HP BASIC for OpenVMS

Reference Manual

Order Number: AA-HY16F-TK

January 2005

This manual provides reference, syntax, and language element information
for HP BASIC running on HP OpenVMS Industry Standard 64 or HP
OpenVMS Alpha systems.

Revision/Update Information: This revised manual supersedes the
Compaq BASIC for OpenVMS Alpha and
VAX Systems Reference Manual, Version
1.4.

Software Version: HP BASIC Version 1.6
for OpenVMS Systems

Operating System: OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.1 or higher
(with IEEE floating-point support)
OpenVMS Alpha Version 6.1 or higher
(without IEEE floating-point support)

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK5433

This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface Xiii

1 Program Elements and Structure

1.1 Building Blocks 1-1
1.2 Components of Program Lines 1-1
1.2.1 Line Numbers 1-2
1211 Programs with Line Numbers 1-2
1.2.1.2 Programs Without Line Numbers 1-2
1.2.2 Labels 1-3
1.2.3 Statements. 1-3
1231 Keywordso 1-4
1.2.3.2 Single-Statement Lines and Continued Statements. 1-5
1.2.33 Multistatement Lines. 1-6
1.2.4 Compiler Directives i 1-7
1.3 BASIC Character Set. i 1-8
1.4 BASIC Data TYPeS . . . o oot 1-8
14.1 Implicit Data Typing 1-12
1.4.2 Explicit Data Typing 1-12
1.4.3 QUAD and IEEE Floating-Point Data Types for 64-Bit

SUPPOIt . .. 1-13
15 Variables 1-14
151 Variable Names i 1-15
15.2 Implicitly Declared Variables 1-15
153 Explicitly Declared Variables 1-17
154 Subscripted Variables and Arrays 1-17
155 Initialization of Variables. 1-20
1.6 CoNStants 1-20
16.1 Numeric Constants o, 1-21
16.1.1 Floating-Point Constants 1-21
1.6.1.2 Integer Constants 1-23
1.6.1.3 Packed Decimal Constants. 1-24
1.6.2 String Constants 1-24

1.6.3
1.6.3.1
1.6.3.2
1.6.4
1.6.5
1.7
1.7.1
1.7.11
1.7.1.2
1.7.2
1.7.3
1.7.31
1.7.3.2
1.7.3.3
1.7.4
1.8
1.8.1
1.8.2

Named Constants.
Naming Constants Within a Program Unit
Naming Constants External to a Program Unit.

Explicit

Literal Notation

Predefined Constants

Expressions

Numeric EXpressions,
Floating-Point and Integer Promotion Rules
DECIMAL PromotionRules

String EXPressions

Conditional Expressions.
Numeric Relational Expressions
String Relational Expressions

Logi

cal EXpressions

Evaluating Expressions
Program Documentation,
Comment Fields.
REM Statements

2 Compiler Directives

%ABORT .
%CROSS .

WDECLARED

%DEFINE
%IDENT .

WIF-%THEN-%ELSE-%END %IF
WINCLUDE

%LIST ...

WNOCROSS

%NOLIST .
%PAGE . .
%PRINT . .
%REPORT
%SBTTL. .
%TITLE . .

WUNDEFINE.

%VARIANT

2-2
2-3
2-4
2-5
2-7
2-9
2-11
2-15
2-17
2-18
2-19
2-20
2-21
2-22
2-24
2-26
2-28
2-29

3 Statements a

DIF$

nd Functions

3-2
3-3
34
3-5

3-8
3-11
3-12
3-13
3-15
3-17
3-18
3-19
3-23
3-24
3-26
3-27
3-29
3-30
3-33
3-35
3-37
3-38
3-40
3-45
3-50
3-55
3-57
3-59
3-61
3-66
3-67
3-69
3-72
3-74

Y,

FSP$

FUNCTION . .. e
FUNCTIONEND
FUNCTIONEXIT ... e

GETRFA
GOSUB . ..
GOTO ..

KILL

3-75

3-76

3-78

3-81

3-82

3-87

3-90

3-97

3-98

3-99
3-100
3-104
3-105
3-107
3-109
3-112
3-113
3-114
3-121
3-123
3-125
3-126
3-128
3-131
3-134
3-137
3-140
3-142
3-144
3-145
3-147
3-148
3-150
3-151
3-152
3-154
3-157

MAG .

NOECHO
NOMARGIN. . ..

OPTION . ..
PLACES

POS .

3-159
3-160
3-161
3-162
3-163
3-165
3-169
3-173
3-174
3-176
3-180
3-183
3-185
3-188
3-190
3-191
3-194
3-195
3-196
3-199
3-201
3-203
3-204
3-205
3-206
3-207
3-209
3-211
3-213
3-215
3-217
3-219
3-221
3-235
3-240
3-243
3-245

Vii

viii

RETURN
RIGHTS .

RMSSTATUS . .. e

SOR

STR$...

3-249
3-256
3-258
3-260
3-264
3-266
3-267
3-268
3-269
3-270
3-272
3-274
3-279
3-281
3-283
3-287
3-288
3-290
3-292
3-293
3-294
3-295
3-298
3-300
3-301
3-302
3-304
3-307
3-309
3-310
3-311
3-312
3-313
3-314
3-316
3-318
3-320

VAL

WHILE ..
XLATES .« o

A ASCII Character Codes
B HP BASIC Keywords

C Differences Between Variations of BASIC

Cl1 Differences Between 164 BASIC and Alpha BASIC
C.2 Differences Between VAX BASIC and 164 BASIC/Alpha
BASIC ..
c.21 VAX BASIC Features Not Available in 164 BASIC/Alpha
BASIC ..
c.2.2 164 BASIC/Alpha BASIC Features Not Available in VAX
BASIC . .

3-321
3-324
3-325
3-326
3-328
3-329
3-331
3-332
3-334
3-335
3-336
3-338
3-339
3-340
3-342
3-344
3-345
3-346
3-348
3-350
3-355
3-357

C.23
C231
C.23.2
C.23.21
c.23.22
C.23.23
C.23.24

C.233
C.234
C.235
C.2.3.6
C.2.3.7
C.2.3.8
C.2.3.9
C.2.3.10
c2311
C.2.3.12
C.2.3.13
C.23.14
C.2.3.15
C.2.3.16
C.2.3.17
C.2.3.18
C.2.3.19
C.2.3.20
c.23.21
C.2.3.22
C.2.3.23
C.24
C241

C.24.2
C.25

Behavior Differences

Optimization
Data Typeso
QUAD, SFLOAT, TFLOAT, and XFLOAT
Implicit Use of the HFLOAT Data Type...........
Double Data Type
HFLOAT Data Type and HFLOAT COMPLEX Data
Type in Oracle CDD/Repository
Passing Parametersby Value.
Array Parameters
DEF*RoUtines i
/LINES Qualifier
Appending Files at the DCL Command Line
Unreachable Code Error
Line Numbers
Error Handling Semantics
Generation of Object Modules
RESUME and DEF
Exceptions
Compiler Message Differences
Error Status Returned toDCL
SYSSINPUT e
FSS$ Function
BAS$SK FAC NO Constant
Math Functions with Different Results
Floating-Point Errors
Error Detection on lllegal MAT Operations
Debugging Differences
Listing File Differences

Common Language Environment Differences

Creating PSECTs with COMMON and MAP
Statements.
64-Bit Floating-PointData.

LIB$SROUTINES and BASIC$STARLET.TLB Routines
Unsupported by 164 BASIC/Alpha BASIC

OOO(POO
A boow

(I-)OOO(POOOO

POP
ol el

R
Nl

OB WWNNNRPRPRPPPOOOOWOOOOOOWO O Ul

CPOO(I')OOO
e N e N ol o

(PO

|
ol
oo

c-17

Index

Examples

11
1-2
1-3
1-4
1-5
1-6
1-7
1-8
C-1
C-2
C-3

c-4

Figures

1-1
1-2

Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12

Referencing Label Names in BASIC Programs
Using the DECLARE Statement to Set Array Boundaries . . .
Naming Constants Within a Program Unit
Associating Values with Named Constants
Declaring Constants Outside the Program Unit.
Specifying a Comment Field
Using Comment Fields to Format a Program
Using REM Statements in BASIC Programs
164 BASIC/Alpha BASIC HFLOAT Translation
VAX BASIC HFLOAT Translation

Oracle CDD/Repository HFLOAT COMPLEX Data Type with
164 BASIC/Alpha BASIC

Oracle CDD/Repository HFLOAT COMPLEX Data Type with
VAX BASIC ...

Representation of the Subscript Variable A%(4%,6%)
Truth Tables. e

Keyword Space Requirements
HP BASIC Data TypesS oo e e
Specifying Floating-Point Constants
Numbers in E Notation
Specifying Integer Constants
Predefined Constants
Arithmetic Operators
Result Data Types in Expressions
Result Data Types for DECIMAL Data
Numeric Relational Operators
String Relational Operators
Logical Operators.t

1-3
1-18
1-26
1-26
1-27
1-47
1-48
1-49

C-5

C-5

1-19
1-43

1-5
1-11
1-22
1-22
1-23
1-31
1-33
1-35
1-36
1-38
1-41
1-42

xi

Xii

1-13

Numeric Operator Precedence
FILL Item Formats and Storage Allocations
EDIT$ Values. e
MAGTAPE Featuresin HP BASIC
Rounding and Truncation of 123456.654321
HP BASIC STATUSBItS i
TIME Function Values
ASCII Characters Reserved for National Use
ASCIL Codes. . . .o
VAX BASIC Features Not Available in 164 BASIC/Alpha

BASIC ..
164 BASIC/Alpha BASIC Qualifiers Not Available in VAX

BASIC ..

Preface

This manual describes BASIC language elements and syntax.

Note

In this manual, the term OpenVMS refers to both OpenVMS 164 and
OpenVMS Alpha systems. If there are differences in the behavior of
the HP BASIC compiler on the two operating systems, those differences
are noted in the text.

The term 164 BASIC refers to HP BASIC on OpenVMS 164 systems.
Alpha BASIC refers to HP BASIC on OpenVMS Alpha systems.
VAX BASIC refers to VAX BASIC on OpenVMS VAX systems.

Intended Audience

This manual is intended for experienced applications programmers who have
a fundamental understanding of the BASIC language. Some familiarity with
your operating system is also recommended. This is not a tutorial manual.

Document Structure

This manual contains the following chapters and appendixes:

Chapter 1 summarizes HP BASIC program elements and structure.
Chapter 2 describes the compiler directives.

Chapter 3 describes the statements and functions.

Appendix A lists the ASCII codes.

Appendix B lists the HP BASIC keywords.

Xiii

e Appendix C discusses differences between HP BASIC on OpenVMS 164 and
Alpha systems and differences between HP BASIC on OpenVMS 164/Alpha
systems and OpenVMS VAX systems.

Related Documents

For detailed information about developing, compiling, linking, and running
BASIC programs, see the HP BASIC for OpenVMS User Manual.

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK0O3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

Conventions

Xiv

The following product names may appear in this manual:

= HP OpenVMS Industry Standard 64 for Integrity Servers
e OpenVMS 164

- 164

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following typographic conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

0

[]

{}

bold type

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

A horizontal ellipsis in examples indicates one of the
following possibilities:

= Additional optional arguments in a statement have
been omitted.

= The preceding item or items can be repeated one or
more times.

= Additional parameters, values, or other information can
be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

In command format descriptions, vertical bars separate

choices within brackets or braces. Within brackets, the

choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

XV

italic type

UPPERCASE TYPE

numbers

Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Mnemonics and Other Terms Used in Syntax Diagrams

XVi

angle
array

chnl
chnl-exp
com
cond

cond-exp
const
data-type
decimal-var
decl-item
def

delim

equiv-name

err-num
exp
ext-routine

external-param

Angle in radians or degrees

Array; syntax rules specify whether the bounds or
dimensions can be specified

1/0 channel associated with a file
Numeric expression that specifies a channel number
Specific to a COMMON block

Conditional expression; indicates that an expression can be
either logical or relational

Conditional expression
Constant value

Data type keyword
Decimal variable

Array, record, or variable
Specific to a DEF function
Delimiter

File specification, device, or logical name to be assigned a
logical name

Run-time error number
Expression
External function

External parameter

file-spec
func

int
int-const
int-exp
int-var
label

lex
lex-exp
lex-var
line
line-num
lit
log-exp
log-name

macro-id
map
matrix
name

num

num-lit
param-list
pass-mech
prog-name

real

real-exp

real-var

rec-exp

rel-exp
relationship-type
replacement-token

File specification

Specific to a FUNCTION subprogram

Integer value

Integer constant

Expression that represents an integer value
Variable that contains an integer value
Alphanumeric statement label

Lexical; used to indicate a component of a compiler directive
Lexical expression

Lexical variable

Statement line; may or may not be numbered
Statement line number

Literal value, in quotation marks

Logical expression

1- to 63-character logical name to be associated with equiv-
name

User identifier following the rules for BASIC identifiers
Specific to a MAP statement
Two-dimensional array

Name or identifier; indicates the declaration of a name or
the name of a BASIC structure, such as a SUB subprogram

Numeric value

Numeric literal

Parameter list, such as for a SUB subprogram
Valid BASIC passing mechanism

Program name

Floating-point value

Real expression

Real variable

Record expression; record number within a file
Relational expression

Oracle CDD/Repository protocol

Identifier, keyword, compiler directive, literal constant, or
operator

XVii

Xviii

routine
str
str-exp
str-lit
str-var
sub
target

ung-str
unsubs-var

var

SUB subprogram or other callable procedure
Character string

Expression that represents a character string
String literal

Variable that contains a character string
Specific to a SUB subprogram

Target point of a branch statement; either a line number or
a label

Unique string
Unsubscripted variable, as opposed to an array element
Variable

1

Program Elements and Structure

This chapter discusses BASIC program elements and structure.

1.1 Building Blocks
The building blocks of a BASIC program are:

Program lines and their components
The BASIC character set

BASIC data types

Variables and constants

Expressions

Program documentation

1.2 Components of Program Lines

A BASIC program is a series of program lines that contain instructions for the
compiler.

All BASIC program lines can contain the following:

Line numbers or labels
Statements

Compiler directives
Comment fields

A line terminator (carriage return)

Only a line terminator is required in a program line. The other elements are
optional.

A program line can contain any number of text lines. A text line cannot exceed
255 characters.

Program Elements and Structure 1-1

1.2.1 Line Numbers

Line numbers are not required in programs; you can compile, link, and execute
a program with or without line numbers. There are, however, different rules
for writing programs with line numbers and for writing programs without line
numbers. These differences are described in the following sections.

1.2.1.1 Programs with Line Numbers

A line number must be a unique integer from 1 through 32767, and must be
terminated by a space or tab. Leading spaces, tabs, and zeros in line numbers
are ignored. Embedded spaces, tabs, and commas cause BASIC to signal an
error. Programs that use line numbers must have a line humber associated
with the first program line.

1.2.1.2 Programs Without Line Numbers
BASIC searches for a line number on the first line of program text.

If no line number is found, then the following rules apply:
< No line numbers are allowed in that program module.
= References to the ERL function are not allowed.

= A subroutine will signal the same errors as it would if it were compiled
with the /INOLINES qualifier. If an error is resignaled back to the caller,
ERL gives the line number of the calling site, rather than the line number
of the actual error in the subprogram.

e The REM statement is not allowed.

If your program contains multiple units, the point at which BASIC breaks each
program unit is determined by the placement of the statement that terminates
each program unit. Any text that follows the program terminator becomes
associated with the the following program unit. A program terminator can be
END, END PROGRAM, END FUNCTION, or END SUB.

Note that program statements can begin in the first column.

Instead of line numbers, you can use labels to identify and reference program
lines.

1-2 Program Elements and Structure

1.2.2 Labels

A label is a 1- to 31-character name that identifies a statement or block

of statements. The label name must begin with a letter; the remaining
characters, if any, can be any combination of letters, digits, dollar signs ($),
underscores (_), or periods (.).

A label name must be separated from the statement it identifies with a colon
(:). For example:

Yes routine: PRINT "Your answer is YES."

The colon is not part of the label name; it informs BASIC that the label is
being defined rather than referenced. Consequently, the colon is not allowed
when you use a label to reference a statement. For example:

200 GOTO Yes_routine

You can reference a label almost anywhere you can reference a line number.
However, there are the following exceptions:

= You cannot compare a label with the value returned by the ERL function.

< You cannot reference a label in an IF... THEN...ELSE statement without
using the keyword GOTO or GO TO. You can use the implied GOTO form
only to reference a line number. In Example 1-1, the GOTO keyword is
not required in statement 100 because the reference is to a line number.
However, the GOTO keyword is required in statement 200 because the
references are to labels.

Example 1-1 Referencing Label Names in BASIC Programs

100 I F A% = B%
THEN 1000 ELSE 1050

200 IF A$ = "YES'
THEN GOTO Yes ELSE GOTO No

1.2.3 Statements

A BASIC statement generally consists of a statement keyword and optional
operators and operands. For example, both of the following statements are
valid:

LET A% = 534% + (SUMK - DI F%
PRINT A%

Program Elements and Structure 1-3

BASIC statements can be either executable or nonexecutable:

< Executable statements perform operations (for example, PRINT, GOTO,
and READ).

= Nonexecutable statements describe the characteristics and arrangement
of data, specify usage information, and serve as comments in the source
program (for example, DATA, DECLARE, and REM).

BASIC can accept and process one statement on a line of text, several
statements on a line of text, multiple statements on multiple lines of text,
and single statements continued over several lines of text.

1.2.3.1 Keywords
Every BASIC statement except LET! and empty statements must begin
with a keyword. Most keywords are reserved in the BASIC language. The
keywords are listed in Appendix B, and the unreserved keywords are footnoted.
Keywords are used to do the following:

= Define data and user identifiers
= Perform operations
« Invoke built-in functions

Reserved keywords cannot be used as user identifiers, such as variable names,
labels, or names for MAP or COMMON areas. Reserved keywords cannot

be used in any context other than as BASIC keywords. The assignment
STRINGS$ = “YES", for example, is invalid because STRINGS is a reserved
BASIC keyword and, therefore, cannot be used as a variable. See Appendix B
for a list of all the BASIC keywords.

A BASIC keyword cannot be split across lines of text. There must be a space,
tab, or special character such as a comma between the keyword and any other
variable or operator.

Some keywords use two words, and some can be combined with other keywords.
Their spacing requirements vary, as shown in Table 1-1.

1 The LET keyword is optional.

1-4 Program Elements and Structure

Table 1-1 Keyword Space Requirements

Optional
Space Required Space No Space

GO TO BY DESC FNEND
GO SuB BY REF FNEXIT
ON ERROR BY VALUE FUNCTIONEND
END DEF FUNCTIONEXIT
END FUNCTION NOECHO
END GROUP NOMARGIN
END IF SUBEND
END PROGRAM SUBEXIT
END RECORD
END SELECT
END SUB
EXIT DEF
EXIT FUNCTION
EXIT SUB
INPUT LINE
MAP DYNAMIC
MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ

1.2.3.2 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement on one text line, or one
statement continued over two or more text lines. For example:

30 PRRNT B* C/ 12

This single-statement line has a line number, the keyword (PRINT), the
operators (*, /), and the operands (B, C, 12).

You can have a single statement span several text lines by typing an
ampersand (&) and pressing the Return key. Note that only spaces or tabs are
valid between the ampersand and the carriage return. For example:

Program Elements and Structure 1-5

OPEN " SAMPLE. DAT" AS FI LE 2% &
SEQUENTI AL VARI ABLE, &
MAP ABC

The ampersand continuation character may be used but is not required for
continued REM statements. The following example is valid:

REM This is a remark
And this is also a remark

You can continue any BASIC statement, but you cannot continue a string
literal or BASIC keyword. The following example generates the error message
“Unterminated string literal”:

PRINT "I F- THEN-ELSE- &
END-1 F

This example is valid:

PRINT "IF-";
“THEN-";
"ELSE-";
"END-";
n | Fll

Ro Ro Ro Ro

1.2.3.3 Multistatement Lines

Multistatement lines contain several statements on one line of text or multiple
statements on separate lines of text.

Multiple statements on one line of text must be separated by a backslash (\)
character. For example:

40 PRINT A\ PRINT V\ PRINT G

You can also write a multistatement program line that associates all
statements with a single line number by placing each statement on a separate
line. BASIC assumes that such an unnumbered line of text is either a new
statement or an IF statement clause.

In the following example, each line of text begins with a BASIC statement and
each statement is associated with line number 400:

400 PRINT A
PRINT B
PRINT "FI NI SHED'

1-6 Program Elements and Structure

BASIC also recognizes IF statement keywords on a new line of text and
associates such keywords with the preceding IF statement. For example:

100 REM Deternine if the user’s response
was YES or NO
200 IF (A$ = "YES') OR (A$ ="Y")
THEN PRINT "You typed YES'
ELSE PRINT "You typed NO'
STOP
END | F

You can use any BASIC statement in a multistatement line. Because the
compiler ignores all text following a REM keyword until it reaches a new line
number, a REM statement must be the last statement on a multistatement
line. REM statements are disallowed in programs without line numbers.

1.2.4 Compiler Directives

Compiler directives are instructions for the compiler. These instructions cause
the compiler to perform certain operations as it compiles the program.

By including compiler directives in a program, you can do the following:

= Place program titles and subtitles in the header that appears on each page
of the listing file.

= Place a program version identification string in both the listing file and
object module.

e Start or stop the inclusion of listing information for selected parts of a
program.

= Start or stop the inclusion of cross reference information for selected parts
of a program.

e Include BASIC code from another source file or a text library.
= Conditionally compile parts of a program.

= Terminate compilation.

e Include CDD record definitions in a BASIC program.

- Display messages during the compilation.

Follow these rules when using compiler directives:

= Compiler directives must begin with a percent sign (%).

= Compiler directives must be the only text on the line (except for
%IF-%THEN-%ELSE-%END-%IF).

= Compiler directives cannot appear within a quoted string.

Program Elements and Structure 1-7

= Compiler directives can be preceded by an optional line number.

For more information about compiler directives, see the HP BASIC for
OpenVMS User Manual.

1.3 BASIC Character Set
BASIC uses the full ASCII character set. This includes the following:
e The letters A to Z, both uppercase and lowercase
e The digits0to 9
= Special characters
Appendix A lists the full ASCII character set and character values.

The compiler does not distinguish between uppercase and lowercase letters
except in string literals or within a DATA statement. The compiler does not
process characters in REM statements or comment fields, nor does it process
nonprinting characters unless they are part of a string literal.

In string literals, BASIC processes:
< Lowercase letters as lowercase
= Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot appear
in a string literal. Use the CHRS$ function or explicit literal notation to use
these characters and terminators.

You can use nonprinting characters in your program, for example, in string
constants, but to do so you must use one of the following:

= A predefined constant such as ESC or DEL
e The CHRS$ function to specify an ASCII value
= Explicit literal notation

See Section 1.6.4 for more information about explicit literal notation.

1.4 BASIC Data Types

Each unit of data in a BASIC program has a specific data type that determines
how that unit of data is to be interpreted and manipulated by the compiler.
This data type also determines how many storage bits make up the unit of
data.

1-8 Program Elements and Structure

BASIC recognizes the following primary data types:
- Integer

= Floating-point

= Character string

= Packed decimal

= Record file address

Integer data is stored as binary values in a byte, word, longword, or quadword.
These values correspond to the BASIC data type keywords BYTE, WORD,
LONG, and QUAD; these are all subtypes of the type INTEGER.

Floating-point values are stored using a signed exponent and a binary fraction.
BASIC allows the floating-point formats F_floating, D_floating, G_floating,
S_floating, T_floating, and X_floating. These formats correspond to the BASIC
data type keywords SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, and
XFLOAT. These are all subtypes of the type REAL. (See Section 1.4.3.)

Character data consists of strings of bytes containing ASCII code as binary
data. The first character in the string is stored in the first byte, the second
character is stored in the second byte, and so on. BASIC allows up to
65,535 characters for a STRING data element.

For the DECIMAL(d,s) data type, you can specify the total number of digits
(d) in the data type and the number of digits to the right of the decimal point
(s). For example, DECIMAL(10,3) specifies decimal data with a total of

10 digits, 3 of which are to the right of the decimal point.

BASIC also recognizes a special RFA data type to provide information about
a record’s file address. An RFA uniquely specifies a record in a file: you can
access RMS files of any organization by a record’s file address. By specifying
the address of a record, RMS retrieves the record at that address. Accessing
records by RFA is more efficient and faster than other forms of random record
access. The RFA data type can only be used for the following:

= RFA operations (the GETRFA function and the GET and FIND statements)
= Assignments to other variables of the RFA data type

= Comparisons with other variables of the RFA data type with the equal to
(=) and not equal to (<>) relational operators

e Formal and actual parameters

e DEF and function results

Program Elements and Structure 1-9

You cannot declare a constant of the RFA data type, nor can you use RFA
variables for any arithmetic operations.

The RFA data type requires 6 bytes of information. See the HP BASIC for
OpenVMS User Manual for more information about Record File Addresses and
the RFA data type.

BASIC packed decimal data is stored in a string of bytes. See the HP BASIC
for OpenVMS User Manual for more information about the storage of packed
decimal data.

Table 1-2 summarizes HP BASIC data types.

1-10 Program Elements and Structure

Table 1-2 HP BASIC Data Types

Data Type Precision
Keyword Size Range (Decimal Digits)
Integer
BYTE 8 bits (1 byte) -128 to +127
WORD 16 bits (2 bytes) -32768 to +32767
LONG 32 bits (4 bytes) -2147483648 to 10
+2147483647
QUAD 64 bits (8 bytes) -9223372036854775808 19
to
+9223372036854775807
Real
SINGLE 32 bits (4 bytes) 0.29E-38 to 1.70E38 6
DOUBLE 64 bits (8 bytes) 0.29E-38 to 1.70E38 16
GFLOAT 64 bits (8 bytes) 0.56E-308 to 0.90E308 15
SFLOAT 32 bits (4 bytes) 1.18E-38 to 3.40E38 6
TFLOAT 64 bits (8 bytes) 2.23E-308 to 1.80E308 15
XFLOAT 128 bits (16 bytes) 6.48E-4966 to 1.19E4932 33
Decimal
DECIMAL(d,s) 0 to 16 bytes 1*107% to 1 *10% d

((d+1)/2 bytes)

String

STRING One character per Max = 65535 NA
byte (default is 16
bytes)

RFA

RFA 6 bytes NA NA

In Table 1-2, REAL and INTEGER are generic data type keywords that
specify floating-point and integer storage, respectively. If you use the REAL
or INTEGER keywords to type data, the actual data type used (SINGLE,

Program Elements and Structure 1-11

DOUBLE, GFLOAT, SFLOAT, TFLOAT, XFLOAT, BYTE, WORD, LONG, or
QUAD) depends on the current default.

You can specify data type defaults by doing the following:
= Use the BASIC command at the DCL level.
< Use the OPTION statement within the source program being compiled.

You can also specify whether program values are to be typed implicitly or
explicitly. The following sections discuss data type defaults and implicit and
explicit data typing.

1.4.1 Implicit Data Typing

You can implicitly assign a data type to program values by adding a suffix
to the variable name or constant value. If you do not specify any suffix, the
variable or constant is assigned the current default data type. The following
rules apply for implicit data typing:

= A dollar sign suffix ($) specifies STRING storage.
A percent sign suffix (%) specifies INTEGER storage.

= No special suffix character specifies storage of the default type, which can
be INTEGER, REAL, or DECIMAL.

With implicit data typing, the range and precision for program values are
determined by the following corresponding default data sizes or subtypes:

e BYTE, WORD, LONG, or QUAD for INTEGER values

e SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, or XFLOAT for REAL
values

e The default (d,s) values for DECIMAL values
If you do not specify a value for the default data type, REAL will be assigned.
The qualifiers for the BASIC DCL command are listed in the HP BASIC for
OpenVMS User Manual.

1.4.2 Explicit Data Typing

Explicit data typing means that you use a declarative statement to specify
the data type, range, and precision of your program variables and named
constants.

1-12 Program Elements and Structure

In the following example, the first DECLARE statement associates the string
constant value 03060 and the STRING data type with a constant named zip_
code. The second DECLARE statement associates the STRING data type with
emp_name, the DOUBLE data type with with_tax, and the SINGLE data type
with int_rate. No constant values are associated with identifiers in the second
DECLARE statement because they are variable names.

DECLARE STRI NG CONSTANT zi p_code = "03060"
DECLARE STRING enp_name, DOUBLE with_tax, SINGLE int_rate

With explicit data typing, each program variable within a program can have a
different data type. You can explicitly assign data types to variables, constants,
arrays, parameters, and functions; therefore, integer data does not have to
take the compilation default types. Explicit data typing gives you more control
over your program.

Using the REAL and INTEGER keywords to explicitly type program values
allows you to write programs that are more flexible, because these data type
keywords specify that floating-point and integer data take the current defaults
for REAL and INTEGER. The data type INTEGER, for example, specifies only
that the constant or variable is an integer. The actual subtype (BYTE, WORD,
LONG, or QUAD) depends on the default set with the BASIC DCL command
or with the OPTION statement.

1.4.3 QUAD and IEEE Floating-Point Data Types for 64-Bit Support

For 64-bit support, HP BASIC provides the QUAD data type for 64-bit
integers as well as three IEEE floating-point types: SFLOAT, TFLOAT, and
XFLOAT, which correspond to the S_floating, T_floating, and X_floating
formats, respectively. QUAD and the IEEE data types are available wherever
the other HP BASIC formats are available, as detailed in the following
sections.

The three formats S_floating, T_floating, and X_floating are for finite values
with normal rounding and standard exception handling only.

Qualifiers

The QUAD keyword is one of the allowed values of the /INTEGER_SIZE
qualifier, and the SFLOAT, TFLOAT, and XFLOAT keywords are three of the
allowed values of the /REAL_SIZE qualifier.

Program Elements and Structure 1-13

Statements, Expressions, Functions, and Operators

QUAD, SFLOAT, TFLOAT, and XFLOAT can be used in HP BASIC statements
wherever a data type is supplied.

The INTEGER function, besides accepting either a numeric string or any
numeric data type expression for the first argument, includes QUAD in the
possible data types for the second argument. The REAL function has SFLOAT,
TFLOAT, and XFLOAT added to possible data types for its second argument.

Data Type Results in Expressions with Operands of Different Types

See Section 1.7.1.1 and Section 1.7.1.2 for the rules determining the data types
of results in expressions with operands of different data types.

Array Subscripts

Array subscripts may be of any numeric data type, but must evaluate to an
integer value at run time.

1.5 Variables

A variable is a named quantity whose value can change during program
execution. Each variable name refers to a location in the program’s storage
area. Each location can hold only one value at a time. Variables of all data
types can have subscripts that indicate their position in an array. You can
declare variables implicitly or explicitly.

Depending on the program operations specified, the value of a variable can
change from statement to statement. HP BASIC uses the most recently
assigned value when performing calculations. This value remains in effect
until a new value is assigned to the variable.

HP BASIC accepts the following general types of variables:
= Floating-point

= Integer
e String
- RFA

e Packed decimal

e Record

1-14 Program Elements and Structure

1.5.1 Variable Names

The name given to a variable depends on whether the variable is internal or
external to the program and whether the variable is implicitly or explicitly
declared.

All variable names must conform to the following rules:
< The name can have from 1 to 31 characters.
= The name has no embedded spaces.

= The first character of the name must be an uppercase or lowercase
alphabetic character (A to 2).

e The last character of the name can be a dollar sign ($) to indicate a string
variable or a percent sign (%) to indicate an integer variable. If the last
character is neither a dollar sign nor a percent sign, the name indicates a
variable of the default type.

= The remaining characters, if present, can be any combination of uppercase
or lowercase letters (A to Z), numbers (0 to 9), dollar signs ($), underscores
(_), or periods (.). The use of underscores in variable names helps improve
readability and is preferred to the use of periods.

1.5.2 Implicitly Declared Variables
HP BASIC accepts the following implicitly declared variables:

= Integer
= String
= Floating-point (or the default data type)

The name of an implicitly declared variable defines its data type. Integer
variables end with a percent sign (%), string variables end with a dollar

sign ($), and variables of the default type (usually floating-point) end with
any allowable character except a percent sign or dollar sign. All three types of
variables must conform to the rules listed in Section 1.5.1 for naming variables.
The current data type default (INTEGER, REAL, or DECIMAL) determines
the data type of implicitly declared variables that do not end in a percent sign
or dollar sign.

A floating-point variable is a named location that stores a floating-point value.
The current default size for floating-point numbers (SINGLE, DOUBLE,
GFLOAT, SFLOAT, TFLOAT, or XFLOAT) determines the data type of the
floating-point variable.

Program Elements and Structure 1-15

Following are some examples of valid floating_point variable names:

C

M1

F67T_J

L...5

BIGA47

z2.

ID_NUMBER
STORAGE_LOCATION_FOR_XX
STRESS_VALUE

If a numeric value of a different data type is assigned to a floating-point
variable, BASIC converts the value to a floating-point number.

An integer variable is a named location that stores an integer value. The
current default size for integers (BYTE, WORD, LONG, or QUAD) determines
the data type of an integer variable.

Following are some examples of valid integer variable names:

ABCDEFG%

B%

C_8%

D6E7%
RECORD_NUMBER%
THE_VALUE_I_WANT%

If the default or explicitly declared data type is INTEGER, the percent suffix
(%) is not necessary.

If you assign a floating-point or decimal value to an integer variable, BASIC
truncates the fractional portion of the value. It does not round to the nearest
integer. For example:

B%=-57

BASIC assigns the value -5 to the integer variable, not -6.
A string variable is a named location that stores strings.
Following are some examples of valid string variable names:

C1$
L 6$
ABC1$
M$
F34G$
T.$

1-16 Program Elements and Structure

EMPLOYEE_NAMES$
TARGET_RECORDS$
STORAGE_SHELF_IDENTIFIERS$

If the default or explicitly declared data type is STRING, the dollar suffix ($) is
not necessary.

Strings have both value and length. BASIC sets all string variables to a
default length of zero before program execution begins, with the exception of
those variables in a COMMON, MAP, virtual array, or record definition. See
the COMMON statement and the MAP statement in Chapter 3 for information
about string length in COMMON and MAP areas. See the HP BASIC for
OpenVMS User Manual for information about default string length in virtual
arrays.

During execution, the length of a character string associated with a string
variable can vary from zero (signifying a null or empty string) to 65,535
characters.

1.5.3 Explicitly Declared Variables

BASIC lets you explicitly assign a data type to a variable or an array. For
example:

DECLARE DOUBLE Interest rate

Data type keywords are described in Section 1.4. For more information about
explicit declaration of variables, see the COMMON, DECLARE, DIMENSION,
DEF, FUNCTION, EXTERNAL, MAP, and SUB statements in Chapter 3.

1.5.4 Subscripted Variables and Arrays

A subscripted variable references part of an array. Arrays can be of any

valid data type. Subscripted variables and arrays follow the same naming
conventions as unsubscripted variables. Subscripts follow the variable name in
parentheses and define the variable’s position in the array. When you create an
array, you specify the maximum size of the array (the bounds) in parentheses
following the array name.

In Example 1-2, the DECLARE statement sets the bounds of the array
emp_name to 1000. Therefore, the maximum value for an emp_name subscript
is 1000. The bounds of the array define the maximum value for a subscript of
that array.

Program Elements and Structure 1-17

Example 1-2 Using the DECLARE Statement to Set Array Boundaries

DECLARE STRI NG enp_nang(1000)
FOR 1% = 0% TO 1000%

I NPUT "Enpl oyee nane";enp_nane(| %
NEXT | %

Subscripts can be any positive LONG integer value between 0 and 2147483647.

An array is a set of data ordered in one or more dimensions. A one-dimensional
array, like emp_name(1000), is called a list or vector. A two-dimensional
array, like payroll_data(5,5), is called a matrix. An array of more than two
dimensions, like big_array(15,9,2), is called a tensor.

As a default, BASIC arrays are always zero-based. The number of elements

in any dimension includes element number zero. For example, the array emp_
name contains 1001 elements because BASIC allocates element zero. Payroll_
data(5,5) contains 36 elements because BASIC allocates row and column zero.

Often, however, applications call for arrays that are not zero-based. In BASIC,
you can define arrays that are not zero-based by specifying a lower bound,

as well as an upper bound, for the subscripts. In this way, you can create an
array with arbitrary starting and ending points. For example, you might want
to create array birth_rate that holds the annual birth rate statistics for the
years 1950 to 1985:

DECLARE hirth_rate(1950 TO 1985)

Lower bounds are not allowed with virtual arrays or arrays used in MAT
statements. If a multidimensional array is declared with lower bounds
specified for some dimensions and not others, zero will be used for those
dimensions without lower bounds.

You can use the UBOUND and LBOUND functions to determine the upper and
lower bounds of an array. For a description of these functions, see Chapter 3.

For all arrays except virtual arrays, the total number of array elements cannot
exceed 2147483647. Note, however, that this is a theoretical value; the actual
maximum size of an array that you can declare depends on the configuration of
your system.

BASIC arrays can have up to 32 dimensions. You can specify the type of data
the array contains with data type keywords. See Table 1-2 for a list of BASIC
data types.

1-18 Program Elements and Structure

An element in a one-dimensional array has a variable name followed by one
subscript in parentheses. You may optionally use a space between the array
name and the subscript. For example:

A(6%

B (6%

Cs (6%

A(6%) refers to the seventh item in this list:

AC0% A(1% A(2% A% A(4% A% A(6%

An element in a two-dimensional array has two subscripts, in parentheses,
following the variable name. The first subscript specifies the row number and
the second subscript specifies the column number. Use a comma to separate
the subscripts. You may optionally put a space between the array name and
the subscripts. For example:

A(7%2% A%4%6% A% (10% 10%

In Figure 1-1, the arrow points to the element specified by the subscripted
variable A%(4%,6%).

Figure 1-1 Representation of the Subscript Variable A%(4%,6%)

COLUMNS

RO 0000000
O1 0000000
W2 0000000
S3 0000000
4 0000 0 0 0e— A%(4%, 6%)

ZK-5549-GE

Although a program can contain a variable and an array with the same name,
this is poor programming practice. Variable A and the array A(3%,3%) are
separate entities and are stored in completely separate locations, so it is a good
idea to give them different names.

Note that a program cannot contain two arrays with the same name but a
different number of subscripts. For example, the arrays A(3%) and A(3%,3%)
are invalid in the same program.

Program Elements and Structure 1-19

BASIC arrays can be redimensioned at run time. See the HP BASIC for
OpenVMS User Manual for more information about arrays.

1.5.5 Initialization of Variables

BASIC generally sets variables to zero or null values at the start of program
execution. Variables initialized by BASIC include:

= Numeric variables and in-storage array elements (except those in MAP or
COMMON statements).

e String variables (except those in MAP or COMMON statements).

= \Variables in subprograms. Subprogram variables are initialized to zero or
the null string each time the subprogram is called.

BASIC does not initialize the following:

= Virtual arrays

= Variables in MAP and COMMON areas

= Variables declared as EXTERNAL

e Variables in routines that contain the option INACTIVE=SETUP

1.6 Constants

A constant is a numeric or character literal that does not change during
program execution. A constant may optionally be named and associated with a
data type. BASIC allows the following types of constants:

< Numeric:
— Floating-point
— Integer
— Packed decimal
= String (ASCII characters enclosed in quotation marks)

A constant of any of the above data types can be named with the DECLARE
CONSTANT statement. You can then refer to the constant by name in your
program. See Section 1.6.3 for information about naming constants.

You can use the OPTION statement to declare a default data type for all
constants in your program. This statement allows you to specify a data type
for only the constants in your program; you can specify a different data type
for variables. You can also use a special numeric literal notation to specify the

1-20 Program Elements and Structure

value and data type of a numeric literal. Numeric literal notation is discussed
in Section 1.6.4.

If you do not specify a data type for a numeric constant with the DECLARE
CONSTANT statement or with numeric literal notation, the type and size of
the constant is determined by the default REAL, INTEGER, or DECIMAL type
set with the BASIC DCL command or the OPTION statement.

To simplify the representation of certain ASCII characters and mathematical
values, BASIC also supplies some predefined constants.

The following sections discuss numeric and string constants, named constants,
numeric literal notation, and predefined constants.

1.6.1 Numeric Constants
A numeric constant is a literal or named constant whose value never changes.
In BASIC, a numeric constant can be a floating-point number, an integer, or a
packed decimal number. The type and size of a humeric constant is determined
by the following:

 System default values

=« Defaults set by the qualifiers for the BASIC DCL command

= Data type specified in a DECLARE CONSTANT or OPTION statement
= Numeric literal notation

If you use a declarative statement to name and declare the data type of
a numeric constant, the constant is of the type and size specified in the
statement. For example:

DECLARE BYTE CONSTANT age = 12

This example associates the numeric literal 12 and the BYTE data type with
the identifier age. To specify a data type for an unnamed numeric constant,
you must use the numeric literal notation format described in Section 1.6.4.

1.6.1.1 Floating-Point Constants
A floating-point constant is a literal or named constant with one or more
decimal digits, either positive or negative, with an optional decimal point and
an optional exponent (E notation). If the default data type is integer, BASIC
will treat the literal as an INTEGER unless it contains a decimal point or the
character E. If the default data type is DECIMAL, an E is required or BASIC
treats the literal as a packed decimal value.

Table 1-3 contains examples of floating-point literals with REAL, INTEGER,
and DECIMAL default data types.

Program Elements and Structure 1-21

Table 1-3 Specifying Floating-Point Constants

REAL INTEGER DECIMAL
Default Type Default Type Default Type

-8.738 -8.738 -8.738E
239.21E-6 239.21E-6 239.21E-6
.79 .79 .79E

299 299E 299E

Very large and very small numbers can be represented in E (exponential)
notation. To indicate E notation, a number must be followed by the letter E
(or e). It also must be followed by an exponent sign and an exponent. The
exponent sign indicates whether the exponent is positive or negative and is
optional only if you are specifying a positive exponent. The exponent is an
integer constant (the power of 10).

See Table 1-2 for decimal-place precision of floating-point keywords.

Table 1-4 compares numbers in standard and E notation.

Table 1-4 Numbers in E Notation

Standard Notation E Notation
.0000001 .1E-06
1,000,000 AE+07
-10,000,000 —-.1E+08
100,000,000 1E+09
1,000,000,000,000 1E+13

The range and precision of floating-point constants are determined by the
current default data types or the explicit data type used in the DECLARE
CONSTANT statement. However, there are limits to the range allowed for
numeric data types. See Table 1-2 for a list of BASIC data types and ranges.
BASIC signals the fatal error “Floating point error or overflow” (ERR=48) when
your program attempts to specify a constant value outside of the allowable
range for a floating-point data type.

1-22 Program Elements and Structure

1.6.1.2

Integer Constants

An integer constant is a literal or named constant, either positive or negative,
with no fractional digits and an optional trailing percent sign (%). The percent
sign is required for integer literals only if the default type is not INTEGER.

In Table 1-5, the values are all integer constants. The presence of the percent
sign varies depending on the default data type.

Table 1-5 Specifying Integer Constants

REAL or
INTEGER DECIMAL
Default Type Default Type
81257 81257%
—3477 -3477%
79 79%

The range of allowable values for integer constants is determined by either
the current default data type or the explicit data type used in the DECLARE
CONSTANT statement. Table 1-2 lists BASIC data types and ranges. BASIC
signals an error for a number outside the applicable range.

If you want BASIC to treat numeric literals as integer numbers, you must do
one of the following:

= Set the default data type to INTEGER.
= Make sure the literal has a percent sign suffix.

= Use explicit literal notation.

Note

You cannot use percent signs in integer constants that appear in DATA
statements. Doing so causes BASIC to signal “Data format error”
(ERR=50).

Program Elements and Structure 1-23

1.6.1.3 Packed Decimal Constants
A packed decimal constant is a number, either positive or negative, that has
a specified number of digits and a specified decimal point position (scale). You
specify the number of digits (d) and the position of the decimal point (s) when
you declare the constant as a DECIMAL(d,s). If the constant is not declared,
the number of digits and the position of the decimal is determined by the
representation of the constant.

For example, when the default data type is DECIMAL, 1.234 is a DECIMAL(4,3)
constant, regardless of the default decimal size. Likewise, using numeric literal
notation, " 1.234" P is a DECIMAL(4,3) constant, regardless of the default data
type and default DECIMAL size. Numeric literal notation is described in
Section 1.6.4.

1.6.2 String Constants

String constants are either string literals or named constants. A string literal
is a series of characters enclosed in string delimiters. Valid string delimiters
are as follows:

< Double quotation marks (" text")
= Single quotation marks (' text’)

You can embed double quotation marks within single quotation marks (' this is
a "text" string’) and vice versa ("this is a’ text’ string"). Note, however, that
BASIC does not accept incorrectly paired quotation marks and that only the
outer quotation marks must be paired. For example, the following character
strings are valid:

"The record nunber does not exist."
"I'"'mhere!"

"The termnating 'condition is equal to 10."
"REPORT 543"

However, the following strings are not valid:

"Quotation marks that do not match’
"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, 8-bit
data characters, or the NUL character (ASCII code 0). If you need a string
constant that contains a NUL, you should use CHR$(NUL). See Section 1.6.4
for information about explicit literal notation.

Note that NUL is a predefined integer constant. See Section 1.6.5.

1-24 Program Elements and Structure

The compiler determines the value of the string constant by scanning all
its characters. For example, because of the number of spaces between the
delimiters and the characters, these two string constants are not the same:

! END- OF-FI LE REACHED "
"END- OF- FI LE REACHED"

BASIC stores every character between delimiters exactly as you type it into
the source program, including:

= Lowercase letters (a to z)

« Leading, trailing, and embedded spaces
= Tabs

= Special characters

The delimiting quotation marks are not printed when the program is executing.
The value of the string constant does not include the delimiting quotation
marks. For example:

PRI NT "END- OF- FI LE REACHED'
END

Output

END- OF- FI LE REACHED

BASIC does, however, print double or single quotation marks when they are
enclosed in a second paired set. For example:

PRINT ' FAI LURE CONDI TI ON: " RECORD LENGTH"’
END

Output
FAI LURE CONDI TI ON. "RECORD LENGTH'

1.6.3 Named Constants

BASIC allows you to name constants. You can assign a name to a constant
that is either internal or external to your program and refer to the constant by
name throughout the program. This naming feature is useful for the following
reasons:

= If a commonly used constant must be changed, you need to make only one
change in your program.

< A logically named constant makes your program easier to understand.

Program Elements and Structure 1-25

You can use named constants anywhere you can use a constant, for example, to
specify the number of elements in an array.

You cannot change the value of an explicitly named constant during program
execution.

1.6.3.1 Naming Constants Within a Program Unit

You name constants within a program unit with the DECLARE statement, as
is shown in Example 1-3.

Example 1-3 Naming Constants Within a Program Unit

DECLARE DOUBLE CONSTANT preferred_rate = .147
DECLARE SI NGLE CONSTANT nornal _rate = . 162
DECLARE DOUBLE CONSTANT risky rate = .175

new'_bal = old_bal * (1 + preferred_rate)”years_paynent
When interest rates change, only three lines have to be changed rather than
every line that contains an interest rate constant.

Constant names must conform to the rules for naming internal, explicitly
declared variables listed in Section 1.5.1.

The value associated with a named constant can be a compile-time expression
as well as a literal value, as shown in Example 1-4.

Example 1-4 Associating Values with Named Constants

DECLARE STRING CONSTANT Congrats = &
S +' + LF+ CR+ &
"| Congratulations! |" +CR+ CR+ &
R L

PRI NT Congrats

PRI NT Congrats

Named constants can save you programming time because you do not have to
retype the value every time you want to display it.

1-26 Program Elements and Structure

Valid operators in DECLARE CONSTANT expressions include string
concatenations and all valid arithmetic, relational, and logical operators except
exponentiation. You cannot use built-in functions in DECLARE CONSTANT
expressions.

BASIC allows constants of all data types except RFA to be named constants.
Because you cannot declare a constant of the RFA data type, you cannot name
a constant of that type.

You can specify only one data type in a DECLARE CONSTANT statement. To
declare a constant of a different data type, you must use a second DECLARE
CONSTANT statement.

1.6.3.2 Naming Constants External to a Program Unit

To declare constants outside the program unit, use the EXTERNAL statement,
as shown in Example 1-5.

Example 1-5 Declaring Constants Outside the Program Unit

EXTERNAL LONG CONSTANT SS$_NORMAL
EXTERNAL WORD CONSTANT | S_SUCCESS

The first line declares the OpenVMS status code SS$ NORMAL to be an
external LONG constant. The second line declares IS SUCCESS, a success
code, to be an external WORD constant. Note that BASIC allows only external
BYTE, WORD, LONG, QUAD, and SINGLE constants. The OpenVMS Linker
supplies the values for the constants specified in EXTERNAL statements.

In BASIC, the named constant might be a system status code or a global
constant declared in another OpenVMS layered product.

1.6.4 Explicit Literal Notation

You can specify the value and data type of numeric literals by using a special
notation called explicit literal notation. The format of this notation is as
follows:

[radix] "num-str-lit" [data-type]
Radix specifies an optional base, which can be any of the following:

D Decimal (base 10)
B Binary (base 2)
(0] Octal (base 8)

Program Elements and Structure 1-27

X Hexadecimal (base 16)

A ASCII

The BASIC default radix is decimal. Binary, octal, and hexadecimal notation
allow you to set or clear individual bits in the representation of an integer.
This feature is useful in forming conditional expressions and in using logical
operations. The ASCII radix causes BASIC to translate a single ASCII
character to its decimal equivalent. This decimal equivalent is an INTEGER

value; you specify whether the INTEGER subtype should be BYTE, WORD,
LONG, or QUAD.

Nume-str-lit is a numeric string literal. It can be the digits 0 and 1 when the
radix is binary, the digits 0 to 7 when the radix is octal, the digits O to F when
the radix is hexadecimal, and the digits 0 to 9 when the radix is decimal.
When the radix is ASCII, num-str-lit can be any valid ASCII character.

Data-type is an optional single letter that corresponds to one of the data type
keywords that follow:
BYTE

WORD

LONG

QUAD

SINGLE
DOUBLE
GFLOAT
SFLOAT
TFLOAT
XFLOAT
DECIMAL
CHARACTER

O T X 4»EUuUmnNOoOr s

The following are examples of explicit literals:

D" 255" L Specifies a LONG decimal constant with a value of 255
"4000" F Specifies a SINGLE decimal constant with a value of 4000
A"M"L Specifies a LONG integer constant with a value of 77
A"'m"B Specifies a BYTE integer constant with a value of 109

1-28 Program Elements and Structure

A quoted numeric string alone, without a radix and a data type, is a string
literal, not a numeric literal. For

" 255" Is a string literal

" 255" W Specifies a WORD decimal constant with a value of 255

If you specify a binary, octal, ASCII, or hexadecimal radix, data-type must be
an integer. If you do not specify a data type, BASIC uses the default integer
data type. For example:

B" 11111111" B Specifies a BYTE binary constant with a value of -1

B"11111111" W Specifies a WORD binary constant with a value of 255

B"11111111" Specifies a binary constant of the default data type (BYTE, WORD,
LONG, or QUAD)

B" 11111111" F Is illegal because F is not an integer data type

X"FF"'B Specifies a BYTE hexadecimal constant with a value of -1

X"FF'"W Specifies a WORD hexadecimal constant with a value of 255

X"FF"D Is illegal because D is not an integer data type

O"377"B Specifies a BYTE octal constant with a value of -1

o"377"W Specifies a WORD octal constant with a value of 255

o"377" G Is illegal because G is not an integer data type

When you specify a radix other than decimal, overflow checking is performed
as if the numeric string were an unsigned integer. However, when this value
is assigned to a variable or used in an expression, the compiler treats it as a
signed integer.

In the following example, BASIC sets all 8 bits in storage location A. Because
A is a BYTE integer, it has only 8 bits of storage. Because the 8-bit two's
complement of 1 is 11111111, its value is -1. If the data type is W (WORD),
BASIC sets the bits to 0000000011111111, and its value is 255.

DECLARE BYTE A
A = B"11111111"B
PRINT A

Output
-1

Program Elements and Structure 1-29

Note

In BASIC, D can appear in both the radix position and the data type
position. D in the radix position specifies that the numeric string is
treated as a decimal number (base 10). D in the data type position
specifies that the value is treated as a double-precision, floating-
point constant. P in the data type position specifies a packed decimal
constant. For example:

"255"D Specifies a double-precision constant with a value of 255
" 255.55" P Specifies a DECIMAL constant with a value of 255.55

You can use explicit literal notation to represent a single-character string in
terms of its 8-bit ASCII value:

[radix] "num-str-lit" C

The letter C is an abbreviation for CHARACTER. The value of the numeric
string must be from 0 to 255. This feature lets you create your own compile-
time string constants containing nonprinting characters.

The following example declares a string constant named control_g (ASCII
decimal value 7). When BASIC executes the PRINT statement, the terminal
bell sounds:

DECLARE STRI NG CONSTANT control g = "7"C
PRINT control _g

1.6.5 Predefined Constants

Predefined constants are symbolic representations of either ASCII characters
or mathematical values. They are also called compile-time constants because
their value is known at compilation rather than at run time.

Predefined constants help you to:
< Format program output to improve readability
= Make source code easier to understand

Table 1-6 lists the predefined constants supplied by BASIC, their ASCII
values, and their functions.

1-30 Program Elements and Structure

Table 1-6 Predefined Constants

Decimal/

Constant ASCII Value Function

NUL 0 Integer value zero

BEL (Bell) 7 Sounds the terminal bell

BS (Backspace) 8 Moves the cursor one position to the left

HT (Horizontal Tab) 9 Moves the cursor to the next horizontal
tab stop

LF (Line Feed) 10 Moves the cursor to the next line

VT (Vertical Tab) 11 Moves the cursor to the next vertical tab
stop

FF (Form Feed) 12 Moves the cursor to the start of the next
page

CR (Carriage Return) 13 Moves the cursor to the beginning of the
current line

SO (Shift Out) 14 Shifts out for communications
networking, screen formatting, and
alternate graphics

Sl (Shift In) 15 Shifts in for communications network-
ing, screen formatting, and alternate
graphics

ESC (Escape) 27 Marks the beginning of an escape
sequence

SP (Space) 32 Inserts one blank space in program
output

DEL (Delete) 127 Deletes the last character entered

Pl None Represents the number Pl with the

precision of the default floating-point
data type

You can use predefined constants in many ways. The following example shows
how to print and underline a word on a hardcopy display:

PRINT "NAME:" + BS + BS + BS + BS + BS + " !

END
Output
NAME:

Program Elements and Structure 1-31

The following example shows how to print and underline a word on a video
display terminal:

PRINT ESC + "[4mNAME:" + ESC + "[Onf
END

Output
NAME:

Note that in the previous example, m must be lowercase.

1.7 Expressions

BASIC expressions consist of operands (constants, variables, and functions)
separated by arithmetic, string, relational, and logical operators.

The following are types of BASIC expressions:
< Numeric expressions

= String expressions

= Conditional expressions

BASIC evaluates expressions according to operator precedence and uses the
results in program execution. Parentheses can be used to group operands and
operators, thus controlling the order of evaluation.

The following sections explain the types of expressions you can create and the
way BASIC evaluates expressions.

1.7.1 Numeric Expressions

Numeric expressions consist of floating-point, integer, or packed decimal
operands separated by arithmetic operators and optionally grouped by
parentheses. Table 1-7 shows how numeric operators work in numeric
expressions.

1-32 Program Elements and Structure

Table 1-7 Arithmetic Operators

Operator Example Use

+ A+B Add B to A

- A—B Subtract B from A

* A*B Multiply A by B

/ A/B Divide A by B

n A™B Raise A to the power B
*x A**B Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the same
expression. Exceptions are the unary plus and unary minus. The following
expressions are valid:

A* +B

A* - B

A* (-B)

A*+-+-B

The following expression is not valid:

A-*B

An operation on two numeric operands of the same data type yields a result of
that type. For example:

A% + B% Yields an integer value of the default type

G3 * M5 Yields a floating-point value if the default type is REAL

If the result of the operation exceeds the range of the data type, BASIC signals
an overflow error message.

The following example causes BASIC to signal the error “Integer error or
overflow” because the sum of A and B (254) exceeds the range of -128 to +127
for BYTE integers. Similar overflow errors occur for REAL and DECIMAL
data types whenever the result of a numeric operation is outside the range of
the corresponding data type.

DECLARE BYTE A, B
A =127

B = 127

PRINT A + B

END

Program Elements and Structure 1-33

It is possible to assign a value of one data type to a variable of a different data
type. When this occurs, the data type of the variable overrides the data type of
the assigned value. The following example assigns the value 32 to the integer
variable A% even though the floating-point value of the expression is 32.13:

A%=5.1%* 6.3

1.7.1.1 Floating-Point and Integer Promotion Rules
When an expression contains operands with different data types, the data type
of the result is determined by BASIC data type promotion rules:

= With one exception, BASIC promotes operands with different data types to
the lowest common data type that can hold the largest and most precise
possible value of either operand’s data type. BASIC then performs the
operation using that data type, and yields a result of that data type.

= The exception is that when an operation involves SINGLE and LONG
data types, BASIC promotes the LONG data type to SINGLE rather than
DOUBLE, performs the operation, and yields a result of the SINGLE data
type.
Note that BASIC performs sign extension when converting BYTE, WORD, and
LONG integers to a higher INTEGER data type (WORD, LONG, or QUAD).
The high order bit (the sign bit) determines how the additional bits are set
when the BYTE, WORD, or LONG is converted to WORD, LONG, or QUAD.
If the high order bit is zero (positive), all higher-order bits in the converted
integer are set to zero. If the high order bit is 1 (negative), all higher-order bits
in the converted integer are set to 1.

Data Type Results

Table 1-8 shows the data type of the result of an operation that combines
arguments of differing data types. BASIC first promotes, if necessary, the
arguments to the result data type, and then performs the operation.

1-34 Program Elements and Structure

Table 1-8 Result Data Types in Expressions

BYTE WORD LONG QUAD SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT

BYTE BYTE WRD LONG QUAD SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT
WRD WORD WORD LONG QUAD SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT
LONG LONG LONG LONG QUAD SINGLE DOUBLE GFLOAT TFLOAT TFLOAT XFLOAT
QUAD QUAD QUAD QUAD QUAD GFLOAT GFLOAT GFLOAT TFLOAT TFLOAT XFLOAT
SINGLE SINGLE SINGLE SINGLE GFLOAT SINGLE DOUBLE GFLOAT TFLOAT TFLOAT XFLOAT
DOUBLE DOUBLE DOUBLE DOUBLE GFLOAT DOUBLE DOUBLE GFLOAT TFLOAT TFLOAT XFLOAT
GFLOAT GFLOAT GFLOAT GFLOAT GFLOAT GFLOAT GFLOAT GFLOAT GFLOAT TFLOAT XFLOAT
SFLOAT SFLOAT SFLOAT TFLOAT TFLOAT TFLOAT TFLOAT GFLOAT SFLOAT TFLOAT XFLOAT
TFLOAT TFLOAT TFLOAT TFLOAT TFLOAT TFLOAT TFLOAT TFLOAT TFLOAT TFLOAT XFLOAT
XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT XFLOAT

1.7.1.2 DECIMAL Promotion Rules
BASIC allows the DECIMAL(d,s) data type. The number of digits (d) and the
scale or position of the decimal point (s) in the result of DECIMAL operations
depends on the data type of the other operand. If one operand is DECIMAL
and the other is DECIMAL or INTEGER, the d and s values of the result are
determined as follows:

= If both operands are typed DECIMAL, and if both operands have the same
digit (d) and scale (s) values, no conversions occur and the result of the
operation has exactly the same d and s values as the operands. Note,
however, that overflow can occur if the result exceeds the range specified
by the d value.

= If both operands are DECIMAL but have different digit and scale values,
BASIC uses the larger number of specified digits for the result.

In the following example, variable A allows three digits to the left of the
decimal point and two digits to the right. Variable B allows one digit to the
left of the decimal point and three digits to the right.

DECLARE DECI MAL(5,2) A
DECLARE DECI MAL(4,3) B

The result allows three digits to the left of the decimal point and three
digits to the right.

« If one operand is DECIMAL and one is INTEGER, the INTEGER value is
converted to a DECIMAL(d,s) data type as follows:

— BYTE is converted to DECIMAL(3,0).

Program Elements and Structure 1-35

— WORD is converted to DECIMAL(5,0).
— LONG is converted to DECIMAL(10,0).

— QUAD is converted to DECIMAL(19,0).

BASIC then determines the d and s values of the result by evaluating the
d and s values of the operands as described above.

Note that only INTEGER data types are converted to the DECIMAL data type.
If one operand is DECIMAL and one is floating-point, the DECIMAL value is
converted to a floating-point value. The total number of digits in (d) in the
DECIMAL value determines its new data type, as shown in Table 1-9.

If one argument is DECIMAL data type and one is a floating point data type,
the DECIMAL data type argument is first converted to a floating point data
type as follows in Table 1-9.

Table 1-9 Result Data Types for DECIMAL Data

Number
of

DECIMAL Floating-Point Operands

Digits
in
Operand SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT

1-6 SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT
7-15 DOUBLE DOUBLE GFLOAT TFLOAT TFLOAT XFLOAT
16 DOUBLE DOUBLE GFLOAT XFLOAT XFLOAT XFLOAT
17-31 GFLOAT GFLOAT GFLOAT XFLOAT XFLOAT XFLOAT

GFLOAT maintains up to 15 digits of precision. Mixing DECIMAL items
containing 16 or more bits with GFLOAT items may cause a loss of precision.

Operations performed on DOUBLE operands are performed in GFLOAT.
When the operation is complete, the GFLOAT result is converted to DOUBLE.
Therefore, it is possible to lose three binary digits of precision in arithmetic
operations using DOUBLE.

1-36 Program Elements and Structure

1.7.2 String Expressions

String expressions are string entities separated by a plus sign (+). When used
in a string expression, the plus sign concatenates strings. For example:

INPUT "Type two words to be conbined";A$, B$
C$ = AS + B$

PRINT C$

END

Output

Type two words to be conbined? |ong
? word
| ongwor d

1.7.3 Conditional Expressions

Conditional expressions can be either relational or logical expressions.
Numeric relational expressions compare numeric operands to determine
whether the expression is true or false. String relational expressions compare
string operands to determine which string expression occurs first in the ASCII
collating sequence.

Logical expressions contain integer operands and logical operators. BASIC
determines whether the specified logical expression is true or false by testing
the numeric result of the expression. Note that in conditional expressions,

as in any numeric expression, when BYTE, WORD, and LONG operands are
compared to WORD, LONG, and QUAD, the specified operation is performed
in the higher data type, and the result returned is also of the higher data
type. When one of the operands is a negative value, this conversion will
produce accurate but perhaps confusing results, because BASIC performs a
sign extension when converting BYTE and WORD integers to a higher integer
data type. See Section 1.7.1.1 for information about integer conversion rules.

1.7.3.1 Numeric Relational Expressions
Operators in numeric relational expressions compare the values of two
operands and return either -1 if the relation is true (as shown in Example
1), or zero if the relation is false (as shown in Example 2). The data type of the
result is the default integer type.

Program Elements and Structure 1-37

Example 1

A=10
B =15
X% = (A <> B)
IF X%=-1%

THEN PRINT "Rel ationship is true'
ELSE PRINT 'Rel ationship is fal se’

END | F
Output
Rel ationship is true

Example 2
A=10
B=15
X%=A=B8B
IF X%=-1%
THEN PRINT "Rel ationship is true'
ELSE
PRINT "Rel ationship is false’

END I F
Output
Rel ationship is false

Table 1-10 shows how relational operators work in numeric relational
expressions.

Table 1-10 Numeric Relational Operators

Operator Example Meaning

= A=B A is equal to B.

< A<B A is less than B.

> A>B A is greater than B.

<=or =< A<=B A is less than or equal to B.

>= or => A>=B A is greater than or equal to B.

<> or >< A<>B A is not equal to B.

== A== A and B will PRINT the same if they are equal to six

significant digits. However, if one value prints in explicit
notation and the other value prints in E format notation,
the relation will always be false.

1-38 Program Elements and Structure

1.7.3.2 String Relational Expressions

Operators in string relational expressions determine how BASIC compares
strings. BASIC determines the value of each character in the string by
converting it to its ASCII value. ASCII values are listed in Appendix A.
BASIC compares the strings character by character, left to right, until it finds
a difference in ASCII value.

In the following example, BASIC compares A$ and B$ character by character.
The strings are identical up to the third character. Because the ASCII value
of Z (90) is greater than the ASCII value of C (67), A$ is less than B$. BASIC
evaluates the expression A$ < B$ as true (-1) and prints “ABC comes before
ABZ".

A$ = " ABC
B$ = ' ABZ
IF A$ < B$
THEN PRINT " ABC cones before ABZ
ELSE I F A$ == B$
THEN PRINT ' The strings are identical’
ELSE IF A$ > BS$
THEN PRINT " ABC comes after ABZ
ELSE PRINT 'Strings are equal but not identical’
END | F
END | F
END | F
END

If two strings of differing lengths are identical up to the last character in the
shorter string, BASIC pads the shorter string with spaces (ASCII value 32) to
generate strings of equal length, unless the operator is the double equal sign
(==). If the operator is the double equal sign, BASIC does not pad the shorter
string.

In the following example, BASIC compares "ABCDE" to “ABC " to determine
which string comes first in the collating sequence. "ABC " appears before
“ABCDE" because the ASCII value for space (32) is lower than the ASCII value
of D (68). Then BASIC compares “ABC " with “ABC"” using the double equal
sign and determines that the strings do not match exactly without padding.
The third comparison uses the single equal sign. BASIC pads “ABC” with
spaces and determines that the two strings match with padding.

Program Elements and Structure 1-39

A$ = ' ABCDE
B$ = ' ABC

PRINT ' B$ cones before A$ |F B$ < A$
PRINT ’ A$ cones before B$ |F A$ < B$
C$ = "ABC'
IF B$ == C$

THEN PRINT ' B$ exactly matches C$’
ELSE PRINT ' B$ does not exactly match C§’
END | F
IF B$ = C$
THEN PRINT ' B$ matches C$ with padding’
ELSE PRINT 'B$ does not match C$'
END | F

Output

B$ comes before A$
B$ does not exactly match C$
B$ matches C$ with padding

Table 1-11 shows how relational operators work in string relational
expressions.

1-40 Program Elements and Structure

Table 1-11 String Relational Operators

Operator Example Meaning

= A$ = B$ Strings A$ and B$ are equal after the shorter string has
been padded with spaces to equal the length of the longer
string.

< A$ < B$ String A$ occurs before string B$ in ASCII sequence.

> A$ > B$ String A$ occurs after string B$ in ASCII sequence.

<=or =< A$ <= B$ String A$ is equal to or precedes string B$ in ASCII
sequence.

>=or => A$ >= B$ String A$ is equal to or follows string B$ in ASCII
sequence.

<> or >< A$ <> B$ String A$ is not equal to string B$.

A$ == B$ Strings A$ and B$ are identical in composition and
length, without padding.

1.7.3.3 Logical Expressions
A logical expression can have one of the following formats:

< A unary logical operator and one integer operand
= Two integer operands separated by a binary logical operator
= One integer operand

Logical expressions are valid only when the operands are integers. If the
expression contains two integer operands of differing data types, the resulting
integer has the same data type as the higher integer operand. For example,
the result of an expression that contains a BYTE integer and a WORD integer
would be a WORD integer. Table 1-12 lists the logical operators.

Program Elements and Structure 1-41

Table 1-12 Logical Operators

Operator Example Meaning

NOT NOT A% The bit-by-bit complement of A%. If A% is true (-1),
NOT A% is false (0).

AND A% AND B% The logical product of A% and B%. A% AND B% is true
only if both A% and B% are true.

OR A% OR B% The logical sum of A% and B%. A% OR B% is false only
if both A% and B% are false; otherwise, A% OR B% is
true.

XOR A% XOR B% The logical exclusive OR of A% and B%. A% XOR B% is
true if either A% or B% is true but not if both are true.

EQV A% EQV B% The logical equivalence of A% and B%. A% EQV B%

is true if A% and B% are both true or both false;
otherwise the value is false.

IMP A% IMP B% The logical implication of A% and B%. A% IMP B% is
false only if A% is true and B% is false; otherwise, the
value is true.

The truth tables in Figure 1-2 summarize the results of these logical
operations. Zero is false; —1 is true.

The operators XOR and EQV are logical complements.

BASIC determines whether the condition is true or false by testing the result
of the logical expression to see whether any bits are set. If no bits are set,
the value of the expression is zero and it is evaluated as false; if any bits are
set, the value of the expression is nonzero, and the expression is evaluated as
true. However, logical operators can return unanticipated results unless -1 is
specified for true values and zero for false.

In the following example, the values of A% and B% both test as true because
they are nonzero values. However, the logical AND of these two variables
returns an unanticipated result of false.

A% = 2%

B% = 4%

I F A% THEN PRINT * A% | S TRUE

| F B% THEN PRINT ' B% IS TRUE

I F A% AND B% THEN PRINT ' A% AND B% | S TRUE
ELSE PRINT " A% AND B% | S FALSE

END

1-42 Program Elements and Structure

Figure 1-2 Truth Tables

A% NOT A% A% B% A%OR B%
0 -1 0 0 0
-1 0 0 -1 -1

-1 0 -1

-1 -1 -1

A% B% A% AND B%| A% B% A% EQV B%

0 0 0 0 0 -1
0 -1 0 0 -1 0
-1 0 0 -1 0 0
-1 -1 -1 -1 -1 -1

A% B% A% XOR B%| A% B% A% IMP B%

0 0 0 0 0 -1

0 -1 -1 0 -1 -1

-1 0 -1 -1 0 0

-1 -1 0 -1 -1 -1

ZK-5548-GE

Output
A% 1S TRUE
B% IS TRUE

A% AND B% | S FALSE

The program returns this seemingly contradictory result because logical
operators work on the individual bits of the operands. The 8-bit binary
representation of 2% is as follows:

000O0O0O0CT1O0
The 8-bit binary representation of 4% is as follows:
000O0O0O11O0TO

Each value tests as true because it is nonzero. However, the AND operation on
these two values sets a bit in the result only if the corresponding bit is set in
both operands. Therefore, the result of the AND operation on 4% and 2% is as
follows:

Program Elements and Structure 1-43

000 0O0OTG OO
No bits are set in the result, so the value tests as false (zero).

If the value of B% is changed to 6%, the resulting value tests as true (nonzero)
because both 6% and 2% have the second bit set. Therefore, BASIC sets the
second bit in the result and the value tests as nonzero and true.

The 8-bit binary representation of —1 is as follows:
11111111

The result of —1% AND —1% is —1% because BASIC sets bits in the result for
each corresponding bit that is set in the operands. The result tests as true
because it is a nonzero value, as shown in the following example:

A% = --1%

B%=--1%

| F A% THEN PRINT 'A% | S TRUE

I'F B% THEN PRINT ' B% IS TRUE

[F A% AND B% THEN PRINT ' A% AND B% | S TRUE
ELSE PRINT " A% AND B% | S FALSE

END

Output

A% 1S TRUE
B% IS TRUE
A% AND B% | S TRUE

Your program may also return unanticipated results if you use the NOT
operator with a nonzero operand that is not —1.

In the following example, BASIC evaluates both A% and B% as true because
they are nonzero. NOT A% is evaluated as false (zero) because the binary
complement of —1 is zero. NOT B% is evaluated as true because the binary
complement of 2 has bits set and is therefore a nonzero value.

A% 1%
BY%2
| F A% THEN PRINT 'A% | S TRUE
ELSE PRINT 'A% | S FALSE
| F B% THEN PRINT 'B% IS TRUE
ELSE PRINT 'B% IS FALSE
| F NOT A% THEN PRINT 'NOT A% 1S TRUE
ELSE PRINT 'NOT A% |S FALSE
| F NOT B% THEN PRI NT 'NOT B% S TRUE
ELSE PRINT 'NOT B% |S FALSE
END

1-44 Program Elements and Structure

Output

A% IS TRUE

B% IS TRUE

NOT A% | S FALSE
NOT B% IS TRUE

1.7.4 Evaluating Expressions

BASIC evaluates expressions according to operator precedence. Each
arithmetic, relational, and string operator in an expression has a position

in the hierarchy of operators. The operator’s position informs BASIC of the
order in which to perform the operation. Parentheses can change the order of
precedence.

Table 1-13 lists all operators as BASIC evaluates them. Note the following:
= Operators with equal precedence are evaluated logically from left to right.

= BASIC evaluates expressions enclosed in parentheses first, even when
the operator in parentheses has a lower precedence than that outside the
parentheses.

Table 1-13 Numeric Operator Precedence

Operator Precedence

** op A
— (unary minus) or + (unary plus)
*or/

+or —

+ (concatenation)

all relational operators

NOT

AND

OR, XOR

IMP

EQV

© 0O N O o~ WN P

e
)

For example, BASIC evaluates the following expression in five steps:

Program Elements and Structure 1-45

A= 1502 + 1202 - (35 * §)

1. (35 *8) =280 Multiplication

2. 1572 = 225 Exponentiation (leftmost expression)
3. 1272 = 144 Exponentiation

4. 225 + 144 = 369 Addition

5. 369 — 280 = 89 Subtraction

There is one exception to this order of precedence: when an operator that does
not require operands on either side of it (such as NOT) immediately follows
an operator that does require operands on both sides (such as the addition
operator (+)), BASIC evaluates the second operator first. For example:

A%+ NOT B% + C%
This expression is evaluated as follows:
(A%+ (NOT B%) + C%

BASIC evaluates the expression NOT B before it evaluates the expression
A + NOT B. When the NOT expression does not follow the addition (+)
expression, the normal order of precedence is followed. For example:

NOT A% + B% + C%
This expression is evaluated as:
NOT ((A%+ BW + C%

BASIC evaluates the two expressions (A% + B%) and ((A% + B%) + C%)
because the + operator has a higher precedence than the NOT operator.

BASIC evaluates nested parenthetical expressions from the inside out.

In the following example, BASIC evaluates the parenthetical expression

A quite differently from expression B. For expression A, BASIC evaluates

the innermost parenthetical expression (25 + 5) first, then the second inner
expression (30 / 5), then (6 * 7), and finally (42 + 3). For expression B, BASIC
evaluates (5 / 5) first, then (1 * 7), then (25 + 7 + 3) to obtain a different value.
A= ((((25 +5) [/ 5) *7) +3)

PRINT A

B=25+5/5*7+3
PRINT B

Output

45
35

1-46 Program Elements and Structure

1.8 Program Documentation

Documentation within a program clarifies and explains source program
structure. These explanations, or comments, can be combined with code
to create a more readable program without affecting program execution.
Comments can appear in two forms:

e Comment fields (including empty statements)

e REM statements

1.8.1 Comment Fields

A comment field begins with an exclamation point (!) and ends with a carriage
return. You supply text after the exclamation point to document your program.
You can specify comment fields while creating BASIC programs at DCL level.
BASIC does not execute text in a comment field. Example 1-6 shows how to
specify a comment field.

Example 1-6 Specifying a Comment Field

I FOR loop to initialize list Q
FORI =1TO10

Q) =0! This is a coment
NEXT |
I List nowinitialized

BASIC executes only the FOR...NEXT loop. The comment fields, preceded by
exclamation points, are not executed.

Example 1-7 shows how you can use comment fields to help make your
program more readable and allow you to format your program into readily
visible logical blocks. Example 1-7 also shows how comment fields can be used
as target lines for GOTO and GOSUB statements.

Program Elements and Structure 1-47

Example 1-7 Using Comment Fields to Format a Program

| Square root program
|

INPUT * Enter a number’ DA
PRINT 'SQR of "; A "is '"; SQR(A)
!

I Mre square roots?

| NPUT "Type "Y" to continue, press RETURN to quit’; ANS$
GOTO 10 IF ANS$ = "Y"
|

END

You can also use an exclamation point to terminate a comment field, but
this practice is not recommended. You should make sure that there are no
exclamation points in the comment field itself; otherwise, BASIC treats the
text remaining on the line as source code.

Note

Comment fields in DATA statements are invalid; the compiler treats
the comments as additional data.

1.8.2 REM Statements

A REM statement begins with the REM keyword and ends when BASIC
encounters a new line number. The text you supply between the REM keyword
and the next line number documents your program. Like comment fields, REM
statements do not affect program execution. BASIC ignores all characters
between the keyword REM and the next line number. Therefore, the REM
statement can be continued without the ampersand continuation character and
should be the only statement on the line or the last of several statements in a
multistatement line. Example 1-8 shows the use of the REM statement.

1-48 Program Elements and Structure

Example 1-8 Using REM Statements in BASIC Programs
5 REMThis is an exanple

A=5
B=10
REM A equal s 5
B equal s 10
10 PRINT A B
Output
0 0

Note that because line 5 began with a REM statement, all the statements in
line 5 were ignored.

The REM statement is nonexecutable. When you transfer control to a REM
statement, BASIC executes the next executable statement that lexically follows
the referenced statement.

Note

Because BASIC treats all text between the REM statement and the
next line number as commentary, REM should be used very carefully in
programs that follow the implied continuation rules. REM statements
are disallowed in programs without line numbers.

In the following example, the conditional GOTO statement in line 20 transfers
program control to line 10. BASIC ignores the REM comment on line 10 and
continues program execution at line 20.

10 REM ** Square root program

20 INPUT 'Enter a nunber’;A
PRINT "SQR of "; A "is '; SQR(A)
INPUT ' Type "Y" to continue, press RETURN to quit’; ANS$
GOTO 10 |F ANS$ = "Y"

40 END

Program Elements and Structure 1-49

2

Compiler Directives

Compiler directives are instructions that cause HP BASIC to perform
certain operations as it translates the source program. This chapter describes
all of the compiler directives supported by HP BASIC. The directives are listed
and discussed alphabetically.

Compiler Directives 2-1

%ABORT

%ABORT

The %ABORT directive terminates program compilation and displays a fatal
error message that you can supply.

Format
%ABORT [str-lit]

Syntax Rules

None

Remarks

e Only a line number or a comment field can appear on the same physical
line as the %ABORT directive.

< HP BASIC stops the compilation and terminates the listing file as soon
as it encounters a %ABORT directive. An optional str-lit is displayed on
the terminal screen and in the compilation listing, if a listing has been
requested.

Example

% F 9%/ARI ANT = 2 9%HEN
%ABORT "Cannot conpile with variant 2"
%END % F

2-2 Compiler Directives

%CROSS

%CROSS

The %CROSS directive causes HP BASIC to begin or resume accumulating
cross-reference information for the listing file.

Format
%CROSS

Syntax Rules

None

Remarks

= Only a line number or a comment field can appear on the same physical
line as the %CROSS directive.

= The %CROSS directive has no effect unless you request both a listing file
and a cross-reference. For more information about listing file format, see
the HP BASIC for OpenVMS User Manual.

< When a cross-reference is requested, the HP BASIC compiler starts or
resumes accumulating cross-reference information immediately after
encountering the %CROSS directive.

Example

UCROSS

Compiler Directives 2-3

%DECLARED

%DECLARED

The %DECLARED directive is a built-in lexical function that allows you

to determine whether a lexical variable has been defined with the %LET
directive. If the lexical variable named in the %DECLARED function is defined
in a previous %LET directive, the %DECLARED function returns the value

-1. If the lexical variable is not defined in a previous %LET directive, the
%DECLARED function returns the value O.

Format
%DECLARED (lex-var)

Syntax Rules

= The %DECLARED function can appear only in a lexical expression.

= Lex-var is the name of a lexical variable. Lexical variables are always
LONG integers.

e Lex-var must be enclosed in parentheses.

Remarks

None

Example

I+
I Use the following code in % NCLUDE files
I which reference constants that may be already ! -
% F YOECLARED (9%'RUE_FALSE DEFINED) = 0
Y%HEN
DECLARE LONG CONSTANT True = -1, False = 0
YLET %RUE_FALSE %END % F

2-4 Compiler Directives

%DEFINE

%DEFINE

The %DEFINE directive lets you define a user-defined identifier as another
identifier or keyword.

Format

%DEFINE macro-id replacement-token

Syntax Rules

Remarks

Macro-id is a user identifier that follows the rules for BASIC identifiers. It
must not be a keyword or a compiler directive.

Replacement-token may be an identifier, a keyword, a compiler directive, a
literal constant, or an operator.

The "&" line continuation character may be used after the macro-id to
continue the %DEFINE directive on the next line.

The "\" statement separator cannot be used with the %DEFINE directive.

"I' comments and line numbers used with the %DEFINE directive behave
in the same manner as they do with other compiler directives.

The replacement-token is substituted for every subsequent occurrence of
the macro identifier in the program text.

Macro-identifiers in REM or "I" comments, string literals, or DATA
statements are not replaced.

A macro-id cannot be used as a line number.

A macro definition is in effect from the %DEFINE directive that defines
it until either a corresponding %UNDEFINE directive or the end of the
source module is encountered. This applies to any included code that
occurs after the definition.

A previously defined macro identifier may be redefined by using the
%DEFINE directive.

Compiler Directives 2-5

%DEFINE

= A previously defined macro may be canceled by using the %UNDEFINE
directive.

< Macros may not be nested. For example, if the replacement-token is an
identifier that is defined by itself or some other %DEFINE directive, it is
not replaced.

< Macro-identifiers are not known to the Debugger.

< The %DEFINE directive can be used within conditionally compiled code.

Example

9DEFI NE wi dget LONG
DECLARE wi dget X

X=3.75

PRINT "X squared :"; X*X
Output

X squared : 9

2-6 Compiler Directives

%IDENT

%IDENT

The %IDENT directive lets you identify the version of a program module. The
identification text is placed in the object module and printed in the listing
header.

Format
%IDENT str-lit

Syntax Rules

Str-lit is the identification text. Str-lit can consist of up to 31 ASCII characters.
If it has more than 31 characters, HP BASIC truncates the extra characters
and signals a warning message.

Remarks

= Only a line number or a comment field can appear on the same physical
line as the %IDENT directive.

= The HP BASIC compiler inserts the identification text in the first 31
character positions of the second line on each listing page. HP BASIC also
includes the identification text in the object module, if the compilation
produces one, and in the map file created by the OpenVMS Linker.

e The %IDENT directive should appear at the beginning of your program if
you want the identification text to appear on the first page of your listing.
If the %IDENT directive appears after the first program statement, the
text will appear on the next page of the listing file.

< You can use the %IDENT directive only once in a module. If you specify
more than one %IDENT directive in a module, HP BASIC signals a
warning and uses the identification text specified in the first directive.

= No default identification text is provided.

Compiler Directives 2-7

%IDENT

Example

9% DENT "Version 10"

Output

TI MESMAI N
Version 10

1 10 % DENT "Version 10"

2-8 Compiler Directives

%IF-%THEN-%ELSE-%END %lIF

%IF-%THEN-%ELSE-%END %lF

The %IF-%THEN-%ELSE-%END %IF directive lets you conditionally include
source code or execute another compiler directive.

Format

%IF lex-exp %THEN code [%ELSE code] %END %IF

Syntax Rules

Remarks

Lex-exp is always a LONG integer.

Lex-exp can be any of the following:

— A lexical constant named in a %LET directive.

— An integer literal, with or without the percent sign suffix.
— A lexical built-in function.

— Any combination of the above, separated by valid lexical operators.
Lexical operators include logical operators, relational operators, and
the arithmetic operators for addition (+), subtraction (-), multiplication
(*), and division (/).

Code is HP BASIC program code. It can be any HP BASIC statement or
another compiler directive, including another %IF directive. You can nest
%IF directives to eight levels.

The %IF directive can appear anywhere in a program where a space is
allowed, except within a quoted string. This means that you can use the
%IF directive to make a whole statement, part of a statement, or a block of
statements conditional.

%THEN, %ELSE, and %END %IF do not have to be on the same physical
line as %IF.

Compiler Directives 2-9

%IF-%THEN-%ELSE-%END %lF

= If lex-exp is true, HP BASIC processes the %THEN clause. If lex-exp is
false, HP BASIC processes the %ELSE clause. If there is no %ELSE
clause, HP BASIC processes the %END %IF clause. The HP BASIC
compiler includes statements in the %THEN or %ELSE clause in the
source program and executes directives in order of occurrence.

= You must include the %END %IF clause. Otherwise, HP BASIC assumes
the remainder of the program is part of the last % THEN or %ELSE
clause and signals the error “MISENDIF, missing END IF directive” when
compilation ends.

Example

%WF (WAR ANT = 2)

9HEN DECLARE SI NGLE hourly_pay(100)

%ELSE % F (%/ARI ANT = 1)
9HEN DECLARE DOUBLE sal ary_pay(100)
YELSE %ABORT "Can't conpile with specified variant"
Y%END % F

%END % F

PRINT % F (%/ARI ANT = 2)
OTHEN ' Hourly Wage Chart’
GOTO Hourly_routine
%ELSE ' Sal aried Wage Chart’
GOTO Sal ary_routine
Y%END % F

2-10 Compiler Directives

%INCLUDE

%INCLUDE

The %INCLUDE directive lets you include HP BASIC source text from another
program file in the current program compilation. HP BASIC also lets you
access Oracle CDD/Repository record definitions from the Common Data
Dictionary (CDD) and access commonly used routines from text libraries.

Format
Including a File
%INCLUDE str-lit
Including a CDD Definition
%INCLUDE %FROM %CDD str-lit

Including a File from a Text Library
%INCLUDE str-lit %FROM %LIBRARY [str-lit]

Syntax Rules

e Including a File
Str-lit must be a valid file specification for the file to be included.

e Including a CDD Definition
Str-lit specifies a CDD path name enclosed in quotation marks. The path
name can be in either DMU or CDO format. This directive lets you extract
a RECORD definition from the dictionary.

= Including a File from a Text Library
— Str-lit specifies a particular module to be included.

— The optional str-lit identifies a specific text library in which the
included module resides. If the library name is not specified,
BASIC uses the logical name BASIC$LIBRARY with a default file
specification of BASIC.TLB. If BASIC$LIBRARY is undefined, BASIC
uses SYSSLIBRARY:BASIC$STARLET.TLB.

Compiler Directives 2-11

%INCLUDE

Remarks

Any statement that appears after an END statement inside an included
file causes HP BASIC to signal an error.

Only a line number or a comment field can appear on the same physical
line as the %INCLUDE directive.

The HP BASIC compiler includes the specified source file in the program
compilation at the point of the %INCLUDE directive and prints the
included code in the program listing file if the compilation produces one.

The included file cannot contain line numbers. If it does, HP BASIC
signals the error “Line number may not appear in %INCLUDE file.”

All statements in the accessed file are associated with the line number of
the program line that contains the %INCLUDE directive. This means that
a %INCLUDE directive cannot appear before the first line number in a
source program if you are using line numbers.

A file accessed by %INCLUDE can itself contain a %INCLUDE directive.

All %IF directives in an included file must have a matching %END %IF
directive in the file.

You can control whether or not included text appears in the compilation
listing with the /[NO]JSHOW=INCLUDE qualifier. When you specify
/SHOW=INCLUDE, the compilation listing file identifies any text obtained
from an included file by placing a mnemonic in the first character position
of the line on which the text appears. The “n” specifies that the text was
either accessed from a source file or from a text library. The “I” tells

you that the text was accessed with the %INCLUDE directive and n is

a number that tells you the nesting level of the included text. See the
HP BASIC for OpenVMS User Manual for more information about listing
mnemonics.

Including a File

If you do not specify a complete file specification, HP BASIC uses the
default device and directory and the file type .BAS.

Including a CDD Definition

— There are two types of CDD path names: full and relative. A full path
name begins with CDD$TOP and specifies the complete path to the
record definition. A relative path name begins with any string other
than CDDS$TOP and is appended to the current CDD$DEFAULT.

2-12 Compiler Directives

%INCLUDE

In Oracle CDD/Repository, the path names described previously are
known as DMU path names, as distinct from CDO path names. You
can specify either a full DMU path name, a full CDO path name, or
a relative path name. A full path name consists of a dictionary origin
followed by a dictionary path. A full DMU path name has CDD$TOP
as its origin. A full CDO path name has an anchor as its origin. See
Oracle CDD/Repository documentation for detailed information about
path names.

If the record definition being accessed is in a CDO-format dictionary,
you can create a dependency relationship in the dictionary between a
dictionary representation of your program and the record definitions
that you include in the program. The dictionary representation of the
program is called a compiled module entity.

If you specify the /DEPENDENCY_DATA qualifier to the compiler and
your CDD$DEFAULT points to a CDO-format dictionary, a compiled
module entity is created for each compilation unit at compile time

in CDD$DEFAULT. No compiled module entity is created if both
conditions are not true.

If a compiled module entity exists for the program, an %INCLUDE
%FROM %CDD directive specifying a record description in a CDO-
format dictionary creates a relationship between the compiled module
entity and the CDO-format record definition.

If the record description specified in the path name exists, it is copied
to the program, whether a compiled module entity can be created or
not.

When you use the %INCLUDE directive to extract a record definition
from the CDD, HP BASIC translates the CDD definition to the syntax
of the HP BASIC RECORD statement.

You can use the /SHOW=CDD_DEFINITIONS qualifier to specify
that translated CDD definitions (in RECORD statement syntax) are
included in the compilation listing file. HP BASIC places a “C” in
column 1 when the translated RECORD statement appears in the
listing file.

When you specify /ISHOW=NOCDD_DEFINITIONS, HP BASIC does
not include the CDD definition in the listing file. However, BASIC
still includes the names, data types, and offsets of the CDD record
components in the program listing’s allocation map.

Compiler Directives 2-13

%INCLUDE

— See the HP BASIC for OpenVMS User Manual and the Oracle
CDD/Repository documentation for more information about dictionary
data definitions.

= Including a File from a Text Library

— The HP BASIC compiler searches through the specified text library
for the module named and compiles the module upon encountering the
%INCLUDE directive.

— HP BASIC allows only 16 text libraries to be opened at one time;
therefore, you cannot have %INCLUDE directives from a text library
nested more than 16 levels deep. If you exceed this maximum, HP
BASIC signals an error message.

— If you do not specify a directory name and file type, HP BASIC uses the
default device and directory and the file type .TLB.

— HP BASIC provides the text library BASIC$STARLET. BASIC$STARLET
contains condition codes and other symbols defined in the system
object and shareable image libraries. Using the definitions from
BASICS$STARLET allows you to reference condition codes and other
system-defined symbols as local, rather than global symbols. To create
your own text libraries using the OpenVMS Librarian utility, see the
HP OpenVMS Command Definition, Librarian, and Message Utilities
Manual.

Examples

Example 1

II'ncluding a File
9% NCLUDE " YESNO'

Example 2

I'l'ncluding a CDD Definition
9% NCLUDE 9%ROM %CDD " CDD$TOP. EMPLOYEE"

Example 3

I'I'ncluding a COD Definition with a CDO-format path nanme
9% NCLUDE %ROM %CDD " MYNODE: : MY$DI SK: [MY_DI R] PERSONNEL. EMPLOYEE"
I The anchor is MYNODE: : MY$DI SK: [MW_DIR]

Example 4

'I'ncluding a File froma Text Library
9% NCLUDE "EOF_CHECK" %FROM 9.1 BRARY " SYS$LI BRARY: BASI C LI B. TLB"

2-14 Compiler Directives

%LET

%LET

The %LET directive declares and provides values for lexical variables. You
can use lexical variables only in conditional expressions in the %IF-%THEN-
%ELSE directive and in lexical expressions in subsequent %LET directives.

Format

%LET %lex-var = lex-exp

Syntax Rules

Remarks

Lex-var is the name of a lexical variable. Lexical variables are always
LONG integers.

Lex-var must be preceded by a percent sign (%) and cannot end with a
dollar sign ($) or percent sign.

Lex-exp can be any of the following:

— A lexical variable named in a previous %LET directive.

— An integer literal, with or without the percent sign suffix.
— A lexical built-in function.

— Any combination of the above, separated by valid lexical operators.
Lexical operators can be logical operators, relational operators, and the
arithmetic operators for addition (+), subtraction (-), multiplication
(*), and division (/).

Only a line number or a comment field can appear on the same physical
line as the %LET directive.

You cannot change the value of lex-var within a program unit once it has
been named in a %LET directive. For more information about coding
conventions, see the HP BASIC for OpenVMS User Manual.

Compiler Directives 2-15

%LET

Example

YLET Y%DEBUG ON = 1%

2-16 Compiler Directives

%LIST

%LIST

The %LIST directive causes the HP BASIC compiler to start or resume
accumulating compilation information for the program listing file.

Format
%LIST

Syntax Rules

None

Remarks

= Only a line number or a comment field can appear on the same physical
line as the %LIST directive.

e The %LIST directive has no effect unless you requested a listing file. For
more information about listing file format, see the HP BASIC for OpenVMS
User Manual.

= As soon as it encounters the %LIST directive, the HP BASIC compiler
starts or resumes accumulating information for the program listing file.
Thus, the directive itself appears as the next line in the listing file.

Example

ol ST

Compiler Directives 2-17

%NOCROSS

%NOCROSS

The %NOCROSS directive causes the HP BASIC compiler to stop accumulating
cross-reference information for the program listing file.

Format
%NOCROSS

Syntax Rules

None

Remarks

e Only a line number or a comment field can appear on the same physical
line as the %NOCROSS directive.

= The HP BASIC compiler stops accumulating cross-reference information for
the program listing file immediately after encountering the %NOCROSS
directive.

e The %NOCROSS directive has no effect unless you request a listing file
and cross-reference information.

= It is recommended that you do not embed a %NOCROSS directive within a
statement. Embedding a %NOCROSS directive within a statement makes
the accumulation of cross-reference information unpredictable. For more
information about listing file format, see the HP BASIC for OpenVMS User
Manual.

Example

9YNOCRCSS

2-18 Compiler Directives

%NOLIST

%NOLIST

The %NOLIST directive causes the HP BASIC compiler to stop accumulating
compilation information for the program listing file.

Format
%NOLIST

Syntax Rules

None

Remarks

= Only a line number or a comment field can appear on the same physical
line as the %NOLIST directive.

= As soon as it encounters the %NOLIST directive, the HP BASIC compiler
stops accumulating information for the program listing file. Thus, the
directive itself does not appear in the listing file.

= The %NOLIST directive has no effect unless you requested a listing file.

= In HP BASIC, you can override all %NOLIST directives in a program with
the /SHOW=0OVERRIDE qualifier. For more information about listing file
format, see the HP BASIC for OpenVMS User Manual.

Example

OMNCLI ST

Compiler Directives 2-19

%PAGE

%PAGE

The %PAGE directive causes HP BASIC to begin a new page in the program
listing file.

Format
%PAGE

Syntax Rules

None

Remarks

e Only a line number or a comment field can appear on the same physical
line as the %PAGE directive.

= The %PAGE directive has no effect unless you request a listing file.

Example

UPAGE

2-20 Compiler Directives

%PRINT

%PRINT

The %PRINT directive lets you insert a message into your source code that the
HP BASIC compiler prints during compilation.

Format
%PRINT str-lit

Syntax Rules

None

Remarks

= Only a line number or a comment field can appear on the same physical
line as the %PRINT directive.

< HP BASIC will print the message specified as soon as it encounters a
%PRINT directive. Str-lit is displayed on the terminal screen and in the
compilation listing.

Example

% F 9OEBUG = 1% %THEN
YPRINT "This is a debug conpilation"

Output
YBASI C- S- USERPRINT, This is a debug conpilation

Compiler Directives 2-21

%REPORT

%REPORT

The %REPORT directive lets you record a dependency relationship between
the compiled module entity for your program and the data definitions in Oracle
CDD/Repository dictionaries. The data definitions are not copied into the
program.

Format
%REPORT %DEPENDENCY str-lit [relationship-type]

Syntax Rules

= Str-lit specifies a path name in a CDO-format dictionary. It can be either a
DMU-format path name or a CDO-format path name, enclosed in quotation
marks. This specifies a dictionary entity, such as a form definition or an
Rdb/VMS database, that the program references.

= Relationship-type specifies a valid Oracle CDD/Repository protocol; it must
be enclosed in quotation marks if specified. The default relationship-type is
CDD$COMPILED_DEPENDS_ON.

Remarks

= For this directive to be meaningful, you must specify the /DEPENDENCY _
DATA qualifier at compile time. If /DEPENDENCY is not specified, the
compiler will simply check the syntax and otherwise ignore the %REPORT
directive.

= Your current CDD$DEFAULT and str-lit must refer to CDO-format
dictionaries (not necessarily the same one).

< If you specify the /DEPENDENCY_DATA qualifier to the compiler, and if
CDD$DEFAULT points to a CDO-format dictionary, a compiled module
entity is created in CDD$DEFAULT for each compilation unit. No compiled
module entity is created if both conditions are not true.

e The %WREPORT %DEPENDENCY directive creates a dependency
relationship in the dictionary between the compiled module entity for
the program and the CDO-format dictionary entity to which it refers.

2-22 Compiler Directives

%REPORT

Example

IEstablish access to the formPINK SLIP in a dictionary

lon a specified node, and report the progranm s dependency
'relationship with the form

YREPORT %DEPENDENCY " MYNCDE: : MY$DI SK: [MYDI R PERSONNEL. FCRVS. PI NK_SLI P
I'Rel ationship is COD$COWPI LED_DEPENDS_ON, the defaul t.

Compiler Directives 2-23

%SBTTL

%SBTTL
The %SBTTL directive lets you specify a subtitle for the program listing file.

Format
%SBTTL str-lit

Syntax Rules

Str-lit can contain up to 31 characters.

Remarks

< HP BASIC truncates extra characters from str-lit and does not signal a
warning or error. Str-lit is truncated at 31 characters.

e Only a line number or a comment field can appear on the same physical
line as the %SBTTL directive.

= The specified subtitle appears underneath the title on the second line of
all pages of source code in the listing file until the HP BASIC compiler
encounters another %SBTTL or %TITLE directive. HP BASIC clears the
subtitle field before the allocation map section of the listing is generated.
This way, you only get a subtitle on the listing pages that contain source
code.

= Because HP BASIC associates a subtitle with a title, a new %TITLE
directive sets the current subtitle to the null string. In this case, no
subtitle appears in the listing until HP BASIC encounters another
%SBTTL directive.

< If you want a subtitle to appear on the first page of your listing, the
%SBTTL directive should appear at the beginning of your program,
immediately after the %TITLE directive. Otherwise, the subtitle will start
to appear only on the second page of the listing.

= If you want the subtitle to appear on the page of the listing that contains
the %SBTTL directive, the %SBTTL directive should immediately follow a
%PAGE directive or a % TITLE directive that follows a %PAGE directive.

e The %SBTTL directive has no effect unless you request a listing file.

2-24 Compiler Directives

Example

100

200

300
Output
TESTSMAI

Ao

10
11

%SBTTL

9%l TLE "Learning to Programin HP BASIC'
USBTTL "Usi ng FOR- NEXT Loops"

REM TH'S PROGRAM IS A SI MPLE TEST
DATA 1, 2, 3, 4

NEXT | %

END

N
100
200
300

Learning to Programin HP BASIC
Usi ng FOR- NEXT Loops

%1 TLE "Learning to Programin HP BASIC'
YBBTTL "Usi ng FOR-NEXT Loops"

REM TH' S PROGRAM IS A SI MPLE TEST

DATA 1, 2, 3, 4

NEXT | %
END

Compiler Directives 2-25

%TITLE

%TITLE

The %TITLE directive lets you specify a title for the program listing file.

Format
%TITLE str-lit

Syntax Rules

Str-lit can contain up to 31 characters.

Remarks

< HP BASIC truncates extra characters from str-lit and does not signal a
warning or error. Str-lit is truncated at 31 characters.

e Only a line number or a comment field can appear on the same physical
line as the %TITLE directive.

= The specified title appears on the first line of every page of the listing file
until HP BASIC encounters another %TITLE directive in the program.

e The %TITLE directive should appear on the first line of your program,
before the first statement, if you want the specified title to appear on the
first page of your listing.

- If you want the specified title to appear on the page that contains the
%TITLE directive, the %TITLE directive should immediately follow a
%PAGE directive.

< Because HP BASIC associates a subtitle with a title, a new %TITLE
directive sets the current subtitle to the null string.

e The %TITLE directive has no effect unless you request a listing file.

2-26 Compiler Directives

Example

100 %l TLE "Learning t
REM TH' S PROGRAM |

%TITLE

0 Programin HP BASIC'
S A SIMPLE TEST

200 DATAL, 2, 3, 4

NEXT | %
300 END
Output
TESTSMAI N
1 100
2
3
4 200
10
11 300

Learning to Programin HP BASIC

%1 TLE "Learning to Programin HP BASIC'
YBBTTL "Usi ng FOR-NEXT Loops"

REM TH' S PROGRAM IS A SI MPLE TEST

DATA 1, 2, 3, 4

NEXT | %
END

Compiler Directives 2-27

%UNDEFINE

%UNDEFINE

The %UNDEFINE directive causes HP BASIC to undefine an identifier that
was previously defined with the %DEFINE directive.

Format
%UNDEFINE macro-id

Syntax Rules

Macro-id is a user identifier that follows the rules for a BASIC identifier.

Remarks

e The %UNDEFINE directive cancels a previous definition of macro-id by a
%DEFINE.

= The %UNDEFINE directive may appear with included code and will cancel
the definition of an identifier that was previously defined.

Example
G = 6%
PRINT "G ="; G

YOEFI NE G "anyt hi ng"
PRINT "G="; G
YUNDEFI NE G

PRINT "G ="; G

Output

G=6
G = anything
G=6

2-28 Compiler Directives

%VARIANT

%VARIANT

The %VARIANT directive is a built-in lexical function that allows you to
conditionally control program compilation. %VARIANT returns an integer
value when you reference it in a lexical expression. You set the variant value
with the /VARIANT qualifier when you compile the program or with the
SET VARIANT command. If the /VARIANT qualifier or the SET VARIANT
command is not used, the value of %VARIANT is 0.

Format
%VARIANT

Syntax Rules

None

Remarks

e The %VARIANT function can appear only in a lexical expression.

= The %VARIANT function returns the integer value specified either with
the COMPILE /VARIANT command, the SET /VARIANT command, or the
BASIC DCL command. The returned integer always has a data type of
LONG.

Example

WET %NS = 0

%ET 9RSX = 1

ET URSTS = 2

% F %WAR ANT = %/NS
YTHEN

Compiler Directives 2-29

%VARIANT

YELSE % F %/ARI ANT = 9%RSX OR %W/ARI ANT = URSTS
Y%THEN

YELSE %ABORT "Il egal conpilation variant"
%END % F

%END % F

2-30 Compiler Directives

3

Statements and Functions

This chapter provides reference material on all of the HP BASIC statements
and functions.

The statements and functions are listed in alphabetical order and each
description contains the following format:

Definition A description of what the statement does.

Format The required syntax for the statement.

Syntax Rules Any rules governing the use of parameters, separators, or other
syntax items.

Remarks Explanatory remarks concerning the effect of the statement on
program execution and any restrictions governing its use.
Example One or more examples of the statement in a BASIC program. Where

appropriate, sample output is also shown.

Statements and Functions 3-1

ABS

ABS

The ABS function returns a floating-point number that equals the absolute
value of a specified floating-point expression.

Format

real-var = ABS (real-exp)

Syntax Rules

None

Remarks

= The argument of the ABS function must be a real expression. When the
argument is a real expression, HP BASIC returns a value of the same
floating-point size. When the argument is not a real expression, HP BASIC
converts the argument to the default floating-point size and returns a value
of the default floating-point size.

< The returned floating-point value is always greater than or equal to zero.
The absolute value of 0 is zero. The absolute value of a positive number
equals that number. The absolute value of a negative number equals that
number multiplied by -1.

Example

G = 5.1273

A = ABS(-100 * Q
B=-39

PRINT ABS(B), A
Output

39 512.73

3-2 Statements and Functions

ABS%

ABS%

The ABS% function returns an integer that equals the absolute value of a
specified integer expression.

Format
int-var = ABS% (int-exp)

Syntax Rules

None

Remarks

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer.

= The returned value is always greater than or equal to zero. The absolute
value of 0 is zero. The absolute value of a positive number equals that
number. The absolute value of a negative number equals that number
multiplied by —1.

Example
Gl = 5.1273
A = ABS%{-100% * G4
B=-39
PRINT ABS%B), A
Output
39 500

Statements and Functions 3-3

ASCII

ASCII

The ASCII function returns the ASCII value in decimal of a string’s first
character.

Format

int-var = { ﬁgg“ } (str-exp)

Syntax Rules

None

Remarks

= The ASCII value of a null string is zero.
e The ASCII function returns an integer value of the default size from 0 to
255,

Example

DECLARE STRING ti me_out
time_out = "Friday"
PRINT ASCI I (time_out)

Output
70

3-4 Statements and Functions

ATN

ATN

The ATN function returns the arctangent (that is, angular value) of a specified
tangent in radians or degrees.

Format

real-var = ATN (real-exp)

Syntax Rules

None

Remarks

= The returned angle is expressed in radians or degrees, depending on which
angle clause you choose with the OPTION statement.

= ATN returns a value from —P1/2 to P1/2 when you request the result in
radians via the OPTION statement. It returns a value from —90 to 90
when you request the result in degrees.

= The argument of the ATN function must be a real expression. When the
argument is a real expression, HP BASIC returns a value of the same
floating-point size. When the argument is not a real expression, HP BASIC
converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Example

OPTI ON ANGLE = RADI ANS

DECLARE SINGLE angle rad, angle deg, T

I NPUT "Tangent value";T

angle_rad = ATN(T)

PRINT "The smallest angle with that tangent is" ;angle_rad; "radians"
angl e_deg = angl e rad/(PI/180)

PRINT "and"; angle_deg; "degrees"

Statements and Functions 3-5

ATN

Output

Tangent val ue? 2
The smallest angle with that tangent is 1.10715 radians
and 63. 435 degrees

3-6 Statements and Functions

BUFSIZ

BUFSIZ

The BUFSIZ function returns the record buffer size, in bytes, of a specified
channel.

Format
int-var = BUFSIZ (chnl-exp)

Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number.

= The value assigned to int-var is a LONG integer.

Remarks

= If the specified channel is closed, BUFSIZ returns a value of zero.

= BUFSIZ of channel #0 always returns the value 132.

Example

DECLARE LONG buffer_size

buffer_size = BUFSI Z(0)

PRINT "Buffer size equal s";buffer_size
Output

Buf fer size equals 132

Statements and Functions 3-7

CALL

CALL

The CALL statement transfers control to a subprogram, external function,
or other callable routine. You can pass arguments to the routine and can
optionally specify passing mechanisms. When the called routine finishes
executing, control returns to the calling program.

Format

CALL routine [pass-mech] [(actual-param ,...)]

routine: { sub-name }
' any-callable-routine
BY VALUE
pass-mech: { BY REF }
BY DESC

actual-param: { g)r(rgy (L) }[pass-mech]

Syntax Rules

= Routine is the name of a SUB subprogram or any other callable procedure,
such as a system service or an RTL routine you want to call. It cannot
be a variable name. See the HP BASIC for OpenVMS User Manual for
more information about using system services, RTL routines, and other
procedures.

= You should use parameter-passing mechanisms only when calling non
BASIC routines or when a subprogram expects to receive a string or entire
array by reference.

For more information about parameter-passing mechanisms, see the HP
BASIC for OpenVMS User Manual.

< When pass-mech appears before the parameter list, it applies to all
arguments passed to the called routine. You can override this passing
mechanism by specifying a pass-mech for individual arguments in the
actual-param list.

3-8 Statements and Functions

Remarks

CALL

Actual-param lists the arguments to be passed to the called routine.

You can pass expressions or entire arrays. Optional commas in parentheses
after the array name specify the dimensions of the array. The number of
commas is equal to the number of dimensions —1. Thus, no comma specifies
a one-dimensional array, one comma specifies a two-dimensional array, two
commas specify a three-dimensional array, and so on.

You cannot pass entire virtual arrays.

The name of the routine can be from 1 to 31 characters and must conform
to the following rules:

— The first character of an unquoted name must be an alphabetic
character (A to Z). The remaining characters, if present, can be any
combination of letters, digits (0 to 9), dollar signs ($), periods (.), or
underscores (_).

— A quoted name can consist of any combination of printable ASCII
characters.

HP BASIC allows you to pass up to 255 parameters.

You can specify a null argument as an actual-param for non BASIC
routines by omitting the argument and the pass-mech, but not the commas
or parentheses. This forces HP BASIC to pass a null argument and allows
you to access system routines from HP BASIC.

Arguments in the actual-param list must agree in data type and number
with the formal parameters specified in the subprogram.

An argument is modifiable when changes to it are evident in the calling
program. Changing a modifiable parameter in a subprogram means the
parameter is changed for the calling program as well. Variables and entire
arrays passed by descriptor or by reference are modifiable.

An argument is nonmodifiable when changes to it are not evident in the
calling program. Changing a nonmodifiable argument in a subprogram
does not affect the value of that argument in the calling program.
Arguments passed by value, constants, and expressions are nonmodifiable.
Passing an argument as an expression (by placing it in parentheses)
changes it from a modifiable to a nonmodifiable argument. Virtual array
elements passed as parameters are nonmodifiable.

Statements and Functions 3-9

CALL

Example

HP BASIC will automatically convert numeric actual parameters to match
the declared data type. If the actual parameter is a variable, HP BASIC
signals the informational message “Mode for parameter <n> of routine
<name> changed to match declaration” and passes the argument by local
copy. This prevents the called routine from modifying the contents of the
variable.

For expressions and virtual array elements passed by reference, HP BASIC
makes a local copy of the value, and passes the address of this local copy.
For dynamic string arrays, HP BASIC passes a descriptor of the array

of string descriptors. The compiler passes the address of the argument’s
actual value for all other arguments passed by reference.

You can pass BYTE, WORD, LONG, QUAD, DOUBLE, GFLOAT, SINGLE,
SFLOAT, and TFLOAT values by value.

If you attempt to call an external function, HP BASIC treats the function
as if it were invoked normally and validates all parameters. Note that you
cannot call a STRING, HFLOAT, or RFA function. See the EXTERNAL
statement for more information about how to invoke functions.

EXTERNAL SUB LI B$PUT_QUTPUT (string)
DECLARE STRING nmsg_str

meg

str = "Successful call to LIB$PUT_QUTPUT!"

CALL LI B$PUT_QUTPUT (nsg_str)
Output
Successful call to LIB$SPUT_QUTPUT!

3-10 Statements and Functions

CAUSE ERROR

CAUSE ERROR

The CAUSE ERROR statement allows you to artificially generate an HP
BASIC run-time error and transfer program control to an HP BASIC error
handler.

Format
CAUSE ERROR err-num

Syntax Rules

Err-num should be a valid HP BASIC run-time error number.

Remarks

All error numbers are listed in the HP BASIC for OpenVMS User Manual.
Any error outside the valid range of BASIC Run-Time Library errors results in
the following error message: “NOTBASIC, Not a BASIC error’ (ERR=194).

Example

VWHEN ERROR IN

CAUSE ERROR 11%

USE
SELECT ERR
CASE = 11
PRINT "End of file"
CONTI NUE
CASE ELSE
EXI T HANDLER
END SELECT
END WHEN

Statements and Functions 3-11

CCPOS

CCPOS

The CCPOS function returns the current character or cursor position of the
output record on a specified channel.

Format
int-var = CCPOS (chnl-exp)

Syntax Rules

Chnl-exp must specify an open file or terminal.

Remarks

= If chnl-exp is zero, CCPOS returns the current character position of the
controlling terminal.

= The int-var returned by the CCPOS function is of the default integer size.

e The CCPOS function counts only characters. If you use cursor addressing
sequences such as escape sequences, the value returned will not be the
cursor position.

= The first character position on a line is zero.

Example

DECLARE LONG curs_pos
PRINT "Hel | 0";
curs_pos = CCPCS (0)
PRINT curs_pos
Output

Hello 5

3-12 Statements and Functions

CHAIN

CHAIN

The CHAIN statement transfers control from the current program to another
executable image. CHAIN closes all files, then requests that the new program
begin execution. Control does not return to the original program when the new
image finishes executing.

Note

The CHAIN statement is not recommended for new program
development. It is recommended that you use subprograms and
external functions for program segmentation.

Format
CHAIN str-exp

Syntax Rules

Str-exp represents the file specification of the program to which control is
passed.

Remarks

= Str-exp must refer to an executable image or HP BASIC signals an error.
< If you do not specify a file type, HP BASIC searches for an .EXE file type.
=< You cannot chain to a program on another node.

= Execution starts at the beginning of the specified program.

= Before chaining takes place, all active output buffers are written, all open
files are closed, and all storage is released.

Statements and Functions 3-13

CHAIN

= Because a CHAIN statement passes control from the executing
image, the values of any program variables are lost. This means that
you can pass parameters to a chained program only by using files
or a system-specific feature such as LIB$GET_COMMON and
LIBSPUT_COMMON.

Example

DECLARE STRING tine_out
tinme_out = "Friday"
PRINT ASCII(time_out)
CHAI'N " CCPOS"

Output

70
The current cursor position is 0

In this example, the executing image ASCII.EXE passes control to the chained
program, CCPOS.EXE. The value that results from ASCII.EXE is 70. The
second line of output reflects the value that results from CCPOS.EXE.

3-14 Statements and Functions

CHANGE

CHANGE

The CHANGE statement either converts a string of characters to their ASCI|I
integer values or converts a list of numbers to a string of ASCII characters.

Format

String Variable to Array
CHANGE str-exp TO num-array-name

Array to String Variable
CHANGE num-array-name TO str-var

Syntax Rules

e Str-exp is a string expression.

< Num-array-name should be a one-dimensional array. If you specify a
two-dimensional array, HP BASIC converts only the first row of that array.
HP BASIC does not support conversion to or from arrays of more than two
dimensions.

= Str-var is a string variable.

Remarks

= HP BASIC does not support RECORD elements as a destination string or
as a source or destination array for the CHANGE statement.

= String Variable to Array
— This format converts each character in the string to its ASCII value.

— HP BASIC assigns the value of the string’s length to element zero (0)
of the array.

— HP BASIC assigns the ASCII value of the first character in the string
to element one, (1) or (0,1), of the array, the ASCII value of the second
character to element two, (2) or (0,2), and so on.

Statements and Functions 3-15

CHANGE

If the string is longer than the bounds of the array, HP BASIC does not
translate the excess characters, and signals the error “Subscript out of

range” (ERR=55). The first element of array still contains the length of
the string.

= Array to String Variable

Example

This format converts the elements of the array to a string of characters.

The length of the string is determined by the value in element zero,
(0) or (0,0), of the array. If the value of element zero is greater than
the array bounds, HP BASIC signals the error “Subscript out of range”
(ERR=55).

HP BASIC changes element one, (1) or (0,1), of array to its ASCII
character equivalent, element two, (2) or (0,2), to its ASCII equivalent,
and so on. The length of the returned string is determined by the value
in element zero of the array. For example, if the array is dimensioned
as (10), but the zero element (0) contains the value 5, HP BASIC
changes only elements (1), (2), (3), (4), and (5) to string characters.

HP BASIC truncates floating-point values to integers before converting
them to characters.

Values in array elements are treated as modulo 256.

DECLARE STRI NG ABCD, A

DI M I NTEGER array_changes(6)
ABCD = " ABCD"

CHANGE ABCD TO array_changes
FOR1%=0 TO 4

PRINT array_changes(! %

NEXT | %

CHANGE array_changes TO A

PRINT A

Output

4

65

66

67

68
ABCD

3-16 Statements and Functions

CHR$

CHR$

The CHRS$ function returns a 1-character string that corresponds to the ASCII
value you specify.

Format
str-var = CHR$ (int-exp)

Syntax Rules

None

Remarks

e CHRS$ returns the character whose ASCII value equals int-exp. If int-exp
is greater than 255, HP BASIC treats it as modulo 256. For example,
CHR$(325) is the same as CHR$(69).

< If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Example

DECLARE | NTEGER num exp
INPUT "Enter the ASCI| value you wish to be converted"; num exp
PRINT "The equival ent character is "; CHRS(num exp)

Output

Enter the ASCI| val ue you wish to be converted? 89
The equival ent character is Y

Statements and Functions 3-17

CLOSE

CLOSE

The CLOSE statement ends 1/0O processing to a device or file on the specified
channel.

Format
CLOSE [#]chnl-exp,...

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel number associated
with a file. It can be preceded by an optional number sign (#).

Remarks

< HP BASIC writes the contents of any active output buffers to the file or
device before it closes that file or device.

« Channel #0 (the controlling terminal) cannot be closed. An attempt to do
so has no effect.

=« If you close a magnetic tape file that is open for output, HP BASIC writes
an end-of-file on the magnetic tape.

= If you try to close a channel that is not currently open, HP BASIC does not
signal an error and the CLOSE statement has no effect.

Example

OPEN " COURSE_REC. DAT" FOR I NPUT AS #2
I NPUT #2, course_nam course_num course _desc, course_instr

CLOSE #2

In this example, COURSE_REC.DAT is opened for input. After you have
retrieved all of the required information, the file is closed.

3-18 Statements and Functions

COMMON

COMMON

The COMMON statement defines a named, shared storage area called a
COMMON block or program section (PSECT). HP BASIC program modules
can access the values stored in the COMMON block by specifying a COMMON
block with the same name.

Format

{ COoMm

COMMON } [(com-name)] { [data-type] com-item },...

r num-unsubs-var
num-array-name ([int-constl TO] int-const2,...)
str-unsubs-var [= int-const]
str-array-name ([int-constl TO] int-const2,...) [= int-const]
record-var
FILL [(rep-cnt)]
FILL% [(rep-cnt)]
FILLS [(rep-cnt)] [= int-const]

com-item:

Syntax Rules

< A COMMON block can have the same name as a program variable.

e A COMMON block and a map in the same program module cannot have
the same name.

= Com-name is optional. If you specify a com-name, it must be in
parentheses. If you do not specify a com-name, the default is $BLANK.

< Com-name can be from 1 to 31 characters. The first character of the name
must be an alphabetic character (A to Z). The remaining characters, if
present, can be any combination of letters, digits (O to 9), dollar signs ($),
periods (.), or underscores (_).

= Data-type can be any HP BASIC data type keyword or a data type defined
by a RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

< When you specify a data type, all following com-items, including FILL
items, are of that data type until you specify a new data type.

Statements and Functions 3-19

COMMON

< If you do not specify any data type, com-items without a suffix character (%
or $) take the current default data type and size.

= Variable names, array names, and FILL items following a data type other
than STRING cannot end with a dollar sign. Likewise, names and FILL
items following a data type other than BYTE, WORD, LONG, QUAD, or
INTEGER cannot end with a percent sign.

e Com-item declares the name and format of the data to be stored.

Num-unsubs-var and num-array-name specify a numeric variable or a
numeric array.

Record-var specifies a record instance.

Str-unsubs-var and str-array-name specify a fixed-length string variable
or array. You can specify the number of bytes to be reserved for the
variable with the =int-const clause. The default string length is 16.

When you declare an array, HP BASIC allows you to specify both lower
and upper bounds. The upper bounds is required; the lower bounds is
optional.

= Int-constl specifies the lower bounds of the array.

« Int-const2 specifies the upper bounds of the array and, when
accompanied by int-constl, must be preceded by the keyword TO.

= Int-constl must be less than or equal to int-const2.

= If you do not specify int-constl, HP BASIC uses zero as the default
lower bounds.

« Int-constl and int-const2 can be any combination of negative and/or
positive values.

The FILL, FILL%, and FILL$ keywords allow you to reserve parts of
the record buffer within or between data elements and to define the
format of the storage. Rep-cnt specifies the number of FILL items to
be reserved. The =int-const clause allows you to specify the number of
bytes to be reserved for string FILL items. Table 3—1 describes FILL
item format and storage allocation.

In the applicable formats of FILL, (rep-cnt) represents a repeat count,
not an array subscript. FILL (n) represents n elements, not n + 1.

3-20 Statements and Functions

COMMON

Table 3-1 FILL Item Formats and Storage Allocations

FILL Format

Storage Allocation

FILL

FILL(rep-cnt)

FILL%

FILL%(rep-cnt)

FILLS$
FILLS$(rep-cnt)
FILL$=int-const

FILL$(rep-cnt)=int-const

Allocates storage for one element of the default
data type unless preceded by a data-type. The
number of bytes allocated depends on the
default or the specified data type.

Allocates storage for the number of the default
data type elements specified by rep-cnt unless
preceded by a data type. The number of bytes
allocated for each element depends on the
default floating-point data size or the specified
data type.

Allocates storage for one integer element. The
number of bytes allocated depends on the
default integer size.

Allocates storage for the number of integer
elements specified by rep-cnt. The number of
bytes allocated for each element depends on
the default integer size.

Allocates 16 bytes of storage for a string
element.

Allocates 16 bytes of storage for the number of
string elements specified by rep-cnt.

Allocates the number of bytes of storage
specified by int-const for a string element.

Allocates the number of bytes of storage
specified by int-const for the number of string
elements specified by rep-cnt.

Remarks

= \Variables in a COMMON area are not initialized by HP BASIC.

< HP BASIC does not execute COMMON statements. The COMMON
statement allocates and defines the data storage area at compilation time.

Statements and Functions 3-21

COMMON

Example

When you link your program, the size of the COMMON area is the size
of the largest COMMON area with that name. HP BASIC concatenates
COMMON statements with the same com-name within a single program
module into a single PSECT. The total space allocated is the sum of the
space allocated in the concatenated COMMON statements.

If you specify the same com-name in several program modules, the
size of the PSECT will be determined by the program module that has
the greatest amount of space allocated in the concatenated COMMON
statements.

The COMMON statement must lexically precede any reference to variables
declared in it.

A COMMON area can be accessed by more than one program module,
as long as you define the com-name in each module that references the
COMMON area.

A COMMON area and a MAP area with the same name specify the same
storage area and are not allowed in the same program module. However, a
COMMON in one module can reference the storage declared by a MAP or
COMMON in another module.

Variable names in a COMMON statement in one program module need not
match those in another program module.

Variables and arrays declared in a COMMON statement cannot be declared
elsewhere in the program by any other declarative statements.

The data type specified for com-items or the default data type and size
determines the amount of storage reserved in a COMMON block. See
Table 1-2.

COWON (sal es_rec) DECIMAL net sales (1965 TO 1975), &
STRING row = 2, &
report_name = 24, &
DOUBLE FILL, &
LONG part _bins

3-22 Statements and Functions

COMP%

COMP%

The COMP% function compares two numeric strings and returns -1, 0, or 1,
depending on the results of the comparison.

Format
int-var = COMP% (str-expl, str-exp2)

Syntax Rules

Str-expl and str-exp2 are numeric strings with an optional minus sign (-),
ASCII digits, and an optional decimal point (.).

Remarks

= If str-expl is greater than str-exp2, COMP% returns 1.
= If the string expressions are equal, COMP% returns 0.
e If str-expl is less than str-exp2, COMP% returns —1.

= The value returned by the COMP% function is an integer of the default
size.

e The COMP% function does not support E-format notation.

Example

DECLARE STRING num string, old numstring, &
| NTEGER resul t

numstring = "-24.5"

old_numstring = "33"

result = COMPY num string, ol d_numstring)

PRINT “The value is ";result

Output

The value is -1

Statements and Functions 3-23

CONTINUE

CONTINUE

The CONTINUE statement causes HP BASIC to clear an error condition and
resume execution at the statement following the statement that caused the
error or at the specified target.

Format
CONTINUE | target]

Syntax Rules

If you specify a target, it must be a label or line number that appears either
inside the associated protected region, inside a WHEN block protected region
that surrounds the current protected region, or in an unprotected region of
code.

Remarks

e CONTINUE with no target causes HP BASIC to transfer control to the
statement immediately following the statement that caused the error. The
next remark is an exception to this rule.

< If an error occurs on a FOR, NEXT, WHILE, UNTIL, SELECT or CASE
statement, control is transferred to the statement immediately following
the corresponding NEXT or END SELECT statement, as in the following

code:
10 WHEN ERRCR IN
A=10
B=1
20 FOR | =A TO B STEP 2
30 CGET #1
40 c=1
NEXT |
50 C=0
USE
CONTI NUE
END VWHEN

3-24 Statements and Functions

CONTINUE

If an error occurs on line 20, the CONTINUE statement transfers control
to line 50. If an error occurs on line 30, program control resumes at
line 40.

e The CONTINUE statement must be lexically inside of a handler.

< If you specify a CONTINUE statement within a detached handler, you
cannot specify a target.

Example

VHEN ERROR USE err_handl er
END WHEN

HANDLER err_handl er
SELECT ERR
CASE = 50
PRINT "Insufficient data"
CONTI NUE
CASE ELSE
EXI T HANDLER
END SELECT
END HANDLER

Statements and Functions 3-25

COS

COS

The COS function returns the cosine of an angle in radians or degrees.

Format

real-var = COS (real-exp)

Syntax Rules

None

Remarks

e The returned value is from -1 to 1. The parameter value is expressed in
either radians or degrees depending on which angle clause you choose with
the OPTION statement.

= HP BASIC expects the argument of the COS function to be a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

Example

DECLARE SI NGLE cos_val ue
cos_val ue = 26
PRINT COS(cos_val ue)

Output
. 646919

3-26 Statements and Functions

CTRLC

CTRLC

The CTRLC function enables Ctrl/C trapping. When Ctrl/C trapping is
enabled, a Ctrl/C typed at the terminal causes control to be transferred to
the error handler currently in effect.

Format
int-var = CTRLC

Syntax Rules

None

Remarks

= When HP BASIC encounters a Ctrl/C, control passes to the error handler
currently in effect. If there is no error handler in a program, the program
aborts.

e In a series of linked subprograms, setting Ctrl/C for one subprogram
enables Ctrl/C trapping for all subprograms.

< When you trap a Ctrl/C with an error handler, your program may be in an
inconsistent state; therefore, you should handle the Ctrl/C error and exit
the program as quickly as possible.

e Ctrl/C trapping is asynchronous; that is, HP BASIC suspends execution
and signals “Programmable ~C trap” (ERR=28) as soon as it detects a
Ctrl/C. Consequently, a statement can be interrupted while it is executing.
A statement so interrupted may be only partially executed and variables
may be left in an undefined state.

< HP BASIC can trap more than one Ctrl/C error in a program as long as
the error does not occur while the error handler is executing. If a second
Ctrl/C is detected while the error handler is processing the first Ctrl/C, the
program aborts.

e The CTRLC function always returns a value of zero.

e The function RCTRLC disables Ctrl/C trapping. See the description of the
RCTRLC function for further details.

Statements and Functions 3-27

CTRLC

Example

VWHEN ERROR USE repair_work
Y% = CTRLC

END VHEN
HANDLER repai r_wor k
I F (ERR=28) THEN PRINT "Interrupted by CTRLC"

END HANDLER

3-28 Statements and Functions

CVT$$

CVT$$

The CVT$$ function is a synonym for the EDIT$ function. See the EDIT$
function for more information.

Note

It is recommended that you use the EDIT$ function rather than the
CVT$$ function for new program development.

Format
str-var = CVT$$ (str-exp, int-exp)

Statements and Functions 3-29

CVTxx

CVTxx

Format

Syntax

The CVT$% function maps the first two characters of a string into a 16-bit
integer. The CVT%$ function translates a 16-bit integer into a 2-character
string. The CVT$F function maps a 4- or 8-character string into a floating-
point variable. The CVTF$ function translates a floating-point number into a
4- or 8-byte character string. The number of characters translated depends on
whether the floating-point variable is single- or double-precision.

Note

CVT functions are supported only for compatibility with BASIC-PLUS.
It is recommended that you use the HP BASIC dynamic mapping
feature or multiple MAP statements for new program development.

int-var = CVT$% (str-var)
real-var = CVT$F (str-var)
str-var = CVT%$ (int-var)
str-var = CVTF$ (real-var)

Rules

CVT functions reverse the order of the bytes when moving them to or from a
string. Therefore, you can mix MAP and MOVE statements, but you cannot
use FIELD and CVT functions on a file if you also plan to use MAP or MOVE
statements.

Remarks

e CVT$%

— If the CVT$% str-var has fewer than two characters, HP BASIC pads
the string with nulls.

— If the default data type is LONG, only 2 bytes of data are extracted
from str-var; the high-order byte is sign-extended into a longword.

3-30 Statements and Functions

Examples

CVTxx

The value returned by the CVT$% function is an integer of the default
size.

CVT%$

Only 2 bytes of data are inserted into str-var.

If you specify a floating-point variable for int-var, HP BASIC truncates
it to an integer of the default size. If the default size is BYTE and the
value of int-var exceeds 127, HP BASIC signals an error.

CVTS$F

CVT$F maps four characters when the program is compiled with
/ISINGLE and eight characters when the program is compiled with
/DOUBLE.

If str-var has fewer than four or eight characters, HP BASIC pads the
string with nulls.

The real-var returned by the CVT$F function is the default floating-
point size. If the default size is not SINGLE or DOUBLE, HP BASIC
signals the error “Floating CVT valid only for SINGLE or DOUBLE.”

CVTF$

The CVTF$ function maps single-precision numbers to a 4-character
string and double-precision numbers to an 8-character string.

HP BASIC expects the argument of the CVTF$ function to be a real
expression. When the argument is a real expression, HP BASIC
returns a value of the same floating-point size. When the argument is
not a real expression, HP BASIC converts the argument to the default
floating-point size and returns a value of the default floating-point
size. If the default floating-point size is not SINGLE or DOUBLE,
HP BASIC signals the error “Floating CVT valid only for SINGLE or
DOUBLE.”

Statements and Functions 3-31

CVTxx

Example 1

DECLARE STRING test _string, another_string
DECLARE LONG first_nunber, next_nunber
test string = "AT"

PRINT CVT$%test_string)

another _string = "at"

PRINT CVT$9 anot her _stri ng)
first_nunber = 16724

PRINT CVT%(first_nunber)

next _nunber = 24948

PRINT CVT9(next _nunber)

END

Output

16724
24948
AT
at

Example 2

DECLARE STRING test_string, another_string
DECLARE SINGLE first_num second_num
test string = "DESK"

first_num= CVI$F(test_string)

PRINT first_num

another_string = "desk"

second_num = CVTS$F(anot her _stri ng)
PRI NT second_num

PRINT CVTF$(first_num

PRI NT CVTF$(second_num

END

$ BASI C SINGLE CVTF
$ LINK CVTF
$ RUN CVTF

Output

. 218256E+12
.466242E+31
DESK
desk

3-32 Statements and Functions

DATA

DATA

The DATA statement creates a data block for the READ statement.

Format

pum-lit)
DATA lstr-lit l

ung-str

Syntax Rules

Remarks

Num-lit specifies a numeric literal.

Str-lit is a character string that starts and ends with double or single
quotation marks. The quotation marks must match.

Ung-str is a character sequence that does not start or end with double
guotation marks and does not contain a comma.

Commas separate data elements. If a comma is part of a data item, the
entire item must be enclosed in quotation marks.

Because HP BASIC treats comment fields in DATA statements as part of
the DATA sequence, you should not include comments.

A DATA statement must be the last or the only statement on a physical
line.

DATA statements must end with a line terminator.

When a DATA statement is continued with an ampersand (&), HP BASIC
interprets all characters between the keyword DATA and the ampersand
as part of the data. Any code that appears on a noncontinued line is
considered a new statement.

You cannot use the percent sign suffix for integer constants that appear
in DATA statements. An attempt to do so causes HP BASIC to signal the
error, “Data format error” (ERR=50).

DATA statements are local to a program module.

Statements and Functions 3-33

DATA

Example

10

HP BASIC does not execute DATA statements. Instead, control is passed
to the next executable statement.

A program can have more than one DATA statement. HP BASIC assembles
data from all DATA statements in a single program unit into a lexically
ordered single data block.

HP BASIC ignores leading and trailing blanks and tabs unless they are in
a string literal.

Commas are the only valid data delimiters. You must use a quoted string
literal if a comma is to be part of a string.

HP BASIC ignores DATA statements without an accompanying READ
statement.

HP BASIC signals the error “Data format error” if the DATA item does not
match the data type of the variable specified in the READ statement or if a
data element that is to be read into an integer variable ends with a percent
sign (%). If a string data element ends with a dollar sign ($), HP BASIC
treats the dollar sign as part of the string.

DECLARE | NTEGER A B, C
READ A B, C

DATA 1,2,3
PRINTA+B+ C

Output

6

3-34 Statements and Functions

DATES$

DATES$

The DATES$ function returns a string containing a day, month, and year in the
form dd-mmm-yy.

Format
str-var = DATES$ (int-exp)

Syntax Rules

= Int-exp can have up to 6 digits in the form yyyddd, where the characters
yyy specify the number of years since 1970 and the characters ddd specify
the day of that year. The day of year must be a value between 1 and the
number of days in the specified year.

= You must fill all three of the d positions with digits or zeros before you can
fill the y positions. For example:

— DATE$(121) returns the date 01-May-70, day 121 of the year 1970.
— DATE$(1201) returns the date 20-Jul-71, day 201 of the year 1971.
— DATE$(12001) returns the date 01-Jan—82, day one of the year 1982.
— DATE$(10202) returns the date 20-Jul-80, day 202 of the year 1980.

Remarks

= If int-exp equals zero, DATES$ returns the current date.

= The str-var returned by the DATES$ function consists of nine characters and
expresses the day, month, and year in the form dd-mmm-yy.

< If you specify an invalid date, such as day 385, results are unpredictable.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Statements and Functions 3-35

DATE$

Example

DECLARE STRING t odays date
todays_dat e = DATE$(0)

PRI NT todays date

Output

09-Cct-99

The DATEA4$ function is strongly recommended as replacement for the DATES$
function to avoid problems in the year 2000 and beyond. It functions the
same as the DATES$ function except that the year portion of the result string
contains two more digits indicating the century. For example:

PRINT 32150, DATE$ (32150), DATE4$ (32150)
This produces the following output:
32150 30-May-02 30- May- 2002

3-36 Statements and Functions

DATE4$

DATE4$

The DATE4$ function returns a string containing a day, month, and year in
the form dd-mmm-yyyy.

Format
str-var = DATE4$ (int-exp)

Syntax Rules

= Int-exp can have up to 6 digits in the form yyyddd, where the characters
yyy specify the number of years since 1970 and the characters ddd specify
the day of that year. The day of year must be a value between 1 and the
number of days in the specified year.

= You must fill all three of the d positions with digits or zeros before you can
fill the y positions.

Remarks

The DATEA4$ function is strongly recommended as replacement for the DATES$
function to avoid problems in the year 2000 and beyond. It functions the
same as the DATES$ function except that the year portion of the result string
contains two more digits indicating the century. For example:

PRINT 32150, DATE$ (32150), DATE4$ (32150)
Produces the following output:
32150 30-May-02 30- May-2002

See the description of the DATES$ function for more information.

Statements and Functions 3-37

DECIMAL

DECIMAL

The DECIMAL function converts a numeric expression or numeric string to the
DECIMAL data type.

Format
decimal-var = DECIMAL (exp [, int-constl, int-const2])

Syntax Rules

= Int-constl specifies the total number of digits (the precision) and int-const2
specifies the number of digits to the right of the decimal point (the scale).
If you do not specify these values, HP BASIC uses the d (digits) and s
(scale) defaults for the DECIMAL data type.

= Int-constl and int-const2 must be positive integers from 1 to 31. Int-const2
cannot exceed the value of int-constl.

< Exp can be either numeric or numeric string. If a numeric string, it can
contain the ASCII digits 0 to 9, a plus sign (+), a minus sign (=), and a
period (.).

Remarks

= If exp is a string, HP BASIC ignores leading and trailing spaces and tabs.

< The DECIMAL function returns a zero when a string argument contains
only spaces and tabs, or when it is null.

Example

DECLARE STRING CONSTANT fornat _string = "##. ###"
DECLARE STRING num val ue, DECI MAL(5,3) B

NPUT "Enter a nuneric val ue";numval ue

B = DECI MAL(num val ue, 5, 3)

PRINT USING format_string, B

3-38 Statements and Functions

DECIMAL

Output

Enter a nuneric value? 6
6. 000

Statements and Functions 3-39

DECLARE

DECLARE

The DECLARE statement explicitly assigns a name and a data type to a
variable, an entire array, a function, or a constant.

Format

Variables
DECLARE data-type { decl-item [,[data-type] decl-item]},...

DEF Functions
DECLARE data-type FUNCTION { def-name [([def-param],...)] },...

Named Constants
DECLARE data-type CONSTANT { const-name = const-exp },...

record-var

array-name ([int-constl TO] int-const2,...)
decl-item: { }
unsubs-var

def-param: data-type

Syntax Rules

< Data-type can be any HP BASIC data type keyword or a data type defined
by a RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

= Variables
— Decl-item names an array, a record, or a variable.

— A decl-item named in a DECLARE statement cannot be named in
another DECLARE statement, or in a DEF, EXTERNAL, FUNCTION,
SuUB, COMMON, MAP, DIM, HANDLER, or PICTURE statement.

— Each decl-item is associated with the preceding data type. A data type
is required for the first decl-item.

— Decl-items of data type STRING are dynamic strings.

3-40 Statements and Functions

DECLARE

When you declare an array, HP BASIC allows you to specify both lower
and upper bounds for each dimension of the array. The upper bounds
is required; the lower bounds is optional.

= Int-constl specifies the lower bounds of the array.

= Int-const2 specifies the upper bounds of the array and, when
accompanied by int-constl, must be preceded by the keyword TO.

= Int-constl must be less than or equal to int-const2.

= If you do not specify int-constl, HP BASIC uses zero as the default
lower bounds.

« Int-constl and int-const2 can be any combination of negative or
positive values or zero.

e DEF Functions

Def-name names the DEF function.
Data-type specifies the data type of the value the function returns.

Def-params specify the number and, optionally, the data type of the
DEF parameters. Parameters define the arguments the DEF expects to
receive when invoked.

< When you specify a data type, all following parameters are of that
data type until you specify a new data type.

< If you do not specify any data type, parameters take the current
default data type and size.

< The number of parameters equals the number of commas plus
1. For example, empty parentheses specify one parameter of the
default type and size; one comma inside the parentheses specifies
two parameters of the default type and size; and so on. One data
type inside the parentheses specifies one parameter of the specified
data type; two data types separated by one comma specifies two
parameters of the specified type, and so on.

< Named Constants

Const-name is the name you assign to the constant.

Data-type specifies the data type of the constant. The value of the const
must be numeric if the data type is numeric and string if the data type
is STRING. If the data type is STRING, const must be a quoted string
or another string constant.

Statements and Functions 3-41

DECLARE

Remarks

— Const-exp cannot be a data type that was defined with the RECORD
statement.

— Data-type cannot be a data type defined by a record statment.
— String constants cannot exceed 498 characters.

— HP BASIC allows const-exp to be an expression for all data types
except DECIMAL. Expressions are not allowed as values when you
name DECIMAL constants.

— Allowable operators in DECLARE CONSTANT expressions include all
valid arithmetic, relational, and logical operators except exponentiation.
Built-in functions cannot be used in DECLARE CONSTANT
expressions. The following examples use valid expressions as values:

DECLARE DOUBLE CONSTANT max_val ue = (PI/2)
DECLARE STRING CONSTANT left_arrow = "<----- "+ LF+CR

The DECLARE statement is not executable.

The DECLARE statement must lexically precede any reference to the
variables, functions, or constants named in it.

To declare a virtual or run-time array, use the DIMENSION statement.
Variables

— Subsequent decl-items are associated with the specified data type until
you specify another data type.

— All variables named in a DECLARE statement are initialized to zero if
numeric or to the null string if string.

DEF Functions

— The DECLARE FUNCTION statement allows you to name a function
defined in a DEF or DEF* statement, specify the data type of the value
the function returns, and declare the number and data type of the
parameters.

— Data type keywords must be separated by commas.

3-42 Statements and Functions

DECLARE

— The first specification of a data type for a def-param is the default
for subsequent arguments until you specify another def-param. For
example:

DECLARE DOUBLE FUNCTI ON i nt er est (DOUBLE, SI NGLE, ,)

This example declares two parameters of the default type and size, one
DOUBLE parameter, and three SINGLE parameters for the function
named interest.

< Named Constants

— The DECLARE CONSTANT statement allows you to name a constant
value and assign a data type to that value. Note that you can specify
only one data type in a DECLARE CONSTANT statement. To declare
a constant of another data type, you must use a second DECLARE
CONSTANT statement.

— During program execution, you cannot change the value assigned to the
constant.

— The specified data-type determines the data type of the constant. For
example:

DECLARE LONG CONSTANT True = -1, False = 0
DECLARE REAL CONSTANT ZZZ = 123.0

DECLARE BYTE CONSTANT YYY = '123'L

PRINT True, False, Z7Z, YYY

Output

-1 0 123 123

In this example, HP BASIC truncates the LONG value assigned to
YYY to a BYTE value.

Note

Data types specified in a DECLARE statement override any defaults
specified in COMPILE command qualifiers or OPTION statements.

Examples

Example 1

I DEF Functions
DECLARE | NTEGER FUNCTI ON anount (, , DOUBLE, BYTE, ,)

Statements and Functions 3-43

DECLARE

Example 2

I Named Constants
DECLARE DOUBLE CONSTANT interest_rate = 15.22

3-44 Statements and Functions

DEF

DEF

The DEF statement lets you define a single-line or multiline function.

Format
Single-line DEF
DEF [data-type] def-name [([data-type] var ,...) | = exp

multiline DEF

DEF [data-type] def-name [([data-type var],...)] [statement]...
[statement]...

(e | (o]

Syntax Rules

< Data-type can be any HP BASIC data type keyword or a data type defined
in the RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

e The data type that precedes the def-name specifies the data type of the
value returned by the DEF function.

e Def-name is the name of the DEF function. The def-name can contain from
1 to 31 characters.

< If the def-name also appears in a DECLARE FUNCTION statement, the
following rules apply:

— A function data type is required.

— The first character of the def-name must be an alphabetic character
(A to Z). The remaining characters can be any combination of letters,
digits (0 to 9), dollar signs ($), underscores (_), or periods (.).

= If the def-name does not appear in a DECLARE FUNCTION statement,
but the DEF statement appears before the first reference to the def-name,
the following rules apply:

— The function data type is optional.

Statements and Functions 3-45

DEF

— The first character of the def-name must be an alphabetic letter (A to
Z). The remaining characters can be any combination of letters, digits,
dollar signs, underscores, or periods.

— If a function data type is not specified, the last character in the def-
name must be a percent sign for an INTEGER function, or a dollar sign
for a STRING function.

If the def-name does not appear in a DECLARE FUNCTION statement,
and the DEF statement appears after the first reference to the def-name,
the following rules apply:

— The function data type cannot be present.

— The first two characters of the def-name must be FN. The remaining
characters can be any combination of letters, digits, dollar signs,
underscores, or periods, with one restriction: the last character must
be a percent sign for an INTEGER function, or a dollar sign for a
STRING function.

— There must be at least one character between the FN characters and
the ending dollar sign or percent character. FN$ and FN% are not
valid function names.

Var specifies optional formal DEF parameters. Because the parameters are
local to the DEF function, any reference to these variables outside the DEF
body creates a different variable.

You can specify the data type of DEF parameters with a data type keyword
or with a data type defined in a RECORD statement. If you do not include
a data type, the parameters are of the default type and size. Parameters
that follow a data type keyword are of the specified type and size until you
specify another data type.

You can specify up to 255 parameters in a DEF statement.
Single-Line DEF

Exp specifies the operations the function performs.

Multiline DEF

— Statements specifies the operations the function performs.

— The END DEF or FNEND statement is required to end a multiline
DEF.

3-46 Statements and Functions

Remarks

DEF

— HP BASIC does not allow you to specify any statements that indicate
the beginning or end of any SUB, FUNCTION, PICTURE, HANDLER
(attached handlers are legal), PROGRAM or DEF in a function
definition.

— Exp specifies the function result. Exp must be compatible with the
DEF data type.

When HP BASIC encounters a DEF statement, control of the program
passes to the next executable statement after the DEF.

The function is invoked when you use the function name in an expression.

You cannot specify how parameters are passed. When you invoke a
function, HP BASIC evaluates parameters from left to right and passes
parameters to the function so that they cannot be modified. Numeric
parameters are passed by value and string parameters are passed by
descriptor, where the descriptor points to a local copy. A DEF function
can reference variables that are declared within the compilation unit in
which the function resides, but it cannot reference variables in other DEF
or DEF* functions. A DEF function can, therefore, modify other variables
in the program, but not variables within another DEF function.

A DEF function is local to the program, subprogram, function, or picture
that defines it.

You can declare a DEF either by defining it, by using the DECLARE
FUNCTION statement, or by implicitly declaring it with a reference to the
function in an expression.

If your program invokes a function with a name that does not start with
FN before the DEF statement defines the function, HP BASIC signals an
error.

If the number of parameters, types of parameters, or type of result declared
in the invocation disagree with the number or types of parameters defined
in the DEF statement, HP BASIC signals an error.

DATA statements in a multiline DEF are not local to the function; they are
local to the program module containing the function definition.

The function value is initialized to zero or the null string each time you
invoke the function.

Statements and Functions 3-47

DEF

Examples

DEF definitions cannot appear inside a protected region. However, DEF
can contain one or more protected regions.

DEF functions can be invoked within handlers, within DEF functions, and
within DEF* functions.

In DEF definitions that contain handlers, the following rules apply:

— If the function was invoked from a protected region, the EXIT
HANDLER statement transfers control to the handler specified for
that protected region.

— If the function was not invoked from a protected region, the EXIT
HANDLER statement transfers control to the default error handler.

If an exception is not handled within a DEF function, control is transferred
to the module that invoked the DEF function.

ON ERROR statements within a DEF function are local to the function.

A CONTINUE, GOTO, GOSUB, ON ERROR GOTO, or RESUME
statement in a multiline function definition must refer to a line number or
label in the same function definition.

You cannot transfer control into a multiline DEF except by invoking the
function.

DEF functions can be recursive. However, HP BASIC does not detect
infinitely recursive DEF functions during compilation.

Example 1

I'Si ngl e-Li ne DEF

DEF DOUBLE add (DOUBLE A, B, SINGLE C, D, E) =
INPUT " Enter five numbers to be added ;V,WX Y,
PRINT " The sumis’; AD(V,WX Y, 2)

Output

Enter five nunbers to be added? 1,2,3,4,5
The sumis 15

A+B+C+D+E
YA

3-48 Statements and Functions

DEF

Example 2
PROGRAM | _want _a_rai se

OPTI ON TYPE = EXPLICIT, &
CONSTANT TYPE = DECI MAL, &
SI ZE = DECI MAL (6, 2)

DECLARE DECI MAL CONSTANT Overtime factor = 0.50
DECLARE DECI MAL My_hours, My _rate, Overtime
DECLARE DECI MAL FUNCTI ON Cal cul ate_pay (DECI MAL, DECI MAL)

INPUT "Your hours this week"; My_hours
INPUT "Your hourly rate"; M rate

PRINT "My pay this week is"; Calculate_pay (My/_hours, My_rate)
DEF DECI MAL Cal cul ate_pay (DECI MAL Hours, Rate)

IF Hurs = 0.0
THEN

EXIT DEF 0.0
END | F

Overtime = Hours - 40.0

IF Overtime < 0.0
THEN

Overtime = 0.0
END | F

END DEF (Hours * Rate) + (Overtime * (Overtinme_factor * Rate))
END PROGRAM
Output

Your hours this week? 45.7
Your pay rate? 20.35
Your pay for the week is 987.95

Statements and Functions 3-49

DEF*

DEF*

The DEF* statement lets you define a single- or multiline function.

Note

The DEF* statement is not recommended for new program develop-
ment. It is recommended that you use the DEF statement for defining
single- and multiline functions.

Format

Single-line DEF*
DEF* [data-type] def-name [([data-type] var ,..)] = exp

multiline DEF*

DEF* [data-type] def-name [([data-type)] var ,...] [statement]...)
[statement]...
{ENDDEF } [exp]
FNEND P

Syntax Rules

< Data-type can be any HP BASIC data type keyword or a data type defined
in the RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

e The data type that precedes the def-name specifies the data type of the
value returned by the DEF* function.

e Def-name is the name of the DEF* function. The def-name can contain
from 1 to 31 characters.

< If the def-name also appears in a DECLARE FUNCTION statement, the
following rules apply:

— A function data type is required.

— The first character of the def-name must be an alphabetic character
(A to Z2). The remaining characters can be any combination of letters,
digits (0 to 9), dollar signs ($), underscores (_), or periods (.).

3-50 Statements and Functions

DEF*

If the def-name does not appear in a DECLARE FUNCTION statement,
but the DEF* statement appears before the first reference to the def-name,
the following rules apply:

— The function data type is optional.

— The first character of the def-name must be an alphabetic character
(A to Z2). The remaining characters can be any combination of letters,
digits, dollar signs, underscores, or periods.

— If a function data type is not specified, the last character in the def-
name must be a percent sign for an INTEGER function, or a dollar sign
for a STRING function.

If the def-name does not appear in a DECLARE FUNCTION statement,
and the DEF* statement appears after the first reference to the def-name,
the following rules apply:

— The function data type cannot be present.

— The first two characters of the def-name must be FN. The remaining
characters can be any combination of letters, digits, dollar signs,
underscores, or periods, with one restriction: the last character must
be a percent sign for an INTEGER function, or a dollar sign for a
STRING function.

— There must be at least one character between the FN characters and
the ending dollar sign or percent character. FN$ and FN% are not
valid function names.

Var specifies optional formal function parameters.

You can specify the data type of function parameters with a data type
keyword. If you do not specify a data type, parameters are of the default
type and size. Parameters that follow a data type are of the specified type
and size until you specify another data type.

You can specify up to 8 parameters in a DEF* statement.
Single-Line DEF*

Exp specifies the operations the function performs.

Multiline DEF*

— Statements specifies the operations the function performs.

— The END DEF or FNEND statement is required to end a multiline
DEF*.

Statements and Functions 3-51

DEF*

— HP BASIC does not allow you to specify any statements that indicate
the beginning or end of any SUB, FUNCTION, PICTURE, HANDLER,
PROGRAM or DEF in a function definition.

— Exp specifies the function result. Exp must be compatible with the
DEF data type.

Remarks

< When HP BASIC encounters a DEF* statement, control of the program
passes to the next executable statement after the DEF*.

« A function defined by the DEF* statement is invoked when you use the
function name in an expression.

= You cannot specify how parameters are passed. When you invoke a DEF*
function, HP BASIC evaluates parameters from left to right and passes
parameters to the function so that they cannot be modified. Numeric
parameters are passed by value, and string parameters are passed by
descriptor, where the descriptor points to a local copy. A DEF* function
can reference variables in the program unit where the function is declared,
but it cannot reference variables in other DEF or DEF* functions. A DEF*
function can, therefore, modify variables in its program unit, but not
variables within another DEF* function.

< The following differences exist between DEF* and DEF statements:

— You can use the GOTO, ON GOTO, GOSUB, and ON GOSUB
statements to a branch outside a multiline DEF*, but they are not
recommended.

— Although other variables used within the body of a DEF* function are
not local to the DEF* function, DEF* formal parameters are. However,
if you change the value of formal parameters within a DEF* function
and then transfer control out of the DEF* function without executing
the END DEF or FNEND statement, variables outside the DEF* that
have the same names as DEF* formal parameters are also changed.

— You can pass up to 255 parameters to a DEF function. DEF* functions
accept a maximum of 8 parameters.

— A DEF* function value is not initialized when the DEF* function is
invoked. Therefore, if a DEF* function is invoked and no new function
value is assigned, the DEF* function returns the value of its previous
invocation.

3-52 Statements and Functions

DEF*

— The error handler of the program module that contains the DEF* is the
default error handler for a DEF* function. Parameters return to their
original values when control passes to the error handler.

= A DEF*is local to the program unit or subprogram that defines it.

= You can declare a DEF* either by defining it, by using the DECLARE
FUNCTION statement, or by implicitly declaring it with a reference to the
function in an expression.

= If the number of parameters, types of parameters, or type of result declared
in the invocation disagree with the number or types of parameters defined
in the DEF* statement, HP BASIC signals an error.

e DEF* functions can be recursive.

= DATA statements in a multiline DEF* are not local to the function; they
are local to the program module containing the function definition.

< DEF* definitions cannot appear inside a protected region, but they can
contain one or more protected regions.

e DEF* functions cannot be invoked within handlers or within DEF
functions.

< In DEF* functions that contain handlers, the following rules apply:

— If the function was invoked from a protected region, the EXIT
HANDLER statement transfers control to the handler specified for
that protected region.

— If the function was not invoked from a protected region, the EXIT
HANDLER statement transfers control to the default error handler.

< If a DEF* function is invoked from within a complex expression, the
compiler will generate a warning and reorder the expression to evaluate
the DEF* function first. This reordering will not effect the outcome of the
expression unless the DEF* modifies one of the variables used within the
expression.

Examples

Statements and Functions 3-53

DEF*

Example 1

I Si ngl e-Li ne DEF*

DEF* STRING CONCAT(STRING AB) = A+ B
DECLARE STRI NG wor d1, wor d2

I NPUT "Enter two words";wordl, word2
PRI NT CONCAT (wordi1, word2)

Output

Enter two words? TO
? DAY
TODAY

Example 2
'mul tiline DEF*
DEF* DOUBLE exanpl e(DOUBLE A, B, SINGLE C, D, E)

EXITDEF IFB=0
exanple = (A/B) + C- (D*E)
END DEF

| NPUT "Enter 5 nunbers";V,WX Y, Z
PRINT exanpl e(V, WX Y, 2)

Output

Enter 5 nunbers? 2,4,6,8,1
-1.5

3-54 Statements and Functions

DELETE

DELETE

The DELETE statement removes a record from a relative or indexed file.

Format
DELETE #chnl-exp

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel number associated
with a file. It must be immediately preceded by a number sign (#).

Remarks

= The DELETE statement removes the current record from a file. Once the
record is removed, you cannot access it.

= The file specified by chnl-exp must have been opened with ACCESS
MODIFY or WRITE.

= You can delete a record only if the last I/O statement executed on the
specified channel was a successful GET or FIND operation.

< The DELETE statement leaves the current record pointer undefined and
the next record pointer unchanged.

< HP BASIC signals an error when the 1/0 channel is illegal or not open,
when no current record exists, when access is illegal or illogical, or when
the operation is illegal.

Statements and Functions 3-55

DELETE

Example

DECLARE STRING record_num

OPEN " CUS. DAT" FOR | NPUT AS #1, RELATIVE FI XED &
ACCESS MODI FY, RECORDSI ZE 40

| NPUT "Wl CH RECORD WOULD YOU LI KE TO EXAM NE";record_num
GET #1, RECORD record_num
DELETE #1

In this example, the file CUS.DAT is opened for input with ACCESS MODIFY.
Once you enter the number of the record you want to retrieve and the GET
statement executes successfully, the current record number is deleted.

3-56 Statements and Functions

DET

The DET function returns the value of the determinant of the last matrix
inverted with the MAT INV function.

real-var = DET

Syntax Rules

None

Remarks

= When a matrix is inverted with the MAT INV statement, HP BASIC
calculates the determinant as a by-product of the inversion process. The
DET function retrieves this value.

< If your program does not contain a MAT INV statement, the DET function
returns a value of zero.

= The value returned by the DET function is a floating-point value of the
default size.

Example

MAT INPUT first_array(3,3)

MAT PRINT first_array;

PRI NT

MAT inv_array = I[NV (first_array)
determinant = DET

MAT PRINT inv_array;

PRI NT

PRI NT det er mi nant

PRI NT

MAT nult _array = first_array * inv_array
MAT PRINT nult_array;

Statements and Functions 3-57

DET

Output
2100010001

OOk P OOFr OOk
OO OFrro
POO RPROO

OO
OO

3-58 Statements and Functions

DIF$

DIF$

The DIF$ function returns a numeric string whose value is the difference
between two numeric strings.

Format
str-var = DIF$ (str-expl, str-exp2)

Syntax Rules

Each str-exp can contain up to 60 ASCII digits, an optional decimal point, and
an optional leading sign.

Remarks

e The DIF$ function does not support E-format notation.
< HP BASIC subtracts str-exp2 from str-expl and stores the result in str-var.

= The difference between two integers takes the precision of the larger
integer.

= The difference between two decimal fractions takes the precision of the
more precise fraction, unless trailing zeros generate that precision.

= The difference between two floating-point numbers takes precision as
follows:

— The difference of the integer parts takes the precision of the larger
part.

— The difference of the decimal fraction part takes the precision of the
more precise part.

< HP BASIC truncates leading and trailing zeros.

Statements and Functions 3-59

DIF$

Example
PRINT DIF$ ("689","-231")

Output
920

3-60 Statements and Functions

DIMENSION

DIMENSION

The DIMENSION statement creates and names a static, dynamic, or virtual
array. The array subscripts determine the dimensions and the size of the array.
You can specify the data type of the array and associate the array with an 1/0
channel.

Format

Nonvirtual, Nonexecutable

{ E:MENSION } { [data-type] array-name (fint-constl TO] int-const2,...) },...
Executable
DIM
{ DIMENSION } {[data-type] array-name
([intvarl TO] intvar2,...) },..
Virtual
{ B:mENSION } #chnl-exp, { [data-type] array-name

(int-const,...) [= int-const | },...

Syntax Rules

< An array name in a DIM statement cannot also appear in a COMMON,
MAP, or DECLARE statement.

< Data-type can be any HP BASIC data type keyword or a data type defined
in a RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

= If you do specify a data type and the array name ends in a percent sign
(%) or dollar sign ($) suffix character, the variable must be a string or
integer data type.

< If you do not specify a data type, the array name determines the type of
data the array holds. If the array name ends in a percent sign, the array
stores integer data of the default integer size. If the array name ends in a
dollar sign, the array stores string data. Otherwise, the array stores data
of the default type and size.

Statements and Functions 3-61

DIMENSION

< An array can have up to 32 dimensions. Nonvirtual array sizes are limited
by the virtual memory limits of your system.

< When you declare a nonvirtual array, HP BASIC allows you to specify both
lower and upper bounds. The upper bounds is required; the lower bounds
is optional.

Int-constl or int-varl specifies the lower bounds of the array.

Int-const2 or int-var2 specifies the upper bounds of the array and,
when accompanied by int-constl or int-varl, must be preceded by the
keyword TO.

Int-constl must be less than or equal to int-const2. Int-varl must be
less than or equal to int-var2.

If you do not specify int-constl or int-varl, HP BASIC uses zero as the
default lower bounds.

Array dimensions can have either positive or negative values.

< Nonvirtual, Nonexecutable

When all the dimension specifications are integer constants, as in
DIM A(15,10,20), the DIM statement is nonexecutable and the array
size is static. A static array cannot appear in another DIM statement
because HP BASIC determines storage requirements at compilation
time.

A nonexecutable DIM statement must lexically precede any reference
to the array it dimensions. That is, you must dimension a static array
before you can reference array elements.

e Virtual

The virtual array must be dimensioned and the file must be open before
you can reference the array.

When the data type is STRING, the =int-const clause specifies the
length of each array element. The default string length is

16 characters. Virtual string array lengths are rounded to the next
higher power of 2. Therefore, specifying an element length of 12 results
in an actual length of 16. For example:

DIM #1, STRING vir_array(100) = 12
OPEN " STATS. BAS' FOR OUTPUT as #1, VI RTUAL

3-62 Statements and Functions

Remarks

DIMENSION

Output

YBASI C- W STRLENINC, virtual array string VIR ARRAY |ength increased
from12 to 16

Executable

When any of the dimension specifications are integer variables as in
DIM A(10%,20%,Y%), the DIM statement is executable and the array is
dynamic. A dynamic array can be redimensioned with a DIM statement
any number of times because HP BASIC allocates storage at run time
when each DIM statement is executed.

You can create an array implicitly by referencing an array element without
using a DIM statement. This causes HP BASIC to create an array with
dimensions of (10), (10,10), (10,10,10), and so on, depending on the number
of bounds specifications in the referenced array element. You cannot create
virtual or executable arrays implicitly.

HP BASIC allocates storage for arrays by row, from right to left.
Nonvirtual, Nonexecutable

— You can declare arrays with the COMMON, MAP, and DECLARE
statements. Arrays so declared cannot be redimensioned with the DIM
statement. Furthermore, string arrays declared with a COMMON or
MAP statement are always fixed-length arrays.

— If you reference an array element declared in an array whose subscripts
are smaller than the lower bounds or larger than the upper bounds
specified in the DIM statement, HP BASIC signals the error “Subscript
out of range” (ERR=55).

Virtual
— For new development, using virtual arrays is not recommended.

— When the rightmost subscript varies faster than the subscripts to the
left, fewer disk accesses are necessary to access array elements in
virtual arrays.

— Using the same DIM statement for multiple virtual arrays allocates
all arrays in a single disk file. The arrays are stored in the order they
were declared.

Statements and Functions 3-63

DIMENSION

Any program or subprogram can access a virtual array by declaring it
in a virtual DIMENSION statement. For example:

DIM #1, A(10)
DIM #1, B(10)

In this example, array B overlays array A. You must specify the same
channel number, data types, and limits in the same order as they occur
in the DIM statement that created the virtual array.

HP BASIC stores a string in a virtual array by padding it with trailing
nulls to the length of the array element. It removes these nulls when it
retrieves the string from the virtual array. Remember that string array
element sizes are always rounded to the next power of 2.

The OPEN statement for a virtual array must include the
ORGANIZATION VIRTUAL clause for the channel specified in the
DIMENSION statement.

HP BASIC does not initialize virtual arrays and treats them as
statically allocated arrays. You cannot redimension virtual arrays.

See the HP BASIC for OpenVMS User Manual for more information
about virtual arrays.

e Executable

You create an executable, dynamic array by using integer variables
for array bounds, as in DIM A(Y%,X%). This eliminates the need
to dimension an array to its largest possible size. Array bounds in
an executable DIM statement can be constants or variables, but not
expressions. At least one bounds must be a variable.

You cannot reference an array named in an executable DIM statement
until after the DIM statement executes.

You can redimension a dynamic array to make the bounds of each
dimension larger or smaller, but you cannot change the number of
dimensions. For example, you cannot redimension a four-dimensional
array to be a five-dimensional array.

The executable DIM statement cannot be used to dimension virtual
arrays, arrays received as formal parameters, or arrays declared in
COMMON, MAP, or nonexecutable DIM statements.

An executable DIM statement always reinitializes the array to zero (for
numeric arrays) or to the null string if string.

3-64 Statements and Functions

DIMENSION

— If you reference an array element declared in an executable DIM
statement whose subscripts are not within the bounds specified in the
last execution of the DIM, HP BASIC signals the error “Subscript out
of range” (ERR=55).

Examples

Example 1

I Nonvirtual, Nonexecutabl e
DI M STRING nane_list(20 TO 100), BYTE age(100)

Example 2

I'Virtual
DI M #1% STRING nane_list(500), REAL amount (10, 10)

Example 3

I Execut abl e
DI M DOUBLE i nvent or y(base, mar kup)

DI M DOUBLE i nvent ory (new base, new_markup)

Statements and Functions 3-65

ECHO

ECHO

The ECHO function causes characters to be echoed at a terminal that is opened
on a specified channel.

Format
int-var = ECHO (chnl-exp)

Syntax Rules

Chnl-exp must specify a terminal.

Remarks

e The ECHO function is the complement of the NOECHO function; each
function disables the effect of the other.

= The ECHO function has no effect on an unopened channel.

e The ECHO function always returns a value of zero.

Example

DECLARE | NTEGER Y, &
STRI NG pass_word
Y = NOECHO(0%
SET NO PROVPT
I NPUT "Enter your password: ";pass_word
Y = ECHO(0%
| F pass_word = "Darl ene"
THEN
PRINT CR+LF+"YOU ARE CORRECT !"
END | F

Output

Enter your password?
YOU ARE CORRECT !

3-66 Statements and Functions

EDIT$

EDIT$

The EDIT$ function performs one or more string editing functions, depending
on the value of its integer argument.

Format
str-var = EDIT$ (str-exp, int-exp)

Syntax Rules

None

Remarks

= HP BASIC edits str-exp to produce str-var.

= The editing that HP BASIC performs depends on the value of int-exp.
Table 3-2 describes EDIT$ values and functions.

« All values are additive; for example, you can perform the editing functions
of values 8, 16, and 32 by specifying a value of 56.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Statements and Functions 3-67

EDIT$

Table 3—2 EDIT$ Values

Value

Edit Performed

1
2
4

16
32
64

128
256

Discards each character’s parity bit (bit 7)
Discards all spaces and tabs

Discards all carriage returns <CR>, line feeds <LF>, form feeds
<FF>, deletes , escapes <ESC>, and nulls <NUL>

Discards leading spaces and tabs
Converts multiple spaces and tabs to a single space
Converts lowercase letters to uppercase letters

Converts left bracket ([) to left parenthesis [(] and right bracket (])
to right parenthesis [)]

Discards trailing spaces and tabs (same as TRM$ function)
Suppresses all editing for characters within quotation marks; if the

string has only one quotation mark, HP BASIC suppresses all editing
for the characters following the quotation mark

Example

DECLARE STRING ol d_string, new string

old_string = "a value of 32 converts |owercase |letters to uppercase"
new string = EDI T$(ol d_string, 32)

PRINT new_string

Output

A VALUE OF 32 CONVERTS LOWERCASE LETTERS TO UPPERCASE

3-68 Statements and Functions

END

END

The END statement marks the physical and logical end of a main program, a
program module, or a block of statements.

Format
END [block]

(DEF[exp]
FUNCTION[exp]
GROUP
RECORD
VARIANT

IF

HANDLER
PICTURE
PROGRAM[int-exp]
SELECT

WHEN

SUB

block:

Syntax Rules

None

Remarks

= The END statement with no block keyword marks the end of a main
program. The END or END PROGRAM statement must be the last
statement on the last lexical line of the main program.

< The END statement followed by a block keyword marks the end of a
program, a BASIC SUB, FUNCTION, or PICTURE subprogram, a DEF, an
IF, a HANDLER, a PROGRAM, a SELECT statement block or a WHEN
block.

e END RECORD, END GROUP, and END VARIANT mark the end of a
RECORD statement, or a GROUP component or VARIANT component of a
RECORD statement.

Statements and Functions 3-69

END

= END DEF and END FUNCTION

When HP BASIC executes an END DEF or an END FUNCTION
statement, it returns the function value to the statement that invoked
the function and releases all storage associated with the DEF or
FUNCTION.

If you specify an optional expression with the END DEF or END
FUNCTION statement, the expression must be compatible with the
DEF or FUNCTION data type. The expression is the function result
unless an EXIT DEF or EXIT FUNCTION statement is executed. This
expression supersedes all function assignments.

The END DEF statement restores the error handler in effect when the
DEF was invoked (this is not true of the DEF* statement).

The END FUNCTION statement does not affect 1/O operations or
files.

= END HANDLER

The END HANDLER statement causes HP BASIC to transfer control to
the statement following the WHEN block with the exception cleared.

= END PROGRAM

The END PROGRAM statement allows you to end a program module.

An optional integer expression specifies the exit status of the program
that is reported to DCL. This status is overridden by a status
expression in an EXIT PROGRAM statement.

You can specify an END PROGRAM statement without a matching
PROGRAM statement.

= END WHEN

The END WHEN statement ends a WHEN block.

If the END WHEN statement ends an attached handler, and the
handler does not process an error with an EXIT HANDLER, RETRY,
or CONTINUE statement, then control is transferred to the statement
following the WHEN block with the exception cleared.

= END SUB

The END SUB statement does not affect 1/0 operations or files.

The END SUB statement releases the storage allocated to local
variables and returns control to the calling program.

3-70 Statements and Functions

END

— The END SUB statement cannot be executed in an error handler
unless the END SUB is in a subprogram called by the error handler of
another routine.

= When an END or END PROGRAM statement marking the end of a main
program executes, HP BASIC closes all files and releases all program
storage.

« If you use ON ERROR error handling, you must clear any errors with the
RESUME statement before executing an END PROGRAM, END SUB,
END FUNCTION, or END PICTURE statement.

e Except for the END PROGRAM statement, HP BASIC signals an error
when a program contains an END block statement with no corresponding
and preceding block keyword.

Example

10 INPUT "CGuess a number"; A%
IF A% = 24
THEN
PRI NT, "YOU GUESSED IT!"

PRINT, "BIGGER | S BETTER "
G010 10
END I F

IF A% > 24

THEN
PRINT, "SMALLER IS BETTER"
G010 10

END I F

END PROGRAM

Statements and Functions 3-71

ERL

ERL
The ERL function returns the number of the BASIC line where the last error
occurred.

Format
int-var = ERL

Syntax Rules

The value of int-var returned by the ERL function is a LONG integer.

Remarks

If the ERL function is used before an error occurs or after an error is handled,
the results are undefined.

Example

10 DECLARE LONG int _exp
WHEN ERROR USE error _routine
20 INPUT "Enter an integer expression";int_exp
30 PRINT DATES$(int_exp)
END VHEN
HANDLER error _routine
IF ERL = 20
THEN
PRINT “I'nvalid input...try again"
RETRY
ELSE
PRI NT " UNEXPECTED ERROR'
EXI T HANDLER
END I F
END HANDLER
END PROGRAM

3-72 Statements and Functions

ERL

Output

Enter an integer expression? ABCD
Error occurred on line 20

Enter an integer expression? 0
07- Feb- 00

Statements and Functions 3-73

ERNS$

ERN$

The ERNS$ function returns the name of the main program, subprogram, or
DEF function that was executing when the last error occurred.

Format
str-var = ERN$

Syntax Rules

None

Remarks

< |If the ERN$ function executes before an error occurs or after an error is
handled, ERN$ returns a null string.

= If you call a subprogram or function compiled with /NOSETUP or
containing an OPTION INACTIVE=SETUP statement, the ERN$ function
will not have a valid value if an exception occurs in the called procedure.

Example

10 DECLARE LONG i nt _exp

I'This modul e’ s nane is DATE

WHEN ERRCR | N

NPUT "Enter an nunber”;int_exp

USE
PRINT "Error in nodule "; ERNG
RETRY

END WHEN

PRINT Dat e$(int_exp)

END

Output

Enter a nunber? ABCD
Error in nodul e DATE
Enter a nunber? 0
07- Feb- 00

3-74 Statements and Functions

ERR

ERR

The ERR function returns the error number of the current run-time error.

Format
int-var = ERR

Syntax Rules

The value of int-var returned by the ERR function is always a LONG integer.

Remarks

If the ERR function is used before an error occurs or after an error is handled,
the results are undefined.

Example

10 DECLARE LONG int _exp
WHEN ERROR USE error _routine
20 INPUT "Enter an integer expression";int_exp
PRINT DATES$(i nt_exp)
END WHEN
HANDLER error _routine:
PRINT "Error nunber”; ERR
IF ERR = 50 THEN PRINT " DATA FORMAT ERRCR'
ELSE PRI NT "UNEXPECTED ERROR'
END | F
RETRY
END HANDLER
END

Output

Enter an integer expression? ABCD
Error nunber 50

DATA FORMAT ERROR

Enter an integer expression? 0
07- Feb- 00

Statements and Functions 3-75

ERTS$

ERT$

The ERT$ function returns explanatory text associated with an error number.

Format
str-var = ERT$ (int-exp)

Syntax Rules

Int-exp is an HP BASIC error number. The error number should be a valid
BASIC error number.

Remarks

< The ERTS function can be used at any time to return the text associated
with a specified error number.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

< Any error outside the range of valid BASIC RTL errors results in the
following error message: “NOTBASIC, Not a BASIC error” (ERR=194).

3-76 Statements and Functions

ERTS$

Example

10 DECLARE LONG int _exp
VHEN ERROR USE error _routine
20 INPUT "Enter an integer expression";int_exp
PRI NT DATES$(i nt _exp)
END VHEN
HANDLER error _routine
PRINT "Error nunber"; ERR
PRI NT ERT$(ERR)
RETRY
END HANDLER
END

Output

Enter an integer expression? ABCD
Error nunber 50

Y%ata format error

Enter an integer expression? 0
07- Feb- 00

Statements and Functions 3-77

EXIT

EXIT

The EXIT statement lets you exit from a main program, a SUB, FUNCTION,
or PICTURE subprogram, a multiline DEF, a statement block, or a handler.

Format

EXIT block

 DEF[exp |
FUNCTION[exp]
SUB

block: HANDLER

PICTURE

PROGRAM] int-exp]

label

Syntax Rules

Remarks

The DEF, FUNCTION, SUB, HANDLER, and PROGRAM keywords specify
the type of subprogram, multiline DEF, or handler from which HP BASIC
is to exit.

If you specify an optional expression with the EXIT DEF statement or
with the EXIT FUNCTION statement, the expression becomes the function
result and supersedes any function assignment. It also overrides any
expression specified on the END DEF or END FUNCTION statement.
Note that the expression must be compatible with the FUNCTION or DEF
data type.

Label specifies a statement label for an IF, SELECT, FOR, WHILE, or
UNTIL statement block.

An EXIT SUB, EXIT FUNCTION, EXIT PROGRAM, EXIT DEF, or EXIT
PICTURE statement is equivalent to an unconditional branch to an
equivalent END statement. Control then passes to the statement that
invoked the DEF or to the statement following the statement that called
the subprogram.

3-78 Statements and Functions

EXIT

The EXIT HANDLER statement causes HP BASIC to transfer control to a
specified area.

— If the current WHEN block is nested, control transfers to the handler
associated with the next outer protected region.

— If an ON ERROR statement is in effect and the current WHEN block is
not nested, control transfers to the target of the ON ERROR statement.

— If neither of the previous conditions is true, an EXIT HANDLER
statement transfers control to the calling program or DCL. This action
is the equivalent of the ON ERROR GO BACK statement.

The EXIT PROGRAM statement causes HP BASIC to exit from a main
program module.

— An optional integer expression on an EXIT PROGRAM statement
specifies the exit status of the program that is reported to DCL.

— The expression specified by an EXIT PROGRAM statement overrides
any integer expression specified by an END PROGRAM statement.

— HP BASIC allows you to specify an EXIT PROGRAM statement
without a matching PROGRAM statement.

The EXIT label statement is equivalent to an unconditional branch to the
first statement following the end of the IF, SELECT, FOR, WHILE, or
UNTIL statement labeled by the specified label.

An EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement cannot be
used within a multiline DEF function.

When the EXIT FUNCTION, EXIT SUB or EXIT PROGRAM statement
executes, HP BASIC releases all storage allocated to local variables and
returns control to the calling program.

Statements and Functions 3-79

EXIT

Example

DEF enp. bonus(A)
IFA>10
THEN
PRINT "OUT OF RANGE"
EXIT DEF 0
ELSE
enp. bonus = A * 4
END | F
END DEF
I NPUT A
PRI NT enp. bonus(A)
END

Output

?7 1
QUT OF RANGE
0

3-80 Statements and Functions

EXP

EXP

The EXP function returns the value of the mathematical constant e raised to a
specified power.

Format

real-var = EXP (real-exp)

Syntax Rules

None

Remarks

Example

The EXP function returns the value of e raised to the power of real-exp.

HP BASIC expects the argument of the EXP function to be a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

When the default REAL size is SINGLE, DOUBLE, or SFLOAT, EXP
allows arguments from —88 to 88. If the default REAL size is GFLOAT or
TFLOAT, EXP allows arguments from -709 to 709. If the default REAL
size is HFLOAT or XFLOAT, the arguments can be in the range —11356 to
11355. When the argument exceeds the upper limit of a range, HP BASIC
signals an error. When the argument is beyond the lower limit of a range,
the EXP function returns a zero and HP BASIC does not signal an error.

DECLARE SINGLE num val
numval = EXP(4.6)
PRINT num val

Output

99. 4843

Statements and Functions 3-81

EXTERNAL

EXTERNAL

The EXTERNAL statement declares constants, variables, functions, and
subroutines external to your program. You can describe parameters for
external functions and subroutines.

Format

External Constants
EXTERNAL data-type CONSTANT const-name,...

External Variables
EXTERNAL data-type unsubs-var,...

External Functions

EXTERNAL data-type FUNCTION { func-name [pass-mech]
[(external-param ...)] },...

External Subroutines
EXTERNAL SUB { sub-name [pass-mech] [(external-param ,...)] },...

BY VALUE
pass-mech: { BY REF }
BY DESC
external-param: [OPTIONAL] [param-data-type] [DIM([,]...)]
[= int-const] [pass-mech]

External Pictures
EXTERNAL PICTURE pic-name [(param-list)]

Syntax Rules

« For external constants, data-type can be BYTE, WORD, LONG, INTEGER
(if default is not QUAD), SINGLE, SFLOAT, or REAL (if default is SINGLE
or SFLOAT).

= For external variables, the data type can be any valid numeric data type.

3-82 Statements and Functions

EXTERNAL

For external functions and subroutines, the data type can be BYTE,
WORD, LONG, QUAD, SINGLE, DOUBLE, GFLOAT, HFLOAT, SFLOAT,
TFLOAT, XFLOAT, DECIMAL, STRING, INTEGER, REAL, RFA, or a
data type defined with the RECORD statement. See Table 1-2 for more
information about data type size, range, and precision.

The name of an external constant, variable, function, or subroutine can be
from 1 to 31 characters.

For all external routine declarations, the name must be a valid HP BASIC
identifier and must not be the same as any other SUB, FUNCTION,
PICTURE, or PROGRAM name.

For more information about external pictures, see Programming with VAX
BASIC Graphics.

Param-data-type specifies the data type of a parameter. If you do not
specify a data type, parameters are of the default data type and size.

Param-list is identical to external-param except that no OPTIONAL
parameter is allowed.

Parameters in the param-list must agree in number and data type
with the parameters in the invocation. Param-data-type includes ANY,
BYTE, WORD, LONG, QUAD, INTEGER, SINGLE, DOUBLE, GFLOAT,
HFLOAT, SFLOAT, TFLOAT, XFLOAT, READ, a user-defined RECORD
type, STRING, or RFA.

A maximum of 255 parameters may be passed.
External Functions and Subroutines

— The data type that precedes the keyword FUNCTION defines the data
type of the function result.

— Pass-mech specifies how parameters are to be passed to the function or
subroutine.

< A pass-mech clause outside the parentheses applies to all
parameters.

= A pass-mech clause inside the parentheses overrides the previous
pass-mech and applies only to the specific parameter.

— External-param defines the form of the arguments passed to the
external function or subprogram. Empty parentheses indicate that the
subprogram expects zero parameters. Missing parentheses indicate
that the EXTERNAL statement does not define parameters.

Statements and Functions 3-83

EXTERNAL

e Using ANY as a BASIC Data Type

The ANY data type should only be used for calling non-BASIC
procedures. Therefore, the ANY data type is illegal in a PICTURE
declaration.

If you specify ANY, HP BASIC does not perform data type checking
or conversions. If no passing mechanism is specified, HP BASIC uses
the default passing mechanism for the data type passed in a given
invocation.

When you specify a data type, all following parameters that are not
specifically declared default to the last specified data type. Similarly,
when you specify ANY, all following unspecified parameters default to
the data type ANY until a new declaration is provided. For example:

EXTERNAL SUB al | ocate (LONG ANY,)

= Passing Optional Parameters

The OPTIONAL keyword should be used only for calling non BASIC
procedures.

If you specify the keyword OPTIONAL, HP BASIC treats all following
parameters as optional. In the following example, the last three
parameters are optional:

EXTERNAL SUB queue(STRING OPTIONAL STRING LONG ANY)

HP BASIC still performs type checking and conversion on optional
parameters.

If you want to omit an optional parameter that appears in the middle
of a parameter list, HP BASIC requires you to insert a comma
placeholder. However, if you want to omit an optional parameter that
appears at the end of a parameter list, you can omit that parameter
without inserting any placeholder.

You can specify the keyword OPTIONAL only once in any one
parameter list.

= Declaring Array Dimensions

The DIM keyword indicates that the parameter is an array. Commas
specify array dimensions. The number of dimensions is equal to the
number of commas plus 1. For example:

EXTERNAL STRING FUNCTI ON new (DOUBLE, STRING DIM,), DIM))

3-84 Statements and Functions

Remarks

EXTERNAL

This statement declares a function named new that has three parameters.
The first is a double-precision floating-point value, the second is a two-
dimensional string array, and the third is a one-dimensional string array.
The function returns a string result.

The EXTERNAL statement must precede any program reference to
the constant, variable, function, subroutine or picture declared in the
statement.

The EXTERNAL statement is not executable.

A name declared in an EXTERNAL CONSTANT statement can be used in
any nondeclarative statement as if it were a constant.

A name declared in an EXTERNAL FUNCTION statement can be used
as a function invocation in an expression. In addition, you can invoke
a function with the CALL statement unless the function data type is
DECIMAL, HFLOAT, or STRING.

A name declared in an EXTERNAL SUB statement can be used in a CALL
statement.

The optional pass-mech clauses in the EXTERNAL FUNCTION and
EXTERNAL SUB statements tell HP BASIC how to pass arguments to a
non BASIC function or subprogram.

— BY VALUE specifies that HP BASIC passes the argument’s value.

— BY REF specifies that HP BASIC passes the argument’s address. This
is the default for all arguments except strings and entire arrays. If
you know the size of string parameters and the dimensions of array
parameters, you can improve run-time performance by passing strings
and arrays by reference.

— BY DESC specifies that HP BASIC passes the address of a BASIC
descriptor. For information about the format of a BASIC descriptor for
strings and arrays, see Appendix A.

If you do not specify the data type ANY or declare parameters as optional,
the arguments passed to external functions and subroutines should match
the external parameters declared in the EXTERNAL FUNCTION or
EXTERNAL SUB statement in number, type, and passing mechanism. HP
BASIC forces arguments to be compatible with declared parameters. If
they are not compatible, HP BASIC signals an error.

Statements and Functions 3-85

EXTERNAL

Examples

Example 1

| Ext ernal Const ant
EXTERNAL LONG CONSTANT SS$ NORMAL

Example 2

I External Variable
EXTERNAL WORD SYSNUM

Example 3

I External Function
EXTERNAL DOUBLE FUNCTI ON USR$2(WORD, LONG, ANY)

Example 4

I Ext ernal Subroutine
EXTERNAL SUB cal ¢ BY DESC (STRING DIM,), BYTE BY REF)

3-86 Statements and Functions

FIELD

FIELD

The FIELD statement dynamically associates string variables with all or parts
of a record buffer. FIELD statements do not move data. Instead, they permit
direct access through string variables to sections of a specified record buffer.

Note

The FIELD statement is supported only for compatibility with
BASIC-PLUS-2. Because data defined in the FIELD statement can

be accessed only as string data, you must use the CVTxx functions

to process numeric data; therefore, you must convert string data

to numeric after you move it from the record buffer. Then, after
processing, you must convert numeric data back to string data before
transferring it to the record buffer. It is recommended that you use the
HP BASIC dynamic mapping feature or multiple maps instead of the
FIELD statement and CVTxx functions.

Format
FIELD #chnl-exp, int-exp AS str-var[, int-exp AS str-var]...

Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#). A file must be open on the specified channel or HP BASIC signals
an error.

= Int-exp specifies the number of characters in str-var. However, a
subsequent int-exp cannot depend on the return string from a previous
int-exp. For example, the following statement is illegal because the second
int-exp depends on the return string A$:

FIELD #1% 1%AS A3, ASCII(A3) AS B$

Statements and Functions 3-87

FIELD

Remarks

< A FIELD statement is executable. You can change a buffer description at
any time by executing another FIELD statement. For example:

FIELD #1% 40% AS whol e_fi el d$
FIELD #1% 10% AS A$, 10% AS B$, 10% AS C$, 10% AS D§$

The first FIELD statement associates the first 40 characters of a buffer
with the variable whole_field$. The second FIELD statement associates
the first 10 characters of the same buffer with A$, the second 10 characters
with B$, and so on. Later program statements can refer to any of the
variables named in the FIELD statements to access specific portions of the
buffer.

= You cannot define virtual array strings as string variables in a FIELD
statement.

< A variable named in a FIELD statement cannot be used in a COMMON
or MAP statement, as a parameter in a CALL or SUB statement, or in a
MOVE statement.

= Attempting to access an element of a virtual array in a virtual file that
has associated FIELD variables, causes BASIC to signal “lllegal operation”
(ERR=141).

< If you name an array in a FIELD statement, you cannot use MAT
statements in the following format:

MAT array-nanel
MAT array-nanmel

array-nanme2
NUL$

where array-namel is named in a FIELD statement. This causes HP
BASIC to signal a compile-time error.

Example

3-88 Statements and Functions

FIELD

FIELD #8% 2% AS US, 2% AS CL$, 4%AS X$, 4% AS Y$
LSET US = OVTO8(W%

LSET CL$ = CVI%(CL%

LSET X$ = CVIF$(X)

LSET Y$ = CVIFS$(Y)

Wh = CVT$Y LS)

CL% = CVT$% CL$)

X = CVT$F(X$)

Y = CVT$F(Y$)

Statements and Functions 3-89

FIND

FIND

The FIND statement locates a specified record in a disk file and makes it the
current record for a GET, UPDATE, or DELETE operation. FIND statements
are valid on RMS sequential, relative, and indexed files.

Format

FIND #chnl-exp [, position-clause | [, lock-clause]

RFA rfa-exp
position-clause: { RECORD rec-exp }
KEY# key-clause

lock-clause: WAIT [int-exp]

{ ALLOW allow-clause [, WAIT [int-exp]] }
REGARDLESS

NONE
allow-clause: { READ }

MODIFY
key-clause: int-expl rel-op key-exp

EQ
GE
rel-op: NXEQ
GT
NX

int-exp2
str-exp
decimal-exp
quadword-exp

key-exp:

3-90 Statements and Functions

Syntax Rules

Remarks

FIND

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

If you specify a lock-clause, it must follow the position-clause. If the
lock-clause precedes the position-clause, HP BASIC signals an error.

If you specify the REGARDLESS lock-clause, you cannot specify another
lock-clause in the same FIND statement.

Position-clause

Position-clause specifies the position of a record in a file. HP BASIC
signals an error if you specify a position-clause and the channel is not
associated with a disk file. If you do not specify a position-clause, FIND
locates records sequentially. Sequential record access is valid on all
files.

The RFA position-clause allows you to randomly locate records by
specifying the record file address (RFA) of a record. You specify the
disk address of a record, and RMS locates the record at that address.
All file organizations can be accessed by RFA.

Rfa-exp in the RFA position-clause is a variable of the RFA data type
that specifies the record’s file address. Note that an RFA expression
can only be a variable of the RFA data type or the GETRFA function.
Use the GETRFA function to find the RFA of a record.

The RECORD position-clause allows you to randomly locate records in
relative and sequential fixed files by specifying the record number.

= Rec-exp in the RECORD position-clause specifies the number of the
record you want to locate. It must be between 1 and the number of
the record with the highest number in the file.

= When you specify a RECORD clause, chnl-exp must be a channel
associated with an open relative or sequential fixed file.

The KEY position-clause allows you to randomly locate records in
indexed files by specifying a key of reference, a relational test, and a
key value.

Statements and Functions 3-91

FIND

An RFA value is valid only for the life of a specific version of a file. If a
new version of a file is created, the RFA values may change.

Attempting to access a record with an invalid RFA value results in a
run-time error.

e Lock-clause

Lock-clause allows you to control how a record is locked to other access
streams, to override lock checking when accessing shared files that may
contain locked records, or to specify what action to take in the case of a
locked record.

The type of lock you impose on a record remains in effect until you
explicitly unlock it with a FREE or UNLOCK statement, until you close
the file, or until you perform a GET, FIND, UPDATE or DELETE on
the same channel (unless you specified UNLOCK EXPLICIT).

The REGARDLESS lock-clause specifies that the FIND statement can
override lock checking and locate a record locked by another program.

When you specify a REGARDLESS lock-clause, HP BASIC does not
impose a lock on the retrieved record.

The ALLOW lock-clause lets you control how a record is locked to other
users and access streams. The file associated with the specified channel
must have been opened with the UNLOCK EXPLICIT clause or HP
BASIC signals the error “lllegal record locking clause.”

The ALLOW allow-clause can be one of the following:

e ALLOW NONE denies access to the record. This means that other
access streams cannot retrieve the record unless they bypass lock
checking with the GET REGARDLESS clause.

= ALLOW READ provides read access to the record. This means that
other access streams can retrieve the record but cannot use the
DELETE or UPDATE statements on the record.

e ALLOW MODIFY provides read and write to the record. This
means that other access streams can use the GET, FIND, DELETE,
and UPDATE statements on the record.

If you do not open a file with the ACCESS READ clause or specify an
allow-clause, locking is imposed as follows:

= If the file associated with the specified channel was opened with
UNLOCK EXPLICIT, HP BASIC imposes the ALLOW NONE lock

3-92 Statements and Functions

FIND

on the retrieved record and the next GET or FIND operation does
not unlock the previously locked record.

= If the file associated with the specified channel was not opened with
UNLOCK EXPLICIT, HP BASIC locks the retrieved record and
unlocks the previously locked record.

The WAIT lock-clause accepts an optional int-exp. Int-exp represents a
timeout value in seconds. Int-exp must be from 0 through 255 or HP
BASIC signals a warning message.

< WAIT followed by a timeout value causes RMS to wait for a locked
record for a given period of time.

= WAIT followed by no timeout value indicates that RMS should wait
indefinitely for the record to become available.

= If you specify a timeout value and the record does not become
available within that period, HP BASIC signals the run-time
error “Keyboard wait exhausted” (ERR=15). VMSSTATUS and
RMSSTATUS then return RMS$_TMO. For more information about
the RMSSTATUS and VMSSTATUS functions, see this chapter and
the HP BASIC for OpenVMS User Manual.

« If you attempt to wait for a record that another user has locked,
and consequently that user attempts to wait for the record you have
locked, a deadlock condition occurs. When a deadlock condition
persists for a period of time (as defined by the SYSGEN parameter
DEADLOCK_WAIT), RMS signals the error “RMS$_DEADLOCK”
and HP BASIC signals the error “Detected deadlock error while
waiting for GET or FIND” (ERR=193).

= If you specify a WAIT clause followed by a timeout value that is
less than the SYSGEN parameter DEADLOCK_WAIT, HP BASIC
signals the error “Keyboard wait exhausted” (ERR=15) even though
a deadlock condition may exist.

< Key-clause

In a key-clause, int-expl is the target key of reference. It must be

an integer in the range of zero to the highest-numbered key for the
file. The primary key is #0, the first alternate key is #1, the second
alternate key is #2, and so on. Int-expl must be preceded by a number
sign (#) or HP BASIC signals an error.

When you specify a key-clause, the specified channel must be a channel
associated with an open indexed file.

Statements and Functions 3-93

FIND

e Rel-op

— Rel-op is a relational operator that specifies how key-exp is to be
compared with int-expl in the key-clause.

EQ means “equal to”

NXEQ means “next or equal to”

GE means “greater than or next” (a synonym for NXEQ)
NX means “next”

GT means “greater than” (a synonym for NX)

— A successful random FIND operation by key locates the first record
whose key satisfies the key-clause comparison:

With an exact key match (EQ), a successful FIND locates the first
record in the file that equals the key value specified in key-exp.
However, if the characters specified by a str-exp key expression

are less than the key length, characters specified by str-exp are
matched approximately rather than exactly. For example, if you
specify ABC and the key length is six characters, HP BASIC locates
the first record that begins with ABC. If you specify ABCABC,

HP BASIC locates only a record with the key ABCABC. If no
match is possible, HP BASIC signals the error “Record not found”
(ERR=155).

If you specify a next or equal to record key match (NXEQ), a
successful FIND locates the next record that equals the key length
specified in int-exp or str-exp. If no exact match exists, HP BASIC
locates the next record in the key sort order. If the keys are in
ascending order, the next record will have a greater key value. If
the keys are in descending order, the next record will have a lesser
key value.

If you specify a greater than or equal to key match (GE), the
behavior is identical to that of next or equal to (NXEQ). (Likewise,
the behavior of GT is identical to NX.) However, the use of GE in a
descending key file may be confusing, because GE will retrieve the
next record in the key sort order, but the next record will have a
lesser key value. For this reason, it is recommended that you use
NXEQ in new program development, especially if you are using
descending key files.

3-94 Statements and Functions

FIND

< If you specify a next key match (NX), a successful FIND locates the
first record that follows the relational operator in the sort order.
If no such record exists, HP BASIC signals the error “Record not
found” (ERR=155).

Key-exp

Int-exp2 specifies an integer value to be compared with the key value of
a record.

Str-exp specifies a string value to be compared with the key value of a
record. Str-exp can contain fewer characters than the key of the record
you want to locate, but cannot be a null string.

Str-exp cannot contain more characters than the key of the record you
want to locate. If str-exp does contain more characters than the key,
BASIC signals "Key size too large" (ERR = 145).

Decimal-exp in the key-clause specifies a packed decimal value to be
compared with the key value of a record.

Quadword-exp in the key-clause specifies a record or group exactly 8
bytes long to be compared with the key value of a record.

The file on the specified channel must have been opened with ACCESS
MODIFY, ACCESS READ, or SCRATCH before your program can execute
a FIND operation.

FIND does not transfer any data to the record buffer. To access the
contents of a record, use the GET statement.

A successful sequential FIND operation updates both the current record
pointers and next record pointers.

For sequential files, a successful FIND operation locates the next
sequential record (the record pointed to by the next record pointer) in
the file, changes the current record pointer to the record just found, and
the next record pointer to the next sequential record. If the current
record pointer points to the last record in a file, a sequential FIND
operation causes HP BASIC to signal “Record not found” (ERR=155).

For relative files, a successful FIND operation locates the record that

exists with the next higher record number (or cell number), makes it

the current record, and changes the next record pointer to the current
record pointer plus 1.

Statements and Functions 3-95

FIND

— For indexed files, a successful FIND operation locates the next existing
logical record in the current key of reference, makes this the current
record, and changes the next record pointer to the current record
pointer plus 1.

= A successful random access FIND operation by RFA or by record changes
the current record pointer to the record specified by rfa-exp or int-exp, but
leaves the next record pointer unchanged.

= A successful random access FIND operation by key changes the current
record pointer to the first record whose key satisfies the key-clause
comparison and leaves the next record pointer unchanged.

< When a random access FIND operation by RFA, record, or key is not
successful, HP BASIC signals “Record not found” (ERR=155). The values of
the current record pointer and next record pointer are undefined.

= You should not use a FIND statement on a terminal-format or virtual array
file.

Example

DECLARE LONG rec-num

MAP (cusrec) WORD cus_num &
STRING cus_name20, cus_add=20, cus_city=10, cus_zip=9
OPEN "CUS_ACCT. DAT" FOR I NPUT AS #1, &
RELATI VE FI XED, &
ACCESS MODI FY &

MAP cusrec

I NPUT "Whi ch record number woul d you like to delete";rec_num
FIND #1, RECORD rec_num WAIT

DELETE #1

CLOSE #1

END

3-96 Statements and Functions

FIX

FIX

The FIX function truncates a floating-point value at the decimal point and
returns the integer portion represented as a floating-point value.

Format

real-var = FIX (real-exp)

Syntax Rules

None

Remarks

= The FIX function returns the integer portion of a floating-point value, not
an integer value.

= HP BASIC expects the argument of the FIX function to be a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

= If real-exp is negative, FIX returns the negative integer portion. For
example, FIX(-5.2) returns -5.

Example

DECLARE SI NGLE resul t
result = FIX(-3.333)
PRI NT FI X(24.566), result

Output
24 -3

Statements and Functions 3-97

FNEND

FNEND

The FNEND statement is a synonym for the END DEF statement. See the
END statement for more information.

Format
FNEND [exp]

3-98 Statements and Functions

FNEXIT

FNEXIT

The FNEXIT statement is a synonym for the EXIT DEF statement. See the
EXIT statement for more information.

Format
FNEXIT [exp]

Statements and Functions 3-99

FOR

FOR

Format

The FOR statement repeatedly executes a block of statements, while
incrementing a specified control variable for each execution of the statement
block. FOR loops can be conditional or unconditional, and can modify other
statements.

Unconditional

FOR num-unsubs-var = num-expl TO num-exp2 [STEP num-exp3]
[statement ...

NEXT num-unsubs-var

Conditional
UNTIL

WHILE } cond-exp

FOR num-unsubs-var = num-expl [STEP num-exp3] {

[statement]...
NEXT num-unsubs-var

Unconditional Statement Modifier
statement FOR num-unsubs-var = num-expl TO num-exp2 [STEP num-exp3]

Conditional Statement Modifier
UNTIL

statement FOR num-unsubs-var = num-expl [STEP num-exp3] { WHILE

} cond-exp

Syntax Rules

< Num-unsubs-var must be a numeric, unsubscripted variable. Num-unsubs-
var cannot be a record field.

< Num-unsubs-var is the loop variable. It is incremented each time the loop
executes.

< In unconditional FOR loops, num-expl is the initial value of the loop
variable; num-exp2 is the maximum value.

= In conditional FOR loops, num-expl is the initial value of the loop variable,
while the cond-exp in the WHILE or UNTIL clause is the condition that
controls loop iteration.

3-100 Statements and Functions

Remarks

FOR

Num-exp3 in the STEP clause is the value by which the loop variable is
incremented after each execution of the loop.

There is a limit to the number of inner loops you can contain within a
single outer loop. This number varies according to the complexity of the
loops. If you exceed the limit, HP BASIC signals an error message.

An inner loop must be entirely within an outer loop; the loops cannot
overlap.

You cannot use the same loop variable in nested FOR loops. For example,
if the outer loop uses FOR | =1 TO 10, you cannot use the variable | as a
loop variable in an inner loop.

The default for num-exp3 is 1 if there is no STEP clause.

You can transfer control into a FOR loop only by returning from a function
invocation, a subprogram call, a subroutine call, or an error handler that
was invoked in the loop.

The starting, incrementing, and ending values of the loop do not change
during loop execution.

The loop variable can be modified inside the FOR loop.

HP BASIC converts num-expl, num-exp2, and num-exp3 to the data type of
the loop variable before storing them.

When an unconditional FOR loop ends, the loop variable contains the value
last used in the loop, not the value that caused loop termination.

During each iteration of a conditional loop, HP BASIC tests the value of
cond-exp before it executes the loop.

— If you specify a WHILE clause and cond-exp is false (value zero), HP
BASIC exits from the loop. If the cond-exp is true (value nonzero), the
loop executes again.

— If you specify an UNTIL clause and cond-exp is true (value nonzero),
HP BASIC exits from the loop. If the exp is false (value zero), the loop
executes again.

When FOR is used as a statement modifier, HP BASIC executes the
statement until the loop variable equals or exceeds num-exp2 or until the
WHILE or UNLESS condition is satisfied.

Statements and Functions 3-101

FOR

e Each FOR statement must have a corresponding NEXT statement or HP
BASIC signals an error. (This is not the case if the FOR statement is used
as a statement modifier.)

Examples

Example 1

I'Uncondi ti onal

DECLARE LONG course_num STRING course_nam
FOR1 =3 TO 12 STEP 3

I NPUT " Course number"; course_num

[NPUT " Course name"; course_nam

NEXT |

Output

Cour se number? 221

Cour se name? Bot any

Cour se number? 231

Course nanme? Organic Chenistry

Cour se number? 237

Course name? Life Science Il

Cour se number? 244

Cour se name? Progranming in HP BASIC

Example 2

I'Uncondi tional Statenent Mdifier

DECLARE | NTEGER count er

PRINT "This is an unconditional statement nodifier" FOR counter = 1 TO 3
END

Output

This is an unconditional statement nodifier
This is an unconditional statement nodifier
This is an unconditional statement nodifier

Example 3
I'Condi tional Statenment Modifier
DECLARE | NTEGER counter, &
STRING ny_nane
INPUT "Try and guess ny nane";ny_nane FOR counter = 1 UNTIL nmy_nane = "HP BASIC'
PRINT "You guessed it!"

3-102 Statements and Functions

Output

Try and guess ny name? VAX PASCAL
Try and guess nmy nane? VAX SCAN
Try and guess my nanme? HP BASIC
You guessed it!

FOR

Statements and Functions 3-103

FORMATS$

FORMAT$

The FORMAT$ function converts an expression to a formatted string.

Format
str-var = FORMAT$ (exp, str-exp)

Syntax Rules

The rules for building a format string are the same as those for printing
numbers with the PRINT USING statement. See the description of the PRINT
USING statement for more information.

Remarks

It is recommended that you use compile-time constant expressions for string
expressions whenever possible. When you do this, the HP BASIC compiler
compiles the string at compilation time rather than at run time, thus
improving the performance of your code.

Example

DECLARE STRING resul t, &
I NTEGER num exp
numexp = 12345
result = FORMATS(num exp, "##, ###")
PRINT resul t

Output
12, 345

3-104 Statements and Functions

FREE

FREE

The FREE statement unlocks all records and buckets associated with a
specified channel.

Format
FREE #chnl-exp

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel number associated
with a file. It must be immediately preceded by a number sign (#).

Remarks

= The file specified by chnl-exp must be open.
< You cannot use the FREE statement with files not on disk.

< If there are no locked records or buckets on the specified channel, the
FREE statement has no effect and HP BASIC does not signal an error.

= The FREE statement does not change record buffers or pointers.

= After a FREE statement has executed, your program must execute a GET
or FIND statement before a PUT, UPDATE, or DELETE statement can
execute successfully.

Example

OPEN " CUST_ACCT. DAT" FOR I NPUT AS #3

INPUT "Enter customer record nunber to retrieve";cust_rec_num
FREE #3
GET #3

Statements and Functions 3-105

FREE

In this example, CUST_ACCT.DAT is opened for input. The FREE statement
unlocks all records associated with the specified channel contained in the file.
Once the FREE statement successfully executes, you can then obtain a record

with either a FIND or GET statement.

3-106 Statements and Functions

FSP$

FSPS$

The FSP$ function returns a string describing an open file on a specified
channel.

Note

HP BASIC supports the FSP$ function for compatibility with
BASIC-PLUS-2. It is recommended that you use the USEROPEN
routine to identify file characteristics.

Format
str-var = FSP$ (chnl-exp)

Syntax Rules

= A file must be open on chnl-exp.

e The FSP$ function must come immediately after the OPEN statement for
the file.

Remarks

= Use the FSP$ function with files opened as ORGANIZATION
UNDEFINED. Then use multiple MAP statements to interpret the
returned data.

< See the HP BASIC for OpenVMS User Manual and the OpenVMS Record
Management Services Reference Manual for more information about FSP$
values.

Statements and Functions 3-107

FSP$

Example

10 MAP (A) STRING A = 32
MAP (A) BYTE org, rat, WORD mrs, LONG alq, &
WORD bks_bl's, num keys, LONG ntn

OPEN " STUDENT. DAT" FOR | NPUT AS #1% &
ORGAN ZATI ON' UNDEFI NED, &
RECORDTYPE ANY, ACCESS READ

A = FSP$(1%

PRINT "RMS organi zation = ";org

PRINT "RMS record attributes = ";rat
PRINT "RMS maxi numrecord size = ";nrs
PRINT "RMS al | ocation quantity = ";alq
PRINT "RMS bucket size = ";bks bls
PRINT "Nunber of keys = ";num keys
PRINT "RMS maxi num record nunber = ";nrn

Output

RMS organi zation = 2
RVS record attributes =
RVS maxi num record size
RMS al | ocation quantity
RVS bucket size =0
Nunber of keys =0

RVS maxi num record nunmber = 0

I~
= o1

3-108 Statements and Functions

FUNCTION

FUNCTION

The FUNCTION statement marks the beginning of a FUNCTION subprogram
and defines the subprogram’s parameters.

Format

FUNCTION data-type func-name [pass-mech] [([formal-param],...)]
[statement]...

END FUNCTION [exp]
{ FUNCTIONEND [exp] }

BY REF
pass-mech: { BY DESC }

BY VALUE

il

unsubs-var
formal param: [data-type] { array-name ([lnt-const] . }
[= int-const] [pass-mech]

Syntax Rules

= Func-name names the FUNCTION subprogram.

e Func-name can be from 1 through 31 characters. The first character must
be an alphabetic character (A to Z). The remaining characters, if present,
can be any combination of letters, digits (O to 9), dollar signs ($), periods
(.), or underscores (_).

= Data-type can be any HP BASIC data type keyword or a data type defined
in the RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

= The data type that precedes the func-name specifies the data type of the
value returned by the function.

e Formal-param specifies the number and type of parameters for the
arguments the function expects to receive when invoked.

— Empty parentheses indicate that the function has no parameters.

Statements and Functions 3-109

FUNCTION

— Data-type specifies the data type of a parameter. If you do not specify a
data type, parameters are of the default data type and size. When you
do specify a data type, all following parameters are of that data type
until you specify a new data type.

If the data type is STRING and the passing mechanism is by reference
(BY REF), the =int-const clause allows you to specify the length of the
string.

— Parameters defined in formal-param must agree in number and type
with the arguments specified in the function invocation. HP BASIC
allows you to specify from 1 to 255 formal parameters.

= Pass-mech specifies the parameter-passing mechanism by which the
FUNCTION subprogram receives arguments when invoked. A pass-mech
clause should be specified only when the FUNCTION subprogram is being
called by a non BASIC program or when the FUNCTION receives a string
or array by reference.

= A pass-mech clause outside the parentheses applies by default to all
function parameters. A pass-mech clause in the formal-param list overrides
the specified default and applies only to the immediately preceding
parameter.

= Exp specifies the function result, which supersedes any function
assignment. Exp must be compatible with the function’s data type.

Remarks

e The FUNCTION statement must be the first statement in the FUNCTION
subprogram.

< Every FUNCTION statement must have a corresponding END FUNCTION
or FUNCTIONEND statement.

< Any HP BASIC statement except END, PICTURE, END PICTURE,
PROGRAM, END PROGRAM, SUB, SUBEND, END SUB, or SUBEXIT
can appear in a FUNCTION subprogram.

= FUNCTION subprograms must be declared with the EXTERNAL
statement before your HP BASIC program can invoke them.

< FUNCTION subprograms receive parameters by reference, by descriptor,
or by value.

— BY REF specifies that the function receives the argument’s address.

3-110 Statements and Functions

Example

FUNCTION

— BY DESC specifies that the function receives the address of a BASIC
descriptor. For information about the format of a BASIC descriptor for
strings and arrays, see the HP BASIC for OpenVMS User Manual; for
information about other types of descriptors, see the OpenVMS Calling
Standard.

— BY VALUE specifies that the function receives a copy of the argument
value.

By default, FUNCTION subprograms receive numeric unsubscripted
variables by reference, and all other parameters by descriptor. You can
override these defaults with a BY clause:

— If you specify a string length with the =int-const clause, you must also
specify BY REF. If you specify BY REF and do not specify a string
length, HP BASIC uses the default string length of 16.

— If you specify array bounds, you must also specify BY REF.

All variables and data, except virtual arrays, COMMON areas, MAP areas,
and EXTERNAL variables, in a FUNCTION subprogram, are local to the
subprogram.

HP BASIC initializes local numeric variables to zero and local string
variables to the null string each time the FUNCTION subprogram is
invoked.

If an exception is not handled within the FUNCTION subprogram, control
is transferred back to the main program that invoked the function.

Functions can be recursive.

FUNCTI ON REAL sphere_vol une (REAL R)
IF R< 0 THEN EXIT FUNCTI ON
sphere_volume = 4/3 * Pl *R **3

END FUNCTI ON

Statements and Functions 3-111

FUNCTIONEND

FUNCTIONEND

The FUNCTIONEND statement is a synonym for the END FUNCTION
statement. See the END statement for more information.

Format
FUNCTIONEND [exp]

3-112 Statements and Functions

FUNCTIONEXIT

FUNCTIONEXIT

The FUNCTIONEXIT statement is a synonym for the EXIT FUNCTION
statement. See the EXIT statement for more information.

Format
FUNCTIONEXIT [exp]

Statements and Functions 3-113

GET

GET

The GET statement copies a record from a file to a record buffer and makes the
data available for processing. GET statements are valid on sequential, relative,
and indexed files.

Format

GET #chnl-exp [, position-clause | [, lock-clause]

RFA rfa-exp
position-clause: { RECORD rec-exp }
KEY# key-clause

lock-clause: WAIT [int-exp]

{ ALLOW allow-clause [, WAIT [int-exp]] }
REGARDLESS

NONE
allow-clause: { READ }

MODIFY
key-clause: int-expl rel-op key-exp

EQ
GE
rel-op: NXEQ
GT
NX

int-exp2
str-exp
decimal-exp
quadword-exp

key-exp

3-114 Statements and Functions

Syntax Rules

Remarks

GET

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

If you specify a lock-clause, it must follow the position-clause. If the
lock-clause precedes the position-clause, HP BASIC signals an error.

If you specify the REGARDLESS lock-clause, you cannot specify another
lock-clause in the same GET statement.

Position-clause

Position-clause specifies the position of a record in a file. HP BASIC
signals an error if you specify a position-clause and chnl-exp is not
associated with a disk file. If you do not specify a position-clause, GET
retrieves records sequentially. Sequential record access is valid on all
files.

The RFA position-clause allows you to randomly retrieve records by
specifying the record file address (RFA); you specify the disk address
of a record, and RMS retrieves the record at that address. All file
organizations can be accessed by RFA.

Rfa-exp in the RFA position-clause is an expression of the RFA data
type that specifies the record’s file address. An RFA expression must
be a variable of the RFA data type or the GETRFA function. Use the
GETRFA function to obtain the RFA of a record.

The RECORD position-clause allows you to randomly retrieve records
in relative and sequential fixed files by specifying the record number.

= Rec-exp in the RECORD position-clause specifies the number of the
record you want to retrieve. It must be between 1 and the number
of the record with the highest number in the file.

= When you specify a RECORD clause, chnl-exp must be a channel
associated with an open relative or sequential fixed file.

The KEY position-clause allows you to randomly retrieve records in
indexed files by specifying a key of reference, a relational test, or a key
value.

Statements and Functions 3-115

GET

An RFA value is valid only for the life of a specific version of a file. If a
new version of a file is created, the RFA values may change.

Attempting to access a record with an invalid RFA value results in a
run-time error.

e Lock-clause

Lock-clause allows you to control how a record is locked to other access
streams, to override lock checking when accessing shared files that may
contain locked records, or to specify what action to take in the case of a
locked record.

The type of lock you impose on a record remains in effect until you
explicitly unlock it with a FREE or UNLOCK statement, until you close
the file, or until you perform a GET, FIND, UPDATE or DELETE on
the same channel (unless you specified UNLOCK EXPLICIT).

The REGARDLESS lock-clause specifies that the GET statement can
override lock checking and read a record locked by another program.

When you specify a REGARDLESS lock-clause, HP BASIC does not
impose a lock on the retrieved record.

If you specify an ALLOW lock-clause, the file associated with chnl-exp
must have been opened with the UNLOCK EXPLICIT clause or HP
BASIC signals the error “lllegal record locking clause.”

The ALLOW allow-clause can be one of the following:

< ALLOW NONE denies access to the record. This means that other
access streams cannot retrieve the record unless they bypass lock
checking with the REGARDLESS clause.

e ALLOW READ provides read access to the record. This means that
other access streams can retrieve the record, but cannot DELETE
or UPDATE the record.

e ALLOW MODIFY provides both read and write access to the
record. This means that other access streams can GET, FIND,
DELETE, or UPDATE the record.

If you do not open a file with ACCESS READ or specify an ALLOW
lock-clause, locking is imposed as follows:

= If the file associated with chnl-exp was opened with UNLOCK
EXPLICIT, HP BASIC imposes the ALLOW NONE lock on the
retrieved record and the next GET or FIND statement does not
unlock the previously locked record.

3-116 Statements and Functions

GET

If the file associated with chnl-exp was not opened with UNLOCK
EXPLICIT, HP BASIC locks the retrieved record and unlocks the
previously locked record.

The WAIT lock-clause accepts an optional int-exp. Int-exp represents a
timeout value in seconds. Int-exp must be from 0 to 255 or HP BASIC
issues a warning message.

WAIT followed by a timeout value causes RMS to wait for a locked
record for a given period of time.

WAIT followed by no timeout value indicates that RMS should wait
indefinitely for the record to become available.

If you specify a timeout value and the record does not become
available within that period, HP BASIC signals the run-time

error “Keyboard wait exhausted” (ERR=15). VMSSTATUS and
RMSSTATUS then return RMS$_TMO. For more information about
these functions, see the RMSSTATUS and VMSSTATUS functions
in this chapter and the HP BASIC for OpenVMS User Manual.

If you attempt to wait for a record that another user has locked,
and consequently that user attempts to wait for the record you have
locked, a deadlock condition occurs. When a deadlock condition
persists for a period of time (as defined by the SYSGEN parameter
DEADLOCK_WAIT), RMS signals the error “RMS$ _DEADLOCK"
and HP BASIC signals the error “Detected deadlock error while
waiting for GET or FIND” (ERR=193).

If you specify a WAIT clause followed by a timeout value that is
less than the SYSGEN parameter DEADLOCK_WAIT, then HP
BASIC signals the error “Keyboard wait exhausted” (ERR=15) even
though a deadlock condition may exist.

If you specify a WAIT clause on a GET operation to a unit device,
the timeout value indicates how long to wait for the input to
complete. This is equivalent to the WAIT statement.

e Key-clause

In a key-clause, int-expl is the target key of reference. It must be an
integer value in the range of zero to the highest-numbered key for the
file. The primary key is #0, the first alternate key is #1, the second
alternate key is #2, and so on. Int-expl must be preceded by a number
sign (#) or HP BASIC signals an error.

When you specify a key-clause, chnl-exp must be a channel associated
with an open indexed file.

Statements and Functions 3-117

GET

Rel-op

Rel-op specifies how key-exp is to be compared with int-expl in the
key-clause.

< EQ means “equal to”

< NXEQ means “next or equal to”

= GE means “greater than or equal to” (a synonym for NXEQ)
= NX means “next”

= GT means “greater than” (a synonym for NX)

With an exact key match (EQ), a successful GET operation retrieves
the first record in the file that equals the key value specified in key-exp.
If the key expression is a str-exp whose length is less than the key
length, characters specified by the str-exp are matched approximately
rather than exactly. That is, if you specify a string expression ABC and
the key length is six characters, HP BASIC matches the first record
that begins with ABC. If you specify ABCABC, HP BASIC matches
only a record with the key ABCABC. If no match is possible, HP BASIC
signals the error “Record not found” (ERR=155).

If you specify a next or equal to key match (NXEQ), a successful GET
operation retrieves the first record that equals the key value specified
in key-exp. If no exact match exists, HP BASIC retrieves the next
record in the key sort order. If the keys are in ascending order, the
next record will have a greater key value. If the keys are in descending
order, the next record will have a lesser key value.

If you specify a greater than key match (GT), a successful GET
operation retrieves the first record with a value greater than key-exp. If
no such record exists, HP BASIC signals the error “Record not found”
(ERR=155).

If you specify a next key match (NX), a successful GET operation
retrieves the first record that follows the key expression in the key sort
order. If no such record exists, HP BASIC signals the error “Record not
found” (ERR=155).

If you specify a greater than or equal to key match (GE), the behavior
is identical to that of next or equal to (NXEQ). Likewise, the behavior
of GT is identical to NX. However, the use of GE in a descending key
file may be confusing because GE will retrieve the next record in the
key sort order, but the next record will have a lesser key value. For

3-118 Statements and Functions

GET

this reason, it is recommended that you use NXEQ in new program
development, especially if you are using descending key files.

Key-exp

— Int-exp2 in the key-clause specifies an integer value to be compared
with the key value of a record.

— Str-exp in the key-clause specifies a string value to be compared with
the key value of a record. The string expression can contain fewer
characters than the key of the record you want to retrieve but it cannot
be a null string.

Str-exp cannot contain more characters than the key of the record you
want to locate. If str-exp does contain more characters than the key,
BASIC signals "Key size too large" (ERR = 145).

— Decimal-exp in the key-clause specifies a packed decimal value to be
compared with the key value of a record.

— Quadword-exp in the key-clause specifies a record or group exactly 8
bytes long to be compared with the key value of a record.

The file specified by chnl-exp must be opened with ACCESS READ or
ACCESS MODIFY or SCRATCH before your program can execute a GET
statement. The default ACCESS clause is MODIFY.

If the last 1/0O operation was a successful FIND operation, a sequential
GET operation retrieves the current record located by the FIND operation
and sets the next record pointer to the record logically succeeding the
pointer.

If the last 1/O operation was not a FIND operation, a sequential GET
operation retrieves the next record and sets the record logically succeeding
the record pointer to the current record.

— For sequential files, a sequential GET operation retrieves the next
record in the file.

— For relative files, a sequential GET operation retrieves the record with
the next higher cell number.

— For indexed files, a sequential GET operation retrieves the next record
in the current key of reference.

A successful random GET operation by RFA or by record retrieves the
record specified by rfa-exp or int-exp.

A successful random GET operation by key retrieves the first record whose
key satisfies the key-clause comparison.

Statements and Functions 3-119

GET

Example

A successful random GET operation by RFA, record, or key sets the value of
the current record pointer to the record just read. The next record pointer
is set to the next logical record.

An unsuccessful GET operation leaves the record pointers and the record
buffer in an undefined state.

If the retrieved record is smaller than the receiving buffer, HP BASIC fills
the remaining buffer space with nulls.

If the retrieved record is larger than the receiving buffer, HP BASIC
truncates the record and signals an error.

A successful GET operation sets the value of the RECOUNT variable to the
number of bytes transferred from the file to the record buffer.

You should not use a GET statement on a terminal-format or virtual array
file.

DECLARE LONG rec-num
MAP (CUSREC) WORD cus_num &
STRING cus_nam = 20, cus_add = 20, cus_city = 10, cus_zip =9
OPEN "CUS_ACCT. DAT" FOR INPUT AS #1
RELATI VE FI XED, ACCESS MODI FY,
MAP CUSREC
[NPUT "Whi ch record nunmber woul d you like to view';rec_num
GET #1, RECORD REC NUM REGARDLESS
PRINT "The custoner’s nunber is "; CUS NUM
PRINT "The custoner’s name is ";cus_nam
PRINT "The custoner’'s address is ";cus_add
PRINT "The custoner’s city is ";cus_city
PRINT "The custoner’'s zip code is ";cus_zip
CLCSE #1
END

&
&

3-120 Statements and Functions

GETRFA

GETRFA

The GETRFA function returns the record’s file address (RFA) of the last record
accessed in an RMS file open on a specified channel.

Format

rfa-var = GETRFA (chnl-exp)

Syntax Rules

Remarks

Rfa-var is a variable of the RFA data type.

Chnl-exp is the channel number of an open RMS file. You cannot include a
number sign in the channel expression.

You must access a record in the file with a GET, FIND, or PUT statement
before using the GETRFA function, or HP BASIC signals “No current
record” (ERR=131).

There must be a file open on the specified chnl-exp or HP BASIC signals an
error.

You can use the GETRFA function with RMS sequential, relative, indexed,
and block 1/O files.

The RFA value returned by the GETRFA function can be used only for
assignments to and comparisons with other variables of the RFA data type.
Comparisons are limited to equal to (=) and not equal to (<>) relational
operations.

RFA values cannot be printed or used for any arithmetic operations.

If you open a file without specifying a file organization (sequential, relative,
virtual, or indexed), HP BASIC defaults to terminal-format. See the HP
BASIC for OpenVMS User Manual for more information.

Statements and Functions 3-121

GETRFA

Example

DECLARE RFA R ARRAY(1 TO 100)

FOR 1% = 1% TO 100%

PUT #1

R ARRAY(1% = GETRFA(1)
NEXT 1%

3-122 Statements and Functions

GOSuUB

GOSUB

The GOSUB statement transfers control to a specified line number or label
and stores the location of the GOSUB statement for eventual return from the
subroutine.

Format

{

GO SUB
GOSUB } target

Syntax Rules

Remarks

Target must refer to an existing line number or label in the same program
unit as the GOSUB statement or HP BASIC signals an error.

Target cannot be inside a block structure such as a FOR...NEXT, WHILE,
or UNTIL loop or a multiline function definition unless the GOSUB
statement is also within that block or function definition.

You can use the GOSUB statement from within protected regions of a
WHEN block. GOSUB statements can also contain protected regions
themselves.

If you fail to handle an exception that occurs while a statement contained
in the body of a subroutine is executing, the exception is handled by the
default error handler. The exception is not handled by any WHEN block
surrounding the statement that invoked the subroutine.

Statements and Functions 3-123

GOSUB

Example

GOSUB subroutine 1
subrout i ne 1

RETURN

3-124 Statements and Functions

GOTO

GOTO

The GOTO statement transfers control to a specified line number or label.

Format

(557) e

Syntax Rules

e Target must refer to an existing line number or label in the same program
unit as the GOTO statement or HP BASIC signals an error.

= Target cannot be inside a block structure such as a FOR...NEXT, WHILE,
or UNTIL loop or a multiline function definition unless the GOTO
statement is also inside that loop or function definition.

Remarks

= You can specify the GOTO statement inside a WHEN block if the target
is in the same protected region, an outer level protected region, or in a
nonprotected region.

< You cannot specify the GOTO statement inside a WHEN block if the target
already resides in another protected region that does not contain the
innermost current protected region.

Example

I F answer = 0
THEN GOTO done
END | F

doné:
EXI T PROGRAM

Statements and Functions 3-125

HANDLER

HANDLER

The handler statement marks the beginning of a detached handler.

Format
HANDLER handler-name

Syntax Rules

Handler-name must be a valid HP BASIC identifier and must not be the same
as any label, DEF, DEF*, SUB, FUNCTION or PICTURE name.

Remarks

e A detached handler must be delimited by a HANDLER statement and an
END HANDLER statement.

= A detached handler can be used only with HP BASIC's exception-handling
mechanism. If you attempt to branch into a detached handler, for example
with the GOTO statement, HP BASIC signals a compile-time error.

= To exit from a detached handler, you must use either END HANDLER,
EXIT HANDLER, RETRY or CONTINUE. See these statements for more
information.

< Within a handler, HP BASIC allows you to specify user-defined function
references except for DEF* references, as well as procedure invocations and
BASIC statements.

= The following statements are illegal inside a handler:
— EXIT PROGRAM, FUNCTION, SUB, or PICTURE
— GOTO to a target outside the handler
— GOSUB to a target outside the handler

3-126 Statements and Functions

— ON ERROR
— RESUME

Example

WHEN ERROR USE err_handl er

END VWHEN
HANDLER err _handl er
IF ERR = 50 THEN PRINT "Insufficient data"
RETRY
ELSE EXI T HANDLER
END | F
END HANDLER

HANDLER

Statements and Functions 3-127

The IF statement evaluates a conditional expression and transfers program
control depending on the resulting value.

Format

Conditional
IF cond-exp THEN statement... [ELSE statement...] END IF

Statement Modifier
statement IF cond-exp

Syntax Rules

< Conditional
— Cond-exp can be any valid conditional expression.

— All statements between the THEN keyword and the next ELSE, line
number, or END IF are part of the THEN clause. All statements
between the keyword ELSE and the next line number or END IF are
part of the ELSE clause.

— HP BASIC assumes a GOTO statement when the keyword ELSE is
followed by a line number. When the target of a GOTO statement is
a label, the keyword GOTO is required. The use of this syntax is not
recommended for new program development.

— The END IF statement terminates the most recent unterminated IF
statement.

— A new line number terminates all unterminated IF statements.
e Statement Modifier

— IF can modify any executable statement except a block statement such
as FOR, WHILE, UNTIL, or SELECT.

— Cond-exp can be any valid conditional expression.

3-128 Statements and Functions

Remarks

Example

Conditional

HP BASIC evaluates the conditional expression for truth or falsity. If
true (nonzero), HP BASIC executes the THEN clause. If false (zero),
HP BASIC skips the THEN clause and executes the ELSE clause, if
present.

The keyword NEXT cannot be in a THEN or ELSE clause unless the
FOR or WHILE statement associated with the keyword NEXT is also
part of the THEN or ELSE clause.

If a THEN or ELSE clause contains a block statement such as a FOR,
SELECT, UNTIL, or WHILE, then a corresponding block termination
statement such as a NEXT or END, must appear in the same THEN or
ELSE clause.

IF statements can be nested to 12 levels.

Any executable statement is valid in the THEN or ELSE clause,
including another IF statement. You can include any number of
statements in either clause.

Execution continues at the statement following the END IF or ELSE
clause. If the statement does not contain an ELSE clause, execution
continues at the next statement after the THEN clause.

Statement Modifier

HP BASIC executes the statement only if the conditional expression is
true (nonzero).

Statements and Functions 3-129

I F Update flag = True

THEN

Weekly_salary = New rate * 40.0

UPDATE #1

| F Dept <> New dept

THEN
GET #1, KEY #1 EQ New_dept
Dept _enpl oyees = Dept _enpl oyees + 1
UPDATE #1

END | F

PRINT "Update conpl ete"
ELSE

PRINT " Ski pping update for this enpl oyee"
END I F

3-130 Statements and Functions

INKEY$

INKEY$

The INKEY$ function reads a single keystroke from a terminal opened on a
specified channel and returns the typed character.

Format

string-var = INKEY$ (chnl-exp [\WAIT [int-exp]])

Syntax Rules

Remarks

Chnl-exp must be the channel number of a terminal.

Int-exp represents the timeout value in seconds and must be from 0 to
255. Values beyond this range cause HP BASIC to signal a compile-time or
run-time error.

Before using the INKEY$ function, specify the DCL command SET
TERMINAL/HOSTSYNC. This command controls whether the system

can synchronize the flow of input from the terminal. If you specify SET
TERMINAL/HOSTSYNC, the system generates a Ctrl/S or a Ctrl/Q to
enable or disable the reception of input. This prevents the typeahead
buffer from overflowing. If you do not use this command and the typeahead
buffer overflows, HP BASIC signals the error “Data overflow” (ERR=289).

Before using the INKEY$ function on a VT200-series terminal, set your
terminal to VT200 mode with 7 bit controls.

Before using the INKEY$ function, either your terminal or OpenVMS
system, but not both, must enable screen wrapping. To enable terminal
screen wrapping, use the Set-Up key on your terminal’s keyboard to set
the terminal to Auto Wrap. Then disable OpenVMS screen wrapping

by entering the DCL SET TERMINAL /NOWRAP command. To enable
OpenVMS screen wrapping, enter the DCL SET TERMINAL/WRAP
command. Then disable terminal screen wrapping by using the Set-Up key
to set the terminal to No Auto Wrap.

Statements and Functions 3-131

INKEY$

= The INKEY$ function behaves as if the terminal were in APPLICATION _
KEYPAD mode. If your terminal is set to NUMERIC_KEYPAD mode, the
results may be unpredictable.

< If the channel is not open, HP BASIC signals the error “1/O, channel not
open” (ERR=9). If a file or a device other than a terminal is open on the
channel, HP BASIC signals the error “lllegal operation” (ERR=141).

= The optional WAIT clause specifies a timeout interval during which the
command will await terminal input. If you specify WAIT int-exp, the
timeout period will be the specified number of seconds. If you specify a
WAIT clause followed by no timeout value, HP BASIC waits indefinitely for
terminal input.

= HP BASIC always examines the typeahead buffer first and retrieves the
next keystroke in the buffer if the buffer is not empty. If the typeahead
buffer is empty and an optional WAIT clause was specified, HP BASIC
waits for a keystroke to be typed for the specified timeout interval
(indefinitely if WAIT was specified with no timeout interval). If the
typeahead buffer is empty, and the waiting period is either not specified or
expired, HP BASIC returns the error message “Keyboard wait exhausted”
(ERR=15).

= The escape character (ASCII code 27) is not valid as INKEY$ input. If
you enter an escape character, normal program execution resumes when
the INKEY$ times out. Without a specified timeout value, the program
execution cannot resume without error.

< HP BASIC returns the error message “Keyboard wait exhausted” (ERR=15)
when any key is pressed after the escape character if no timeout is specified
or if the specified timeout has not yet occurred.

= INKEYS$ turns off all line editing. As a result, control of all line-editing
characters and the arrow keys is passed back to the user.

= Nonediting characters normally intercepted by the OpenVMS terminal
driver are not returned. These include the Ctrl/C, Ctrl/Y, Ctrl/S, and Ctrl/O
characters (unless Ctrl/C trapping is enabled). They are handled by the
device driver just as in normal input.

e All ASCII characters are returned in a 1-byte string.

= All keystrokes that result in an escape sequence are translated to
mnemonic strings based on the following key names:

— PF1-PF4
- E1-E6

3-132 Statements and Functions

INKEY$

- F7-F20

- LEFT

— RIGHT

- UP

- DOWN

— KPO to KP9
— KP-

- KP,

- KP.

— ENTER

Example

PROGRAM | nkey_deno

DECLARE STRI NG KEYSTROKE
I nkey_Loop
VH LE 1%
KEYSTROKE = | NKEY$(0% WAI T)

SELECT KEYSTROKE

CASE ' 26’ C
PRINT "Cirl/Z to exit"
EXIT Inkey_Loop

CASE CR, LF, VT, FF
PRINT "Line termnator"

CASE "PF1" TO "PF4"
PRINT "P function key"

CASE "E1" TO "E6", "F7" TO "F9", "F10" TO "F20"
PRINT "VT200 function key"

CASE "KPO" TO "KP9"
PRINT "Application keypad key"

CASE < SP
PRINT "Control character"”

CASE '127' C
PRI NT " "

CASE ELSE
PRINT 'Character is "'; KEYSTROKE, '"'

END SELECT
NEXT

END PROGRAM

Statements and Functions 3-133

INPUT

INPUT

The INPUT statement assigns values from your terminal or from a terminal-
format file to program variables.

Format

INPUT [#chnl-exp, | [str-constl { }] varl [{ } [str-const2 { ' }] var2 J...

Syntax Rules

< You must supply an argument to the INPUT statement. Otherwise, HP
BASIC signals an error message.

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

= You can include more than one string constant in an INPUT statement.
Str-constl is issued for varl, str-const2 for var2, and so on.

e Varl and var2 cannot be a DEF function name unless the INPUT
statement is inside the multiline DEF that defines the function.

e The separator (comma or semicolon) that directly follows varl and var2 has
no formatting effect. HP BASIC always advances to a new line when you
terminate input by pressing Return.

= The separator that directly follows str-constl and str-const2 determines
where the question mark prompt (if requested) is displayed and where the
cursor is positioned for input.

A comma causes HP BASIC to skip to the next print zone and display the
question mark unless a SET NO PROMPT statement has been executed, as
follows.

DECLARE STRI NG your _nane
[NPUT "What is your name",your_nanme

Output

What is your name ?

3-134 Statements and Functions

Remarks

INPUT

A semicolon causes HP BASIC to display the question mark next to
str-const unless a SET NO PROMPT statement has been executed. For
example:

DECLARE STRI NG your _nane
INPUT "What is your name";your name

Output
What is your name?

HP BASIC always advances to a new line when you terminate input with a
carriage return.

If you do not specify a channel, the default chnl-exp is #0 (the controlling
terminal). If a chnl-exp is specified, a file must be open on that channel
with ACCESS READ or MODIFY before the INPUT statement can execute.

If input comes from a terminal, HP BASIC displays the contents of str-
constl, if present. If the terminal is open on channel #0, HP BASIC also
displays a question mark (?).

You can disable the question mark prompt by using the SET NO PROMPT
statement. See the SET PROMPT statement for more information.

When HP BASIC receives a line terminator or a complete record, it checks
each data element for correct data type and range limits, then assigns the
values to the corresponding variables.

If you specify a string variable to receive the input text, and you enter an
unquoted string in response to the prompt, HP BASIC ignores the string’s
leading and trailing spaces and tabs. An unquoted string cannot contain
any commas.

If there is not enough data in the current record or line to satisfy the
variable list, HP BASIC takes one of the following actions:

— If the input device is a terminal and you have not specified SET NO
PROMPT, HP BASIC repeats the question mark, but not the str-const,
on a new line until sufficient data is entered.

— If the input device is not a terminal, HP BASIC signals “Not enough
data in record” (ERR=59).

If there are more data items than variables in the INPUT response, HP
BASIC ignores the excess.

Statements and Functions 3-135

INPUT

« If there is an error while data is being converted or assigned (for example,
string data being assigned to a numeric variable), HP BASIC takes one of
the following actions:

— If there is no error handler in effect and the input device is a terminal,
HP BASIC signals a warning, reexecutes the INPUT statement, and
displays str-const and the input prompt.

— If there is an error handler in effect and the input device is not a
terminal, HP BASIC signals “lllegal number” (ERR=52) or “Data
format error” (ERR=50).

e When a RETRY, CONTINUE, or RESUME statement transfers control to
an INPUT statement, the INPUT statement retrieves a new record or line
regardless of any data left in the previous record or line.

e After a successful INPUT statement, the RECOUNT variable contains the
number of characters transferred from the file or terminal to the record
buffer.

= If you terminate input text with Ctrl/Z, HP BASIC assigns the value to
the variable and signals “End of file on device” (ERR=11) when the next
terminal input statement executes.

Example

DECLARE STRING var _1, &
| NTEGER var _2
INPUT "The first variable";var_1, "The second variable";var_2

Output

The first variabl e? nane
The second variable? 4

3-136 Statements and Functions

INPUT LINE

INPUT LINE

The INPUT LINE statement assigns a string value (including the line
terminator in some cases) from a terminal or terminal-format file to a string
variable.

Format

INPUT LINE [#chnl-exp,][str-constl{ i }]str-varl

[statement]...[{ } [str-const2 { }] str-var2 J...
Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

e Str-varl or str-var2 cannot be a DEF function name unless the INPUT
LINE statement is inside the multiline DEF that defines the function.

= You can include more than 1 string constant in an INPUT LINE statement.
Str-constl is issued for str-varl, str-const2 for str-var2, and so on.

= The separator (comma or semicolon) that directly follows str-varl and
str-var2 has no formatting effect. HP BASIC always advances to a new line
when you terminate input with a carriage return.

e The separator that directly follows str-constl and str-const2 determines
where the question mark (if requested) is displayed and where the cursor
is positioned for input. Specifically:

— A comma causes HP BASIC to skip to the next print zone and display
the question mark unless a SET NO PROMPT statement has been
executed. For example:

DECLARE STRI NG your _nane
I NPUT LI NE "Nane", your _name

Output

Nane ?

Statements and Functions 3-137

INPUT LINE

— A semicolon causes HP BASIC to display the question mark next to
str-const unless a SET NO PROMPT statement has been executed. For
example:

DECLARE STRI NG your _nane
I NPUT LI NE "Nane";your _name

Output
Nane?

< HP BASIC always advances to a new line when you terminate input with a
carriage return.

Remarks

= The default chnl-exp is #0 (the controlling terminal). If a channel is
specified, a file must be open on that channel with ACCESS READ before
the INPUT LINE statement can execute.

= HP BASIC signals an error if the INPUT LINE statement has no
argument.

« If input comes from a terminal, HP BASIC displays the contents of str-
constl, if present. If the terminal is open on channel #0, HP BASIC also
displays a question mark (?).

= You can disable the question mark prompt by using the SET NO PROMPT
statement. See the SET PROMPT statement for more information.

e The INPUT LINE statement assigns all input characters to string
variables. In addition, the INPUT LINE statement places the following
line terminator characters in the assigned string if they are part of the
string value:

Hex code ASCII char Character name

0A LF Line Feed

0B VT Vertical Tab

ocC FF Form Feed

0D CR Carriage Return

ODOA CRLF Carriage Return/Line Feed
1B ESC Escape

3-138 Statements and Functions

INPUT LINE

Any other line terminator, such as Ctrl/D and Ctrl/F when line editing is
turned off, is not included in the assigned string.

 When a RETRY, CONTINUE, or RESUME statement transfers control to
an INPUT LINE statement, the INPUT LINE statement retrieves a new
record or line regardless of any data left in the previous record or line.

e After a successful INPUT LINE statement, the RECOUNT variable
contains the number of characters transferred from the file or terminal to
the record buffer.

= If you terminate input text with Ctrl/Z, HP BASIC assigns the value to
the variable and signals “End of file on device” (ERR=11) when the next
terminal input statement executes.

Example

DECLARE STRING Z, N, record_string
[NPUT LINE "Type two words", Z$,' Type your nane';N§
I NPUT LINE #4% record_string$

Statements and Functions 3-139

INSTR

INSTR

The INSTR function searches for a substring within a string. It returns the
position of the substring’s starting character.

Format
int-var = INSTR (int-exp , str-expl, str-exp2)

Syntax Rules

= Int-exp specifies the character position in the main string at which HP
BASIC starts the search.

e Str-expl specifies the main string.

= Str-exp2 specifies the substring.

Remarks

e The INSTR function searches str-expl, the main string, for the first
occurrence of a substring, str-exp2, and returns the position of the
substring’s first character.

= INSTR returns the character position in the main string at which HP
BASIC finds the substring, except in the following situations:

— If only the substring is null, and if int-exp is less than or equal to zero,
INSTR returns a value of 1.

— If only the substring is null, and if int-exp is equal to or greater than 1
and less than or equal to the length of the main string, INSTR returns
the value of int-exp.

— If only the substring is null, and if int-exp is greater than the length of
the main string, INSTR returns the main string’s length plus 1.

— If the substring is not null, and if int-exp is greater than the length of
the main string, INSTR returns a value of zero.

— If only the main string is null, INSTR returns a value of zero.

— If both the main string and the substring are null, INSTR returns
al.

3-140 Statements and Functions

INSTR

< If HP BASIC cannot find the substring, INSTR returns a value of zero.

= If int-exp does not equal 1, HP BASIC still counts from the beginning of
the main string to calculate the starting position of the substring. That is,
HP BASIC counts character positions starting at position 1, regardless of
where you specify the start of the search. For example, if you specify 10 as
the start of the search and HP BASIC finds the substring at position 15,
INSTR returns the value 15.

« If int-exp is less than 1, HP BASIC assumes a starting position of 1.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Example

DECLARE STRING al pha, &
| NTEGER resul t
al pha = " ABCDEF"
result = INSTR(1, al pha, " DEF")
PRINT resul t

Output
4

Statements and Functions 3-141

INT

INT

The INT function returns the floating-point value of the largest whole number
less than or equal to a specified expression.

Format

real-var = INT (real-exp)

Syntax Rules

HP BASIC expects the argument of the INT function to be a real expression.
When the argument is a real expression, HP BASIC returns a value of the
same floating-point size. When the argument is not a real expression, HP
BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size.

Remarks

If real-exp is negative, HP BASIC returns the largest whole number less than
or equal to real-exp. For example, INT(-5.3) is -6.

Examples

Example 1

DECLARE SINGLE any_num resul t
any_num = 6. 667

result = I NT(any_num

PRINT resul t

Output
6

3-142 Statements and Functions

INT

Example 2

' This exanple contrasts the INT and FI X functions
DECLARE SINGLE test_num
test_num= -32.7

PRINT "INT OF -32.7 IS: "; INT(test_num
PRINT "FIX OF -32.7 IS: "; FIX(test_num
Output

INT OF -32.7 1S -33

FIXOF -32.7 1S -32

Statements and Functions 3-143

INTEGER

INTEGER

The INTEGER function converts a numeric expression or numeric string to a
specified or default INTEGER data type.

Format

, BYTE
, WORD
LoNG |
, QUAD

int-var = INTEGER (exp

Syntax Rules

Exp can be either numeric or string. A string expression can contain the ASCII
digits 0 to 9, a plus sign (+), or a minus sign (-).

Remarks

< HP BASIC evaluates exp, then converts it to the specified INTEGER size.
If you do not specify a size, HP BASIC uses the default INTEGER size.

= If exp is a string, HP BASIC ignores leading and trailing spaces and tabs.

= The INTEGER function returns a value of zero when a string argument
contains only spaces and tabs, or when it is null.

e The INTEGER function truncates the decimal portion of REAL and
DECIMAL numbers, or rounds if the /ROUND_DECIMAL qualifier is used.

Example

INPUT "Enter a floating-point number";F P
PRINT | NTEGER(F_P, WORD)

Output

Enter a floating-point nunber? 76.99
76

3-144 Statements and Functions

ITERATE

ITERATE

The ITERATE statement allows you to explicitly reexecute a loop.

Format
ITERATE [label]

Syntax Rules

< Label is the label of the first statement of a FOR...NEXT, WHILE, or
UNTIL loop.

= Label must conform to the rules for naming variables.

Remarks

= |ITERATE is equivalent to an unconditional branch to the current loop’s
NEXT statement. If you supply a label, ITERATE transfers control to
the NEXT statement in the specified loop. If you do not supply a label,
ITERATE transfers control to the current loop’s NEXT statement.

< The ITERATE statement can be used only within a FOR...NEXT, WHILE,
or UNTIL loop.

Example

Statements and Functions 3-145

ITERATE

| TERATE Date_| oop | F Day$ <> Today$
| TERATE Date_| oop | F Month$ <> This_nont h$
| TERATE Date |l oop IF Year$ <> This_year$

WHEN ERROR IN
Date |oop: WHLE 1%= 1%
GET #1
PRINT |ten
NEXT
USE
IF ERR = 11
THEN
CONTI NUE DONE
ELSE
EXI T HANDLER
END I F
END VHEN
Done: END

3-146 Statements and Functions

KILL

KILL

The KILL statement deletes a disk file, removes the file’s directory entry, and
releases the file's storage space.

Format
KILL file-spec

Syntax Rules

File-spec can be a quoted string constant, a string variable, or a string
expression. It cannot be an unquoted string constant.

Remarks

e The KILL statement marks a file for deletion but does not delete the file
until all users have closed it.

< If you do not specify a complete file specification, HP BASIC uses the
default device and directory. If you do not specify a file version, HP BASIC
deletes the highest version of the file.

= The file must exist, or HP BASIC signals an error.

= You can delete a file in another directory if you have access to that directory
and privilege to delete the file.

Example

KILL " TEMP. DAT"

Statements and Functions 3-147

LBOUND

LBOUND

The LBOUND function returns the lower bounds of a compile-time or run-time
dimensioned array.

Format

num-var = LBOUND (array-name [, int-exp])

Syntax Rules

= Array-name must specify an array that has been either explicitly or
implicitly declared.

= Int-exp specifies the number of the dimension for which you have requested
the lower bounds.

Remarks

< If you do not specify a dimension, HP BASIC automatically returns the
lower bounds of the first dimension.

= If you specify a numeric expression that is less than or equal to zero, HP
BASIC signals an error.

= If you specify a numeric expression that exceeds the number of dimensions,
HP BASIC signals an error.

Example

DECLARE | NTEGER CONSTANT B = 5

DIM A(B)

account_num= 1

FOR di m num = LBOUND (A) TO 5
A(dimnum) = account_num
account _num = account_num+ 1
PRINT A(di m num

NEXT di m num

3-148 Statements and Functions

LBOUND

Output

SOOI WN

Statements and Functions 3-149

LEFTS

LEFTS$

The LEFTS$ function extracts a specified substring from a string's left side,
leaving the main string unchanged.

Format
str-var = LEFT[$] (str-exp, int-exp)

Syntax Rules

= Int-exp specifies the number of characters to be extracted from the left side
of str-exp.

< If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Remarks

e The LEFTS$ function extracts a substring from the left of the specified
str-exp and stores it in str-var.

= If int-exp is less than 1, LEFT$ returns a null string.
= If int-exp is greater than the length of str-exp, LEFT$ returns the entire
string.

Example

DECLARE STRING sub_string, main_string
main_string = "1234567"

sub_string = LEFT$(main_string, 4)
PRINT sub_string

Output

1234

3-150 Statements and Functions

LEN

LEN

The LEN function returns an integer value equal to the number of characters
in a specified string.

Format
int-var = LEN (str-exp)

Syntax Rules

None

Remarks

= |If str-exp is null, LEN returns a value of zero.

= The length of str-exp includes leading, trailing, and embedded blanks. Tabs
in str-exp are treated as a single space.

e The value returned by the LEN function is a LONG integer.

Example

DECLARE STRING al pha, &

I NTEGER | engt h
al pha = " ABCDEFG'
length = LEN(al pha)
PRINT length

Output
7

Statements and Functions 3-151

LET

LET

The LET statement assigns a value to one or more variables.

Format
[LET] var,.. = exp

Syntax Rules

e Var cannot be a DEF or FUNCTION name unless the LET statement
occurs inside that DEF block or in that FUNCTION subprogram.

e The keyword LET is optional.

Remarks

= You cannot assign string data to a numeric variable or unquoted numeric
data to a string variable.

e The value assigned to a numeric variable is converted to the variable’s
data type. For example, if you assign a floating-point value to an integer
variable, HP BASIC truncates the value to an integer.

= For dynamic strings, the destination string’s length equals the source
string’s length.

< When you assign a value to a fixed-length string variable (a variable
declared in a COMMON, MAP, or RECORD statement), the value is left-
justified and padded with spaces or truncated to match the length of the
string variable.

Example

DECLARE STRING al pha, &

I NTEGER | engt h
LET al pha = " ABCDEFG'
LET I ength = LEN(al pha)
PRINT length

3-152 Statements and Functions

LET

Output

Statements and Functions 3-153

LINPUT

LINPUT

The LINPUT statement assigns a string value, without line terminators, from
a terminal or terminal-format file to a string variable.

Format

LINPUT [#chnl-exp,] [str-constl { }] strvarl [{ } [str-const2 { }] strvar2 J...
Syntax Rules

e Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

e Str-varl and str-var2 cannot be DEF function names unless the LINPUT
statement is inside the multiline DEF that defines the function.

< You can include more than one string constant in a LINPUT statement.
Str-constl is issued for str-varl, str-const2 for str-var2, and so on.

= The separator (comma or semicolon) that directly follows str-varl and
str-var2 has no formatting effect. HP BASIC always advances to a new line
when you terminate input with a carriage return.

= The separator character that directly follows str-constl and str-const2
determines where the question mark (if requested) is displayed and where
the cursor is positioned for input.

— A comma causes HP BASIC to skip to the next print zone to display
the question mark unless a SET NO PROMPT statement has been
executed. For example:

DECLARE STRI NG your _nane
LI NPUT "Name", your _nanme

Output

Name ?

3-154 Statements and Functions

Remarks

LINPUT

— A semicolon causes HP BASIC to display the question mark next to
str-const unless a SET NO PROMPT statement has been executed. For
example:

DECLARE STRI NG your _nane
LINPUT "What is your name";your_nane

Output
What is your name?

HP BASIC always advances to a new line when you terminate input with a
carriage return.

The default chnl-exp is #0 (the controlling terminal). If you specify a
channel, the file associated with that channel must have been opened with
ACCESS READ or MODIFY.

HP BASIC signals an error if the LINPUT statement has no argument.

If input comes from a terminal, HP BASIC displays the contents of str-
constl, if present. If the terminal is open on channel #0, HP BASIC also
displays a question mark (?).

You can disable the question mark prompt by using the SET NO PROMPT
statement. See the SET PROMPT statement for more information.

The LINPUT statement assigns all characters except any line terminators
to str-varl and str-var2. Single and double quotation marks, commas, tabs,
leading and trailing spaces, or other special characters in the string are
part of the data.

If the RETRY, CONTINUE, or RESUME statement transfers control to
a LINPUT statement, the LINPUT statement retrieves a new record
regardless of any data left in the previous record.

After a successful LINPUT statement, the RECOUNT variable contains the
number of bytes transferred from the file or terminal to the record buffer.

If you terminate input text with Ctrl/Z, HP BASIC assigns the value to
the variable and signals “End of file on device” (ERR=11) when the next
terminal input statement executes.

Statements and Functions 3-155

LINPUT

Example

DECLARE STRING | ast _nane
LI NPUT "ENTER YOUR LAST NAME'; Last nane
LI NPUT #2% Last_name

3-156 Statements and Functions

LOC

LOC
The LOC function returns a longword integer specifying the virtual address of
a simple or subscripted variable, or the address of an external function. For
dynamic strings, the LOC function returns the address of the descriptor rather
than the address of the data.

Format
. _ var
int-var = LOC ({ ext-routine })

Syntax Rules

= Var can be any local or external, simple or subscripted variable.
= \Var cannot be a virtual array element.

e Ext-routine can be the name of an external function.

Remarks

= The LOC function always returns a LONG value.

= The LOC function is useful for passing the address of an external function
as a parameter to a procedure. When passing a routine address as a
parameter, you should usually pass the address by value. For example,
OpenVMS system services expect to receive AST procedure entry masks
by reference; therefore, the address of the entry mask should be in the
argument list on the stack.

Example

DECLARE INTEGER A, B

A= 12
B = LOC(A)
PRINT B

Statements and Functions 3-157

LOC

Output
2146799372

3-158 Statements and Functions

LOG

LOG

The LOG function returns the natural logarithm (base e) of a specified number.
The LOG function is the inverse of the EXP function.

Format

real-var = LOG (real-exp)

Syntax Rules

None

Remarks

Example

Real-exp must be greater than zero. An attempt to find the logarithm of
zero or a negative number causes HP BASIC to signal “lllegal argument in
LOG” (ERR=53).

The LOG function uses the mathematical constant e as a base. HP BASIC
approximates e to be 2.71828182845905.

The LOG function returns the exponent to which e must be raised to equal
real-exp.

HP BASIC expects the argument of the LOG function to be a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

DECLARE SI NGLE exponent
exponent = LOJ 98. 6)
PRINT exponent

Output
4.59107

Statements and Functions 3-159

LOG10

LOG10

The LOG10 function returns the common logarithm (base 10) of a specified
number.

Format
real-var = LOG10 (real-exp)

Syntax Rules

None

Remarks

= Real-exp must be larger than zero. An attempt to find the logarithm of
zero or a negative number causes HP BASIC to signal “lllegal argument in
LOG” (ERR=53).

e The LOG10 function returns the exponent to which 10 must be raised to
equal real-exp.

= HP BASIC expects the argument of the LOG10 function to be a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

Example

DECLARE SI NGLE exp_base_10

exp_base 10 = LOGL0(250)
PRI NT exp_base 10

Output
2. 39794

3-160 Statements and Functions

LSET

LSET

The LSET statement assigns left-justified data to a string variable. LSET does
not change the length of the destination string variable.

Format
LSET str-var,... = str-exp

Syntax Rules

= Str-var is the destination string. Str-exp is the string value assigned to
str-var.

e Str-var cannot be a DEF function or function name unless the LSET
statement is inside the multiline DEF or function that defines the function.

Remarks

e The LSET statement treats all strings as fixed length. LSET neither
changes the length of the destination string nor creates new storage.
Rather, it overwrites the current storage of str-var.

= If the destination string is longer than str-exp, LSET left-justifies str-exp
and pads it with spaces on the right. If smaller, LSET truncates characters
from the right of str-exp to match the length of str-var.

Example

DECLARE STRI NG al pha

al pha = " ABCDE"

LSET al pha = "FGH JKLMN'
PRINT al pha

Output
FGH J

Statements and Functions 3-161

MAG

MAG

The MAG function returns the absolute value of a specified expression. The
returned value has the same data type as the expression.

Format
var = MAG (exp)

Syntax Rules

None

Remarks

= The returned value is always greater than or equal to zero. The absolute
value of 0 is zero. The absolute value of a positive number equals that
number. The absolute value of a negative number equals that number
multiplied by -1.

= The MAG function is similar to the ABS function in that it returns the
absolute value of a number. The ABS function, however, takes a floating-
point argument and returns a floating-point value. The MAG function
takes an argument of any numeric data type and returns a value of the
same data type as the argument. The use of the MAG function rather than
the ABS and ABS% functions is recommended, because the MAG function
returns a value using the data type of the argument.

Example

DECLARE SINGLE A
A=-34.6

PRINT MAG(A)
Output

34.6

3-162 Statements and Functions

MAGTAPE

MAGTAPE

The MAGTAPE function permits your program to control unformatted
magnetic tape files.

Note

The MAGTAPE function is supported only for compatibility with
BASIC-PLUS-2. It is recommended that you do not use the MAGTAPE
function for new program development.

Format
int-varl = MAGTAPE (func-code, int-var, chnl-exp)

Syntax Rules

= Func-code specifies the integer code for the MAGTAPE function you want to
perform. HP BASIC supports only function code 3, rewind tape. Table 3-3
explains how to perform other MAGTAPE functions with HP BASIC.

= Int-var is an integer parameter for function codes 4, 5, and 6. However,
because HP BASIC supports only function code 3, int-var is not used and
always equals zero.

= Chnl-exp is a numeric expression that specifies a channel number
associated with the magnetic tape file.

Statements and Functions 3-163

MAGTAPE

Table 3-3 MAGTAPE Features in HP BASIC

Code Function HP BASIC Action

2 Write EOF Close channel with the CLOSE
statement.

3 Rewind tape Use the RESTORE # statement,
the REWIND clause on an OPEN
statement, or the MAGTAPE function.

4 Skip records Perform GET operations, ignore data
until reaching desired record.

5 Backspace Rewind tape, perform GET operations,
ignore data until reaching desired
record.

6 Set density or set parity Use the DCL commands
MOUNT/DENSITY and
MOUNT/FOREIGN or the $SMOUNT
system service.

7 Get status Use the RMSSTATUS function.

Example

| = MAGTAPE (3% 0% 2%

3-164 Statements and Functions

MAP

MAP

Format

The MAP statement defines a named area of statically allocated storage called
a PSECT, declares data fields in a record, and associates them with program
variables.

MAP (map-name) { [data-type] map-item },...

r num-unsubs-var

num-array-name ([int-constl TO] int-const2,...)

record-var

str-unsubs-var [= int-const]

str-array-name ([int-constl TO] int-const2,...) [= int-const]
FILL [(rep-cnt)] [= int-const]

FILL% [(rep-cnt)]

FILL$ [(rep-cnt)] [= int-const]

map-item:

Syntax Rules

Map-name is global to the program and image. It cannot appear elsewhere
in the program unit as a variable name.

Map-name can be from 1 to 31 characters. The first character of the name
must be an alphabetic character (A to Z). The remaining characters, if
present, can be any combination of letters, digits (0 to 9), dollar signs ($),
periods (.), or underscores (_).

Data-type can be any HP BASIC data type keyword or a data type defined
by a RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2.

When you specify a data type, all following map-items, including FILL
items, are of that data type until you specify a new data type.

If you do not specify a data type, map-items without a suffix character (%
or $) take the current default data type and size.

Statements and Functions 3-165

MAP

= \Variable names, array names, and FILL items following a data type other
than STRING cannot end with a dollar sign. Likewise, names and FILL
items following a data type other than BYTE, WORD, LONG, QUAD, or
INTEGER cannot end with a percent sign.

= Map-item declares the name and format of the data to be stored.

— Num-unsubs-var and num-array-name specify a numeric variable or a
numeric array.

— Record-var specifies a record instance.

— Str-unsubs-var and str-array-name specify a fixed-length string variable
or array. You can specify the number of bytes to be reserved for the
variable with the =int-const clause. The default string length is 16.

— When you declare an array, HP BASIC allows you to specify both lower
and upper bounds. The upper bounds is required; the lower bounds is
optional.

= Int-constl specifies the lower bounds of the array.

= Int-const2 specifies the upper bounds of the array and, when
accompanied by int-constl, must be preceded by the keyword TO.

« Int-constl must be less than or equal to int-const2.

= If you do not specify int-constl, HP BASIC uses zero as the default
lower bounds.

< Int-constl and int-const2 can be any combination of negative and/or
positive values.

— The FILL, FILL%, and FILL$ keywords allow you to reserve parts of
the record buffer within or between data elements and to define the
format of the storage. Rep-cnt specifies the number of FILL items to
be reserved. The =int-const clause allows you to specify the number of
bytes to be reserved for string FILL items. Table 3-1 describes FILL
item format and storage allocation.

— In the applicable formats of FILL, (rep-cnt) represents a repeat count,
not an array subscript. FILL (n) represents n elements, not n + 1.

= \Variables and arrays declared in a MAP statement cannot be declared
elsewhere in the program by any other declarative statements.

3-166 Statements and Functions

Remarks

MAP

Variables in a MAP statement are not initialized by HP BASIC.

HP BASIC does not execute MAP statements. The MAP statement
allocates static storage and defines data at compilation time.

A program can have multiple maps with the same name. The allocation for
each map overlays the others. Thus, data is accessible in many ways. The
actual size of the data area is the size of the largest map. When you link
your program, the size of the map area is the size of the largest map with
that name.

Map-items with the same name can appear in different MAP statements
with the same map name only if they match exactly in attributes such as
data type, position, and so forth. If the attributes are not the same, HP
BASIC signals an error. For example:

MAP (ABC) LONG A, B

MAP (ABC) LONG A, C! This MAP statenent is valid

MAP (ABC) LONG B, A! This MAP statenent produces an error
MAP (ABC) WORD A, B! This MAP statenent produces an error

The third MAP statement causes HP BASIC to signal the error “variable
<name> not aligned in multiple references in MAP <name>,” while the
fourth MAP statement generates the error “attributes of overlaid variable
<name> don't match.”

The MAP statement should precede any reference to variables declared in
it.

Storage space for map-items is allocated in order of occurrence in the MAP
statement.

The data type specified for map-items or the default data type and size
determines the amount of storage reserved in a MAP area. See Table 1-2.

A MAP area can be accessed by more than one program module, as long as
you define the map-name in each module that references the MAP area.

A COMMON area and a MAP area with the same name specify the same
storage area and are not allowed in the same program module. However, a
COMMON in one module can reference the storage declared by a MAP or
COMMON in another module.

Statements and Functions 3-167

MAP

< A map named in an OPEN statement’s MAP clause is associated with that
file. The file's records and record fields are defined by that map. The size of
the map determines the record size for file 1/0, unless the OPEN statement
includes a RECORDSIZE clause.

Example

MAP (BUF1) BYTE AGE, STRING enp_name = 20 &
SINGLE enmp_num

MAP (BUF1) BYTE FILL, STRING last_name (11) = 12, &
FILL = 8, SINGLE FILL

3-168 Statements and Functions

MAP DYNAMIC

MAP DYNAMIC

The MAP DYNAMIC statement names the variables and arrays whose size
and position in a storage area can change at run time. The MAP DYNAMIC
statement is used in conjunction with the REMAP statement. The REMAP
statement defines or redefines the position in the storage area of variables
named in the MAP DYNAMIC statement.

Format

MAP DYNAMIC (map-dyn-name){ [data-type] map-item },...

map-dyn-name: {

map-name }
static-str-var

num-unsubs-var
num-array-name ([int-constl TO] int-const2,...)

map-item: record-var

Syntax Rules

str-unsubs-var [= int-const]
str-array-name ([int-constl TO] int-const2,...) [= int-const]

= Map-dyn-name can either be a map name or a static string variable.

Map-name is the storage area named in a MAP statement.

If you specify a map name, then a MAP statement with the same name
must precede both the MAP DYNAMIC statement and the REMAP
statement.

When you specify a static string variable, the string must be declared
before you can specify a MAP DYNAMIC statement or a REMAP
statement.

Static-str-var must specify a static string variable or a string parameter
variable.

Statements and Functions 3-169

MAP DYNAMIC

— If you specify a static-str-var, the following restrictions apply:
= Static-str-var cannot be a string constant.

= Static-str-var cannot be the same as any previously declared
map-item in a MAP DYNAMIC statement.

e Static-str-var cannot be a subscripted variable.
= Static-str-var cannot be a record component.

= Static-str-var cannot be a parameter declared in a DEF or DEF*
function.

= Map-item declares the name and data type of the items to be stored in the
storage area. All variable pointers point to the beginning of the storage
area until the program executes a REMAP statement.

— Num-unsubs-var and num-array-name specify a numeric variable or a
numeric array.

— Record-var specifies a record instance.

— Str-unsubs-var and str-array-name specify a string variable or array.
You cannot specify the number of bytes to be reserved for the variable
in the MAP DYNAMIC statement. All string items have a fixed length
of zero until the program executes a REMAP statement.

< When you specify an array name, HP BASIC allows you to specify both
lower and upper bounds. The upper bounds is required; the lower bounds
is optional.

— Int-constl specifies the lower bounds of the array.

— Int-const2 specifies the upper bounds of the array and, when
accompanied by int-constl, must be preceded by the keyword TO.

— Int-constl must be less than or equal to int-const2.

— If you do not specify int-constl, HP BASIC uses zero as the default
lower bounds.

— Int-constl and int-const2 can be either negative or positive values.

= Data-type can be any HP BASIC data type keyword or a data type defined
with a RECORD statement. Data type keywords, size, range, and precision
are listed in Table 1-2 in this manual.

< When you specify a data type, all following map-items are of that data type
until you specify a new data type.

3-170 Statements and Functions

Remarks

MAP DYNAMIC

If you do not specify any data type, map-items take the current default
data type and size.

Map-items must be separated with commas.

If you specify a dollar sign suffix, the variable must be a STRING data
type.

If you specify a percent sign suffix, the variable must be a BYTE, WORD,
LONG, or QUAD integer data type.

All variables and arrays declared in a MAP DYNAMIC statement cannot
be declared elsewhere in the program by any other declarative statements.

The MAP DYNAMIC statement does not affect the amount of storage
allocated to the map buffer declared in a previous MAP statement or the
storage allocated to a static string. Until your program executes a REMAP
statement, all variable and array element pointers point to the beginning
of the MAP buffer or static string.

HP BASIC does not execute MAP DYNAMIC statements. The MAP
DYNAMIC statement names the variables whose size and position in the
MAP or static string buffer can change and defines their data type.

Before you can specify a map name in a MAP DYNAMIC statement,
there must be a MAP statement in the program unit with the same map
name. Otherwise, HP BASIC signals the error “Insufficient space for MAP
DYNAMIC variables in MAP <name>." Similarly, before you can specify a
static string variable in the MAP DYNAMIC statement, the string variable
must be declared. Otherwise, HP BASIC signals the same error message.

A static string variable must be either a variable declared in a MAP or
COMMON statement or a parameter declared in a SUB, FUNCTION, or
PICTURE. It cannot be a parameter declared in a DEF or DEF* function.

If a static string variable is the same as a map name, HP BASIC uses the
map name if the name appears in a MAP DYNAMIC statement.

The MAP DYNAMIC statement must lexically precede the REMAP
statement or HP BASIC signals the error “MAP variable <name>
referenced before declaration.”

Statements and Functions 3-171

MAP DYNAMIC

Example

100 MAP (MY. BUF) STRING DUMW = 512
MAP DYNAM C (MY. BUF) STRING LAST, FIRST, M DDLE,
BYTE ACE, STRING EMPLOYER,
STRING CHARACTERI STI CS

3-172 Statements and Functions

&

MAR

MAR

The MAR function returns the current margin width of a specified channel.

Format
int-var = MAR[%] (chnl-exp)

Syntax Rules

The file associated with chnl-exp must be open.

Remarks

« If chnl-exp specifies a terminal and you have not set a margin width with
the MARGIN statement, the MAR function returns a value of zero. If you
have set a margin width, the MAR function returns that number.

= The value returned by the MAR function is a LONG integer.

Example

DECLARE | NTEGER wi dt h
MARG N #0, 80

width = MAR(0)

PRINT wi dth

Output

80

Statements and Functions 3-173

MARGIN

MARGIN

The MARGIN statement specifies the margin width for a terminal or for
records in a terminal-format file.

Format

MARGIN [#chnl-exp,] int-exp

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

Int-exp specifies the margin width.

If you do not specify a channel, HP BASIC sets the margin on the
controlling terminal.

The file associated with chnl-exp must be an open terminal-format file or
terminal.

HP BASIC signals the error “lllegal operation” (ERR=141) if the file
associated with chnl-exp is not a terminal-format file.

If chnl-exp does not correspond to a terminal, and if int-exp is zero, HP
BASIC sets the right margin to the size specified by the RECORDSIZE
clause in the OPEN statement, if the clause is present. If no RECORDSIZE
clause is present, HP BASIC sets the margin to 72 (or, in the case of
channel 0, to the width of SYS$SOUTPUT).

If chnl-exp is not present or if it corresponds to a terminal, and if int-
exp is zero, HP BASIC sets the right margin to the size specified by the
RECORDSIZE clause in the OPEN statement, if the clause is present. If
no RECORDSIZE clause is present, HP BASIC sets the margin to 72.

HP BASIC prints as much of a specified record as the margin setting
allows on one line before going to a new line. Numeric fields are never split
across lines.

3-174 Statements and Functions

MARGIN

If you specify a margin larger than the channel’s record size, HP BASIC
signals an error. The default record size for a terminal or terminal format

file is 132.

The MARGIN statement applies to the specified channel only while the
channel is open. If you close the channel and then reopen it, BASIC uses
the default margin.

Example

OPEN "EMP. DAT" FOR OQUTPUT AS #1
MARG N #1, 132

Statements and Functions 3-175

MAT

MAT

The MAT statement lets you implicitly create and manipulate one- and two-
dimensional arrays. You can use the MAT statement to assign values to array
elements, or to redimension a previously dimensioned array. You can also
perform matrix arithmetic operations such as multiplication, addition, and
subtraction, and other matrix operations such as transposing and inverting
matrices.

Format

Numeric Initialization
CON

MAT num-array = { IDN } [(int-expl [, int-exp2])]
ZER

String Initialization

MAT str-array = NULS$ [(int-expl [, int-exp2])]

Array Arithmetic

+
MAT num-arrayl = num-array2 { -

*

} num-array3

MAT num-arrayl = num-array2 * num-array3 [* num-array4 | ,...

Scalar Multiplication
MAT num-array4 = (num-exp) * num-array5

Inversion and Transposition

TRN

MAT num-array6 = { INV

} (num-array7)
Syntax Rules

< Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the new dimensions of an existing array.

= If you are creating an array, int-expl and int-exp2 cannot exceed 10.

< If you do not specify bounds, HP BASIC creates the array and dimensions
it to (0 TO 10) or (0 TO 10, 0 TO 10).

3-176 Statements and Functions

Remarks

MAT

If you specify bounds, HP BASIC creates the array with the specified
bounds. If the bounds exceed (0 TO 10) or (0 TO 10, 0 TO 10), HP BASIC
signals “Redimensioned array” (ERR=105).

The lower bounds must be zero.

To perform MAT operations on arrays larger than (10,10), create the input
and output arrays with the DIM statement.

When the array exists, the following rules apply:

— If you specify upper bound, HP BASIC redimensions the array to the
specified size. However, MAT operations cannot increase the total
number of array elements.

— All arrays specified with the MAT statement must have lower bounds
of zero. If you supply a nonzero value, HP BASIC signals either a
compile-time or a run-time error.

— If you do not specify bounds, HP BASIC does not redimension the
array.

— An array passed to a subprogram and redimensioned with a MAT
statement remains redimensioned when control returns to the calling
program, with two exceptions:

= When the array is within a record and is passed by descriptor
= When the array is passed by reference
You cannot use the MAT statement on arrays of more than two dimensions.

You cannot use the MAT statement on arrays of data type DECIMAL or on
arrays named in a RECORD statement.

Unless the arrays are declared with a DIM or DECLARE statement, the
data type will be the default floating-point data type.

Initialization

— CON sets all elements of num-array to 1, except those in row and
column zero.

— IDN creates an identity matrix from num-array. The number of rows
and columns in num-array must be identical. IDN sets all elements to
zero except those in row and column zero, and those on the diagonal
from num-array(1,1) to num-array(n,n), which are set to 1.

Statements and Functions 3-177

MAT

ZER sets all array elements to zero, except those in row and column
zero.

NULS$ sets all elements of a string array to the null string, except those
in row and column zero.

« Array Arithmetic

The equal sign (=) assigns the results of the specified operation to the
elements in num-arrayl.

If num-array3 is not specified, HP BASIC assigns the values of num-

array2's elements to the corresponding elements of num-arrayl. Num-
arrayl must have at least as many rows and columns as num-array?2.
Num-arrayl is redimensioned to match num-array2.

Use the plus sign (+) to add the elements of two arrays. Num-array?2
and num-array3 must have identical bounds.

Use the minus sign (=) to subtract the elements of two arrays.
Num-array2 and num-array3 must have identical bounds.

Use the asterisk (*) to perform matrix multiplication on the elements
of num-array2 and num-array3 and to assign the results to num-
arrayl. This operation gives the dot product of num-array2 and
num-array3. All three arrays must be two-dimensional, and the
number of columns in num-array2 must equal the number of rows in
num-array3. HP BASIC redimensions num-arrayl to have the same
number of rows as num-array2 and the same number of columns as
num-array3. Neither num-array2 nor num-array3 may be the same as
num-arrayl.

With matrix multiplication, you can specify more than two numeric

arrays; however, each array must be two-dimensional. If you specify
more than two arrays, the lower bounds must be zero and the upper
bounds must be 4.

e Scalar Multiplication

HP BASIC multiplies each element of num-array5 by Num-exp and
stores the results in the corresponding elements of num-array4.

= Inversion and Transposition

TRN transposes num-array7 and assigns the results to num-array6. If
num-array7 has m rows and n columns, num-array6 will have n rows
and m columns. Both arrays must be two-dimensional.

You cannot transpose a matrix to itself: MAT A = TRN(A) is invalid.

3-178 Statements and Functions

Examples

MAT

— INV inverts num-array7 and assigns the results to num-array6. Num-
array7 must be a two-dimensional array that can be reduced to the
identity matrix with elementary row operations. The row and column
dimensions must be identical.

You cannot increase the number of array elements or change the number
of dimensions in an array when you redimension with the MAT statement.
For example, you can redimension an array with dimensions (5,4) to (4,5)
or (3,2), but you cannot redimension that array to (5,5) or to (10). The
total number of array elements includes those in row and column zero.

If an array is named in both a DIM statement and a MAT statement, the
DIM statement must lexically precede the MAT statement.

MAT statements do not operate on elements in the zero element (one-
dimensional arrays) or in the zero row or column (two-dimensional arrays).
MAT statements use these elements to store results of intermediate
calculations. Therefore, you should not depend on values in row and
column zero if your program uses MAT statements.

Example 1

I'Numeric Initialization
MAT CONVERT = zer (10, 10)

Example 2
IlInitialization
MAT na_me$ = NUL$(5, 5)

Example 3
l'Array Arithnetic

MAT

newint = old_int - rslt_int

Example 4
I'Scal ar Miultiplication

MAT

740 = (4.24) * Z

Example 5
Il'nversion and Transposition

MAT

M= INV (2)

Statements and Functions 3-179

MAT INPUT

MAT INPUT

The MAT INPUT statement assigns values from a terminal or terminal-format
file to array elements.

Format
MAT INPUT [#chnl-exp ,] { array [(int-expl [, int-exp2])] }....

Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

= The file associated with chnl-exp must be an open terminal-format file
or terminal. If chnl-exp is not specified, HP BASIC takes data from the
controlling terminal.

« Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array.

<« If you are creating an array, int-expl and int-exp2 cannot exceed 10.

Remarks

= You cannot use the MAT INPUT statement on arrays of more than two
dimensions.

< You cannot use the MAT INPUT statement on arrays of data type
DECIMAL or on arrays named in a RECORD statement.

« All arrays specified with the MAT INPUT statement must have a lower
bounds of zero.

= If you do not specify bounds, HP BASIC creates the array and dimensions
it to (10,10).

= If you do specify upper bound, HP BASIC creates the array with the
specified bounds. If the bounds exceed (10) or (10,10), HP BASIC signals
“Redimensioned array” (ERR=105).

3-180 Statements and Functions

Example

MAT INPUT

To use the MAT INPUT statement with arrays larger than (10,10), create
the input and output arrays with the DIM statement.

When the array exists, the following rules apply:

— If you specify bounds, HP BASIC redimensions the array to the
specified size. However, MAT INPUT cannot increase the total number
of array elements.

— If you do not specify bounds, HP BASIC does not redimension the
array.

For terminals open on channel zero only, the MAT LINPUT statement
prompts with a question mark (?) unless a SET NO PROMPT statement
has been executed. See the description of the SET PROMPT statement for
more information.

Use commas to separate data elements and a line terminator to end the
input of data. Use an ampersand (&) before the line terminator to continue
data over more than one line.

The MAT INPUT statement assigns values by row. For example, it assigns
values to all elements in row 1 before beginning row 2.

The MAT INPUT statement assigns the row number of the last data
element transferred into the array to the system variable NUM.

The MAT INPUT statement assigns the column number of the last data
element transferred into the array to the system variable NUM2.

If there are fewer elements in the input data than there are array
elements, HP BASIC does not change the remaining array elements.

If there are more data elements in the input stream than there are array
elements, HP BASIC ignores the excess.

Row zero and column zero are not changed.

MAT | NPUT XYZ(5, 5)
MAT PRINT XYZ;

Statements and Functions 3-181

MAT INPUT

Output
71,234,

OO
ocooocoN
[N e NeoNean NIb]
oo op~u
o oo O

3-182 Statements and Functions

MAT LINPUT

MAT LINPUT

The MAT LINPUT statement receives string data from a terminal or terminal-
format file and assigns it to string array elements.

Format

MAT LINPUT [#chnl-exp ,] { str-array [(int-expl [, int-exp2 1)] }....

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number
associated with a file or terminal. It must be immediately preceded by
a number sign (#).

The file associated with chnl-exp must be an open terminal-format file or
terminal. If a channel is not specified, HP BASIC takes data from the
controlling terminal.

Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array.

If you are creating an array, int-expl and int-exp2 cannot exceed 10.

You cannot use the MAT LINPUT statement on arrays of more than two
dimensions.

You cannot use the MAT LINPUT statement on arrays of data type other
than STRING or on arrays named in a RECORD statement.

If you do not specify bounds, HP BASIC creates the array and dimensions
it to (10,10).

If you do specify upper bounds, HP BASIC creates the array with the
specified bounds. If the bounds exceed (10) or (10,10), HP BASIC signals
“Redimensioned array” (ERR=105).

All arrays specified with the MAT LINPUT statement must have lower
bounds of zero.

Statements and Functions 3-183

MAT LINPUT

Example

To use MAT LINPUT with arrays larger than (10,10), create the input
arrays with the DIM statement.

When the array exists, the following rules apply:

— If you specify bounds, HP BASIC redimensions the array to the
specified size. However, MAT LINPUT cannot increase the total
number of array elements.

— If you do not specify bounds, HP BASIC does not redimension the
array.

For terminals open on channel zero only, the MAT LINPUT statement

prompts with a question mark (unless a SET NO PROMPT statement has
been executed) for each string array element, starting with element (1,1).
HP BASIC assigns values to all elements of row 1 before beginning row 2.

The MAT LINPUT statement assigns the row number of the last data
element transferred into the array to the system variable NUM.

The MAT LINPUT statement assigns the column number of the last data
element transferred into the array to the system variable NUM2.

Typing only a line terminator in response to the question mark prompt
causes HP BASIC to assign a null string to that string array element.

MAT LINPUT does not change row and column zero.

DI M cus_rec$(3, 3)
MAT LI NPUT cus_rec$(2,2)

PRINT cus_rec$(
PRINT cus_rec$(
PRINT cus_rec$(
PRINT cus_rec$(

1,1)
1,2)
2,1)
2,2)

Output

? Babcock
? Santan
? Ll oyd

? Kelly
Babcock
Sant an

LI oyd
Kel l'y

3-184 Statements and Functions

MAT PRINT

MAT PRINT

The MAT PRINT statement prints the contents of a one- or two-dimensional
array on your terminal or assigns the value of each array element to a record
in a terminal-format file.

Format

MAT PRINT [#chnl-exp ,] { array [(int-expl [, int-exp2])] [] .

Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file or terminal. It must be immediately preceded by
a number sign (#).

= The file associated with chnl-exp must be an open terminal-format file or
terminal. If you do not specify a channel, HP BASIC prints data on the
controlling terminal.

= Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array.

e The separator (comma or semicolon) determines the output format for the
array.

— If you use a comma, BASIC prints each array element in a new print
zone and starts each row on a new line.

— If you use a semicolon, HP BASIC separates each array element with a
space and starts each row on a new line.

— If you do not use a separator character, HP BASIC prints each array
element on its own line.

Statements and Functions 3-185

MAT PRINT

Remarks

You cannot use the MAT PRINT statement on arrays of more than two
dimensions.

You cannot use the MAT PRINT statement on arrays of data type
DECIMAL or on arrays named in a RECORD statement.

When you use the MAT PRINT statement to print more than one array,
each array name except the last must be followed with either a comma or a
semicolon. HP BASIC prints a blank line between arrays.

If the array does not exist, the following rules apply:

— If you do not specify bounds, HP BASIC creates the array and
dimensions it to (10,10).

— If you specify upper bounds, HP BASIC creates the array with the
specified bounds. If the bounds exceed (10) or (10,10), HP BASIC
prints the elements (1) through (10) or (1,1) through (1,10) and
signals “Subscript out of range” (ERR=55).

All arrays specified with the MAT PRINT statement must have lower
bounds of zero.

When the array exists, the following rules apply:

— If the specified bounds are smaller than the maximum bounds of a
dimensioned array, HP BASIC prints a subset of the array, but does
not redimension the array. For example, if you use the DIM statement
to dimension A(20,20), and then MAT PRINT A(2,2), HP BASIC prints
elements (1,1), (1,2), (2,1), and (2,2) only; array A(20,20) does not
change.

— If you do not specify bounds, HP BASIC prints the entire array.
The MAT PRINT statement does not print elements in row or column zero.

The MAT PRINT statement cannot redimension an array.

3-186 Statements and Functions

MAT PRINT

Example

DI M cus_rec$(3,3)
MAT LINPUT cus_rec$(2, 2)
MAT PRINT cus_rec$(2,2)

Output

? Babcock
? Sant ani
? Ll oyd
? Kelly
Babcock
Sant ani

LI oyd

Kel l'y

Statements and Functions 3-187

MAT READ

MAT READ

The MAT READ statement assigns values from DATA statements to array
elements.

Format

MAT READ { array [(int-expl [, int-exp2])] },...

Syntax Rules

Remarks

Int-expl and int-exp2 define the upper bounds of the array being implicitly
created or the dimensions of an existing array.

If you are creating an array, int-expl and int-exp2 cannot exceed 10.

If you do not specify bounds, HP BASIC creates the array and dimensions
it (10,10).
If you specify bounds, HP BASIC creates the array with the specified

bounds. If the bounds exceed (10) or (10,10), HP BASIC signals
“Redimensioned array” (ERR=105).

To read arrays larger than (10,10), create the array with the DIM
statement.

All arrays specified with the MAT statement must have lower bounds of
zero.

When the array exists, the following rules apply:

— If you specify upper bounds, HP BASIC redimensions the array to the
specified size. However, MAT READ cannot increase the total number
of array elements.

— If you do not specify bounds, HP BASIC does not redimension the
array.

All the DATA statements must be in the same program unit as the MAT
READ statement.

3-188 Statements and Functions

Example

MAT READ

The MAT READ statement assigns data items by row. For example, it
assigns data items to all elements in row 1 before beginning row 2.

The MAT READ statement does not read elements into row or column
ZEero.

The MAT READ statement assigns the row number of the last data
element transferred into the array to the system variable, NUM.

The MAT READ statement assigns the column number of the last data
element transferred into the array to the system variable, NUM2.

You cannot use the MAT READ statement on arrays of more than two
dimensions.

You cannot use the MAT READ statement on arrays of data type
DECIMAL or on arrays named in a RECORD statement.

AT READ A(3, 3)
AT READ B(3, 3)
PRI NT

PRINT "Matrix A"
PRI NT

AT PRINT A:

PRI NT

PRINT "Matrix B'
PRI NT

AT PRINT B:
DATA 1,2,3,4,5, 6

Output

Matri x

1 2
4 5

Matrix

00
00
00

A
3
6
0 00
B
0
0
0

Statements and Functions 3-189

MAX

MAX

The MAX function compares the values of two or more numeric expressions
and returns the highest value.

Format

num-var = MAX (num-expl , num-exp2 [, num-exp3 ,...])

Syntax Rules

HP BASIC allows you to specify up to eight numeric expressions.

Remarks

= If you specify values with different data types, HP BASIC performs data
type conversions to maintain precision.

< HP BASIC returns a function result whose data type is compatible with
the values you supply.

Example

DECLARE REAL John_grade, &
Bob_grade, &
Joe_grade, &
hi ghest _grade
I NPUT "John's grade"; John_grade
I NPUT "Bob's grade"; Bob_grade
INPUT "Joe's grade";Joe_grade
hi ghest grade = MAX(John_grade, Bob_grade, Joe_grade)
PRINT "The highest grade is";highest grade

Output

John’s grade? 90
Bob’ s grade? 95
Joe's grade? 79
The highest grade is 95

3-190 Statements and Functions

MID$

MID$

MID$ can be used either as a statement or as a function. The MID$ statement
performs substring insertion into a string. The MID$ function extracts a
specified substring from a string expression.

Format

MID$ statement
MID[$] (str-var, int-expl [, int-exp2]) = str-exp

MID$ function
str-var = MID[$] (str-exp, int-expl, int-exp2)

Syntax Rules

= Int-expl specifies the position of the substring’s first character.

= Int-exp2 specifies the length of the substring.

Remarks

e If int-expl is less than 1, HP BASIC assumes a starting character position
of 1.

« If int-exp2 is less than or equal to zero, HP BASIC assumes a length of
Zero.

= If you specify a floating-point expression for int-expl or int-exp2, HP BASIC
truncates it to a LONG integer.

= MID$ statement
— The MID$ statement replaces a specified portion of str-var with str-exp.

— If int-expl is greater than the length of str-var, str-var remains
unchanged.

— The length of str-var does not change regardless of the value of int-exp2.

Statements and Functions 3-191

MID$

If the optional int-exp2 is not specified, HP BASIC assumes int-exp2
to be the length of str-exp minimized by the length of str-var minus
int-expl. For example:

A$ = " ABCDEFG'
MD$ (AS$,3) = "123456789"
PRINT AS$

Output
" AB12345"
If int-exp2 is less than or equal to zero, str-var remains unchanged.

If int-exp2 is greater than the length of str-var, HP BASIC assumes
int-exp2 to be equal to the length of str-var.

Int-exp2 is always minimized against the length of str-var minus
int-expl.

< MID$ function

Examples

The MID$ function extracts a substring from str-exp and stores it in
str-var.

If int-expl is greater than the length of str-exp, MID$ returns a null
string.

If int-exp2 is greater than the length of str-exp, HP BASIC returns the
string that begins at int-expl and includes all characters remaining in
str-exp.

If int-exp2 is less than or equal to zero, MID$ returns a null string.

Example 1

IMD$ Function

DECLARE STRING ol d_string, new string
old_string = "ABCD'

new string = MD$(ol d_string,1,3)
PRINT new_string

Output

ABC

3-192 Statements and Functions

MID$

Example 2

IMD$ Statenent

DECLARE STRING ol d_string, replace_string
old string = "ABCD'

replace_string = "123"

PRINT ol d string

M D$(ol d_string, 1,3) = replace string
PRINT ol d string

Output

ABCD
123D

Statements and Functions 3-193

MIN

MIN

The MIN function compares the values of two or more numeric expressions and
returns the smallest value.

Format

num-var = MIN (num-expl, num-exp2 [, num-exp3 ,... |)

Syntax Rules

HP BASIC allows you to specify up to eight numeric expressions.

Remarks

= If you specify values with different data types, HP BASIC performs data
type conversions to maintain precision.

< HP BASIC returns a function result whose data type is compatible with
the values you supply.

Example

DECLARE REAL John_grade, &

Bob_grade, &
Joe_grade, &
| owest _grade

I NPUT "John's grade"; John_grade

I NPUT "Bob's grade"; Bob_grade

I NPUT "Joe's grade"; Joe_grade

| onest _grade = M N(John_grade, Bob_grade, Joe_grade)
PRINT "The |owest grade is";|owest_grade

Output

John's grade? 95
Bob' s grade? 100
Joe's grade? 84
The lowest grade is 84

3-194 Statements and Functions

MOD

MOD

The MOD function divides a numeric value by another numeric value and
returns the remainder.

Format
num-var = MOD (num-expl, num-exp2)

Syntax Rules

Num-expl is divided by num-exp2.

Remarks

= If you specify values with different data types, HP BASIC performs data
type conversions to maintain precision.

= HP BASIC returns a function result whose data type is compatible with
the values you supply.

= The function result is either a positive or negative value, depending on
the value of the first numeric expression. For example, if the first numeric
expression is negative, then the function result will also be negative.

Example

DECLARE REAL A B

A =500

B = MO A 70)

PRINT "The remai nder equal s";B
Output

The remai nder equal s 10

Statements and Functions 3-195

MOVE

MOVE
The MOVE statement transfers data between a record buffer and a list of
variables.

Format
MOVE { lgOM } #chnl-exp , move-item,...

¢ NUM-var
num-array ([]...)
str-var [= int-exp]
move-item: str-array ([]...) [= int-exp]
[data-type] FILL [(rep-cnt)][= int-const]
FILL% [(rep-cnt)]
FILL$ [(rep-cnt)] [= int-exp]

Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

= Move-item specifies the variable or array to which or from which data is to
be moved.

= Parentheses indicate the number of dimensions in a numeric array. The
number of dimensions is equal to the number of commas plus 1. Empty
parentheses indicate a one-dimensional array, one comma indicates a
two-dimensional array, and so on.

= Str-var and str-array specify a fixed length string variable or array.
Parentheses indicate the number of dimensions in a string array. The
number of dimensions is equal to the number of commas plus 1. You
can specify the number of bytes to be reserved for the variable or array
elements with the =int-exp clause. The default string length for a MOVE
FROM statement is 16. For a MOVE TO statement, the default is the
string’s length.

3-196 Statements and Functions

Remarks

MOVE

The FILL, FILL%, and FILL$ keywords allow you to transfer fill items of
a specific data type. Table 3—-1 shows FILL item formats, representations,
and storage requirements.

— If you specify a data type before the FILL keyword, the fill is of that
data type. If you do not specify a data type, the fill is of the default
data type. Data-type can be any HP BASIC data type keyword or a
data type defined by a RECORD statement. Data type keywords, size,
range, and precision are listed in Table 1-2.

— FILL items following a data type other than STRING cannot end with
a dollar sign. FILL items following a data type other than BYTE,
WORD, LONG, QUAD, or INTEGER cannot end with a percent sign.

— FILL% indicates integer fill. FILL$ indicates string fill. The =int-exp
clause specifies the number of bytes to be moved for string FILL items.

— Rep-cnt specifies the number of FILL items to be moved. Table 3-1
describes FILL item format and storage allocation.

— In the applicable formats of FILL, (rep-cnt) represents a repeat count,
not an array subscript. FILL (n) represents n elements, not n + 1.

You cannot use an expression or function reference as a move-item.

Before a MOVE FROM statement can execute, the file associated with
chnl-exp must be open and there must be a record in the record buffer.

A MOVE statement neither transfers data to or from external devices,
nor invokes OpenVMS Record Management Services (RMS). Instead, it
transfers data between user areas. Thus, a record should first be fetched
with the GET statement before you use a MOVE FROM statement, and a
MOVE TO statement should be followed by a PUT or UPDATE statement
that writes the record to a file.

MOVE FROM transfers data from the record buffer to the move-item.
MOVE TO transfers data from the move-item to the record buffer.

The MOVE statement does not affect the record buffer’s size. If a MOVE
statement partially fills a buffer, the rest of the buffer is unchanged. If
there is more data in the variable list than in the buffer, HP BASIC signals
“MOVE overflows buffer” (ERR=161).

Statements and Functions 3-197

MOVE

Example

Each MOVE statement to or from a channel transfers data starting at the
beginning of the buffer. For example:

MVE FROM #1% 1% A$ = 1%

In this example, HP BASIC assigns the first value in the record buffer to

1%; the value of 1% is then used to determine the length of A$.

If a MOVE statement operates on an entire array, the following conditions

apply:

— HP BASIC transfers elements of row and column zero (in contrast to
the MAT statements).

— The storage size of the array elements and the size of the array
determine the amount of data moved. A MOVE statement that
transfers data from the buffer to a longword integer array transfers the
first four bytes of data into the first element (for example, (0,0)), the
next four bytes of data into element (0,1), and so on.

If the MOVE TO statement specifies an explicit string length, the following
restrictions apply:

— If the string is equal to or longer than the explicit string length, HP
BASIC moves only the specified number of characters into the buffer.

— If the string is shorter than the explicit string length, HP BASIC moves
the entire string and pads it with spaces to the specified length.

HP BASIC does not check the validity of data during the MOVE operation.

MOVE FROM #4% RUNSY% HI TS% ERRORSY% RBI % BAT_AVERAGE
MOVE TO #9% FILL$ = 10% A$ = 10% B$ = 30% C$ = 2%

3-198 Statements and Functions

NAME...AS

NAME...AS

The NAME...AS statement renames the specified file.

Format

NAME file-specl AS file-spec2

Syntax Rules

Remarks

File-specl and file-spec2 must be string expressions.

There is no default file type in file-specl or file-spec2. If the file to be
renamed has a file type, file-specl must include both the file name and the
file type.

If you specify only a file name, HP BASIC searches for a file with no file
type. If you do not specify a file type for file-spec2, HP BASIC names the
file, but does not assign a file type.

File-spec2 can include a directory name but not a device name. If you
specify a directory name with file-spec2, the file will be placed in the
specified directory. If you do not specify a directory name, the default is the
current directory.

File version numbers are optional. HP BASIC renames the highest version
of file-specl if you do not specify a version number.

If the file specified by file-specl does not exist, HP BASIC signals “Can’t
find file or account” (ERR=5).

If you use the NAME...AS statement on an open file, HP BASIC does not
rename the file until it is closed.

You cannot use the NAME...AS statement to move a file between devices.
You can only change the directory, name, type, or version number.

Statements and Functions 3-199

NAME...AS

Example

$ Directory USER$$SDI SK: [BASI C_PROG
Directory USERSSDI SK: [BASI C_PROG

FI RST_PROG. BAS; 1
Total of 1 file.
$ BASIC

HP BASIC V3.4
Ready

NAME "FI RST_PROG. BAS" AS " SECOND_PROG. BAS'
Ready

EXIT

$ Directory USER$$DI SK: [BASI C_PROG
Directory USER$$DI SK: [BASI C_PROG
SECOND_PROG. BAS; 1

Total of 1 file.

3-200 Statements and Functions

NEXT

NEXT

The NEXT statement marks the end of a FOR, UNTIL, or WHILE loop.

Format

NEXT [num-unsubs-var]

Syntax Rules

= Num-unsubs-var is required in a FOR...NEXT loop and must correspond to
the num-unsubs-var specified in the FOR statement.

= Num-unsubs-var is not allowed in an UNTIL or WHILE loop.

< Num-unsubs-var must be a numeric, unsubscripted variable.

Remarks

Each NEXT statement must have a corresponding FOR, UNTIL, or WHILE
statement or HP BASIC signals an error.

Example

PROGRAM cal cul at i ng_pay
DECLARE | NTEGER no_hours, &
SINGLE weekl y_pay, mi ni num wage
m ni mum wage = 3. 65
no_hours = 40
VWHI LE no_hours > 0
NPUT "Enter the nunber of hours you intend to work this week";no_hours
weekly pay = no_hours * mini num wage
PRINT "If you worked";no_hours;"hours, your pay woul d be";weekly_ pay
NEXT
END PROGRAM

Statements and Functions 3-201

NEXT

Output

Enter the nunber of hours you intend to work this week? 35
[f you worked 35 hours, your pay would be 127.75

Enter the nunber of hours you intend to work this week? 23
[f you worked 23 hours, your pay woul d be 83.95

Enter the nunmber of hours you intend to work this week? 0
[f you worked 0 hours your pay would be 0

3-202 Statements and Functions

NOECHO

NOECHO

The NOECHO function disables echoing of input on a terminal.

Format
int-var = NOECHO (chnl-exp)

Syntax Rules

Chnl-exp must specify a terminal.

Remarks

« If you specify NOECHO, HP BASIC accepts characters typed on the
terminal as input, but the characters do not echo on the terminal.

e The NOECHO function is the complement of the ECHO function; NOECHO
disables the effect of ECHO and vice versa.

< NOECHO always returns a value of zero.

Example
DECLARE | NTEGER Y, &
STRI NG pass_word
Y = NOECHQ(0)

I NPUT "Enter your password";pass_word
| F pass_word = "DARLENE" THEN PRI NT " Confi rnmed"

Y = ECHO(0)
Output

Enter your password?
Confi rmed

Statements and Functions 3-203

NOMARGIN

NOMARGIN

The NOMARGIN statement removes the right margin limit set with the
MARGIN statement for a terminal or a terminal-format file.

Format
NOMARGIN [#chnl-exp]

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel number associated
with a file. It must be immediately preceded by a number sign (#).

Remarks

= When you specify NOMARGIN, the right margin is set to 132.
= Chnl-exp, if specified, must be an open terminal-format file or a terminal.

< If you do not specify a channel, HP BASIC sets the margin on the
controlling terminal to 132.

= The NOMARGIN statement applies to the specified channel only while the
channel is open. If you close the channel and then reopen it, HP BASIC
uses the default margin of 72.

Example

OPEN "EMP. DAT" FOR QUTPUT AS #1
NOVARG N #1

3-204 Statements and Functions

NUM

NUM

The NUM function returns the row number of the last data element transferred
into an array by a MAT /O statement.

Format
int-var = NUM

Syntax Rules

None

Remarks

« NUM returns a value of zero if it is invoked before HP BASIC has executed
any MAT I/O statements.

= For a two-dimensional array, NUM returns an integer specifying the
row number of the last data element transferred into the array. For a
one-dimensional array, NUM returns the number of elements entered.

= The value returned by the NUM function is an integer of the default size.

Example

OPEN " STU_ACCT" FOR I NPUT AS #2
DIMstu_rec$(3,3)

MAT | NPUT #2, stu rec$

PRINT "Row count ="; NUM

PRINT " Col unmm nunber ="; NUM2

Output

Row count =1
Col um nunmber =1

Statements and Functions 3-205

NUM2

NUM2

The NUM2 function returns the column number of the last data element
transferred into an array by a MAT /O statement.

Format
int-var = NUM2

Syntax Rules

None

Remarks

= NUM2 returns a value of zero if it is invoked before HP BASIC has
executed any MAT I/O statements or if the last array element transferred
was in a one-dimensional list.

< The NUM2 function returns an integer specifying the column number of
the last data element transferred into an array.

= The value returned by the NUM2 function is an integer of the default size.

Example

OPEN " STU_ACCT" FOR I NPUT AS #2
DIMstu_rec$(3,3)

MAT INPUT #2, stu_rec$

PRI NT "Row count =";NUM

PRINT "Col utm nunber ="; NUM2

Output

Row count =1
Col um number =1

3-206 Statements and Functions

NUM$

NUM$

The NUMS$ function evaluates a numeric expression and returns a string of
characters in PRINT statement format, with leading and trailing spaces.

Format
str-var = NUM$ (num-exp)

Syntax Rules

None

Remarks

= If num-exp is positive, the first character in the string expression is a
space. If num-exp is negative, the first character is a minus sign (-).

= The NUMS$ function does not include trailing zeros in the returned string.
If all digits to the right of the decimal point are zeros, NUM$ omits the
decimal point as well.

= When nume-exp is a floating-point variable and has an integer portion of
6 decimal digits or less (for example, 1234.567), HP BASIC rounds the
number to 6 digits (1234.57). If num-exp has 7 decimal digits or more, HP
BASIC rounds the number to 6 digits and prints it in E format.

e When num-exp is from 0.1 to 1 and contains more than 6 digits, HP BASIC
rounds it to 6 digits. When num-exp is smaller than 0.1, HP BASIC rounds
it to 6 digits and prints it in E format.

= If num-exp is an integer variable, the maximum number of digits in the
returned string is as follows, depending on the data type of num-exp:

Statements and Functions 3-207

NUM$

Type Maximum Digits
Byte 3

Word 5

Longword 10

Quadword 19

e If num-exp is a DECIMAL value, the returned string can have up to
31 digits.

= The last character in the returned string is a space.

Example

DECLARE STRI NG nunber
nunber = NUMB(34. 5500/ 31. 8)
PRI NT nunber

Output
1.08648

3-208 Statements and Functions

NUM1$

NUM1$

The NUM1$ function changes a numeric expression to a numeric character
string without leading and trailing spaces and without rounding.

Format
str-var = NUM1$ (num-exp)

Syntax Rules

None

Remarks

= The NUML1S$ function returns a string consisting of numeric characters and
a decimal point that corresponds to the value of num-exp. Leading and
trailing spaces are not included in the returned string.

e The NUM1$ function returns a maximum of the following number of
significant digits:

— 3 for BYTE integers

— 5 for WORD integers

— 6 for SINGLE and SFLOAT floating-point numbers
— 10 for LONG integers

— 19 for QUAD integers

— 16 for DOUBLE floating-point numbers

— 15 for GFLOAT and TFLOAT floating-point numbers
— 33 for HFLOAT and XFLOAT floating-point numbers

— 31 for DECIMAL numbers
Alpha BASIC does not support HFLOAT.

= The returned string does not use E-format notation.

Statements and Functions 3-209

NUM1$

Example

DECLARE STRI NG nunber
number = NUML$(PI/ 2)
PRI NT nunber

Output
1.5708

3-210 Statements and Functions

ON ERROR GO BACK

ON ERROR GO BACK

Under certain conditions, an ON ERROR GO BACK statement executed in a
subprogram or DEF function transfers control to the calling program.

Note

The ON ERROR GO BACK statement is supported for compatibility
with other versions of BASIC. For new program development, it is
recommended that you use WHEN blocks.

Format

{ ONERROR

ON ERROR } GO BACK

Syntax Rules

The ON ERROR GO BACK statement is illegal inside a protected region or
within an attached or detached handler. Use the EXIT HANDLER statement

instead.

Remarks

« If there is no error outstanding, execution of an ON ERROR GO BACK
statement causes subsequent errors to return control to the calling
program’s error handler.

= If there is an error outstanding, execution of an ON ERROR GO BACK
statement immediately transfers control to the calling program'’s error
handler.

= By default, DEF functions and subprograms resignal errors to the calling
program.

= The ON ERROR GO BACK statement remains in effect until the program
unit completes execution, until HP BASIC executes another ON ERROR
statement, or until HP BASIC enters a protected region.

Statements and Functions 3-211

ON ERROR GO BACK

< An ON ERROR GO BACK statement executed in the main program is
equivalent to an ON ERROR GOTO 0 statement.

= If a main program calls a subprogram named SUB1, and SUB1 calls the
subprogram named SUB2, an ON ERROR GO BACK statement executed
in SUB2 transfers control to SUB1’s error handler when an error occurs in
SUB2. If SUBL1 also has executed an ON ERROR GO BACK statement,
HP BASIC transfers control to the main program'’s error handling routine.

= For current program development, see the WHEN ERROR statement.

= It is not recommended that you mix ON ERROR statements with protected
regions in the same program unit. For more information, see the HP
BASIC for OpenVMS User Manual.

Example

IF ERR =11
THEN
RESUME err_hand
ELSE
ON ERROR GO BACK
END I F

3-212 Statements and Functions

ON ERROR GOTO

ON ERROR GOTO

The ON ERROR GOTO statement transfers program control to a specified
line or label in the current program unit when an error occurs under certain
conditions.

Note

The ON ERROR GOTO statement is supported for compatibility
with other versions of BASIC. For new program development, it is
recommended that you use WHEN blocks.

Format

{ overror } { coro’ } oo

Syntax Rules

= You cannot specify an ON ERROR GOTO statement within a protected
region or handler.

= Target must be a valid HP BASIC line number or label and must exist in
the same program unit as the ON ERROR GOTO statement.

< If an ON ERROR GOTO statement is in a DEF function, target must also
be in that function definition.

Remarks

= HP BASIC transfers program control to a specified line number or label
under two conditions:

— If an error occurred outside a protected region of a WHEN block

— If an error occurred within the protected region of a WHEN block and
was propagated by the handler associated with the WHEN block

< Execution of an ON ERROR GOTO statement causes subsequent errors to
transfer control to the specified target.

Statements and Functions 3-213

ON ERROR GOTO

e The ON ERROR GOTO statement remains in effect until the program
unit completes execution or until HP BASIC executes another ON ERROR

statement.

< HP BASIC does not allow recursive error handling. If a second error occurs
during execution of an error-handling routine, control passes to the HP
BASIC error handler and the program stops executing.

= For current program development, see the WHEN ERROR statement.

= It is not recommended that you mix ON ERROR statements with protected
regions within the same program unit. For more information, see the HP
BASIC for OpenVMS User Manual.

Example

SUB LI ST (STRING A)
DECLARE STRING B

ON ERROR GOTO err_bl ock
OPEN A FOR INPUT AS FILE #1

[nput _| oop:
LINPUT #1, B
PRINT B

GOTO | nput _| oop
err_bl ock:
IF (ERR=11%
THEN
CLOSE #1%
RESUME done
ELSE
ON ERROR GOTO 0
END I F
done:
END SUB

3-214 Statements and Functions

ON ERROR GOTO 0

ON ERROR GOTO 0

The ON ERROR GOTO 0 statement disables ON ERROR error handling and
passes control to the HP BASIC error handler when an error occurs.

Format

{

Note

The ON ERROR GOTO 0 statement is supported for compatibility
with other versions of BASIC. For new program development, it is
recommended that you use WHEN blocks.

ovezror | { coro }?

Syntax Rules

HP BASIC does not allow you to specify an ON ERROR GOTO 0 statement
within an attached or detached handler or within a protected region.

Remarks

If an error is outstanding, execution of an ON ERROR GOTO 0 statement
immediately transfers control to the HP BASIC error handler. The HP
BASIC error handler will report the error and exit the program.

If there is no error outstanding, execution of an ON ERROR GOTO 0
statement causes subsequent errors to transfer control to the HP BASIC
error handler.

When an ON ERROR GOTO 0 statement is executed, control is transferred
to the HP BASIC error handler if an error occurred outside a protected
region of a WHEN block.

If an error occurs within the protected region of a WHEN block and was
propagated by the handler associated with the WHEN block, HP BASIC
transfers control to the specified line number or label contained in the
subprogram or DEF.

Statements and Functions 3-215

ON ERROR GOTO 0

= For current program development, see the WHEN ERROR statement.

= It is not recommended that you mix ON ERROR statements with attached
or detached handlers within the same program unit. For more information,
see the HP BASIC for OpenVMS User Manual.

Example

ON ERROR GOTO err_routine
FOR I = 1% TO 10%
PRINT "Pl ease type a nunber"
I NPUT A
NEXT |
err_routine:
IF ERR = 50
THEN
RESUME
ELSE
ON ERROR GOTO 0
END | F

Output

Pl ease type a nunber
?Qrllz

YBAS- F- | LLUSADEV, 111egal usage for device
-BAS-1-ON_CHAFIL, on channel 0 for file SYS$I NPUT: [TUTTI] SYSI NPUT. DAT;

at user PC 00000632
-RVS-F-DEV, error in device name or inappropriate device type for operation
-BAS- |- FROLINMOD, fromline 10 in nodul e BADUSER

3-216 Statements and Functions

ON...GOSUB

ON...GOSUB

The ON...GOSUB statement transfers program control to one of several
subroutines, depending on the value of a control expression.

Format

ON int-exp GOSUB target ,... [OTHERWISE target]

Syntax Rules

Remarks

Int-exp determines which target HP BASIC selects as the GOSUB
argument. If int-exp equals 1, HP BASIC selects the first target. If
int-exp equals 2, HP BASIC selects the second target, and so on.

Target must be a valid HP BASIC line number or label and must exist in
the current program unit.

Control cannot be transferred into a statement block (such as FOR...NEXT,
UNTIL...NEXT, WHILE...NEXT, DEF...END DEF, SELECT...END SELECT,
WHEN...END WHEN, or HANDLER...END HANDLER).

If there is an OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of targets in the list, HP BASIC selects the target of the
OTHERWISE clause.

If there is no OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of targets in the list, HP BASIC signals “ON statement
out of range” (ERR=58).

If a target specifies a nonexecutable statement, HP BASIC transfers control
to the first executable statement that lexically follows the target.

You can only use the ON...GOSUB statement inside a handler if all the
targets are contained within the handler.

If you fail to handle an exception that occurs while an ON...GOSUB
statement in the body of a subroutine is executing, the exception is handled
by the default error handler. The exception is not handled by any WHEN
block surrounding the ON...GOSUB statement that invoked the subroutine.

Statements and Functions 3-217

ON...GOSUB

< You can specify the ON...GOSUB statement inside a WHEN block if the
ON...GOSUB target is in the same protected region, an outer protected
region, or in a nonprotected region.

= You cannot specify an ON...GOSUB statement inside a WHEN block if the
ON...GOSUB target already resides in another protected region that does
not contain the most current protected region.

= The target cannot be more than 32,767 bytes away from the ON...GOSUB
statement.

Example

100 INPUT "Please enter 1, 2 or 3"; A%
ON A% GOSUB 1000, 2000, 3000 OTHERW SE err _routine
GOTO done

1000 PRINT "That was a 1"
RETURN

2000 PRINT "That was a 2"
RETURN

3000 PRINT "That was a 3"
RETURN

err_routine:
PRINT "Qut of range:
RETURN

done:
END PROGRAM

3-218 Statements and Functions

ON...GOTO

ON...GOTO

The ON...GOTO statement transfers program control to one of several lines or
targets, depending on the value of a control expression.

Format

ON int-exp {

GO TO

om0 } target ,... [OTHERWISE target |

Syntax Rules

Remarks

Int-exp determines which target HP BASIC selects as the GOTO argument.
If int-exp equals 1, HP BASIC selects the first target. If int-exp equals 2,
HP BASIC selects the second target, and so on.

Target must be a valid HP BASIC line number or a label and must exist in
the current program unit.

Control cannot be transferred into a statement block (such as FOR...NEXT,
UNTIL...NEXT, WHILE...NEXT, DEF...END DEF, SELECT...END SELECT,
WHEN...END WHEN, or HANDLER...END HANDLER).

If there is an OTHERWISE clause, and if int-exp is less than one or greater
than the number of targets in the list, HP BASIC transfers control to the
target of the OTHERWISE clause.

If there is no OTHERWISE clause, and if int-exp is less than 1 or greater
than the number of line numbers in the list, HP BASIC signals “ON
statement out of range” (ERR=58).

If a target specifies a nonexecutable statement, HP BASIC transfers control
to the first executable statement that lexically follows the target.

You can only use the ON...GOTO statement inside a handler if all the
targets are contained within the handler.

You can specify the ON...GOTO statement inside a WHEN block if the
ON...GOTO target is in the same protected region, an outer protected
region, or in a nonprotected region.

Statements and Functions 3-219

ON...GOTO

< You cannot specify an ON...GOTO statement inside a WHEN block if the
ON...GOTO target already resides in another protected region that does
not contain the most current protected region.

Example

ON | NDEX% GOTO 700, 800, 900 OTHERW SE fi ni sh

fi ni sh:
END PROGRAM

3-220 Statements and Functions

OPEN

OPEN

The OPEN statement opens a file for processing. It transfers user-specified file
characteristics to OpenVMS Record Management Services (RMS) and verifies

the results.
Format
.)¢ FoR INPUT)
OPEN file-specl l { FOR OUTPUT } AS [FILE] [#] chnl-exp
[, open-clause]...
open-clause:
[APPEND
READ
ACCESS { WRITE
MODIFY
| SCRATCH
[NONE
READ
ALLOW WRITE
i MODIFY

[BUFFER int-exp4]

[CONTIGUOUS]

[DEFAULTNAME file-spec2]
[EXTENDSIZE int-exp5]

[FILESIZE int-exp2]

[MAP map-name]

Statements and Functions 3-221

OPEN

INDEXED
RELATIVE STREAM

[ORGANIZATION] ¢ SEQUENTIAL { VARIABLE }
UNDEFINED FIXED
VIRTUAL

[RECORDSIZE int-expl]

LIST

FORTRAN
RECORDTYPE NONE

ANY
[TEMPORARY]
[UNLOCK EXPLICIT]
[USEROPEN func-name]

[WINDOWSIZE int-exp3]

Sequential Files Only

[BLOCKSIZE int-exp8]
[NOREWIND]
[NOSPAN]

[SPAN]

Relative and Indexed Files Only

[BUCKETSIZE int-exp9]

3-222 Statements and Functions

OPEN

Indexed Files Only

ALTERNATE [KEY] key-clause [DUPLICATES] [CHANGES]

J{ ASCENDING })
DESCENDING

[CONNECT chnl-exp2]

J{ ASCENDING })

PRIMARY [KEY] key-clause [DUPLICATES] DESCENDING

int-unsubs-var
decimal-unsubs-var

key-clause: str-unsubs-var
(str-unsubs-varl ,... str-unsubs-var8)
quad-record-group

Syntax Rules

= File-specl specifies the file to be opened and associated with chnl-exp.
It can be any valid string expression and must be a valid VMS file
specification. HP BASIC passes these values to RMS without editing,
alteration, or validity checks.

HP BASIC does not supply any default file specifications, unless you
include the DEFAULTNAME clause in the OPEN statement.
= The FOR clause determines how HP BASIC opens a file.
— If you open a file with FOR INPUT, the file must exist or HP BASIC
signals an error.

— If you open a file with FOR OUTPUT, HP BASIC creates the file if it
does not exist. If the file does exist, HP BASIC creates a new version of

the file.

— If you do not use FOR INPUT or FOR OUTPUT to open an indexed
file, you must specify a primary key in the event the file does not exist.

Statements and Functions 3-223

OPEN

— If you do not specify either FOR INPUT or FOR OUTPUT, HP BASIC
tries to open an existing file. If there is no such file, HP BASIC creates
one.

= Chnl-exp is a numeric expression that specifies a channel number to be
associated with the file being opened. It can be preceded by an optional
number sign (#) and must be in the range of 1 to 299. Note that channels
100 to 299 are usually reserved for allocation by the RTL routines,
LIBSGET_LUN and LIB$FREE_LUN.

= A statement that accesses a file cannot execute until you open that file and
associate it with a channel.

Remarks

e The OPEN statement does not retrieve records.

= Channel #0, the terminal, is always open. If you try to open channel zero,
HP BASIC signals the error “lllegal 1/0 channel” (ERR=46).

= If a program opens a file on a channel already associated with an open file,
HP BASIC closes the previously opened file and opens the new one.

e The ACCESS clause determines how the program can use the file.

— ACCESS READ allows only FIND, GET, or other input statements
on the file. The OPEN statement cannot create a file if the ACCESS
READ clause is specified.

— ACCESS WRITE allows only PUT, UPDATE, or other output
statements on the file.

— ACCESS MODIFY allows any 1/0O statement except SCRATCH on the
file. ACCESS MODIFY is the default.

— ACCESS SCRATCH allows any 1/O statement valid for a sequential or
terminal-format file.

— ACCESS APPEND is the same as ACCESS WRITE for sequential files,
except that HP BASIC positions the file pointer after the last record
when it opens the file. You cannot use ACCESS APPEND on relative
or indexed files.

For an illustration of the interaction of ACCESS and ALLOW, see No. 5.

3-224 Statements and Functions

OPEN

The ALLOW clause can be used in the OPEN statement to specify file
sharing of relative, indexed, sequential, and virtual files.

— ALLOW NONE lets no other users access the file. This is the default
if any access other than READ is specified. Note that you must have
write access to the file to specify ALLOW NONE.

— ALLOW READ lets other users have read access to the file.
— ALLOW WRITE lets other users have write access to the file.

— ALLOW MODIFY lets other users have unlimited access to the file.

The following scenario may help clarify the interaction of the ACCESS
and ALLOW clauses: Suppose you specify ACCESS WRITE and ALLOW
READ for a file. Your program then can access and write to the file, but
other users (both new and preexisting) can only read the file. However, if
another user has already opened the file for writing, an error is signaled.
For further information, refer to the OpenVMS Record Management
Services (RMS) documentation.

The BUFFER clause can be used with all file organizations except
UNDEFINED.

— For RELATIVE and INDEXED files, int-exp4 specifies the number of
device or file buffers RMS uses for file processing.

— For SEQUENTIAL files, int-exp4 specifies the size of the buffer; for
example, BUFFER 8 for a SEQUENTIAL file sets the buffer size to
eight 512-byte blocks.

— It is recommended that you accept the system defaults or change the
defaults with the DCL SET RMS_DEFAULT command.

The CONTIGUOUS clause causes RMS to try to create the file as a
contiguous-best-try sequence of disk blocks. The CONTIGUOUS clause
does not affect existing files or nondisk files.

The CONTIGUOUS clause does not guarantee that the file will occupy
contiguous disk space. If RMS can locate the file in a contiguous area, it
will do so. However, if there is not enough free contiguous space for a file,
RMS allocates the largest possible contiguous space and does not signal an
error. See the OpenVMS Record Management Services Reference Manual
for more information about contiguous disk allocation.

The DEFAULTNAME clause lets you supply a default file specification.
If file-specl is not a complete file specification, file-spec2 in the
DEFAULTNAME clause supplies the missing parts. For example:

Statements and Functions 3-225

OPEN

10 I NPUT ' FI LE NAME ; f nan$
20 OPEN fnan$ FOR INPUT AS FILE #1% &
DEFAULTNAME " USER$$DI SK: . DAT"

If you type “ABC” for the file name, HP BASIC tries to open
USER$$DISK:[JABC.DAT.

The EXTENDSIZE clause lets you specify the increment by which RMS
extends a file after its initial allocation is filled. The value of int-exp5 is in
512-byte disk blocks. The EXTENDSIZE clause has no effect on an existing
file.

The FILESIZE clause lets you pre-extend a new file to a specified size.
— The value of int-exp2 is the initial allocation of disk blocks.
— The FILESIZE clause has no effect on an existing file.

The MAP clause specifies that a previously declared map is associated
with the file’s record buffer. The MAP clause determines the record buffer’s
address and length unless overridden by the RECORDSIZE clause.

— The size of the specified map must be as large or larger than the
longest record length or maximum record size. For files with a fixed
record size, the specified map must match exactly.

— The size of the largest MAP with the same map name in the current
program unit becomes the file’s record size if the OPEN statement does
not include a RECORDSIZE clause.

— It is recommended that you do not use both the MAP and
RECORDSIZE clauses in an OPEN statement. However, if you do
use both the MAP and RECORDSIZE clauses in an OPEN statement,
the following rules apply:

< The RECORDSIZE clause overrides the record size set by the MAP
clause.

e The map must be as large or larger than the specified
RECORDSIZE.

— If there is no MAP clause, the record buffer space that HP BASIC
allocates is not directly accessible; therefore, MOVE statements are
needed to access data in the record buffer.

— You must have a MAP clause when creating an indexed file; you cannot
use KEY clauses without MAP statements because keys serve as offsets
into the buffer.

— The size of the specified map cannot exceed 32,767 bytes.

3-226 Statements and Functions

OPEN

The ORGANIZATION clause specifies the file organization. When
present, it must precede all other clauses. When you specify an
ORGANIZATION clause, you must also specify one of the following
organization options: VIRTUAL, UNDEFINED, INDEXED, SEQUENTIAL
or RELATIVE. Specify ORGANIZATION UNDEFINED if you do not
know the actual organization of the file. If you do not specify an
ORGANIZATION clause, HP BASIC opens a terminal format file by
default.

When you specify ORGANIZATION VIRTUAL, you create a
sequentially fixed file with a record size of 512 (or a multiple of

512). You can then access the file with the FIND, GET, PUT, or
UPDATE statements or through one or more virtual arrays. HP BASIC
allows you to overwrite existing records in a file not containing virtual
arrays and opened as ORGANIZATION VIRTUAL by using the PUT
statement with a RECORD clause. All other organizations require the
UPDATE statement to change an existing record. It is recommended
that you also use the UPDATE statement to change existing records in
VIRTUAL files that do not contain virtual arrays.

When you do not know the organization of a file, you can open a file for
input and specify ORGANIZATION UNDEFINED. You can then use
the FSP$ function or a USEROPEN routine to determine the attributes
of the file. You will usually want to specify the RECORDTYPE

ANY clause with the ORGANIZATION UNDEFINED clause. The
combination of these two clauses should allow you to access any file
sequentially.

When you specify ORGANIZATION INDEXED, you create an indexed
file whose data records are sorted in ascending or descending order
according to a primary index key value.

e Use a PRIMARY KEY clause in the OPEN statement.

= The index keys you specify determine the order in which records
are stored.

= Index keys must be variables declared in a MAP statement
associated with the OPEN statement for the file.

= HP BASIC allows you to specify an indexed file as either variable
or fixed length.

Statements and Functions 3-227

OPEN

When you specify ORGANIZATION SEQUENTIAL, you create a file
that stores records in the order in which they are written.

Sequential files can contain records of any valid HP BASIC record
format: fixed-length, variable-length, or stream.

If you open an existing file using stream as a record format option,
the file must be one of the following stream record formats defined
by RMS:

— STREAM records can be delimited by any special character.
— STREAM_LF must be delimited by a line-feed character.

— STREAM_CR must be delimited by a carriage return.

If the file is not one of these stream formats, HP BASIC signals the
error "RECATTNOT, record attributes not matched.”

When you specify ORGANIZATION RELATIVE, you create a file that
contains a series of records that are numbered consecutively. HP
BASIC allows you to specify either fixed-length or variable-length
records.

If you omit the ORGANIZATION clause entirely, a terminal-format file
is opened.

Terminal-format files are implemented as RMS sequential variable
files and store ASCII characters in variable-length records.

Carriage control is performed by the operating system; the record
does not contain carriage returns or line feeds.

You use essentially the same syntax to access terminal-format
files as when reading from or writing to the terminal (INPUT and
PRINT).

The RECORDSIZE clause specifies the file’s record size. Note that there
are restrictions on the maximum record size allowed for various file and
record formats. See the OpenVMS Record Management Services Reference
Manual for more information.

For fixed-length records, int-expl specifies the size of all records.

For variable-length records, int-expl specifies the size of the largest
record.

3-228 Statements and Functions

OPEN

It is recommended that you do not use both the MAP and
RECORDSIZE clauses in an OPEN statement. However, if you do
use both the MAP and RECORDSIZE clauses in an OPEN statement,
the following rules apply:

= The RECORDSIZE clause overrides the record size set by the MAP
clause.

< The map must be as large or larger than the specified
RECORDSIZE.

If you specify a MAP clause but no RECORDSIZE clause, the record
size is equal to the map size.

If there is no MAP clause, the RECORDSIZE clause determines the
record size.

When creating a relative or indexed file, you must specify either a MAP
or RECORDSIZE clause; otherwise, HP BASIC signals an error.

For fixed files, the record size must match exactly.

If you do not specify a RECORDSIZE clause when opening an existing
file, HP BASIC retrieves the record size value from the file.

When you print to a terminal-format file, you must supply a record
size if the margin is to exceed 72 characters. For example, if you want
to print a 132-character line, specify RECORDSIZE 132 or use the
MARGIN and NOMARGIN statements.

When creating SEQUENTIAL files, HP BASIC supplies a default
record size of 132.

The record size is always 512 for VIRTUAL files, unless you specify a
RECORDSIZE.

The RECORDTYPE clause specifies the file's record attributes.

LIST specifies implied carriage control, <CR>. This is the default for
all file organizations except VIRTUAL.

FORTRAN specifies a control character in the record’s first byte.

NONE specifies no attributes. This is the default for VIRTUAL files.

If you open a terminal-format file with RECORDTYPE NONE, you
must explicitly insert carriage control characters into the records your
program writes to the file.

Statements and Functions 3-229

OPEN

ANY specifies a match with any file attributes when opening an
existing file. If you create a new file, ANY is treated as LIST for all
organizations except VIRTUAL. For VIRTUAL, it is treated as None.

The TEMPORARY clause causes HP BASIC to delete the output file as
soon as the program closes it.

The UNLOCK EXPLICIT clause allows you to retain locks on records
until they are explicitly unlocked.

The type of lock you impose on a record with a GET or FIND statement
remains in effect until you explicitly unlock the record or file with a
FREE or UNLOCK statement or until you close the file.

If you specify UNLOCK EXPLICIT, and do not specify an ALLOW
clause with a GET or FIND statement, HP BASIC imposes the ALLOW
NONE lock by default and the next GET or FIND operation does not
unlock the previously locked record.

You must open a file with UNLOCK EXPLICIT before you can explicitly
lock records with the ALLOW clause on GET and FIND statements.
See the sections on GET and FIND and the HP BASIC for OpenVMS
User Manual for more information about explicit record locking and
unlocking.

The USEROPEN clause lets you open a file with your own FUNCTION
subprogram.

Func-name must be a separately compiled FUNCTION subprogram and
must conform to FUNCTION statement rules for naming subprograms.

You do not need to declare the USEROPEN routine as an external
function.

HP BASIC calls the user program after it fills the FAB (File Access
Block), the RAB (Record Access Block), and the XABs (Extended
Attribute Blocks). The subprogram must issue the appropriate RMS
calls, including $OPEN and $CONNECT, and return the RMS status
as the value of the function. See the HP BASIC for OpenVMS User
Manual for more information about the USEROPEN routine.

Note

Future releases of the OpenVMS Run-Time Library may alter the use
of some RMS fields. Therefore, you may have to alter your USEROPEN
procedures accordingly.

3-230 Statements and Functions

OPEN

The WINDOWSIZE clause followed by int-exp3 lets you specify the
number of block retrieval pointers you want to maintain in memory for the
file.

Retrieval pointers are associated with the file header and point to
contiguous blocks on disk.

— By keeping retrieval pointers in memory you can reduce the 1/0
associated with locating a record, as the operating system does not
have to access the file header for pointers as frequently.

— The number of retrieval pointers in memory at any one time is
determined by the system default or by the WINDOWSIZE clause.

— The default number of retrieval pointers on OpenVMS systems is 7.

— A value of zero specifies the default number of retrieval pointers. A
value of —1 means to map the entire file, if possible. Values from —-128
to —2 are reserved.

The BLOCKSIZE clause specifies the physical block size of magnetic tape
files. The BLOCKSIZE clause can be used for magnetic tape files only.

— The value of int-exp8 is the number of records in a block. Therefore,
the block size in bytes is the product of the RECORDSIZE and the
BLOCKSIZE value.

— The default blocksize is one record.

The NOREWIND clause controls tape positioning on magnetic tape files.
The NOREWIND clause can be used for magnetic tape files only.

— If you specify NOREWIND, the OPEN statement does not position the
tape at the beginning. Your program can search for records from the
current position.

— If you do not specify either ACCESS APPEND or NOREWIND, the
OPEN statement positions the tape at its beginning and then searches
for the file.

The NOSPAN clause specifies that sequential records cannot cross block
boundaries.

— SPAN specifies that records can cross block boundaries. SPAN is the
default.

— The NOSPAN clause does not affect nondisk files.

Statements and Functions 3-231

OPEN

The BUCKETSIZE clause applies only to relative and indexed files. It
specifies the size of an RMS bucket in terms of the number of records one
bucket should hold.

— The value of int-exp9 is the number of records in a bucket.
— The default is one record.

The CONNECT clause permits multiple record streams to be connected to
the file.

— The CONNECT clause must specify an INDEXED file already opened
on chnl-exp2 with the primary OPEN statement.

— You cannot connect to a connected channel; you can connect only to the
initially opened channel.

— You can connect more than one stream to an open channel.

— All clauses of the two files to be connected must be identical except
MAP, CONNECT, and USEROPEN.

— Do not use the CONNECT clause when accessing files over DECnet or
HP BASIC will signal the error “Cannot open file” (ERR=162).

The PRIMARY KEY clause lets you specify an indexed file's key.

You must specify a primary key when opening an indexed file. The
ALTERNATE KEY clause lets you specify up to 254 alternate keys. The
ALTERNATE KEY clause is optional.

— RMS creates one index list for each primary and alternate key you
specify. These indexes are part of the file and contain pointers to the
records. Each key you specify corresponds to a sorted list of record
pointers.

— You can specify each key as ASCENDING or DESCENDING;
ASCENDING is the default. In an ASCENDING key, lower key
values occur toward the beginning of the index. In a DESCENDING
key, higher key values occur toward the beginning of the index.

— The keys you specify determine the order in which records in the
file are stored. All keys must be variables declared in the file's
corresponding MAP statement. The position of the key in the MAP
statement determines its position in the record. The data type and size
of the key are as declared in the MAP statement.

— A key can be an unsubscripted string, a WORD, LONG, QUAD, or
packed decimal variable, or a record or group that is exactly eight bytes
long.

3-232 Statements and Functions

OPEN

— You can also create a segmented index key for string keys by separating
the string variable names with commas and enclosing them in
parentheses. You can then reference a segment of the specified key
by referencing one of the string variables instead of the entire key. A
string key can have up to eight segments.

— The order of appearance of keys determines key numbers. The primary
key, which must appear first, is key #0. The first alternate key is #1,
and so on.

— DUPLICATES in the PRIMARY and ALTERNATE key clauses specifies
that two or more records can have the same key value. If you do not
specify DUPLICATES, the key value must be unique in all records.

— CHANGES in the ALTERNATE KEY clause specifies that you can
change the value of an alternate key when updating records. If you do
not specify CHANGES when creating the file, you cannot change the
value of a key. You cannot specify CHANGES with the PRIMARY KEY
clause.

— KEY clauses are optional for existing files. If you do specify a key, it
must match a key in the file.

Examples

Example 1

OPEN "FI LE. DAT" AS FILE #4

Example 2

OPEN "1 NPUT. DAT" FOR INPUT AS FILE #4, &
ORGANI ZATI ON SEQUENTI AL FI XED, &
RECORDSI ZE 200, &
MAP ABC, &
ALLOW MODI FY, ACCESS MXDI FY

OPEN Newfile$ FOR QUTPUT AS FILE #3, &
| NDEXED VARI ABLE, &
MAP Enp_nane, &
DEFAULTNAME " USER$$DI SK: . DAT", &
PRI MARY KEY Last$ DUPLI CATES, &
ALTERNATE KEY First$ CHANGES

MAP (SEGKEY) STRING | ast_nane = 15, &

M =1, first_nane = 15

Statements and Functions 3-233

OPEN

OPEN "NAMES. IND' FOR QUTPUT AS FI LE #1, &
ORGANI ZATI ON | NDEXED, &
PRI MARY KEY (last_nane, first_nanme, M), &
MAP SEGKEY

Example 3

MAP (OWNERKEYS) STRING owner id = 6, dog reg_no = 7, &
| ast_name = 25, first_name = 20

OPEN "OMERS. IND' FOR QUTPUT AS FILE #1,
ORGANI ZATI ON | NDEXED,
PRI MARY KEY (owner _id),
ALTERNATE KEY (| ast_name) DUPLI CATES CHANGES,
ALTERNATE (dog_reg_no) DESCENDI NG
MAP OWNERKEYS

20 o Qo Qo o

The MAP statement describes the three string variables used as index keys in
the file OWNERS.IND. The OPEN statement declares an indexed file with two
alternate keys in addition to the primary key. The alternate key dog_reg_no is
a DESCENDING key; the other keys are ASCENDING by default.

3-234 Statements and Functions

OPTION

OPTION

Format

The OPTION statement allows you to set compilation qualifiers such as default
data type, size, and scale factor. You can also set compilation conditions such
as severity of run-time errors to handle, constant type checking, subscript
checking, overflow checking, decimal rounding, and setup in a source program.
The options you set affect only the program module in which the OPTION

statement occurs.

OPTION option-clause,...

~

option-clause:

angle-clause: {

handle-clause:

const-type-clause: {

ANGLE = angle-clause

HANDLE = handle-clause

CONSTANT TYPE = const-type-clause
OLD VERSION = CDD

TYPE = type-clause

SIZE = size-clause

SCALE = int-const

{ ACTIVE

INACTIVE } = active-clause

DEGREES }
RADIANS

BASIC

SEVERE

ERROR
WARNING
INFORMATIONAL

REAL
INTEGER }

DECIMAL

Statements and Functions 3-235

OPTION

INTEGER
REAL

EXPLICIT
DECIMAL

type-clause:

size-clause: { size-item }
' (size-item,...)

REAL real-clause
DECIMAL(d,s)

INTEGER int-clause
size-item: { }

BYTE
WORD
LONG
QUAD

int-clause:

(SINGLE

DOUBLE
GFLOAT
real-clause: HFLOAT
SFLOAT
TFLOAT
XFLOAT

{ active-item) }

active-clause: L
(active-item,...)

INTEGER OVERFLOW

DECIMAL OVERFLOW
active-item: SETUP

DECIMAL ROUNDING

SUBSCRIPT CHECKING

3-236 Statements and Functions

OPTION

Syntax Rules

None

Remarks

= Option-clause specifies the compilation qualifiers to be in effect for the
program module.

=« Angle-clause specifies whether angles are to be evaluated in radians or in
degrees. If you do not specify an angle-clause, HP BASIC uses radians as
the default.

= Handle-clause specifies the severity level of the errors that are to be
handled by an error handler.

— If you do not specify an OPTION HANDLE statement, HP BASIC uses
OPTION HANDLE = BASIC as the default. Only those errors that can
be trapped and that map onto a BASIC ERR value will transfer control
to the current error handler. See the HP BASIC for OpenVMS User
Manual for a list of HP BASIC run-time errors.

— If you specify a severity level, all errors of the specified severity or
less, whether or not they can be trapped, transfer control to the
current error handler. This includes non BASIC errors. For example,
OPTION HANDLE = ERROR implies ERROR, WARNING, and
INFORMATIONAL errors but not SEVERE errors.

— If you specify OPTION HANDLE = SEVERE, you can handle fatal
errors. However, in most cases, a fatal error indicates that the program
environment is badly corrupted and you should not continue program
execution.

= Const-type-clause specifies the data type for all constants that do not end
in a data type suffix or are not in explicit literal notation with a data type
supplied.

= Type-clause sets the default data type for variables that have not been
explicitly declared and for constants if no constant type clause is specified.
You can specify only one type-clause in a program module.

Statements and Functions 3-237

OPTION

Size-clause sets the default data subtypes for floating-point, integer, and
packed decimal data. Size-item specifies the data subtype you want to
set. You can specify an INTEGER, REAL or DECIMAL size-item, or

a combination. Multiple size-items in an OPTION statement must be
enclosed in parentheses and separated by commas.

SCALE controls the scaling of double precision floating-point variables.
Int-const specifies the power of 10 you want as the scaling factor. It must
be an integer from 0 to 6 or HP BASIC signals an error.

OLD VERSION = CDD is provided for compatibility with previous versions
of BASIC. When bounds are specified in the CDD array, HP BASIC changes
the lower bounds to zero and adjusts the upper bounds of the array. By
default, if you do not specify OLD VERSION = CDD, HP BASIC compiles
the program with the bounds specified in the CDD data definition.

Active-clause specifies the decimal rounding, integer and decimal overflow
checking, setup, and subscript checking conditions you want in effect for
the program module. Active-item specifies the conditions you want to
set. Multiple active-items in an OPTION statement must be enclosed in
parentheses and separated by commas.

ACTIVE specifies the conditions that are to be in effect for a particular
program module. INACTIVE specifies the conditions that are not to be in
effect for a particular program module. If a condition does not appear in
an active-clause, HP BASIC uses the current environment default for the
condition.

See the HP BASIC for OpenVMS User Manual for more information
about the INTEGER_OVERFLOW, DECIMAL_OVERFLOW, SETUP,
DECIMAL_ROUNDING, and SUBSCRIPT_CHECKING compilation
qualifiers. These qualifiers correspond to active-clause conditions
(INTEGER OVERFLOW, DECIMAL OVERFLOW, SETUP, DECIMAL
ROUNDING, and SUBSCRIPT CHECKING).

You can have more than one option in an OPTION statement, or you can
use multiple OPTION statements in a program module. However, each
OPTION statement must lexically precede all other source code in the
program module, with the exception of comment fields, REM, PICTURE,
PROGRAM, SUB, FUNCTION, and OPTION statements.

OPTION statement specifications apply only to the program module
in which the statement appears and affect all variables in the module,
including SUB and FUNCTION parameters.

3-238 Statements and Functions

OPTION

< HP BASIC signals an error in the case of conflicting options. For example,
you cannot specify more than one type-clause or SCALE factor in the same
program unit.

= If you do not specify a type-clause or a subtype-clause, HP BASIC uses the
current environment default data types.

< If you do not specify a scale factor, HP BASIC uses the current environment
default scale factor.

Example

FUNCTI ON REAL DOUBLE mont hly_paynent,
(DOUBLE interest_rate,
LONG no_of payments,
DOUBLE pri nci pl e)
OPTI ON TYPE = REAL,
S| ZE = (REAL DOUBLE, | NTEGER LONG),
SCALE = 4

R0 o Ro Ro Ro

Statements and Functions 3-239

PLACE$

PLACES$

The PLACES function explicitly changes the precision of a numeric string.
PLACES returns a numeric string, truncated or rounded, according to the
value of an integer argument you supply.

Format
str-var = PLACE$ (str-exp, int-exp)

Syntax Rules

= Str-exp specifies the numeric string you want to process. It can contain an
optional minus sign (=), ASCII digits, and an optional decimal point.

= Int-exp specifies the numeric precision of str-exp. Table 3—4 shows examples
of rounding and truncation and the values of int-exp that produce them.

Remarks

e The PLACES function does not support E-format notation.

= If str-exp has more than 60 characters, HP BASIC signals the error “lllegal
number” (ERR=52).

= Str-exp is rounded or truncated, or both, according to the value of int-exp.
« If int-exp is from —60 to 60, rounding and truncation occur as follows:

— For positive integer expressions, rounding occurs to the right of the
decimal place. For example, if int-exp is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth). If int-exp is 2, rounding occurs two digits to the right of the
decimal place (the number is rounded to the nearest hundredth), and
so on.

— If int-exp is zero, HP BASIC rounds to the nearest unit.

— For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is —1, for example, HP BASIC moves the
decimal point one place to the left, then rounds to units. If int-exp
is =2, rounding occurs two places to the left of the decimal point; HP

3-240 Statements and Functions

PLACE$

BASIC moves the decimal point two places to the left, then rounds to
tens.

If int-exp is from 9940 to 10,060, truncation occurs as follows:

If int-exp is 10,000, HP BASIC truncates the number at the decimal
point.

If int-exp is greater than 10,000 (10,000 plus n), HP BASIC truncates
the numeric string n places to the right of the decimal point. For
example, if int-exp is 10,001 (10,000 plus 1), HP BASIC truncates the
number starting one place to the right of the decimal point. If int-exp
is 10,002 (10,000 plus 2), HP BASIC truncates the number starting two
places to the right of the decimal point, and so on.

If int-exp is less than 10,000 (10,000 minus n), HP BASIC truncates the
numeric string n places to the left of the decimal point. For example,

if int-exp is 9999 (10,000 minus 1), HP BASIC truncates the number
starting one place to the left of the decimal point. If int-exp is 9998
(20,000 minus 2), HP BASIC truncates starting two places to the left of
the decimal point, and so on.

If int-exp is not from —60 to 60 or 9940 to 10,060, HP BASIC returns a
value of zero.

If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Table 3—4 shows examples of rounding and truncation and the values of
int-exp that produce them. The number used is 123456.654321.

Statements and Functions 3-241

PLACE$

Table 3—4 Rounding and Truncation of 123456.654321

Int-exp Effect Value Returned

-5 Rounded to 100,000s and truncated 1

-4 Rounded to 10,000s and truncated 12

-3 Rounded to 1000s and truncated 123

-2 Rounded to 100s and truncated 1235

-1 Rounded to 10s and truncated 12346

0 Rounded to units and truncated 123457

1 Rounded to tenths and truncated 123456.7

2 Rounded to hundredths and truncated 123456.65

3 Rounded to thousandths and truncated 123456.654

4 Rounded to ten-thousandths and truncated 123456.6543

5 Rounded to hundred-thousandths and 123456.65432

truncated

9,995 Truncated to 100,000s 1

9,996 Truncated to 10,000s 12

9,997 Truncated to 1000s 123

9,998 Truncated to 100s 1234

9,999 Truncated to 10s 12345

10,000 Truncated to units 123456

10,001 Truncated to tenths 12345.6

10,002 Truncated to hundredths 123456.65

10,003 Truncated to thousandths 123456.654

10,004 Truncated to ten-thousandths 123456.6543

10,005 Truncated to hundred-thousandths 123456.65432
Example

DECLARE STRING str_exp, str_var
str_exp = "9999. 9999"
str_var = PLACE$(str_exp, 3)

PRINT str_var
Output

10000

3-242 Statements and Functions

POS

POS

The POS function searches for a substring within a string and returns the
substring’s starting character position.

Format
int-var = POS (str-expl, str-exp2, int-exp)

Syntax Rules

= Str-expl specifies the main string.
= Str-exp2 specifies the substring.

= Int-exp specifies the character position in the main string at which HP
BASIC starts the search.

Remarks

e The POS function searches str-expl, the main string, for the first
occurrence of str-exp2, the substring, and returns the position of the
substring’s first character.

= If int-exp is greater than the length of the main string, POS returns a
value of zero.

e POS always returns the character position in the main string at which HP
BASIC finds the substring, with the following exceptions:

— If only the substring is null, and if int-exp is less than or equal to zero,
POS returns a value of 1.

— If only the substring is null, and if int-exp is equal to or greater than
1 and less than or equal to the length of the main string, POS returns
the value of int-exp.

— If only the substring is null and if int-exp is greater than the length of
the main string, POS returns the main string’s length plus 1.

— If only the main string is null, POS returns a value of zero.

— If both the main string and the substring are null, POS returns 1.

Statements and Functions 3-243

POS

Example

If HP BASIC cannot find the substring, POS returns a value of zero.
If int-exp is less than 1, HP BASIC assumes a starting position of 1.

If int-exp does not equal 1, HP BASIC still counts from the string’s
beginning to calculate the starting position of the substring. That is, HP
BASIC counts character positions starting at position 1, regardless of
where you specify the start of the search. For example, if you specify 10 as
the start of the search and HP BASIC finds the substring at position 15,
POS returns the value 15.

If you know that the substring is not near the beginning of the string,
specifying a starting position greater than 1 speeds program execution by
reducing the number of characters HP BASIC must search.

If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

DECLARE STRING main_str, &

sub_str

DECLARE | NTEGER first_char

mai n_str = "ABCDEFG'

sub_str = "DEF"

first_char = POS(main_str, sub_str, 1)
PRINT first _char

Output

4

3-244 Statements and Functions

PRINT

PRINT

The PRINT statement transfers program data to a terminal or a terminal-
format file.

Format

PRINT [#chnl-exp ,] [output-list]

output-list: [exp] [{ }exp J- []

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number sign
(#). If you do not specify a channel, HP BASIC prints to the controlling
terminal.

Output-list specifies the expressions to be printed and the print format to
be used.

Exp can be any valid expression.

A separator character (comma or semicolon) must separate each exp.
Separator characters control the print format as follows:

— A comma (,) causes HP BASIC to skip to the next print zone before
printing the expression.

— A semicolon (;) causes HP BASIC to print the expression immediately
after the previous expression.

A terminal or terminal-format file must be open on the specified channel.
(Your current terminal is always open on channel #0.)

A PRINT line has an integral number of print zones. Note, however, that
the number of print zones in a line differs from terminal to terminal.

Statements and Functions 3-245

PRINT

The right margin setting, if set by the MARGIN statement, controls the
width of the PRINT line. The default right margin is 72.

The PRINT statement prints string constants and variables exactly as they
appear, with no leading or trailing spaces.

HP BASIC prints quoted string literals exactly as they appear. Therefore,
you can print quotation marks, commas, and other characters by enclosing
them in quotation marks.

A PRINT statement with no output-list prints a blank line.

An expression in the output-list can be followed by more than one separator
character. That is, you can omit an expression and specify where the next
expression is to be printed by the use of multiple separator characters. For
example:

PRINT "Nane",,"Address and ";"City"
Output
Nare Address and Gty

In this example, the double commas after “Name” cause HP BASIC to
skip two print zones before printing “Address and ”. The semicolon causes
the next expression, “City”, to be printed immediately after the preceding
expression. Multiple semicolons have the same effect as a single semicolon.

When printing numeric fields, HP BASIC precedes each number with a
space or minus sign (—) and follows it with a space.

HP BASIC does not print trailing zeros to the right of the decimal point. If
all digits to the right of the decimal point are zeros, HP BASIC omits the
decimal point as well.

For REAL numbers (SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT,
XFLOAT, and HFLOAT), HP BASIC does not print more than 6 digits

in explicit notation. If a number requires more than 6 digits, HP BASIC
uses E format and precedes positive exponents with a plus sign (+). HP
BASIC rounds a floating-point number with a magnitude from 0.1 to 1.0 to
6 digits. For magnitudes smaller than 0.1, HP BASIC rounds the number
to 6 digits and prints it in E format.

The PRINT statement can print up to:

— Three digits of precision for BYTE integers
— Five digits of precision for WORD integers
— Ten digits of precision for LONG integers

3-246 Statements and Functions

PRINT

— Nineteen digits of precision for QUAD integers
— Thirty-one digits of precision for DECIMAL numbers

— The string length for STRING values

HP BASIC prints both INTEGER and DECIMAL values according to the
previous rules. However, for REAL values, HP BASIC displays a maximum
of six digits.

If there is a comma or semicolon following the last item in output-list, HP
BASIC does the following:

— When printing to a terminal, HP BASIC does not generate a line
terminator after printing the last item. The next item printed with a
PRINT statement is printed at the position specified by the separator
character following the last item in the first PRINT statement.

— When printing to a terminal-format file, HP BASIC does not write
out the record until a PRINT statement without trailing punctuation
executes.

If no punctuation follows the last item in the output-list, HP BASIC does
the following:

— When printing to a terminal, HP BASIC generates a line terminator
after printing the last item.

— When printing to a terminal-format file, HP BASIC writes out the
record after printing the last item.

If a string field does not fit on the current line, HP BASIC does the
following:

— When printing string elements to a terminal, HP BASIC prints as
much as will fit on the current line and prints the remainder on the
next line.

— When printing string elements to a terminal-format file, HP BASIC
prints the entire element on the next line.

If a numeric field is the first field in a line, and the numeric field spans
more than one line, HP BASIC prints part of the number on one line

and the remainder on the next; otherwise, numeric fields are never split
across lines. If the entire field cannot be printed at the end of one line, the
number is printed on the next line.

When a number’s trailing space does not fit in the last print zone, the
number is printed without the trailing space.

Statements and Functions 3-247

PRINT

Example

PRINT "nane "; "age", "height "; "weight"
Output

name age hei ght wei ght

3-248 Statements and Functions

PRINT USING

PRINT USING

The PRINT USING statement generates output formatted according to a
format string (either numeric or string) to a terminal or a terminal-format file.

Format

PRINT [#chnl-exp] USING str-exp { } output-list

output-list: [exp] [{ }EXP] []

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number sign
(#). If you do not specify a channel, HP BASIC prints to the controlling
terminal.

Str-exp is the format string. It must contain at least one valid format field
and must be followed by a separator (comma or semicolon) and at least one
expression.

Note

It is recommended that you use compile-time constant expressions for
str-exp whenever possible. When you do this, the HP BASIC compiler
compiles the string at compilation time rather than at run time, thus
improving the performance of your program.

Output-list specifies the expressions to be printed.
— Exp can be any valid expression.
— A comma or semicolon must separate each expression.

— A comma or semicolon is optional after the last expression in the list.

Statements and Functions 3-249

PRINT USING

Remarks

e The PRINT USING statement can print up to:

Three digits of precision for BYTE integers

Five digits of precision for WORD integers

Ten digits of precision for LONG integers

Nineteen digits of precision for QUAD integers

Six digits of precision for SINGLE floating-point numbers

Sixteen digits of precision for DOUBLE floating-point numbers
Fifteen digits of precision for GFLOAT floating-point numbers
Thirty-three digits of precision for HFLOAT floating-point numbers
Six digits of precision for SFLOAT floating-point numbers

Fifteen digits of precision for TFLOAT floating-point numbers
Thirty-three digits of precision for XFLOAT floating-point numbers
Thirty-one digits of precision for DECIMAL numbers

The string length for STRING values

< A terminal or terminal-format file must be open on the specified channel or
HP BASIC signals an error.

= The separator characters (comma or semicolon) in the PRINT USING
statement do not control the print format as in the PRINT statement. The
print format is controlled by the format string; therefore, it does not matter
whether you use a comma or semicolon.

< Formatting Numeric Output

The number sign (#) reserves space for one sign or digit.

The comma (,) causes HP BASIC to insert commas before every third
significant digit to the left of the decimal point. In the format field,
the comma must be to the left of the decimal point, and to the right of
the rightmost dollar sign, asterisk, or number sign. A comma reserves
space for a comma or digit.

The period (.) inserts a decimal point. The number of reserved places
on either side of the period determines where the decimal point appears
in the output.

3-250 Statements and Functions

PRINT USING

The hyphen (-) reserves space for a sign and specifies trailing minus
sign format. If present, it must be the last character in the format
field. It causes HP BASIC to print negative numbers with a minus sign
after the last digit, and positive numbers with a trailing space. The
hyphen (-) can be used as part of a dollar sign ($$) format field.

The letters CD (Credit/Debit) enclosed in angle brackets (<CD>) print
CR (Credit Record) after negative numbers or zero and DR (Debit
Record) after positive numbers. If present, they must be the last
characters in the format field. The Credit/Debit format can be used as
part of a dollar sign ($$) format field.

Four carets(™") specify E-format notation for floating-point and
DECIMAL numbers. They reserve four places for SINGLE, DOUBLE,
SFLOAT, and DECIMAL values; five places for GFLOAT and TFLOAT
values; and six places for HFLOAT and XFLOAT values. If present,
they must be the last characters in the format field.

Two dollar signs ($$) reserve space for a dollar sign and a digit and
cause HP BASIC to print a dollar sign immediately to the left of the
most significant digit.

Two asterisks (**) reserve space for two digits and cause HP BASIC to
fill the left side of the numeric field with leading asterisks.

A zero enclosed in angle brackets (<0>) prints leading zeros instead of
leading spaces.

A percent sign enclosed in angle brackets (<%>) prints all spaces in the
field if the value of the print item is zero.

Note

You cannot specify the dollar sign ($$), asterisk-fill (**), and zero-fill
(<0>) formats within the same print field. Similarly, HP BASIC does
not allow you to specify the zero-fill (<0>) and the blank-if-zero (<%>)
formats within the same print field.

An underscore (_) forces the next formatting character in the format
string to be interpreted as a literal. It affects only the next character.
If the next character is not a valid formatting character, the underscore
has no effect and will itself be printed as a literal.

HP BASIC interprets any other characters in a numeric format string as
string literals.

Statements and Functions 3-251

PRINT USING

< Depending on usage, the same format string characters can be combined to
form one or more print fields within a format string. For example:

— When a dollar sign ($$) or asterisk-fill (**) format precedes a number
sign (#) , it modifies the number sign format. The dollar sign or
asterisk-fill format reserves two places, and with the number signs
forms one print field. For example:

SSH#HH Forms one field and reserves five spaces
a4 Forms one field and reserves four spaces

When these formats are not followed by a number sign or a blank-if-
zero (<%>) format, they reserve two places and form a separate print
field.

— When a zero-fill (<0>) or blank-if-zero format precedes a number sign,
it modifies the number sign format. The <0> or <%> reserves one place,
and with the number signs forms one print field. For example:

<O># Forms one field and reserves five spaces
<Vo>### Forms one field and reserves four spaces

When these formats are not followed by a humber sign, they reserve
one space and form a separate print field.

— When a blank-if-zero (<%>) format follows a dollar sign or asterisk-fill
format (**), it modifies the dollar sign ($$) or asterisk fill (**) format
string. The blank-if-zero reserves one space, and with the dollar signs
or asterisks forms one print field. For example:

SE<Vo>H### Forms one field and reserves six spaces
** <>t Forms one field and reserves five spaces

When the blank-if-zero precedes the dollar signs or asterisks, it
reserves one space and forms a separate print field.

< The comma (digit separator), dollar sign (currency symbol), and decimal
point (radix point) are the defaults for U.S. currency. On VMS systems,
you can change the digit separator, currency symbol and radix point by
assigning the logical names SYS$DIGIT_SEP, SYS$CURRENCY and
SYS$RADIX_POINT. Once you make each assignment, the PRINT USING
statement accesses these logical names for these symbols.

= For E-format notation, PRINT USING left-justifies the number in the
format field and adjusts the exponent to compensate, except when printing
zero. When printing zero in E-format notation, HP BASIC prints leading
spaces, leading zeros, a decimal point, and zeros in the fractional portion if

3-252 Statements and Functions

PRINT USING

the PRINT USING string contains these formatting characters, and then
the string “E+00".

Zero cannot be negative. If a small negative number rounds to zero, it is
represented as a positive zero.

If there are reserved positions to the left of the decimal point, and the
printed number is less than 1, HP BASIC prints one zero to the left of the
decimal point and pads with spaces to the left of the zero.

If there are more reserved positions to the right of the decimal point than
fractional digits, HP BASIC prints trailing zeros in those positions.

If there are fewer reserved positions to the right of the decimal point
than fractional digits, HP BASIC rounds the number to fit the reserved
positions.

If a number does not fit in the specified format field, HP BASIC prints a
percent sign warning symbol (%), followed by the number in PRINT format.

Formatting String Output

— Format string characters control string output and can be entered as
either uppercase or lowercase characters. All format characters except
the backslash and exclamation point must start with a single quotation
mark (). A single quote by itself reserves one character position. A
single quote followed by any format characters marks the beginning of
a character format field and reserves one character position.

— L reserves one character position. The number of Ls plus the leading
single quote determines the field’'s size. HP BASIC left-justifies the
print expression and pads with spaces if the print expression is less
than or equal to the field's width. If the print expression is larger than
the field, HP BASIC left-justifies the expression and truncates its right
side to fit the field.

— R reserves one character position. The number of Rs plus the leading
single quote determines the field’s size. HP BASIC right-justifies the
print expression and pads with spaces if the print expression is less
than or equal to the field’s width. If the print expression is larger than
the field, HP BASIC truncates the right side to fit the field.

— C reserves one character position. The number of Cs plus the leading
single quote determines the field's size. If the string does not fit in the
field, HP BASIC truncates its right side; otherwise, HP BASIC centers
the print expression in this field. If the string cannot be centered
exactly, it is offset one character to the left.

Statements and Functions 3-253

PRINT USING

E reserves one character position. The number of Es plus the leading
single quote determines the field's size. HP BASIC left-justifies the
print expression if it is less than or equal to the field’s width and pads
with spaces; otherwise, HP BASIC expands the field to hold the entire
print expression.

Two backslashes (\ \) when separated by n spaces reserve n+2
character positions. PRINT USING left-justifies the string in this field.
HP BASIC does not allow a leading quotation mark with this format.

An exclamation point (!) creates a 1-character field. The exclamation
point both starts and ends the field. HP BASIC does not allow a
leading quotation mark with this format.

= HP BASIC interprets any other characters in the format string as string
literals and prints them exactly as they appear.

= If a comma or semicolon follows the last item in output-list:

When printing to a terminal, HP BASIC does not generate a line
terminator after printing the last item. The next item printed with a
PRINT statement is printed at the position specified by the separator
character following the last item in the first PRINT statement.

When printing to a terminal-format file, HP BASIC does not write
out the record until a PRINT statement without trailing punctuation
executes.

= If no punctuation follows the last item in output-list:

When printing to a terminal, HP BASIC generates a line terminator
after printing the last item.

When printing to a terminal-format file, HP BASIC writes out the
record after printing the last item.

3-254 Statements and Functions

PRINT USING

Examples

Example 1

PRINT USI NG "###. ###" , - 12. 345
PRINT USI NG "##. ###", 12. 345

Output

-12. 345
12. 345

Example 2

[NPUT "Your Nane";Wnner$

Jackpot = 10000.0
PRI NT USI NG " CONGRATULATI ONS, ' EEEEEEEEE, YOU WON $$####. #4#", Wnner$, Jackpot
END

Output

Your Nane? Hortense Corabelle
CONGRATULATI ONS, Hortense Corabelle, YOU WON $10000. 00

Statements and Functions 3-255

PROD$

PROD$

The PRODS$ function returns a numeric string that is the product of two
numeric strings. The precision of the returned numeric string depends on the
value of an integer argument.

Format
str-var = PROD$ (str-expl, str-exp2, int-exp)

Syntax Rules

= Str-expl and str-exp2 specify the numeric strings you want to multiply. A
numeric string can contain an optional minus sign (-), ASCII digits, and
an optional decimal point (.).

= If str-exp consists of more than 60 characters, HP BASIC signals the error
“Illegal number” (ERR=52).

= Int-exp specifies the numeric precision of str-exp. Table 3—4 shows examples
of rounding and truncation and the values of int-exp that produce them.

Remarks

= The PROD$ function does not support E-format notation.
e Str-exp is rounded or truncated, or both, according to the value of int-exp.
= If int-exp is from —60 to 60, rounding and truncation occur as follows:

— For positive integer expressions, rounding occurs to the right of the
decimal place. For example, if int-exp is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth). If int-exp is 2, rounding occurs two digits to the right of the
decimal place (the number is rounded to the nearest hundredth), and
S0 on.

— If int-exp is zero, HP BASIC rounds to the nearest unit.

3-256 Statements and Functions

PROD$

For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is —1, for example, HP BASIC moves the
decimal point one place to the left, then rounds to units. If int-exp is -2,
rounding occurs two places to the left of the decimal point; HP BASIC
moves the decimal point two places to the left, then rounds to tens.

« If int-exp is from 9940 to 10,060, truncation occurs as follows:

If int-exp is 10,000, HP BASIC truncates the number at the decimal
point.

If int-exp is greater than 10,000 (10000 plus n), HP BASIC truncates
the numeric string n places to the right of the decimal point. For
example, if int-exp is 10,001 (10,000 plus 1), HP BASIC truncates the
number starting one place to the right of the decimal point. If int-exp
is 10,002 (10,000 plus 2), HP BASIC truncates the number starting two
places to the right of the decimal point, and so on.

If int-exp is less than 10,000 (10,000 minus n), HP BASIC truncates the
numeric string n places to the left of the decimal point. For example,

if int-exp is 9999 (10,000 minus 1), HP BASIC truncates the number
starting one place to the left of the decimal point. If int-exp is 9998
(10,000 minus 2), HP BASIC truncates starting two places to the left of
the decimal point, and so on.

« If int-exp is not from —60 to 60 or 9940 to 10,060, HP BASIC returns a
value of zero.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Example

DECLARE STRING num expl, &

num exp2, &
product
num expl = "34. 555"
num exp2 = "297.676"
product = PROD$(num expl, numexp2, 1)
PRINT product
Output
10286. 2

Statements and Functions 3-257

PROGRAM

PROGRAM

The PROGRAM statement allows you to identify a main program with a name
other than the file name.

Format

PROGRAM prog-name

Syntax Rules

Remarks

Prog-name specifies the module name of the compiled source and cannot be
the same as any SUB, FUNCTION, or PICTURE name.

Prog-name also defines the global entry point name for the main program.

The first character of a prog-name must be an alphabetic character (A to
Z). The remaining characters, if any, can be any combination of alphabetic
characters, digits (0 to 9), dollar signs ($), periods (.), and underscores

(L)

Prog-name cannot be a quoted name.

The PROGRAM statement must be the first statement in a main program
and can be preceded only by comment fields and lexical directives.

If you insert the program into a text or object library or examine it using
the OpenVMS Debugger, the program name you specify will be the module
name used.

A PROGRAM statement does not require a matching END PROGRAM
statement.

The PROGRAM statement is optional; HP BASIC allows you to specify an
END PROGRAM statement and an EXIT PROGRAM statement without a
matching PROGRAM statement.

3-258 Statements and Functions

PROGRAM

Example

PROGRAM first test

END PROGRAM

Statements and Functions 3-259

PUT

PUT
The PUT statement transfers data from the record buffer to a file. PUT
statements are valid on RMS sequential, relative, and indexed files. You
cannot use PUT statements on terminal-format files or virtual array files.
Format

PUT #chnl-exp [, RECORD rec-exp] [, COUNT int-exp]

Syntax Rules

= Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

e The RECORD clause allows you to randomly write records to a relative
or sequential fixed file by specifying the record number. Rec-exp must
be between 1 and the maximum record number allowed for the file. HP
BASIC does not allow you to use the RECORD clause on sequential
variable, sequential stream, or indexed files.

= Int-exp in the COUNT clause specifies the record’s size. If there is
no COUNT clause, the record’s size is that defined by the MAP or
RECORDSIZE clause in the OPEN statement. The RECORDSIZE clause
overrides the MAP clause.

— If you write a record to a file with variable-length records, int-exp must
be between zero and the maximum record size specified in the OPEN
statement.

— If you write a record to a file with fixed-length records, the COUNT
clause serves no purpose. If used, int-exp must equal the record size
specified in the OPEN statement.

3-260 Statements and Functions

Remarks

PUT

For sequential access, the file associated with chnl-exp must be open with
ACCESS WRITE, MODIFY, SCRATCH, or APPEND.

To add records to an existing sequential file, open it with ACCESS
APPEND. If you are not at the end of the file when attempting a PUT
to a sequential file, HP BASIC signals “Not at end of file” (ERR=149).

After a PUT statement executes, there is no current record pointer. The
next record pointer is set as follows:

For sequential files, variable and stream PUT operations set the next
record pointer to the end of the file.

For relative files, a sequential PUT operation sets the next record
pointer to the next record plus 1.

For relative and sequential fixed files, a random PUT operation leaves
the next record pointer unchanged.

For indexed files, a PUT operation leaves the next record pointer
unchanged.

When you specify a RECORD clause, HP BASIC evaluates num-exp and
uses this value as the relative record number of the target cell.

If the target cell is empty or occupied by a deleted record, HP BASIC
places the record in that cell.

If there is a record in the target cell and the file has not been opened
as a VIRTUAL file, the PUT statement fails, and HP BASIC signals
the error “Record already exists” (ERR=153).

A PUT statement with no RECORD clause writes records to the file as
follows:

For sequential variable and stream files, a PUT operation adds a record
at the end of the file.

For relative and sequential fixed files, a PUT operation places the
record in the empty cell pointed to by the next record pointer. If the file
is empty, the first PUT operation places a record in cell number 1, the
second in cell number 2, and so on.

For indexed files, RMS stores records in order of ascending primary key
value and updates all indexes so that they point to the record.

Statements and Functions 3-261

PUT

Examples

When you open a file as ORGANIZATION VIRTUAL, the file you open is a
sequential fixed file with a record size that is a multiple of 512 bytes. You
can then access the file with the FIND, GET, PUT, or UPDATE statements
or through one or more virtual arrays. HP BASIC allows you to overwrite
existing records in a file not containing virtual arrays and opened as
ORGANIZATION VIRTUAL by using the PUT statement with a RECORD
clause. All other organizations require the UPDATE statement to change
an existing record. It is recommended that you also use the UPDATE
statement to change existing records in VIRTUAL files that do not contain
virtual arrays.

If an existing record in an indexed file has a record with the same key
value as the one you want to put in the file, HP BASIC signals the error
“Duplicate key detected” (ERR=134) if you did not specify DUPLICATES
for the key in the OPEN statement. If you specified DUPLICATES, RMS
stores the duplicate records in a first-in/first-out sequence.

The number specified in the COUNT clause determines how many bytes
are transferred from the buffer to a file:

— If you have not completely filled the record buffer before executing a
PUT statement, HP BASIC pads the record with nulls to equal the
specified value.

— If the specified COUNT value is less than the buffer size, the record is
truncated to equal the specified value.

— The number in the COUNT clause must not exceed the size specified
in the MAP or RECORDSIZE clause in the OPEN statement or HP
BASIC signals “Size of record invalid” (ERR=156).

— For files with fixed length records, the number in the COUNT clause
must match the record size. a record to a block 1/O file, RMS does
not perform the same error checking as with relative files. A PUT will
write a record to a disk block specified for more information about RMS
block 1/0 files.

Example 1

I'Sequential, Relative, Indexed, and Virtual Files
PUT #3, COUNT 55%

3-262 Statements and Functions

PUT

Example 2

IRelative and Virtual Files Only
PUT #5, RECORD 133, COUNT 16%

Statements and Functions 3-263

QUOS$

QUOS$

The QUOS$ function returns a numeric string that is the quotient of two
numeric strings. The precision of the returned numeric string depends on the
value of an integer argument.

Format
str-var = QUO$ (str-expl, str-exp2, int-exp)

Syntax Rules

= Str-expl and str-exp2 specify the numeric strings you want to divide. A
numeric string can contain an optional minus sign (-), ASCII digits, and
an optional decimal point (.).

= Int-exp specifies the numeric precision of str-exp. Table 3—4 shows examples
of rounding and truncation and the values of int-exp that produce them.

Remarks

e The QUOS$ function does not support E-format notation.

= If str-exp consists of more than 60 characters, HP BASIC signals the error
“lllegal number” (ERR=52).

e Str-exp is rounded or truncated, or both, according to the value of int-exp.
= If int-exp is from —60 to 60, rounding and truncation occur as follows:

— For positive integer expressions, rounding occurs to the right of the
decimal place. For example, if int-exp is 1, rounding occurs one digit
to the right of the decimal place (the number is rounded to the nearest
tenth). If int-exp is 2, rounding occurs two digits to the right of the
decimal place (the number is rounded to the nearest hundredth), and
S0 on.

— If int-exp is zero, HP BASIC rounds to the nearest unit.

3-264 Statements and Functions

QUOS$

For negative integer expressions, rounding occurs to the left of the
decimal point. If int-exp is —1, for example, HP BASIC moves the
decimal point one place to the left, then rounds to units. If int-exp is -2,
rounding occurs two places to the left of the decimal point; HP BASIC
moves the decimal point two places to the left, then rounds to tens.

« If int-exp is from 9940 to 10,060, truncation occurs as follows:

If int-exp is 10,000, HP BASIC truncates the number at the decimal
point.

If int-exp is greater than 10,000 (10,000 plus n), HP BASIC truncates
the numeric string n places to the right of the decimal point. For
example, if int-exp is 10,001 (10,000 plus 1), HP BASIC truncates the
number starting one place to the right of the decimal point. If int-exp
is 10,002 (10,000 plus 2), HP BASIC truncates the number starting two
places to the right of the decimal point, and so on.

If int-exp is less than 10,000 (10,000 minus n), HP BASIC truncates the
numeric string n places to the left of the decimal point. For example,

if int-exp is 9999 (10,000 minus 1), HP BASIC truncates the number
starting one place to the left of the decimal point. If int-exp is 9998
(10,000 minus 2), HP BASIC truncates starting two places to the left of
the decimal point, and so on.

« If int-exp is not from —60 to 60 or 9940 to 10,060, HP BASIC returns a
value of zero.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer of the default size.

Example

DECLARE STRING numstrl, &

numstrl

numstr2, &
quoti ent
"458996. 43"

numstr2 = "123222. 444"
quotient = QUOB(numstrl, numstr2, 2)
PRINT quot i ent

Output

3.72

Statements and Functions 3-265

RAD$

RAD$

The RADS$ function converts a specified integer in Radix-50 format to a 3-
character string.

Note

The RADS$ function is supported only for compatibility with
BASIC-PLUS-2. It is recommended that you do not use the RAD$
function for new program development.

Format
str-var = RADS$ (int-var)

Syntax Rules

None

Remarks

< The RADS$ function does not support E-format notation.

< The RADS$ function converts int-var to a 3-character string in Radix-50
format and stores it in str-var. Radix-50 format allows you to store three
characters of data as a 2-byte integer.

= HP BASIC supports the RAD$ function, but not its complement, the FSS$
function.

= If you specify a floating-point variable for int-var, HP BASIC truncates it
to an integer of the default size.

Example

DECLARE STRI NG radi x
radi x = RAD$(999)

3-266 Statements and Functions

RANDOMIZE

RANDOMIZE

The RANDOMIZE statement gives the random number function, RND, a new
starting value.

Format

{ ravoon

Syntax Rules

None

Remarks

= Without the RANDOMIZE statement, successive runs of the same program
generate the same random number sequence.

= If you use the RANDOMIZE statement before invoking the RND function,
the starting point changes for each run. Therefore, a different random
number sequence appears each time.

Example

DECLARE REAL random num
RANDOM ZE
FORI =1T02
random num = RND
PRINT random num
NEXT |

Output

. 379784
. 311572

Statements and Functions 3-267

RCTRLC

RCTRLC
The RCTRLC function disables Ctrl/C trapping.

Format
int-var = RCTRLC

Syntax Rules

None

Remarks

e After HP BASIC executes the RCTRLC function, Ctrl/C typed at the
terminal returns you to DCL command level.

e RCTRLC always returns a value of zero.

Example

Y = RCTRLC

3-268 Statements and Functions

RCTRLO

RCTRLO

The RCTRLO function cancels the effect of Ctrl/O typed on a specified channel.

Format
int-var = RCTRLO (chnl-exp)

Syntax Rules

Chnl-exp must refer to a terminal.

Remarks

« If you enter Ctrl/O to cancel terminal output, nothing is printed on the
specified terminal until your program executes the RCTRLO or until you
enter another Ctrl/O, at which time normal terminal output resumes.

e The RCTRLO function always returns a value of zero.

e RCTRLO has no effect if the specified channel is open to a device that does
not use the Ctrl/O convention.

Example

PRINT "A" FOR 1% = 1% TO 10%
Y%= RCTRLO(0%
PRINT "Normal output is resunmed"

Output

A

A

A

A

arl/o
Qut put of f

Normal output is resunmed

Statements and Functions 3-269

READ

READ

The READ statement assigns values from a DATA statement to variables.

Format

READ var,...

Syntax Rules

Var cannot be a DEF function name, unless the READ statement is inside the
multiline DEF body.

Remarks

If your program has a READ statement without DATA statements, HP
BASIC signals a compile-time error.

When HP BASIC initializes a program unit, it forms a data sequence of all
values in all DATA statements. An internal pointer points to the first value
in the sequence.

When HP BASIC executes a READ statement, it sequentially assigns
values from the data sequence to variables in the READ statement variable
list. As HP BASIC assigns each value, it advances the internal pointer to
the next value.

HP BASIC signals the error “Out of data” (ERR=57) if there are fewer data
elements than READ statements. Extra data elements are ignored.

The data type of the value must agree with the data type of the variable to
which it is assigned or HP BASIC signals “Data format error” (ERR=50).

If you read a string variable, and the DATA element is an unquoted string,
HP BASIC ignores leading and trailing spaces. If the DATA element
contains any commas, they must be inside quotation marks.

HP BASIC evaluates subscript expressions in the variable list after it
assigns a value to the preceding variable, and before it assigns a value
to the subscripted variable. In the following example, HP BASIC assigns
the value of 10 to variable A, then assigns the string, LESTER, to array
element A$(A).

3-270 Statements and Functions

READ

READ A, AS(A)

DATA 10, LESTER
The string, LESTER, is assigned to A$(10).

Example

DECLARE STRING A B, C
READ A B, C

DATA "X", "Y*, "Z"
PRINT A+ B+ C
Output

XYZ

Statements and Functions 3-271

REAL

REAL

The REAL function converts a numeric expression or numeric string to a
specified or default floating-point data type.

Format

[, SINGLE T

, DOUBLE

, GFLOAT

real-var = REAL (exp | , SFLOAT)
, TFLOAT
, XFLOAT

| , HFLOAT

Syntax Rules

Exp can be either numeric or string. If a string, it can contain the ASCII digits
0 to 9, uppercase E, a plus sign (+), a minus sign (-), and a period (.).

Remarks

= HP BASIC evaluates exp, then converts it to the specified REAL size. If
you do not specify a size, HP BASIC uses the default REAL size.

< HP BASIC ignores leading and trailing spaces and tabs if exp is a string.

< The REAL function returns a value of zero when a string argument
contains only spaces and tabs, or when the argument is null.

= Alpha BASIC does not support the HFLOAT floating-point data type.

Example

DECLARE STRI NG any_num
NPUT "Enter a nunber";any_num
PRI NT REAL(any_num DOUBLE)

3-272 Statements and Functions

REAL

Output

Enter a nunber? 123095959
. 123096E+09

Statements and Functions 3-273

RECORD

RECORD

The

RECORD statement lets you name and define data structures in a BASIC

program and provides the HP BASIC interface to Oracle CDD/Repository. You

can

use the defined RECORD name anywhere a BASIC data type keyword is

valid if all data types are valid in that context.

Format

RECORD rec-name

END

rec-component

RECORD [rec-name]

data-type rec-item [,...]
rec-component: < group-clause
variant-clause

rec-item: array ([int-constl TO] int-const2 ,...) [= int-const]

unsubs-var [= int-const]
{ FILL [(int-const)] [= int-const] }

group-clause: GROUP group-name ([int-constl TO] int-const2,...])
rec-component

END GROUP [group-name]

variant-clause: VARIANT
case-clause

END VARIANT

case-clause: ~ CASE
[rec-component |

3-274 Statements and Functions

RECORD

Syntax Rules

Remarks

Each line of text in a RECORD, GROUP, or VARIANT block can have an
optional line number.

Data-type can be a BASIC data type keyword or a previously defined
RECORD name. Table 1-2 lists and describes BASIC data type keywords.

If the data type of a rec-item is STRING, the string is fixed-length. You can
supply an optional string length with the = int-const clause. If you do not
specify a string length, the default is 16.

When you create an array of components with GROUP or create an array
as a rec-item, HP BASIC allows you to specify both lower and upper
bounds. The upper bounds is required; the lower bounds is optional.

— Int-constl specifies the lower bounds of the array.

— Int-const2 specifies the upper bounds of the array and when
accompanied by int-constl, must be preceded by the keyword TO.

— Int-constl must be less than or equal to int-const2.

— If you do not specify int-constl, HP BASIC uses zero as the default
lower bounds.

The total size of a RECORD cannot exceed 65,535 bytes. Also, a RECORD
that is used as an array component is limited to 32,767 bytes.

The declarations between the RECORD statement and the END RECORD
statement are called a RECORD block.

Variables and arrays in a RECORD definition are also called RECORD
components.

There must be at least one rec-component in a RECORD block.

The RECORD statement names and defines a data structure called a
RECORD template, but does not allocate any storage. When you use the
RECORD template as a data type in a statement such as DECLARE, MAP,

Statements and Functions 3-275

RECORD

or COMMON, you declare a RECORD instance. This declaration of the
RECORD instance allocates storage for the RECORD. For example:

DECLARE EMPLOYEE enp_rec

This statement declares a variable named emp_rec, which is an instance of
the user-defined data type EMPLOYEE.

e Rec-item

The rec-name qualifies the group-name and the group-name qualifies
the rec-item. You can access a particular rec-item within a record by
specifying rec-name::group-name::rec-item. This specification is called
a fully qualified reference. The full qualification of a rec-item is also
called a component path name.

Rec-item must conform to the rules for naming HP BASIC variables.

Whenever you access an elementary record component, that is, a
variable named in a RECORD definition, you do it in the context of the
record instance; therefore, rec-item names need not be unique in your
program. For example, you can have a variable called first_name in
any number of different RECORD definitions. However, you cannot use
a BASIC reserved keyword as a rec-item name and you cannot have
two variables or arrays with the same name at the same level in the
RECORD or GROUP definition.

The group-name is optional in a rec-item specification unless there is
more than one rec-item with the same name or the group-name has
subscripts. For example:

DECLARE EMPLOYEE Enp_rec

RECORD Addr ess
STRING Street, Cty, State, Zip
END RECORD Address
RECORD Enpl oyee
GROUP Enp_nane
STRING First =15
STRING Mddle = 1
STRING Last = 15
END GROUP Enp_nane
ADDRESS Wor k
ADDRESS Hone
END RECORD Enpl oyee

3-276 Statements and Functions

RECORD

You can access the rec-item “Last” by specifying only “Emp_rec::Last”
because only one rec-item is named “Last”; however, if you try to
reference “Emp_rec::City”, HP BASIC signals an error because “City” is
an ambiguous field. “City” is a component of both “Work” and “Home”;
to access it, either “Emp_rec::Work::City” or “Emp_rec::Home::City”
must be specified.

Group-clause

The declarations between the GROUP keyword and the END GROUP
keyword are called a GROUP block. The GROUP keyword is valid only
within a RECORD block.

A subscripted group is similar to an array within the record. The group
can have both lower and upper bounds for one or more dimensions.
Each group element consists of all the record items contained within
the subscripted group including other groups.

Variant-clause

The declarations between the VARIANT keyword and the END
VARIANT keywords are called a VARIANT block.

The amount of space allocated for a VARIANT field in a RECORD
is equal to the space needed for the variant field requiring the most
storage.

A variant defines the record items that overlay other items, allowing
you to redefine the same storage one or more ways.

Case-clause

Each case in a variant starts at the position in the record where the
variant begins.

The size of a variant is the size of the longest case in that variant.

Statements and Functions 3-277

RECORD

Example

1000 RECORD Enpl oyee
GROUP Enp_nane
STRING Last = 15
STRING First = 14
STRING Mddle =1
END GROUP Enp_nane
GROUP Enp_address
STRING Street = 15
STRING Gty = 20
STRING State = 2
DECI MAL(5,0) Zip
END GROUP Enp_addr ess
STRI NG Wage class = 2
VARI ANT
CASE
GROUP Hour Iy
DECI MAL(4,2) Hourly wage
SINGLE Regul ar _pay_ytd
SINGLE Overtine_pay ytd
END GROUP Hourly
CASE
GROUP Sal ari ed
DECI MAL(7,2) Yearly salary
SINGLE Pay _ytd
END GROUP Sal ari ed
CASE
GROUP Executive
DECI MAL(8,2) Yearly_salary
SINGLE Pay _ytd
SINGLE Expenses_ytd
END GROUP Executive
END VARl ANT
END RECORD Enpl oyee

3-278 Statements and Functions

RECOUNT

RECOUNT

The RECOUNT function returns the number of characters transferred by the
last input operation.

Format
int-var = RECOUNT

Syntax Rules

None

Remarks

= The RECOUNT value is reset by every input operation on any channel,
including channel #0.

— After an input operation from your terminal, RECOUNT contains the
number of characters (bytes), including line terminators, transferred.

— After accessing a file record, RECOUNT contains the number of
characters in the record.

= Because RECOUNT is reset by every input operation on any channel, you
should copy the RECOUNT value to a different storage location before
executing another input operation.

« If an error occurs during an input operation, the value of RECOUNT is
undefined.

= RECOUNT is unreliable after a Ctrl/C interrupt because the Ctrl/C trap
may have occurred before HP BASIC set the value for RECOUNT.

e The RECOUNT function returns a LONG value.

Statements and Functions 3-279

RECOUNT

Example

DECLARE | NTEGER char act er _count

INPUT "Enter a sequence of nuneric characters";character_count
character_count = RECOUNT

PRINT character_count;"characters received (including CR and LF)"

Output

Enter a sequence of numeric characters? 12345678
10 characters received (including CR and LF)

3-280 Statements and Functions

REM

REM

The REM statement allows you to document your program.

Format

REM [comment]

Syntax Rules

Remarks

REM must be the only statement on the line or the last statement on a
multistatement line.

HP BASIC interprets every character between the keyword REM and the
next line number as part of the comment.

HP BASIC does not allow you to specify the REM statement in programs
that do not contain line numbers.

Because the REM statement is not executable, you can place it anywhere
in a program, except where other statements, such as SUB and END SUB,
must be the first or last statement in a program unit.

When the REM statement is the first statement on a line-numbered line,
HP BASIC treats any reference to that line number as a reference to the
next higher-numbered executable statement.

The REM statement is similar to the comment field that begins with an
exclamation point, with one exception: the REM statement must be the
last statement on a BASIC line. The exclamation point comment field can
be ended with another exclamation point or a line terminator and followed
by a BASIC statement. See Chapter 1 for more information about the
comment field.

Statements and Functions 3-281

REM

Example

10 REM This is a multiline coment
Al text up to BASIC line 20
is part of this REM statenent.
Any BASIC statements on line 10
are ignored. PRINT "This does not
execute".

20 PRINT "This will execute"

Output

This will execute

3-282 Statements and Functions

REMAP

REMAP

The REMAP statement defines or redefines the position in the storage area of
variables named in the MAP DYNAMIC statement.

Format
REMAP (map-dyn-name) remap-item,...

map-name }

map-dyn-name: {static-str-var

 num-var

num-array-name ([int-exp,...])

str-var [= int-exp]

remap-item: str-array-name ([int-exp,...]) [= int-exp]
[data-type] FILL [(rep-cnt)] [= int-exp]
FILL% [(rep-cnt)]

FILL$ [(rep-cnt)][= int-exp]

Syntax Rules

= Map-dyn-name can be either a map name or a static string variable.
— Map-name is the storage area named in a MAP statement.

— If you specify a map name, then a MAP statement with the same name
must precede both the MAP DYNAMIC statement and the REMAP
statement.

— When you specify a static string variable, the string must be declared
before you can specify a MAP DYNAMIC statement or a REMAP
statement.

— If you specify a static-str-var, the following restrictions apply:
= Static-str-var cannot be a string constant.

e Static-str-var cannot be the same as any previously declared
map-item in a MAP DYNAMIC statement.

< If static-str-var is a parameter to the subprogram containing the
REMAP statement, static-str-var cannot be a RECORD component.

Statements and Functions 3-283

REMAP

= Static-str-var cannot be a subscripted variable.

= Static-str-var cannot be a parameter declared in a DEF or DEF*
function.

Remap-item names a variable, array, or array element declared in a
preceding MAP DYNAMIC statement:

— Nume-var specifies a numeric variable or array element. Num-array-
name followed by a set of empty parentheses specifies an entire
numeric array.

— Str-var specifies a string variable or array element. Str-array-name
followed by a set of empty parentheses, specifies an entire fixed-length
string array. You can specify the number of bytes to be reserved for
string variables and array elements with the =int-exp clause. The
default string length is 16.

Remap-item can also be a FILL item. The FILL, FILL%, and FILL$
keywords let you reserve parts of the record buffer. Rep-cnt specifies the
number of FILL items to be reserved. The =int-exp clause allows you to
specify the number of bytes to be reserved for string FILL items. Table 3-1
describes FILL item format and storage allocation.

In the applicable formats of FILL, (rep-cnt) represents a repeat count, not
an array subscript. FILL (n) represents n elements, not n + 1.

All remap-items, except FILL items, must have been named in a previous
MAP DYNAMIC statement, or HP BASIC signals an error.

Data-type can be any HP BASIC data type keyword or a data type defined
in a RECORD statement. Data type keywords and their size, range, and
precision are listed in Table 1-2. You can specify a data type only for FILL
items.

— When you specify a data type before a FILL keyword in a REMAP
statement, the FILL item is of that data type. The specified data type
applies only to that one FILL item.

— If you do not specify any data type for a FILL item, the FILL item
takes the current default data type and size.

Remap-items must be separated with commas.

3-284 Statements and Functions

Remarks

REMAP

The REMAP statement does not affect the amount of storage allocated to
the map area.

Each time a REMAP statement executes, HP BASIC sets record pointers to
the named map area for the specified variables from left to right.

The REMAP statement must be preceded by a MAP DYNAMIC statement
or HP BASIC signals the error “No such MAP area <name>." The MAP
statement or static string variable creates a named area of static storage,
the MAP DYNAMIC statement specifies the variables whose positions can
change at run time, and the REMAP statement specifies the new positions
for the variables named in the MAP DYNAMIC statement.

Before you can specify a map name in a REMAP statement, there must be
a MAP statement in the program unit with the same map name; otherwise,
HP BASIC signals the error “<Name> is not a DYNAMIC MAP variable of
MAP <name>." Similarly, before you can specify a static string variable in
a REMAP statement, the string variable must be declared; otherwise, HP
BASIC signals the same error message.

If a static string variable is the same as a map name, HP BASIC overrides
the static string name and uses the map name.

Until the REMAP statement executes, all variables named in the MAP
DYNAMIC statement point to the first byte of the MAP area and all string
variables have a length of zero. When the REMAP statement executes, HP
BASIC sets the internal pointers as specified in the REMAP statement.
For example:

100 MAP (DUMWY) STRING map_buffer = 50
MAP DYNAM C (DUMMY) LONG A, STRING B, SINGLE C(7)
REMAP (DUMWY) B=14, A ()

The REMAP statement sets a pointer to byte 1 of DUMMY for string
variable B, a pointer to byte 15 for LONG variable A, and pointers to bytes
19, 23, 27, 31, 35, 39, 43, and 47 for the elements in SINGLE array C.

You can use the REMAP statement to redefine the pointer for an array
element or variable more than once in a single REMAP statement. For
example:

100 MAP (DUMWY) STRING FILL = 48

MAP DYNAM C (DUMMY) LONG A, B(10)
REMAP (DUMWY) B(), B(0)

Statements and Functions 3-285

REMAP

This REMAP statement sets a pointer to byte 1 in DUMMY for array B.
Because array B uses a total of 44 bytes, the pointer for the first element
of array B, B(0) points to byte 45. References to array element B(0) will be
to bytes 45 to 48. Pointers for array elements 1 to 10 are set to bytes 5, 9,
13, 17 and so on.

< Because the REMAP statement is local to a program module, it affects
pointers only in the program module in which it executes.

Examples

Example 1
DECLARE LONG CONSTANT enp_fixed_info = 4 + 9 + 2

MAP (enp_buffer) LONG badge, &
STRING soci al _sec_num = 9, &
BYTE nane_| engt h, &
address_| ength, &
FILL (60)
MAP DYNAM C (enmp_buffer) STRING enmp_nane, &
enp_addr ess
VWH LE 1%
GET #1
REMAP (enp_buffer) STRING FILL = enp_fixed_info, &
enp_nane = nane_| ength, &
emp_address = address_|l ength
PRINT enp_nane
PRINT enp_addr ess
PRI NT
NEXT
END
Example 2

SUB debl ock (STRING i nput_rec, STRING item))
MAP DYNAM C (input _rec) STRING A(1 TO 3)
REMAP (input_rec) &

A1) =5, &

3, &

4

FOR | Y LE&JND(A) TO UBOUND(A)

NEXT |
END SUB

3-286 Statements and Functions

RESET

RESET

The RESET statement is a synonym for the RESTORE statement. See the
RESTORE statement for more information.

Format
RESET [#chnl-exp [, KEY #int-exp | |

Statements and Functions 3-287

RESTORE

RESTORE

The RESTORE statement resets the DATA pointer to the beginning of the
DATA sequence, or sets the record pointer to the first record in a file.

Format

RESTORE [#chnl-exp [, KEY #int-exp]]

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

Int-exp must be between zero and the number of keys in the file
minus 1. It must be immediately preceded by a number sign (#).

If you do not specify a channel, RESTORE resets the DATA pointer to the
beginning of the DATA sequence.

RESTORE affects only the current program unit. Thus, executing a
RESTORE statement in a subprogram does not affect the DATA pointer in
the main program.

If there is no channel specified, and the program has no DATA statements,
RESTORE has no effect.

The file specified by chnl-exp must be open.

If chnl-exp specifies a magnetic tape file, HP BASIC rewinds the tape to
the first record in the file.

The KEY clause applies to indexed files only. It sets a new key of reference
equal to int-exp and sets the next record pointer to the first logical record
in that key.

For indexed files, the RESTORE statement without a KEY clause sets the

next record pointer to the first logical record specified by the current key of
reference. If there is no current key of reference, the RESTORE statement
sets the next record pointer to the first logical record of the primary key.

3-288 Statements and Functions

RESTORE

« If you use the RESTORE statement on any file type other than indexed,
HP BASIC sets the next record pointer to the first record in the file.

< The RESTORE statement is not allowed on virtual array files or on files
opened on unit record devices.

Example

RESTORE #7% KEY #4%

Statements and Functions 3-289

RESUME

RESUME

The RESUME statement marks an exit point from an ON ERROR error-
handling routine. HP BASIC clears the error condition and returns program
control to a specified line number or label or to the program block in which the
error occurred.

Note

The RESUME statement is supported for compatibility with other
versions of BASIC. For new program development, it is recommended
that you use WHEN blocks.

Format

RESUME [target]

Syntax Rules

Target must be a valid HP BASIC line number or label and must exist in the
same program unit.

Remarks

= The following restrictions apply:

The RESUME statement cannot appear within a protected region, or
within an attached or detached handler.

The target of a RESUME statement cannot exist within a protected
region or handler.

The RESUME statement cannot be used in a multiline DEF unless the
target is also in the DEF function definition.

The execution of a RESUME with no target is illegal if there is no error
active.

3-290 Statements and Functions

Example

RESUME

A RESUME statement cannot transfer control out of the current
program unit. Therefore, a RESUME statement with no target cannot
terminate an error handler if the error handler is handling an error
that occurred in a subprogram or an external function, and the error
was passed to the calling program’s error handler by an ON ERROR
GO BACK statement or by default.

When no target is specified in a RESUME statement, HP BASIC transfers
control based on where the error occurs. If the error occurs on a numbered
line containing a single statement, HP BASIC always transfers control to
that statement. When the error occurs within a multistatement line under
the following conditions, HP BASIC acts as follows:

After a loop or SELECT block, HP BASIC transfers control to the
statement that follows the NEXT or END SELECT statement.

If not after a loop or SELECT block, but within a FOR, WHILE, or
UNTIL loop, HP BASIC transfers control to the first statement that
follows the FOR, WHILE, or UNTIL statement.

If not after a loop or SELECT block, but within a SELECT block, HP
BASIC transfers control to the start of the CASE block in which the
error occurs.

If none of the above conditions occurs, HP BASIC transfers control back
to the statement that follows the most recent line number.

A RESUME statement with a specified line number transfers control to
the first statement of a multistatement line, regardless of which statement
caused the error.

A RESUME statement with a specified label transfers control to the block
of code indicated by that label.

Error_routine:
IF ERR = 11

THEN
CLOSE #1
RESUME end_of prog

ELSE

RESUME
END | F

end_of prog: END

Statements and Functions 3-291

RETRY

RETRY

The RETRY statement clears an error condition and reexecutes the statement
that caused the error inside a protected region of a WHEN block.

Format
RETRY

Syntax Rules

The RETRY statement must appear lexically inside of a handler associated
with a WHEN block.

Remarks

The following rules apply to errors that occur during execution of loop control
statements (not the statements inside the loop body):

e In FOR...NEXT loops, the RETRY statement reexecutes the FOR statement
if the error occurs while HP BASIC is evaluating the limit or increment
values.

= In FOR...NEXT loops, if the error occurs while HP BASIC is evaluating the
index variable, the RETRY statement reexecutes the NEXT statement.

e In a FOR...UNTIL or FOR..WHILE loop, if an error occurs while HP
BASIC is evaluating the relational expression, the RETRY statement
reexecutes the NEXT statement.

Example

10 DECLARE LONG YOUR AGE
VHEN ERRCR IN
INPUT "Enter your age";your_age
USE
IF ERR = 50
THEN RETRY
ELSE EXI T HANDLER
END I F
END WHEN

3-292 Statements and Functions

RETURN

RETURN

The RETURN statement transfers control to the statement immediately
following the most recently executed GOSUB or ON...GOSUB statement in the
current program unit.

Format
RETURN

Syntax Rules

None

Remarks

e Once the RETURN is executed in a subroutine, no other statements in the
subroutine are executed, even if they appear after the RETURN statement.

e Execution of a RETURN statement before the execution of a GOSUB or
ON...GOSUB causes HP BASIC to signal “RETURN without GOSUB”
(ERR=72).
Example
GOSUB subroutine 1

subrout i ne_1:

RETURN

Statements and Functions 3-293

RIGHT$

RIGHTS$

The RIGHTS$ function extracts a substring from a string’s right side, leaving
the string unchanged.

Format
str-var = RIGHT[$] (str-exp, int-exp)

Syntax Rules

None

Remarks

e The RIGHTS function extracts a substring from str-exp and stores the
substring in str-var. The substring begins with the character in the
position specified by int-exp and ends with the rightmost character in the
string.

« If int-exp is less than or equal to zero, RIGHTS returns the entire string.

= If int-exp is greater than the length of str-exp, RIGHT$ returns a null
string.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to a LONG integer.

Example

DECLARE STRING main_str, &
end_result

main_str = "1234567"

end_result = RIGHT$(main_str, 3)

PRINT end_resul t

Output
34567

3-294 Statements and Functions

RMSSTATUS

RMSSTATUS

The RMSSTATUS function returns the RMS status or the status value of the
last 1/0O operation on a specified open 1/O channel.

Format

long-var = RMSSTATUS (chnl-exp {

, STATUS })
, VALUE

Syntax Rules

Remarks

Chnl-exp must be the number of a channel opened from a BASIC routine.

Chnl-exp cannot be zero.

If chnl-exp does not represent an open channel, HP BASIC signals the
error “1/O channel not open” (ERR=9).

If you do not specify either STATUS or VALUE, RMSSTATUS returns the
STATUS value by default.

If you specify STATUS, RMSSTATUS returns the FAB$L_STS or the
RABS$L_STS status value. However, if you specify VALUE, RMSSTATUS
returns the FAB$L_STV or the RABSL_STV status value.

Use the RMSSTATUS function to return the status of the following
operations:

— RESTORE

- GET

- PUT

— UPDATE

— UNLOCK

— PRINT and PRINT USING

— INPUT, INPUT LINE, and LINPUT

Statements and Functions 3-295

RMSSTATUS

SCRATCH
FREE

Virtual array references

To determine the reason for the failure of an OPEN, CLOSE, KILL, or
NAME...AS statement, use the VMSSTATUS function within an error
handler.

Examples

Example 1

%l TLE " RMSSTATUS Exanpl e"

YEBTTL "Reference Manual Exanpl es”
9% DENT "VL1.0"

PROGRAM Denp_RMSSTATUS_f unct i on
OPTI ON CONSTANT TYPE = | NTEGER

OPEN "DOES_NOT_EXI ST. LIS" FOR QUTPUT AS 1, &
SEQUENTI AL VARI ABLE, &
RECORDSI ZE 80

WHEN ERROR IN
GET #1
USE
PRINT "GET Qperation failed"
PRINT "RMS Status ="; RVBSTATUS(1, STATUS)
PRINT "RMS Status Value ="; RWMSSTATUS(1, VALUE)
END WHEN

END PROGRAM

Example 2

OPTION TYPE=EXPLICI' T
EXTERNAL LONG CONSTANT RVS$_OK_DUP

MAP (ORDER) LONG ORD ENTRY, STRING ORD CUST_NO = 6% &
STRING ORD_REMARK = 50%

OPEN "ORD DB" FOR INPUT AS FILE 1%
ORGANI ZATI ON | NDEXED FI XED,
MAP ORDER,
PRI MARY ORD_ENTRY NODUPLI CATES,
ALTERNATE ORD _CUST_NO DUPLI CATES
I NPUT "Enter order nunber"; ORD ENTRY
I NPUT "Enter customer number"; ORD CUST NO
I NPUT "Remark"; ORD_REMARK

R0 Ro Ro Ro

3-296 Statements and Functions

RMSSTATUS

|

! Enter the order in the order database
| Check if the custoner has other orders
|

PUT #1%
| F RVBSTATUS(1% STATUS) = RVE$_OK_DUP
THEN

|

I The customer has ot her orders; conmpute the custoner’s
I discount for other orders
|

END | F

CLOSE 1%
END

Statements and Functions 3-297

RND

RND
The RND function returns a random number greater than or equal to zero and
less than 1.

Format
real-var = RND

Syntax Rules

None

Remarks

= If the RND function is preceded by a RANDOMIZE statement, HP BASIC
generates a different random number or series of numbers each time a
program executes.

< The RND function returns a pseudorandom number if not preceded by a
RANDOMIZE statement; that is, each time a program runs, HP BASIC
generates the same random number or series of random numbers.

< The RND function returns a floating-point SINGLE value.

e The RND function returns values over a uniform distribution from 0 to
1. For example, a value from 0 to .1 is as likely as a value from .5 to .6.
Note the difference between this and a bell-curve distribution where the
probability of values in the range .3 to .7 is higher than the outer ranges.

Example

DECLARE REAL random num
RANDOM ZE
FOR1 =1 TO3 !FOR loop causes HP BASIC to print three random nunbers

random num = RND
PRINT random num

NEXT |

3-298 Statements and Functions

RND

Output

. 865243
CATT7417
. 134673

Statements and Functions 3-299

RSET

RSET

The RSET statement assigns right-justified data to a string variable. RSET
does not change a string variable’s length.

Format
RSET str-var,... = str-exp

Syntax Rules

Str-var cannot be a DEF function name unless the RSET statement is inside
the DEF function definition.

Remarks

< The RSET statement treats strings as fixed-length. It does not change the
length of str-var, nor does it create new storage locations.

= If str-var is longer than str-exp, RSET right-justifies the data and pads it
with spaces on the left.

< If str-var is shorter than str-exp, RSET truncates str-exp on the left.

Example

DECLARE STRI NG t est
test = "ABCDE"
RSET test = "123"
PRINT "X" + test

Output
X 123

3-300 Statements and Functions

SCRATCH

SCRATCH

The SCRATCH statement deletes the current record and all following records
in a sequential file.

Format
SCRATCH #chnl-exp

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel associated with a file.
It must be immediately preceded by a number sign (#).

Remarks

= Before you execute the SCRATCH statement, the file must be opened with
ACCESS SCRATCH.

e The SCRATCH statement applies to ORGANIZATION SEQUENTIAL files
only.

e The SCRATCH statement has no effect on terminals or unit record devices.

= For disk files, the SCRATCH statement discards the current record and all
that follows it in the file. The physical length of the file does not change.

< For magnetic tape files, the SCRATCH statement overwrites the current
record with two end-of-file marks.

= Use of the SCRATCH statement on shared sequential files is not
recommended.

Example

SCRATCH #4%

Statements and Functions 3-301

SEG$

SEG$

The SEGS$ function extracts a substring from a main string, leaving the original
string unchanged.

Format
str-var = SEG$ (str-exp, int-expl, int-exp2)

Syntax Rules

None

Remarks

< HP BASIC extracts the substring from str-exp, the main string, and stores
the substring in str-var. The substring begins with the character in the
position specified by int-expl and ends with the character in the position
specified by int-exp2.

e Ifint-expl is less than 1, HP BASIC assumes a value of 1.

= If int-expl is greater than int-exp2 or the length of str-exp, the SEG$
function returns a null string.

e If int-expl equals int-exp2, the SEG$ function returns the character at the
position specified by int-expl.

= Unless int-exp2 is greater than the length of str-exp, the length of the
returned substring equals int-exp2 minus int-expl plus 1. If int-exp2 is
greater than the length of str-exp, the SEG$ function returns all characters
from the position specified by int-expl to the end of str-exp.

< If you specify a floating-point expression for int-expl or int-exp2, HP BASIC
truncates it to a LONG integer.

3-302 Statements and Functions

SEG$

Example

DECLARE STRING al pha, center
al pha = " ABCDEFGH JK"

center = SEGH(al pha, 4, 8)
PRINT center

Output
DEFCGH

Statements and Functions 3-303

SELECT

SELECT

The SELECT statement lets you specify an expression, a number of possible
values the expression may have, and a number of alternative statement blocks
to be executed for each possible case.

Format

SELECT expl
case-clause

[else-clause]
END SELECT

case-clause: CASE case-item,...
[statement]...

[rel-op] exp2 }

case-item: { exp3 TO exp4 [,exp5 TO exp6 | ...

else-clause: CASE ELSE
[statement]...

Syntax Rules

= Expl is the expression to be tested against the case-clauses and the
else-clause. It can be numeric or string.

= Case-clause consists of the CASE keyword followed by a case-item and
statements to be executed when the case-item is true.

= Else-clause consists of the CASE ELSE keywords followed by statements to
be executed when no previous case-item has been selected as true.

= Case-item is either an expression to be compared with expl or a range of
values separated with the keyword TO.

— Rel-op is a relational operator specifying how expl is to be compared to
exp2. If you do not include a rel-op, HP BASIC assumes the equals (=)

3-304 Statements and Functions

Remarks

SELECT

operator. HP BASIC executes the statements in the CASE block when
the specified relational expression is true.

— Exp3 and exp4 specify a range of numeric or string values separated
by the keyword TO. Multiple ranges must be separated with commas.
HP BASIC executes the statements in the CASE block when exp1 falls
within any of the specified ranges.

A SELECT statement can have only one else-clause. The else-clause is
optional and, when present, must be the last CASE block in the SELECT
block.

Each statement in a SELECT block can have its own line number.

The SELECT statement begins the SELECT block and the END SELECT
keywords terminate it. HP BASIC signals an error if you do not include
the END SELECT keywords.

Each CASE keyword establishes a CASE block. The next CASE or END
SELECT keyword ends the CASE block.

You can nest SELECT blocks within a CASE or CASE ELSE block.

HP BASIC evaluates expl when the SELECT statement is first
encountered; HP BASIC then compares expl with each case-clause in
order of occurrence until a match is found or until a CASE ELSE block or
END SELECT is encountered.

The following conditions constitute a match:
— Expl satisfies the relationship to exp2 specified by rel-op.

— Expl is greater than or equal to exp3, but less than or equal to exp4,
greater than or equal to exp5 but less than or equal to exp6, and
S0 on.

When a match is found between expl and a case-item, HP BASIC executes
the statements in the CASE block where the match occurred. If ranges
overlap, the first match causes HP BASIC to execute the statements in the
CASE block. After executing CASE block statements, control passes to the
statement immediately following the END SELECT keywords.

If no CASE match occurs, HP BASIC executes the statements in the else-
clause, if present, and then passes control to the statement immediately
following the END SELECT keywords.

Statements and Functions 3-305

SELECT

= If no CASE match occurs and you do not supply a case-else clause, control
passes to the statement following the END SELECT keywords.

Example

100 SELECT A% + B% + C%

CASE = 100

PRINT ’ THE VALUE IS EXACTLY 100’
CASE 1 TO 99

PRINT ' THE VALUE |'S BETVEEN 1 AND 99’
CASE > 100

PRINT ’ THE VALUE |'S GREATER THAN 100’
CASE ELSE

PRINT * THE VALUE | S LESS THAN 1’
END SELECT

3-306 Statements and Functions

SET PROMPT

SET PROMPT

The SET PROMPT statement enables a question mark prompt to appear after
HP BASIC executes either an INPUT, LINPUT, INPUT LINE, MAT INPUT,
or MAT LINPUT statement on channel #0. The SET NO PROMPT statement
disables the question mark prompt.

Format
SET [NO] PROMPT

Syntax Rules

None

Remarks

= If you do not specify a SET PROMPT statement, the default is SET
PROMPT.

e SET NO PROMPT disables HP BASIC from issuing a question mark
prompt for the INPUT, LINPUT, INPUT LINE, MAT INPUT, and MAT
LINPUT statements on channel #0.

= Prompting is reenabled when either a SET PROMPT statement or a
CHAIN statement is executed.

e The SET NO PROMPT statement does not affect the string constant you
specify as the input prompt with the INPUT statement.

Example

DECLARE STRING your name, your_age, your grade

NPUT "Enter your nane";your_name

SET NO PROVPT

NPUT "Enter your age"; your_age

SET PROVPT

[NPUT "Enter the last school grade you conpleted";your_grade

Statements and Functions 3-307

SET PROMPT

Output

Enter your name? Katherine Kelly
Enter your age 15
Enter the last school grade you conpleted? 9

3-308 Statements and Functions

SGN

SGN
The SGN function determines whether a numeric expression is positive,
negative, or zero. It returns 1 if the expression is positive, —1 if the expression
is negative, and zero if the expression is zero.

Format

int-var = SGN (real-exp)

Syntax Rules

None

Remarks

=« If real-exp does not equal zero, SGN returns MAG(real-exp)/real-exp.
= If real-exp equals zero, SGN returns a value of zero.

e SGN returns an integer.

Example

DECLARE | NTEGER si gn
sign = SGN(46/23)
PRINT sign

Output

1

Statements and Functions 3-309

SIN

SIN

The SIN function returns the sine of an angle in radians or degrees.

Format

real-var = SIN (real-exp)

Syntax Rules

Real-exp is an angle specified in radians or degrees depending upon which
angle clause you choose with the OPTION statement.

Remarks

e The returned value is from -1 to 1.

= HP BASIC expects the argument of the SIN function to be a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC converts the argument to the default floating-point
size and returns a value of the default floating-point size.

Example

OPTI ON ANGLE = RADI ANS
DECLARE REAL sl angle
sl angle = SIN(PI/2)
PRINT sl angle
Output

1

3-310 Statements and Functions

SLEEP

SLEEP

The SLEEP statement suspends program execution for a specified number of
seconds or until a carriage return is entered from the controlling terminal.

Format
SLEEP int-exp

Syntax Rules

= Int-exp is the number of seconds HP BASIC waits before resuming program
execution.

« Int-exp must be from 0 to the largest allowed positive integer value; if it is
greater, HP BASIC signals the error “Integer error or overflow” (ERR=51).

Remarks

= Pressing the Return key on the controlling terminal cancels the effect of
the SLEEP statement.

= All characters typed while SLEEP is in effect, including a Return entered
to terminate the SLEEP statement, remain in the typeahead buffer.
Therefore, if you type RETURN without preceding data, an INPUT
statement that follows SLEEP completes without data.

Example

SLEEP 120%

Statements and Functions 3-311

SPACE$

SPACE$

The SPACE$ function creates a string containing a specified number of spaces.

Format
str-var = SPACES$ (int-exp)

Syntax Rules

Int-exp specifies the number of spaces in the returned string.

Remarks

e HP BASIC treats an int-exp less than 0 as zero.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer.

Example

DECLARE STRING A, B

A= "1234"

B = "5678"

PRINT A + SPACE$(5% + B

Output
1234 5678

3-312 Statements and Functions

SQR

SOR

The SQR function returns the square root of a positive number.

Format

real-var = { ESET } (real-exp)

Syntax Rules

None

Remarks

= HP BASIC signals the error “Imaginary square roots” (ERR=54) when
real-exp is negative.

= HP BASIC assumes that the argument of the SQR function is a real
expression. When the argument is a real expression, HP BASIC returns
a value of the same floating-point size. When the argument is not a real
expression, HP BASIC returns a value of the default floating-point size.

Example

DECLARE REAL root
root = SQR(20*5)
PRI'NT root
Output

10

Statements and Functions 3-313

STATUS

STATUS

The STATUS function returns an integer value containing information about
the last opened channel. Your program can test each bit to determine the
status of the channel.

Note

The STATUS function is supported only for compatibility with other
versions of BASIC. It is recommended that you use the RMSSTATUS
function for new program development.

Format
int-var = STATUS

Syntax Rules

None

Remarks

e The STATUS function returns a LONG integer.

= The value returned by the STATUS function is undefined until HP BASIC
executes an OPEN statement.

= The STATUS value is reset by every input operation on any channel;
therefore, you should copy the STATUS value to a different storage location
before your program executes another input operation.

= If an error occurs during an input operation, the value of STATUS is
undefined. When no error occurs, the 6 low-order bits of the returned value
contain information about the type of device accessed by the last input
operation. Table 3-5 lists STATUS bits set by HP BASIC.

3-314 Statements and Functions

STATUS

Table 3-5 HP BASIC STATUS Bits
Bit Set Device Type

Record-oriented device

Carriage-control device

Terminal

Directory device

Single directory device

Sequential block-oriented device (magnetic tape)

g b WO NP O

Example

150 Y% = STATUS

Statements and Functions 3-315

STOP

STOP

The STOP statement halts program execution allowing you to optionally
continue execution.

Format
STOP

Syntax Rules

None

Remarks

e The STOP statement cannot appear before a PROGRAM, SUB, or
FUNCTION statement.

e The STOP statement does not close files.

< When a STOP statement is in an executable image, the line number,
module name, and a number sign (#) prompt are printed. In response to
the prompt, you can type CONTINUE to continue program execution or
EXIT to end the program. If the program module was compiled with the
/NOLINE qualifier, no line number is displayed.

Example

PROGRAM St opper
PRINT " Type CONTI NUE when the program stops”
INPUT "Do you want to stop now'; Quit$

IF Quitg ="V

THEN
STOP

ELSE
PRINT "So what are you waiting for?"
STOP

END | F

PRINT "You told nme to continue... thank you"

END PROGRAM

3-316 Statements and Functions

Output

Type CONTI NUE when the program stops
Do you want to stop now?n

So what are you waiting for?

Stop

I'n nmodul e STOPPER

Ready

continue
You told me to continue... thank you
Ready

STOP

Statements and Functions 3-317

STR$

STR$

The STR$ function changes a numeric expression to a numeric character string
without leading and trailing spaces.

Format
str-var = STR$ (num-exp)

Syntax Rules

None

Remarks

= If num-exp is negative, the first character in the returned string is a minus
sign (-).
= The STR$ function does not return leading or trailing spaces.

< When you print a floating-point number that has 6 decimal digits or
more but the integer portion has 6 digits or less (for example, 1234.567),
HP BASIC rounds the number to 6 digits (1234.57). If a floating-point
number’s integer part is 7 decimal digits or more, HP BASIC rounds the
number to 6 digits and prints it in E format.

< When you print a floating-point number with magnitude from 0.1 to 1, HP
BASIC rounds it to 6 digits. When you print a number with magnitude
smaller than 0.1, HP BASIC rounds it to 6 digits and prints it in E format.

= The STR$ function returns up to 10 digits for LONG integers and up to 31
digits for DECIMAL numbers.

3-318 Statements and Functions

STR$

Example

DECLARE STRI NG new_num
new_num = STR$(1543. 659)
PRINT new_num

Output
1543. 66

Statements and Functions 3-319

STRINGS

STRING$

The STRINGS$ function creates a string containing a specified number of
identical characters.

Format
str-var = STRING$ (int-expl, int-exp2)

Syntax Rules

= Int-expl specifies the character string’s length.

= Int-exp2 is the decimal ASCII value of the character that makes up the
string. This value is treated modulo 256.

Remarks

= HP BASIC signals the error “String too long” (ERR=227) if int-expl is
greater than 65535.

« If int-expl is less than or equal to zero, HP BASIC treats it as zero.

= HP BASIC treats int-exp2 as an unsigned 8-bit integer. For example, -1 is
treated as 255.

= If either int-expl or int-exp2 is a floating-point expression, HP BASIC
truncates it to an integer.

Example

DECLARE STRING out put _str
output _str = STRINGH(10% 50% !50 is the ASCII val ue of the
PRI NT out put _str 'character "2"

Output
2222222222

3-320 Statements and Functions

SUB

SUB

The SUB statement marks the beginning of a HP BASIC subprogram and

specifies the number and data type of its parameters.

Format
SUB sub-name [pass-mech | [([formal-param],...)]
[statement]...
{ END SUB }
SUBEND
BY REF
pass-mech: { BY DESC }
BY VALUE
unsubs-var
formal-param: [data-type | { array-name ([lnt-const] = }

[= int-const] [pass-mech]

Syntax Rules

Sub-name is the name of the separately compiled subprogram.

Formal-param specifies the number and type of parameters for the
arguments the SUB subprogram expects to receive when invoked.

— Empty parentheses indicate that the SUB subprogram has no
parameters.

— Data-type specifies the data type of a parameter. If you do not specify a
data type, parameters are of the default data type and size. When you
do specify a data type, all following parameters are of that data type
until you specify a new data type. Data type keywords and their size,
range, and precision are listed in Table 1-2.

Statements and Functions 3-321

SUB

Remarks

Sub-name can have from 1 to 31 characters and must conform to the
following rules:

— The first character of an unquoted name must be an alphabetic
character (A to Z). The remaining characters, if present, can be any
combination of letters, digits (0 to 9), dollar signs ($), periods (.), or
underscores (_).

— A quoted name can consist of any combination of printable ASCII
characters.

Data-type can be any HP BASIC data type keyword or a data type defined
by a RECORD statement.

Pass-mech specifies the parameter passing mechanism by which the
subprogram receives arguments.

A pass-mech clause outside the parentheses applies by default to all SUB
parameters. A pass-mech clause in the formal-param list overrides the
specified default and applies only to the immediately preceding parameter.

The SUB statement must be the first statement in the SUB subprogram.

Compiler directives and comment fields created with an exclamation
point (!), can precede the SUB statement because they are not BASIC
statements. Note that REM is a BASIC statement; therefore, it cannot
precede the SUB statement.

Every SUB statement must have a corresponding END SUB statement or
SUBEND statement.

If you do not specify a passing mechanism, the SUB program receives
arguments by the default passing mechanisms.

Parameters defined in formal-param must agree in number, type,
ordinality, and passing mechanism with the arguments specified in the
CALL statement of the calling program.

You can specify up to 255 parameters.

Any HP BASIC statement except those that refer to other program unit
types (FUNCTION, PICTURE or PROGRAM) can appear in a SUB
subprogram.

All variables, except those named in MAP and COMMON statements are
local to that subprogram.

3-322 Statements and Functions

SUB

HP BASIC initializes local variables to zero or the null string.

SUB subprograms receive parameters by reference, by descriptor, or by
value.

— BY REF specifies that the subprogram receives the argument’s address.

— BY DESC specifies that the subprogram receives the address of a
BASIC descriptor. For information about the format of a BASIC
descriptor for strings and arrays, see the HP BASIC for OpenVMS User
Manual. For information about other types of descriptors, see the VAX
Architecture Handbook.

— BY VALUE specifies that the subprogram receives a copy of the
argument value.

By default, HP BASIC subprograms receive numeric unsubscripted
variables by reference, and all other parameters by descriptor. You can
override these defaults for strings and arrays with a BY clause:

— If you specify a string length with the =int-const clause, you must also
specify BY REF. If you specify BY REF and do not specify a string
length, HP BASIC uses the default string length of 16.

— If you specify array bounds, you must also specify BY REF.

Subprograms can be called recursively.

Example
SUB SUB3 BY REF (DOUBLE A B, &
STRING Enp_nam BY DESC, &
wage(20))
END SUB

Statements and Functions 3-323

SUBEND

SUBEND

The SUBEND statement is a synonym for the END SUB statement. See the
END statement for more information.

Format
SUBEND

3-324 Statements and Functions

SUBEXIT

SUBEXIT

The SUBEXIT statement is a synonym for the EXIT SUB statement. See the
EXIT statement for more information.

Format
SUBEXIT

Statements and Functions 3-325

SUM$

SUM$

The SUM$ function returns a string whose value is the sum of two numeric
strings.

Format
str-var = SUM$ (str-expl, str-exp2)

Syntax Rules

None

Remarks

e The SUMS$ function does not support E-format notation.

= Each string expression can contain up to 60 ASCII digits and an optional
decimal point and sign.

< HP BASIC adds str-exp2 to str-expl and stores the result in str-var.

= |If str-expl and str-exp2 are integers, str-var takes the precision of the
larger string unless trailing zeros generate that precision.

= If str-expl and str-exp2 are decimal fractions, str-var takes the precision of
the more precise fraction, unless trailing zeros generate that precision.

= SUMS$ omits trailing zeros to the right of the decimal point.
= The sum of two fractions takes precision as follows:
— The sum of the integer parts takes the precision of the larger part.

— The sum of the decimal fraction part takes the precision of the more
precise part.

= SUMS truncates leading and trailing zeros.

3-326 Statements and Functions

SUM$

Example

DECLARE STRING A, B, Total
A = "45.678"

B = "67.89000"

total = SUM (A B)

PRINT Tota

Output
113. 568

Statements and Functions 3-327

SWAP%

SWAP%

The SWAP% function transposes a WORD integer’s bytes.

Note

The SWAP% function is supported only for compatibility with
BASIC-PLUS-2. It is recommended that you do not use the SWAP%
function for new program development.

Format
int-var = SWAP% (int-exp)

Syntax Rules

None

Remarks

e SWAP% is a WORD function. HP BASIC evaluates int-exp and converts it
to the WORD data type, if necessary.

< HP BASIC transposes the bytes of int-exp and returns a WORD integer.

Example

DECLARE | NTEGER wor d_i nt

word_int = SWAPY% 23)
PRINT word_int

Output
5888

3-328 Statements and Functions

TAB

TAB

When used with the PRINT statement, the TAB function moves the cursor or
print mechanism to a specified column.

When used outside the PRINT statement, the TAB function creates a string
containing the specified number of spaces.

Format

str-var = TAB (int-exp)

Syntax Rules

Remarks

When used with the PRINT statement, int-exp specifies the column number
of the cursor or print mechanism.

When used outside the PRINT statement, int-exp specifies the number of
spaces in the returned string.

You cannot tab beyond the current MARGIN restriction.
The leftmost column position is zero.

If int-exp is less than the current cursor position, the TAB function has no
effect.

The TAB function can move the cursor or print mechanism only from the
left to the right.

You can use more than one TAB function in the same PRINT statement.

Use semicolons to separate multiple TAB functions in a single statement. If
you use commas, HP BASIC moves to the next print zone before executing
the TAB function.

If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer.

Statements and Functions 3-329

TAB

Example
PRINT "Nunber 1"; TAB(15); "Number 2"; TAB(30); "MNumber 3"

Output
Number 1 Number 2 Number 3

3-330 Statements and Functions

TAN

TAN

The TAN function returns the tangent of an angle in radians or degrees.

Format

real-var = TAN (real-exp)

Syntax Rules

Real-exp is an angle specified in radians or degrees, depending on which angle
clause you choose with the OPTION statement.

Remarks

HP BASIC expects the argument of the TAN function to be a real expression.
When the argument is a real expression, HP BASIC returns a value of the
same floating-point size. When the argument is not a real expression, HP
BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size.

Example

OPTI ON ANGLE = DEGREES
DECLARE REAL tangent
tangent = TAN(45.0)
PRINT tangent

Output
1

Statements and Functions 3-331

TIME

TIME

The TIME function returns the time of day (in seconds) as a floating-point
number. The TIME function can also return process CPU time and connect
time.

Format
real-var = TIME(int-exp)

Syntax Rules

None

Remarks

< The value returned by the TIME function depends on the value of int-exp.
= If int-exp equals zero, TIME returns the number of seconds since midnight.

< HP BASIC also accepts values 1 and 2 and returns values as shown in
Table 3-6. All other arguments to the TIME function are undefined and
cause HP BASIC to signal “Not implemented” (ERR=250).

= The TIME function returns a SINGLE floating-point value.

= If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer.

Table 3-6 TIME Function Values
Argument Value HP BASIC Returns

0 The amount of time elapsed since midnight in seconds
1 The CPU time of the current process in tenths of a second
2 The connect time of the current process in minutes

3-332 Statements and Functions

TIME

Example
PRINT TI ME(0)

Output
49671

Statements and Functions 3-333

TIME$

TIMES$

The TIMES$ function returns a string displaying the time of day in the form
hh:mm AM or hh:mm PM.

Format
str-var = TIME$(int-exp)

Syntax Rules
Int-exp specifies the number of minutes before midnight.

Remarks

= If int-exp equals zero, TIMES$ returns the current time of day.
= The value of int-exp must be from 0 to 1440 or HP BASIC signals an error.

e The TIMES$ function uses a 12-hour, AM/PM clock. Before 12:00 noon,
TIMES$ returns hh:mm AM; after 12:00 noon, hh:mm PM.

< If you specify a floating-point expression for int-exp, HP BASIC truncates it
to an integer.

Example

DECLARE STRING current time
current _time = TIME$(0)
PRINT current time

Output

01:51 PM

3-334 Statements and Functions

TRM$

TRM$

The TRMS$ function removes all trailing blanks and tabs from a specified
string.

Format
str-var = TRM$(str-exp)

Syntax Rules

None

Remarks

The returned str-var is identical to str-exp, except that it has all the trailing
blanks and tabs removed.

Example

DECLARE STRING ol d_string, new string
ol d_string = "ABCDEFG "

new string = TRMb(ol d_string)

PRINT ol d_string;"XYZ"

PRINT new string;" XYZ"

Output

ABCDEFG XYZ
ABCDEFGXYZ

Statements and Functions 3-335

UBOUND

UBOUND

]JThe UBOUND function returns the upper bounds of a compile-time or run-
time dimensioned array.

Format

num-var = UBOUND (array-name [, int-exp])

Syntax Rules

= Array-name must specify an array that has been previously explicitly or
implicitly declared.

< Int-exp specifies the number of the dimension for which you have requested
the upper bounds.

Remarks

« If you do not specify a numeric expression, HP BASIC automatically
returns the upper bounds of the first dimension.

= If you specify a numeric expression that is less than or equal to zero, HP
BASIC signals an error message.

= If you specify a numeric expression that exceeds the number of dimensions,
HP BASIC signals an error message.

Example

DECLARE | NTEGER CONSTANT B = 5

DI M A(B)

account_num= 1

FOR di m num = 0 TO UBOUND(A)
A(dimnum) = account_num
account _num = account_num+ 1
PRINT A(di m num

NEXT di m num

3-336 Statements and Functions

UBOUND

Output

SOOI WN

Statements and Functions 3-337

UNLESS

UNLESS

The UNLESS qualifier modifies a statement. HP BASIC executes the modified
statement only if a conditional expression is false.

Format
statement UNLESS cond-exp

Syntax Rules

None

Remarks

e The UNLESS statement cannot be used on nonexecutable statements or on
statements such as SELECT, IF, and DEF that establish a statement block.

= HP BASIC executes the statement only if cond-exp is false (value zero).

Example

PRINT "A DOES NOT EQUAL 3" UNLESS A% = 3%

3-338 Statements and Functions

UNLOCK

UNLOCK

The UNLOCK statement unlocks the current record or bucket locked by the
last FIND or GET statement.

Format
UNLOCK #chnl-exp

Syntax Rules

Chnl-exp is a numeric expression that specifies a channel number associated
with a file. It must be immediately preceded by a number sign (#).

Remarks

= A file must be opened on the specified channel before UNLOCK can
execute.

e The UNLOCK statement only applies to files on disk.

= If the current record is not locked by a previous GET or FIND statement,
the UNLOCK statement has no effect and HP BASIC does not signal an
error.

e The UNLOCK statement does not affect record buffers.

e After HP BASIC executes the UNLOCK statement, you cannot update or
delete the current record.

= Once the UNLOCK statement executes, the position of the current record
pointer is undefined.

Example

UNLOCK #10%

Statements and Functions 3-339

UNTIL

UNTIL

The UNTIL statement marks the beginning of an UNTIL loop or modifies the
execution of another statement.

Format

Conditional

UNTIL cond-exp
[statement]...

NEXT

Statement Modifier
statement UNTIL cond-exp

Syntax Rules

None

Remarks

= Conditional
— A NEXT statement must end the UNTIL loop.

— HP BASIC evaluates cond-exp before each loop iteration. If the
expression is false (value zero), HP BASIC executes the loop. If the
expression is true (value nonzero), control passes to the first executable
statement after the NEXT statement.

e Statement Modifier
HP BASIC executes the statement repeatedly until cond-exp is true.

3-340 Statements and Functions

UNTIL

Examples

Example 1
I Condi ti onal
UNTIL A>=5
A=A+ .01
TOTAL = TOTAL + 1
NEXT

Example 2

I Statenent Modifier
A=A+ 1UNTIL A>= 200

Statements and Functions 3-341

UPDATE

UPDATE

The UPDATE statement replaces a record in a file with a record in the record
buffer. The UPDATE statement is valid on sequential, relative, and indexed
files.

Format

UPDATE #chnl-exp [, COUNT int-exp]

Syntax Rules

Remarks

Chnl-exp is a numeric expression that specifies a channel number
associated with a file. It must be immediately preceded by a number
sign (#).

Int-exp specifies the size of the new record.

The file associated with chnl-exp must be a disk file opened with ACCESS
MODIFY.

Each UPDATE statement must be preceded by a successful GET or FIND
operation or HP BASIC signals “No current record” (ERR=131). FIND
locates but does not retrieve records. Therefore, you must specify a
COUNT clause when retrieving variable-length records when the preceding
operation was a FIND. Int-exp must exactly match the size of the old
record.

If you are updating a variable-length record, and the record that you want
to write out is not the same size as the record you retrieved, you must use
a COUNT clause.

After an UPDATE statement executes, there is no current record pointer.
The next record pointer is unchanged.

The length of the new record must be the same as that of the existing
record for all files with fixed-length records and for all sequential files.
If you specify a COUNT clause, the int-exp must match the size of the
existing record.

3-342 Statements and Functions

UPDATE

= For relative files with variable-length records, the new record can be larger
or smaller than the record it replaces.

— The new record must be smaller than or equal to the maximum record
size set with the MAP or RECORDSIZE clause when the file was
opened.

— You must use the COUNT clause to specify the size of the new record if
it is different from that of the record last accessed by a GET operation
on that channel.

= For indexed files with variable-length records, the new record can be larger
or smaller than the record it replaces. When the program does not permit
duplicate primary keys, the new record can be no longer than the size
specified by the MAP or RECORDSIZE clause when the file was opened.
The record must include at least the primary key field.

= An indexed file alternate key for the new record can differ from that of
the existing record only if the OPEN statement for that file specified
CHANGES for the alternate key.

Example

UPDATE #4% COUNT 32

Statements and Functions 3-343

VAL

VAL
The VAL function converts a numeric string to a floating-point value.
Note
It is recommended that you use the DECIMAL, REAL, and INTEGER
functions to convert numeric strings to numeric data types.
Format

real-var = VAL (str-exp)

Syntax Rules

Str-exp can contain the ASCII digits 0 to 9, uppercase E, a plus sign (+), a
minus sign (—), and a period (.).

Remarks

< The VAL function ignores spaces and tabs.

= If str-exp is null, or contains only spaces and tabs, VAL returns a value of
ZEero.

= The value returned by the VAL function is of the default floating-point size.

Example

DECLARE REAL real _num
real _num = VAL("990. 32")
PRINT real _num

Output
990. 32

3-344 Statements and Functions

VAL%

VAL%

The VAL% function converts a numeric string to an integer.

Note

It is recommended that you use the DECIMAL, REAL, and INTEGER
functions to convert numeric strings to numeric data types.

Format
int-var = VAL% (str-exp)

Syntax Rules

Str-exp can contain the ASCII digits O to 9, a plus sign (+), or a minus sign

(=)

Remarks

e The VAL% function ignores spaces and tabs.

= If str-exp is null or contains only spaces and tabs, VAL% returns a value of
ZEero.

= The value returned by the VAL% function is an integer of the default size.

Example

DECLARE | NTEGER ret int

ret_int = VALY "789")
PRINT ret _int

Output
789

Statements and Functions 3-345

VMSSTATUS

VMSSTATUS

VMSSTATUS returns the underlying OpenVMS condition code when control is
transferred to an HP BASIC error handler.

Format
int-var = VMSSTATUS

Syntax Rules

None

Remarks

< If ERR contains the value 194, you can specify VMSSTATUS to examine
the actual error that was signaled to HP BASIC.

= If an error is raised by an underlying system component such as the Run-
Time Library, you can specify VMSSTATUS to determine the underlying
error.

= If you are writing a utility routine that may be called from languages other
than HP BASIC, you can specify VMSSTATUS in a call to LIB$SIGNAL to
signal the underlying error to the caller of the utility routine.

< When there is no error pending, VMSSTATUS remains undefined.
e VMSSTATUS always returns a LONG integer.

3-346 Statements and Functions

VMSSTATUS

Example

PROGRAM
VWHEN ERROR USE gl obal _handl er

END VHEN

HANDLER gl obal _handl er
final status%= VMSSTATUS
END HANDLER

END PROGRAM final _status%

Statements and Functions 3-347

WAIT

WAIT

The WAIT statement specifies the number of seconds the program waits for
terminal input before signaling an error.

Format

WAIT int-exp

Syntax Rules

Int-exp must be from 0 to 255; if it is greater than 255, HP BASIC assumes a
value of 255.

Remarks

Example

10

The WAIT statement must precede a GET operation to a terminal or an
INPUT, INPUT LINE, LINPUT, MAT INPUT, or MAT LINPUT statement.
Otherwise, it has no effect.

Int-exp is the number of seconds HP BASIC waits for input before signaling
the error “Keyboard wait exhausted” (ERR=15).

After HP BASIC executes a WAIT statement, all input statements wait the
specified amount of time before HP BASIC signals an error.

WAIT 0 disables the WAIT statement.

DECLARE STRI NG your _nanme

WAI'T 60

INPUT "You have sixty seconds to type your nanme";your_nane
WAIT O

3-348 Statements and Functions

WAIT

Output

You have sixty seconds to type your name?

YBAS- F- KEYWAI EXH, Keyboard wait exhausted

-BAS-1-ON_CHAFI L, on channel 0 for file SYS$INPUT:.; at user PC 00000644
-RVB-WTMO, timeout period expired

-BAS- - FROLINMOD, fromline 10 in nodule WAIT

%@ RACE- F- TRACEBACK, synbolic stack dunmp fol | ows

nmodul e name routine name l'ine rel PC abs PC

00007334 00007334
----- above condition handler called with exception 001A807C
YBAS- F- KEYWAI EXH, keyboard wait exhausted
-BAS-1-ON_CHAFI L, on channel 0 for file SYS$INPUT:.; at user PC 00000644
-RVB-WTMO, timeout period expired
----- end of exception message
00011618 00011618
0000F02F 0000F02F
0000E3F6 0000E3F6
0001387A 0001387A
WAl TSMAI N WA TSMAIN 3 00000044 00000644

Statements and Functions 3-349

WHEN ERROR

WHEN ERROR

The WHEN ERROR statement marks the beginning of a WHEN ERROR
construct. The WHEN ERROR construct contains a protected region and can
include an attached handler or identify a detached handler.

Format
With an Attached Handler

WHEN ERROR IN
protected-statement
[protected-statement,...]
USE
handler-statement
[handler-statement,...]
END WHEN
With a Detached Handler

WHEN ERROR USE handler-name
protected-statement
[protected-statement,...]
END WHEN
HANDLER handler-name
[handler-statement,...]
END HANDLER

3-350 Statements and Functions

WHEN ERROR

Syntax Rules

Remarks

Protected-statement specifies a statement that appears within a protected
region. A protected region is a special block of code that is monitored by
HP BASIC for the occurrence of a run-time error.

Handler-statement specifies the statement that appears inside an error
handler.

With an Attached Handler
— The keyword USE marks the start of handler statements.

— An attached handler must be delimited by a USE and END WHEN
statement.

With a Detached Handler

— The keyword USE names the associated handler for the protected
region.
— Handler-name must be a valid HP BASIC identifier and cannot be the

same as any label, DEF, DEF*, SUB, FUNCTION, or PICTURE name
within the same program unit.

— A detached handler must be delimited by a HANDLER and END
HANDLER statement.

— You can specify the same detached handler with more than one WHEN
ERROR USE statement.

The WHEN ERROR statement designates the start of a block of protected
statements.

If an error occurs inside a protected region, HP BASIC transfers control to
the error handler associated with the WHEN ERROR statement.

HP BASIC does not allow you to branch into a WHEN block.

When HP BASIC encounters an END WHEN statement for an attached
handler or an END HANDLER statement for a detached handler,

HP BASIC clears the exception and transfers control to the following
statement.

Statements and Functions 3-351

WHEN ERROR

e HP BASIC allows you to nest WHEN blocks. If an exception occurs within
a nested protected region, HP BASIC transfers control to the handler
associated with the innermost protected region in which the error occurred.

 WHEN blocks cannot exist inside a handler.
« WHEN blocks cannot cross other block structures.

< You cannot specify a RESUME statement within a WHEN ERROR
construct.

= You cannot specify an ON ERROR statement within a protected region.

< An attached handler must immediately follow the protected region of a
WHEN ERROR IN block.

= Exit from a handler must occur through a RETRY, CONTINUE, or EXIT
HANDLER statement, or by reaching the end of the handler delimited by
END WHEN or END HANDLER.

e For more information about detached handlers, see the HANDLER
statement.

3-352 Statements and Functions

WHEN ERROR

Examples

Example 1

I'Wth an attached handl er
PROGRAM sal ary
DECLARE REAL hourly_rate, no_of _hours, weekly_pay
WHEN ERROR I N
I NPUT "Enter your hourly rate";hourly_rate
INPUT "Enter the nunber of hours you worked this week";no_of hours
weekly pay = no_of hours * hourly rate
PRINT "Your pay for this week is";weekly pay

USE
SELECT ERR
CASE = 50
PRINT "Invalid data"
RETRY
CASE ELSE
EXI T HANDLER
END SELECT
END WHEN
END PROGRAM
Output

Enter your hourly rate? 35.00
Enter the number of hours you worked this week? 45
Your pay for this week is 1575

Statements and Functions 3-353

WHEN ERROR

Example 2

'Wth a detached handl er
PROGRAM sal ary
DECLARE REAL hourly rate, no_of hours, weekly pay
WHEN ERROR USE pat ch_work
INPUT "Enter your hourly rate";hourly rate
INPUT "Enter the nunber of hours you worked this week";no_of hours
weekly pay = no_of hours * hourly rate
PRINT "Your pay for this week is";weekly_pay
END WHEN

HANDLER pat ch_wor k
SELECT ERR
CASE = 50
PRINT "Invalid data"
RETRY
CASE ELSE
EXI T HANDLER
END SELECT
END HANDLER
END PROGRAM

Output

Enter your hourly rate? N neteen dollars and fifty cents
Invalid data

Enter your hourly rate? 19.50

Enter the nunber of hours you worked this week? 40

Your pay for this week is 780

3-354 Statements and Functions

WHILE

WHILE

The WHILE statement marks the beginning of a WHILE loop or modifies the
execution of another statement.

Format

Conditional

WHILE cond-exp
[statement]...

NEXT

Statement Modifier
statement WHILE cond-exp

Syntax Rules

A NEXT statement must end the WHILE loop.

Remarks

e Conditional

HP BASIC evaluates cond-exp before each loop iteration. If the expression
is true (value nonzero), HP BASIC executes the loop. If the expression is
false (value zero), control passes to the first executable statement after the
NEXT statement.

= Statement Modifier
HP BASIC executes the statement repeatedly as long as cond-exp is true.

Statements and Functions 3-355

WHILE

Examples

Example 1

I Condi ti onal

VWH LE X < 100
X=X+ SQR(X)

NEXT

Example 2

I Statement Modifier
X% = X%+ 1% WH LE X% < 100%

3-356 Statements and Functions

XLATES$

XLATE$

The XLATES$ function translates one string to another by referencing a table
string you supply.

Format
str-var = XLATE[$] (str-expl, str-exp2)

Syntax Rules

= Str-expl is the input string.
= Str-exp?2 is the table string.

Remarks

= Str-exp2 can contain up to 256 ASCII characters, numbered from O to 255;
the position of each character in the string corresponds to an ASCII value.
Because 0 is a valid ASCII value (null), the first position in the table string
is position zero.

e XLATES scans str-expl character by character, from left to right. It
finds the ASCII value n of the first character in str-expl and extracts
the character it finds at position n in str-exp2. XLATES$ then appends
the character from str-exp2 to str-var. XLATES$ continues this process,
character by character, until the end of str-expl is reached.

= The output string may be smaller than the input string for the following
reasons:

— XLATES does not translate nulls. If the character at position n in
str-exp2 is a null, XLATES$ does not append that character to str-var.

— If the ASCII value of the input character is outside the range of
positions in str-exp2, XLATES$ does not append any character to
str-var.

Statements and Functions 3-357

XLATES$

Example

DECLARE STRING A, table, source

A = "abcdef ghi j kI mopqgr st uvwxyz"

table = STRINGH(65, 0) + A

LINPUT " Type a string of uppercase letters"; source
PRI NT XLATES$(source, table)

Output

Type a string of uppercase letters? ABCDEFG
abcdef g

3-358 Statements and Functions

A

ASCII Character Codes

ASCII is a 7-bit character code with an optional parity bit (8) added for many
devices. Programs normally use seven bits internally with the eighth bit being
zero; the extra bit is either stripped (on input) or added by a device driver (on

output) so the program will operate with either parity- or nonparity-generating
devices. The eighth bit is reserved for future standardization.

The International Reference Version (IRV) of 1ISO Standard 646 is identical
to the IRV in CCITT Recommendation V.3 (International alphabet No. 5).
The character sets are the same as ASCII except that the ASCII dollar sign
(hexadecimal 24) is the international currency sign (###).

ISO Standard 646 and CCITT V.3 also specify the structure for national
character sets, of which ASCII is the U.S. national set. Certain specific
characters are reserved for national use. Table A-1 contains the values and
symbols.

ASCII Character Codes A-1

Table A-1 ASCII Characters Reserved for National Use

Hexadecimal Value IRV ASCII
23 # #

24 i $ (General currency symbol vs. dollar sign)
40 @ @

SB [[

5C \ \

5D]]

5E n n

60

7B { {

7C | |

7D } }

TE ~ Tilde

ISO Standard 646 and CCITT Recommendation V.3 (International Alphabet
No. 5) are identical to ASCII except that the number sign (23) is represented
as ## instead of #, and certain characters are reserved for national use.
Table A-2 list the ASCII codes.

Table A—2 ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks
0 00 NUL Null (tape feed)
1 01 SOH Start of heading ("A)
2 02 STX Start of text (end of address, "B)
3 03 ETX End of text (~C)
4 04 EOT End of transmission (shuts off the TWX
machine D)
5 05 ENQ Enquiry (WRU, "E)
6 06 ACK Acknowledge (RU, F)

A-2 ASCII Character Codes

(continued on next page)

Table A-2 (Cont.) ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks
07 BEL Bell (~G)
08 BS Backspace (~H)
09 HT Horizontal tabulation (™)
10 0A LF Line feed ("~J)
11 0B VT Vertical tabulation (~K)
12 ocC FF Form feed (page, L)
13 (0] CR Carriage return (~M)
14 OE SO Shift out (~“N)
15 OF SI Shift in (~O)
16 10 DLE Data link escape ("P)
17 11 DC1 Device control 1 (~Q)
18 12 DC2 Device control 2 ("R)
19 13 DC3 Device control 3 ("S)
20 14 DC4 Device control 4 (~T)
21 15 NAK Negative acknowledge (ERR, ~U)
22 16 SYN Synchronous idle (*V)
23 17 ETB End-of-transmission block (~W)
24 18 CAN Cancel ("X)
25 19 EM End of medium (~Y)
26 1A SuB Substitute (~Z)
27 1B ESC Escape (prefix of escape sequence)
28 1C FS File separator
29 1D GS Group separator
30 1E RS Record separator
31 1F us Unit separator
32 20 SP Space
33 21 ! Exclamation point

(continued on next page)

ASCII Character Codes A-3

Table A-2 (Cont.) ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks
34 22 " Double quotation mark
35 23 # Number sign
36 24 $ Dollar sign
37 25 % Percent sign
38 26 & Ampersand
39 27 ' Apostrophe
40 28 (Left (open) parenthesis
41 29) Right (close) parenthesis
42 2A * Asterisk
43 2B + Plus sign
44 2C , Comma
45 2D - Minus sign, hyphen
46 2E Period (decimal point)
a7 2F / Slash (slant)
48 30 0 Zero
49 31 1 One
50 32 2 Two
51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A Colon
59 3B ; Semicolon
60 3C < Less than (left angle bracket)

A-4 ASCII Character Codes

(continued on next page)

Table A-2 (Cont.) ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks
61 3D = Equal sign
62 3E > Greater than (right angle bracket)
63 3F ? Question mark
64 40 @ Commercial at
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E
70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 Uppercase |
74 4A J Uppercase J
75 4B K Uppercase K
76 4C L Uppercase L
77 4D M Uppercase M
78 4E N Uppercase N
79 4F 0] Uppercase O
80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 \Y Uppercase V
87 57 w Uppercase W

(continued on next page)

ASCII Character Codes A-5

Table A-2 (Cont.) ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks
88 58 X Uppercase X
89 59 Y Uppercase Y
90 5A Z Uppercase Z
91 5B [Left square bracket
92 5C \ Backslash (reverse slant)
93 5D] Right square bracket
94 5E n Circumflex (caret)
95 5F _ Underscore (underline)
96 60 Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 c Lowercase ¢
100 64 d Lowercase d
101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h
105 69 i Lowercase i
106 6A j Lowercase j
107 6B k Lowercase k
108 6C | Lowercase |
109 6D m Lowercase m
110 6E n Lowercase n
111 6F 0 Lowercase 0
112 70 p Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r

A-6 ASCII Character Codes

(continued on next page)

Table A-2 (Cont.) ASCII Codes

8-Bit
Decimal Hexadecimal
Code Code Character Remarks
115 73 S Lowercase s
116 74 t Lowercase t
117 75 u Lowercase u
118 76 \Y Lowercase v
119 77 w Lowercase w
120 78 X Lowercase x
121 79 y Lowercase y
122 7A z Lowercase z
123 7B { Left brace
124 7C | Vertical line
125 7D } Right brace
126 7E ~ Tilde
127 7F DEL Delete (rubout)

ASCII Character Codes A-7

B

HP BASIC Keywords

The following is a list of the HP BASIC keywords. Most of the keywords are
reserved; unreserved keywords are marked with a dagger ().

%ABORT
%CDDt*
%CROSS
%DEFINE
%ELSE
%END
%FROM
%IDENT
%lF
%INCLUDE
%LET
%LIBRARY
%LIST
%NOCROSS
%NOLIST
%PAGE
%PRINT
%SBTTL
%THEN
%TITLE
%UNDEFINE
%VARIANT
ABORT
ABS

ABS%
ACCESS
ACCESS%
ACTIVATE
ACTIVE

t Unreserved keyword

HP BASIC Keywords B-1

ALIGNED
ALLOW
ALTERNATE
AND
ANGLETYt
ANY
APPEND
AREAY

AS

ASC
ASCENDING
ASCII

ASK

ATt

ATN

ATN2
BACK
BASE
BASIC

BEL
BINARY
BIT
BLOCK
BLOCKSIZE
BS
BUCKETSIZE
BUFFER
BUFSIZ

BY

BYTE
CALL

CASE
CAUSE
CCPOS
CHAIN
CHANGE
CHANGES
CHECKING
CHOICET
CHR$
CLEAR

t Unreserved keyword

B-2 HP BASIC Keywords

CLIPt

CLK$

CLOSE
CLUSTERSIZE
COLORT
COM
COMMON
COMP%

CON
CONNECT
CONSTANT
CONTIGUOUS
CONTINUE
COS

COoT

COUNT

CR

CTRLC
CVTF$
CVTS$F
CVT$$
CVT$%
CVT%$

DAT

DAT$

DATA

DATES$
DEACTIVATE
DECIMAL
DECLARE
DEF

DEF*
DEFAULTNAME
DEL

DELETE
DESC
DESCENDING
DET

DEVICE
DIF$

DIM

t Unreserved keyword

HP BASIC Keywords B-3

DIMENSION
DOUBLE
DOUBLEBUF
DRAW
DUPLICATES
DYNAMIC
ECHO
EDITS
ELSE

END

EQ

EQV

ERL

ERNS$

ERR
ERROR
ERTS$

ESC

EXIT

EXP
EXPANDT
EXPLICIT
EXTEND
EXTENDSIZE
EXTERNAL
FF

FIELD
FILE
FILESIZE
FILL
FILLS$
FILL%
FIND

FIX

FIXED
FLUSH
FNAMES
FNEND
FNEXIT
FONTY
FOR

t Unreserved keyword

B—-4 HP BASIC Keywords

FORMAT$
FORTRAN
FREE
FROM
FSP$

FSS$
FUNCTION
FUNCTIONEND
FUNCTIONEXIT
GE

GET
GETRFA
GFLOAT
GO
GOBACK
GOSUB
GOTO
GRAPH
GRAPHICSt
GROUP
GT
HANDLE
HANDLER
HEIGHT
HFLOAT
HT

IDN

IF

IFEND
IFMORE
IMAGE
IMP

INT
INACTIVE
INDEX?
INDEXED
INFORMATIONAL
INITIAL
INKEY$
INPUT
INSTR

t Unreserved keyword

HP BASIC Keywords B-5

INT
INTEGER
INV
INVALID
ITERATE
JSB

KEY
KILL
LBOUND
LEFT
LEFTS$
LEN

LET

LF

LINE
LINEST
LINO
LINPUT
LIST
LOC
LOCKED
LOG
LOG10
LONG
LSET
MAG
MAGTAPE
MAP
MAR
MAR%
MARGIN
MAT
MAX
METAFILEY
MID
MID$
MIN
MIXt
MOD
MOD%
MODE

t Unreserved keyword

B—-6 HP BASIC Keywords

MODIFY
MOVE
MULTIPOINT?
NAME
NEXT

NOT
NOCHANGES
NODATA
NODUPLICATES
NOECHO
NOEXTEND
NOMARGIN
NONE
NOPAGE
NOREWIND
NOSPAN
NOT

NUL$

NUM

NUM$
NUM1$
NUM2

NX

NXEQ

OF

ON
ONECHR
ONERROR
OPEN
OPTION
OPTIONAL
OR
ORGANIZATION
OTHERWISE
OUTPUT
OVERFLOW
PAGE
PATH?
PEEK

PI

PICTURE

t Unreserved keyword

HP BASIC Keywords B-7

PLACES$
PLOT
POINT?
POINTSt
POS

POS%
PPS%
PRIMARY
PRINT
PRIORITY?
PRODS$
PROGRAM
PROMPT*
PUT

QUAD
QUOS

RADS$
RANDOM
RANDOMIZE
RANGEt
RCTRLC
RCTRLO
READ
REAL
RECORD
RECORDSIZE
RECORDTYPE
RECOUNT
REF
REGARDLESS
RELATIVE
REM
REMAP
RESET
RESTORE
RESUME
RETRY
RETURN
RFA

RIGHT
RIGHTS
RMSSTATUS
RND

B-8 HP BASIC Keywords

ROTATE
ROUNDING
RSET
SCALE
SCRATCH
SEG$
SELECT
SEQUENTIAL
SET
SETUP
SEVERE
SFLOAT
SGN
SHEAR
SHIFT

Sl

SIN
SINGLE
SIZE
SLEEP
o)

SP
SPACEt
SPACE$
SPAN
SPEC%
SQR
SQRT
STATUS
STEP
STOP
STR$
STREAM
STRING
STRING$
STYLETt
sSUB
SUBEND
SUBEXIT
SUBSCRIPT
SUM$

t Unreserved keyword

HP BASIC Keywords B-9

SWAP%

SYS

TAB

TAN
TEMPORARY
TERMINAL
TEXTT
TFLOAT
THEN

TIM

TIME

TIMES$

TO

TRANT
TRANSFORM
TRANSFORMATIONTY
TRM$

TRN

TYP

TYPE

TYPES$
UBOUND
UNALIGNED
UNDEFINED
UNITTt
UNLESS
UNLOCK
UNTIL
UPDATE
USAGE$
USEROPEN
USING

USR$

VAL

VAL%
VALUE
VARIABLE
VARIANT
VFC
VIEWPORTYt
VIRTUAL

t Unreserved keyword

B-10 HP BASIC Keywords

VPS%
2

WAIT
WARNING
WHEN
WHILE
WINDOWY)
WINDOWSIZE
WITHT

WORD

WRITE
XFLOAT
XLATE
XLATES$

XOR

ZER

t Unreserved keyword

HP BASIC Keywords B-11

C

Differences Between Variations of BASIC

This appendix describes:

Section C.1, Differences Between 164 BASIC and Alpha BASIC
Section C.2, Differences Between VAX BASIC and 164 BASIC/Alpha BASIC

C.1 Differences Between 164 BASIC and Alpha BASIC
164 BASIC supports most of the Alpha BASIC features.

Differences are:

On 164 BASIC, the default floating-point format is S_floating,
corresponding to the data type keyword SFLOAT. On Alpha BASIC,

the default floating-point type is F_floating, corresponding to the data type
keyword SINGLE.

The Itanium architecture does not support the VAX floating-point data
types (FFLOAT, DFLOAT, GFLOAT, and HFLOAT). All uses of these
data types are converted to an appropriate IEEE data type before any
computation is performed, and then the result is converted back to the
original data type. This process might cause rounding errors, and might
result in slight differences compared with results obtained using VAX
floating-point daata types directly.

The /ARCHITECTURE and /OPTIMIZE=TUNE qualifiers on 164 BASIC
support the options ITANIUM and MERCED and ignore the various
Alpha-specific options.

C.2 Differences Between VAX BASIC and 164 BASIC/Alpha
BASIC

Differences Between Variations of BASIC C-1

C.2.1 VAX BASIC Features Not Available in 164 BASIC/Alpha BASIC

Table C-1 describes the VAX BASIC features not available in 164 BASIC/Alpha
BASIC. There are no plans for 164 BASIC or Alpha BASIC to support these

features.

Table C-1 VAX BASIC Features Not Available in 164 BASIC/Alpha BASIC

Features

Comments

/[NOJANSI_STANDARD

VAX BASIC Environment

/INO]SYNTAX_CHECK

/[INO]JFLAG=[BP2COMPATIBILITY]

/INO]JFLAG=[AXPCOMPATIBILITY]

Graphics statements

HFLOAT data type

/[NO]DESIGN

Enforces the ANSI Minimal BASIC
standard.

The VAX BASIC Environment provides
features specific to BASIC for program
development. The RUN command and
immediate mode are not supported.

Specifies syntax checking after every
entered line.

Notifies VAX BASIC users of VAX BASIC
features that are not compatible with
PDP-11 BASIC/PLUS2.

Notifies VAX BASIC users of VAX BASIC
features that are not supported by 164
BASIC/Alpha BASIC.

Graphics statements, graphics transfor-
mation functions, and the information in
Programming with VAX BASIC Graphics is
not supported.

Specifies floating-point format for floating-
point data. Additionally, the HFLOAT
argument to the REAL built-in function is
not supported.

There is no support for the Program
Design Facility (PDF). The compiler does
not attempt to compile a program when
/IDESIGN is specified.

C.2.2 164 BASIC/Alpha BASIC Features Not Available in VAX BASIC

Table C-2 describes 164 BASIC/Alpha BASIC command-line qualifiers not
available in VAX BASIC. For detailed information about all the BASIC
gualifiers, see the HP BASIC for OpenVMS User Manual.

C-2 Differences Between Variations of BASIC

Table C-2 164 BASIC/Alpha BASIC Qualifiers Not Available in VAX BASIC

Qualifier Comments

/INTEGER_SIZE=QUAD Allows you to specify that integers should be
quadwords (that is, 64 bits in size).

/OPTIMIZE=LEVEL=n Controls the level of optimization done by the

compiler. (/OPTIMIZE without the LEVEL is
available in VAX BASIC; see Section C.2.3.1.)

SFLOAT Allows you to specify one of the IEEE floating-point
/IREAL_SIZE= { TFLOAT data types, SFLOAT, TFLOAT, or XFLOAT.
XFLOAT

/SEPARATE_COMPILATION Controls whether an individual compilation unit
becomes a separate module in an object file.

/ISYNCHRONOUS_EXCEPTIONS Controls whether or not the compiler emits
additional code to emulate VAX BASIC exception
behavior.

/WARNINGS=ALIGNMENT Instructs the compiler to flag all occurrences of non-
naturally aligned RECORD fields, variables within
COMMONSs and MAPs, and RECORD arrays.

C.2.3 Behavior Differences

This section describes the behavior differences between 164 BASIC/Alpha
BASIC and VAX BASIC.

C.2.3.1 Optimization
In both Alpha BASIC and VAX BASIC, the /[[NO]JOPTIMIZE qualifier controls
whether optimization is turned on or off, and for both the default is /OPTIMIZE
(unless /IDEBUG is specified).

The difference is that Alpha BASIC allows you to specify which of four levels of
optimization the compiler should perform. The default is /OPTIMIZE=LEVEL=4
(full optimization). In VAX BASIC, you cannot specify a level of optimization.
For more information, see the section on BASIC command qualifiers in the HP
BASIC for OpenVMS User Manual.

Differences Between Variations of BASIC C-3

C.2.3.2 Data Types
The following data types are discussed in this section:

e QUAD, SFLOAT, TFLOAT, and XFLOAT

« Implicit use of HFLOAT

= Double

e HFLOAT and HFLOAT Complex in Oracle CDD/Repository

C.2.3.2.1 QUAD, SFLOAT, TFLOAT, and XFLOAT 164 BASIC/Alpha BASIC
has four data types not available in VAX BASIC:

< QUAD allows you to specify a size of 64 bits (quadword) for integers.

e SFLOAT, TFLOAT, and XFLOAT are IEEE floating-point data types
requiring Version 7.1 or higher of the OpenVMS Alpha operating system.

These four data types allow the Alpha BASIC user to take advantage of the
64-bit Alpha architecture.

C.2.3.2.2 Implicit Use of the HFLOAT Data Type VAX BASIC performs some
intermediate calculations in the HFLOAT data type, even if the source code
does not explicitly specify its use. This generally occurs when mixed data type
operations are performed between large DECIMAL items and floating-point
items.

Alpha BASIC performs these operations in GFLOAT. As a result, some loss of
precision is possible. Alpha BASIC issues the following compile-time warning
message if source code is encountered that results in this difference:

OPEPERGFL, operation performed in GFLOAT, |oss of precision possible

C.2.3.2.3 Double Data Type The Alpha hardware does not completely
support the D-floating data type. Alpha BASIC performs BASIC DOUBLE
operations (+, -, and so on) in G-floating (consistent with other languages
on OpenVMS Alpha systems). As a result, the operations lose three bits of
precision.

Alpha BASIC performs mixed operations between GFLOAT and DOUBLE
in GFLOAT, not HFLOAT. VAX BASIC performs mixed operations between
GFLOAT and DOUBLE in HFLOAT.

Conversions between the human world of decimal numbers and the binary
world of computers cause rounding errors. For example, .1 (1/10) cannot be
represented exactly in either D_floating or G_floating data type. It must

be rounded. Because the D_floating and G_floating representations provide
differing amounts of precision, the rounding error may be slightly different.

C-4 Differences Between Variations of BASIC

As a result, the D_floating and G_floating representations of the same decimal
number are not always the same when converted back to decimal.

C.2.3.2.4 HFLOAT Data Type and HFLOAT COMPLEX Data Type in Oracle
CDD/Repository 164 BASIC/Alpha BASIC does not support HFLOAT. Neither
164 BASIC/Alpha BASIC nor VAX BASIC support the HFLOAT COMPLEX
data type. The following sections discuss the translations that occur when
reading records from Oracle CDD/Repository.

HFLOAT Data Type

In 164 BASIC/Alpha BASIC, HFLOAT data types generate a GROUP using the
name of the HFLOAT item specified in Oracle CDD/Repository. The GROUP
contains a single 16 byte string item. Because HFLOAT is not supported, the
compiler generates an informational message similiar to those caused by other
unsupported data types.

See Example C-1 and Example C-2.

Example C-1 164 BASIC/Alpha BASIC HFLOAT Translation
GROUP W_H REAL

STRING STRI NG VALUE = 16
END GROUP

Example C-2 VAX BASIC HFLOAT Translation
HFLOAT WY_H REAL

HFLOAT COMPLEX Data Type

In 164 BASIC/Alpha BASIC, the Oracle CDD/Repository data type HFLOAT
COMPLEX maps to a GROUP of two 16-byte static strings. Example C-3
shows Oracle CDD/Repository output on 164 BASIC/Alpha BASIC.

Example C-3 Oracle CDD/Repository HFLOAT COMPLEX Data Type with 164
BASIC/Alpha BASIC

(continued on next page)

Differences Between Variations of BASIC C-5

Example C-3 (Cont.) Oracle CDD/Repository HFLOAT COMPLEX Data Type
with 164 BASIC/Alpha BASIC

GROP MY_H_COMPLEX
STRI NG HFLOAT R VALUE = 16
STRING HFLOAT | VALUE = 16

END GROUP

Example C—4 shows Oracle CDD/Repository output on VAX BASIC.

Example C—4 Oracle CDD/Repository HFLOAT COMPLEX Data Type with
VAX BASIC

GROUP MY_H_COVPLEX
HFLCAT HFLOAT R VALUE
HFLOAT HFLOAT | VALUE

END GROUP

C.2.3.3 Passing Parameters by Value
Both 164 BASIC/Alpha BASIC and VAX BASIC are able to pass actual
parameters by value, but only 164 BASIC/Alpha BASIC allow by-value formal
parameters.

C.2.3.4 Array Parameters

The following are differences in the way 164 BASIC/Alpha BASIC and VAX
BASIC handle array parameters:

= Both 164 BASIC/Alpha BASIC and VAX BASIC perform parameter
checking when an entire array is passed to a subprogram or function.
When the array that was passed does not match the array that is expected
by the subprogram or function, the compiler issues the error message
“Arguments don’'t match.” VAX BASIC performs this check each time the
array is referenced. 164 BASIC/Alpha BASIC performs this check once at
the start of the subprogram or function.

164 BASIC/Alpha BASIC processes array parameters more efficiently. The
following differences exist between 164 BASIC/Alpha BASIC and VAX
BASIC in the way each processes array parameters:

— In 164 BASIC/Alpha BASIC, if a subprogram or function declares
an array in its parameter list, the calling program must pass an
array when calling the subprogram or function. If this is not done, an
unexpected failure can occur. For example, passing a null parameter
instead of an array causes a memory management violation and the

C-6 Differences Between Variations of BASIC

program fails. In VAX BASIC, it is valid for the program to pass a null
parameter if the array is not accessed in the subprogram.

— In 164 BASIC/Alpha BASIC, the subprogram cannot trap the

“Arguments don’t match” error. The error is signaled, but can only
be trapped by the calling program.

When passing an entire array by descriptor, VAX BASIC creates a
DSC$K_CLASS_A descriptor; 164 BASIC/Alpha BASIC creates a DSC$K _
CLASS_NCA descriptor.

For most BASIC applications, this is not noticeable because both the calling
program and the called subprogram use NCA descriptors. However, a
program that relies on individual descriptor fields may have to be modified
to work with descriptors produced by 164 BASIC/Alpha BASIC.

For more information about DSC$K_CLASS_A and DSC$K_CLASS_NCA
descriptors, see the OpenVMS Calling Standard.

VAX BASIC performs no scale or precision checking when passing entire
decimal arrays to a subprogram or function.

164 BASIC/Alpha BASIC subprograms and functions check all decimal
arrays received by descriptor to verify that precision, scale factor, and
bound information match those of the parameter in the calling program.
For example, the following program causes the error “Arguments don’t
match” when the subprogram test_func starts to execute:

10 declare decimal (5,2) a(10)
20 call test func(a())

30 print a(l)

35 end

40 sub test_func(decimal (10,4) b())
45 b(1) = 12.12
50 end sub

VAX BASIC performs minimal checking when receiving an array of records
from a caller. For example, in the following program, VAX BASIC does not
check whether the size of the array passed is equal to the size declared in
the subprogram.

164 BASIC/Alpha BASIC checks that the size of the array elements are the
same and that the number of dimensions match. The following program
produces the error “Arguments don't match” when the subprogram test_
func starts to execute:

Differences Between Variations of BASIC C-7

10 record recl
long a
long b
end record
decl are recl a(10)
call test_func(a())
end

40 sub test_func(rec2 a())
record rec2
[ong x
long y
long z
end record
a(2)::x =1
50 end sub
< VAX BASIC always performs bounds checking on arrays received as
descriptor parameters.

164 BASIC/Alpha BASIC does not perform bounds checking on arrays
received as descriptor parameters if the /CHECK=NOBOUNDS qualifier is
specified. In this way, arrays received as parameters are consistent with
all other arrays.

C.2.3.5 DEF* Routines
In 164 BASIC/Alpha BASIC, DEF* routines cannot be called from within DEF
routines or WHEN handlers. If such calls are attempted, the following error
message is issued:

9BAS| C- E- DEFSNOTALL, DEF* reference not allowed in DEF or handl er

164 BASIC/Alpha BASIC gives highest precedence to DEF* routines that are
called from within an expression. Thus, a DEF* routine call is evaluated
first. When the DEF* routine directly modifies the values of variables used
within the same expression, this can affect the result of the expression. If
the compiler changes the order of a DEF* call in an expression, it issues the
following warning message:

YBASI C- W DEFEXPCOM expression with DEF* too conpl ex, noving <name> invocation

You can avoid this by simplifying the expression.

C-8 Differences Between Variations of BASIC

C.2.3.6 /LINES Qualifier

In 164 BASIC/Alpha BASIC, the /LINES qualifier affects only the ERL function
and determines whether BASIC line numbers are reported in run-time error
messages. The following differences exist in 164 BASIC/Alpha BASIC:

e /NOLINES is the default.

= You do not have to use /LINES to use the RESUME statement without a
target.

= Using /LINES in programs that have line numbers on most lines can
negatively affect run-time performance.

C.2.3.7 Appending Files at the DCL Command Line

C.2.3.8

C.2.3.9

VAX BASIC requires that source files using the plus sign (+) to append source
files use line numbers within the files; otherwise, an error message is issued.

164 BASIC/Alpha BASIC does not require line numbers in either of the
source files. The plus sign is treated as an OpenVMS append operator. 164
BASIC/Alpha BASIC appends and compiles the separate files as if they were a
single source file.

Unreachable Code Error

164 BASIC/Alpha BASIC performs extensive analysis when searching for
unreachable code and may report more occurrences than VAX BASIC.

In 164 BASIC/Alpha BASIC, the compile-time error message for unreachable
code, UNREACH, is an informational message. In VAX BASIC, the compile-
time error message for unreachable code, INACOFOL, is a warning.

164 BASIC/Alpha BASIC checks for DEF functions that are never referenced
and issues the informational message “UNCALLED, routine xxxx can never be
called.”

Line Numbers

In 164 BASIC/Alpha BASIC, unlike VAX BASIC, you cannot have duplicate line
numbers or line numbers not in ascending numerical order. This restriction
applies to single source files or source files concatenated with a plus sign (+)
at the DCL command line. Duplicate line numbers or line numbers not in
ascending order cause “E” level compilation errors.

VAX BASIC does allow duplicates and lines out of order. 164 BASIC/Alpha
BASIC provides an example TPU command procedure to help work around this
difference. It can be used to append source files and sort BASIC line numbers
into ascending numerical order from one or more source files.

Differences Between Variations of BASIC C-9

After installation of Alpha BASIC, the TPU command procedure is located in:
SYS$COMMON: [SYSHLP. EXAMPLES. BASI C] BASI CSENV. TPU.

Instructions for its use are in the file.

Note

Although there are no known problems, the TPU command procedure
has not been thoroughly tested. As a result, it is not supported by HP.

C.2.3.10 Error Handling Semantics

To achieve the most efficient performance, the 164 BASIC/Alpha BASIC
compiler may reorder the execution of arithmetic instructions. Rarely does
this result in error handling semantics that are incompatible with VAX BASIC;
most programs are not affected by this change.

Use the 164 BASIC/Alpha BASIC /SYNCHRONOUS_EXCEPTIONS qualifier
for those programs that require exact VAX BASIC behavior.

C.2.3.11 Generation of Object Modules

In 164 BASIC/Alpha BASIC, the default behavior places all routines (SUBSs,
FUNCTIONSs, and main programs) compiled within a single source program
into a single module in the object file. VAX BASIC generates each routine
as a separate module. Use the 164 BASIC/Alpha BASIC /SEPARATE_
COMPILATION qualifier to duplicate VAX BASIC behavior. See the
information on qualifiers on the BASIC command line in the HP BASIC for
OpenVMS User Manual.

C.2.3.12 RESUME and DEF

VAX BASIC does not enforce the documented restriction that a RESUME
statement lexically outside a DEF statement (without a target specified) cannot
resume program execution within a DEF statement. 164 BASIC/Alpha BASIC
enforces this restriction at run time.

C.2.3.13 Exceptions

When the 164 BASIC/Alpha BASIC compiler determines that the result of an
expression is never used, the compiler does not generate code to evaluate that
expression. This causes an incompatibility with VAX BASIC if the removed
expression causes an exception. In the following example, the program
generates a divide-by-zero error in VAX BASIC. It runs without error in

164 BASIC/Alpha BASIC because 164 BASIC/Alpha BASIC, recognizing that
the variable A is never used, does not generate code to evaluate the expression
that is assigned to A:

C-10 Differences Between Variations of BASIC

5
B/ O

mX>
Suun

N

C.2.3.14 Compiler Message Differences
There is a small difference in the way compiler messages are reported. In
VAX BASIC, the source information appears before the message text, and
includes both source and listing line numbers. In 164 BASIC/Alpha BASIC,

the source information appears after the message text and includes only source
line numbers.

When the 164 BASIC/Alpha BASIC compiler reports source line information,
the message looks like:

UBASI C- E- XXXXXXXXX, XXXXXXXXXXXXX at |ine number YY in file XXXXXXXXXXX

In both 164 BASIC/Alpha BASIC and VAX BASIC, the reported line number is
the physical source line in the file. It is not the BASIC line number that might
occur in the source program.

C.2.3.15 Error Status Returned to DCL

When errors occur, the 164 BASIC/Alpha BASIC and VAX BASIC compilers at
times return a different status to DCL. For example, when the file specified
at the DCL command line cannot be found, 164 BASIC/Alpha BASIC returns
BASIC-F-ABORT; VAX BASIC returns BASIC-F—OPENIN.

C.2.3.16 SYSSINPUT

In 164 BASIC/Alpha BASIC, when you specify SYS$INPUT as the input file
specification at the DCL command line, the object file and the listing file are
named differently from VAX BASIC. In 164 BASIC/Alpha BASIC, the compiler
names the files with the file types .OBJ and .LIS (with nothing preceding). In
VAX BASIC, the compiler names the files NONAME.OBJ and NONAME.LIS.

C.2.3.17 FSS$ Function

The VAX BASIC compiler compiles a program that uses the FSS$ function,
but if the FSS$ function is invoked at run time, the following run-time error is
generated:

YBAS- F- NOTI MP, Not i npl enent ed

The 164 BASIC/Alpha BASIC compiler reports all uses of the FSS$ function by
generating the following error at compile time:

YBAS- E- BLTFUNNOT, built-in function not supported

Differences Between Variations of BASIC C-11

C.2.3.18 BAS$K_FAC_NO Constant

The BAS$K_FAC_NO constant is not defined on OpenVMS 164/Alpha
systems. You should replace all occurrences of the EXTERNAL LONG
CONSTANT BAS$K_FAC_NO with EXTERNAL LONG CONSTANT BAS$_
FACILITY. OpenVMS VAX systems use the constant BAS$SK_FAC_NO to
communicate the facility number between SYS$LIBRARY:BASRTL.EXE
and SYS$LIBRARY:BASRTL2.EXE; it is not needed on OpenVMS 164/Alpha
systems.

C.2.3.19 Math Functions with Different Results

Some math function results differ between 164 BASIC/Alpha BASIC and VAX
BASIC, because underlying OpenVMS 164/Alpha system routines use improved
algorithms to perform these operations.

C.2.3.20 Floating-Point Errors

Some programs that run successfully on OpenVMS VAX systems may fail

on OpenVMS 164/Alpha systems with division by zero or other floating-point
errors. Examine your failing program for a dirty floating-point zero. A dirty
floating-point zero is a number represented by a zero exponent and a nonzero
mantissa. Most OpenVMS VAX system instructions treat the invalid floating-
point number as a zero, but it causes an exception to be generated by some
OpenVMS 164/Alpha instructions.

You cannot create a dirty zero by using BASIC arithmetic expessions. You can
create a dirty zero by reading it from a file. BASIC I/O statements, such as
GET and MOVE FROM, move bytes of data to a variable without checking that
the data is valid for the variable.

Correct the problem in one of the following ways:

< Determine how the dirty zero was created and make the correction. This is
the preferred way.

= Write a routine to clean any floating-point numbers that receive a dirty
zero value.

The following is an example of a routine that cleans a single precision floating-
point number (you can write similiar routines to clean double or G-floating
numbers):

C-12 Differences Between Variations of BASIC

c.23.21

C.2.3.22

SUB CLEAN SINGLE(SINGLE A)
VAP (OVER) SINGLE B
MAP (OVER) WORD WL, W2
B=A
IF (W AND 32640% = 0% THEN
A=0
END | F
END SUB

The routine accepts a floating-point number, checks for a zero exponent, and
clears the mantissa. It redefines the floating-point number as an integer so
that the proper bits are tested.

For more information on floating-point formats and dirty zeros, see the Alpha
Architecture Reference Manual.

Error Detection on lllegal MAT Operations
Following are two differences in error detection on illegal MAT operations:

= 164 BASIC/Alpha BASIC correctly reports ILLOPE (Error 141 - “lllegal
operation”) if an attempt is made to perform matrix multiplication when
the destination matrix is identical to either source matrix. VAX BASIC
does not correctly detect and report the ILLOPE message if an attempt is
made to perform the following matrix multiplication, where B is a virtual
array, and A is either a virtual array or an in-memory array:

MTB=A*B

= Under certain conditions, VAX BASIC does not enforce the documented
restriction that arrays used in MAT operations must have zero lower
bounds. 164 BASIC/Alpha BASIC always reports either a LOWNOTZER
error at compile time, or a MATDIMERR error at run time, when
attempting to perform MAT operations on arrays with nonzero lower
bounds.

Debugging Differences

There are debugging differences between VAX BASIC and 164 BASIC/Alpha
BASIC, especially during use of the debugger STEP command around exception
handlers, DEF functions, external subprograms, and GOSUB routines.

These differences are described below and in the HP BASIC for OpenVMS User
Manual.

When the debugger STEP command is used in source code containing an
error, differences occur in the Debugger behavior between OpenVMS VAX and
OpenVMS 164/Alpha. These differences are due to architectural differences in
the hardware and software of the two systems.

Differences Between Variations of BASIC C-13

C.2.3.23

In 164 BASIC/Alpha BASIC, a STEP at a statement that causes an exception
might never return control to the debugger. The debugger cannot determine
what statement in the BASIC source code will execute after the exception
occurs. Therefore, set explicit breaks if you use STEP on statements that cause
exceptions.

The following hints should help when you use the STEP command to debug
programs that handle errors:

When you STEP at a statement that takes an error, the debugger will not
regain control unless the program reaches an explicit breakpoint or the
next statement that would have executed if no error had occurred. Set
explicit breaks if you want the program to stop in any other place.

Use of the STEP command at a statement that takes an error does not
return control to the debugger when the program reaches the error handler
code. If you want the program to break when program execution enters an
error handler, explicitly set a breakpoint at the error handler. This applies
to both ON ERROR handlers and WHEN handlers.

If you are within a WHEN handler, a STEP at a statement that terminates
execution within the WHEN handler (CONTINUE, RETRY, END WHEN,
END HANDLER, EXIT HANDLER) will not stop unless program flow
reaches a point where an explicit breakpoint is set.

A STEP at a RESUME statement in an ON ERROR handler stops program
execution at the first line of non-error-handler code.

Use SET BREAK/EXCEPTION at the beginning of the debugging session to
prevent unexpected errors from occurring. This breakpoint is not necessary
if you have set explicit breakpoints at all error handlers. However, use

of this command will break at all exceptions, allowing you to check that
you have the proper breakpoints to stop program execution following the
exception.

Listing File Differences

Following are differences in listing files between 164 BASIC/Alpha BASIC and
VAX BASIC:

IMACHINE/LIST—In VAX BASIC, if you specify BASIC/MACHINE, you
get a listing file containing a machine language listing but no source code
listing. 164 BASIC/Alpha BASIC, if you specify BASIC/MACHINE, you
do not get either listing. You must specify /LIST to get listing files. In
164 BASIC/Alpha BASIC, specifying /IMACHINE/LIST gives you both the
machine language and the source code in the listing file.

C-14 Differences Between Variations of BASIC

When VAX BASIC creates a listing file for a program with more than one
routine, it places the machine code for each routine after the source code
for that routine. The listing file produced by the 164 BASIC/Alpha BASIC
compiler contains the source listing for all the routines followed by the
machine code listing for all the routines, unless you use the /SEPARATE_
COMPILATION qualifier.

e %PAGE—In 164 BASIC/Alpha BASIC, the %PAGE directive appears on
the page following the page break. In VAX BASIC, the %PAGE directive
appears on the page before the page break.

e %TITLE and %SBTTL strings—These are truncated at 31 characters in
164 BASIC/Alpha BASIC, and 45 characters in VAX BASIC.

e Form feeds—VAX BASIC treats form feeds as %PAGE directives. 164
BASIC/Alpha BASIC does no special processing with form feeds. When a
form feed occurs in the source file, that form feed occurs in the listing file,
but no listing header information accompanies the form feed.

< /SHOW=MAP qualifier—The following differences occur in 164 BASIC/Alpha
BASIC when you use the /SHOW=MAP qualifier:

— 164 BASIC/Alpha BASIC leaves the offset field in the allocation map
blank in cases where the values are not applicable, or not available to
the listing phase.

— In dynamic maps of arrays, VAX BASIC reports the size of the array
descriptors; 164 BASIC/Alpha BASIC reports the size of the array.

= Message placement—The placement of some error messages in the listing
file may differ between VAX BASIC and 164 BASIC/Alpha BASIC. For
example, in 164 BASIC/Alpha BASIC, errors that require flow analysis
such as “unreachable code” and “routine can never be called” appear in
the listing after the source code and allocation map listing. In listings for
source files that contain more than one routine, these errors appear after
the source and allocation listing for all routines in the compilation, unless
the /SEPARATE_COMPILATION is specified.

C.2.4 Common Language Environment Differences

This section describes differences between 164 BASIC/Alpha BASIC, VAX
BASIC, and other languages within the common language environment.

Differences Between Variations of BASIC C-15

C.2.4.1 Creating PSECTs with COMMON and MAP Statements

In 164 BASIC/Alpha BASIC, the PSECT attributes are different from those in
VAX BASIC, as follows:

164 BASIC/Alpha BASIC VAX BASIC

NOPIC PIC

NOSHR SHR

Alignment of OCTAWORD Alignment of LONG

In 164 BASIC/Alpha BASIC, the lengths of the PSECTs that the COMMON
and MAP statements create are rounded up to a multiple of 16. The size of
COMMON or MAP does not change; the size of the PSECT does. This change
is visible only to applications that use shareable images in a multilanguage
environment.

Both 164 BASIC/Alpha BASIC and VAX BASIC create PSECTs that are
compatible with those of other languages on the same platform, with the
exception of MACRO. You can link with modules written in languages other
than MACRO without changing code. If you link against MACRO modules that
reference these PSECTS, you may need to make corresponding changes in the
MACRO code.

C.2.4.2 64-Bit Floating-Point Data

In most other HP languages, the default 64-bit floating-point data type has
changed from D_floating on OpenVMS VAX systems to G_floating on OpenVMS
Alpha systems to T_floating on OpenVMS 1A64 systems. If you communicate
BASIC DOUBLE (OpenVMS D_floating) data between BASIC and one of

the other languages that have made this change, you need to do one of the
following:

< In the compiler command line of the other language, change the 64-bit
floating-point data type to D_floating to match the behavior of Alpha
BASIC or to T_floating to match the behavior of 164 BASIC.

< In your BASIC program, change the data type of the 64-bit floating-point
data from DOUBLE to GFLOAT or TFLOAT to match the other language.

C-16 Differences Between Variations of BASIC

C.2.5 LIB$ROUTINES and BASIC$STARLET.TLB Routines Unsupported
by 164 BASIC/Alpha BASIC

Direct use of the following routines by 164 BASIC/Alpha BASIC programs is
unsupported. Attempts to execute any of these routines will result in an error.

In LIBSROUTINES module:

LIB$INSERT_TREE_64
LIB$SHOW_VM_64
LIB$SHOW_VM_ZONE_64

In STARLET module:

SYS$CREATE_BUFOBJ_64
SYS$CREATE_GFILE
SYS$CREATE_GPFILE
SYS$CREATE_REGION_64
SYS$CRETVA 64
SYS$CRMPSC_FILE_64
SYS$CRMPSC_GFILE_64
SYS$CRMPSC_GPFILE_64
SYS$DELTVA 64
EXPREG_64
SYS$10_CLEANUP
SYS$10_PERFORM
SYS$10_PERFORMW
SYS$LCKPAG_64
SYS$SLKWSET 64
SYS$MGBLSC_64
SYS$PURGE_WS
SYS$SETPRI_64
SYS$ULKPAG_64
SYS$ULWSET _64
SYS$UPDESC_64
SYS$UPDSEC_64W

Differences Between Variations of BASIC C-17

A

%ABORT directive, 2-2
ABS% function, 3-3
ABS function, 3-2
Absolute value

ABS% function, 3-3

ABS function, 3-2

MAG function, 3-162
ACCESS clause, 3-224, 3-261
ACTIVE clause, 3-238
ALLOW clause, 3-224
Alphanumeric label, 1-3

See also Labels
ALTERNATE KEY clause, 3-232
Ampersand (&)
as a continuation character, 1-5, 1-6
in DATA statement, 3-33
Angle types
with OPTION statement, 3-237
/ARCHITECTURE qualifier, C-1
Arctangent, 3-5
Arithmetic operators, 1-32, 1-33

Array
assigning values to, 3-177, 3—180, 3-188,
3-270
bounds, 3-62, 3-177, 3-180, 3-183,
3-186, 3-188
converting with CHANGE statement,
3-15

creating with COMMON statement, 3-19
creating with DECLARE statement, 3-40
creating with DIM statement, 3-61
creating with MAP statement, 3-166

Index

Array (cont'd)
creating with MAT statement, 3-176,
3-180, 3-183, 3-185, 3-188
data type of, 3-61
dimensions of, 3-61
dynamic, 3-61, 3-63, 3-64
elements, 3-62
element zero, 3-63, 3-179, 3-181, 3-184,
3-186, 3-188, 3—-198
initialization of, 3-177
initializing, 3-64
inversion of, 3-178
redimensioning with MAT statement,
3-177, 3-179, 3-181, 3-184, 3-188
static, 3-61, 3—-62
transposing, 3-178
virtual, 3-42, 3-61, 3-63, 3-88
Arrays, 1-17
array elements, 1-17
definition of, 1-18
dimensions of, 1-18
element zero, 1-18
naming, 1-17, 1-19
size limits, 1-18
virtual, 1-20
ASCENDING keys, 3-227, 3-232
ASCII
character codes, A-1
characters, 1-30, 1-39, 3-17, A-1
character set, 1-8
conversion, 3-15, 3-17
converting to, 3-4
radix, 1-27

Index-1

ASCII function, 3-4
Asterisk (*)

in PRINT USING statement, 3-251
ATN function, 3-5

B

Backslash (\)
in continued lines, 1-6
in multistatement lines, 1-6
in PRINT USING statement, 3-254
statement separator, 1-6
BASIC$STARLET routines, C-17
BASIC character set, 1-8
Behavior differences, C-3
appending files, C-9
array parameters, C—6
BAS$K_FAC_NO, C-12
data types, C-4
error handling semantics, C-10
error status to DCL, C-11
exceptions, C-10
floating point errors, C-12
FSS$ function, C-11
HFLOAT, C-4
HFLOAT COMPLEX, C-5
line numbers, C-9
/LINES, C-9
object modules, C-10
PSECT, C-16
RESUME into a DEF, C-10
SYSSINPUT as an input file specification,
c-11
unreachable code error, C-9
Binary radix, 1-27
Blank-if-zero field
in PRINT USING statement, 3-251
Block 1/0 file
finding records in, 3-96
opening, 3-226
retrieving records sequentially in, 3-119
writing records to, 3-261
BLOCKSIZE clause, 3-231

Index—2

Block statement
ending, 3-69
exiting, 3-78
Bounds, 1-17
default for implicit arrays, 3-63, 3-176,
3-180, 3-183, 3—-186, 3—-188
lower bounds with COMMON statement,
3-20
lower bounds with DECLARE statement,
3-41
lower bounds with DIM statement, 3-62
lower bounds with MAP DYNAMIC
statement, 3-170
lower bounds with records, 3-275
maximum, 1-18
upper bounds with COMMON statement,
3-20
upper bounds with DECLARE statement,
3-41
upper bounds with DIM statement, 3-62
upper bounds with MAP DYNAMIC
statement, 3-170
Bucket
creating with BUCKETSIZE clause,
3-231
locking, 3-93, 3-120
unlocking, 3-93, 3-105, 3-120
BUCKETSIZE clause, 3-231
BUFFER clause, 3-225
BUFSIZ function, 3-7
BYTE data type, 1-9

C

CALL statement, 3-8 to 3-10
with SUB subprograms, 3-322
Caret () in PRINT USING statement,
3-251
CASE clause, 3-304
CASE ELSE clause, 3-304
CAUSE ERROR statement, 3-11
CCPOS function, 3-12
CDD (Common Data Dictionary)
including definitions from, 1-7, 2-11,
2-22

CD formatting character

in PRINT USING statement, 3-251
Centered field

in PRINT USING statement, 3-253
C formatting character

in PRINT USING statement, 3-253
CHAIN statement, 3-13 to 3-14
CHANGES clause, 3-233
CHANGE statement, 3-15 to 3-16
Character

ASCII, 3-4, 3-17

formatting with PRINT USING statement,

3-250 to 3-255

lowercase, 3-253

uppercase, 3-253
CHARACTER data type, 1-30
Character position

CCPOS function, 3-12

of substring, 3-140, 3-243
Characters

ASCII, 1-30, 1-39

data type suffix, 1-12

nonprinting, 1-30

processing of, 1-8
Character sets

ASCII, 1-8

BASIC, 1-8

translating with XLATES$ function, 3-357
CHRS$ function, 3-17
Clauses

ACCESS, 3-95, 3-119, 3-224, 3-261

ACTIVE, 3-238

ALLOW, 3-92, 3-116, 3-224

ALTERNATE KEY, 3-232

BLOCKSIZE, 3-231

BUCKETSIZE, 3-231

BUFFER, 3-225

BY, 3-85, 3-110, 3-323

CASE, 3-304

CASE ELSE, 3-304

CHANGES, 3-233

CONNECT, 3-232

CONTIGUOUS, 3-225

COUNT, 3-260, 3-342

DEFAULTNAME, 3-223, 3-225

Clauses (cont'd)
DUPLICATES, 3-233, 3-262
ELSE, 3-128
END IF, 3-128
EXTENDSIZE, 3-226
FILESIZE, 3-226
FOR, 3-223
GROUP, 3-275
KEY, 3-91, 3-115, 3-117, 3-288
MAP, 3-167, 3—-226
NOREWIND, 3-231
NOSPAN, 3-231
ORGANIZATION, 3-226
OTHERWISE, 3-217, 3-219
PRIMARY KEY, 3-232
RECORD, 3-91, 3-115, 3-260, 3-261
RECORDSIZE, 3-167, 3-228, 3-260
RECORDTYPE, 3-229
REGARDLESS, 3-92, 3-116
RFA, 3-91, 3-115
STEP, 3-101
TEMPORARY, 3-230
UNLOCK EXPLICIT, 3-92, 3-93, 3-116,
3-230
UNTIL, 3-101
USEROPEN, 3-230
VARIANT, 3-275
WAIT, 3-117
WHILE, 3-101
WINDOWSIZE, 3-230
CLOSE statement, 3-18
Colon (3)
in labels, 1-3
Comma (,)
in DATA statement, 3-34
in INPUT LINE statement, 3-137
in INPUT statement, 3-134
in LINPUT statement, 3-154
in MAT PRINT statement, 3-185
in PRINT statement, 3-245
in PRINT USING statement, 3-250
Comment fields, 1-47
terminating, 1-48

Index-3

Comments
in DATA statement, 1-48, 3-33
in REM statement, 1-48, 3—-281
processing of, 1-8
transferring control to, 1-47
COMMON area
size of, 3-21
COMMON statement, 3-19 to 3-22
with FIELD statement, 3-88
COMP% function, 3-23
Compilation
conditional, 2-9, 2-29
controlling with OPTION statement,
3-237
control of, 1-7
control of listing, 2-3, 2-17, 2-18, 2-19,
2-20, 2-21, 2-24, 2-26
creating relationships, 2-22
including from CDD, 1-7, 2-11
including from text library, 2-11
including source code, 1-7, 2-11
terminating with %ABORT directive, 2-2
Compiler directives, 1-7, 2-1
Concatenation
of COMMON areas, 3-21
string, 1-6, 1-37
Conditional branching
IF statement, 3-128
ON...GOSUB statement, 3-217
ON...GOTO statement, 3-219
SELECT statement, 3-304
Conditional compilation, 1-7
%VARIANT directive, 2-29
with %IF directive, 2-9
Conditional expressions, 1-37
definition of, 1-37
FOR statement, 3-101
IF statement, 3-128
in %LET directive, 2-15
UNLESS statement, 3-338
UNTIL statement, 3-340
WHILE statement, 3-355
Conditional loops, 3-100, 3—-340, 3-355

Index—4

CON function, 3-177
CONNECT clause, 3-232
Constants, 1-20
declaring, 1-27, 3-41
default data type, 1-21
definition of, 1-20
external, 3-82
floating-point, 1-21
integer, 1-23
lexical, 2-9
named, 1-25
naming, 1-21, 1-25
numeric, 1-21
packed decimal, 1-24
predefined, 1-30
string, 1-24
types of, 1-20
with OPTION CONSTANT TYPE, 3-237
CONTIGUOUS clause, 3-225
Continuation characters
ampersand, 1-6
backslash, 1-6
CONTINUE statement, 3-24
Control
transferring into DEF functions, 3-217,
3-219
transferring into FOR...NEXT loops,
3-123, 3-125, 3-217, 3-219
transferring into SELECT blocks, 3-217,
3-219
transferring into UNTIL loops, 3-123,
3-125, 3-217, 3-219
transferring into WHILE loops, 3-123,
3-125, 3-217, 3-219
transferring to a label, 3-123, 3-125
transferring with CALL statement, 3-8
transferring with CHAIN statement,
3-13
transferring with GOSUB statement,
3-123
transferring with GOTO statement,
3-125
transferring with IF statement, 3-128
transferring with ON...GOSUB statement,
3-217

Control (cont'd)
transferring with ON...GOTO statement,
3-219
transferring with RESUME statement,
3-139, 3-155, 3-291
transferring with RETURN statement,
3-293
Conversion
array to string variable, 3-16
string variable to array, 3-15
Conversion functions
CVT$% function, 3-30
CVTS$F function, 3-30
CVT%$ function, 3-30
CVTEFS$ function, 3-30
DECIMAL function, 3-38
INTEGER function, 3-144
NUMS function, 3-207
NUMA1$ function, 3-209
RADS$ function, 3—-266
REAL function, 3-272
STR$ function, 3-318
VAL% function, 3-345
VAL function, 3-344
XLATES$ function, 3-357
Copying BASIC source text, 1-7
Copying HP BASIC source text, 2-11
COS function, 3-26
Cosine, 3-26
COUNT clause, 3-260
with fixed-length records, 3-342
with variable-length records, 3-342
CPU time, 3-332
Credit/Debit field
in PRINT USING statement, 3-251
%CROSS directive, 2-3
Cross-reference information
%CROSS directive, 2-3
%NOCROSS directive, 2-18
Ctrl/C trapping, 3-268
Ctrl/Z function
with INPUT LINE statement, 3-139
with INPUT statement, 3-136
with LINPUT statement, 3-155

CTRLC function, 3-27
See also Ctrl/C trapping

See also RCTRLC function

with RECOUNT function, 3-279
Cursor position

CCPOS function, 3-12

TAB function, 3-329
CVT$$ function, 3-29

See also EDIT$ function
CVTxx function, 3-30

with FIELD statement, 3-87

D

Data
transferring with MOVE statement,
3-196
DATA statement, 3-33 to 3-34
See also READ statement
comment fields in, 1-48
in DEF* function, 3-53
in DEF function, 3-47
terminating, 3-33
with MAT READ statement, 3-188
with READ statement, 3-270
with RESTORE statement, 3-288
Data structures
defining, 3-274
Data type defaults, 1-12, 1-13
constants, 1-21
Data type functions
DECIMAL function, 3-38
INTEGER function, 3-144
REAL function, 3-272
Data type keywords, 1-9
Data types, 1-8, 1-10
BYTE, 1-9
CHARACTER, 1-30
DECIMAL, 1-9
decimal overflow checking, 3-238
defining with RECORD statement, 3-274
DOUBLE, 1-9
GFLOAT, 1-9
in LET statement, 3-152
in logical expressions, 1-41

Index-5

Data types (cont'd)

in numeric expressions, 1-34

INTEGER, 1-9

integer overflow checking, 3-238

keywords, 1-9, 1-10

LONG, 1-9

numeric literal notation, 1-28

precision, 1-10

precision in PRINT statement, 3-246

precision in PRINT USING statement,
3-250

promotion rules, 1-34

QUAD, 1-9

range, 1-10

REAL, 1-9

results for DECIMAL data, 1-36

RFA, 1-9

setting defaults with OPTION statement,

DECIMAL data type (cont'd)

rounding, 3-238
storage of, 1-9
DECIMAL function, 3-38
Decimal radix, 1-27
Declarative statements
COMMON statement, 3-22
DECLARE statement, 3-40
EXTERNAL statement, 3-82
MAP statement, 3-166
%DECLARED directive, 2-3 to 2—-4
DECLARE statement, 3-40 to 3-44
CONSTANT, 1-27
DEF* function
error handling in, 3-53, 3-70
multiline, 3-51
parameters, 3-51, 3-52
recursion in, 3-53

3-237 single-line, 3-51
SFLOAT, 1-9 DEF* Routines, C-8
SINGLE, 1-9 DEF* statement, 3-50 to 3-54
size, 1-10 Default
storage of, 1-9, 1-10 BUCKETSIZE clause, 3-231
STRING, 1-9 COMMON name, 3-19
suffix characters, 1-12 data type, 3-237
TFLOAT, 1-9 DEFAULTNAME clause, 3-225
WORD, 1-9 error handling, 3-211
XFLOAT, 1-9 file name, 3-13, 3-223
Data typing overriding with DECLARE statement,
explicit, 1-12 3-40, 3-43
implicit, 1-12 overriding with EXTERNAL statement,
with declarative statements, 1-12 3-82
with suffix characters, 1-12 parameter-passing mechanisms, 3-85,
DATES$S function, 3-35 3-110, 3-323

DATEA4$ function, 3-37
Date and time functions
TIMES$ function, 3-334

RECORDSIZE clause, 3-229

scale factor, 3-238

setting with OPTION statement, 3-235
TIME function, 3-332 WINDOWSIZE clause, 3-230

Debit/Credit field DEFAULTNAME clause, 3-223, 3-225
in PRINT USING statement, 3-251 Defaults

DECIMAL data type, 1-9 constants, 1-21
constants, 1-24 data type, 1-12, 1-13
format of, 1-9 floating-point constants, 1-21
overflow checking, 3-238 implicitly declared variables, 1-15
promotion rules, 1-35 integer constants, 1-23

Index—6

Defaults (cont'd)
numeric constants, 1-21
radix, 1-28
DEF function
ending, 3-69
error handling in, 3-47, 3-211, 3-213,
3-290
exiting, 3-78
recursion in, 3-48
transferring control into, 3-48, 3-217,
3-219
with INPUT LINE statement, 3-137
with INPUT statement, 3-134
with LINPUT statement, 3-154
with READ statement, 3-270
%DEFINE directive, 2-5 to 2-6
DEF statement, 3-45 to 3-49, C-10
multiline, 3-46
parameters, 3-46, 3-47
single-line, 3-46
DELETE statement, 3-55
with UNLOCK statement, 3-339
Delimiter
in DATA statement, 3-34
string literal, 1-24
DESCENDING keys, 3-227, 3-232
Descriptors, 3-10, 3-85, 3-110, 3-323, C-6
DSC$K_CLASS_NCA, C-7
noncontiguous, C-6
Detached handler, 3-351
Determinant, 3-57
DET function, 3-57
DIF$ function, 3-59
Differences
between 164 BASIC and Alpha BASIC,
cC-1
Dimensions
of arrays, 1-18, 3-61
DIMENSION statement, 3-61 to 3—-65
See also DIM statement
DIM statement, 3-61 to 3—65
executable, 3-63, 3-64
nonvirtual, nonexecutable, 3—-62
virtual, 3-62

DIM statement (cont'd)

with MAT statement, 3-177, 3-179,

3-180, 3-183, 3-186, 3—-188

Documentation

program, 1-47
Dollar sign ($)

in DECLARE statement, 3-41

in DEF* statement names, 3-50

in DEF names, 3-45

in PRINT USING statement, 3-251

in variable names, 1-15

suffix character, 1-12
DOUBLE data type, 1-9
Duplicate line numbers, C-9
DUPLICATES clause, 3-233, 3-262
Dynamic array, 3-61, 3-63, 3-64
Dynamic mapping, 3-87, 3-169, 3-283
Dynamic storage, 3-169, 3-283, 3-285

E

ECHO function, 3-66
See also NOECHO function
EDITS$ function, 3-67
values, 3-67 to 3—68
E-format notation
field in PRINT USING statement, 3-251
with PRINT statement, 3-246
with STR$ function, 3-318
E formatting character
in PRINT USING statement, 3-253
Elementary record components, 3-276
ELSE clause, 3-128
E mathematical constant, 3-81
END statement, 3-69 to 3-71
SUB subprograms, 3-322
E notation, 1-22
numbers in, 1-22
ERL function, 3-72
with labels, 1-3
ERNS$ function, 3-74
ERR function, 3-75
Error
severity level, 3-237

Index—7

Error condition
clearing with CONTINUE statement,
3-24
Error handling
disabling, 3-215
ERL function, 3-72
ERNS$ function, 3-74
ERR function, 3-75
ERTS$ function, 3-76
in DEF* functions, 3-53
in DEF functions, 3-47, 3-70, 3-211,
3-213
in FOR...NEXT loops, 3-291
in subprograms, 3-70, 3-79, 3-111,
3-212
in UNTIL loops, 3-291
in WHILE loops, 3-291
ON ERROR GO BACK statement, 3-211
ON ERROR GOTO 0 statement, 3-215
ON ERROR GOTO statement, 3-213
OPTION HANDLE, 3-237
recursion in, 3-214
RESUME statement, 3-290
Error handling functions
CTRLC function, 3-27
ERL function, 3-72
ERNS$ function, 3-74
ERR function, 3-75
ERTS$ function, 3-76
RCTRLC function, 3-268
Error handling semantics, C-10
Error number, 3-75
Error text, 3-76
ERTS$ function, 3-76
Evaluation
of expressions, 1-45
of logical expressions, 1-42
of numeric relational expressions, 1-37
of operators, 1-45
of SELECT statement, 3-305
of string relational expressions, 1-39
Exclamation point (!)
in comment fields, 1-47
in PRINT USING statement, 3-254

Index—8

Executable
statements, 1-4
Execution
of statements, 1-6
stopping, 3-316
suspending, 3-311, 3-348
EXIT statement, 3-78 to 3-80
EXP function, 3-81
Explicit
creation of arrays, 3-61
data typing, 1-12, 3-235
declaration of variables, 1-17
literal notation, 1-27
loop iteration, 3-145
record locking, 3-55, 3-92, 3-93, 3-116,
3-120, 3-230
Exponential notation, 1-22, 3—-246
in PRINT USING statement, 3-251
numbers in, 1-22
with PRINT statement, 3-246
Exponentiation, 3-81
Expressions, 1-32
conditional, 1-37
conditional in %LET directive, 2-15
definition of, 1-32
evaluation of, 1-45
lexical, 2-9, 2-15, 2-29
logical, 1-41
mixed-mode, 1-34
numeric, 1-32
numeric relational, 1-37
operator precedence in, 1-45
parentheses in, 1-45
relational, 1-37
string, 1-36
string relational, 1-39
types of, 1-32
Extended field
in PRINT USING statement, 3-253
EXTENDSIZE clause, 3-226
External
constant, 3-83
function, 3-83
picture, 3-83
subprogram, 3-110

External (cont'd)
subroutine, 3-83
variable, 3-83
External constants, 1-27
naming, 1-27
EXTERNAL statement, 3-82 to 3-86
CONSTANT, 1-27
parameters, 3-83
External variables

naming, 1-15
F
FAB status, 3-295
Field

asterisk-filled, 3-251
blank-if-zero, 3-251
centered, 3-253
comment, 1-47
credit or debit, 3-251
exponential, 3-251
extended, 3-253
floating dollar sign, 3-251
GROUP, 3-277
left-justified, 3-253
multiple fields within a format string,
3-251

one-character, 3-254
right-justified, 3-253
trailing minus sign, 3-250
VARIANT, 3-277
zero-filled, 3-251

FIELD statement, 3-87 to 3-89

File attributes
BLOCKSIZE clause, 3-231
CONTIGUOUS clause, 3-225
EXTENDSIZE clause, 3-226
FILESIZE clause, 3-226
magnetic tape, 3-231

File names
CHAIN statement default, 3-13
OPEN default, 3-223

File organization
indexed, 3-227
relative, 3-228
sequential, 3-227

File organization (cont'd)

undefined, 3-227
virtual, 3-227

File-related functions

BUFSIZ function, 3-7
CCPOS function, 3-12
FSP$ function, 3-107
GETRFA function, 3-121
MAR function, 3-173
RECOUNT function, 3-279
STATUS function, 3-314

Files

accessing, 3-114

block 1/0, 3-96, 3-119, 3-226, 3-261

closing, 3-18

deleting, 3-147, 3-230

deleting records in, 3-55, 3-301

finding buffer size, 3-7

%INCLUDE, 2-11, 2-12

indexed, 3-55, 3-95, 3-119, 3-226,
3-231, 3-261, 3-288, 3-343

locating, 3-90

magnetic tape, 3-163, 3—-231, 3-288

opening, 3-221

relative, 3-55, 3-95, 3-119, 3-226,
3-229, 3-231, 3-261, 3-342

renaming, 3-199

restoring data, 3-288

sequential, 3-95, 3-119, 3-226, 3-229,
3-231, 3-245, 3-261, 3-301, 3-342

terminal-format, 3-134, 3-137, 3-154,
3-174, 3-180, 3-183, 3-185, 3—204,
3-229, 3-245

virtual, 3-229, 3-289

FILESIZE clause, 3-226
FILL, 3-166, 3-196, 3-284
FILL$, 3-166, 3—-196, 3-284
FILL$ keyword, 3-20
FILL%, 3-166, 3—196, 3-284
FILL% keyword, 3-20

FILL items

formats and storage, 3-20 to 3-21
in COMMON statement, 3-20

in MAP statement, 3-166

in MOVE statement, 3-196

Index—9

FILL items (cont'd)
in REMAP statement, 3-284
FILL keyword, 3-20
FIND statement, 3-90 to 3-96
with UNLOCK statement, 3-339
with UPDATE statement, 3-342
FIX function, 3-97
compared with INT function, 3-142
Floating dollar sign field
in PRINT USING statement, 3-251
Floating-point
constants, 1-21
data types, 1-9, C-3,C+4
promotion rules, 1-34
variables, 1-15
FNEND statement, 3-98

See also END statement
FNEXIT statement, 3-99

See also EXIT statement

FOR...NEXT loops, 3-100 to 3-103, 3-201

conditional, 3-100

error handling in, 3-291
explicit iteration of, 3-145
nested, 3-101

transferring control into, 3-101, 3-123,

3-125, 3-217, 3-219
unconditional, 3-100
FOR clause, 3-223
Format

characters in PRINT USING statement,

3-250
combination of characters in PRINT
USING statement, 3-251
defaults for U.S. currency, 3-252
E, 3-246
exponential, 3-246

multiple print fields with PRINT USING

statement, 3-251
of data in DATA statement, 3-34
of FILL items, 3-20 to 3-21
of keywords, 1-4
of labels, 1-3
of line numbers, 1-2
of multiline REM statement, 3-281
of multistatement lines, 1-6

Index-10

Format (cont'd)
of program lines, 1-1
of statements, 1-3
Radix-50, 3-266
FORMATS$ function, 3-104
FOR statement, 3-100 to 3-103
FOR_NEXT loops
exiting, 3-78
FREE statement, 3-105
FSP$ function, 3-107
Function
declaring, 3-41, 3-45, 3-50
external, 3-82
initialization of, 3-47, 3-53
invocation of, 3-47, 3-52
lexical, 2-9, 2-15, 2-29
naming, 3-45, 3-50
parameters, 3-46, 3-51
user-defined, 3-45, 3-50
FUNCTIONEND statement, 3-112
See also END statement
FUNCTIONEXIT statement, 3-113
See also EXIT statement
FUNCTION statement, 3-109 to 3-111
FUNCTION subprograms
naming, 3-109
parameters, 3-109

G

GETRFA function, 3-121
GET statement, 3-114 to 3-120
with UNLOCK statement, 3-339
with UPDATE statement, 3-342
GFLOAT, C-4
GFLOAT data type, 1-9
GOSUB statement, 3-123
inside WHEN blocks, 3-123
with RETURN statement, 3-293
GOTO statement, 3-125
inside WHEN blocks, 3-125
Graphics statements, C-2
Graphics transformation functions, C-2

GROUP clause, 3-275 Implicit (cont'd)
creation of arrays, 3-63, 3-176, 3-180,

3-183, 3-186, 3-188
H data typing, 1-12
Handler declaration of variables, 1-15
attached, 3-351 %INCLUDE directive, 2-11 to 2-14
detached, 3-351 Indexed files, 3-227
enter, 3-126 ALTERNATE KEY clause, 3-232
exit, 3-126 BUCKETSIZE clause, 3-231
HANDLER statement, 3-126 to 3-127 CHANGES clause, 3-233
Hexadecimal radix, 1-27 deleting records in, 3-55
HP BASIC STATUS bits, 3-314 to 3-315 DUPLICATES clause, 3-233
Hyphen (-) finding records in, 3-95
in PRINT USING statement, 3-250 MAP clause, 3-226

opening, 3-226
| PRIMARY KEY clause, 3-232
restoring data in, 3-288

1/0 retrieving records sequentially in, 3-119

characters transferred, 3-279 segmented keys in, 3-232

closing files, 3-18, 3-71 updating, 3-343

deleting records, 3-55 writing records to, 3-261

dynamic mapping, 3-283 Initialization

finding records, 3-91 in subprograms, 3-111, 3-323

locking records, 3-92, 3-116, 3-230 of arrays, 3-177

matrix, 3-205, 3—-206 of DEF* functions, 3-53

moving data, 3-196 of DEF functions, 3-47

opening files, 3-221 of dynamic arrays, 3-64

retrieving records, 3-119 of variables, 1-20, 3-42

unlocking records, 3-105, 3—-230, 3-339 of variables in COMMON statement,

updating records, 3-342 3-22

with CHAIN statement, 3-13 of virtual arrays, 3-64

writing records, 3-261 INKEY$ function, 3-131 to 3—-133
%IDENT directive, 2—7 to 2-8 with WAIT clause, 3-131
Identity matrix, 3-177 INPUT LINE statement, 3-137 to 3-139
IDN function, 3-177 INPUT statement, 3-134 to 3-136
IEEE floating-point data types, 1-13, C-4 Instance, 3-276
%IF-%THEN-%ELSE-%END %IF directive, RECORD, 3-276

2-9 to 2-10 INSTR function, 3-140 to 3-141
IF...THEN...ELSE statement, 3-128 to See also POS function
3-130 Integer

labels in, 1-3 constants, 1-23

multiline format, 1-7 data types, 1-9
Implicit overflow checking, 3-238

continuation of lines, 1-6 promotion rules, 1-34

suffix character, 1-12

Index-11

Integer (cont'd)

variables, 1-16
INTEGER data type, 1-9
INTEGER function, 3-144
Internal constants

naming, 1-26
Internal variables

naming, 1-15
INT function, 3-142
INV function, 3-179
ITERATE statement, 3-145
Iteration

of FOR loops, 3-101

of loops, 3-145

of UNTIL loops, 3-340

of WHILE loops, 3-355

K

KEY clause, 3-91, 3-117

FIND statement, 3-93

GET statement, 3-115

RESTORE statement, 3-288

segmented keys, 3-232
Keys

ascending and descending, 3-227, 3-232
Keywords

data type, 1-9

definition of, 1-4

function of, 1-4

in RECORD, 3-275

list of, B-1

reserved and unreserve, B-1

restrictions, 1-4

spacing requirements, 1-4
KILL statement, 3-147

L

Labels
defining, 1-3
format of, 1-3
function of, 1-3
referencing, 1-3
transferring control to, 3-123, 3-125
with ITERATE statement, 3-145

Index-12

LBOUND function, 3-148
LEFT$ function, 3-150

See also SEGS$ function
Left-justification
PRINT USING statement, 3-253
with LSET statement, 3-161
LEN function, 3-151
Length
of labels, 1-3
of STRING data, 1-10
variable names, 1-15
%LET directive, 2-15 to 2-16
LET statement, 3-152
Letters
lowercase, 1-8, 3—253
uppercase, 1-8, 3-253
Lexical
constants, 2-9
expressions, 2-9, 2-15, 2-29
functions, 2-9, 2-15, 2-29
operators, 2-4, 2-9, 2-15
variables, 2-15
Lexical variables
assigning values to, 2-15
naming, 2-15
L formatting character
in PRINT USING statement, 3-253
LIB$SROUTINES, C-17
Libraries
text, 2-14
Line numbers
in %INCLUDE file, 2-11
range of, 1-2
Lines
continued, 1-6
elements of, 1-1
format of, 1-1
length of, 1-1
multistatement, 1-6
single-statement, 1-5
terminating, 1-2, 1-8
Lines out of order, C-9
ILINES qualifier, 1-2, 3-72, 3-316

Line terminator, 1-2, 1-8
with DATA statement, 3-33
with INPUT LINE statement, 3-138
with INPUT statement, 3-135
with LINPUT statement, 3-155
LINPUT statement, 3-154 to 3-156
%LIST directive, 2-17
Listing file
control of, 1-7, 2-3, 2-17, 2-18, 2-19,
2-20
%CROSS directive, 2-3
included code, 2-11
%LIST directive, 2-17
%NOCROSS directive, 2-18
%NOLIST directive, 2-19
%PAGE directive, 2-20
%PRINT directive, 2-21
%SBTTL directive, 2-24
subtitle, 2-24
title, 2-26
%TITLE directive, 2-26
version identification, 2-7
Literal
explicit notation, 1-27
numeric, 1-21
string, 1-6, 1-8, 1-24, 3-251, 3-254
Local copy, 3-10
LOC function, 3-157
Lock checking
REGARDLESS clause, 3-92, 3-116
WAIT clause, 3-117
LOG10 function, 3-160
Logarithms
common, 3-160
natural, 3-159
LOG function, 3-159
Logical expressions, 1-41
compared with relational, 1-41, 1-42
data types in, 1-41
definition of, 1-37
evaluation of, 1-42
format of, 1-41
logical operators, 1-41
truth tables, 1-42
truth tests, 1-42

Logical operators, 1-41
LONG data type, 1-9
Loops

conditional, 3-100

exiting, 3-78

FOR...NEXT, 3-100

iteration of, 3-101, 3-145, 3-340, 3-355
nested FOR...NEXT, 3-101
unconditional, 3-100

UNTIL statement, 3-340

WHILE statement, 3-355

Lowercase letters

in PRINT USING statement, 3-253
processing of, 1-8

LSET statement, 3-161

M

MAG function, 3-162
Magnetic tape files

BLOCKSIZE clause, 3-231
MAGTAPE function, 3-163
NOREWIND clause, 3-231
RESTORE statement, 3-288

MAGTAPE function, 3-163 to 3-164

performing functions in HP BASIC,
3-163 to 3-164

MAP

FILL item formats and storage, 3-20 to
3-21

MAP area

naming, 3-165

MAP clause, 3-167, 3-226
MAP DYNAMIC statement, 3-169 to 3-172

with REMAP statement, 3-283, 3-285

MAP statement, 3-165 to 3—-168

with FIELD statement, 3-88
with MAP DYNAMIC statement, 3-171
with REMAP statement, 3-283

MAR function, 3-173
Margin

width, 3-173, 3-174, 3-204, 3-245

MARGIN statement, 3-174

See also NOMARGIN statement
with PRINT statement, 3-245

Index-13

MAT
with DET function, 3-57
MAT INPUT statement, 3-180 to 3—-182
MAT LINPUT statement, 3-183 to 3-184
MAT PRINT statement, 3-185 to 3-187
MAT READ statement, 3-188 to 3—-189
Matrix, 1-18
identity, 3-177
Matrix arithmetic, 3-178
Matrix functions
DET function, 3-57
NUMZ2 function, 3-206
NUM function, 3-205
Matrix operations
arithmetic, 3-178
assigning values, 3-180, 3-183, 3-188
1/0, 3-205, 3-206
inversion, 3-57, 3—-178
printing, 3-185
redimensioning, 3-180, 3-183, 3-185,
3-188
scalar multiplication, 3-178
transposition, 3-178
MAT statement, 3-176 to 3-179
with FIELD statement, 3-88
MAX function, 3-190
MID$ function, 3-191

See also SEG$ function
MIN function, 3-194
Minus sign (-)
in PRINT USING statement, 3-250
Mixed-mode expressions, 1-34
MOD function, 3-195
Modifiable parameters, 3-9
Modifiers
FOR statement, 3-100
IF statement, 3-128
UNLESS statement, 3-338
UNTIL statement, 3-340
WHILE statement, 3-355
MOVE
FILL item formats and storage, 3-20 to
3-21

Index-14

MOVE statement, 3-196 to 3-198

with FIELD statement, 3-88

Multiline

DEF* functions, 3-51
DEF statement, 3-46

Multistatement lines, 1-6

N

backslash in, 1-6
format of, 1-6
implicit continuation, 1-6

NAME...AS statement, 3-199
Named constants, 1-25

changing, 1-25
external, 1-27, 3-83
internal, 1-26, 3-41

NEXT statement, 3-201

with FOR statement, 3-101
with WHILE statement, 3-355

%NOCROSS directive, 2-18

NOECHO function, 3-203

See also ECHO function

%NOLIST directive, 2-19

NOMARGIN statement, 3-204

See also MARGIN statement

Nonexecutable DIM statement, 3-62
Nonexecutable statements, 1-4

COMMON statement, 3-21

DATA statement, 3-33

DECLARE statement, 3-42

DIM statement, 3-62

EXTERNAL statement, 3-85

MAP DYNAMIC statement, 3-168, 3-171
MAP statement, 3-167

REM statement, 3-281

UNLESS statement, 3-338

Nonmodifiable parameters, 3-9
Nonprinting characters

processing of, 1-8
using, 1-8

Nonvirtual DIM statement, 3-62
NOREWIND clause, 3-231

NOSPAN clause, 3-231
Notation
E, 1-22, 3-246, 3-251, 3-252
explicit literal, 1-27
exponential, 1-22, 3-246
NOT operator
evaluation of, 1-46
NULS$, 3-178
NUMS$ function, 3-207
NUM1$ function, 3-209
NUM?2 function, 3-206
after MAT INPUT statement, 3-181
after MAT LINPUT statement, 3-184
after MAT READ statement, 3-189
Numbers
random, 3-267, 3-298
sign of, 3-309
Number sign (#)
in PRINT USING statement, 3-250
Numbers in E notation, 1-22
Numeric constants, 1-21
Numeric conversion, 3-16
Numeric expressions, 1-32
format of, 1-33
promotion rules, 1-34
results for DECIMAL data, 1-36
Numeric functions, 3-30
ABS% function, 3-3
ABS function, 3-2
DECIMAL function, 3-38
FIX function, 3-97
INT function, 3-142
LOG10 function, 3-160
LOG function, 3-159
MAG function, 3-162
RND function, 3-298
SGN function, 3-309
SQR function, 3-313
SWAP% function, 3-328
Numeric literal notation, 1-27
Numeric operator precedence, 1-45
Numeric precision
with PRINT statement, 3-246

with PRINT USING statement, 3-250

Numeric relational expressions
evaluation of, 1-37
operators, 1-38
Numeric string functions
CHRS$ function, 3-17
COMP% function, 3-23
DECIMAL function, 3-38
DIF$ function, 3-59
FORMATS$ function, 3-104
INTEGER function, 3-144
NUMS$ function, 3-207
NUM1$ function, 3-209
PLACES function, 3-240
PRODS$ function, 3-256
QUOS$ function, 3-264
REAL function, 3-272
STR$ function, 3-318
SUMS$ function, 3-326
VAL% function, 3-345
VAL function, 3-344
Numeric strings
comparing, 3-23
precision, 3-59, 3-240, 3-256, 3—-264,
3-326
rounding, 3-240, 3-256, 3-264
rounding and truncation values, 3-241 to
3-242
truncating, 3-240, 3-256, 3-264
NUM function, 3-205
after MAT INPUT statement, 3-181
after MAT LINPUT statement, 3-184
after MAT READ statement, 3-189

O

Object module
version identification, 2-7
Octal radix, 1-27
ON...GOSUB...OTHERWISE statement,
3-217
with RETURN statement, 3-293
ON...GOSUB statement, 3-217 to 3-218

Index-15

ON...GOTO...OTHERWISE statement,
3-219
ON...GOTO statement, 3-219 to 3-220
ON ERROR GO BACK statement, 3-211 to
3-212
with END statement, 3-71
within a handler, 3-212
within protected regions, 3-212
ON ERROR GOTO 0 statement, 3-215 to
3-216
with END statement, 3-71
ON ERROR GOTO statement, 3-213 to
3-214
with END statement, 3-71
within a handler, 3-214, 3-215
within protected regions, 3-214, 3-215
with WHEN blocks, 3-214
Opening files
with USEROPEN clause, 3-230
OPEN statement, 3-221 to 3-234
with STATUS function, 3-314
Open VMS Common Data
Dictionary/Repository
and RECORD statement, 3-274
Operator precedence, 1-32, 1-45
Operators
arithmetic, 1-32, 1-33
evaluation of, 1-45
lexical, 2-4, 2-9, 2-15
logical, 1-41
numeric operator precedence, 1-45
numeric relational, 1-38
precedence of, 1-32, 1-45
string relational, 1-38
Optimization, C-3
/OPTIMIZE=TUNE qualifier, C-1
OPTIONAL
with EXTERNAL statement, 3-84
OPTION statement, 3-235 to 3-239
ORGANIZATION clause, 3-226
OTHERWISE clause, 3-217, 3-219
Output
formatting with FORMAT$ function,
3-104

Index-16

Output (cont'd)
formatting with PRINT USING statement,
3-249 to 3-253
Output listing
cross-reference information, 2-3, 2-18
%LIST directive, 2-17
%NOLIST directive, 2-19
%PAGE directive, 2-20
%PRINT directive, 2-21
%SBTTL directive, 2-24
%TITLE directive, 2—-26
Overflow checking, 3-238

P

Packed decimal, 1-9

See also DECIMAL data type
%PAGE directive, 2-20
Parameter passing

by value, C-6
Parameter-passing mechanisms

DEF* functions, 3-52

DEF statement, 3-47

EXTERNAL statement, 3-85

FUNCTION statement, 3-110

SUB statement, 3-323
Parameters

array, C-6

DEF* functions, 3-51, 3-52

DEF statement, 3-46, 3-47

EXTERNAL statement, 3-83

function, 3-46, 3-51

FUNCTION subprograms, 3-109

modifiable, 3-9

nonmodifiable, 3-9

SUB subprograms, 3-321
Parentheses

in array names, 1-17

in expressions, 1-32, 1-45
Percent sign (%)

in DATA statement, 1-23, 3-33

in DECLARE statement, 3-41

in PRINT USING statement, 3-251

in variable names, 1-15

suffix character, 1-12

Period ()
in PRINT USING statement, 3-250
in variable names, 1-15
PLACES$ function, 3-240 to 3-242
rounding and truncation values, 3-241 to
3-242
Plus sign (+)
in string concatenation, 1-37
POS function, 3-243 to 3-244
Precision
in PRINT statement, 3-246
in PRINT USING statement, 3-250
NUMS function, 3-207
NUMA1$ function, 3-209
of data types, 1-10
of numeric strings, 3-59, 3-240, 3-256,
3-264, 3-326
Predefined constants, 1-30
PRIMARY KEY clause, 3-232
%PRINT directive, 2-21
PRINT statement, 3-245 to 3—-248
with TAB function, 3-329
PRINT USING statement, 3-249 to 3-255
Print zones
in MAT PRINT statement, 3-185
in PRINT statement, 3-245
PROD$ function, 3-256 to 3—257
rounding and truncation values, 3-241 to
3-242
Program control statements
END statement, 3-69
EXIT statement, 3-78
FOR statement, 3-100
GOSUB statement, 3-123
GOTO statement, 3-125
IF statement, 3-128
ITERATE statement, 3-145
ON...GOSUB statement, 3-217
ON...GOTO statement, 3-219
RESUME statement, 3-290
RETURN statement, 3-293
SELECT statement, 3-304
SLEEP statement, 3-311
STOP statement, 3-316
UNTIL statement, 3-340

Program control statements (cont'd)

WAIT statement, 3-348
WHILE statement, 3-355
Program documentation, 1-47
Program elements, 1-1
Program execution
stopping, 3-316
suspending, 3-311
waiting for input, 3-348
Program input
INPUT LINE statement, 3-137
INPUT statement, 3-134
LINPUT, 3-154
waiting for, 3-348
Program lines
elements of, 1-1
format of, 1-1
length of, 1-1
numbering, 1-1, 1-2
terminating, 1-2, 1-8
Programs
ending, 3-69
stopping, 3-316
PROGRAM statement, 3-258 to 3-259
Promotion rules
data type, 1-34
DECIMAL, 1-35
floating-point, 1-34
integer, 1-34
Prompt
INPUT LINE statement, 3-137
INPUT statement, 3-134
LINPUT statement, 3-154
MAT INPUT statement, 3-181
MAT LINPUT statement, 3-184
PSECT, 3-19, 3-165
PUT statement, 3-260 to 3-263

Q

QUAD data type, 1-9, C-4
Qualifiers
/LINES, 1-2,3-72, 3-316
/SHOW, 2-12
/VARIANT, 2-29

Index-17

QUOS$ function, 3-264 to 3-265
rounding and truncation values, 3-241 to
3-242
Quotation marks
in string literals, 1-24

R

RAB status, 3-295
RAD$ function, 3-266

Radix
ASCII, 1-27
binary, 1-27

decimal, 1-27
hexadecimal, 1-27
in explicit literal notation, 1-27
octal, 1-27
Radix-50, 3-266
RANDOMIZE statement, 3-267
See also RND statement
Random numbers, 3-267, 3—298
Range
of data types, 1-10
of subscripts, 1-18
RCTRLC function, 3-268

See also CTRLC function
RCTRLO function, 3-269
READ statement, 3-270 to 3-271

See also DATA statement
with DATA statement, 3-33, 3-34
REAL data type, 1-9
REAL function, 3-272 to 3-273
Record attributes
MAP clause, 3-226
RECORDSIZE clause, 3-226, 3—228
RECORDTYPE clause, 3-229
Record buffer
DATA pointers, 3-288
MAP DYNAMIC pointers, 3-171, 3-285
moving data, 3-196
REMAP pointers, 3-283, 3-285
setting size, 3-225
RECORD clause, 3-91, 3-115, 3-260, 3-261

Index-18

Record File Address, 1-9, 3-91, 3-115,
3-121
RECORD items
accessing, 3-276

Record Management Services

See RMS
Record pointers

after FIND statement, 3-95, 3-96

after GET statement, 3-119, 3-120

after PUT statement, 3-261

after UPDATE statement, 3-342

REMAP statement, 3-285

RESTORE statement, 3-288

WINDOWSIZE clause, 3-230

Records

deleting with DELETE statement, 3-55

deleting with SCRATCH statement,
3-301

finding RFA of, 3-91, 3-115

locating by KEY, 3-96, 3-115, 3-119

locating by RECORD number, 3-115

locating by RFA, 3-91, 3-96, 3-115,
3-119

locating randomly, 3-96

locating sequentially, 3-91, 3-95, 3-115,
3-119

locating with FIND statement, 3-90

locating with GET statement, 3-114

locking, 3-92, 3-93, 3-120, 3-230

locking with GET statement, 3-116

processing, 3-114, 3-232

retrieving by KEY, 3-115, 3-119

retrieving by RECORD number, 3-115

retrieving by RFA, 3-115, 3-119

retrieving randomly, 3-119

retrieving sequentially, 3-115, 3-119

retrieving with GET statement, 3-114

size of, 3-260

stream, 3-227

unlocking, 3-55, 3-93, 3-105, 3-120,
3-230

unlocking with UNLOCK statement,
3-339

writing by RECORD number, 3-260

writing sequentially, 3-261

Records (cont'd)

o) REMAP statement, 3-283 to 3—286
writing with PRINT statement, 3-245

FILL item formats and storage, 3-20 to

writing with PUT statement, 3-260 321

writing with UPDATE statement, 3-342 with MAP DYNAMIC statement, 3-171
RECORDSIZE clause, 3-167, 3-228, 3-260 REM statement, 1-48, 3281 to 3-282
RECORD statement, 3-274 to 3-278 multiline format, 1-48, 3-281
RECORD structures terminating, 1-49, 3-281

components of, 3-277 transferring control to, 1-49

declaring, 3-277 %REPORT directive, 2-22 to 2-23
RECORDTYPE clause, 3-229

h Reserved words, 1-4
RECOUNT function, 3-279 to 3-280 RESET statement. 3-287

after GET statement, 3-120

after INPUT LINE statement, 3-139

after INPUT statement, 3-136

after LINPUT statement, 3-155
Recursion

in DEF* functions, 3-53

in DEF functions, 3-48

in error handlers, 3-214

in subprograms, 3-323
Redimensioning arrays

with executable DIM statement, 3-63
REGARDLESS clause

with FIND statement, 3-92

with GET statement, 3-116
Relational expressions, 1-37

compared with logical, 1-41, 1-42

definition of, 1-37

format of, 1-37

in SELECT statement, 3-304, 3-305

numeric, 1-37

string, 1-39

truth tests, 1-37, 1-39
Relational operators

numeric, 1-38

See also RESTORE statement
RESTORE statement, 3-288 to 3-289
Result data types

for DECIMAL data, 1-36
RESUME statement, 3-290 to 3—291, C-10

END statement, 3-71

ERL function, 3-72

ERNS function, 3-74

ERR function, 3-75

INPUT LINE statement, 3-139

INPUT statement, 3-136

LINPUT statement, 3-155
RETRY statement, 3-292

with FOR...NEXT loops, 3-292

with FOR...UNTIL loops, 3-292

with FOR...WHILE loops, 3-292
RETURN statement, 3-293
RFA clause, 3-91, 3-115
RFA data type

allowable operations, 1-9

storage of, 1-10
R formatting character

in PRINT USING statement, 3-253
RIGHTS$ function, 3-294

string, 1-38 .
Relative files, 3-228 _S;]ee_a'sf’f,SE_% function
BUCKETSIZE clause, 3-231 Right-justification

PRINT USING statement, 3-253
with RSET statement, 3-300
RMS (Record Management Services)
record size in, 3-229 acces_sing records, 3-114

retrieving records sequentially in, 3-119 delet_mg records, 3-55
updating, 3-342 Iocat!ng r_ecords, 3-89
opening files, 3-221
operations, 3-295

deleting records in, 3-55
finding records in, 3-95
opening, 3-226

writing records to, 3-261

Index-19

RMS (Record Management Services) (cont'd)
replacing records, 3-342
RMSSTATUS function, 3-295 to 3-297
RND function, 3-298 to 3-299
See also RANDOMIZE statement
RSET statement, 3-300

S

%SBTTL directive, 2-24 to 2-25
Scale factor

setting with OPTION statement, 3-238
SCRATCH statement, 3-301
SEG$ function, 3-302 to 3—-303
Segmented keys, 3-232
SELECT

transferring control into, 3-217, 3-219
SELECT statement, 3-304 to 3-306
Semicolon (2)

in INPUT LINE statement, 3-137

in INPUT statement, 3-134

in LINPUT statement, 3-154

in MAT PRINT statement, 3-185

in PRINT statement, 3-245
/SEPARATE_COMPILATION qualifier,

Cc-10

Sequential files, 3-227

deleting records in, 3-301

finding records in, 3-95

fixed-length, 3-227

NOSPAN clause, 3-231

opening, 3-226

record size in, 3-229

retrieving records in, 3-119

stream, 3-227

updating, 3-342

variable-length, 3-227

writing records to, 3-245, 3-261
SET PROMPT statement, 3-307 to 3—308
SFLOAT data type, 1-9, C-4
SGN function, 3-309
/SHOW qualifier

CDD_DEFINITIONS, 2-12

%INCLUDE directive, 2-12

Index—20

Sine, 3-310
SIN function, 3-310
SINGLE data type, 1-9
Single-line
DEF* functions, 3-51
DEF statement, 3-46
loops, 3-100, 3-340, 3—-355
Single-statement lines, 1-5
Size
of numeric data, 1-10
of STRING data, 1-9
SLEEP statement, 3-311
Source text
copying, 1-7,2-11
SPACE$ function, 3-312
SQR function, 3-313
SQRT function, 3-313
Square roots, 3-313
STARLET routines, C-17
Statement blocks
exiting, 3-78
Statement modifiers
FOR statement, 3-100
IF statement, 3-128
UNLESS statement, 3-338
UNTIL statement, 3-340
WHILE statement, 3-355
Statements
backslash separator, 1-6
block, 3-69, 3-78, 3-100, 3-128, 3-275,
3-305
components of, 1-3
continued, 1-5, 1-6
data typing, 1-12
declarative, 3-40
executable, 1-4
execution of, 1-6
format of, 1-3
labeling of, 1-3
multistatement lines, 1-6
nonexecutable, 1-4, 3-21, 3-33, 3-42,
3-62, 3-85, 3-167, 3-168, 3-171,
3-281
single-line, 1-5

Static
arrays, 3-62
mapping, 3-165
storage, 3-20, 3-165, 3-285
STATUS function, 3-314 to 3-315
HP BASIC STATUS bits, 3-314 to 3-315
STEP clause, 3-101
STOP statement, 3-316 to 3-317
See also CONTINUE statement
Storage
allocating for FILL items, 3-196, 3-284
allocating for RECORD structures, 3-277
allocating for VARIANT fields, 3-277
allocating with MAP DYNAMIC
statement, 3-169
allocating with MAP statement, 3-166
allocating with REMAP statement, 3-283
COMMON area and MAP area, 3-21,
3-167
dynamic, 3-169, 3-283, 3-285
for arrays, 3-63
for FILL items, 3-20 to 3-21, 3-196
for record structures, 3-277
in COMMON statement, 3-22
in MAP statement, 3-167
of data, 1-10
of DECIMAL data, 1-9
of RFA data, 1-10
of STRING data, 1-9
shared, 3-19, 3-165
static, 3-20, 3-165, 3-285
STR$ function, 3-318 to 3-319
Stream
format, 3-228
record, 3-227
STRINGS function, 3-320
String arithmetic functions
DIF$ function, 3-59
PLACES$S function, 3-240
PRODS$ function, 3-256
QUOS$ function, 3-264
SUMS$ function, 3-326
String constants, 1-24
processing of, 1-25

String data
assigning with LSET statement, 3-161
assigning with RSET statement, 3-300
STRING data type, 1-9
length, 1-10
storage of, 1-9
String expressions, 1-36
relational, 1-39
String functions, 3-30
ASCII function, 3-4
EDITS$ function, 3-67
INSTR function, 3-140
LEFT$ function, 3-150
LEN function, 3-151
MID$ function, 3-191
POS function, 3-243
RIGHTS$ function, 3-294
SEG$ function, 3-302
SPACES$ function, 3-312
STRINGS function, 3-320
TRMS$ function, 3-335
XLATES$ function, 3-357
String literals
continuing, 1-6
delimiter, 1-24
in PRINT USING statement, 3-254
processing of, 1-8
quotation marks in, 1-24
String relational expressions
evaluation of, 1-39
operators, 1-40
padding, 1-39
Strings
comparing, 1-39, 3-23
concatenating, 1-6, 1-37
converting, 3-15
creating, 3-312, 3-320
editing, 3-67, 3-335
extracting substrings, 3-150, 3-191,
3-294, 3-302
finding length, 3-151
finding substrings, 3-140, 3-243
justifying with FORMAT$ function,
3-104
justifying with LSET statement, 3-161

Index-21

Strings (cont'd)
justifying with PRINT USING statement,
3-253
justifying with RSET statement, 3-300
numeric, 3-23, 3-59, 3-144, 3-240,
3-256, 3-264, 3-272, 3-326, 3-344,
3-345
replacing substrings, 3-191
suffix character, 1-12
String variables, 1-16
formatting storage, 3-161, 3-300
in INPUT LINE statement, 3-138
in INPUT statement, 3-135
in LET statement, 3-152
in LINPUT statement, 3-155
SUBEND statement, 3-324

See also END statement
SUBEXIT statement, 3-325

See also EXIT statement
Subprograms

calling, 3-8

declaring, 3-82

ending, 3-69, 3-110, 3-322

error handling in, 3-70, 3-79, 3-111,

3-212

exiting, 3-78

FUNCTION statement, 3-109

naming, 3-8, 3-321

recursion in, 3-323

returning from, 3-293

SUB statement, 3-321
Subroutines

external, 3-82

GOSUB statement, 3-123

RETURN statement, 3-293
Subscripted variables, 1-17

format of, 1-19

range checking, 3-238

subscript range, 1-18
Subscripts, 1-17

range of, 1-18
SUB statement, 3-321 to 3-323

parameters, 3-321

Index—22

Substrings
extracting, 3-191, 3—-302
extracting with LEFT$ function, 3-150
extracting with MID$ function, 3-191
extracting with RIGHTS$ function, 3-294
extracting with SEG$ function, 3-302
finding, 3-140, 3-243
replacing, 3-191
Suffix characters
integer, 1-12
string, 1-12
SUMS$ function, 3-326 to 3-327
SWAP% function, 3-328
/ISYNCHRONOUS_EXCEPTIONS qualifier,
C-10
SYS$CURRENCY, 3-252
SYS$DIGIT_SEP, 3-252
SYS$RADIX_POINT, 3-252

T

TAB function, 3-329 to 3-330
TAN function, 3-331
Tangent, 3-331
TEMPORARY clause, 3-230
Tensor, 1-18
Terminal
printing to, 3-245
Terminal control functions
ECHO function, 3-66
NOECHO function, 3-203
RCTRLO function, 3-269
TAB function, 3-329
Terminal-format files, 3-229
input from, 3-134, 3-137, 3-154, 3-180,
3-183
margin, 3-174, 3-204
writing records to, 3-185, 3-245
Text libraries
accessing, 2-14
TFLOAT data type, 1-9, C-4
TIMES$ function, 3-334
TIME function, 3-332 to 3—-333
function values, 3-332

%TITLE directive, 2-26 to 2-27
Trailing minus sign field
in PRINT USING statement, 3-250
Trigonometric functions
ATN function, 3-5
COS function, 3-26
SIN function, 3-310
TAN function, 3-331
TRM$ function, 3-335
TRN, 3-178
Truncation
in numeric strings, 3-240, 3-241 to
3-242, 3-256, 3-264
in PRINT USING statement, 3-253
with FIX function, 3-97
Truth tables, 1-42
Truth tests
in logical expressions, 1-42
in relational expressions, 1-37
in string relational expressions, 1-39
T_floating data type, C-16

U

UBOUND function, 3-336 to 3-337
Unconditional branching
with GOSUB statement, 3-123
with GOTO statement, 3-125
Unconditional loops, 3-100
Undefined files, 3-227
%UNDEFINE directive, 2-28
Underscore ()
in PRINT USING statement, 3-251
in variable names, 1-15
UNLESS statement, 3-338
UNLOCK EXPLICIT clause, 3-92, 3-93,
3-116, 3-230
UNLOCK statement, 3-339
Unsupported features
VAX BASIC, C-2
UNTIL clause, 3-101
UNTIL loops, 3-201
error handling in, 3-291
exiting, 3-78
explicit iteration of, 3-145

UNTIL loops (cont'd)

transferring control into, 3-123, 3-125,
3-217, 3-219
UNTIL statement, 3-340 to 3—-341
UPDATE statement, 3-342 to 3—-343
with UNLOCK statement, 3-339
Upper bounds
determining with UBOUND function,
3-336
Uppercase letters
in PRINT USING statement, 3-253
processing of, 1-8
User-defined functions, 3-45, 3-50
USEROPEN clause, 3-230

V

VAL% function, 3-345
VAL function, 3-344
Values
assigning to array elements, 3-177,
3-180, 3-183, 3-188, 3-270
assigning to variables, 3-152
assigning with LET statement, 3-152
assigning with LINPUT statement, 3-154
assigning with LSET statement, 3-161
assigning with MAT INPUT statement,
3-180
assigning with MAT LINPUT statement,
3-183
assigning with MAT READ statement,
3-188
assigning with READ statement, 3-270
assigning with RSET statement, 3-300
comparing, 3-93
Variable names
in COMMON statement, 3-22
in MAP DYNAMIC statement, 3-171
in MAP statement, 3-165
in REMAP statement, 3-284
rules for, 1-14
Variables, 1-14
assigning values to, 3-134, 3-137, 3-152,
3-154, 3-270
comparing, 3-93
declaring, 3-40

Index—23

Variables (cont'd)
definition of, 1-14
explicitly declared, 1-17
external, 3-82
floating-point, 1-15
implicitly declared, 1-15
initialization of, 1-20, 3-22, 3-42
in MOVE statement, 3-196
in SUB subprograms, 3-323
integer, 1-16
lexical, 2-15
loop, 3-100
naming, 1-14
string, 1-16, 3-135, 3-138, 3-152, 3-155
subscripted, 1-17
VARIANT clause, 3-275
%VARIANT directive, 2-29 to 2-30
in %IF directive, 2-9
in %LET directive, 2-15
IVARIANT qualifier, 2-29
VAX floating-point data types, C-1
Vector, 1-18
Version identification, 2-7
Virtual address
finding, 3-157
Virtual arrays, 3-42, 3-61, 3-63
initialization of, 1-20, 3-64
padding in, 3-64
with FIELD statement, 3-88
Virtual files, 3-227
record size, 3-229
with RESTORE statement, 3-289
VMSSTATUS function, 3-346 to 3-347

W

WAIT clause
with GET statement, 3-117
with INKEY$ function, 3-131
WAIT statement, 3-348 to 3-349
WHEN blocks
with GOSUB statement, 3-123
with GOTO statement, 3-125
WHEN ERROR constructs
with DEF* functions, 3-53
with DEF functions, 3-47

Index—24

WHEN ERROR statement, 3-350 to 3-354
with a detached handler, 3-351
with an attached handler, 3-351
WHILE clause, 3-101
WHILE loops, 3-201
error handling in, 3-291
exiting, 3-78
explicit iteration of, 3-145
transferring control into, 3-123, 3-125,
3-217, 3-219
WHILE statement, 3-355 to 3-356
Width
margin, 3-173, 3-174, 3-204
WINDOWSIZE clause, 3-230
WORD data type, 1-9

X

XFLOAT data type, 1-9, C-4
XLATES$ function, 3-357 to 3—-358

Z

ZER function, 3-177
Zero
array element, 1-18, 3-63, 3-179, 3-181,
3-184, 3-186, 3-189, 3-198
blank-if-zero field, 3-251
dirty floating point, C-12
in PRINT USING statement, 3-251
Zero-fill field
in PRINT USING statement, 3-251

