (TAXABLE-INCOME - S-TAX(IND-2)) *
S-PERCENT (IND-2).

Example 4-20 shows how to use SEARCH while varying an index other than the
first index.

Example 4-21 shows how to use SEARCH while varying an index data item.

4-20 Handling Tables

Handling Tables
4.3 Accessing Table Elements

Example 4-20 Using SEARCH and Varying an Index Other than the First Index

01 TAXABLE-INCOME PIC 9(6) VALUE 50000.
01 FED-TAX-DEDUCTION PIC 9(6).
PROCEDURE DIVISION.
BEGIN.
PERFORM MARRIED.
DISPLAY FED-TAX-DEDUCTION.
STOP RUN.
MARRIED.
IF TAXABLE-INCOME < 04800
MOVE ZEROS TO FED-TAX-DEDUCTION
GO TO END-FED-COMP.
SET IND-3 TO 1.
SEARCH MARRIED-TABLE VARYING IND-3 AT END
GO TO TABLE-3-ERROR
WHEN TAXABLE-INCOME = M-MIN-RANGE (IND-3)
MOVE M-TAX(IND-3) TO FED-TAX-DEDUCTION
WHEN TAXABLE-INCOME < M-MAX-RANGE(IND-3)
COMPUTE FED-TAX-DEDUCTION =
M-TAX(IND-3) + (TAXABLE-INCOME - M-TAX(IND-3)) *
M-PERCENT (IND-3) .

Example 4-21 Using SEARCH and Varying an Index Data Item

01 TAXABLE-INCOME PIC 9(6) VALUE 50000.
01 FED-TAX-DEDUCTION PIC 9(6).
PROCEDURE DIVISION.
BEGIN.
PERFORM SINGLE.
DISPLAY FED-TAX-DEDUCTION.
STOP RUN.
SINGLE.
IF TAXABLE-INCOME < 02500
GO TO END-FED-COMP.
SET IND-2 TO 1.
SEARCH SINGLES-TABLE VARYING TEMP-IND AT END
GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGE(IND-2)
MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION

WHEN TAXABLE-INCOME < S-MAX-RANGE(IND-2)
MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION
SUBTRACT S-MIN-RANGE(IND-2) FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT(IND-2) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION.

Example 4-22 shows how to use SEARCH while varying an index not associated
with the target table.

Handling Tables 4-21

Handling Tables
4.3 Accessing Table Elements

Example 4-22 Using SEARCH and Varying an Index not Associated with the
Target Table

01 TAXABLE-INCOME PIC 9(6) VALUE 50000.
01 FED-TAX-DEDUCTION PIC 9(6).
PROCEDURE DIVISION.
BEGIN.
PERFORM SINGLE.
DISPLAY FED-TAX-DEDUCTION.
STOP RUN.
SINGLE.
IF TAXABLE-INCOME < 02500
GO TO END-FED-COMP.

SET IND-2 TO 1.
SEARCH SINGLES-TABLE VARYING IND-0 AT END
GO TO TABLE-2-ERROR
WHEN TAXABLE-INCOME = S-MIN-RANGE(IND-2)
MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION

WHEN TAXABLE-INCOME < S-MAX-RANGE(IND-2)
MOVE S-TAX(IND-2) TO FED-TAX-DEDUCTION
SUBTRACT S-MIN-RANGE(IND-2) FROM TAXABLE-INCOME
MULTIPLY TAXABLE-INCOME BY S-PERCENT(IND-2) ROUNDED
ADD TAXABLE-INCOME TO FED-TAX-DEDUCTION.

Example 4-23 shows how to perform a serial search without using the VARYING
phrase.

Example 4-23 Doing a Serial Search Without Using the VARYING Phrase

01 NR-DEPENDENTS PIC 9(2) VALUE 3.
01 GROSS-WAGE PIC 9(6) VALUE 50000.
01 TAXABLE-INCOME PIC 9(6) VALUE 50000.
01 FED-TAX-DEDUCTION PICY(6).
01 MARITAL-STATUS PIC X VALUE "M".
PROCEDURE DIVISION.
BEGIN.
PERFORM FED-DEDUCT-COMPUTATION.
DISPLAY TAXABLE-INCOME.
STOP RUN.
FED-DEDUCT-COMPUTATION.
SET IND-1 TO 1.
SEARCH FED-ALLOWANCES AT END
GO TO TABLE-1-ERROR
WHEN ALLOWANCE-NUMBER(IND-1) = NR-DEPENDENTS
SUBTRACT ALLOWANCE (IND-1) FROM GROSS-WAGE
GIVING TAXABLE-INCOME ROUNDED.
IF MARITAL-STATUS = "M"
GO TO MARRIED.
MARRIED.

4-22 Handling Tables

Handling Tables

4.3 Accessing Table Elements

Example 4-24 shows how to perform a multiple-key, binary search.

Example 4-24 A Multiple-Key, Binary Search

IDENTIFICATION DIVISION.

PROGRAM-ID. MULTI-KEY-SEARCH.
DATA DIVISION.

WORKING-STORAGE SECTION.

01 DIRECTORY-TABLE.
05 NAMES-NUMBERS.

10

10

10

10

10

10

10

10

FILLER

VALUE "SMILEY
FILLER

VALUE "SMITH
FILLER

VALUE "SMITH
FILLER

VALUE "SMITH
FILLER

VALUE "SMITH
FILLER

VALUE "SMITH
FILLER

VALUE "SMITH
FILLER

VALUE "SMITHWOOD ALBERT

PIC X(30)

HAPPY T.213-4332".

PIC X(30)

ALAN C.881-4987".

PIC X(30)
CHARLES
PIC X(30)
FREDERICK
PIC X(30)

HARRY C.573-3306".

PIC X(30)

HARRY J.295-3485".

PIC X(30)

LARRY X.976-5504".

PIC X(30)

J.345-2398".

745-0223".

J.349-9927".

05 PHONE-DIRECTORY-TABLE REDEFINES NAMES-NUMBERS OCCURS 8 TIMES
ASCENDING KEY IS LAST-NAME

15 LAST-NAME
15 FIRST-NAME
15 MID-INIT
15 PHONE-NUM

PROCEDURE DIVISION.

MULTI-KEY-BINARY-SEARCH.

FIRST-NAME

MID-INIT

INDEXED BY DIR-INDX.

PIC X(10).
PIC X(10).
PIC XX.

PIC X(8).

SEARCH ALL PHONE-DIRECTORY-TABLE

WHEN LAST-NAME(DIR-INDX) = "SMITH"
AND FIRST-NAME(DIR-INDX) = "HARRY"

AND MID-INIT(DIR-INDX) = "J."
NEXT SENTENCE.
DISPLAY-RESULTS.
DISPLAY LAST-NAME(DIR-INDX)","
FIRST-NAME (DIR-INDX)
MID-INIT(DIR-INDX) " "
PHONE-NUM(DIR-INDX).

Handling Tables 4-23

O

Using the STRING, UNSTRING, and INSPECT
Statements

The STRING, UNSTRING, and INSPECT statements give your HP COBOL
programs the following capabilities:

e (Concatenating data using the STRING statement (Section 5.1)
e Separating data using the UNSTRING statement (Section 5.2)

e Examining and replacing characters using the INSPECT statement
(Section 5.3)

5.1 Concatenating Data Using the STRING Statement

The STRING statement concatenates the contents of one or more sending items
into a single receiving item.

The statement has many forms; the simplest is equivalent in function to a
nonnumeric MOVE statement. Consider the following example:

STRING FIELD1 DELIMITED BY SIZE INTO FIELD2.

If the two items are the same size, or if the sending item (FIELD1) is larger, the
statement is equivalent to the following statement:

MOVE FIELD1 TO FIELD2.

If the sending item of the string is shorter than the receiving item, the compiler
does not replace unused positions in the receiving item with spaces. Thus, the
STRING statement can leave some portion of the receiving item unchanged.

The receiving item of the string must be an elementary alphanumeric item with
no JUSTIFIED clause or editing characters in its description. Thus, the data
movement of the STRING statement always fills the receiving item with the
sending item from left to right and with no editing insertions.

5.1.1 Multiple Sending Items
The STRING statement can concatenate a series of sending items into one
receiving item. Consider the following example:

STRING FIELDIA FIELDIB FIELD1C DELIMITED BY SIZE
INTO FIELD2.

In this sample STRING statement, FIELD1A, FIELD1B, and FIELD1C are all
sending items. The compiler moves them to the receiving item (FIELDZ2) in the
order in which they appear in the statement, from left to right, resulting in the
concatenation of their values.

Using the STRING, UNSTRING, and INSPECT Statements 5-1

Using the STRING, UNSTRING, and INSPECT Statements
5.1 Concatenating Data Using the STRING Statement

If FIELD2 is not large enough to hold all three items, the operation stops when it
is full. If the operation stops while moving one of the sending items, the compiler
ignores the remaining characters of that item and any other sending items not
yet processed. For example, if FIELD2 is filled while it is receiving FIELD1B, the
compiler ignores the rest of FIELD1B and all of FIELD1C.

If the sending items do not fill the receiving item, the operation stops when the
last character of the last sending item (FIELD1C) is moved. It does not alter the
contents nor space-fill the remaining character positions of the receiving item.

The sending items can be nonnumeric literals and figurative constants (except for
ALL literal). Example 5-1 sets up an address label by stringing the data items
CITY, STATE, and ZIP into ADDRESS-LINE. The figurative constant SPACE and
the literal period (.) are used to separate the information.

Example 5-1 Using the STRING Statement and Literals

01 ADDRESS-GROUP.

03 CITY PIC X(20).
03 STATE PIC XX.
03 2IP PIC X(5).

01 ADDRESS-LINE PIC X(31).

PROCEDURE DIVISION.
BEGIN.
STRING CITY SPACE STATE ". " SPACE ZIP
DELIMITED BY SIZE INTO ADDRESS-LINE.

5.1.2 Using the DELIMITED BY Phrase

Although the sending items of the STRING statement are fixed in size at
compile time, they are frequently filled with spaces. For example, if a 20-
character city item contains the text MAYNARD followed by 13 spaces, the
STRING statement using the DELIMITED BY SIZE phrase would move the text
(MAYNARD) and the unwanted 13 spaces (assuming the receiving item is at least
20 characters long). The DELIMITED BY phrase, written with a data name or
literal, eliminates this problem.

The delimiter can be a literal, a data item, a figurative constant, or the word
SIZE. It cannot, however, be ALL literal, because ALL literal has an indefinite
length. When the phrase contains the word SIZE, the compiler moves each
sending item in total, until it either exhausts the characters in the sending item
or fills the receiving item.

If you use the code in Example 5-1, and CITY is a 20-character item, the result
of the STRING operation might look like Figure 5-1.

5-2 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.1 Concatenating Data Using the STRING Statement

Figure 5-1 Results of the STRING Operation

AYER MA. 01432
I |

16 spaces

ZK-6051-GE

A more attractive and readable report can be produced by having the STRING
operation produce this line:

AYER, MA. 01432

To accomplish this, use the figurative constant SPACE as a delimiter on the
sending item:

MOVE 1 TO P.
STRING CITY DELIMITED BY SPACE

INTO ADDRESS-LINE WITH POINTER P.
STRING ", " STATE ". " ZIP

DELIMITED BY SIZE

INTO ADDRESS-LINE WITH POINTER P.

This example makes use of the POINTER phrase (see Section 5.1.3). The first
STRING statement moves data characters until it encounters a space character—
a match of the delimiter SPACE. The second STRING statement supplies the
literal, the 2-character STATE item, another literal, and the 5-character ZIP item.

The delimiter can be varied for each item within a single STRING statement by
repeating the DELIMITED BY phrase after each of the sending item names to
which it applies. Thus, the shorter STRING statement in the following example
has the same effect as the two STRING statements in the preceding example.
(Placing the operands on separate source lines has no effect on the operation of
the statement, but it improves program readability and simplifies debugging.)

STRING CITY DELIMITED BY SPACE
n ’ n STATE n . n
ZIP DELIMITED BY SIZE
INTO ADDRESS-LINE.

The sample STRING statement cannot handle 2-word city names, such as San
Francisco, because the compiler considers the space between the two words

as a match for the delimiter SPACE. A longer delimiter, such as two or three
spaces (nonnumeric literal), can solve this problem. Only when a sequence of
characters matches the delimiter does the movement stop for that data item.
With a 2-character delimiter, the same statement can be rewritten in a simpler
form:

STRING CITY ", " STATE ". " ZIP
DELIMITED BY " " INTO ADDRESS-LINE.

Because only the CITY item contains two consecutive spaces, the delimiter’s
search of the other items will always be unsuccessful, and the effect is the same
as moving the full item (delimiting by SIZE).

Data movement under control of a data name or literal generally executes more
slowly than data movement delimited by SIZE.

Using the STRING, UNSTRING, and INSPECT Statements 5-3

Using the STRING, UNSTRING, and INSPECT Statements
5.1 Concatenating Data Using the STRING Statement

Remember, the remainder of the receiving item is not space-filled, as with a
MOVE statement. If ADDRESS-LINE is to be printed on a mailing label, for
example, the STRING statement should be preceded by the statement:

MOVE SPACES TO ADDRESS-LINE.

This statement guarantees a space-fill to the right of the concatenated result.
Alternatively, the last item concatenated by the STRING statement can be an
item previously set to SPACES. This sending item must either be moved under
control of a delimiter other than SPACE or use the value of POINTER and
reference modification.

5.1.3 Using the POINTER Phrase

Although the STRING statement normally starts scanning at the leftmost
position of the receiving item, the POINTER phrase makes it possible to start
scanning at another point within the item. The scanning, however, continues left
to right. Consider the following example:

MOVE 5 TO P.
STRING FIELDIA FIELD1B DELIMITED BY SIZE
INTO FIELD2 WITH POINTER P.

The value of P determines the starting character position in the receiving item.
In this example, the 5 in P causes the program to move the first character of
FIELD1A into character position 5 of FIELD2 (the leftmost character position of
the receiving item is character position 1), and leave positions 1 to 4 unchanged.

When the STRING operation is complete, P points to one character position
beyond the last character replaced in the receiving item. If FIELD1A and
FIELDI1B are both four characters long, P contains a value of 13 (5+4+4) when
the operation is complete (assuming that FIELD2 is at least 13 characters long).

5.1.4 Using the OVERFLOW Phrase

When the SIZE option of the DELIMITED BY phrase controls the STRING
operation, and the pointer value is either known or the POINTER phrase is not
used, you can add the PICTURE sizes of sending items together at program
development time to see if the receiving item is large enough to hold the sending
items. However, if the DELIMITED BY phrase contains a literal or an identifier,
or if the pointer value is not predictable, it can be difficult to tell whether or not
the size of the receiving item will be large enough at run time. If the size of the
receiving item is not large enough, an overflow can occur.

An overflow occurs when the receiving item is full and the program is either
about to move a character from a sending item or is considering a new sending
item. Overflow can also occur if, during the initialization of the statement, the
pointer contains a value that is either less than 1 or greater than the length of
the receiving item. In this case, the program moves no data to the receiving item
and terminates the operation immediately.

The ON OVERFLOW phrase at the end of the STRING statement tests for an
overflow condition:

STRING FIELDI1A FIELD1B DELIMITED BY "C"
INTO FIELD2 WITH POINTER PNTR
ON OVERFLOW GO TO 200-STRING-OVERFLOW.

5-4 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.1 Concatenating Data Using the STRING Statement

The ON OVERFLOW phrase cannot distinguish the overflow caused by a bad
initial value in the pointer from the overflow caused by a receiving item that is
too short. Only a separate test preceding the STRING statement can distinguish
between the two.

Additionally, even if an overflow condition does not exist, you can use the NOT
ON OVERFLOW phrase to branch to or execute other sections of code.

Example 5-2 illustrates the overflow condition.

Example 5-2 Sample Overflow Condition

DATA DIVISION.

01 FIELD1 PIC XXX VALUE "ABC".
01 FIELD2 PIC XXXX.
PROCEDURE DIVISION.

1. STRINé
2. STRING
3. STRING
4. STRING
5. STRING

6. MOVE 2

FIELD1 QUOTE DELIMITED BY SIZE INTO FIELD2

ON OVERFLOW DISPLAY "overflow at 1".

FIELD1 FIELD1 DELIMITED BY SIZE INTO FIELD2

ON OVERFLOW DISPLAY "overflow at 2".

FIELD1 FIELD1 DELIMITED BY "C" INTO FIELD2

ON OVERFLOW DISPLAY "overflow at 3".

FIELD1 FIELDl FIELD1 FIELD1

DELIMITED BY "B" INTO FIELD2 ON OVERFLOW DISPLAY "overflow at 4".
FIELD1 FIELD1 "D" DELIMITED BY "C"

INTO FIELD2 ON OVERFLOW DISPLAY "overflow at 5".
TO P.

MOVE ALL QUOTES TO FIELD2.

STRING

FIELD1 "AC" DELIMITED BY "C"
INTO FIELD2 WITH POINTER P ON OVERFLOW DISPLAY "overflow at 6".

The STRING statement numbers in Example 5—-2 point to the line number results
shown in Table 5-1.

Table 5-1 Results of Sample Overflow Statements
Value of FIELD2 After the

STRING Operation Overflow?
1. ABC" No
2. ABCA Yes
3. ABAB No
4. AAAA No
5. ABAB Yes
6. "ABA No

Using the STRING, UNSTRING, and INSPECT Statements 5-5

Using the STRING, UNSTRING, and INSPECT Statements
5.1 Concatenating Data Using the STRING Statement

5.1.5 Common STRING Statement Errors

The following are common errors made when writing STRING statements:
e Using the word TO instead of INTO

e Failing to include the DELIMITED BY SIZE phrase

e Failing to initialize the pointer

e Initializing the pointer to 0 instead of 1

¢ Permitting the pointer to get out of range (negative or larger than the size of
the receiving field)

e Failing to provide for space-filling of the receiving item when it is desirable

e Using the pointer as a subscript without fully understanding subscript
evaluation

5.2 Separating Data Using the UNSTRING Statement

The UNSTRING statement disperses the contents of a single sending item into
one or more receiving items.

The statement has many forms; the simplest is equivalent in function to a
nonnumeric MOVE statement. Consider the following example:

UNSTRING FIELD1 INTO FIELD2.

Regardless of the relative sizes of the two items, the sample statement is
equivalent to the following MOVE statement:

MOVE FIELD1 TO FIELD2.

The sending item (FIELD1) can be either (1) a group item, or (2) an
alphanumeric or alphanumeric edited elementary item. The receiving item
(FIELDZ2) can be alphabetic, alphanumeric, or numeric, but it cannot specify any
type of editing.

If the receiving item is numeric, it must be DISPLAY usage. The PICTURE
character-string of a numeric receiving item can contain any of the legal numeric
description characters except P and the editing characters. The UNSTRING
statement moves the sending item to the numeric receiving item as if the sending
item had been described as an unsigned integer. It automatically truncates or
zero-fills as required.

If the receiving item is not numeric, the statement follows the rules for
elementary nonnumeric MOVE statements. It left-justifies the data in the
receiving item, truncating or space-filling as required. If the data description of
the receiving item contains a JUSTIFIED clause, the compiler right-justifies the
data, truncating or space-filling to the left as required.

5.2.1 Multiple Receiving Items

The UNSTRING statement can disperse one sending item into several receiving
items. Consider the following example of the UNSTRING statement written with
multiple receiving items:

UNSTRING FIELD1 INTO FIELD2A FIELD2B FIELD2C.

5-6 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

The compiler-generated code performs the UNSTRING operation by scanning
across FIELD1, the sending item, from left to right. When the number of
characters scanned equals the number of characters in the receiving item, the
scanned characters are moved into that item and the next group of characters is
scanned for the next receiving item.

If each of the receiving items in the preceding example (FIELD2A, FIELD2B, and
FIELD2C) is 5 characters long, and FIELD1 is 15 characters long, FIELD1 is
scanned until the number of characters scanned equals the size of FIELD2A (5).
Those first five characters are moved to FIELD2A, and scanning is resumed at
the sixth character position in FIELD1. Next, FIELD1 is scanned from character
position 6, until the number of scanned characters equals the size of FIELD2B
(five). The sixth through the tenth characters are then moved to FIELD2B,

and the scanner is set to the next (eleventh) character position in FIELD1. For
the last move in this example, characters 11 to 15 of FIELD1 are moved into
FIELD2C.

Each data movement acts as an individual MOVE statement, the sending item
of which is an alphanumeric item equal in size to the receiving item. If the
receiving item is numeric, the move operation converts the data to numeric form.
For example, consider what would happen if the items under discussion had the
data descriptions and were manipulating the values shown in Table 5-2.

Table 5-2 Values Moved into the Receiving Items Based on the Sending Iltem

Value
FIELD2B
FIELD1 PIC S9(5)
PIC X(15) FIELD2A LEADING FIELD2C
VALUE IS: PIC X(5) SEPARATE PIC S999V99
ABCDE1234512345 ABCDE +12345 3450(
XXXXX0000100123 XXXXX +00001 1230{

FIELD2A is an alphanumeric item. Therefore, the statement simply conducts an
elementary nonnumeric move with the first five characters.

FIELD2B, however, has a leading separate sign that is not included in its size.
Thus, the compiler moves only five numeric characters and generates a positive
sign (+) in the separate sign position.

FIELD2C has an implied decimal point with two character positions to the right
of it, plus an overpunched sign on the low-order digit. The sending item should
supply five numeric digits. However, because the sending item is alphanumeric,
the compiler treats it as an unsigned integer; it truncates the two high-order
digits and supplies two zero digits for the decimal positions. Furthermore, it
supplies a positive overpunch sign, making the low-order digit a +0 (ASCII {).
There is no way to have the UNSTRING statement recognize a sign character or
a decimal point in the sending item in a single statement.

If the sending item is shorter than the sum of the sizes of the receiving items,
the compiler ignores the remaining receiving items. If the compiler reaches the
end of the sending item before it reaches the end of one of the receiving items,
it moves the scanned characters into that receiving item. It either left-justifies
and fills the remaining character positions with spaces for alphanumeric data, or
else it decimal point-aligns and zero-fills the remaining character positions for
numeric data.

Using the STRING, UNSTRING, and INSPECT Statements 5-7

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

Consider the following statement with reference to the corresponding PICTURE
character-strings and values in Table 5-3:

UNSTRING FIELD1 INTO FIELD2A FIELD2B.

FIELD2A is a 3-character alphanumeric item. It receives the first three
characters of FIELD1 (ABC) in every operation. FIELD2B, however, runs
out of characters every time before filling, as Table 5-3 illustrates.

Table 5-3 Handling a Short Sending Item

FIELD1
PIC X(6) FIELD2B FIELD2B
VALUE IS: PICTURE IS: Value After UNSTRING Operation
ABCDEF XXXXX DEF
S99999 0024F
ABC246 S9V999 600{
S9999 LEADING SEPARATE +0246

5.2.2 Controlling Moved Data Using the DELIMITED BY Phrase

The size of the data to be moved can be controlled by a delimiter, rather than by
the size of the receiving item. The DELIMITED BY phrase supplies the delimiter
characters.

UNSTRING delimiters can be literals, figurative constants (including ALL
literal), or identifiers (identifiers can even be subscripted data names). This

section describes the use of these three types of delimiters. Subsequent sections
cover multiple delimiters, the COUNT phrase, and the DELIMITER phrase.

Consider the following sample UNSTRING statement with the figurative constant
SPACE as a delimiter:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2.

In this example, the compiler scans the sending item (FIELD1), searching

for a space character. If it encounters a space, it moves all of the scanned
(nonspace) characters that precede that space to the receiving item (FIELD2). If
it finds no space character, it moves the entire sending item. When the compiler
has determined the size of the sending item, it moves the contents of that item
following the rules for the MOVE statement, truncating or zero-filling as required.

Table 5—4 shows the results of the following UNSTRING operation that uses a
literal asterisk delimiter:

UNSTRING FIELD1 DELIMITED BY "*"
INTO FIELD2.

5-8 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements

5.2 Separating Data Using the UNSTRING Statement

Table 5-4 Results of Delimiting with an Asterisk

FIELD1 FIELD2
PIC X(6) FIELD2 Value After
VALUE IS: PICTURE IS: UNSTRING
XXX ABC
ABCDEF X(7) ABCDEF
XXX JUSTIFIED DEF
*ABCDE XXX #it#
A XXX JUSTIFIED #H#A
246%+* S9999 024F
12345%* S9999 TRAILING SEPARATE 2345+
2468%* S999V9 LEADING SEPARATE +4680
2467% 9999 0000

Legend: # = space

If the delimiter matches the first character in the sending item, the compiler
considers the size of the sending item to be zero. The operation still takes place,
however, and fills the receiving item with spaces (if it is nonnumeric) or zeros (if
it is numeric).

A delimiter can also be applied to an UNSTRING statement that has multiple
receiving items:

UNSTRING FIELD1 DELIMITED BY SPACE
INTO FIELD2A FIELD2B.

The compiler generates code that scans FIELD1 searching for a character that
matches the delimiter. If it finds a match, it moves the scanned characters

to FIELD2A and sets the scanner to the next character position to the right
of the character that matched. The compiler then resumes scanning FIELD1
for a character that matches the delimiter. If it finds a match, it moves all of
the characters between the character that first matched the delimiter and the
character that matched on the second scan, and sets the scanner to the next
character position to the right of the character that matched.

The DELIMITED BY phrase handles additional items in the same manner as it
handled FIELD2B.

Table 5-5 illustrates the results of the following delimited UNSTRING operation
into multiple receiving items:

UNSTRING FIELD1 DELIMITED BY "*"
INTO FIELD2A FIELD2B.

Using the STRING, UNSTRING, and INSPECT Statements 5-9

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

Table 5-5 Results of Delimiting Multiple Receiving Items

Values After UNSTRING Operation

FIELD1
PIC X(8) FIELD2A FIELD2B
VALUE IS: PIC X(3) PIC X(3)
ABC*DEF* ABC DEF
ABCDE*FG ABC FG#
A¥BE As# B##
#AB*CD** et AB#
#*ABCDEF i i
A*BCDEFG As#t BCD
ABC**DEF ABC i
] A i

Legend: # = space

The previous examples illustrate the limitations of a single-character delimiter.
To overcome these limitations, a delimiter of more than one character or a
delimiter preceded by the word ALL may be used.

Table 5—6 shows the results of the following UNSTRING operation using a
2-character delimiter:

UNSTRING FIELD1 DELIMITED BY "#**"
INTO FIELD2A FIELD2B.

Table 5-6 Results of Delimiting with Two Asterisks

Values After UNSTRING Operation

FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX
VALUE IS: PIC XXX JUSTIFIED
ABC**DEF ABC DEF
A*B*C*D* A*B Hit#
AB***C*D AB# C*D
AB*C*D* AB# *D*
AB*ECD** AB# #CD
AB***CD* AB# CD*
ABFEECD AB# #H##

Legend: # = space

Unlike the STRING statement, the UNSTRING statement accepts the ALL
literal as a delimiter. When the word ALL precedes the delimiter, the action of
the UNSTRING statement remains essentially the same as with one delimiter
until the scanning operation finds a match. At this point, the compiler scans
farther, looking for additional consecutive strings of characters that also match

5-10 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

the delimiter item. It considers the ALL delimiter to be one, two, three, or more
adjacent repetitions of the delimiter item. Table 5—7 shows the results of the
following UNSTRING operation using an ALL delimiter:

UNSTRING FIELD1 DELIMITED BY ALL "*"
INTO FIELD2A FIELD2B.

Table 5-7 Results of Delimiting with ALL Asterisks
Values After UNSTRING Operation

FIELD1 FIELD2B
PIC X(8) FIELD2A PIC XXX
VALUE IS: PIC XXX JUSTIFIED
ABC*DEF* ABC DEF
ABC**DEF ABC DEF
A At #4F

N At #4F
A*CDEFG At EFG

Legend: # = space

Table 5—-8 shows the results of the following UNSTRING operation that combines
ALL with a 2-character delimiter:

UNSTRING FIELD1 DELIMITED BY ALL "**"
INTO FIELD2A FIELD2B.

Table 5-8 Results of Delimiting with ALL Double Asterisks
Values After UNSTRING Operation

FIELDA
PIC X(8) PIC XXX
VALUE IS: PIC XX JUSTIFIED
ABC**DEF ABC DEF
AB**DE** AB# #DE
Ay A #D

Legend: # = space

In addition to unchangeable delimiters, such as literals and figurative constants,
delimiters can be designated by identifiers. Identifiers permit variable delimiting.
Consider the following sample statement:

UNSTRING FIELD1 DELIMITED BY DELI1
INTO FIELD2A FIELD2B.

The data name DEL1 must be alphanumeric; it can be either a group or an
elementary item. If the delimiter contains a subscript, the subscript may vary as
a side effect of the UNSTRING operation.

Using the STRING, UNSTRING, and INSPECT Statements 5-11

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

5.2.2.1 Multiple Delimiters
The UNSTRING statement scans a sending item, searching for a match from a
list of delimiters. This list can contain ALL delimiters and delimiters of various
sizes. Delimiters in the list must be connected by the word OR.

The following sample statement unstrings a sending item into three receiving
items. The sending item consists of three strings separated by one of the
following: (1) any number of spaces, (2) a comma followed by a single space,
(3) a single comma, (4) a tab character, or (5) a carriage-return character. The
comma and space must precede the single comma in the list if the comma and
space are to be recognized.

UNSTRING FIELD1 DELIMITED BY ALL SPACE
OR ||, n
OR II,II
OR TAB
OR CR
INTO FIELD2A FIELD2B FIELD2C.

Table 5-9 shows the potential of this statement. The tab and carriage-return
characters represent single-character items containing the ASCII horizontal tab
and carriage-return characters.

Table 5-9 Results of Multiple Delimiters

FIELD1 FIELD2A FIELD2B FIELD2C
PIC X(12) PIC XXX PIC 9999 PIC XXX
A0,C Attt 0000 Cit#
A [Tabl56, E A## 0456 E##
A39 At 0003 Ot
A B At 0000 B##
A,C A## 0000 CH#t
ABCD, 4321,Z ABC 4321 Z##

Legend: # = space

5.2.3 Using the COUNT Phrase

The COUNT phrase keeps track of the size of the sending string and stores the
length in a user-supplied data area.

The length of a delimited sending item can vary from zero to the full length of
the item. Some programs require knowledge of this length. For example, some
data is truncated if it exceeds the size of the receiving item, so the program’s logic
requires this information.

The COUNT phrase follows the receiving item. Consider the following example:

UNSTRING FIELD1 DELIMITED BY ALL "*"
INTO FIELD2A COUNT IN COUNT2A
FIELD2B COUNT IN COUNT2B
FIELD2C.

The compiler generates code that counts the number of characters between the
leftmost position of FIELD1 and the first asterisk in FIELD1 and places the count
into COUNT2A. The delimiter is not included in the count because it is not a part
of the string. The data preceding the first asterisk is then moved into FIELD2A.

5-12 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

The compiler then counts the number of characters between the last contiguous
asterisk in the first scan and the next asterisk in the second scan, and places the
count in COUNT2B. The data between the delimiters of the second scan is moved
into FIELD2B.

The third scan begins at the first character after the last contiguous asterisk
in the second scan. Any data between the delimiters of this scan is moved to
FIELD2C.

The COUNT phrase should be used only where it is needed. In this example,
the length of the string moved to FIELD2C is not needed, so no COUNT phrase
follows it.

If the receiving item is shorter than the value placed in the count item, the code
truncates the sending string. If the number of integer positions in a numeric item
is smaller than the value placed into the count item, high-order numeric digits
have been lost. If a delimiter match is found on the first character examined, a
zero is placed in the count item.

The COUNT phrase can be used only in conjunction with the DELIMITED BY
phrase.

5.2.4 Saving UNSTRING Delimiters Using the DELIMITER Phrase

The DELIMITER phrase causes the actual character or characters that delimited
the sending item to be stored in a user-supplied data area. This phrase is most
useful when:

e The UNSTRING statement contains a delimiter list.
® Any one of the delimiters in the list might have delimited the item.
e Program logic flow depends on the delimiter match found.

By using the DELIMITER and COUNT phrases, you can make the flow of
program logic dependent on both the size of the sending string and the delimiter
terminating the string.

To use the DELIMITER phrase, follow the receiving item name with the words
DELIMITER IN and an identifier. The compiler generates code that places the
delimiter character in the area named by the identifier. Consider the following
sample UNSTRING statement:

UNSTRING FIELD1 DELIMITED BY ","
OR TAB
OR ALL SPACE
OR CR
INTO FIELD2A DELIMITER IN DELIMA
FIELD2B DELIMITER IN DELIMB
FIELD2C.

After moving the first sending string to FIELD2A, the character (or characters)
that delimited that string is placed in DELIMA. In this example, DELIMA
contains either a comma, a tab, a carriage return, or any number of spaces.
Because the delimiter string is moved under the rules of the elementary
nonnumeric MOVE statement, the compiler truncates or space-fills with left

or right justification.

The second sending string is then moved to FIELD2B and its delimiting character
is placed into DELIMB.

Using the STRING, UNSTRING, and INSPECT Statements 5-13

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

When a sending string is delimited by the end of the sending item rather than by
a match on a delimiter, the delimiter string is of zero length and the DELIMITER
item is space-filled. The phrase should be used only where needed. In this
example, the character that delimits the last sending string is not needed, so no
DELIMITER phrase follows FIELD2C.

The data item named in the DELIMITER phrase must be described as an
alphanumeric item. It can contain editing characters, and it can also be a group
item.

When you use both DELIMITER and COUNT phrases, the DELIMITER phrase
must precede the COUNT phrase. Both of the data items named in these phrases
can be subscripted or indexed. If they are subscripted, the subscript can be varied
as a side effect of the UNSTRING operation.

5.2.5 Controlling UNSTRING Scanning Using the POINTER Phrase

Although the UNSTRING statement scan usually starts at the leftmost position
of the sending item, the POINTER phrase lets you control the character position
where the scan starts. Scanning, however, remains left to right.

When a sending item is to be unstrung into multiple receiving items, the choice
of delimiters and the size of subsequent receiving items depends on the size

of the first sending string and the character that delimited that string. Thus,
the program needs to move the first sending item, hold its scanning position in
the sending item, and examine the results of the operation to determine how to
handle the sending items that follow.

This is done by using an UNSTRING statement with a POINTER phrase that
fills only the first receiving item. When the first string has been moved to a
receiving item, the compiler begins the next scanning operation one character
beyond the delimiter that caused the interruption. The program examines the
new position, the receiving item, the delimiter value, and the sending string size.
It resumes the scanning operation by executing another UNSTRING statement
with the same sending item and pointer data item. In this way, the UNSTRING
statement moves one sending string at a time, with the form of each succeeding
move depending on the context of the preceding string of data.

The POINTER phrase must follow the last receiving item in the UNSTRING
statement. You are responsible for initializing the pointer before the UNSTRING
statement executes. Consider the following two UNSTRING statements with
their accompanying POINTER phrases and tests:

MOVE 1 TO PNTR.
UNSTRING FIELD1 DELIMITED BY ":"
OR TAB
OR CR
OR ALL SPACE
INTO FIELD2A DELIMITER IN DELIMA COUNT IN LSIZEA
WITH POINTER PNTR.
IF LSIZEA = 0 GO TO NO-LABEL-PROCESS.
IF DELIMA = ":"
IF PNTR > 8 GO TO BIG-LABEL-PROCESS
ELSE GO TO LABEL-PROCESS.
IF DELIMA = TAB GO TO BAD-LABEL PROCESS.

UNSTRING FIELD1 DELIMITED BY ... WITH POINTER PNTR.

5-14 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

PNTR contains the current position of the scanner in the sending item. The
second UNSTRING statement uses PNTR to begin scanning the additional
sending strings in FIELD1.

Because the compiler considers the leftmost character to be character position
1, the value of PNTR can be used to examine the next character. To do this,
describe the sending item as a table of characters and use PNTR as a sending
item subscript. This is shown in the following example:

01 FIELDI.
02 FIELD1-CHAR OCCURS 40 TIMES.

UNSTRING FIELD1

WITH POINTER PNTR.
IF FIELD1-CHAR(PNTR) = "X" ...

Another way to examine the next character of the sending item is to use the
UNSTRING statement to move the character to a 1-character receiving item:

UNSTRING FIELD1

WITH POINTER PNTR.
UNSTRING FIELD1 INTO CHAR1 WITH POINTER PNTR.
SUBTRACT 1 FROM PNTR.
IF CHARLI = "X" ...

The program must decrement PNTR by 1 to work, because the second
UNSTRING statement increments the pointer by 1.

The program must initialize the POINTER phrase data item before the
UNSTRING statement uses it. The compiler will terminate the UNSTRING
operation if the initial value of the pointer is less than one or greater than the
length of the sending item. Such a pointer value causes an overflow condition.
Overflow conditions are discussed in Section 5.2.7.

5.2.6 Counting UNSTRING Receiving Items Using the TALLYING Phrase

The TALLYING phrase counts the number of receiving items that received data
from the sending item.

When an UNSTRING statement contains several receiving items, there are not
always as many sending strings as there are receiving items. The TALLYING
phrase provides a convenient method for keeping a count of how many receiving
items actually received strings. The following example shows how to use the
TALLYING phrase:

MOVE 0 TO RCOUNT.
UNSTRING FIELD1 DELIMITED BY ","
OR ALL SPACE
INTO FIELD2A
FIELD2B
FIELD2C
FIELD2D
FIELD2E
TALLYING IN RCOUNT.

Using the STRING, UNSTRING, and INSPECT Statements 5-15

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

If the compiler has moved only three sending strings when it reaches the end
of FIELD1, it adds 3 to RCOUNT. The first three receiving items (FIELD2A,
FIELD2B, and FIELD2C) contain data from the UNSTRING operation, but the
last two (FIELD2D and FIELD2E) do not.

The UNSTRING statement does not initialize the TALLYING data item. The
TALLYING data item always contains the sum of its initial contents plus the
number of receiving items receiving data. Thus, you might want to initialize the
tally count before each use.

You can use the POINTER and TALLYING phrases together in the same
UNSTRING statement, but the POINTER phrase must precede the TALLYING
phrase. Both phrases must follow all of the item names, the DELIMITER phrase,
and the COUNT phrase. The data items for both phrases must contain numeric
integers without editing characters or the symbol P in their PICTURE character-
strings; both data items can be either COMP or DISPLAY usage. They can be
signed or unsigned and, if they are DISPLAY usage, they can contain any desired
sign option.

5.2.7 Exiting an UNSTRING Statement Using the OVERFLOW Phrase

The OVERFLOW phrase detects the overflow condition and causes an imperative
statement to be executed when it detects the condition. An overflow condition
exists when:

e The UNSTRING statement is about to execute and its pointer data item
contains a value less than one or greater than the size of the sending item.
The compiler generates code that executes the OVERFLOW phrase before it
moves any data, and the values of all the receiving items remain unchanged.

e Data still remains in the sending item after the UNSTRING statement has
filled all the receiving items. The compiler executes the OVERFLOW phrase
after it has executed the UNSTRING statement. The value of each receiving
item is updated, but some data is still unmoved.

If the UNSTRING operation causes the scan to move past the rightmost position
of the sending item (thus exhausting it), the compiler does not execute the
OVERFLOW phrase.

The following set of instructions causes program control to execute the
UNSTRING statement repeatedly until it exhausts the sending item. The
TALLYING data item is a subscript that indexes the receiving item. Compare
this loop with the previous loop, which accomplishes the same thing:

MOVE 1 TO TLY PNTR.
PAR1. UNSTRING FIELDl1 DELIMITED BY ","
OR CR
INTO FIELD2(TLY) WITH POINTER PNTR
TALLYING IN TLY
ON OVERFLOW GO TO PARI.

5.2.8 Common UNSTRING Statement Errors

The most common errors made when writing UNSTRING statements are as
follows:

e Leaving the OR connector out of a delimiter list
e Misspelling or interchanging the words DELIMITED and DELIMITER

e Writing the DELIMITER and COUNT phrases in the wrong order when both
are present (DELIMITER must precede COUNT)

5-16 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.2 Separating Data Using the UNSTRING Statement

¢ Omitting the word INTO (or writing it as TO) before the receiving item list
e Repeating the word INTO in the receiving item list as shown in this example:

UNSTRING FIELD1 DELIMITED BY SPACE
OR TAB
INTO FIELD2A DELIMITER IN DELIMA
INTO FIELD2B DELIMITER IN DELIMB
INTO FIELD2C DELIMITER IN DELIMC.

e Writing the POINTER and TALLYING phrases in the wrong order (POINTER
must precede TALLYING)

e Failing to understand the rules concerning subscript evaluation

5.3 Examining and Replacing Characters Using the INSPECT
Statement

The INSPECT statement examines the character positions in an item and counts
or replaces certain characters (or groups of characters) in that item.

Like the STRING and UNSTRING operations, INSPECT operations scan across
the item from left to right. Included in the INSPECT statement is an optional
phrase that allows scanning to begin or terminate upon detection of a delimiter
match. This feature allows scanning to begin within the item, as well as at the
leftmost position.

5.3.1 Using the TALLYING and REPLACING Options of the INSPECT Statement

The TALLYING operation, which counts certain characters in the item, and the
REPLACING operation, which replaces certain characters in the item, can be
applied either to the characters in the delimited area of the item being inspected,
or to only those characters that match a given character string or strings under
stated conditions. Consider the following sample statements, both of which cause
a scan of the complete item:

INSPECT FIELD1 TALLYING TLY FOR ALL "B".
INSPECT FIELD1 REPLACING ALL SPACE BY ZERO.

The first statement causes the compiler to scan FIELD1 looking for the character
B. Each time a B is found, TLY is incremented by 1.

The second statement causes the compiler to scan FIELD1 looking for spaces.
Each space found is replaced with a zero.

The TALLYING and REPLACING phrases support both single and multiple
arguments. For example, both of the following statements are valid:

INSPECT FIELD1 TALLYING TLY FOR ALL "A" "B" "C".
INSPECT FIELD1 REPLACING ALL "A" "B" "C" BY "D".

You can use both the TALLYING and REPLACING phrases in the same
INSPECT statement. However, when used together, the TALLYING phrase
must precede the REPLACING phrase. An INSPECT statement with both
phrases is equivalent to two separate INSPECT statements. In fact, the compiler
compiles such a statement into two distinct INSPECT statements. To simplify
debugging, write the two phrases in separate INSPECT statements.

Using the STRING, UNSTRING, and INSPECT Statements 5-17

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

5.3.2 Restricting Data Inspection Using the BEFORE/AFTER Phrase

The BEFORE/AFTER phrase acts as a delimiter and can restrict the area of the
item being inspected.

The following sample statement counts only the zeros that precede the percent
sign (%) in FIELD1:

INSPECT FIELD]1 TALLYING TLY
FOR ALL ZEROS BEFORE "%".

The delimiter (the percent sign in the preceding sample statement) can be a
single character, a string of characters, or any figurative constant. Furthermore,
it can be either an identifier or a literal.

e If the delimiter is an identifier, it must be an elementary data item of
DISPLAY usage. It can be alphabetic, alphanumeric, or numeric, and it can
contain editing characters. The compiler always treats the item as if it had
been described as an alphanumeric string. It does this by implicit redefinition
of the item, as described in Section 5.3.3.

e If the delimiter is a literal, it must be nonnumeric.

The compiler repeatedly compares the delimiter characters against an equal
number of characters in the item being inspected. If none of the characters
matches the delimiter, or if too few characters remain in the rightmost position
of the item for a full comparison, the compiler considers the comparison to be
unequal.

The examples of the INSPECT statement in Figure 5-2 illustrate the way the
delimiter character finds a match in the item being inspected. The underlined
characters indicate the portion of the item the statement inspects as a result of
the delimiters of the BEFORE and AFTER phrases. The remaining portion of the
item is ignored by the INSPECT statement.

The ellipses represent the position of the TALLYING or REPLACING phrase.
The compiler generates code that scans the item for a delimiter match before it
scans for the inspection operation (TALLYING or REPLACING), thus establishing
the limits of the operation before beginning the actual inspection. Section 5.3.4.1
further describes the separate scan.

5.3.3 Implicit Redefinition

The compiler requires that certain items referred to by the INSPECT statement
be alphanumeric items. If one of these items is described as another data class,
the compiler implicitly redefines that item so the INSPECT statement can handle
it as an alphanumeric string as follows:

e If the item is alphabetic, alphanumeric edited, or unsigned numeric, the
item is redefined as alphanumeric. This is a compile-time operation; no data
movement occurs at run time.

e Ifthe item is signed numeric, the compiler generates code that first removes
the sign and then redefines the item as alphanumeric. If the sign is a
separate character, that character is ignored, essentially shortening the item,
and that character does not participate in the implicit redefinition. If the sign
is an overpunch on the leading or trailing digit, the sign value is removed and
the character is left with only the numeric value that was stored in it.

5-18 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

Figure 5-2 Matching Delimiter Characters to Characters in a Field

Instruction FIELD1 Value
INSPECT FIELD1...BEFORE "E". ABCDEFEAY
INSPECT FIELD1...AFTER "E". KBZPFEGHI
INSPECT FIELD1...BEFORE "K". ABCDEFGHI
INSPECT FIELD1...AFTER "K". ABCHRFEAY
INSPECT FIELD1...BEFORE "AB". KB EAY
INSPECT FIELD1...AFTER "AB". ABCDEFGHI
INSPECT FIELD1...BEFORE "HI". ABCDEFGH)/
INSPECT FIELD1...AFTER "HI". LBEDEEAY
INSPECT FIELD1...BEFORE "I". ABCDEFGHI
INSPECT FIELD1...AFTER "I", AR 2N

ZK-1426A-GE

The compiler alters the digit position containing the sign before beginning the
INSPECT operation and restores it to its former value after the operation. If
the sign’s digit position does not contain a valid ASCII signed numeric digit,

redefinition causes the value to change.

Table 5-10 shows these original, altered, and restored values.

The compiler never moves an implicitly redefined item from its storage position.
All redefinition occurs in place.

The position of an implied decimal point on numeric quantities does not affect
implicit redefinition.

Using the STRING, UNSTRING, and INSPECT Statements 5-19

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

Table 5-10 Values Resulting from Implicit Redefinition

Original Altered

Value Value Restored Value
} (173) 0 (60) } (173)
A (101) 1 (61) A (101)
B (102) 2 (62) B (102)
C (103) 3 (63) C (103)
D (104) 4 (64) D (104)
E (105) 5 (65) E (105)
F (106) 6 (66) F (106)
G (107) 7(67) G (107)
H (110) 8 (70) H (110)
I(111) 9 (71) I(111)
{ (175) 0 (60) { (175)
J (112) 1(61) J (112)
K (113) 2 (62) K (113)
L (114) 3 (63) L (114)
M (115) 4 (64) M (115)
N (116) 5 (65) N (116)
0 (117) 6 (66) 0 (117)
P (120) 7 (67) P (120)
Q (121) 8 (70) Q (121)
R (122) 9 (71) R (122)
0 (60) 0 (60) } (173)
1(61) 1(61) A (101)
2 (62) 2 (62) B (102)
3 (63) 3 (63) C (103)
4 (64) 4 (64) D (104)

(continued on next page)

5-20 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

Table 5-10 (Cont.) Values Resulting from Implicit Redefinition

Original Altered

Value Value Restored Value
5 (65) 5 (65) E (105)

6 (66) 6 (66) F (106)

7 (67) 7 (67) G (107)

8 (70) 8 (70) H (110)

9 (71) 9 (71) I1(111)

All other 0 (60) 1 (173)

values

5.3.4 Examining the INSPECT Operation

Regardless of the type of inspection (TALLYING or REPLACING), the INSPECT
statement has only one method for inspecting the characters in the item. This
section analyzes the INSPECT statement and describes this inspection method.

Figure 5-3 shows an example of the INSPECT statement. The item to be
inspected must be named (FIELD1 in our example), and the item name must be
followed by a TALLYING phrase (TALLYING TLY). The TALLY phrase must be
followed by one or more identifiers or literals (B). These identifiers or literals
comprise the arguments. More than one argument makes up the argument list.

Figure 5-3 Sample INSPECT Statement

INSPECT FIELD]1 TALLYING TLY FOR ALL "B" BEFORE "A"
I J | J 1 J | I

Item being Operation Argument Delimiter
inspected phrase phrase
ZK-6052-GE

Each argument in an argument list can have other items associated with it.
Thus, each argument that is used in a TALLYING operation must have a tally
counter (such as TLY in the example) associated with it. The tally counter is
incremented each time it matches the argument with a character or group of
characters in the item being inspected.

Each argument in an argument list used in a REPLACING operation must have
a replacement item associated with it. The compiler generates code that uses the
replacement item to replace each string of characters in the item that matches
the argument. Figure 5-4 shows a typical REPLACING phrase (with $ as the
replacement item).

Using the STRING, UNSTRING, and INSPECT Statements 5-21

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

Figure 5-4 Typical REPLACING Phrase

INSPECT FIELD1 REPLACING ALL "0" BY "$"
I J

|

Replacing argument

ZK-6053-GE

Each argument in an argument list used with either a TALLYING or
REPLACING operation can have a delimiter item (BEFORE/AFTER phrase)
associated with it. If the delimiter item is not present, the argument is applied to
the entire item. If the delimiter item is present, the argument is applied only to
that portion of the item specified by the BEFORE/AFTER phrase.

5.3.4.1 Setting the Scanner
The INSPECT operation begins by setting the scanner to the leftmost character
position of the item being inspected. It remains on this character until an
argument has been matched with a character (or characters) or until all
arguments have failed to find a match at that position.

5.3.4.2 Active/lnactive Arguments

When an argument has a BEFORE/AFTER phrase associated with it, that
argument has a delimiter and may not be eligible to participate in a comparison
at every position of the scanner. Thus, each argument in the argument list has
an active/inactive status at any given setting of the scanner.

For example, an argument that has an AFTER phrase associated with it starts
the INSPECT operation in an inactive state. The delimiter of the AFTER phrase
must find a match before the argument can participate in the comparison.
When the delimiter finds a match, the compiler generates code that retains the
character position beyond the matched character string; then, when the scanner
reaches or passes this position, the argument becomes active. This is shown in
the following example:

INSPECT FIELD1 TALLYING TLY
FOR ALL "B" AFTER "X".

If FIELD1 has a value of ABABXZBA, the argument B remains inactive until the
scanner finds a match for delimiter X. Thus, argument B remains inactive while
the compiler generates code that scans character positions 1 to 5. At character
position 5, delimiter X finds a match, and because the character position beyond
the matched delimiter character is the point at which the argument becomes
active, argument B is compared for the first time at character position 6. It finds
a successful match at character position 7, causing TLY to be incremented by 1.

Table 5—-11 shows an INSPECT...TALLYING statement that is scanning FIELD1,
tallying in TLY, and looking for the arguments and delimiters listed in the left
column. Assume that TLY is initialized to 0.

5-22 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

Table 5-11 Relationship Among INSPECT Argument, Delimiter, ltem Value, and
Argument Active Position

Argument
Argument and FIELD1 Active at Contents of
Delimiter Value Position TLY After Scan
ALL BXBXXXXBB 6 2
“B” AFTER “XX” XXXXXXXX 3 0
BXBXBBBBXX never 0

BXBXXBXXB 6

“X” AFTER “XX” XXXXXXXX 3
BBBBBBXX never
BXYBXBXX 7 0
“B” AFTER “XB” XBXBXBXB 3
BBBBBBXB never
XXXXBXXXX 6 0
“BX” AFTER “XB” XXXXBBXXX
XXBXXXXBX 4 1

When an argument has an associated BEFORE delimiter, the inactive/active
states reverse roles: the argument is in an active state when the scanning
begins and becomes inactive at the character position that matches the delimiter.
Regardless of the presence of the BEFORE delimiter, an argument becomes
inactive when the scanner approaches the rightmost position of the item and the
remaining characters are fewer in number than the characters in the argument.
In such a case, the argument cannot possibly find a match in the item, so it
becomes inactive.

Because the BEFORE/AFTER delimiters are found on a separate scan of the item,
the compiler generates code that recognizes and sets up the delimiter boundaries
before it scans for an argument match; therefore, the same characters can be used
as arguments and delimiters in the same phrase.

5.3.4.3 Finding an Argument Match
The compiler generates code that selects arguments from the argument list
in the order in which they appear in the list. If the first one it selects is an
active argument, and the conditions stated in the INSPECT statement allow a
comparison, the compiler generates code that compares it to the character at the
scanner’s position. If the active argument does not find a match, the compiler
generates code that takes the next active argument from the list and compares
that to the same character. If none of the active arguments finds a match, the
scanner moves one position to the right and begins the inspection operation again
with the first active argument in the list. The inspection operation terminates at
the rightmost position of the item.

Using the STRING, UNSTRING, and INSPECT Statements 5-23

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

When an active argument finds a match, the compiler ignores any remaining
arguments in the list and conducts the TALLYING or REPLACING operation

on the character. The scanner moves to a new position and the next inspection
operation begins with the first argument in the list. The INSPECT statement can
contain additional conditions, which are described later in this section; without
them, however, the argument match is allowed to take place, and inspection
continues following the match.

The compiler updates the scanner by adding the size of the matching argument to
it. This moves the scanner to the next character beyond the string of characters
that matched the argument. Thus, once an active argument matches a string of
characters, the statement does not inspect those character positions again unless
program control executes the entire statement again.

5.3.5 The TALLYING Phrase

An INSPECT statement that contains a TALLYING phrase counts the
occurrences of various character strings under certain stated conditions. It
keeps the count in a user-designated item called a tally counter.

5.3.5.1 The Tally Counter

The identifier following the word TALLYING designates the tally counter. The
identifier can be subscripted or indexed. The data item must be a numeric integer
without any editing or P characters; it can be COMP or DISPLAY usage, and it
can be signed (separate or overpunched).

Each time the tally argument matches the delimited string being inspected, the
compiler adds 1 to the tally counter.

You can initialize the tally counter to any numeric value. The INSPECT
statement does not initialize it.

5.3.5.2 The Tally Argument

The tally argument specifies a character-string (or strings) and a condition under
which that string should be compared to the delimited string being inspected.

The CHARACTERS form of the tally argument specifies that every character in
the delimited string being inspected should be considered to match an imaginary
character that serves as the tally argument. This increments the tally counter by
a value that equals the size of the delimited string. For example, the following
statement causes TLY to be incremented by the number of characters that
precede the first comma, regardless of what those characters are:

INSPECT FIELD1 TALLYING TLY FOR
CHARACTERS BEFORE ",".

The ALL and LEADING forms of the tally argument specify a particular
character-string (or strings), which can be represented by either a literal or
an identifier. The tally argument character-string can be any length; however,
each character of the argument must match a character in the delimited string
before the compiler considers the argument matched.

e A literal character-string must be either nonnumeric or a figurative constant
(other than ALL literal). A figurative constant, such as SPACE or ZERO,
represents a single character and can be written as " " or 0 with the same
effect.

5-24 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

¢ An identifier must be an elementary item of DISPLAY usage. It can be any
data class. However, if it is not alphanumeric, the compiler performs an
implicit redefinition of the item. This redefinition is identical to the
BEFORE/AFTER delimiter redefinition discussed in Section 5.3.2.

The words ALL and LEADING supply conditions that further delimit the
inspection operation:

e ALL specifies that every match that the search argument finds in the
delimited character string be counted in the tally counter. When a literal
follows the word ALL, it does not have the same meaning as the figurative
constant, ALL literal. The ALL literal meaning of ALL “,” is a string of
consecutive commas (as many as the context of the statement requires). ALL
“” used as a tally argument means “count each comma without regard to

adjacent characters.”

e LEADING specifies that only adjacent matches of the TALLY argument
at the leftmost position of the delimited character string be counted. At
the first failure to match the tally argument, the compiler terminates
counting and causes the argument to become inactive. The sample statement
INSPECT...TALLYING (scanning FIELD1, tallying in TLY, and looking for
the arguments and delimiters listed in the left column) gives the results in
Table 5-12 (if the program initializes TLY to 0).

Table 5-12 LEADING Delimiter of the Inspection Operation
Argument and Delimiter FIELD1 Value Contents of TLY After Scan

Qs 9
FrxQR=*
LEADING “*” AFTER “0”. |) 0]

O***F**

w o o

F##FQ#+FF
LEADING “**” AFTER “0”. RO

S N = o=

5.3.5.3 The Tally Argument List
One INSPECT...TALLYING statement can contain more than one tally argument,
and each argument can have a separate BEFORE/AFTER phrase and tally
counter associated with it. These tally arguments with their associated tally
counters and BEFORE/AFTER phrases form an argument list. The manner in
which this list is processed affects the action of any given tally argument.

The following examples show INSPECT statements with argument lists. The text
with each example explains how that list is processed.

INSPECT FIELD1 TALLYING T FOR
ALL n ’ n
ALL n . n
ALL n ; n .

Using the STRING, UNSTRING, and INSPECT Statements 5-25

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

These three tally arguments have the same tally counter, T, and are active over
the entire item being inspected. Thus, the preceding statement adds the total
number of commas, periods, and semicolons in FIELD1 to the initial value of
T. Because the TALLYING phrase supports multiple arguments and only one
counter is used, the previous statement could have been written as follows:

INSPECT FIELD1 TALLYING T FOR ALL "," "." ";".

INSPECT FIELD1 TALLYING
Tl FOR ALL ","
T2 FOR ALL "."
T3 FOR ALL ";".

Each tally argument in this statement has its own tally counter and is active
over the entire item being inspected. Thus, the preceding statement adds the
total number of commas in FIELD1 to the initial value of T1, the total number of
periods to the initial value of T2, and the number of semicolons to T3.

INSPECT FIELD1 TALLYING

Tl FOR ALL "," AFTER "A"
T2 FOR ALL "." BEFORE "B"
T3 FOR ALL ";".

Each tally argument in the preceding statement has its own tally counter; the
first two arguments have delimiter phrases, and the last one is active over the
entire item being inspected. Thus, the first argument is initially inactive and
becomes active only after the scanner encounters an A; the second argument
begins the scan in the active state but becomes inactive after a B has been
encountered; and the third argument is active during the entire scan of FIELD1.

Table 5-13 shows various values of FIELD1 and the contents of the three tally
counters after the scan of the previous statements. Assume that the counters are
initialized to O before the INSPECT statement.

Table 5-13 Results of the Scan with Separate Tallies

Contents of Tally Counters After Scan

FIELD1

Value T1 T2 T3
A.C.D.EF 1 2 1
AB.CD 0 1 0
AB,C.D 3 0 0
A;B;C;D 0 0 3
*B,C,D 0 0 0

The BEFORE/AFTER phrase applies only to the argument that precedes it and
delimits the item for that argument only. Each BEFORE/AFTER phrase causes a
separate scan of the item to determine the limits of the item for its corresponding
argument.

5-26 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

5.3.5.4 Interference in Tally Argument Lists

When several tally arguments contain one or more identical characters active
at the same time, they may interfere with each other, so that when one of the
arguments finds a match, the scanner steps past any other matching characters,
preventing those characters from being considered for a match.

The following two identical tally arguments do not interfere with each other
because they are not active at the same time. The first A in FIELD1 causes the
first argument to become inactive and the second argument to become active:

MOVE 0 TO T1 T2.

INSPECT FIELD1 TALLYING
Tl FOR ALL "," BEFORE "A"
T2 FOR ALL "," AFTER "A".

However, the next identical tally arguments interfere with each other since both
are active at the same time:

INSPECT FIELD1 TALLYING
Tl FOR ALL ","
T2 FOR ALL "," AFTER "A".

For any given position of the scanner, the arguments are applied to FIELD1
in the order in which they appear in the statement. When one of them finds
a match, the scanner moves to the next position and ignores the remaining
arguments in the argument list. Each comma in FIELD1 causes T1 to be
incremented by 1 and the second argument to be ignored. Thus, T1 always
contains an accurate count of all the commas in FIELD1, and T2 is always
unchanged.

The following INSPECT statement arguments only partially interfere with each
other:

INSPECT FIELD1 TALLYING
T2 FOR ALL "," AFTER "A"
Tl FOR ALL ",".

The first argument does not become active until the scanner encounters an

A. The second argument tallies all commas that precede the A. After the A,

the first argument counts all commas and causes the second argument to be
ignored. Thus, T1 contains the number of commas that precede the first A, and
T2 contains the number of commas that follow the first A. This statement works
well as written, but it could be difficult to debug.

The following three examples show that one INSPECT statement cannot count
any character more than once. Thus, when you use the same character in more
than one argument of an argument list, consider the possibility of interference
and choose the order of the arguments carefully. The solution may require two or
more INSPECT statements. Consider the following problem:

INSPECT FIELD1 TALLYING
Tl FOR ALL "AB"
T2 FOR ALL "BC".

If FIELD1 contains ABCABC after the scan, T1 is incremented by 2, and T2 is
unaltered. The successful matching of the argument includes each B in the item.
Each match resets the scanner to the character position to the right of the B, so
that the second argument is never successfully matched. The results remain the
same even if the order of the arguments is reversed. Only separate INSPECT
statements can develop the desired counts.

Using the STRING, UNSTRING, and INSPECT Statements 5-27

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

Sometimes you can use the interference characteristics of the INSPECT
statement to your advantage. Consider the following sample argument list:

MOVE 0 TO T4 T3 T2 TI.

INSPECT FIELD1 TALLYING
T4 FOR ALL "**%*"
T3 FOR ALL "***"
T2 FOR ALL "**"
Tl FOR ALL "*",

The argument list counts all of the asterisks in FIELD1 in four different tally

counters. T4 counts the number of times that four asterisks occur together; T3
counts the number of times three asterisks appear together; T2 counts double

asterisks; and T1 counts singles.

If FIELD1 contains a string of more than four consecutive asterisks, the
argument list breaks the string into groups of four and counts them in T4. It
then counts the less-than-four remainder in T3, T2, or T1.

Reversing the order of the arguments in this list causes T1 to count all of the
asterisks, and T2, T3, and T4 to remain unchanged.

When the LEADING condition is used with an argument in the argument list,
that argument becomes inactive as soon as it fails to be matched in the item
being inspected. Therefore, when two arguments in an argument list contain one
or more identical characters and one of the arguments has a LEADING condition,
the argument with the LEADING condition should appear first. Consider the
following sample statement:

MOVE 0 TO T1 T2.

INSPECT FIELD]1 TALLYING
Tl FOR LEADING "*"
T2 FOR ALL "*",

T1 counts only leading asterisks in FIELD1; the occurrence of any other character
causes the first tally argument to become inactive. T2 keeps a count of any
remaining asterisks in FIELD1.

Reversing the order of the arguments in the following statement results in an
argument list that can never increment T1:

INSPECT FIELD1 TALLYING
T2 FOR ALL "*"
Tl FOR LEADING "*".

If the first character in FIELD1 is not an asterisk, neither argument can match
it, and the second argument becomes inactive. If the first character in FIELD1
is an asterisk, the first argument matches it and causes the second argument to
be ignored. The first character in FIELD1 that is not an asterisk fails to match
the first argument, and the second argument becomes inactive because it has not
found a match in any of the preceding characters.

An argument with both a LEADING condition and a BEFORE phrase can
sometimes successfully delimit the item being inspected, as in the following
example:

MOVE 0 TO T1 T2.

INSPECT FIELD]1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE "."
T2 FOR ALL " " BEFORE ".".

IF T2 > 0 ADD 1 TO T2.

5-28 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

These statements count the number of words in the English statement in
FIELD1, assuming that no more than three spaces separate the words in the
sentence, that the sentence ends with a period, and that the period immediately
follows the last word. When FIELD1 has been scanned, T2 contains the number
of spaces between the words. Because a count of the spaces renders a number
that is one less than the number of words, the conditional statement adds 1 to
the count.

The first argument removes any leading spaces, counting them in a different tally
counter. This shortens FIELD1 by preventing the application of the second to the
fourth arguments until the scanner finds a nonspace character. The BEFORE
phrase on each of the other arguments causes them to become inactive when

the scanner reaches the period at the end of the sentence. Thus, the BEFORE
phrases shorten FIELD1 by making the second to the fourth arguments inactive
before the scanner reaches the rightmost position of FIELD1. If the sentence in
FIELDL1 is indented with tab characters instead of spaces, a second LEADING
argument can count the tab characters. For example:

INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES
Tl FOR LEADING TAB
T2 FOR ALL " "

When an argument list contains a CHARACTERS argument, it should be the
last argument in the list. Because the CHARACTERS argument always matches
the item, it prevents the application of any arguments that follow in the list.
However, as the last argument in an argument list, it can count the remaining
characters in the item being inspected. Consider the following example.

MOVE 0 TO T1 T2 T3 T4 T5.
INSPECT FIELD1 TALLYING
Tl FOR LEADING SPACES

T2 FOR ALL "." BEFORE ","
T3 FOR ALL "+" BEFORE ","
T4 FOR ALL "-" BEFORE ","

T5 FOR CHARACTERS BEFORE ",".

If FIELD1 is known to contain a number in the form frequently used to input
data, it can contain a plus or minus sign, and a decimal point; furthermore,
the number can be preceded by spaces and terminated by a comma. When this
statement is compiled and executed, it delivers the following results:

e T1 contains the number of leading spaces.

e T2 contains the number of periods.

e T3 contains the number of plus signs.

e T4 contains the number of minus signs.

e T5 contains the number of remaining characters (assumed to be numeric).

The sum of T1 to T5, plus 1, gives the character position occupied by the
terminating comma.

Using the STRING, UNSTRING, and INSPECT Statements 5-29

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

5.3.6 Using the REPLACING Phrase

When an INSPECT statement contains a REPLACING phrase, that statement
selectively replaces characters or groups of characters in the designated item.

The REPLACING phrase names a search argument of one or more characters and
a condition under which the string can be applied to the item being inspected.
Associated with the search argument is the replacement value, which must be
the same length as the search argument. Each time the search argument finds a
match in the item being inspected, under the condition stated, the replacement
value replaces the matched characters.

A BEFORE/AFTER phrase can be used to delimit the area of the item being
inspected. A search argument applies only to the delimited area of the item.

5.3.6.1 The Search Argument

The search argument of the REPLACING phrase names a character string and a
condition under which the character string should be compared to the delimited
string being inspected.

The CHARACTERS form of the search argument specifies that every character in
the delimited string being inspected should be considered to match an imaginary
character that serves as the search argument. Thus, the replacement value
replaces each character in the delimited string. For example:

INSPECT ITEMA REPLACING CHARACTERS ...

The ALL, LEADING, and FIRST forms of the search argument specify a
particular character string, which can be represented by a literal or an identifier.
The search argument character string can be any length. However, each
character of the argument must match a character in the delimited string before
the compiler considers the argument matched. For example:

INSPECT ITEMA REPLACING ALL ...
The necessary literal and identifier characteristics are as follows:

e A literal character string must be either nonnumeric or a figurative constant
(other than ALL literal). A figurative constant, such as SPACE or ZERO,
represents a single character and can be written as “” or “0” with the
same effect. Because a figurative constant represents a single character,
the replacement value must be one character long.

¢ An identifier must represent an elementary item of DISPLAY usage. It can be
any class. However, if it is not alphabetic, the compiler performs an implicit
redefinition of the item. This redefinition is identical to the BEFORE/AFTER
delimiter redefinition discussed in Section 5.3.2.

The words ALL, LEADING, and FIRST supply conditions that further delimit the
inspection operation:

e ALL specifies that each match the search argument finds in the delimited
character string is replaced by the replacement value. When a literal
follows the word ALL, it does not have the same meaning as the figurative
constant, ALL literal. The figurative constant meaning of ALL “,” is a string
of consecutive commas, as many as the context of the statement requires.
ALL “” as a search argument of the REPLACING phrase means “replace
each comma without regard to adjacent characters.”

5-30 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

e LEADING specifies that only adjacent matches of the search argument at
the leftmost position of the delimited character-string be replaced. At the
first failure to match the search argument, the compiler terminates the
replacement operation and causes the argument to become inactive.

e FIRST specifies that only the leftmost character string that matches the
search argument be replaced. After the replacement operation, the search
argument containing this condition becomes inactive.

5.3.6.2 The Replacement Value
Whenever the search argument finds a match in the item being inspected, the
matched characters are replaced by the replacement value. The word BY followed
by an identifier or literal specifies the replacement value. For example:

INSPECT ITEMA REPLACING ALL "A" BY "X" ALL "D" BY "X".

The replacement value must always be the same size as its associated search
argument.

If the replacement value is a literal character-string, it must be either a
nonnumeric literal or a figurative constant (other than ALL literal). A figurative
constant represents as many characters as the length of the search argument
requires.

If the replacement value is an identifier, it must be an elementary item of
DISPLAY usage. It can be any class. However, if it is not alphanumeric, the
compiler conducts an implicit redefinition of the item. This redefinition is the
same as the BEFORE/AFTER redefinition discussed in Section 5.3.2.

5.3.6.3 The Replacement Argument

The replacement argument consists of the search argument (with its condition
and character-string), the replacement value, and an optional BEFORE/AFTER
phrase, as shown in Figure 5-5.

Figure 5-5 The Replacement Argument

ALL ";" BY SPACE BEFORE "."
I J | J |

|

Search Replacement BEFORE/AFTER
argument value phrase (optional)

ZK-6054-GE

5.3.6.4 The Replacement Argument List

One INSPECT...REPLACING statement can contain more than one replacement
argument. Several replacement arguments form an argument list, and the
manner in which the list is processed affects the action of any given replacement
argument.

The following examples show INSPECT statements with replacement argument
lists. The text following each one tells how that list will be processed.

Using the STRING, UNSTRING, and INSPECT Statements 5-31

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

INSPECT FIELD1 REPLACING
ALL "," BY SPACE
ALL "." BY SPACE
ALL ";" BY SPACE.

The previous three replacement arguments all have the same replacement value,
SPACE, and are active over the entire item being inspected. The statement
replaces all commas, periods, and semicolons with space characters and leaves all
other characters unchanged.

INSPECT FIELD1 REPLACING

ALL "0" BY "1"

ALL "1" BY "0".
Each of these two replacement arguments has its own replacement value and is
active over the entire item being inspected. The statement exchanges zeros for 1s
and 1s for zeros. It leaves all other characters unchanged.

INSPECT FIELD1 REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE.

Note

When a search argument finds a match in the item being inspected,

the code replaces that character-string and scans to the next position
beyond the replaced characters. It ignores the remaining arguments and
applies the first argument in the list to the character-string in the new
position. Thus, it never inspects the new value that was supplied by
the replacement operation. Because of this, the search arguments can
have the same values as the replacement arguments with no chance of
interference.

The statement also exchanges zeros and 1s. Here, however, the first space in
FIELD1 causes both arguments to become inactive.

INSPECT FIELD1 REPLACING
ALL "0" BY "1" BEFORE SPACE
ALL "1" BY "0" BEFORE SPACE
CHARACTERS BY "*" BEFORE SPACE.

The first space causes the three replacement arguments to become inactive. This
argument list exchanges zeros for 1s, 1s for zeros, and asterisks for all other
characters in the delimited area. If the BEFORE phrase is removed from the
third argument, that argument will remain active across all of FIELD1. Within
the area delimited by the first space character, the third argument replaces all
characters except 1s and zeros with asterisks. Beyond this area, it replaces

all characters (including the space that delimited FIELD1 for the first two
arguments, and any zeros and 1s) with asterisks.

5.3.6.5 Interference in Replacement Argument Lists
When several search arguments, all active at the same time, contain one or more
identical characters, they can interfere with each other—and consequently affect
the replacement operation. This interference is similar to the interference that
occurs between tally arguments.

The action of a search argument is never affected by the BEFORE/AFTER
delimiters of other arguments, because the compiler scans for delimiter matches
before it scans for replacement operations.

5-32 Using the STRING, UNSTRING, and INSPECT Statements

Using the STRING, UNSTRING, and INSPECT Statements
5.3 Examining and Replacing Characters Using the INSPECT Statement

The action of a search argument is never affected by the characters of any
replacement value, because the scanner does not inspect the replaced characters
again during execution of the INSPECT statement. Interference between search
arguments, therefore, depends on the order of the arguments, the values of the
arguments, and the active/inactive status of the arguments. The discussion in
Section 5.3.5.4 about interference in tally argument lists generally applies to
replacement arguments as well.

The following rules help minimize interference in replacement argument lists:

1. Place search arguments with LEADING or FIRST conditions at the start of
the list.

2. Place any arguments with the CHARACTERS condition at the end of the list.

3. Consider the order of appearance of any search arguments that contain
identical characters.

5.3.7 Using the CONVERTING Option

When an INSPECT statement contains a CONVERTING phrase, that statement
selectively replaces characters or groups of characters in the designated item,;

it executes as if it were a Format 2 INSPECT statement with a series of ALL
phrases. (Refer to the INSPECT statement formats in the HP COBOL Reference
Manual.)

An example of the use of the CONVERTING phrase follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. PROGX.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 X PIC X(28).
PROCEDURE DIVISION.
A.

MOVE "ABC*ABC*ABC ABC@ABCABC" TO X.
INSPECT X CONVERTING "ABC" TO "XYZ"
AFTER "*" BEFORE "@".

DISPLAY X.
STOP RUN.
X before INSPECT executes X after INSPECT executes
ABC*ABC*ABC ABC@ABCABC ABC*XYZ*XYZ XYZQ@ABCABC

5.3.8 Common INSPECT Statement Errors

Programmers most commonly make the following errors when writing INSPECT
statements:

e Leaving the FOR out of an INSPECT... TALLYING statement
e Using the word WITH instead of BY in the REPLACING phrase
e Failing to initialize the tally counter

¢ Omitting the word ALL before the comparison character-string

Using the STRING, UNSTRING, and INSPECT Statements 5-33

6

Processing Files and Records

The HP COBOL I/O system offers you a wide range of record management
techniques while remaining transparent to you. You can select one of several
file organizations and access modes, each of which is suited to a particular
application. The file organizations available through HP COBOL are sequential,
line sequential, relative, and indexed. The access modes are sequential, random,
and dynamic.

This chapter introduces you to the following HP COBOL I/O features:

¢ Defining files and records (Section 6.1)

e Identifying files and records from your HP COBOL program (Section 6.2)
¢ Creating and processing files (Section 6.3)

¢ Reading files (Section 6.4)

e Updating files (Section 6.5)

e Backing up your files (Section 6.6)

For information about low-volume or terminal screen I/O using the ACCEPT
and DISPLAY statements, see Chapter 11 and refer to the HP COBOL Reference
Manual.

The operating system provides you with I/O services for handling, controlling,
and spooling your I/O needs or requests. HP COBOL, through the I/O system,
provides you with extensive capabilities for data storage, retrieval, and
modification.

On the OpenVMS Alpha and OpenVMS 164 operating systems, the HP COBOL
I/0 system consists of the Run-Time Library (RTL), which accesses Record
Management Services (RMS). (On OpenVMS VAX, COBOL-generated code
accesses RMS directly.) Refer to the OpenVMS Record Management Utilities
Reference Manual and the OpenVMS Record Management Services Reference
Manual for more information about RMS.

On the Tru64 UNIX operating system, the HP COBOL I/O system consists of the
Run-Time Library (RTL) and facilities of Tru64 UNIX. In addition, the facilities
of a third-party ISAM package are required for any use of ORGANIZATION
INDEXED. o

6.1 Defining Files and Records

A file is a collection of related records. You can specify the organization and size
of a file as well as the record format and physical record size. The system creates
a file with these characteristics and stores them with the file. Any program that
accesses a file must specify the same characteristics as those that the system
stored for that file when creating it.

Processing Files and Records 6-1

Processing Files and Records
6.1 Defining Files and Records

A record is a group of related data elements. The space a record needs on
a physical device depends on the file organization, the record format, and the
number of bytes the record contains.

File organization is described in Section 6.1.1. Record format is described in
Section 6.1.2.

6.1.1 File Organization
HP COBOL supports the following four types of file organization:

SEQUENTIAL—This organization requires that records be referenced in
sequence from the first record to the last. This organization is useful for
programs that normally access each record serially. (See the Sequential File
Organization section in this chapter.)

LINE SEQUENTIAL (Alpha, 164)— This organization is essentially the
same as sequential. Line sequential allows you to treat files as collections of
variable length records, with each record containing one line of printable
characters. This organization is useful for programs that access files
created by text editors and similar programs. (See the Line Sequential

File Organization (Alpha, 164) section in this chapter.) ¢

RELATIVE—This organization lets you access records randomly, or
sequentially by record number values. While this organization is more flexible
than sequential organization, it is less flexible than indexed organization
because you cannot insert a record in the middle of your file unless you have
an empty cell to contain it. (See the Relative File Organization section in this
chapter.)

INDEXED—This organization lets you access records randomly or
sequentially, by primary and alternate key values. This is a useful way
to organize a file in which records will be added, changed, or deleted upon
demand. (See the Indexed File Organization section in this chapter.)

Note

On Tru64 UNIX, a third-party product is required for INDEXED runtime
support. Refer to the Read Before Installing . .. letter for up-to-date
details on how to obtain the INDEXED runtime support. ¢

Table 6-1 summarizes the advantages and disadvantages of these file
organizations.

Table 6-1 HP COBOL File Organizations—Advantages and Disadvantages

File
Organizations

Advantages Disadvantages

Sequential

Uses disk and memory efficiently Allows sequential access only

Provides optimal usage if the Allows records to be added only to the end of a file
application accesses all records
sequentially on each run

(continued on next page)

6—2 Processing Files and Records

Processing Files and Records
6.1 Defining Files and Records

Table 6-1 (Cont.) HP COBOL File Organizations—Advantages and Disadvantages

File
Organizations

Advantages Disadvantages

Line Sequential
(Alpha, 164)

Relative

Indexed

Provides the most flexible record
format

Allows READ/WRITE sharing

Allows data to be stored on
many types of media, in a
device-independent manner

Allows easy file extension

Most efficient storage format Allows sequential access only

Compatible with text editors Used for printable characters only
Open Mode I/0 is not allowed

Allows sequential, random, and Allows data to be stored on disk only
dynamic access

Provides random record deletion = Requires that record cells be the same size
and insertion

Allows READ/WRITE sharing

Allows sequential, random, and Allows data to be stored on disk only
dynamic access

Allows random record deletion Requires more disk space
and insertion on the basis of a
user-supplied key

Allows READ/WRITE sharing Uses more memory to process records

Allows variable-length records to Generally requires multiple disk accesses to
change length on update randomly process a record

Allows easy file extension

Sequential File Organization

Sequential input/output, in which records are written and read in sequence, is
the simplest and most common form of I/O. It can be performed on all I/O devices,
including magnetic tape, disk, terminals, and line printers.

Sequential files consist of records that are arranged in the order in which they
were written to the file. Figure 6-1 illustrates sequential file organization.

Figure 6-1 Sequential File Organization

Beginning of file End of file
RECORD RECORD RECORD | . RECORD RECORD
1 2 3 (n-1) n
ZK-6055-GE

Processing Files and Records 6-3

Processing Files and Records
6.1 Defining Files and Records

Sequential files always contain an end-of-file (EOF) indication. On magnetic
tapes, it is the EOF mark; on disk, it is a counter in the file header that
designates the end of the file. HP COBOL statements can write over the EOF
mark and, thus, extend the length of the file. Because the EOF indicates the end
of useful data, HP COBOL provides no method for reading beyond it, even though
the amount of space reserved for the file exceeds the amount actually used.

Occasionally a file with sequential organization, for example, a multiple-reel
magnetic tape file, is so large that it requires more than one volume. An end-of-
volume (EOV) label marks the end of recorded information on each volume and
signals the file system to switch to a new volume. On multiple-volume files, the
EOF mark appears only once, at the end of the last record on the last volume.
Figure 6-2 depicts a multiple-volume, sequential file.

Figure 6-2 A Multiple-Volume, Sequential File

voume1 | REC | REC | REC | * | REC | REC | REC [EOV |
voume2 | REC | REC | REC | ** | REC | REC | REC [EOV |
voume3 | REC | REC | REC | * | REC | REC | REC [EOF |

ZK-6056-GE

When you select the medium for your sequential file, consider the following:

e Speed of access—Tape is significantly slower than disk. In general, most
removable media storage (magnetic, optical, and so forth) devices are slower
than your fixed disks.

¢ Frequency of use—Use removable media devices to store relatively static files,
and save your fixed disk space for more dynamic files.

e (Cost—Fixed disks are generally more expensive than removable media
devices. The more frequently you plan to access the data, the easier it is to
justify maintaining the data on your fixed disks. For example, data that is
accessed daily must be kept on readily available disks; quarterly or annual
data could be offloaded to removable media.

e Transportability—Use removable media if you need to use the file across
systems that have no common disk devices (this technique is commonly
referred to as “sneakernetting”).

Refer to the OpenVMS 1/0 User’s Reference Manual or the 1tf(4) manpage for
more information on magnetic tape formats.
Line Sequential File Organization (Alpha, 164)

Line sequential file structure is essentially similar to the structure of sequential
files, with the major difference being record length. Figure 6-3 illustrates line
sequential file organization.

6—4 Processing Files and Records

Processing Files and Records
6.1 Defining Files and Records

Figure 6-3 Line Sequential File Organization (Alpha, 164)

Beginning of file End of file
RECORD RECORD RECORD RECORD
1 2 o (n-1) n

C)

Record Terminators

ZK-6813A-GE

A line sequential file consists of records of varying lengths arranged in the order
in which they were written to the file. Each record is terminated with a “newline”
character. The newline character is a line feed record terminator COA’ hex).

Each record in a line sequential file should contain only printable characters and
should not be written with a WRITE statements that contains either a BEFORE
ADVANCING or AFTER ADVANCING statement.

Record length is determined by the maximum record length in the FD entry in
the FILE-CONTROL section and the number of characters in a line (not including
the record terminator).

When your HP COBOL program reads a line from a line sequential file that

is shorter than the record area, it reads up to the record terminator, discards
the record terminator, and pads the rest of the record with a number of spaces
necessary to equal the record’s specified length. When your program reads a line
from a line sequential file that is longer than the record area, it reads the number
of characters necessary to fill the record area. The next READ, if any, will begin
at the next printable character in the file that is not a record terminator.

Line sequential file organization is useful in reading and printing files that were
created by an editor or word processor, which typically do not write fixed-length
records. ¢

Relative File Organization

A relative file consists of fixed-size record cells and uses a key to retrieve its
records. The key, called a relative key, is an integer that specifies the record’s
storage cell or record number within the file. It is analogous to the subscript of a
table. Relative file processing is available only on disk devices.

Any record on a relative file (unlike a sequential file) can be accessed with one
READ operation. Also, relative files allow the program to read forward with
respect to the current relative key. In addition to random access by relative
key, relative files also permit you to delete and update records by relative key.
Relative files are used primarily when records must be accessed in random order
and the records can easily be associated with numbers that give the relative
positions in the file.

In relative file organization, not every cell must contain a record. Although each
cell occupies one record space, a field preceding the record on the storage medium
indicates whether or not that cell contains a valid record. Thus, a file can contain
fewer records than it has cells, and the empty cells can be anywhere in the file.

Processing Files and Records 6-5

Processing Files and Records
6.1 Defining Files and Records

The numerical order of the cells remains the same during all operations on a
relative file. However, accessing statements can move a record from one cell to
another, delete a record from a cell, insert new records into empty cells, or rewrite
existing cells.

With relative file processing, the I/O system organizes a file as a series of fixed-
sized record cells. Cell size is based on the size specified as the maximum
permitted length for a record in the file. The I/O system considers these cells

as successively numbered from 1 (the first) to n (the last). A cell’s relative record
number (RRN) represents its location relative to the beginning of the file.

Because cell numbers in a relative file are unique, they can be used to identify

both the cell and the record (if any) occupying that cell. Thus, record number 1
occupies the first cell in the file, record number 21 occupies the twenty-first cell,
and so forth. Figure 6—4 illustrates relative file organization.

Figure 6-4 Relative File Organization

Beginning of file End of file
Cell no. 1 2 3 999 1000
RECORD EMPTY RECORD RECORD EMPTY
1 3 999
First record Second record
written written
ZK-6057-GE

Relative files are used like tables. Their advantage over tables is that their

size is limited to disk space rather than memory space. Also, their information
can be saved from run to run. Relative files are best for records that are easily
associated with ascending, consecutive numbers (so that the program conversion
from data to cell number is easy), such as months (record keys 1 to 12), or the 50
U.S. states (record keys 1 to 50).

Indexed File Organization

An indexed file uses primary and alternate keys in the record to retrieve the
contents of that record. HP COBOL allows sequential, random, and dynamic
access to records. You access each record by one of its primary or alternate keys.
Indexed file processing is available only on disk devices.

Unlike the sequential ordering of records in a sequential file or the relative
positioning of records in a relative file, the physical location of records in indexed
file organization is transparent to the program. You can add new records to an
indexed file without recreating the file. You can also delete records, making room
for new records.

Indexed file organization allows you to use a key to uniquely identify a record
within the file. The location and length of the key are identical in all records.
When creating an indexed file, you must select the data items to be the keys.
Selecting such a data item indicates to the I/O system that the contents (key
value) of that data item in any record written to the file can be used by the

6—6 Processing Files and Records

Processing Files and Records
6.1 Defining Files and Records

program to identify that record for subsequent retrieval. For more information,
refer to the Environment Division clauses RECORD KEY IS and ALTERNATE
RECORD KEY IS in the HP COBOL Reference Manual.

You must define at least one main key, called the primary key, for an indexed
file. You may also optionally define from 1 to 254 additional keys called alternate
keys. Each alternate key represents an additional data item in each record of the
file. You can also use the key value in any of these alternate keys as a means of
identifying the record for retrieval.

You define primary and alternate key values in the Record Description entry.
Primary and alternate key values need not be unique if you specify the WITH
DUPLICATES phrase in the file description entry (FD). When duplicate key
values are present, you can retrieve the first record written in the logical sort
order of the records with the same key value and any subsequent records using
the READ NEXT phrase. The logical sort order controls the order of sequential
processing of the record. (For more information about retrieving records with
duplicate key values, refer to the information about the READ statement in the
HP COBOL Reference Manual.)

When you open a file, you must specify the same number and type of keys that
were specified when the file was created. (This situation is subject to modification
by the check duplicate keys and relax key checking options, as well as a duplicate
key specification on an FD.) If the number or type of keys does not match, the
system will issue a run-time diagnostic when you try to open the file.

As your program writes records into an indexed file, the I/O system locates the
values contained in the primary and alternate keys. The I/O system builds these
values into a tree-structured table or index, which consists of a series of entries.
Each entry contains a key value copied from a record. With each key value is a
pointer to the location in the file of the record from which the value was copied.

Figure 6-5 shows the general structure of an indexed file defined with a primary
key only.

Figure 6-5 Indexed File Organization

Key Definition

|

Primary key index (employee name)
ABLE JONES SMITH

| il

record record record
v X \
ABLE ELM AVE JONES MAIN ST SMITH COLT RD
ZK-6058-GE

For a more detailed explanation of indexed file structure on OpenVMS systems,
refer to the Guide to OpenVMS File Applications. ¢

Processing Files and Records 6-7

Processing Files and Records
6.1 Defining Files and Records

For information about specifying file organization in your program, see
Section 6.2.2.

6.1.2 Record Format

HP COBOL provides four record format types: fixed, variable, print-control, and
stream. Table 6-2 shows the record format availability.

Table 6-2 Record Format Availability

Sequential ;:;uential Relative Indexed
Disk Tape
Fixed length yes yes no yes yes
Variable length yes yes no yes yes
Print control yes no no no no
Stream no no yes no no

The compiler determines the record format from the information that you specify
as follows:

e TFixed record format—Use the RECORD CONTAINS clause. This is the HP
COBOL default.

e Variable record format—Use the RECORD CONTAINS TO clause or the
RECORD VARYING clause.

e Print-control (VFC on OpenVMS systems or ASCII on Tru64 UNIX systems)—
use the Procedure Division ADVANCING phrase, the Environment Division
APPLY PRINT-CONTROL or (on Tru64 UNIX) ASSIGN TO PRINTER
clauses, or the Data Division LINAGE clause, or use Report Writer
statements and phrases.

e Stream (Alpha, 164 only)—Use the FILE-CONTROL ORGANIZATION IS
LINE SEQUENTIAL clause. On OpenVMS Alpha and OpenVMS 164 you also
get this format with /NOVFC. ¢

If a file has more than one record description, the different record descriptions

automatically share the same record area in memory. The I/O system does not

clear this area before it executes the READ statement. Therefore, if the record

read by the latest READ statement does not fill the entire record area, the area
not overlaid by the incoming record remains unchanged.

The record format type that was specified when the file was created must be used
for all subsequent accesses to the file.

In Example 6-1, a file contains a company’s stock inventory information (part
number, supplier, quantity, price). Within this file, the information is divided into
records. All information for a single piece of stock constitutes a single record.

6-8 Processing Files and Records

Processing Files and Records
6.1 Defining Files and Records

Example 6-1 Sample Record Description

01 PART-RECORD.

02 PART-NUMBER PIC 9999.
02 PART-SUPPLIER PIC X(20).
02 PART-QUANTITY PIC 99999.
02 PART-PRICE PIC S9(5)V99.

Each record in the stock file is itself divided into discrete pieces of information
referred to as elementary items (02 level items). You give each elementary item
a specific location in the record, give it a name, and define its size and type. The
part number is an elementary item in the part record, as are supplier, quantity,
and price. In this example, PART-RECORD contains four elementary items:
PART-NUMBER, PART-SUPPLIER, PART-QUANTITY, and PART-PRICE.

Fixed-Length Records

Files with a fixed-length record format contain the same size records. The
compiler generates the fixed-length format when either of the following conditions
is true:

e The RECORD CONTAINS clause specifies a fixed number of characters.
e The RECORD CONTAINS clause is omitted.

The compiler does not generate fixed-length format when any of the following
conditions exist:

e The file description contains a RECORD CONTAINS TO clause or a RECORD
VARYING clause.

e The program specifies a print-control file by referring to the file with:
— The ADVANCING phrase in a WRITE statement
— An APPLY PRINT-CONTROL clause in the Environment Division
— A LINAGE clause in the file description
— Report Writer statements and phrases
— ASSIGN TO PRINTER

e LINE SEQUENTIAL organization is specified.

Fixed-length record size is determined by either the largest record description or
the record size specified by the RECORD CONTAINS clause, whichever is larger.
Example 6-2 shows how fixed-length record size is determined.

Example 6-2 Determining Fixed-Length Record Size

FD FIXED-FILE
RECORD CONTAINS 100 CHARACTERS.
01 FIXED-REC PIC X(75).

For the file, FIXED-FILE, the RECORD CONTAINS clause specifies a record size
larger than the record description; therefore, the record size is 100 characters.

In Example 6-2, the following warning message is generated when the file
FIXED-FILE is used:

"Record contains value is greater than length of longest record."

Processing Files and Records 6-9

Processing Files and Records
6.1 Defining Files and Records

If the multiple record descriptions are associated with the file, the size of the
largest record description is used as the size. In Example 6-3, for the file REC-
FILE, the FIXED-REC2 record specifies the largest record size; therefore, the
record size is 90 characters.

Example 6-3 Determining Fixed-Length Record Size for Files with Multiple
Record Descriptions

FD REC-FILE

RECORD CONTAINS 80 CHARACTERS.
01 FIXED-REC1 PIC X(75).
01 FIXED-REC2 PIC X(90).

When the file REC-FILE is used, the following warning message is generated:

"Longest record is longer than RECORD CONTAINS value -
longest record size used."
Variable-Length Records

Files with a variable-length record format can contain records of different length.
The compiler generates the variable-length attribute for a file when the file

description contains a RECORD VARYING clause or a RECORD CONTAINS TO
clause.

Each record is written to the file with a 32-bit integer that specifies the size of
the record. This integer is not counted in the size of the record.

Examples 6-4, 6-5, and 6-6 show you the three ways you can create a variable-
length record file.

In Example 6—4, the DEPENDING ON phrase sets the OUT-REC record length.
The IN-TYPE data field determines the OUT-LENGTH field’s contents.

Example 6-4 Creating Variable-Length Records with the DEPENDING ON

Phrase
FILE SECTION.
FD INFILE.
01 IN-REC.
03 IN-TYPE PIC X.
03 REST-OF-REC PIC X(499).
FD OUTFILE

RECORD VARYING FROM 200 TO 500 CHARACTERS
DEPENDING ON OUT-LENGTH.

01 OUT-REC PIC X(500).
WORKING-STORAGE SECTION.
01 OUT-LENGTH PIC 999 COMP VALUE ZEROES.

Example 6-5 shows how to create variable-length records using the RECORD
VARYING phrase.

6-10 Processing Files and Records

Processing Files and Records
6.1 Defining Files and Records

Example 6-5 Creating Variable-Length Records with the RECORD VARYING
Phrase

FILE SECTION.
FD OUTFILE
RECORD VARYING FROM 200 TO 500 CHARACTERS.
01 OUT-REC-1 PIC X(200).
01 OUT-REC-2 PIC X(500).

Example 6-6 Creating Variable-Length Records and Using the OCCURS Clause
with the DEPENDING ON Phrase

FILE SECTION.
FD PARTS-MASTER
RECORD VARYING 118 TO 163 CHARACTERS.
01 PARTS-REC.
03 P-PART-NUM PIC X(10).
03 P-PART-INFO PIC X(100).
03 P-BIN-INDEX PIC 999.
03 P-BIN-NUMBER PIC X(5)
OCCURS 1 TO 10 TIMES DEPENDING ON P-BIN-INDEX.

Example 6-6 creates variable-length records by using the OCCURS clause with
the DEPENDING ON phrase in the record description. HP COBOL determines
record length by adding the sum of the variable record’s fixed portion to the size
of the table described by the number of table occurrences at execution time.

In this example, the variable record’s fixed portion size is 113 characters. (This
is the sum of P-PART-NUM, P-PART-INFO, and P-BIN-INDEX.) If P-BIN-
INDEX contains a 7 at execution time, P-BIN-NUMBER will be 35 characters
long. Therefore, PARTS-REC’s length will be 148 characters; the fixed portion’s
length is 113 characters, and the table entry’s length at execution time is 35
characters.

If you describe a record with both the RECORD VARYING...DEPENDING ON
phrase on data-name-1 and the OCCURS clause with the DEPENDING ON
phrase on data-name-2, HP COBOL specifies record length as the value of
data-name-1.

If you have multiple record-length descriptions for a file and omit either the
RECORD VARYING clause or the RECORD CONTAINS TO clause, all records
written to the file will have a fixed length equal to the length of the longest record
described for the file, as in Example 6-7.

Processing Files and Records 6-11

Processing Files and Records
6.1 Defining Files and Records

Example 6-7 Defining Fixed-Length Records with Multiple Record Descriptions

FD PARTS-MASTER.

01 PARTS-REC-1 PIC X(200).
01 PARTS-REC-2 PIC X(300).
01 PARTS-REC-3 PIC X(400).
01 PARTS-REC-4 PIC X(500).

PROCEDURE DIVISION.

100-WRITE-REC-1.
MOVE IN-REC TO PARTS-REC-1.
WRITE PARTS-REC-1.
GO TO ...

200-WRITE-REC-2.
MOVE IN-REC TO PARTS-REC-2.
WRITE PARTS-REC-2.
GO TO ...

Writing PARTS-REC-1, PARTS-REC-2, PARTS-REC-3 or PARTS-REC-4 produces
records equal in length to the longest record, PARTS-REC-4. Note that this is not
variable-length I/0.

6.1.3 Print-Control Records

Print-control files contain record-advancing information with each record. These
files are intended for eventual printing, but are created on disk by your HP
COBOL program. The compiler generates print-control records when you use the
WRITE AFTER ADVANCING, the LINAGE, or the APPLY PRINT-CONTROL
clause, or if you create a Report Writer file or use ASSIGN TO PRINTER (on
Tru64 UNIX systems).

On OpenVMS Alpha and OpenVMS 164, in any of the preceding cases, if you
compile /INOVFC, the compiler does not generate print-control records, but
generates stream files instead.

On OpenVMS, HP COBOL places explicit form-control bytes directly into the
file. You must use the /NOFEED option on the DCL PRINT command to print a
print-control file. ¢

Stream (Alpha, 164)

Stream files contain records of different length, delimited by a record terminator.

The compiler generates a stream record formatted file when you use the
ORGANIZATION IS LINE SEQUENTIAL clause in the File-Control Division.
This record format is useful for files created by text editors.

On OpenVMS Alpha or 164, a stream file will also be generated under certain
situations if you compiled /NOVFC. See Section B.4.3 for more information. ¢

6-12 Processing Files and Records

Processing Files and Records
6.1 Defining Files and Records

6.1.4 File Design

The difficulty of design is proportional to the complexity of the file organization.
Before you create your sequential, relative, or indexed file applications, you
should design your files based on these design considerations:

Record format—For relative files (see Section 6.1.2)

Relative files can contain either fixed-length records or variable-length
records. However, the I/O system calculates a cell size equal to the maximum
record size plus overhead bytes, resulting in fixed-length storage for

relative files (see the Relative File Organization section in Section 6.1.1).
Once created, relative records can be accessed sequentially, randomly, or
dynamically.

Storage Medium

You can access sequential, relative, and indexed files on disk. Be careful to
use a disk pack that is large enough to meet your current and future needs.
You can also access sequential files, unlike relative and indexed files, on
magnetic tape and unit record devices (for example, on printers).

Allocation (see Chapter 15)

On OpenVMS, you can optimize data storage at the time of file creation and
file extension. ¢

Bucket size—For relative files (see the Relative File Organization section in
Section 6.1.1)

You can optimize the packing of cells into buckets by ensuring that the cell
size is evenly divisible into the bucket size.

Maximum number of records—For relative files (see the Relative File
Organization section in Section 6.1.1)

Key scheme—For relative files (see the Relative File Organization section in
Section 6.1.1)

Speed—For indexed files (see the Indexed File Organization section in
Section 6.1.1)

You can maximize the speed with which the program processes data.

Space—For indexed files (see the Indexed File Organization section in
Section 6.1.1)

You can minimize file size, disk space, and memory requirements to run your
program.

Shared access—For indexed files (see the Indexed File Organization section in
Section 6.1.1)

Consider who is going to use the data and how they will access it.

Ease of design—For indexed files (see the Indexed File Organization section
in Section 6.1.1)

You can minimize the amount of time spent writing the application.

Compiler limitations (see Appendix A)

Consider the logical and physical limits imposed by the HP COBOL compiler.

Processing Files and Records 6-13

Processing Files and Records
6.1 Defining Files and Records

On OpenVMS, for more information about file design, see Chapter 15. For
OpenVMS Alpha and OpenVMS 164 systems you can also refer to the Guide to
OpenVMS File Applications. ¢ Chapter 15 contains instructions on optimizing
the file design for indexed files. With indexed files, in particular, if you accept all
the file defaults instead of carefully designing your file, your application may run
more slowly than you expect.

6.2 Identifying Files and Records from Within Your HP COBOL
Program

Before your program can perform I/O on a file, your program must identify the
file to the operating system and specify the file’s organization and access modes.
A program must follow these steps whenever creating a new file or processing an
existing file.

You use a file description entry to define a file’s logical structure and associate the
file with a file name that is unique within the program. The program uses this
file name in the following COBOL statements:

e OPEN

e READ

e START

e UNLOCK
e DELETE
e CLOSE

The program uses the record name for the WRITE and REWRITE statements.

6.2.1 Defining a File Connector

You must establish a link between the file connector your program uses and
the file specification that the I/O system uses. You create this link and define
a file connector by using the SELECT statement with the ASSIGN clause and
optionally specifying the VALUE OF ID clause or by using logical names or
environment variables.

A file connector is an HP COBOL data structure that contains information
about a file. The file connector links a file name and its associated record area to
a physical file.

Defining a File Connector with SELECT and ASSIGN

Your program must include a SELECT statement, including an ASSIGN clause,
for every file description entry (FD) it contains. The file name you specify in the
SELECT statement must match the file name in the file description entry.

In the ASSIGN clause, you specify a nonnumeric literal or data name that
associates the file name with a file specification. This value must be a complete
file specification.

Example 6-8 and Example 6-9 show the relationships between the SELECT
statement, the ASSIGN clause, and the FD entry.

In Example 6-8, because the file name specified in the FD entry is DAT-FILE,
all I/O statements in the program referring to that file or to its associated record
must use the file name DAT-FILE or the record name DAT-RECORD. The I/O
system uses the ASSIGN clause to interpret DAT-FILE as REPORT.DAT on
OpenVMS systems, and REPORT on Tru64 UNIX systems. The default directory

6-14 Processing Files and Records

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

is used on OpenVMS systems, and the current working directory is used on Tru64
UNIX systems.

Example 6-8 Defining a Disk File

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DAT-FILE
ASSIGN TO "REPORT".

DATA DIVISION.

FILE SECTION.

FD DAT-FILE.

01 DAT-RECORD PIC X(100).

Note

On OpenVMS systems, if no file type is supplied, HP COBOL supplies the
default file extension DAT. On Tru64 UNIX systems, the extensions dat
and idx are appended, but only in the case of indexed files.

The I/O statements in Example 6-9 refer to MYFILE-PRO, which the ASSIGN
clause identifies to the operating system as MARCH.311. Additionally, the
operating system looks for the file in the current directory on the magnetic tape
mounted on MTAO: on an OpenVMS system.

Processing Files and Records 6-15

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

Example 6-9 Defining a Magnetic Tape File (OpenVMS)

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MYFILE-PRO
ASSIGN TO "MTAO:MARCH.311"

DATA DIVISION.

FILE SECTION.

FD MYFILE-PRO.

01 DAT-RECORD PIC X(100).

PROCEDURE DIVISION.

A000-BEGIN.
OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO AT END DISPLAY "end".

CLOSE MYFILE-PRO. L

Example 6-10 achieves the same result as Example 6-9, but on Tru64 UNIX. The
I/O statements in Example 6-10 refer to MYFILE-PRO, which the ASSIGN clause

identifies to the operating system as a magnetic tape file. The file is named in the
Data Division VALUE OF ID clause as MARCH.311.

Example 6-10 Defining a Magnetic Tape File (Tru64 UNIX)

ENVIRONMENT DIVISION
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MYFILE-PRO
ASSIGN TO REEL.

DATA DIVISION.

FILE SECTION.

FD MYFILE-PRO VALUE OF ID "MARCH.311".
01 DAT-RECORD PIC X(100).

PROCEDURE DIVISION.

(continued on next page)

6-16 Processing Files and Records

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

Example 6-10 (Cont.) Defining a Magnetic Tape File (Tru64 UNIX)

A000-BEGIN.
OPEN INPUT MYFILE-PRO.

READ MYFILE-PRO AT END DISPLAY "end".

CLOSE MYFILE-PRO.

For each OPEN verb referring to a file assigned to magnetic tape, the user is
prompted to assign the file to a magnetic tape device. These device names are
in the form /dev/rmt0(a,l,m,h) ... /dev/rmt31(a,l,m,h) and correspond to
special files on the system that refer to mass storage tape devices. For more
information on tape devices, refer to the mtio(7) Tru64 UNIX manual page.

As an alternative to prompting, each file assigned to a magnetic tape can have its
associated tape device defined through a shell environment variable. The name
of this environment variable is the concatenation of COBOL_TAPE and the base
of the file name used in the COBOL program. The value of this environment
variable is the name of the desired tape device. The environment variable needed
in Example 6-10 to assign the MARCH.311 file to tape device /dev/rmtOa is:

% setenv COBOL TAPE MARCH /dev/rmt0a *

Establishing File Names with ASSIGN and VALUE OF ID

If the file specification is subject to change, you can use a partial file specification
in the ASSIGN clause and complete it by using the optional VALUE OF ID clause
of the FD entry. In the VALUE OF ID clause, you can specify a nonnumeric
literal or an alphanumeric WORKING-STORAGE item to supplement the file
specification.

VALUE OF ID can complete a file name specified in ASSIGN TO:

ASSIGN TO "filename"
VALUE OF ID ".ext"

In the above example, OPEN would create a file with the name “filename.ext”.
VALUE OF ID can override a file name specified in ASSIGN TO:

ASSIGN TO "oldname"
VALUE OF "newname"

In the above example, OPEN would create a file with the name “newname”.

VALUE OF ID can be a directory/device specification and ASSIGN TO can provide
the file name, as in the following example:

ASSIGN TO "filename.dat"
VALUE OF ID "/usr/"

or

ASSIGN TO "filename"
VALUE OF ID "DISK:[DIRECTORY]"

On OpenVMS, with this code OPEN would create a file with the name
DISK:[DIRECTORY]FILENAME.DAT. e

Processing Files and Records 6-17

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

On Tru64 UNIX, with this code OPEN would create a file with the name
"fusr/filename.dat".

Establishing Device and File Independence with Logical Names on OpenVMS
On OpenVMS, logical names let you write programs that are device and file
independent and provide a brief way to refer to frequently used files.

You can assign logical names with the ASSIGN command. When you assign a
logical name, the logical name and its equivalence name (the name of the actual
file or device) are placed in one of three logical name tables; the choice depends
on whether they are assigned for the current process, on the group level, or on a
systemwide basis. Refer to the OpenVMS DCL Dictionary for more information
on DCL and a description of logical name tables.

To translate a logical name, the system searches the three tables in this order:
(1) process, (2) group, (3) system. Therefore, you can override a systemwide
logical name by defining it for your group or process.

Logical name translation is a recursive procedure: when the system translates
a logical name, it uses the equivalence name as the argument for another
logical name translation. It continues in this way until it cannot translate the
equivalence name.

Assume that your program updates monthly sales files (for example, JAN.DAT,
FEB.DAT, MAR.DAT, and so forth). Your SELECT statement could look like
either of these:

SELECT SALES-FILE ASSIGN TO "MOSLS"
SELECT SALES-FILE ASSIGN TO MOSLS

To update the January sales file, you can use this ASSIGN command to equate
the equivalence name JAN.DAT with the logical name MOSLS:

$ ASSIGN JAN.DAT MOSLS
To update the February sales file, you can use this ASSIGN command:
$ ASSIGN FEB.DAT MOSLS

In the same way, all programs that access the monthly sales file can use the
logical name MOSLS.

To disassociate the relationship between the file and the logical name, you can
use this DEASSIGN command:

$ DEASSIGN MOSLS

If MOSLS is not set as a logical name, the system uses it as a file specification
and looks for a file named MOSLS.DAT. ¢

Using Environment Variables for File Specification on Tru64 UNIX

On Tru64 UNIX, environment variables can be used as aliases for file specification
at run time. File name resolution follows these rules:

e Use contents of the ASSIGN TO clause or VALUE OF ID clause to find a
match against an environment variable.

e If a match is found, substitute the value of the environment variable in the
construction of the file specification.

e If a match was not found, take the file name as specified.

6-18 Processing Files and Records

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

On Tru64 UNIX, you can also use the literal or alphanumeric item to specify a
run-time environment variable set. Refer to setenv(3) in the reference page. ¢

The program in Example 6-11 and the commands that follow it illustrate how to
use the ASSIGN TO clause in conjunction with an environment variable or logical
name.

Example 6-11 Using Environment Variables (Tru64 UNIX) or Logical Names
(OpenVMS) for File Specification

IDENTIFICATION DIVISION.
PROGRAM-ID. ENVVAR-EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT F-DISK ASSIGN TO "MYENV".
DATA DIVISION.
FILE SECTION.
FD F-DISK.
01 DAT-RECORD PIC X(100).

PROCEDURE DIVISION.
P0. OPEN OUTPUT F-DISK.
CLOSE F-DISK.

PE. STOP RUN.
END PROGRAM ENVVAR-EXAMPLE.

On Tru64 UNIX, set an environment variable as follows:

cobol -0 envtest envvar-example.cob
setenv MYENV hello.dat

envtest

1s *.dat

hello.dat

% unsetenv MYENV

% envtest

$ ls My*

MYENV ¢

o° o o o°

Setting environment variables at run time can help in moving applications
between OpenVMS Alpha or OpenVMS 164 and Tru64 UNIX platforms without
having to modify their source COBOL programs. You can define environment
variables that access files in a way similar to that in which you access files using
logical names on OpenVMS systems. Thus, in Example 6-11, the program is
applicable to either Tru64 UNIX or to OpenVMS, because MYENYV can refer to an
environment variable or to a logical name.

Example 6-12 is another program that can be used on either system, depending
on the definition at system level of an environment variable or logical name, as
appropriate.

Processing Files and Records 6-19

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

Example 6-12 Using Environment Variables

IDENTIFICATION DIVISION.
PROGRAM-ID. ENVVAR-EXAMPLE2.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT F-DISK ASSIGN TO "SYS$SCRATCH:envtest.dat".
DATA DIVISION.
FILE SECTION.
FD F-DISK
VALUE OF ID "SYS$DISK:".
01 DAT-RECORD PIC X(100).

PROCEDURE DIVISION.

P0. OPEN OUTPUT F-DISK.
CLOSE F-DISK.

PE. STOP RUN.

END PROGRAM ENVVAR-EXAMPLE2.

Example 6-12, on OpenVMS, would produce a file with the name
“ENVTEST.DAT”. On Tru64 UNIX, “SYS$SCRATCH:” has no meaning because
it is a OpenVMS logical. OpenVMS logicals are not defined on Tru64 UNIX.
However, the “SYS$SCRATCH:” in the ASSIGN clause can be defined as an
environment variable with the following command.:

% setenv 'SYS$SCRATCH:' ./

This would make “SYS$SCRATCH” point to the home directory. This can be used
for any OpenVMS logicals used in the HP COBOL source. When you declare an
environment variable you should be careful to match the case of what is in the
HP COBOL source with the setenv(3) line. o

6.2.2 Specifying File Organization and Record Access Mode

Your program must state—either explicitly or implicitly—a file’s organization
and record access mode before the program opens the file. The Environment
Division ORGANIZATION and ACCESS MODE clauses, if present, specify these

two characteristics.

In an HP COBOL program, each file is given a file name in a separate
Environment Division SELECT statement. The compiler determines the file
organization from the SELECT statement and its associated clauses.

For relative and indexed files, you must specify the ORGANIZATION IS
RELATIVE or the ORGANIZATION IS INDEXED phrase, respectively. For
sequential files you need not specify the ORGANIZATION IS SEQUENTIAL
phrase. For line sequential files (Alpha, 164), you must explicitly declare
ORGANIZATION IS LINE SEQUENTIAL. When you omit the ORGANIZATION
IS clause the file organization is sequential.

The ASSIGN clause, in the SELECT statement, associates the file name with a
file specification. The file specification points the operating system to the file’s
physical and logical location on a specific hardware device.

The SELECT statement and the ASSIGN clause are further described in
Section 6.2.1. For further information, refer to the HP COBOL Reference Manual.

Each file is further described with a file description (FD) entry in the Data
Division File Section. The FD entry is followed immediately by the file’s record
description.

6—20 Processing Files and Records

Processing Files and Records

6.2 Identifying Files and Records from Within Your HP COBOL Program

You can specify additional file characteristics in the Environment and Data
Divisions as follows:

Use the Environment Division APPLY clause to specify file characteristics
such as lock-holding, file extension factors, and preallocation factors. (See

Chapter 15.)

Use file description entries to specify record format and record blocking.

Use record description entries to specify physical record size or sizes.

Examples 6-13, 6-14, and Example 6-15 illustrate how to specify the file
organization and access mode for sequential, relative, and indexed files.

Example 6-13 Specifying Sequential File Organization and Sequential Access
Mode for a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQO01.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE
SELECT TRANS-FILE
SELECT REPRT-FILE

DATA DIVISION.
FILE SECTION.

FD
01

FD
01
FD
01

MASTER-FILE.
MASTER-RECORD.
02 MASTER-DATA
02 MASTER-SIZE
02 MASTER-TABLE

03 MASTER-YEAR

03 MASTER-COUNT
TRANS-FILE.
TRANSACTION-RECORD
REPRT-FILE.
REPORT-LINE

ASSIGN TO "MASTER.DAT".
ASSIGN TO "TRANS.DAT".
ASSIGN TO "REPORT.DAT".

PIC X(80).

PIC 99.

OCCURS 0 to 50 TIMES
DEPENDING ON MASTER-SIZE.
PIC 99.

PIC S9(5)V99.

PIC X(25).

PIC X(132).

Processing Files and Records 6-21

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

Example 6-14 Specifying Relative File Organization and Random Access Mode
for a Relative File

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO1.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "BRAND"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99.

Example 6-15 defines a dynamic access mode indexed file with one primary
key and two alternate record keys. Note that one alternate record key allows
duplicates. Any program using the identical entries in the SELECT clause as
shown in Example 6-15 can reference the DAIRY file sequentially and randomly.
Refer to the HP COBOL Reference Manual for information relating to the
RECORD KEY and ALTERNATE RECORD KEY clauses.

Example 6-15 Specifying Indexed File Organization and Dynamic Access Mode
for an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXO01.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.

FD FLAVORS.
01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).

03 ICE-CREAM-STORE-STATE PIC XX.
PROCEDURE DIVISION.
A00-BEGIN.

Example 6-16 defines a line sequential (Alpha, 164) file.

6—22 Processing Files and Records

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

Example 6-16 Specifying Line Sequential File Organization with Sequential
Access Mode (Alpha, 164)

IDENTIFICATION DIVISION.
PROGRAM ID. EX0616.
ENVIRONMENT DIVISION.
INOUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MUSIC ASSIGN TO "CLASSICAL"
ORGANIZATION IS LINE SEQUENTIAL.
DATA DIVISION.
FILE SECTION.

FD MUSIC.
01 OPERA PIC X(9).
PROCEDURE DIVISION.

A00-BEGIN. ¢

File organization is discussed in more detail in Section 6.1.1. Record access mode
is discussed in the following section.

Record Access Mode

The methods for retrieving and storing records in a file are called record access
modes. HP COBOL supports the following three types of record access modes:

e ACCESS MODE IS SEQUENTIAL

— With sequential files, sequential access mode retrieves the records in the
same sequence established by the WRITE statements that created the file.

— With relative files, sequential access mode retrieves the records in the
order of ascending record key values (or relative record numbers).

— With indexed files, sequential access mode retrieves records in the order
of record key values.

e ACCESS MODE IS RANDOM—The value of the record key your program
specifies indicates the record to be accessed in Indexed and Relative files.

e ACCESS MODE IS DYNAMIC—With relative and indexed files, dynamic
access mode allows you to switch back and forth between sequential access
mode and random access mode while reading a file by using the the NEXT
phrase on the READ statement. For more information about dynamic access
mode, refer to READ and REWRITE statements in the HP COBOL Reference
Manual.

When you omit the ACCESS MODE IS clause in the SELECT statement, the
access mode is sequential.

Example 6-17 shows sample SELECT statements for sequential files with
sequential access modes.

Sample SELECT statements for relative files with sequential and dynamic access
modes are shown in Example 6-18.

Processing Files and Records 6-23

Processing Files and Records
6.2 Identifying Files and Records from Within Your HP COBOL Program

Example 6-17 SELECT Statements for Sequential Files with Sequential Access Mode

(1) (2)
FILE-CONTROL. FILE-CONTROL.
SELECT LIST-FILE SELECT PAYROLL
ASSIGN TO "MAIL.LIS" ASSIGN TO "PAYROL.DAT".

ORGANIZATION IS SEQUENTIAL
ACCESS IS SEQUENTIAL.

Example 6—-18 SELECT Statements for Relative Files with Sequential and Dynamic Access

Modes
(1) (2)
FILE-CONTROL. FILE-CONTROL.
SELECT MODEL SELECT PARTS
ASSIGN TO "ACTOR.DAT" ASSIGN TO "PART.DAT"
ORGANIZATION IS RELATIVE ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL. ACCESS MODE IS DYNAMIC

RELATIVE KEY IS PART-NO.

Example 6—-19 SELECT Statements for Indexed Files with Dynamic and Default Sequential
Access Modes

(1) (2)
FILE-CONTROL. FILE-CONTROL.
SELECT A-GROUP SELECT TEAS
ASSIGN TO "RFCBA.PRO" ASSIGN TO "TEA"
ORGANIZATION IS INDEXED ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC RECORD KEY IS LEAVES.

RECORD KEY IS WRITER
ALTERNATE RECORD KEY IS EDITOR.

Example 6-20 SELECT Statements for Line Sequential Files with Sequential Access Modes

(Alpha, 164)
(1) (2)
FILE-CONTROL. FILE-CONTROL.
SELECT MAMMALS SELECT VACATION-SPOTS
ASSIGN TO "DOLPHINS" ASSIGN TO "BAHAMAS"
ORGANIZATION IS LINE SEQUENTIAL ORGANIZATION IS LINE SEQUENTIAL.

ACCESS MODE IS SEQUENTIAL.
Sample SELECT statements for indexed files with dynamic and sequential access
modes are shown in Example 6-19.

Because the default file organization is also sequential, both the relative and
indexed examples require the ORGANIZATION IS clause.

Sample SELECT statements for line sequential files with sequential access modes
are shown in Example 6—20.

6—24 Processing Files and Records

Processing Files and Records
6.3 Creating and Processing Files

6.3 Creating and Processing Files

Creating and processing sequential, line sequential, relative, and indexed files
includes the following tasks:

1. Opening the file
2. Executing valid I/O statements
3. Closing the file

Sections 6.3.2, 6.3.3, and 6.3.4 describe the specific tasks involved in creating and
processing sequential, relative, and indexed files.

6.3.1 Opening and Closing Files

An HP COBOL program must open a file with an OPEN statement before any
other I/O or Report Writer statement can reference it. Files can be opened more
than once in the same program as long as they are closed before being reopened.

Sample OPEN and CLOSE statements are shown in Example 6-21.

Example 6-21 OPEN and CLOSE Statements

OPEN INPUT MASTER-FILE.

OPEN OUTPUT REPORT-FILE.

OPEN I-O MASTER-FILE2

TRANS-FILE

OUTPUT REPORT-FILE2.

CLOSE MASTER-FILE.

CLOSE TRANS-FILE, MASTER-FILE2
REPORT-FILE, REPORT-FILE2.

The OPEN statement must specify one of the following four open modes:

INPUT

OUTPUT

I-O {Not for LINE SEQUENTIAL}
EXTEND

Your choice, along with the file’s organization and access mode, determines which
I/0O statements you can use. Sections 6.3.2, 6.3.3, and 6.3.4 discuss the I/O
statements for sequential, relative, and indexed files, respectively. Section 12.8.4,
Case Sensitivity on Tru64 UNIX explains the importance of attention to case.

When your program performs an OPEN statement, the following events take
place:

1. The I/O system builds a file specification by using the contents of the VALUE
OF ID clause, if any, to alter or complete the file specification in the ASSIGN
clause. Logicals and environment variables are translated.

2. The I/O system checks the file’s current status. If the file is unavailable, or
if it was closed WITH LOCK, the OPEN statement fails. (See Chapter 8 for
information on file sharing.)

Processing Files and Records 6-25

Processing Files and Records
6.3 Creating and Processing Files

3. 1If the file specification names an invalid device, or contains any other errors,
the I/O system generates an error message and the OPEN statement fails.

4. The I/O system takes one of the following actions if it cannot find the file:
If the file’s OPEN mode is OUTPUT, the file is created.

If the file’s OPEN mode is EXTEND, or I-O, the OPEN statement fails,
unless the file’s SELECT clause includes the OPTIONAL phrase. If the
file’s SELECT clause includes the OPTIONAL phrase, the file is created.

c. If the file’s OPEN mode is INPUT, and its SELECT clause includes the
OPTIONAL phrase, the OPEN statement is successful. The first read on
that file causes the AT END or INVALID KEY condition.

d. If none of the previous conditions is met, the OPEN fails and the
Declarative USE procedure (if any) gains control. If no Declarative
USE procedure exists, the I/O system aborts the program.

5. 1If the file’s OPEN mode is OUTPUT, and a file by the same name already
exists, a new version is created.

6. If the file characteristics specified by the program attempting an OPEN
operation differ from the characteristics specified when the file was created,
the OPEN statement fails.

If the file is on magnetic tape, the I/O system rewinds the tape. (To close a file
on tape without rewinding the tape, use the NO REWIND phrase.) This speeds
processing when you want to write another file beyond the end of the first file, as
in the following example:

CLOSE MASTER-FILE NO REWIND.

You can also close a file and prevent your program from opening that file again in
the same run, as in the following example:

CLOSE MASTER-FILE WITH LOCK.

6.3.2 File Handling for Sequential and Line Sequential (Alpha, 164) Files

Creating a sequential or (on Alpha and 164 only) line sequential file involves the
following:

1. Opening the file for OUTPUT or EXTEND
2. Executing valid I/O statements
3. Closing the file

By default, HP COBOL assumes sequential organization and sequential access
mode. (See Example 6-22.)

Example 6—22 Creating a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQO1.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS.DAT".

(continued on next page)

6—26 Processing Files and Records

Processing Files and Records
6.3 Creating and Processing Files

Example 6-22 (Cont.) Creating a Sequential File

DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
PROCEDURE DIVISION.
A000-BEGIN.
OPEN OUTPUT TRANS-FILE.
PERFORM A010-PROCESS-TRANS
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
A010-PROCESS-TRANS.
DISPLAY "Enter next record - X(25)".
DISPLAY "enter END to terminate the session".
DISPIAY "————— e ",
ACCEPT TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"
WRITE TRANSACTION-RECORD.

Example 6-23 Creating a Line Sequential File (Alpha, 164)

IDENTIFICATION DIVISION.
PROGRAM-ID. LINESEQO1.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT LINESEQ-FILE ASSIGN TO "LINESEQ.DAT".
DATA DIVISION.
FILE SECTION.
FD LINESEQ-FILE.
01 LINESEQ-RECORD PIC X(25).

PROCEDURE DIVISION.
A000-BEGIN.
OPEN OUTPUT LINESEQ-FILE.
CLOSE LINESEQ-FILE.
STOP RUN.

By default, HP COBOL assumes sequential access mode when the line sequential
organization is specified. (See Example 6-23.)

Statements for Sequential and Line Sequential (Alpha, 164) File Processing
Processing a sequential file or line sequential file (Alpha, 164) involves the
following:

1. Opening the file
2. Processing the file with valid I/O statements
3. Closing the file

Table 6-3 lists the valid I/O statements for sequential files, and Table 6—4 lists
the valid I/O statements for line sequential files. Both tables illustrate the
following relationships:

¢ Organization determines valid access modes.

e Organization and access mode determine valid open modes.

Processing Files and Records 6-27

Processing Files and Records
6.3 Creating and Processing Files

e All three (organization, access, and open mode) enable or disable I/O

statements.

Table 6-3 Valid I/0O Statements for Sequential Files

Open Mode
File Access
Organization Mode Statement INPUT OUTPUT I/O EXTEND
SEQUENTIAL SEQUENTIAL READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes No Yes
UNLOCK Yes Yes Yes Yes

Writing a Sequential File

Each WRITE statement appends a logical record to the end of an output file,
thereby creating an entirely new record in the file. The WRITE statement
appends records to files that are OPEN for the following modes:

e OUTPUT—Output mode can create the following two kinds of files:

— Storage files—A storage file remains on tape or disk for future reference

or processing.

— Print-control files—The Data Division LINAGE clause, the Environment
Division APPLY PRINT-CONTROL clause, the Procedure Division
ADVANCING phrase (in the WRITE statement), or Report Writer
statements and phrases designates a file as a print-control file.

On OpenVMS Alpha and OpenVMS 164, each record in a print-control

file contains a header that performs line spacing. On Tru64 UNIX, line
spacing is done with blank records in print-control files.

e EXTEND—Extend mode permits new records to be added in sequence after
the last record of an existing file (see Extending a Sequential File or Line
Sequential File (Alpha, 164) in Section 6.5.1).

Table 6-4 Valid I/0O Statements for Line Sequential Files (Alpha, 164)

Open Mode
File Access
Organization Mode Statement INPUT OUTPUT EXTEND
LINE SEQUENTIAL READ Yes No No
SEQUENTIAL
WRITE No Yes Yes
UNLOCK Yes Yes Yes

6—28 Processing Files and Records

Processing Files and Records
6.3 Creating and Processing Files

Writing a Line Sequential File (Alpha, 164)

Each WRITE statement appends a logical record to the end of an output file,
thereby creating an entirely new record in the file. The WRITE statement
appends records to files that are OPEN for the following modes:

e OUTPUT—Output mode creates a new file or overwrites an already existing
file.

e EXTEND—Extend mode permits new records to be added in sequence after
the last record of an existing file (see Extending a Sequential File or Line
Sequential File (Alpha, 164). «

Writing a Record
You can write records in the following two ways:

e WRITE record-name FROM source-area
e WRITE record-name

The first way provides easier program readability with multiple record types.
For example, statements (1) and (2) in the following example are logically
equivalent:

FILE SECTION.

FD STOCK-FILE.

01 STOCK-RECORD PIC X(80).
WORKING-STORAGE SECTION.

01 STOCK-WORK PIC X(80).

---------------- [P —— Sy 3 S ——
WRITE STOCK-RECORD FROM STOCK-WORK. MOVE STOCK-WORK TO STOCK-RECORD.
WRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD).

The following example writes the record PRINT-LINE to the device assigned
to that record’s file, then skips three lines. At the end of the page (as specified
by the LINAGE clause), it causes program control to transfer to HEADER-
ROUTINE.

WRITE PRINT-LINE BEFORE ADVANCING 3 LINES
AT END-OF-PAGE PERFORM HEADER-ROUTINE.

For a WRITE FROM statement, if the destination area is shorter than the file’s
record length, the destination area is padded on the right with spaces; if longer,
the destination area is truncated on the right. This follows the rules for a group
move.

6.3.3 File Handling for Relative Files

Creating a relative file involves the following tasks:

1. Specifying ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS SEQUENTIAL (or RANDOM) in the
Environment Division SELECT clause

Each of these two access modes requires a different processing technique.
(Refer to the Creating a Relative File in Sequential Access Mode and
Creating a Relative File in Random Access Mode sections in this chapter
for information about those techniques.)

Processing Files and Records 6-29

Processing Files and Records
6.3 Creating and Processing Files

3. Opening the file for OUTPUT or I-O

4. Initializing the relative key data name for each new record
5. Executing a WRITE statement for each new relative record
6. Closing the file

Creating a Relative File in Sequential Access Mode

When your program creates a relative file in sequential access mode, the I/0
system does not use the relative key. Instead, it writes the first record in the file
at relative record number 1, the second record at relative record number 2, and
so on, until the program closes the file. If you use the RELATIVE KEY IS clause,
the compiler moves the relative record number of the record being written to
the relative key data item. Example 6-24 writes 10 records with relative record
numbers 1 to 10.

Example 6-24 Creating a Relative File in Sequential Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. REL02.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "BRAND"

ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.
01 KETCHUP-MASTER.

02 FILLER PIC X(14).

02 REC-NUM PIC 9(05).

02 FILLER PIC X(31).

02 FILLER PIC X(31).
WORKING-STORAGE SECTION.
01 REC-COUNT PIC S9(5) VALUE 0.
PROCEDURE DIVISION.
A000-BEGIN.

OPEN OUTPUT FLAVORS.

PERFORM AQ010-WRITE 10 TIMES.

CLOSE FLAVORS.

STOP RUN.

A010-WRITE.

MOVE "Record number" TO KETCHUP-MASTER.

ADD 1 TO REC-COUNT.

MOVE REC-COUNT TO REC-NUM.

WRITE KETCHUP-MASTER

INVALID KEY DISPLAY "BAD WRITE"

STOP RUN.

Creating a Relative File in Random Access Mode

When a program creates a relative file using random access mode, the program
must place a value in the RELATIVE KEY data item before executing a WRITE
statement. Example 6-25 shows how to supply the relative key. It writes 10

records in the cells numbered: 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. Record cells
1,3,5,7,9, 11, 13, 15, 17, and 19 are also created, but contain no valid records.

6-30 Processing Files and Records

Processing Files and Records
6.3 Creating and Processing Files

Example 6-25 Creating a Relative File in Random Access Mode

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO3.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "BRAND"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER.
02 FILLER PIC X(14).
02 REC-NUM PIC 9(05).
02 FILLER PIC X(31).

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99.
01 REC-COUNT PIC S9(5) VALUE 0.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN OUTPUT FLAVORS.
MOVE 0 TO KETCHUP-MASTER-KEY.
PERFORM A010-CREATE-RELATIVE-FILE 10 TIMES.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
A010-CREATE-RELATIVE-FILE.
ADD 2 TO KETCHUP-MASTER-KEY.
MOVE "Record number" TO KETCHUP-MASTER.
ADD 2 TO REC-COUNT.
MOVE REC-COUNT TO REC-NUM.
WRITE KETCHUP-MASTER
INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

Statements for Relative File Processing
Processing a relative file involves the following:

1. Opening the file

2. Setting the relative record number

3. Processing the file with valid I/O statements
4. Closing the file

Table 6-5 lists the valid I/O statements and illustrates the following
relationships:

¢ Organization determines valid access modes.
e Organization and access mode determine valid open modes.

e All three (organization, access, and open mode) enable or disable I/O
statements.

Processing Files and Records 6-31

Processing Files and Records
6.3 Creating and Processing Files

Table 6-5 Valid I/0 Statements for Relative Files

Open Mode
File Access
Organization Mode Statement INPUT OUTPUT I-O EXTEND
RELATIVE SEQUENTIAL DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes No Yes
UNLOCK Yes Yes Yes Yes
RANDOM DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No
DYNAMIC DELETE No No Yes No
READ Yes No Yes No
READ NEXT Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No

Writing a Relative File
Each WRITE statement places a record into a cell that contains no valid data. If
the cell does not already exist, the I/O system creates it. To change the contents
of a cell that already contains valid data, use the REWRITE statement.

6.3.4 File Handling for Indexed Files

Creating an indexed file involves the following tasks:

1. Specifying ORGANIZATION IS INDEXED in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS SEQUENTIAL (or RANDOM or DYNAMIC) in
the Environment Division SELECT clause

3. Opening the file for OUTPUT (to create and add records) or for I-O (to add,
change, delete, or extend records)

4. Initializing the key values
5. Executing a WRITE statement
6. Closing the file

One way to populate an indexed file is to sequentially write the records in
ascending order by primary key. Example 6-26 creates and populates an indexed
file from a sequential file, which has been sorted in ascending sequence on the
primary key field. Notice that the primary and alternate keys are initialized in
ICE-CREAM-MASTER when the contents of the fields in INPUT-RECORD are
read into ICE-CREAM-MASTER before the record is written.

6-32 Processing Files and Records

Processing Files and Records
6.3 Creating and Processing Files

Example 6-26 Creating and Populating an Indexed File

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO "DAIRYI".
SELECT FLAVORS ASSIGN TO "DAIRY"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE.
01 INPUT-RECORD.

02 INPUT-RECORD-KEY PIC 9999.
02 INPUT-RECORD-DATA PIC X(47).
FD FLAVORS.
01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).

03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.
01 END-OF-FILE PIC X.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN INPUT INPUT-FILE.
OPEN OUTPUT FLAVORS.
A010-POPULATE.
PERFORM A100-READ-INPUT UNTIL END-OF-FILE = "Yy".
A020-EOJ.
DISPLAY "END OF JOB".
STOP RUN.
A100-READ-INPUT.
READ INPUT-FILE INTO ICE-CREAM-MASTER
AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"
WRITE ICE-CREAM-MASTER INVALID KEY DISPLAY "BAD WRITE"
STOP RUN.

The program can add records to the file until it reaches the physical limitations
of its storage device. When this occurs, you should follow these steps:

1. Delete unnecessary records.

2. Back up the file.

3. Recreate the file either by using the OpenVMS Alpha and 164 CONVERT
Utility to optimize file space, or by using an HP COBOL program.

Statements for Indexed File Processing
Processing an indexed file involves the following:

1. Opening the file
2. Processing the file with valid I/O statements
3. Closing the file

Processing Files and Records 6-33

Processing Files and Records
6.3 Creating and Processing Files

Table 6-6 lists the valid I/O statements and illustrates the following
relationships:

e File organization determines valid access modes.
¢ File organization and access mode determine valid open modes.

e All three (organization, access, and open mode) enable or disable I/O
statements.

Table 6—6 Valid I/0 Statements for Indexed Files

Open Mode
File Access
Organization Mode Statement INPUT OUTPUT I-O EXTEND
INDEXED SEQUENTIAL DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes No Yes
UNLOCK Yes Yes Yes Yes
RANDOM DELETE No No Yes No
READ Yes No Yes No
REWRITE No No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No
DYNAMIC DELETE No No Yes No
READ Yes No Yes No
READ NEXT Yes No Yes No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No
UNLOCK Yes Yes Yes No

Writing an Indexed File

You specify sequential access mode in the Environment Division SELECT clause
when you want to write records in ascending or descending order by primary key,
depending on the sort order. Specify random or dynamic access mode to enable
your program to write records in any order.

Using Segmented Keys in Indexed Files

Segmented keys are a form of primary or alternate keys. A segmented key can be
made up of multiple pieces, or segments. These segments are data items that you
define in the record description entry for a file. They are concatenated, in order of
specification in the ALTERNATE RECORD KEY or RECORD KEY clause, to form
the segmented key, which will be treated like any "simple" primary or alternate
key.

With segmented keys, you have more flexibility in defining record description
entries for indexed files. A segmented key is made up of between one and
eight data items, which can be defined anywhere and in any order within the
record description, and which can even overlap. For example, you might use the
following record definition in your program:

6-34 Processing Files and Records

Processing Files and Records
6.3 Creating and Processing Files

01 EMPLOYEE.
02 FORENAME PIC X(10).
02 BADGE-NO PIC X(6).

02 DEPT PIC X(2).
02 SURNAME PIC X(20).
02 INITIAL PIC X(1).

Then the following line in your program, which specifies the segmented key name
and three of its segments:

RECORD KEY IS NAME = SURNAME FORENAME INITIAL

causes HP COBOL to treat name as if it were an explicitly defined group item
consisting of the following:

02 SURNAME PIC X(20).
02 FORENAME PIC X(10).
02 INITIAL PIC X(1).

You define a segmented key in either the RECORD KEY clause or the
ALTERNATE RECORD KEY clause. You use the START or READ statement
to reference a segmented key.

Each segment is a data-name of a data item in a record description entry. A
segment can be an alphanumeric or alphabetic item, a group item, or an unsigned
numeric display item. A segment can be qualified, but it cannot be a group item
containing a variable-occurrence item.

Refer to the chapters on the Data Division and the Procedure Division in the HP
COBOL Reference Manual for more information on segmented keys.

Example 6-27 shows how you might use segmented keys. In this example, SEG-
ICE-CREAM-KEY is a segmented-key name. ICE-CREAM-STORE-KIND and
ICE-CREAM-STORE-ZIP are the segments. Notice that the segmented-key name
is referenced in the READ statement.

Example 6-27 Using Segmented Keys

IDENTIFICATION DIVISION.
PROGRAM-ID. MANAGER.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "STORE"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS

SEG-ICE-CREAM-KEY =
ICE-CREAM-STORE-KIND,
ICE-CREAM-STORE-ZIP.

(continued on next page)

Processing Files and Records 6-35

Processing Files and Records
6.3 Creating and Processing Files

Example 6-27 (Cont.) Using Segmented Keys

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 ICE-CREAM-MASTER.
02 ICE-CREAM-DATA.

03 ICE-CREAM-STORE-KIND PIC XX.
03 TICE-CREAM-STORE-MANAGER PIC X(40).
03 ICE-CREAM-STORE-SIZE PIC XX.
03 TICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).
03 ICE-CREAM-STORE-STATE PIC XX.
03 ICE-CREAM-STORE-ZIP PIC XXXXX.
WORKING-STORAGE SECTION.
01 PROGRAM-STAT PIC X.
88 OPERATOR-STOPS-IT VALUE "1".
PROCEDURE DIVISION.
A000-BEGIN.

OPEN I-O FLAVORS.
PERFORM A020-INITIAL-PROMPT.
IF OPERATOR-STOPS-IT
PERFORM A005-TERMINATE.
PERFORM A030-RANDOM-READ.
PERFORM A(025-SUBSEQUENT-PROMPTS UNTIL OPERATOR-STOPS-IT.
PERFORM A005-TERMINATE.
AQ05-TERMINATE.
DISPLAY "END OF JOB".
STOP RUN.
A020-INITIAL-PROMPT.
DISPLAY "Do you want to see the manager of a store?".
PERFORM AQ40-GET-ANS UNTIL PROGRAM-STAT = "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "N" OR "n"
THEN
MOVE "1" TO PROGRAM-STAT.
A025-SUBSEQUENT-PROMPTS.
MOVE SPACE TO PROGRAM-STAT.
DISPLAY "Do you want to see the manager of another store?".
PERFORM A040-GET-ANS UNTIL PROGRAM-STAT = "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "Y" OR "y"
THEN
PERFORM A030-RANDOM-READ
ELSE
MOVE "1" TO PROGRAM-STAT.
A(030-RANDOM-READ.
DISPLAY "Enter store kind: ".
ACCEPT ICE-CREAM-STORE-KIND.
DISPLAY "Enter zip code: " AT LINE PLUS 2.
ACCEPT ICE-CREAM-STORE-ZIP.
PERFORM A100-READ-INPUT-BY-KEY.
AQ40-GET-ANS.
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.
A100-READ-INPUT-BY-KEY.
READ FLAVORS KEY IS SEG-ICE-CREAM-KEY
INVALID KEY
DISPLAY "Store does not exist - Try again"
NOT INVALID KEY
DISPLAY "The manager is: ", ICE-CREAM-STORE-MANAGER.

6-36 Processing Files and Records

Processing Files and Records
6.4 Reading Files

6.4 Reading Files

Reading sequential, line sequential, relative, and indexed files includes the
following tasks:

1. Opening the file
2. Executing a READ or START statement
Sections 6.4.1, 6.4.2, and 6.4.3 describe the specific tasks involved in reading
sequential, line sequential, relative, and indexed files.
6.4.1 Reading a Sequential or Line Sequential (Alpha, 164) File

Reading a sequential or (on Alpha and 164 only) line sequential file involves the
following:

1. Opening the file for INPUT or I/O for sequential files, or INPUT for line
sequential files (I/O is not permitted for line sequential files)

2. Executing a READ statement

Each READ statement reads a single logical record and makes its contents
available to the program in the record area. There are two ways of reading
records:

e READ file-name INTO destination-area
e READ file-name
Statements (1) and (2) in the following example are logically equivalent:

FILE SECTION.
FD STOCK-FILE.

01 STOCK-RECORD PIC X(80).

WORKING-STORAGE SECTION.

01 STOCK-WORK PIC X(80).

-------------) 1

READ STOCK-FILE INTO STOCK-WORK. READ STOCK-FILE.
MOVE STOCK-RECORD TO STOCK-WORK.

When you omit the INTO phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD). The record is also available in the
record area if you use the INTO phrase.

In a READ INTO clause, if the destination area is shorter than the length of
the record area being read, the record is truncated on the right and a warning is
issued; if longer, the destination area is filled on the right with blanks.

If the data in the record being read is shorter than the length of the record (for
example, a variable-length record), the contents of the record beyond that data
are undefined.

Generally speaking, if the recordtype is fixed, the prolog and epilog are zero. The
exceptions to this are: for relative files there is a 1 byte record status flag prolog;
for sequential files there is a 1 byte epilog if the record length is odd.

Example 6-28 reads a sequential file and displays its contents on the terminal.

Processing Files and Records 6-37

Processing Files and Records
6.4 Reading Files

Example 6-28 Reading a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ02.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
PROCEDURE DIVISION.
A000-BEGIN.
OPEN INPUT TRANS-FILE.
PERFORM A100-READ-TRANS-FILE
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
A100-READ-TRANS-FILE.
READ TRANS-FILE
AT END MOVE "END" TO TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"
DISPLAY TRANSACTION-RECORD.

6.4.2 Reading a Relative File

Your program can read a relative file sequentially, randomly, or dynamically. The
following three sections describe the specific tasks involved in reading a relative
file sequentially, randomly, and dynamically.

Reading a Relative File Sequentially
Reading relative records sequentially involves the following:

1. Specifying ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS SEQUENTIAL (or DYNAMIC) in the
Environment Division SELECT clause (and using the READ NEXT phrase)

3. Opening the file for INPUT or I-O
4. Reading records as you would a sequential file, or using a START statement

The READ statement makes the next logical record of an open file available to the
program. The system reads the file sequentially from either cell 1 or wherever
you START the file, up to cell n. It skips the empty cells and retrieves only valid
records. Each READ statement updates the contents of the file’s RELATIVE
KEY data item, if specified. The data item contains the relative number of the
available record. When the at end condition occurs, execution of the READ
statement is unsuccessful (see Chapter 7).

Sequential processing need not begin at the first record of a relative file. The
START statement specifies the next record to be read and positions the file
position indicator for subsequent I/O operations.

Example 6-29 reads a relative file sequentially, displaying every record on the
terminal.

6-38 Processing Files and Records

Processing Files and Records
6.4 Reading Files

Example 6-29 Reading a Relative File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. REL04.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "BRAND"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99.
01 END-OF-FILE PIC X.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN INPUT FLAVORS.
PERFORM A010-DISPLAY-RECORDS UNTIL END-OF-FILE = "Y".
A005-EO0J.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
A010-DISPLAY-RECORDS.
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER.

Reading a Relative File Randomly
Reading relative records randomly involves the following:

1. Specifying ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS RANDOM (or DYNAMIC) in the Environment
Division SELECT clause

3. Opening the file for INPUT or I-O
4. Moving the relative record number value to the RELATIVE KEY data name
5. Reading the record from the cell identified by the relative record number

The READ statement selects a specific record from an open file and makes it
available to the program. The value of the relative key identifies the specific
record. The system reads the record identified by the RELATIVE KEY data name
clause. If the cell does not contain a valid record, the invalid key condition occurs,
and the READ operation fails (see Chapter 7).

Processing Files and Records 6-39

Processing Files and Records
6.4 Reading Files

Example 6-30 reads a relative file randomly, displaying every record on the
terminal.

Example 6-30 Reading a Relative File Randomly

IDENTIFICATION DIVISION.

PROGRAM-ID. RELO5.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "BRAND"

ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).

WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99 VALUE 99.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN INPUT FLAVORS.
PERFORM A100-DISPLAY-RECORD UNTIL KETCHUP-MASTER-KEY = 00.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A100-DISPLAY-RECORD.
DISPLAY "TO DISPLAY A RECORD ENTER ITS RECORD NUMBER (0 to END)".
ACCEPT KETCHUP-MASTER-KEY WITH CONVERSION.
IF KETCHUP-MASTER-KEY > 00
READ FLAVORS
INVALID KEY DISPLAY "BAD KEY"
CLOSE FLAVORS
STOP RUN
END-READ
DISPLAY KETCHUP-MASTER.

Reading a Relative File Dynamically

The READ statement has two formats so that it can select the next logical
record (sequential access) or select a specific record (random access) and make it
available to the program. In dynamic mode, the program can switch from random
access I/O statements to sequential access I/O statements in any order, without
closing and reopening files. However, you must use the READ NEXT statement
to sequentially read a relative file open in dynamic mode.

Sequential processing need not begin at the first record of a relative file. The
START statement repositions the file position indicator for subsequent I/0
operations.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ
statement. A READ NEXT statement should follow the START statement since
the READ NEXT statement reads the next record indicated by the current record
pointer. Subsequent READ NEXT statements sequentially retrieve records until
another START statement or random READ statement executes.

Example 6-31 processes a relative file containing 10 records. If the previous
program examples in this chapter have been run, each record has a unique even
number from 2 to 20 as its key. The program positions the record pointer (using

6-40 Processing Files and Records

Processing Files and Records
6.4 Reading Files

the START statement) to the cell corresponding to the value in INPUT-RECORD-
KEY. The program’s READ.. NEXT statement retrieves the remaining valid
records in the file for display on the terminal.

Example 6-31 Reading a Relative File Dynamically

IDENTIFICATION DIVISION.
PROGRAM-ID. REL06.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "BRAND"
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS KETCHUP-MASTER-KEY.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99.
01 END-OF-FILE PIC X VALUE "N".
PROCEDURE DIVISION.
A000-BEGIN.
OPEN I-O FLAVORS.
DISPLAY "Enter number".
ACCEPT KETCHUP-MASTER-KEY.
START FLAVORS KEY = KETCHUP-MASTER-KEY
INVALID KEY DISPLAY "Bad START statement"
GO TO A005-END-OF-JOB.
PERFORM A010-DISPLAY-RECORDS UNTIL END-OF-FILE = "Y".
A005-END-OF-JOB.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
A010-DISPLAY-RECORDS.
READ FLAVORS NEXT RECORD AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY KETCHUP-MASTER.

6.4.3 Reading an Indexed File
Your program can read an indexed file sequentially, randomly, or dynamically.
Reading an Indexed File Sequentially

Reading indexed records sequentially involves the following:

1. Specifying ORGANIZATION IS INDEXED in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS SEQUENTIAL in the Environment Division
SELECT clause

Opening the file for INPUT or I-O

4. Reading records from the beginning of the file as you would a sequential file
(using a READ...AT END statement)

The READ statement makes the next logical record of an open file available to the
program. It skips deleted records and sequentially reads and retrieves only valid
records. When the at end condition occurs, execution of the READ statement is
unsuccessful (see Chapter 7).

Processing Files and Records 6-41

Processing Files and Records
6.4 Reading Files

Example 6-32 reads an entire indexed file sequentially beginning with the first
record in the file, displaying every record on the terminal.

Example 6-32 Reading an Indexed File Sequentially

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEX03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.

FD FLAVORS.
01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).

03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.
01 END-OF-FILE PIC X.

PROCEDURE DIVISION.
A000-BEGIN.
OPEN INPUT FLAVORS.
A(010-SEQUENTIAL-READ.
PERFORM Al00-READ-INPUT UNTIL END-OF-FILE = "Y".
A020-E0J.
DISPLAY "END OF JOB".
STOP RUN.
Al100-READ-INPUT.
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y"
DISPLAY ICE-CREAM-MASTER
STOP "Type CONTINUE to display next master".

Reading an Indexed File Randomly
Reading indexed records randomly involves the following:

1. Specifying ORGANIZATION IS INDEXED in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS RANDOM in the Environment Division
SELECT clause

Opening the file for INPUT or I-O

4. Initializing the RECORD KEY or ALTERNATE RECORD KEY data name
before reading the record

5. Reading the record using the KEY IS clause

To read the file randomly, the program must initialize either the primary key
data name or the alternate key data name before reading the target record, and
specify that data name in the KEY IS phrase of the READ statement.

6-42 Processing Files and Records

Processing Files and Records
6.4 Reading Files

The READ statement selects a specific record from an open file and makes it
available to the program. The value of the primary or alternate key identifies
the specific record. The system randomly reads the record identified by the KEY
clause. If the I/O system does not find a valid record, the invalid key condition
occurs, and the READ statement fails (see Chapter 7).

Example 6-33 reads an indexed file randomly, displaying its contents on the
terminal.

Example 6-33 Reading an Indexed File Randomly

IDENTIFICATION DIVISION.

PROGRAM-ID. INDEX04.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY"

ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS ICE-CREAM-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.
01 ICE-CREAM-MASTER.
02 ICE-CREAM-KEY PIC XXXX.
02 ICE-CREAM-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).

03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.

01 PROGRAM-STAT PIC X.

88 OPERATOR-STOPS-IT VALUE "1".
PROCEDURE DIVISION.
A000-BEGIN.

OPEN I-O FLAVORS.
PERFORM A020-INITIAL-PROMPT.
IF OPERATOR-STOPS-IT
PERFORM A005-TERMINATE.
PERFORM A030-RANDOM-READ.
PERFORM A025-SUBSEQUENT-PROMPTS UNTIL OPERATOR-STOPS-IT.
DISPLAY "END OF JOB".
STOP RUN.
A020-INITIAL-PROMPT.
DISPLAY "Do you want to see a store?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "N" OR "n"
MOVE "1" TO PROGRAM-STAT.
A025-SUBSEQUENT-PROMPTS.
MOVE SPACE TO PROGRAM-STAT.
DISPLAY "Do you want to see another store ?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "y" OR "N" OR "n".
IF PROGRAM-STAT = "Y" OR "y"
PERFORM A030-RANDOM-READ
ELSE
MOVE "1" TO PROGRAM-STAT.
A030-RANDOM-READ.
DISPLAY "Enter key".
ACCEPT ICE-CREAM-KEY.
PERFORM A100-READ-INPUT-BY-KEY.

(continued on next page)

Processing Files and Records 6-43

Processing Files and Records
6.4 Reading Files

Example 6-33 (Cont.) Reading an Indexed File Randomly

A040-GET-ANSWER.
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.

Al100-READ-INPUT-BY-KEY.
READ FLAVORS KEY IS ICE-CREAM-KEY
INVALID KEY DISPLAY "Record does not exist - Try again"
NOT INVALID KEY DISPLAY "The record is: ", ICE-CREAM-MASTER.
A005-TERMINATE.
DISPLAY "terminated".

Reading an Indexed File Dynamically

The READ statement has two formats, so it can select the next logical record
(sequential access) or select a specific record (random access) and make it
available to the program. In dynamic mode, the program can switch from using
random access I/O statements to sequential access I/O statements, in any order
and any number of times, without closing and reopening files. However, the
program must use the READ NEXT statement to sequentially read an indexed
file opened in dynamic mode.

Sequential processing need not begin at the first record of an indexed file. The
START statement specifies the next record to be read sequentially, selects which
key to use to determine the logical sort order, and repositions the file position
indicator for subsequent I/O operations anywhere within the file.

A sequential read of a dynamic file is indicated by the NEXT phrase of the READ
statement. A READ NEXT statement should follow the START statement since
the READ NEXT statement reads the next record indicated by the file position
indicator. Subsequent READ NEXT statements sequentially retrieve records until
another START statement or random READ statement executes.

Example 6-34 processes an indexed file containing 26 records. Each record has
a unique letter of the alphabet as its primary key. The program positions the file
to the first record whose INPUT-RECORD-KEY is equal to the specified letter of
the alphabet. The program’s READ NEXT statement sequentially retrieves the
remaining valid records in the file for display on the terminal.

Example 6-34 Reading an Indexed File Dynamically

IDENTIFICATION DIVISION.

PROGRAM-ID. INDEX05.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT IND-ALPHA ASSIGN TO "ALPHA"

ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS INPUT-RECORD-KEY.

DATA DIVISION.

FILE SECTION.

FD IND-ALPHA.

01 INPUT-RECORD.

02 INPUT-RECORD-KEY PIC X.

02 INPUT-RECORD-DATA PIC X(50).
WORKING-STORAGE SECTION.
01 END-OF-FILE PIC X.

(continued on next page)

6-44 Processing Files and Records

Processing Files and Records
6.4 Reading Files

Example 6-34 (Cont.) Reading an Indexed File Dynamically

PROCEDURE DIVISION.
A000-BEGIN.
OPEN I-O IND-ALPHA.
DISPLAY "Enter letter"
ACCEPT INPUT-RECORD-KEY.
START IND-ALPHA KEY = INPUT-RECORD-KEY
INVALID KEY DISPLAY "BAD START STATEMENT"
NOT INVALID KEY
PERFORM A100-GET-RECORDS THROUGH Al00-GET-RECORDS-EXIT
UNTIL END-OF-FILE = "Y" END-START.
A010-END-OF-JOB.
DISPLAY "END OF JOB".
CLOSE IND-ALPHA.
STOP RUN.
A100-GET-RECORDS.
READ IND-ALPHA NEXT RECORD AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" DISPLAY INPUT-RECORD.
A100-GET-RECORDS-EXIT.
EXIT.

On Alpha and 164, READ PRIOR retrieves from an Indexed file a record that
logically precedes the one made current by the previous file access operation, if
such a logically previous record exists. READ PRIOR can only be used with a file
whose organization is INDEXED and whose access mode is DYNAMIC. The file
must be opened for INPUT or I-O. Example 6-35 is an example of READ PRIOR
in a program.

Example 6-35 Reading an Indexed File Dynamically, with READ PRIOR
(Alpha, 164)

IDENTIFICATION DIVISION.
PROGRAM-ID. READ PRIOR.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT F ASSIGN TO "READPR"
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS KO
ALTERNATE RECORD IS K2 DUPLICATES.
DATA DIVISION.
FILE SECTION.
FD F.
01 R.
02 KO PIC X(3).
02 FILLER PIC X(5).
02 K2 PIC X(2).
PROCEDURE DIVISION.
P0O. DISPLAY "***READ_PRIOR***".
*t
* Indexed file creation: After this load, the indexed file
* contains the following records : 0123456789, 1234567890,
* 2345678990, and 9876543291

(continued on next page)

Processing Files and Records 6-45

Processing Files and Records
6.4 Reading Files

Example 6-35 (Cont.) Reading an Indexed File Dynamically, with READ PRIOR
(Alpha, 164)

*+
OPEN OUTPUT F.
MOVE "0123456789" TO R.
WRITE R INVALID KEY DISPLAY "?1".
MOVE "1234567890" TO R.
WRITE R INVALID KEY DISPLAY "?2".
MOVE "2345678990" TO R.
WRITE R INVALID KEY DISPLAY "?3".
MOVE "9876543291" TO R.
WRITE R INVALID KEY DISPLAY "?24".
CLOSE F.
*t
* READ PREVIOUS immediately after file open for IO
*t
OPEN I-O F.
MOVE "000" TO KO.
READ F PREVIOUS AT END GO TO Pl END-READ.
DISPLAY "?5 " R.
Pl. CLOSE F.
*t
* READ PREVIOUS after file open for IO, from a middle
* record to beginning record on primary key.
*+
OPEN I-O F.
MOVE "2345678990" TO R.
READ F INVALID KEY DISPLAY "?6" GO TO P2 END-READ.
IF R NOT = "2345678990" THEN DISPLAY "?7 " R.
READ F PREVIOUS AT END DISPLAY "?8" GO TO P2 END-READ.
IF R NOT = "1234567890" THEN DISPLAY "?9 " R.
READ F PREVIOUS AT END DISPLAY "?10" GO TO P2 END-READ.
IF R NOT = "0123456789" THEN DISPLAY "?11 " R.
READ F PREVIOUS AT END GO TO P2.
DISPLAY "?12 " R.
*+
* Multiple READ PREVIOUS on a display alternate key with
* duplicates.
*t
P2. MOVE "91" TO K2.
READ F KEY K2 INVALID KEY DISPLAY "?13" GO TO P5 END-READ.
R NOT = "9876543291" THEN DISPLAY "?14 " R.
READ F PREVIOUS AT END DISPLAY "?15" GO TO P5 END-READ.
IF R NOT = "2345678990" THEN DISPLAY "?16 " R.
READ F PREVIOUS AT END DISPLAY "?17" GO TO P5 END-READ.
IF R NOT = "1234567890" THEN DISPLAY "?18 " R.
READ F PREVIOUS AT END DISPLAY "?19" GO TO P5 END-READ.
IF R NOT = "0123456789" THEN DISPLAY "?20 " R.
READ F PREVIOUS AT END GO TO P5.
DISPLAY "?21 " R.

P5. CLOSE F.
DISPLAY "***END***",
STOP RUN. N

Example 6-36 is another example of READ PRIOR. This example contrasts how
duplicates are handled with a DESCENDING key and with READ PRIOR. Also,
this example shows how to use START before initiating a sequence of either
READ NEXT statements or READ PRIOR statements. This example highlights
how to use START, if you switch between READ NEXT and READ PRIOR.

6-46 Processing Files and Records

Processing Files and Records

6.4 Reading Files

Example 6-36 Another Example of READ PRIOR (Alpha, 164)

READ PRIQR2
Read ascending key
al

b2

c2

d2

e3

Read descending key
e3

b2

c2

d2

al

Read prior

al
* % kEND* % *

IDENTIFICATION DIVISION.
PROGRAM-ID. READ PRIOR2.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OPTIONAL F1
ASSIGN TO "READPR"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS K1 = W2 ASCENDING WITH DUPLICATES
ALTERNATE
RECORD KEY IS K2 = W2 DESCENDING WITH DUPLICATES.
DATA DIVISION.
FILE SECTION.
FD F1.
01 R1.
02 Wl PIC X.
02 w2 PIC X.
PROCEDURE DIVISION.
PO. DISPLAY "#**READ PRIOR2***",
*+
* Indexed file creation.
K-
OPEN OUTPUT F1.
MOVE "al" TO R1.
WRITE R1 INVALID KEY DISPLAY "?al".
MOVE "b2" TO R1.
WRITE R1 INVALID KEY DISPLAY "?b2".
MOVE "c2" TO R1.
WRITE R1 INVALID KEY DISPLAY "?2c2".
MOVE "d2" TO RI1.
WRITE R1 INVALID KEY DISPLAY "?2d2".
MOVE "e3" TO RI1.
WRITE R1 INVALID KEY DISPLAY "?e3".
CLOSE F1.
*t
* Read using ascending key.
* =
OPEN INPUT Fl1.
DISPLAY "Read ascending key".

(continued on next page)

Processing Files and Records 6-47

Processing Files and Records
6.4 Reading Files

Example 6-36 (Cont.) Another Example of READ PRIOR (Alpha, 164)

MOVE "0" TO W2.
START F1 KEY IS GREATER THAN K1 INVALID KEY DISPLAY "?S1".
PERFORM 5 TIMES
READ F1 NEXT AT END DISPLAY "?R2" END-READ
DISPLAY R1
END-PERFORM.
CLOSE Fl1.
*t
* Read using descending key.
*
OPEN INPUT F1.
DISPLAY "Read descending key".
MOVE "4" TO W2.
START F1 KEY IS GREATER THAN K2 INVALID KEY DISPLAY "?S2".
PERFORM 5 TIMES
READ F1 NEXT AT END DISPLAY "?R2" END-READ
DISPLAY R1
END-PERFORM.
*+
* READ PRIOR - note the difference in duplicate order from
* Read with a descending key.
*
DISPLAY "Read prior".
MOVE "4" TO W2.
START F1 KEY IS LESS THAN K1 INVALID KEY DISPLAY "?S3".
PERFORM 5 TIMES
READ F1 PRIOR AT END DISPLAY "?R3" END-READ
DISPLAY R1
END-PERFORM.
CLOSE F1.
DISPLAY "***END***",
STOP RUN.

Reading an Indexed File from Other Languages on Tru64 UNIX

COBOL supports more data types for indexed keys than are supported in the
ISAM definition. For keys in any of the data types not supported in the ISAM
definition, the run-time system will translate those keys to strings. Table 6-7
specifies the appropriate mapping to create or use indexed files outside of COBOL
(for example, if you are using the C language on Tru64 UNIX and you need to
access COBOL files). Refer to the ISAM package documentation for details of the
file format.

Table 6-7 Indexed File—ISAM Mapping

COBOL Data Type Maps To Transformation Method
character string CHARTYPE None.

PIC x(n)

short signed int INTTYPE C-ISAM

PIC S9(4) COMP

long signed int LONGTYPE C-ISAM

PIC S9(9) COMP

(continued on next page)

6—-48 Processing Files and Records

Processing Files and Records
6.4 Reading Files

Table 6-7 (Cont.) Indexed File—ISAM Mapping

COBOL Data Type Maps To Transformation Method
signed quadword CHARTYPE Reverse the bytes (integers: most
PIC S9(18) COMP significant byte (msb) last; character

strings: msb first).

If the data type is not _UNSIGNED, then
complement the sign bit. This causes
negative values to sort correctly with
respect to each other, and precede positive

values.
unsigned quadword CHARTYPE Same as signed quadword.
PIC 9(18) COMP
packed decimal CHARTYPE (Note that sign nibble after is the only case
PIC S9(n) COMP-3 allowed in COBOL.) If the sign nibble is

minus, complement all bits. This will give
a sign nibble of 1 for a minus, which will
come before the plus.

Copy the nibbles so the sign nibble is
placed on the left and all the other nibbles
are shifted one to the right.

Note that any data type not directly supported by ISAM is translated to a
character string, which will sort as a character string in the correct order. ¢

6.5 Updating Files

Updating sequential, line sequential, relative, and indexed files includes the
following tasks:

1. Opening the file
2. Executing a READ or START statement
3. Executing a REWRITE and a DELETE statement

Sections 6.5.1, 6.5.2, and 6.5.3 describe how to update sequential, relative, and
indexed files.

6.5.1 Updating a Sequential File or Line Sequential (Alpha, 164) File

Updating a record in a sequential file involves the following:
1. Opening the file for I/O

2. Reading the target record

3. Rewriting the target record

The REWRITE statement places the record just read back into the file. The
REWRITE statement completely replaces the contents of the target record with
new data. You can use the REWRITE statement for files on mass storage devices
only (for example, disk units). There are two ways of rewriting records:

e REWRITE record-name FROM source-area
e REWRITE record-name

Processing Files and Records 6-49

Processing Files and Records
6.5 Updating Files

Statements (1) and (2) in the following example are logically equivalent:

FILE SECTION.
FD STOCK-FILE.

01 STOCK-RECORD PIC X(80).

WORKING-STORAGE SECTION.

01 STOCK-WORK PIC X(80).

--------------- 1 1

REWRITE STOCK-RECORD FROM STOCK-WORK. MOVE STOCK-WORK TO STOCK-RECORD.
REWRITE STOCK-RECORD.

When you omit the FROM phrase, you process the records directly in the record
area or buffer (for example, STOCK-RECORD).

For a REWRITE statement on a sequential file, the record being rewritten must
be the same length as the record being replaced.

Example 6-37 reads a sequential file and rewrites as many records as the
operator wants.

Example 6-37 Rewriting a Sequential File

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ03.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
WORKING-STORAGE SECTION.
01 ANSWER PIC X.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN I-O TRANS-FILE.
PERFORM A100-READ-TRANS-FILE
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
A100-READ-TRANS-FILE.
READ TRANS-FILE AT END
MOVE "END" TO TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"
PERFORM A300-GET-ANSWER UNTIL ANSWER = "Y" OR "N"
IF ANSWER = "Y" DISPLAY "Please enter new record content"
ACCEPT TRANSACTION-RECORD
REWRITE TRANSACTION-RECORD.

A300-GET-ANSWER.
DISPLAY "Do you want to replace this record? -- "
TRANSACTION-RECORD.
DISPLAY "Please answer Y or N".
ACCEPT ANSWER.

You cannot open a line sequential file (Alpha, 164) for I-O or use the REWRITE
statement. ¢

6-50 Processing Files and Records

Processing Files and Records
6.5 Updating Files

Extending a Sequential File or Line Sequential File (Alpha, 164)

To position a file to its current end, and to allow the program to write new records
beyond the last record in the file, use both:

e The EXTEND phrase of the OPEN statement
e The WRITE statement

Example 6-38 shows how to extend a sequential file.

Example 6-38 Extending a Sequential File or Line Sequential File (Alpha, 164)

IDENTIFICATION DIVISION.
PROGRAM-ID. SEQ04.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT TRANS-FILE ASSIGN TO "TRANS".
DATA DIVISION.
FILE SECTION.
FD TRANS-FILE.
01 TRANSACTION-RECORD PIC X(25).
PROCEDURE DIVISION.
A000-BEGIN.
OPEN EXTEND TRANS-FILE.
PERFORM A100-WRITE-RECORD
UNTIL TRANSACTION-RECORD = "END".
CLOSE TRANS-FILE.
STOP RUN.
A100-WRITE-RECORD.
DISPLAY "Enter next record - X(25)".
DISPLAY "Enter END to terminate the session".
DISPLAY "—mmmmmmmmmmm oo ",
ACCEPT TRANSACTION-RECORD.
IF TRANSACTION-RECORD NOT = "END"
WRITE TRANSACTION-RECORD.

Without the EXTEND mode, an HP COBOL program would have to open the
input file, copy it to an output file, and add records to the output file.

6.5.2 Updating a Relative File

A program updates a relative file with the WRITE, REWRITE, and DELETE
statements. The WRITE statement adds a record to the file. Only the REWRITE
and DELETE statements change the contents of records already existing in the
file. In either case, adequate backup must be available in the event of error.
Sections 6.5.2.1 and 6.5.2.2 explain how to rewrite and delete relative records,
respectively.

6.5.2.1 Rewriting a Relative File

The REWRITE statement logically replaces a record in a relative file; the original
contents of the record are lost. Two options are available for rewriting relative
records:

e Sequential access mode rewriting

e Random access mode rewriting

Processing Files and Records 6-51

Processing Files and Records
6.5 Updating Files

Rewriting Relative Records in Sequential Access Mode
Rewriting relative records in sequential access mode involves the following:

1. Specifying ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS SEQUENTIAL in the Environment Division
SELECT clause

Opening the file for I-O

4. Using a START statement and then a READ statement to read the target
record

5. Updating the record
6. Rewriting the record into its cell

Example 6-39 reads a relative record sequentially and displays the record on the
terminal. The program then passes the record to an update routine that is not
included in the example. The update routine updates the record, and passes the
updated record back to the program illustrated in Example 6-39, which displays
the updated record on the terminal and rewrites the record in the same cell.

Example 6-39 Rewriting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. RELO7.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "BRAND"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99 VALUE 99.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN I-O FLAVORS.
PERFORM A100-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY = 00.
A005-EO0J.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.
A100-UPDATE-RECORD.
DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER (ZERO to END)".
ACCEPT KETCHUP-MASTER-KEY WITH CONVERSION.
IF KETCHUP-MASTER-KEY IS NOT EQUAL TO 00
START FLAVORS KEY IS EQUAL TO KETCHUP-MASTER-KEY
INVALID KEY DISPLAY "BAD START"
STOP RUN.

(continued on next page)

6-52 Processing Files and Records

Processing Files and Records
6.5 Updating Files

Example 6-39 (Cont.) Rewriting Relative Records in Sequential Access Mode

END-START
PERFORM A200-READ-FLAVORS
DISPLAY "**#%****BEFORE UPDATE*** k%t

DISPLAY KETCHUP-MASTER
KKK KRRk Kk kkkkkhhhhhhhhhhh kAR AR AR AR AR R AR AR R AR ARk kkkk kK

*

* Update routine code here
*

kkkkkkkkkhhhhhhhhhhhhhhhhhhkkkkkkkhhhhhhhhhhhhdhhhhhrrkhkhkhkhkhxx

DISPLAY "#%%**%%**AFTER UPDATE***** %% %"
DISPLAY KETCHUP-MASTER
REWRITE KETCHUP-MASTER.
A200-READ-FLAVORS.
READ FLAVORS
AT END DISPLAY "END OF FILE"
GO TO A005-EOJ.

Rewriting Relative Records in Random Access Mode
Rewriting relative records in random access mode involves the following:

1. Specifying ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS RANDOM (or DYNAMIC) in the Environment
Division SELECT clause

Opening the file for I-O

4. Moving the relative record number value of the record you want to read to the
RELATIVE KEY data name

5. Reading the record from the cell identified by the relative record number
6. Updating the record
7. Rewriting the record into the cell identified by the relative record number

During execution of the REWRITE statement, the I/O system randomly reads the
record identified by the RELATIVE KEY IS clause. The REWRITE statement
then places the successfully read record back into its cell in the file.

If the cell does not contain a valid record, or if the REWRITE operation is
unsuccessful, the invalid key condition occurs, and the REWRITE operation
fails (see Chapter 7).

Example 6-40 reads a relative record randomly, displays its contents on the
terminal, updates the record, displays its updated contents on the terminal, and
rewrites the record in the same cell.

Example 6-40 Rewriting Relative Records in Random Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. RELO08.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "BRAND"
ORGANIZATION IS RELATIVE

(continued on next page)

Processing Files and Records 6-53

Processing Files and Records
6.5 Updating Files

Example 6-40 (Cont.) Rewriting Relative Records in Random Access Mode

ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.

01 KETCHUP-MASTER-KEY PIC 99.
PROCEDURE DIVISION.

A000-BEGIN.

OPEN I-O FLAVORS.
PERFORM Al00-UPDATE-RECORD UNTIL KETCHUP-MASTER-KEY = 00.

A005-EO0J.

DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A100-UPDATE-RECORD.

DISPLAY "TO UPDATE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
READ FLAVORS INVALID KEY DISPLAY "BAD READ"
GO TO A005-EOJ.
DISPLAY "#**#*x%%*x*BEFORE UPDATE****x*%%x",
DISPLAY KETCHUP-MASTER.

kkkkkkkkkkkkhkkhkhhkhhhhhhhhhhhhhhhhhhhkkkkkkkkddddddddhhddd

*
*
*

Update routine

khkkkkkkkkkkhkhkhkhhhhhhhhhhhhhhhhhhhhkkkkkkkkdddddddhhhhdddd

DISPLAY "***x%%*x*AFTER UPDATE*****%%%%t

DISPLAY KETCHUP-MASTER.

REWRITE KETCHUP-MASTER INVALID KEY DISPLAY "BAD REWRITE"
GO TO A005-EOJ.

6.5.2.2 Deleting Records from a Relative File

The DELETE statement logically removes an existing record from a relative file.
After successfully removing a record from a file, the program cannot later access
it. Two options are available for deleting relative records:

Sequential access mode deletion

Random access mode deletion

Deleting a Relative Record in Sequential Access Mode
Deleting a relative record in sequential access mode involves the following:

1.

Specifying ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

Specifying ACCESS MODE IS SEQUENTIAL in the Environment Division
SELECT clause

Opening the file for I-O

Using a START statement to position the record pointer, or sequentially
reading the file up to the target record

Deleting the last read record

6-54 Processing Files and Records

Processing Files and Records
6.5 Updating Files

Example 6—41 deletes relative records in sequential access mode.

Example 6-41 Deleting Relative Records in Sequential Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. RELO09.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "BRAND"
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS KETCHUP-MASTER-KEY.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99 VALUE 1.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN I-O FLAVORS.
PERFORM A010-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY = 00.
A005-E0J.
DISPLAY "END OF JOB".
CLOSE FLAVORS.

STOP RUN.
A010-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00 PERFORM A200-READ-FLAVORS
DELETE FLAVORS RECORD.

A200-READ-FLAVORS.
START FLAVORS
INVALID KEY DISPLAY "INVALID START"
STOP RUN.
READ FLAVORS AT END DISPLAY "FILE AT END"
GO TO A005-EOJ.

Processing Files and Records 6-55

Processing Files and Records
6.5 Updating Files

Deleting a Relative Record in Random Access Mode
Deleting a relative record in random access mode involves the following:

1. Specifing ORGANIZATION IS RELATIVE in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS RANDOM in the Environment Division
SELECT clause

3. Opening the file for I-O

4. Moving the relative record number value to the RELATIVE KEY data name
5. Deleting the record identified by the relative record number

If the file does not contain a valid record, an invalid key condition exists.

Example 6-42 deletes relative records in random access mode.

Example 6-42 Deleting Relative Records in Random Access Mode

IDENTIFICATION DIVISION.
PROGRAM-ID. REL10.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "BRAND"
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS KETCHUP-MASTER-KEY.
DATA DIVISION.
FILE SECTION.
FD FLAVORS.
01 KETCHUP-MASTER PIC X(50).
WORKING-STORAGE SECTION.
01 KETCHUP-MASTER-KEY PIC 99 VALUE 1.
PROCEDURE DIVISION.
A000-BEGIN.
OPEN I-O FLAVORS.
PERFORM A010-DELETE-RECORDS UNTIL KETCHUP-MASTER-KEY = 00.
A005-E0J.
DISPLAY "END OF JOB".
CLOSE FLAVORS.
STOP RUN.

A010-DELETE-RECORDS.
DISPLAY "TO DELETE A RECORD ENTER ITS RECORD NUMBER".
ACCEPT KETCHUP-MASTER-KEY.
IF KETCHUP-MASTER-KEY NOT = 00
DELETE FLAVORS RECORD
INVALID KEY DISPLAY "INVALID DELETE"
STOP RUN.

6.5.3 Updating an Indexed File

Updating a record in an indexed file in sequential access mode involves the
following:

1. Reading the target record

2. Verifying that the record is the one you want to change
3. Changing the record
4

Rewriting or deleting the target record

6-56 Processing Files and Records

Processing Files and Records
6.5 Updating Files

A program updates an indexed file in random access mode by rewriting or
deleting the record.

Three options are available for updating indexed records:
e Sequential access mode updating
e Random access mode updating

e Dynamic access mode updating

Note

A program cannot rewrite an existing record if it changes the contents

of the primary key in that record. Instead, the program must delete the
record and write a new record. Alternate key values can be changed at
any time. However, the value of alternate keys must be unique unless the
WITH DUPLICATES phrase is present.

Updating an Indexed File Sequentially
Updating indexed records in sequential acess mode involves the following:

1. Specifying ORGANIZATION IS INDEXED in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS SEQUENTIAL in Environment Division
SELECT clause

Opening the file for I-O

4. Reading records as you would a sequential file (use the READ statement with
the AT END phrase)

5. Rewriting or deleting records using the INVALID KEY phrase

The READ statement makes the next logical record of an open file available to the
program. It skips deleted records and sequentially reads and retrieves only valid
records. When the at end condition occurs, execution of the READ statement is
unsuccessful (see Chapter 7).

The REWRITE statement replaces the record just read, while the DELETE
statement logically removes the record just read from the file.

Example 6-43 updates an indexed file sequentially.

Example 6-43 Updating an Indexed File Sequentially

IDENTIFICATION DIVISION.

PROGRAM-ID. INDEX06.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT FLAVORS ASSIGN TO "DAIRY"
ORGANIZATION IS INDEXED
ACCESS MODE IS SEQUENTIAL
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES

ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.

(continued on next page)

Processing Files and Records 6-57

Processing Files and Records
6.5 Updating Files

Example 6-43 (Cont.) Updating an Indexed File Sequentially

DATA DIVISION.

FILE SECTION.

FD FLAVORS.

01 ICE-CREAM-MASTER.

02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).

03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.

01 END-OF-FILE PIC X.

01 REWRITE-KEY PIC XXXXX.
01 DELETE-KEY PIC XX.

01 NEW-ADDRESS PIC X(20).
PROCEDURE DIVISION.

A000-BEGIN.

OPEN I-O FLAVORS.
DISPLAY "Which store code do you want to find?".
ACCEPT REWRITE-KEY.
DISPLAY "What is its new address?".
ACCEPT NEW-ADDRESS.
DISPLAY "Which state do you want to delete?".
ACCEPT DELETE-KEY.
PERFORM A100-READ-INPUT UNTIL END-OF-FILE = "Y".
A020-EO0J.
DISPLAY "END OF JOB".
STOP RUN.
A100-READ-INPUT.
READ FLAVORS AT END MOVE "Y" TO END-OF-FILE.
IF END-OF-FILE NOT = "Y" AND
REWRITE-KEY = ICE-CREAM-STORE-CODE
PERFORM A200-REWRITE-MASTER.
IF END-OF-FILE NOT = "Y" AND
DELETE-KEY = ICE-CREAM-STORE-STATE
PERFORM A300-DELETE-MASTER.
A200-REWRITE-MASTER.
MOVE NEW-ADDRESS TO ICE-CREAM-STORE-ADDRESS.
REWRITE ICE-CREAM-MASTER
INVALID KEY DISPLAY "Bad rewrite - ABORTED"
STOP RUN.
A300-DELETE-MASTER.
DELETE FLAVORS.

Updating an Indexed File Randomly
Updating indexed records in random access mode involves the following:

1. Specifying ORGANIZATION IS INDEXED in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS RANDOM in the Environment Division
SELECT clause

Opening the file for I-O
4. Initializing the RECORD KEY or ALTERNATE RECORD KEY data name
Writing, rewriting, or deleting records using the INVALID KEY phrase

6-58 Processing Files and Records

Processing Files and Records
6.5 Updating Files

You do not need to first read a record to update or delete it. If the primary or
alternate key you specify allows duplicates, only the first occurrence of a record
with a matching value will be updated.

Example 6-44 updates an indexed file randomly.

Example 6-44 Updating an Indexed File Randomly

IDENTIFICATION DIVISION.
PROGRAM-ID. INDEXO07.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT FLAVORS ASSIGN TO "DAIRY"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS ICE-CREAM-MASTER-KEY
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-STATE
WITH DUPLICATES
ALTERNATE RECORD KEY IS ICE-CREAM-STORE-CODE.
DATA DIVISION.
FILE SECTION.

FD FLAVORS.
01 ICE-CREAM-MASTER.
02 ICE-CREAM-MASTER-KEY PIC XXXX.
02 ICE-CREAM-MASTER-DATA.
03 ICE-CREAM-STORE-CODE PIC XXXXX.
03 ICE-CREAM-STORE-ADDRESS PIC X(20).
03 ICE-CREAM-STORE-CITY PIC X(20).

03 ICE-CREAM-STORE-STATE PIC XX.
WORKING-STORAGE SECTION.

01 HOLD-ICE-CREAM-MASTER PIC X(51).
01 PROGRAM-STAT PIC X.
88 OPERATOR-STOPS-IT VALUE "1".
88 LETS-SEE-NEXT-STORE VALUE "2".
88 NO-MORE-DUPLICATES VALUE "3".
PROCEDURE DIVISION.
A000-BEGIN.

OPEN I-O FLAVORS.

PERFORM A(030-RANDOM-READ UNTIL OPERATOR-STOPS-IT.
A020-E0J.

DISPLAY "END OF JOB".

STOP RUN.
A030-RANDOM-READ.

DISPLAY "Enter key".

ACCEPT ICE-CREAM-MASTER-KEY.

PERFORM A100-READ-INPUT-BY-PRIMARY-KEY

THROUGH A100-READ-INPUT-EXIT.

DISPLAY " Do you want to terminate the session?".

PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N".

IF PROGRAM-STAT = "Y" MOVE "1" TO PROGRAM-STAT.

(continued on next page)

Processing Files and Records 6-59

Processing Files and Records
6.5 Updating Files

Example 6-44 (Cont.) Updating an Indexed File Randomly

A040-GET-ANSWER.
DISPLAY "Please answer Y or N"
ACCEPT PROGRAM-STAT.
A100-READ-INPUT-BY-PRIMARY-KEY.
READ FLAVORS KEY IS ICE-CREAM-MASTER-KEY
INVALID KEY DISPLAY "Master does not exist - Try again"
GO TO Al100-READ-INPUT-EXIT.
DISPLAY ICE-CREAM-MASTER.
PERFORM A200-READ-BY-ALTERNATE-KEY UNTIL NO-MORE-DUPLICATES.
A100-READ-INPUT-EXIT.
EXIT.
A200-READ-BY-ALTERNATE-KEY.
DISPLAY "Do you want to see the next store in this state?".
PERFORM A040-GET-ANSWER UNTIL PROGRAM-STAT = "Y" OR "N".
IF PROGRAM-STAT = "y"
MOVE "2" TO PROGRAM-STAT
READ FLAVORS KEY IS ICE-CREAM-STORE-STATE
INVALID KEY DISPLAY "No more stores in this state"
MOVE "3" TO PROGRAM-STAT.
IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "NY"
PERFORM A500-DELETE-RANDOM-RECORD.
IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "NJ"
MOVE "Monmouth" TO ICE-CREAM-STORE-CITY
PERFORM A400-REWRITE-RANDOM-RECORD.
IF LETS-SEE-NEXT-STORE AND
ICE-CREAM-STORE-STATE = "CA"
MOVE ICE-CREAM-MASTER TO HOLD-ICE-CREAM-MASTER
PERFORM A500-DELETE-RANDOM-RECORD
MOVE HOLD-ICE-CREAM-MASTER TO ICE-CREAM-MASTER
MOVE "AZ" TO ICE-CREAM-STORE-STATE
PERFORM A300-WRITE-RANDOM-RECORD.
IF PROGRAM-STAT = "N"
MOVE "3" TO PROGRAM-STAT.
A300-WRITE-RANDOM-RECORD.
WRITE ICE-CREAM-MASTER
INVALID KEY DISPLAY "Bad write - ABORTED"
STOP RUN.
A400-REWRITE-RANDOM-RECORD.
REWRITE ICE-CREAM-MASTER
INVALID KEY DISPLAY "Bad rewrite - ABORTED"
STOP RUN.
A500-DELETE-RANDOM-RECORD.
DELETE FLAVORS
INVALID KEY DISPLAY "Bad delete - ABORTED"
STOP RUN.

Updating an Indexed File Dynamically
Updating indexed records in dynamic access mode involves the following:

1. Specifying ORGANIZATION IS INDEXED in the Environment Division
SELECT clause

2. Specifying ACCESS MODE IS DYNAMIC in the Environment Division
SELECT clause

3. Opening the file for I-O

6—60 Processing Files and Records

Processing Files and Records
6.5 Updating Files

4. Reading the records sequentially (using the START statement to position
the record pointer and then using the READ.. NEXT statement) or randomly
(initializing the RECORD KEY or ALTERNATE RECORD KEY data name
and then reading records in any order you want using the INVALID KEY
phrase) (See Example 6-44.)

5. Rewriting or deleting records using the INVALID KEY phrase

For indexed files with duplicate primary keys values, rewriting and deleting work
as if the file was opened in sequential access mode. You first read the record,
then update or delete the record just read.

For indexed files without duplicates allowed on the primary key, rewriting and
deleting work as if the file was opened in random access mode. Specify the value
of the primary key data item to indicate the target record, then update or delete
that record.

In dynamic access mode, the program can switch from using random access I/O
statements to sequential access I/0 statements in any order without closing and
reopening files.

6.6 Backing Up Your Files
Files can become unusable if either of the following situations occur:
¢ Your disk file becomes corrupted by a hardware error.

e Your disk file becomes corrupted with bad data.

Proper backup procedures are the key to successful recovery. You should back up
your disk file at some reasonable point (daily, weekly, or monthly, depending on
file activity and value of data), and save all transactions until you create a new
backup. In this way, you can easily recreate your disk file from your last backup
file and transaction files whenever the need arises.

Processing Files and Records 6-61

I

Handling Input/Output Exception Conditions

Many types of exception conditions can occur when a program processes a file; not
all of them are errors. The three categories of exception conditions are as follows:

e AT END condition—This is a normal condition when you access a file
sequentially. However, if your program tries to read the file any time after
having read the last logical record in the file, and there is no applicable
Declarative USE procedure or AT END phrase, the program abnormally
terminates when the next READ statement executes.

e Invalid key condition—When you process relative and indexed files,
the invalid key condition is a normal condition if you plan for it with a
Declarative USE procedure or INVALID KEY phrase. It is an abnormal
condition that causes your program to terminate if there is no applicable
Declarative USE procedure or INVALID KEY phrase.

e All other conditions—These can also be either normal conditions (if you plan
for them with Declarative USE procedures) or abnormal conditions that cause
your program to terminate.

Planning for exception conditions effectively increases program and programmer
efficiency. A program with exception handling routines is more flexible than

a program without them. Exception handling routines minimize operator
intervention and often reduce or eliminate the time you need to spend debugging
and rerunning your program.

This chapter introduces you to the tools you need to execute exception handling
routines for sequential, relative, and indexed files as a normal part of your
program. These tools are the AT END phrase, the INVALID KEY phrase, file
status values, RMS completion codes (on OpenVMS systems), and Declarative
USE procedures. The topics that follow explain how to use these tools in your
programs:

e Planning for the AT END condition (Section 7.1)

¢ Planning for the Invalid Key condition (Section 7.2)

e Using file status values and OpenVMS RMS completion codes (Section 7.3)
e Using Declarative USE procedures (Section 7.4)

7.1 Planning for the AT END Condition

HP COBOL provides you the option of testing for this condition with the AT END
phrase of the READ statement (for sequential, relative, and indexed files) and the
AT END phrase of the ACCEPT statement.

Handling Input/Output Exception Conditions 7-1

Handling Input/Output Exception Conditions
7.1 Planning for the AT END Condition

Programs often read sequential files from beginning to end. They can produce
reports from the information in the file or even update it. However, the program
must be able to detect the end of the file, so that it can continue normal
processing at that point. If the program does not test for this condition when it
occurs, and if no applicable Declarative USE procedure exists (see Section 7.4),
the program terminates abnormally. The program must detect when no more
data is available from the file so that it can perform its normal end-of-job
processing and then close the file.

Example 7-1 shows the use of the AT END phrase with the READ statement for
sequential, relative, and indexed files.

Example 7-1 Handling the AT END Condition

READ SEQUENTIAL-FILE AT END PERFORM A600-TOTAL-ROUTINES
PERFORM A610-VERIFY-TOTALS-ROUTINES
MOVE "Y" TO END-OF-FILE.
READ RELATIVE-FILE NEXT RECORD AT END PERFORM A700-CLEAN-UP-ROUTINES
CLOSE RELATIVE-FILE
STOP RUN.
READ INDEXED-FILE NEXT RECORD AT END DISPLAY "End of file"
DISPLAY "Do you want to continue?"
ACCEPT REPLY
PERFORM A700-CLEAN-UP-ROUTINES.

7.2 Planning for the Invalid Key Condition

The INVALID KEY clause is available for the HP COBOL DELETE, READ,
REWRITE, START, and WRITE statements. (It does not apply to the READ
NEXT statement.) An invalid key condition occurs whenever the I/0 system
cannot complete a DELETE, READ, REWRITE, START, or WRITE statement.
When the condition occurs, execution of the statement that recognized it is
unsuccessful, and the file is not affected.

For example, relative and indexed files use keys to access (retrieve or update)
records. The program specifying random access must initialize a key before
executing a DELETE, READ, REWRITE, START, or WRITE statement. If the
key does not result in the successful execution of any one of these statements, the
invalid key condition exists. This condition is fatal to the program, if the program
does not check for the condition when it occurs and if no applicable Declarative
USE procedure exists (see Section 7.4).

The invalid key condition, although fatal if not planned for, can be to your
advantage when used properly. You can, as shown in Example 7-2, read through
an indexed file for all records with a specific duplicate key and produce a report
from the information in those records. You can also plan for an invalid key
condition on the first attempt to find a record with a specified key value that is
not present in the file. In this case, planning for the invalid key condition allows
the program to continue its normal processing. You can also plan for the AT END
condition when you have read and tested for the last of the duplicate records

in the file, or when you receive the AT END condition for a subsequent read
operation, indicating that no more records exist in the file.

7-2 Handling Input/Output Exception Conditions

7.3 Using

Handling Input/Output Exception Conditions
7.2 Planning for the Invalid Key Condition

Example 7-2 Handling the Invalid Key Condition

MOVE "SMITH" TO LAST-NAME TEST-LAST-NAME.
MOVE "Y" TO ANY-MORE-DUPLICATES.
PERFORM A500-READ-DUPLICATES

UNTIL ANY-MORE-DUPLICATES = "N".

STOP RUN.

A500-READ-DUPLICATES.
READ INDEXED-FILE RECORD INTO HOLD-RECORD
KEY IS LAST-NAME
INVALID KEY
MOVE "N" TO ANY-MORE-DUPLICATES
DISPLAY "Name not in file!"
NOT INVALID KEY
PERFORM A510-READ-NEXT-DUPLICATES
UNTIL ANY-MORE-DUPLICATES = "N"
END-READ.

A510-READ-NEXT-DUPLICATES.
READ INDEXED-FILE NEXT RECORD
AT END MOVE "N" TO ANY-MORE-DUPLICATES
NOT AT END
PERFORM A520-VALIDATE
END-READ.
IF ANY-MORE-DUPLICATES = "Y" PERFORM A700-PRINT.
A520-VALIDATE.
IF LAST-NAME NOT EQUAL TEST-LAST-NAME
MOVE "N" TO ANY-MORE-DUPLICATES.
END READ.

A700-PRINT.

File Status Values and OpenVMS RMS Completion Codes

Your program can check for the specific cause of the failure of a file operation
by checking for specific file status values in its exception handling routines. To
obtain HP COBOL file status values, use the FILE STATUS clause in the file
description entry.

On OpenVMS, to access RMS completion codes, use the HP COBOL special
registers RMS-STS and RMS-STV, or RMS-CURRENT-STS and RMS-CURRENT-
STV. «

7.3.1 File Status Values

The run-time execution of any HP COBOL file processing statement results in
a two-digit file status value that reports the success or failure of the COBOL
statement. To access this file status value, you must specify the FILE STATUS
clause in the file description entry, as shown in Example 7-3.

Handling Input/Output Exception Conditions 7-3

Handling Input/Output Exception Conditions
7.3 Using File Status Values and OpenVMS RMS Completion Codes

Example 7-3 Defining a File Status for a File

DATA DIVISION.
FILE SECTION.
FD INDEXED-FILE
FILE STATUS IS INDEXED-FILE-STATUS.
01 INDEXED-RECORD PIC X(50).
WORKING-STORAGE SECTION.
01 INDEXED-FILE-STATUS PIC XX.
01 ANSWER PIC X.

The program can access this file status variable, INDEXED-FILE-STATUS,
anywhere in the Procedure Division, and depending on its value, take a specific
course of action without terminating the program. Notice that in Example 7—4 (in
paragraph A900-EXCEPTION-HANDLING-ROUTINE), the file status that was
defined in Example 7-3 is used. However, not all statements allow you to access
the file status value as part of the statement. Your program has two options:

¢ Build an error recovery routine into the statement. The relative and indexed
file processing statements that allow you to do this within the INVALID KEY
phrase are DELETE, READ, REWRITE, START, and WRITE (that is, all the
record I-O verbs except READ NEXT). See Example 7—4.

e Define a Declarative USE procedure to handle the condition. This option
is available for all file organizations and their I/O statements. (See
Example 7-6, Example 7-7, and Example 7-8.)

7-4 Handling Input/Output Exception Conditions

Handling Input/Output Exception Conditions
7.3 Using File Status Values and OpenVMS RMS Completion Codes

Example 7-4 Using the File Status Value in an Exception Handling Routine

PROCEDURE DIVISION.
A000-BEGIN.

DELETE INDEXED-FILE
INVALID KEY MOVE "Bad DELETE" to BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

READ INDEXED-FILE NEXT RECORD
AT END MOVE "Bad READ" TO BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

REWRITE INDEXED-RECORD
INVALID KEY MOVE "Bad REWRITE" TO BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

START INDEXED-FILE
INVALID KEY MOVE "Bad START" TO BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

WRITE INDEXED-RECORD
INVALID KEY MOVE "Bad WRITE" TO BAD-VERB-ID
PERFORM A900-EXCEPTION-HANDLING-ROUTINE.

A900-EXCEPTION-HANDLING-ROUTINE.
DISPLAY BAD-VERB-ID " - File Status Value = " INDEXED-FILE-STATUS.
PERFORM A905-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.
A905-GET-ANSWER.
DISPLAY "Do you want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER.

See Soft Record Locks for information about inspecting variables with soft record
locks and Declarative USE procedures.

Each file processing statement described in the Procedure Division section of
the HP COBOL Reference Manual contains a specific list of file status values
in its Technical Notes section. In addition, all file status values are listed in an
appendix in the HP COBOL Reference Manual.

7.3.2 RMS Completion Codes (OpenVMS)

HP COBOL on OpenVMS checks for RMS completion codes after each file and
record operation. If the code indicates anything other than unconditional success,
HP COBOL maps the RMS completion code to a file status value. However,

not all RMS completion codes map to distinct file status values. Many RMS
completion codes map to File Status 30, a COBOL code for errors that have no
specific file status value.

Handling Input/Output Exception Conditions 7-5

Handling Input/Output Exception Conditions
7.3 Using File Status Values and OpenVMS RMS Completion Codes

HP COBOL provides the following six special exception condition registers, four
of which are shown in Example 7-5:

e RMS-STS

e RMS-STV

e RMS-FILENAME

e RMS-CURRENT-STS

e RMS-CURRENT-STV

e RMS-CURRENT-FILENAME

These special registers supplement the file status values already available and
allow the HP COBOL program to directly access RMS completion codes. For more
information on RMS completion codes, refer to the HP COBOL Reference Manual
and the OpenVMS Record Management Services Reference Manual.

You do not define these special registers in your program. As special registers,
they are available whenever and wherever you need to use them in the Procedure
Division. RMS-CURRENT-STS contains the RMS completion codes for the

most recent file or record operation for any file. RMS-CURRENT-FILENAME
contains the name of the current file by which it is known to the system, which
can be the full file specification (directory, device, file name, and extension).
RMS-CURRENT-STV contains other relevant information (refer to the OpenVMS
System Messages and Recovery Procedures Reference Manual, an archived manual
that is available on the OpenVMS Documentation CD-ROM.). When you access
these three special registers, you must not qualify your reference to them.
However, if you define more than one file in the program and intend to access
RMS-STS, RMS-STV, and RMS-FILENAME, you must qualify your references

to them by using the internal COBOL program’s file name for the file that you
intend to reference.

Notice the use of the WITH CONVERSION phrase of the DISPLAY statement in
Example 7-5. This converts the PIC S9(9) COMP contents of the RMS Special
Registers from binary to decimal digits for terminal display.

Example 7-5 Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS, and
RMS-CURRENT-STV Codes (OpenVMS)

DATA DIVISION.
FILE SECTION.

FD FILE-1.

01 RECORD-1 PIC X(50).

FD FILE-2.

01 RECORD-2 PIC X(50).
WORKING-STORAGE SECTION.

01 ANSWER PIC X.

01 STS PIC S9(9) COMP.
01 STV PIC S9(9) COMP.

(continued on next page)

7-6 Handling Input/Output Exception Conditions

Handling Input/Output Exception Conditions
7.3 Using File Status Values and OpenVMS RMS Completion Codes

Example 7-5 (Cont.) Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS,
and RMS-CURRENT-STV Codes (OpenVMS)

PROCEDURE DIVISION.
A000-BEGIN.
WRITE RECORD-1 INVALID KEY PERFORM A901-REPORT-FILE1-STATUS.

The following PERFORM statement displays the RMS completion
codes resulting from the above WRITE statement for FILE-1.

E I I

PERFORM A903-REPORT-RMS-CURRENT-STATUS.

WRITE RECORD-2 INVALID KEY PERFORM A902-REPORT-FILE2-STATUS.

The following PERFORM statement displays the RMS completion
codes resulting from the above WRITE statement for FILE-2.

¥ F F F

PERFORM A903-REPORT-RMS-CURRENT-STATUS.

.

.

The following PERFORM statement moves the RMS completion codes
resulting from the above WRITE statement for FILE-2 to data
fields that are explicitly defined within your program.

* % ¥ X X

PERFORM A904-MOVE-RMS-STS-STV.

A901-REPORT-FILE1-STATUS.

EEES
*

DISPLAY "RMS-STS = " RMS-STS OF FILE-1 WITH CONVERSION.
DISPLAY "RMS-STV = " RMS-STV OF FILE-1 WITH CONVERSION.
DISPLAY "RMS-FILENAME = " RMS-FILENAME OF FILE-1.

*
EEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEE]

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.
A902-REPORT-FILE2-STATUS.

khkkkkkkhkkkhkkkhkhkkhkhkkkhkkkhkkkhhkkhkhkkkhkkhkkkkkx*%
*

DISPLAY "RMS-STS = " RMS-STS OF FILE-2 WITH CONVERSION.
DISPLAY "RMS-STV = " RMS-STV OF FILE-2 WITH CONVERSION.
DISPLAY "RMS-FILENAME = " RMS-FILENAME OF FILE-2.

*
EEEEEEEEEEEEEEEEEEE R R EEEEEEEEEEEEEEEEEEEE

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.

(continued on next page)

Handling Input/Output Exception Conditions 7-7

Handling Input/Output Exception Conditions
7.3 Using File Status Values and OpenVMS RMS Completion Codes

Example 7-5 (Cont.) Referencing RMS-STS, RMS-STV, RMS-CURRENT-STS,
and RMS-CURRENT-STV Codes (OpenVMS)

A903-REPORT-RMS-CURRENT-STATUS.

EEEE RS EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEESEE]
*

DISPLAY "RMS-CURRENT-STS " RMS-CURRENT-STS WITH CONVERSION.
DISPLAY "RMS-CURRENT-STV " RMS-CURRENT-STV WITH CONVERSION.
DISPLAY "RMS-CURRENT-FILENAME = " RMS-CURRENT-FILENAME.

*
kkhkkkkkhkkkhkkhkhkkkhkkkhkhkkhkhkkhkhkkkhkkkhkkkhkkkkkkx*

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.
A904-MOVE-RMS-STS-STV.

kkkkkkkkhkkkhkkkhkkkhkkkhkhkkhkhkkkhkkkhkkkkhkkkkkkkk*%
*

MOVE RMS-STS OF FILE-1 TO STS.
MOVE RMS-STV OF FILE-1 TO STV.

*
kkkkkkkkkkkkkhkhhkhhhhhhhhhhhhkhhkkkkkkkkkkkkk*k

PERFORM A999-GET-ANSWER UNTIL ANSWER = "Y" OR "N".
IF ANSWER = "N" STOP RUN.
A999-GET-ANSWER.
DISPLAY "Do you want to continue?"
DISPLAY "Please answer Y or N"
ACCEPT ANSWER. ¢

7.4 Using Declarative USE Procedures

An applicable Declarative USE procedure executes whenever an I/O statement
results in an exception condition (a file status value that does not begin with

a zero (0)) and the I/O statement does not contain an AT END or INVALID
KEY phrase. The AT END and INVALID KEY phrases take precedence over

a Declarative USE procedure, but only for the I/O statement that includes the
clause. For example, the AT END phrase takes effect only with File Status 10
and the INVALID KEY phrase takes effect only with File Status 23. Therefore,
you can have specific I/O statement exception condition handling for a file and
also include a Declarative USE procedure for general exception handling.

A Declarative USE procedure is a set of one or more special-purpose sections at
the beginning of the Procedure Division. As shown in Example 7-6, the key word
DECLARATIVES precedes the first of these sections, and the key words END
DECLARATIVES follow the last.

7-8 Handling Input/Output Exception Conditions

Handling Input/Output Exception Conditions
7.4 Using Declarative USE Procedures

Example 7-6 The Declaratives Skeleton

PROCEDURE DIVISION.
DECLARATIVES.

END DECLARATIVES.
MAIN-BODY SECTION.
BEGIN.

As shown in Example 7-7, a Declarative procedure consists of a section header,
followed, in order, by a USE statement and one or more paragraphs.

Example 7-7 A Declarative USE Procedure Skeleton

PROCEDURE DIVISION.
DECLARATIVES.
D0-00-FILE-A-PROBLEM SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.
D0-01-FILE-A-PROBLEM.

D0-02-FILE-A-PROBLEM.

D0-03-FILE-A-PROBLEM.

END DECLARATIVES.
MAIN-BODY SECTION.
BEGIN.

Declarative USE procedures can be either ordinary or global. Ordinary
Declarative USE procedures have a limited scope; you can use them only

in programs where they are originally introduced. Global Declarative USE
procedures have a wider scope; you can use them in programs that introduce
them as well as in programs that are contained within the introducing program.

In HP COBOL Declarative procedures, the conditions in the USE statements
indicate when they execute. There are five conditions. One USE statement
can have only one condition; therefore, if you need all five conditions in one
program, you must use five separate USE procedures. These procedures and
their corresponding conditions are as follows:

¢ File name—You can define a file name Declarative USE procedure for each
file name. This procedure takes precedence over the next four procedures. It
executes for any unsuccessful exception condition. (One USE statement can
specify multiple file names.)

Handling Input/Output Exception Conditions 7-9

Handling Input/Output Exception Conditions
7.4 Using Declarative USE Procedures

e INPUT—You can define only one INPUT Declarative USE procedure for each
program. This procedure executes for any unsuccessful exception condition if:
(1) the file is open for INPUT and (2) a file name Declarative USE procedure
does not exist for that file.

e OUTPUT—You can define only one OUTPUT Declarative USE procedure
for each program. This procedure executes for any unsuccessful exception
condition if: (1) the file is open for OUTPUT and (2) a file name Declarative
USE procedure does not exist for that file.

e INPUT-OUTPUT—You can define only one INPUT-OUTPUT Declarative USE
procedure for each program. This procedure executes for any unsuccessful
exception condition if: (1) the file is open for INPUT-OUTPUT (I-O) and (2)
a file name Declarative USE procedure does not exist for that file.

e EXTEND—You can define only one EXTEND Declarative USE procedure
for each program. This procedure executes for any unsuccessful exception
condition if: (1) the file is open for EXTEND and (2) a file name Declarative
USE procedure does not exist for that file.

Note that the USE statement itself does not execute; it defines the condition that
causes the Declarative procedure to execute. Refer to the HP COBOL Reference
Manual for more information about specifying Declarative procedures with the
USE statement.

Example 7-8 shows you how to include a USE procedure for each of the conditions
in your program. The example also contains explanatory comments for each.

Example 7-8 Five Types of Declarative USE Procedures

PROCEDURE DIVISION.
DECLARATIVES.
khkkkhkhhkhkhhkhhhdrhhhdhhdhhkhdhdrhdhdkhdrhrhdrdrhdrhkrsk
D1-00-FILE-A-PROBLEM SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON FILE-A.

If any file-access statement for FILE-A results in an
error, D1-00-FILE-A-PROBLEM executes.

E I

D1-01-FILE-A-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

(continued on next page)

7-10 Handling Input/Output Exception Conditions

Handling Input/Output Exception Conditions
7.4 Using Declarative USE Procedures

Example 7-8 (Cont.) Five Types of Declarative USE Procedures

kkkkkkkkhkhhhhhhhhhhhhhhhhhhkkkkkkkkkkdhddhhhhddhhhhhrrrrk

D2-00-FILE-INPUT-PROBLEM SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON INPUT.

If an error occurs for any file open
in the INPUT mode except FILE-3,
D2-00-FILE-INPUT-PROBLEM executes.

k. . S S . .

D2-01-FILE-INPUT-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

EEEEEEEEEEEEEEEEEEE SRR E R R EEEEEEEEEEEEEEEEE S

D3-00-FILE-OUTPUT-PROBLEM SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON OUTPUT.

If an error occurs for any file open
in the OUTPUT mode except FILE-A,
D3-00-FILE-OUTPUT-PROBLEM executes.

b I L I

D3-01-FILE-OUTPUT-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

.

EEEEEEEEEEEEREEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

D4-00-FILE-I-0O-PROBLEM SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON I-O.

If an error occurs for any file open
in the INPUT-OUTPUT mode except FILE-A,
D4-00-FILE-I-O-PROBLEM executes.

* % ¥ X ¥ X ¥ *

D4-01-FILE-I-O-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

(continued on next page)

Handling Input/Output Exception Conditions 7-11

Handling Input/Output Exception Conditions
7.4 Using Declarative USE Procedures

Example 7-8 (Cont.) Five Types of Declarative USE Procedures

EEEE RS EEEEEEEE SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

D5-00-FILE-EXTEND-PROBLEM SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON EXTEND.

If an error occurs for any file open
in the EXTEND mode except FILE-A,
D5-00-FILE-EXTEND-PROBLEM executes.

EEE S .

D5-01-FILE-EXTEND-PROBLEM.
PERFORM D9-00-REPORT-FILE-STATUS.

D9-00-REPORT-FILE-STATUS.

END DECLARATIVES.

khkkkkkkkhkkkhkkkhkkkhkkkhkhkkhkhkkkhkkkhkkkhhkkhkhkkkhkkkhkkkkhkkkhkkkkk*

A000-BEGIN SECTION.
BEGIN.

7-12 Handling Input/Output Exception Conditions

8

Sharing Files and Locking Records

This chapter includes the following information about sharing files and protecting

records for sequential, relative, and indexed files:

e Controlling access to files and records (Section 8.1)

¢ Choosing X/Open standard (Alpha, 164) or Hewlett-Packard (HP) standard

file sharing and record locking (Section 8.2)

e Ensuring successful file sharing (Section 8.3)

e Using record locking to control access to records (Section 8.4)

8.1 Controlling Access to Files and Records

In a data manipulation environment where many users and programs access the
same data, file control must be applied to protect files from nonprivileged users,
to permit the desired degree of file sharing, and to preserve data integrity in the
files. For example, in Figure 8—-1 many users and programs want to access data

found in FILE-A.
Figure 8-1 Multiple Access to a File

Location 1 Location 2

User 1 User 2

"\ e

PROG-A PROG-A

Location 3

User 3

"

PROG-B

Access Access Access
Stream 1 Stream 2 Stream 3

FILE-A <

ZK-6323-GE

Sharing Files and Locking Records 8-1

Sharing Files and Locking Records
8.1 Controlling Access to Files and Records

File sharing and record locking allow you to control file and record operations
when more than one access stream (the series of file and record operations
being performed by a single user, using a single file connector) is concurrently
accessing a file, as in Figure 8-1.

An HP COBOL program, via the I/O system, can define one or more access
streams. You create one access stream with each OPEN file-name statement. The
access stream remains active until you terminate it with the CLOSE file-name
statement or until your program terminates.

File sharing allows multiple users (or access streams) to access a single file
concurrently. The protection level of the file, set by the file owner, determines
which users can share a file.

Record locking controls simultaneous record operations in files that are
accessed concurrently. Record locking ensures that when a program is writing,
deleting, or rewriting a record in a given access stream, another access stream is
allowed to access the same record in a specified manner.

Figure 8-2 illustrates the relationship of record locking to file sharing.
Figure 8—2 Relationship of Record Locking to File Sharing

FILE SHARING

|
I I

Automatic Manual
Record Locking Record Locking

ZK-6105-GE

File sharing is a function of the file system, while record locking is a function

of the I/O system. The file system manages file placement and the file-sharing
process, in which multiple access streams simultaneously access a file. The

I/0 system manages the record-sharing process and provides access methods to
records within a file. This includes managing the record-locking process, in which
multiple access streams simultaneously access a record.

You must have successful file sharing before you can consider record locking.

In HP COBOL, the file operations begin with an OPEN statement and end with
a CLOSE statement. The OPEN statement initializes an access stream and
specifies the mode. The CLOSE statement terminates an access stream and can
be either explicit (stated in the program) or implicit (on program termination).

Note

The first access stream to open a file determines how other access streams
can access the file concurrently (if at all).

The record operations for HP COBOL that are associated with record locking are
as follows:

READ
START

8-2 Sharing Files and Locking Records

Sharing Files and Locking Records
8.1 Controlling Access to Files and Records

WRITE
REWRITE
DELETE
UNLOCK

8.2 Choosing a File Sharing and Record Locking Standard
(Alpha, 164)

On Alpha and 164 systems, HP COBOL offers two methods of controlling potential
conflicts of multi-user file access between simultaneously running processes:

e HP standard, which is compatible with the behavior of HP COBOL for
OpenVMS VAX!

e X/Open standard (Alpha, 164), which conforms to the X/Open CAE
Specification: COBOL Language and which offers X/Open portability

Both effectively control potential conflicts of file access between simultaneously
running COBOL processes. Both offer locking for all file types: sequential,
relative, and indexed.

Note

If you choose X/Open standard file sharing and record locking for a
file connector, you must not use HP standard syntax anywhere in your
program for the same file connector. The two are mutually exclusive.

The HP COBOL compiler determines whether to apply X/Open standard behavior
or HP standard behavior for any file connector on the basis of the syntax used for
that file connector. The following syntax identifies X/Open standard:

LOCK MODE (SELECT s