International Technical Support Centers

0S/2 Version 2
Volume 4: Writing Applications

Document Number GG24-3774-01

January 1993

International Technical Support Center
Boca Raton

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xxi.

Second Edition (January 1993)
This edition applies to Version 2.0 of Operating System/2.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for reader’s comments appears at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423

901 NW 51st Street

Boca Raton, Florida 33432

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes application development for OS/2 Version 2.0. it forms
Volume 4 of a five volume set; the other volumes are:

e 0S/2 Version 2.0 - Volume 1: Control Program, GG24-3730
e 0S/2 Version 2.0 - Volume 2: DOS and Windows Environment, GG24-3731

* 0S/2 Version 2.0 - Volume 3: Presentation Manager and Workplace Shell,
GG24-3732

e 0S/2 Version 2.0 - Volume 5: Print Subsystem, GG24-3775

The entire set may be ordered as OS/2 Version 2.0 Technical Compendium,
GBOF-2254.

This document is intended for IBM system engineers, IBM authorized dealers,
IBM customers, and others who require a knowledge of application development
under OS/2 Version 2.0.

This document assumes that the reader is generally familiar with the function
provided in previous releases of 0S/2.

PS (409 pages)

©® Copyright 18M Corp. 1893 jit

iv 0s/2Vv2.0 volume 4

Acknowledgements

The advisors for this project were:

Hans J. Goetz
International Technical Support Center, Boca Raton

Giffin Lorimer
International Technical Support Center, Boca Raton

The authors of this document are:

Alan Chambers
IBM United Kingdom

Franco Federico
IBM United Kingdom

Douglas Pearless
IBM New Zealand

Neil Stokes
IBM Australia

This document was compiled and published with the aid of the International
Technical Support Center, Boca Raton.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

lan Ameline
IBM Development Laboratories, Toronto

Mike Cowlishaw
IBM United Kingdom Development Laboratories, Hursley

David Kerr
IBM Programming Center, Boca Raton

Michael Kogan
IBM Programming Center, Boca Raton

Peter Magid
IBM Programming Center, Boca Raton

Greg Milligan
IBM Canada

Larry Raper
IBM Development Laboratories, Austin

Oliver Sims
{BM United Kingdom

® Copyright 1BM Corp. 1893

Thanks also to the many people, both within and outside IBM, who provided
suggestions and guidance, and who reviewed this document prior to publication.

Thanks to the following people for providing excellent tools, used during
production of this document:

Dave Hock (CUA Draw)
IBM Cary.

Jurg von Kéanel (PM Spy)
IBM Yorktown Heights.

vi 0S/2 V2.0 Volume 4

Contents

Abstract e e e e e iii
Acknowledgements e v
Special Notices e XXi
Preface e e e e e e e XXiii
Related Publications XXix
Prerequisite Publications oo XXiX
Additional Publications e XXiX
Chapter 1. Overview et 1
11 UserInterface i i e e 1
1.2 Object-Oriented Applications, 2
1.2.1 Object-Oriented Design 2
1.2.2 Object-Action Interfaces oL 4
1.2.3 Benefits of the Object-Oriented Approach 5
1.3 Presentation Manager Application Model 6
1.3.1 Systems Application Architecture Conformance 7
1.3.2 Online Help and Documentation 8
14 The Workplace Shell i i 8
15 SUMMANY e e e e e e e e e e e s 9
Chapter 2, Operating System/2 1"
24 HIStOry e e 1"
2.2 Intel 80386 32-Bit Microprocessor Support o 12
2.3 Memory Management e e 12
2.4 Multiprogramming and Multitasking 13
2.41 Application Support 14
242 Processes and Threads 15
2.4.3 'Interprocess Communication and Synchronization 16
25 DOS Application Support e e 18
2.6 Microsoft Windows Application Support 19
2.7 Dynamic Linking e 20
28 SUMMANY . . . i it i e e e et e e e e e e 21
Chapter 3. Object-Oriented Applications 23
3.1 Object-Oriented Concepts 23
3.1.1 Object-Oriented vs Functional Decomposition 25
3.1.2 Class-Based vs Module-Based 26
313 Subclassing e e e 28
3.2 User View vs Application View 000 29
3.3 Object-Oriented Design« .. e 30
3.3.1 Object ldentification 31
3.3.2 Action ldentification o oo 3
3.3.3 Search for ExistingObjects, 32
3.3.4 Message Definition o e 32
3.3.5 Method Design i e 32
3.4 Object-Oriented Implementations 33
3.5 More Complex Objects 33

® Copyright IBM Corp. 1893 vii

viii

0S/2 V2.0 Volume 4

3.5.1 Device Manipulation 34

3.5.2 AccesstoRemote Systems 34
3.5.3 Procedure Manuals 35
3.6 Summary ... 35
Chapter 4. The Presentation Manager Application Model 39
41 Windows 39
411 Window Classes, 40
4.1.2 Window Procedures 40
42 Messages 40
421 MessageClasses 41
4.2.2 Message Structure 41
423 Message Processing 43
4.3 Application Structure 43
431 MainRoutine 44
43.2 Window Procedures, 46
4.3.3 Dialog Procedures 49
4.3.4 Subroutines 51
4.3.5 Partitioning the Application 52
4.4 Presentation Manager Resources 52
45 Creating Reusable Code 53
4.6 Window Hierarchy 54
4.6.1 Parent/Child Relationship 54
4.6.2 Window Ownership 56
463 Z-Order 57
4.7 Subclassing 57
4.8 Summary 58
Chapter 5. The Flat Memory Model 61
5.1 DosAllocMem() Function 61
5.2 Allocating versus Committing Memory 62
5.2.1 Committing Storage at Allocation 63
5.2.2 Dynamically Committing Storage 63
5.3 Suballocating Memory, 66
54 ExceptionHandling 68
5.5 Shared Memory Objects 69
5.5.1 Named versus Anonymous Shared Memory Objects 69
5.5.2 Committing Shared Memory Objects 70
56 Summary 70
Chapter 6. Building a Presentation Manager Application 73
6.1 Language Considerations 73
6.2 Functionand Data Types 74
6.3 Object-Oriented Programming Practices 74
6.4 Application Main Routine, .. 75
6.5 UsingWindows 79
6.5.1 Window Creation, 79
6.5.2 Window Processing 80
6.5.3 Window Closure 80
6.5.4 Instance Data and WindowWords 81
6.5.5 SubclassingaWindow 84
6.6 Window Communication 87
6.6.1 Standard Windows 87
6.6.2 DialogBoxes 88
6.6.3 Control Windows 89

6.6.4 Message BOXES i i it e e 91

6.6.5 Identifying the DestinationWindow 91
6.6.6 Creating Message Parameters 93
6.6.7 Broadcasting Messages e, 94
6.7 PassingControl e 95
6.7.1 Direct Invocation/DirectReturn g5
6.7.2 Direct Invocation/MessageReturn, .. 96
6.7.3 Message Invocation/Direct Return 96
6.7.4 Message Invocation/Message Return g6
6.7.5 External Macros e e 97
6.8 Terminating an Application g8
6.9 SUMMANYt e e e e e e e e e g9
Chapter 7. Workplace Shell and the System Object Model 101
7.1 Objects in the Workplace Shell 101
7.1.1 Inheritance Hierarchy 101
712 Metaclasses i e e 103
7.1.3 Class Implementation, 103
7.2 Object Structure e e 104
721 Methods e e e e e 104
7.2.2 Subroutines e e e 114
73 DefininganObject i 114
731 Files e e e e 114
7.3.2 Class DefinitionFile 115
7.3.3 C Implementation ofan ObjectClass 119
7.4 ObjectBehavior i e 121
741 CreatinganObject 122
742 UsinganObject 128
743 Destroyingan Object 146
7.4.4 Deregistering an ObjectClass 147
7.4.5 Accessing Presentation Manager Resources From a Workplace
Shell Object e 148
75 TransientObjects i 148
7.6 Communication Between Objects 149
7.6.1 Application-Initiated Communication 150
7.6.2 User-Initiated Communication 152

7.6.3 Dragging a Non-Workplace Object onto a Workplace Object 157
7.6.4 Dragging a Workplace Object onto a Non-Workplace Object 158

7.6.5 Droppingan Object 159
7.7 Building a Workplace Shell Application 164
78 Debugging ot e e e e e e e e 166

7.8.1 Replacing SOM’s SOMOutCharRoutine 166

7.8.2 A Sample ASCII Terminal Emulator for Debugging Use 168

7.8.3 SOM Provided Macros for Debugging 168
7.9 Sample Code and Application e e e e 169

791 pwFolder e e 169

79.2 pwFinanceFile i e 169
710 SUMMANY . . . ot e e e e e e e e i e e e e e e 169
Chapter 8, Direct Manipulation 171

8.1.1 Direct ManipulationBasics, 171

8.1.2 SignificantEvents oo o oo 172

8.1.3 Rendering Mechanisms 173
8.2 Data Structures Used in Drag/Drop e e e e e 174

8.21 The DRAGINFO Structure 174

Contents X

X 0S/2 V2.0 Volume 4

8.2.2 The DRAGITEM Structure i .. 175

8.2.3 The DRAGIMAGE Structure 176
8.24 The DRAGTRANSFER Structure 177
8.3 Using Direct Manipulation 177
8.3.1 Initiating a Drag Operation 177
8.3.2 Dragging OveraWindow 182
8.3.3 DroppinganObject 183
8.3.4 Transferring Information 185
8.4 Using Rendering Mechanisms 187
8.4.1 Standard Rendering Mechanisms 188
8.4.2 Implementing a Private Rendering Mechanism 189
85 Summary 190
Chapter 9. Presentation Manager Resources 191
9.1 Typesof Resources 191
844 Fonts, 191
9.1.2 Icons, Pointers and Bitmaps 191
9.1.3 Menu Bars and Pulldown Menus 192
814 StringTables 195
9.1.5 Accelerator Tables 196
91.6 HelpTables 196
8.1.7 Window and Dialog Templates 197
9.2 Resource ScriptFile 198
9.3 UsingResources i .. 200
9.3.1 Loading From Within the Application 200
9.3.2 Loading Resources FromaDLL 200
8.3.3 Loading Dialogs FromaDLL 201
9.4 Resources and National Language Support 202
95 Summary 203
Chapter 10. Multitasking Considerations 205
10.1 Creating a Secondary Thread 208
10.1.1 Threads Containing Object Windows 206
10.1.2 Threads Without Object Windows 210
10.2 Creating Another Process 211
10.3 Destroying a Secondary Thread 213
10.3.1 Threads Containing Object Windows 213
10.3.2 Threads Without Object Windows 213
10.3.3 Forcing TerminationofaThread 214
10.4 Terminatinga Process 214
10.5 Communicating With a Secondary Thread 215
10.5.1 Threads Containing Object Windows 215
10.5.2 Threads Without Object Windows 215
10.6 Communicating With Another Process 216
10.6.1 Presentation Manager Messages 216
10.6.2 Shared Memory 216
1063 Atoms 219
106.4 Queues, 221
1065 Pipes 226
10.7 Maintaining Synchronization 229
10.7.1 Presentation Manager Messages 230
10.7.2 Timers and Semaphores 231
10.7.3 DosWaitThread() Function 233
10.7.4 DosWaitChild() Function 234
10.8 Preserving DatalIntegrity 235

10.9 Client-Server Applications oL 236

10,10 SUMMAIY . . . o o e e e e e e e e e e e e 237
Chapter 11. Systems Application Architecture CUA Considerations 239
111 Standard Windows 239
112 TheMenu Bar e 241
11.2.1 Inserting/Deleting Menu Barltems 242
11.2.2 Enabling/Disablingltems L o oL, 244
11.2.3 Indicating Selected ftems L. 244
113 Action Windows e e 245
11.3.1 Modeless Action Windows, 245
11.3.2 Modal Action Windows 246
1133 Standard Dialogso o e 247
1134 Useof Control Windows 253
1135 Message Boxes 256
11.4 Maintaining User Responsiveness 257
11.5 SUMMAY e e e e 258
Chapter 12. Application Migration 259
121 DataTypes i i e e 259
12.2 Function Name Changes i 260
12.3 32-Bit Interface Constraints 260
12.4 Function Enhancements 0o 261
12.4.1 Semaphore Functions 261
12.4.2 Thread Management 262
12.5 Memory Management oo 262
12.6 New Presentation Manager Functions 263
127 SUMMANY e e e e e e e e 264
Chapter 13. Mixing 16-Bit and 32-Bit Application Modules 265
43.1 Function Callsto 16-BitModules, 265
13.2 Using 16-Bit Window Procedures 266
13.21 CreatingaWindow o 266
13.2.2 Passing Messages to 16-BitWindows 267
13.2.3 Passing Messages to 32-Bit Windows 268
133 SUMMANY o e e e e e e 270
Chapter 14. Compiling and Link Editing an Application 273
14.1 Running the SOM Precompiler 275
1411 TheMakefile i 275
14.1.2 SOM Precompiler Invocation 276
14.2 CompilingCSourceCode vnennn. 276
14.2.1 Module DefinitionFile 278
14.2.2 CompilerOptions o 279
14.3 Link Edit e e 280
14.4 Resource Compilation 280
14.5 Dynamic Link Libraries 280
1451 Creatinga DLL i 281
1452 UsingaDLL e 282
14.5.3 Presentation Manager ResourcesinaDLL 282
14.5.4 Using Dialogs in System Object Model Objects 283
146 SUMMAIY o e e e e e e e e e e e e e e e 284
Chapter 15. Adding Online Help and Documentation 285
15.1 Creating Help Information, 285

Contents Xi

xii

05/2 V2.0 Volume 4

1511 IPF Tag Language 285

15.1.2 Defining Help Panels 286
15.1.3 Displaying Graphics 287
15.1.4 Hypertext and Hypergraphics 287
15.4.5 Viewports 289
15.2 Compiling Source Files 280
1521 The IPFCCommand, 290
15.2.2 National Language Support 291
15.3 Linking Help Windows With Applications 291
1531 CreatingaHelpTable 291
15.3.2 Creating aHelpinstance 292
15.3.3 Associatinga Helpinstance 293
15.34 EndingaHelplnstance 293
15.4 Displaying Help Panels 293
15410 FIKey 293
1542 HelpMenuBaritem 294
15.43 Help Pushbutton 294
15.5 Main HelpWindow 294
15.5.1 The Help Pulldown Menu 294
15.5.2 Communication Between IPF and Applications 295
15.6 Stand-Alone Online Documentation 297
15.6.1 Compiling Online Documents 297
15.6.2 Concatenating Source Files 298
15.7 Application Tutorials 298
15.8 Self-Teaching Applications 298
15.8.1 Loosely Coupled Applications 299
15.8.2 Tightly Coupled Applications 299
15.9 Summary 299
Chapter 16. Problem Determination 301
16.1 Problem Documentation 301
16.1.1 Window 302
16.1.2 Event/Action 302
16.1.3 First Time vs Repetitive Actions 302
16.2 Problem Isolation 303
16.3 Problem Diagnosis 303
16.3.1 First Time Problems 304
16.3.2 Repetitive Action Problems 306
16.4 Post-Resolution Action 307
16.5 Summary ... 307
Chapter 17. Generic ApplicationModules 309
17.1 Generic Application Objects 309
1711 DisplayWindows 310
1712 ObjectWindows, 310
1743 Subclassing 311
17.2 Dialog Boxes 311
17.3 Generic Subroutines, 311
17.4 Granularity 312
17.5 Packaging 313
176 Summary 313
Chapter 18. Managing Development 315
18.1 RiskManagement 315
18.1.1 Technological Risk, 315

18.1.2 Managerial Risk e e 316

18.2 Configuration/Library Management 317
18.2.1 Terminology e 318
18.2.2 Network Organization, 318
18.2.3 Common Accessto Resources 320
18.2.4 Update/Modification of Resources 321
18.2.5 Administration L o 321

18.3 SUMMANY o e e e e e e 322

Appendix A. Naming Conventions 325

A1 Symbolic NamesandConstants 325

A.2 Subroutine Names i e, 326

A.3 Window and Dialog Procedure Names 326

A4 Variable Names e 326

Appendix B. Application Program Construction 329

B.1 Modularization e 329

B.2 Header Files i it ittt et 330
B.2.1 Private HeaderFile 330
B.2.2 External Interface HeaderFile 331
B.2.3 Global Header File« 331
B.2.4 Generic Routines Header File 332
B.2.5 System-Supplied Header Files 332

B.3 Data Abstraction and Encapsulation 332

B.4 Packaging e e e e 333
B.4.1 Application Object Modules 333
B.4.2 Application Executable File 334
B.4.3 Dynamic Link Libraries, 334

Appendix C. 0S/2 Kernel APl Functions 335

C.1 Memory Allocation and Management 335

C.2 Session Management e 336

C3 TaskManagement 336

C.4 Signal and Exception Handling 337

C.5 Interprocess Communication 338
C51 Anonymous Pipes e 338
C52 Named Pipes i 338
C.53 QUBUES it e e e e 339
C54 Semaphores it e 340

C6 Message Retrieval i 341

C.7 Timer ServiCes it ittt et et e it e i e e e 341

C.8 Dynamic Linking e 341

C8 Device /0 e e e e e e e 342

C10 File /O e e e e e 342

C11 Code Page Support i e 343

C.12 Error Management e e e 344

Appendix D. Problem Reporting Worksheet 345

Appendix E. Source Code for the PWFolder and PWFinanceFile objects . . 347

E.1 Source Code for the PWFolder Object 347
E.1.1 Source Code for the PWFolder.CSCfile 347
E.1.2 Source Code for the PWFolder.Cfile 350
E.1.3 Source Code for the PWFolderMAK file 360
E.1.4 Source Code for the PWFolder.RCfile 361

contents Xili

xiv OS2 v2.0 Volume 4

E.1.5 Source Code for the DIALOGHfile 361
E.2 Source Code for the PWFinanceFile Object 362
E.2.1 Source Code for the PWFin.CSCfile 362
E.2.2 Source Code forthe PWFin.Cfile 367
E.2.3 Source Code for the PWFin.MAK file 387
E.2.4 Source Code for the PWFin.RCfile 389
E.2.5 Source Code for the Dialog.Hfile 389
Glossary, 391
Index 403

Figures

©ReNDA LW~

© Copyright IBM Corp. 1993

Program Flow - Functional Decomposition Approach 25
Program Flow - Object-Oriented Approach 25
Subclassing an Application Object 28
Object-Oriented Development Progression 30
Encapsulation of Host Interaction Within Application Object 34
Message Flow in a Presentation Manager Application 44
Structure of an Application’s Main Routine 44
Structure of a Window Procedure 46
Structure of a Dialog Procedure 50
Allocating Memory in Previous Versions of 08/2 61
Allocating Memory in OS/2 Version20 62
Committing Storage During Allocation 63
Using a Guard Page With a Memory Object 64
Guard Page Exception Handler 65
Registering a Guard Page Exception Handler 66
Suballocating Memory e 67
Allocating Shared Memory L e e 70
Sample Application Main Routine (Part 1) - Registration 76
Sample Application Main Routine (Part 2) - Window Creation 77
WinAddSwitchEntry() Function, 78
Storing Instance Data in WindkowWords 82
Retrieving Instance Data from Window Words 83
Releasing Instance Data Storage 83
WinSubclassWindow() Function 84
Subclass Window Procedure oo 86
WinDIgBox() Function e e 88
Communicating with a Control Window 89
Querying Information From a Control Window 90
Inserting an item IntoalListBox 80
Querying a Selected ListBoxltem 91
WinMessageBox() Function 91
Obtaining a Window Handle - WinQueryWindow() Function 92
Obtaining a Window Handle - WinWindowFromID() Function 92
Obtaining a Window Handle Using the SwitchEntry 92
WinBroadcastMsg() Functiono o 94
Calling External Macros i 97
Workplace Shell Inheritance Hierarchy 102
InvokingaMethod 105
Overriding an Existing Method 107
AddingaNew Method 108
Adding an ltem to a Context Menu e e 109
Invoking a Method via a Context Menultem 110
Filtering the Pop-up Menultems 111
Class Method Example 112
Invoking a Method in Another ObjectClass 113
A SOM Precompiler-generated FunctionStub 120
Registering a Workplace Shell ObjectClass 122
REXX Code to Register a Workplace Object 123
Initializing Class Data 124
Freeing Class Dataltems 124
CCodetoCreateanObject, 125

XV

Xvi

05/2 V2.0 Volume 4

52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74,
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
80.
g1.
92.
93.
94
95.
96.
97.
8.
99

100.
101.
102.
103.
104.
105.
106.

REXX Code to Create an Object
ObjectSetup
Initializing Instance Data
Openingan Object
Opening a Custom Viewof an Object
_wpModifyPopupMenu Ccode
pwFinanceFile’s ContextMenu
pwFinanceFile’s Custom View
_wpMenultemSelected Ccode
_wpOpen N,

‘pwFinanceFile’s Initialization Function

pwFinanceFile’s Window Procedure, FinanceFileProc()
Automatically Instantiating an Object
Closingan Object
Saving an Object’'s State
Restoring an Object’'s State
Destroying an Object
Deregistering an Object Class
REXX Code to Deregister a WPS Object
Creating a TransientObject
Referencing an Object Using OBJECTID
Dragging a Workplace Object
Only Accepting pwFinanceFile Objects from Drag Operations
Multiple Rendering Methods
Converting a Source Drag 0S/2 File to a Workplace Object
Workplace Shell Application Structure
Sample .CSC File Definition for Overriding the SOMOutCharRoutine
Sample .C File Definition for Overriding the SOMOutCharRoutine
Sample STARTUP.CMD File Definition
Drag Initiation From a Container Window
Receiving a DM_PRINTOBJECT Message
Handling the DM_DRAGOVER Message
Handling the DM_DROP Message
Handling the DM_RENDER Message
Menu Bar Resource Definition
String Table Resource Definition
Loading a Text String Resource
Accelerator Table Resource Definition
Window Template Resource Definition
Dialog Template Resource Definition
Resource ScriptFile
Loading Resources FromaDLL
Loading a Dialog Resource FromaDLL
Creating a Thread With an Object Window
Secondary Thread Creating an Object Window
Sample Object Window Procedure
Creating a Thread Without an Object Window
Startinga Child Process
DosKiliThread() Function
Terminatinga Process
Interprocess Communication Using Shared Memory (Part 1
Interprocess Communication Using Shared Memory (Part 2
Interprocess Communication Using Atoms (Part M .. .
Interprocess Communication Using Atoms (Part2)
Interprocess Communication Using Queues (Part 1M

107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.

Interprocess Communication Using Queues (Part2)
Interprocess Communication Using Queues (Part3)
Interprocess Communication Using Named Pipes (Part1)
Interprocess Communication Using Named Pipes (Part2)
Synchronization Using Presentation Manager Messages
Synchronization Using an Event Semaphore (Part1)
Synchronization Using an Event Semaphore (Part2)
Synchronization Using the DosWaitThread() Function (Part1)
Synchronization Using the DosWaitThread() Function (Part2)
DosWaitChild() Function
Dynamically Inserting a Menu Bariftem
Dynamically Inserting a Pulldown Menu
Disabling an Menu Bar/Pulldown Menu ltem
Placing a Check Mark on a Pulldown Menu lftem
Standard Dialogs - WinFileDIg() Function
WinFontDIg() Function -Sample Code
DosCreateThread() Function
DosAllccMem() Function
Declaring a 16-Bit Function in 32-BitCode
Creating a 16-bit Window From Within a 32-bit Module
Passing a 16:16 Pointer as a Message Parameter
Mixed Model Programming - WinSetWindowThunkProc() Function

Mixed Model Programming - Thunk Procedure
16:16 to 0:32 Address Conversion
Development Process for New WPS Classes
Compiling and Linking an 0S/2 Presentation Manager Application

Sample Module Definition File for Presentation Manager
Sample Module Definition Fileto CreateaDLL
IPF Tag Language Example,
Simple Help Panel Source
Displaying a Bitmap in a HelpWindow
Hypertext Link
Hypergraphic Link
Link File With Multiple Hypergraphic Links
Multiple Viewports Using Automatic Links
Application-Controlled Viewport
Help Table Resource Definition
WinCreateHelpinstance() Function
WinAssociateHelplnstance() Function
winDestroyHelplnstance() Function
Help Pulldown Menu Definition
Network Domains i i it
Production Librariesona LANServer

Figures

xvii

085/2 V2.0 Volume 4

Tables

1. Window Identifiers 55
2. Application Object/Window Correlation 59
3. Presentation Manager Macros a3
4. Parameters and Settings for the Remote Terminal 168
5. New Presentation Manager Functions in OS/2 Version20 263
6. Type Prefixes for Symboiic Constants 325
7. Type Prefixes for Variables 326
8. Type Prefixes for Pointers 327
9. Memory Management Functions 335
10. Session Management Functions, 336
11. Task Management Functions 336
42. Exception Handling Functions 337
13. Anonymous Pipe Functions 338
14. Named Pipe Functions 339
15. Queue Functions e 339
16. Semaphore Functions i 340
17. Message Retrieval Functions 000 341
18. Timer Services Functions o 341
19. Dynamic Linking Functions, 341
20. Device /O Functions 342
21. Filel/OFunctions i 342
22. Code Page Functions 344
23. Error Management Functions, 344
® Copyright I1BM Corp. 1993 xix

?(Xx 0S/2 V2.0 Volume 4

Special Notices

This publication is intended to help the customer in the design and
implementation of OS/2 Presentation Manager applications under O8/2 Version
2.0, using object-oriented design and programming principles. The information
in this publication is not intended as the specification of any programming
interfaces that are provided by 0S/2 Version 2.0. See the PUBLICATIONS
section of the IBM Programming Announcement for 0OS/2 Version 2.0 for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM’s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS.

The information about non-IBM (“vendor”) products in this manual has been
supplied by the vendor and IBM assumes no responsibility for its accuracy
completeness.

The use of this information or the implementation of any of these techniques is a
customer responsibility and depends on the customer’s ability to evaluate and
integrate them into the customer’s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments do
so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

© Copyright IBM Corp. 1993 xxi

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

C/2

COBOL/2

Common User Access
CommonView

CUA

DATABASE 2

DB2

DCF

Document Composition Facility
FORTRAN/2

IBM

Macro Assembler/2
Micro Channel
OfficeVision
Operating System/2
08s/2

Personal System/2
Presentation Manager
PS/2

SAA

System/370

Systems Application Architecture
WIN-08/2

Workplace Shell

The following terms, which are denoted by a double asterisk (* *) in this
publication, are trademarks of other companies.

Intel is a trademark of Intei Corporation.

Lotus is a trademark of the Lotus Development Corporation.
Microsoft is a trademark of Microsoft Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.
Smalltalk/V is a trademark of Digitalk Inc.

Windows is a trademark of Microsoft Corporation.

286, 386, 486, SX are trademarks of Intel Corporation.

xxii 0s/2 v2.0 volume 4

Preface

This document is intended as a general introduction to the concepts involved in
the design and implementation of applications which will execute in the 08/2
Presentation Manager and Workplace Shell environments under OS/2 Version
2.0. Itis not intended to be an exhaustive reference on the subject of
Presentation Manager programming, and should be used in conjunction with the
official IBM product documentation, and other reference books and documents,
which are mentioned herein.

it must be stressed that this document is not intended to teach the reader how to
program in the “C” language or how to use the Presentation Manager
programming interface, nor is it intended to teach the theory of object-oriented
programming. Rather, it serves as a guide to the integration of various
object-oriented software engineering techniques with the Presentation Manager
application model, in order to produce well-structured, easily-maintainable
applications which conform to CUA guidelines.

The information given in this document is generally independent of programming
language implementations (with certain exceptions noted in the text), and may
be used to develop applications in any supported programming language.
However, programming syntax examples used in this document are shown using
the “C" language, since this language is commonly used for Presentation
Manager application development, and most clearly illustrates the structure of
the Presentation Manager and Workplace Shell application models.

This document is intended for:

» Application designers, planners and development managers who require an
understanding of the application of object-oriented principles to the
Presentation Manager environment, and the productivity gains to be
achieved from the use of such principles.

* Programmers who wish to understand the structure of Presentation Manager
and Workplace Shell applications, and the techniques by which applications
may be constructed so as to achieve maximum function, with optimal levels
of reusability and maintainability.

The code examples used in this document are available in electronic form via
CompuServe** or through a local IBM Support BBS, as package RB3774.ZIP.
IBM employees may obtain the code examples from the package GG243774
PACKAGE on OS2TOOLS.

—— Second Edition

This Second Edition includes programming information relating to application
development under 0S/2 Version 2.0, and supercedes the ITSC Technical
Bulletin Presentation Manager Application Development, GG24-3543.

The document is organized as follows:

« Chapter 1, “Overview” provides a brief introduction to the topics covered in
this document.

This chapter is recommended for all readers of the document.

® Copyright IBM Corp. 1993 xxiii

xxiv 0S/2 v2.0 Volume 4

» Chapter 2, “Operating System/2” provides a brief technical overview of the

0S/2 Version 2.0 environment, comparing and contrasting it with the DOS
environment and previous versions of 0S/2. The major features of 0S/2
Version 2.0 are described and their use by applications is discussed.

This chapter is recommended for those readers who are not familiar with the
08/2 Version 2.0 operating system environment, in order to provide them
with a basic understanding of the capabilities of 0S/2 Version 2.0.

Chapter 3, “Object-Oriented Applications” explains the basic principles of
object-oriented design and programming. The object-oriented approach is
compared and contrasted with the traditional procedural approach in terms
of a simple application model, before the extension of the object-oriented
paradigm into more complex scenarios is discussed. Some suggestions and
guidelines are also offered with regard to application design and
implementation using the object-oriented approach.

This chapter is recommended for readers who do not already possess an
understanding of the basic principles of object-oriented programming. This
knowledge is essential in order to understand the programming guidelines
presented later in the document.

Chapter 4, “The Presentation Manager Application Model” describes the
Presentation Manager application model, and illustrates the way in which the
application model implements the object-oriented principles introduced in
Chapter 3, “Object-Oriented Applications.”

This chapter is recommended for all readers of this document, since it
explains the basic structure of a Presentation Manager application, and the
way in which the Presentation Manager application model facilitates the
creation of object-oriented applications.

Chapter 5, “The Flat Memory Model” describes the 32-bit flat memory model
implemented in OS/2 Version 2.0, and discusses the programming
considerations which arise from the differences between this memory model
and the segmented memory model used by previous versions of 0S/2.

This chapter is recommended for all programmers who intend to develop
applications under OS/2 Version 2.0.

Chapter 6, “Building a Presentation Manager Application” describes the
major pregramming techniques required to implement a Presentation
Manager application, including recommendations and established
conventions in areas such as methods of opening and closing windows,
displaying dialogs, communication between windows, managing user
responsiveness etc. The chapter also discusses certain software
engineering techniques which may be used to enhance the level of
modularity and optimize the granularity of the resulting application code.

This chapter is recommended for programmers and development managers
who will be working on the implementation of Presentation Manager
applications.

Chapter 7, “Workplace Shell and the System Object Model” describes the
system object model introduced in OS/2 Version 2.0, and its implementation
by the OS/2 Version 2.0 Workplace Shell. The chapter describes the
object-oriented application layer provided by the Workplace Shell, and
explains how Workplace Shell objects are defined, created and implemented.

This chapter is recommended for programmers and development managers
who wish to create objects for use on the Workplace Shell desktop.

Chapter 8, “Direct Manipulation” explains the implementation of direct
manipulation (drag and drop) techniques for carrying out required tasks in
the Presentation Manager and Workplace Shell environments. The chapter
discusses the use of these techniques both by Presentation Manager
windows and by Workplace Sheli objects.

This chapter is recommended for programmers who wish to implement
direct manipulation in their Presentation Manager applications or Workplace
Shell object classes.

Chapter 9, “Presentation Manager Resources” discusses the concept of
Presentation Manager resources. The chapter covers the types of
application resources which may be defined in the Presentation Manager
environment, their definition and conventions governing their use.

This chapter is recommended for all programmers who will develop
Presentation Manager applications, since resources are used in most if not
all applications.

Chapter 10, “Multitasking Considerations” describes the ways in which
multiple threads of execution may be used within a Presentation Manager
application, in order to isolate long-running application tasks from the user
interface and thereby provide greater application responsiveness to the end
user.

This chapter is recommended for programmers and development managers
who will be building Presentation Manager applications which carry out
lengthy processing tasks, or which require access to remote devices or
systems.

Chapter 11, “Systems Application Architecture CUA Considerations”
discusses the implementation of various SAA CUA user interface
specifications in Presentation Manager applications. The chapter provides
coding examples for a number of CUA techniques such as menu bar
handling.

This chapter is recommended for programmers who wish to implement SAA
CUA guidelines in their applications.

Chapter 12, “Application Migration” discusses the migration of Presentation
Manager applications to OS/2 Version 2.0 from previous versions of 0S/2.
Differences in implementation are described, along with additional facilities
provided by Presentation Manager under OS/2 Version 2.0.

This chapter is recommended for application developers with Presentation
Manager applications written for previous versions of 0S/2, which they wish
to modify in order to take full advantage of the capabilities of 0S/2 Version
2.0.

Chapter 13, “Mixing 16-Bit and 32-Bit Application Modules” describes the
way in which 32-bit applications under OS/2 Version 2.0 may make use of
existing 16-bit functions and window procedures, along with restrictions and
programming considerations to be borne in mind when developing such
applications.

This chapter is recommended for those programmers working in
organizations with existing 16-bit runtime libraries or DLLs, and who wish to
make use of functions contained within these libraries.

Chapter 14, “Compiling and Link Editing an Application” describes the steps
necessary to compile and link edit a Presentation Manager application
under OS/2 Version 2.0, including the use of module definition files. and the

Preface XXV

xxvi

creation of dynamic link libraries to contain application code and
Presentation Manager resources.

This chapter is recommended for all programmers who will develop
Presentation Manager applications, and who wish to understand how to
create executable modules and dynamic link libraries.

Chapter 15, “Adding Online Help and Documentation” examines the
provision of online, context-sensitive help information for Presentation
Manager applications using the IPF provided with Presentation Manager,
and the use of this facility to create online documentation.

This chapter is recommended for application developers who wish to provide
online help for their applications, or who wish to develop online
documentation and tutorial programs.

Chapter 16, “Problem Determination” describes some simple techniques for
problem determination and resolution in the Presentation Manager
environment, and discusses some common application problems.

This chapter is recommended for all application developers involved in
testing and debugging Presentation Manager applications.

Chapter 17, “Generic Application Modules” discusses the use of generic
routines to perform commonly used functions within a Presentation Manager
application, and identifies a number of areas where generic functions may be
successfully applied.

This chapter is recommended for planners and development managers who
will manage a number of application developers working on one or more
Presentation Manager applications, and who wish to understand the benefits
in terms of consistency and productivity which can be achieved through the
use of common routines.

Chapter 18, “Managing Development” provides some guidelines for the use
of a local area network (LAN) to facilitate centralized control and
administration of the workstation-based application development process.

This chapter is recommended for planners and development managers who
will manage a number of application developers working on one or more
Presentation Manager applications, and who wish to understand some of the
ways in which a distributed development process may be managed and
controlied.

The following appendixes are included in this document:

0OS/2 V2.0 Volume 4

e Appendix A, “Naming Conventions” provides some guidelines for naming

conventions to be used with symbols, subroutines and variables in the
Presentation Manager environment. These guidelines cover the use of
Hungarian Notation for such names.

This chapter is recommended for planners and development managers who
wish to implement a standard series of naming conventions for the
application development projects under their control.

Appendix B, “Application Program Construction” presents guidelines for the
structuring of applications and their component modules in order to achieve
the optimum level of modularity and granularity within an application, thus
promoting reuse of application code.

This chapter is recommended for planners and development managers who
wish to gain the maximum productivity benefit over a number of Presentation
Manager application development projects.

* Appendix C, “OS/2 Kernel APl Functions” compares the operating system
kernel functions provided in OS/2 Version 2.0 with those provided in 0S/2
Version 1.3.

This chapter is recommended for programmers who will be migrating
applications from previous versions of 0S/2.

* Appendix D, “Problem Reporting Worksheet” provides a worksheet which
may be used when following the steps given in Chapter 16, “Problem
Determination,” to provide effective problem documentation which can then
be used to reproduce application errors.

This chapter is recommended for application developers involved in testing
and debugging Presentation Manager applications.

Preface XXxvii

0S5/2'vV2.0 Volume 4

xxviii

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications

IBM 0S/2 Version 2.0 Application Design Guide, 10G6260
IBM 0OS/2 Version 2.0 Control Program Reference

IBM 0S/2 Version 2.0 Presentation Manager Reference
1BM 0S/2 Version 2.0 Programming Tools Reference.

Additional Publications

®© Copyright IBM Corp. 1993

0S/2 Version 2.0 - Volume 1: Control Program, GG24-3730
0S/2 Version 2.0 - Volume 2: DOS and Windows Environment, GG24-3731

0S/2 Version 2.0 - Volume 3: Presentation Manager and Workpiace Shell,
GG24-3732

0S/2 Version 2.0 - Volume 5: Print Subsystem, GG24-3775
0S/2 Version 2.0 Remote Instaliation and Maintenance, GG24-3780

The Design of 0S/2, Harvey M. Deitel and Michael J. Kogan, Addison Wesley

1992 ISBN 0-201-54889-5 (SC25-4005)

Object Oriented Programming: An Evolutionary Approach, Brad J. Cox,
Addison Wesley 1987 ISBN 0-201-10393-1

Programmer’s Guide to the OS/2 Presentation Manager, Michael J. Young,

Sybex 1989 ISBN 0-89588-569-7

Programming the 0S/2 Presentation Manager, Charles Petzold, Microsoft
Press 1989 ISBN 1-55615-170-5

IBM 0S/2 Version 2.0 Technical Library - Procedures Language/2 REXX
Reference, 10G-6268

I1BM C Set/2 User's Guide, SC09-1310
IBM C Set/2 Migration Guide, SC09-1369

IBM Systems Application Architecture CUA Advanced Guide to User Interface

Design, SC34-4289

IBM Systems Application Architecture CUA Advanced Interface Design
Reference, SC34-4290

1BM Systems Application Architecture Common Programming Interface
Presentation Reference, SC26-4359.

xxix

XXX 08/2 V2.0 Volume 4

1

ITSC Technical Bulletin Evaluation RED000

GG24-3774-01
Fold and Tape Please do not staple Fold and Tape
NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES
]
BUSINESS REPLY MAIL ——
]
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK S —
I
POSTAGE WILL BE PAID BY ADDRESSEE ——f
]
IBM International Technical Support Center]
Department 91J, Building 235-2
Internal Zip 4423
801 NORTHWEST 51ST STREET
BOCA RATON FL
USA 33431-1328
|ll"lll"ll|ll||l"ll""lll"ll"lllIl"ll'lllIl"
Fold and Tape Please do not staple FoldandTape -------

GG24-3774-01

ITSC Technical Bulletin Evaluation REDO0OO

08S/2 Version 2
Volume 4: Writing Applications

Publication No. GG24-3774-01

Your feedback is very important to us to maintain the quality of ITSO redbooks. Please fill out this
questionnaire and return it via one of the following methods:

+ Mail it to the address on the back (postage paid in U.S. only)
* Give it to an IBM marketing representative for mailing
¢ Fax it to: Your International Access Code + 1 914 432 8246

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction

Organization of the book Grammar/punctuation/spelling
Accuracy of the information Ease of reading and understanding
Relevance of the information Ease of finding information
Completeness of the information Level of technical detail

Value of illustrations Print Quality
Please answer the following questions:
a) Are you an employee of IBM or its subsidiaries? Yes No
b) Are you working in the USA? Yes No
c) Was the bulletin published in time for your needs? Yes No
d) Did this bulletin meet your needs? Yes No

If no, please explain:

What other Topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organization

Phone No.

Chapter 1. Overview

IBM* OS/2* Presentation Manager" is a graphical user interface facility that
allows the creation of object-oriented, event-driven applications which conform to
IBM Systems Application Architecture® (SAA*) Common User Access”™ (CUA")
guidelines. Presentation Manager provides an application execution
environment under which such applications are executed, and under which they
may take full advantage of the advanced capabilities of the OS/2 operating
system environment, as well as a system-level mechanism to handle interaction
between the application and the user in a consistent and intuitive manner.

The object-based Presentation Manager application model facilitates the use of
object-oriented software engineering principles such as data abstraction and
encapsulation. The application of these principles enhances application
modularity and thereby contributes to increased potential for code reuse and
easier application maintenance through containment of change, thereby
achieving higher levels of productivity in the areas of application development
and maintenance.

This document examines the Presentation Manager execution environment in
order to describe the structure and implementation of Presentation Manager
applications, and to illustrate the facilities provided by Presentation Manager to
support object-oriented techniques. In addition, the document examines the
ways in which CUA guidelines may be implemented by Presentation Manager
applications within the object-oriented application model. Particular emphasis is
given to the use of software engineering principles which facilitate the creation
of reusable code for common application services. This is one of the primary
concerns of the object-oriented approach to application design, and is also one
aspect of the Systems Application Architecture Common Applications (“red
layer™) component.

The document also discusses the management of workstation-based application
development projects. Historically, workstation applications have typically fallen
into the systems software category, or have been “one-off” applications and
hence have not been subject to the same rules and disciplines imposed upon the
traditionally host-based line-of-business applications. However, as the 08/2
environment begins to provide a viable platform for the implementation of
workstation-based and cooperative line-of-business applications, typical
corporate investments in workstation software are increasing rapidly, and
therefore the management and maintenance of these investments must be
considered. Some suggestions on the management of the workstation-based
development process are given in Chapter 18, “Managing Development.”

1.1 User Interface

The Presentation Manager user interface model facilitates an intuitive user
interface. While people typically approach their work tasks from a
“problem-domain” viewpoint, computers tend to adopt an “operator/operand”
approach that is inherently alien to the end user. Traditionally, the required
translation between approaches has been left to the user, with applications and
their user interfaces written to conform to the computer’s viewpoint rather than
that of the user. This approach has often led to users having difficuity relating to

© Copyright IBM Corp. 1993 1

the technology, with consequently greater amounts of time and money spent in
user training.

In recent times, a growing school of thought has emerged which contends that,
with the increasing power of computer systems and particularly with the advent
of powerful programmable workstations, the responsibility for this interface
translation should lie primarily with the application or the computer system
rather than with the user. In order to achieve this, user interfaces must be
redesigned in order to operate in an object-action, event-driven manner which
corresponds with the users’ problem domain viewpoint.

Presentation Manager implements such a user interface, and Presentation
Manager applications may thus be designed and implemented in such a way as
to provide improved user-friendliness and encourage learning by exploration.
The details of the Presentation Manager user interface are described in 0S/2
Version 2.0 - Volume 3: Presentation Manager and Workplace Shell.

Presentation Manager also facilitates consistency between applications by
handling the interface between user and application at a system level, providing
a number of standard constructs which may be exploited by applications. Since
these constructs typically appear and behave in the same way regardless of the
application under which they are implemented, a user need learn only one set of
user interface guidelines to be able to interact with multiple applications. This
consistency reduces confusion for users who work with multiple applications,
and reduces the need for extensive application training.

The SAA CUA component provides guidelines for the use of these constructs to
fulfill particular input/output requirements within an application, such that a level
of consistency is achieved not only in the behaviour of the constructs
themselves, but also in their relationship to one another and thus in the
behaviour of the application as a whole. These guidelines are documented in
the IBM Systems Application Architecture CUA Advanced Guide to User Interface
Design.

1.2 Object-Oriented Applications

Many definitions of the term object-oriented programming may be found in
various publications and presentations appearing over the last few years. These
definitions often differ widely, and have resulted in a great deal of confusion and
debate as to the “true” meaning of the term. It may be justifiably argued that
there is no such true meaning, and the term object-oriented may be used to
describe techniques ranging from simple data abstraction to the full inheritance
hierarchies implemented by certain object-oriented development tools.

1.2.1 Object-Oriented Design

2 0S/2 V2.0 Volume 4

For the purpose of discussion within this document, an object-oriented
application will be defined as one where data objects are the focus of the
application. A data object is defined to be a particular representation of a
logical data entity. For example, a document being edited may exist in two
places: as an image in memory and as a file on a fixed disk. Each of these two
forms constitutes a separate data object.

The procedures that operate upon these data objects in order to carry out
application functions are encapsulated with the data objects to form application

objects. Application objects are logically independent units comprising both data
and function, which communicate with one another to request actions, conveyed
in the form of messages passed between the communicating objects. In
object-oriented terminology, the procedures that are invoked to carry out the
required actions are known as methods.

Several rules apply to the design and behaviour of application objects. These
are listed below:

* A data object should be accessible only from within a single application
object which “owns"” the data object. The definition, creation and/or
establishment of access to the data object should also be achieved from
within the application object; this is known as the principle of encapsulation.

« The behaviour of and output from an application object should depend upon,
and only upon, the type and contents of the messages it receives. The
behaviour of an object should not depend upon any other external source.

As a corollary to the foregoing principle, the result of passing a particular
type of message may also vary, depending upon the type of application
object to which it is passed, and that object’s interpretation of the message.
Adherence to this rule allows the behaviour of an object to differ, depending
upon the nature of the messages received by that object; this differing
behaviour is known as polymorphism.

For ease of processing, application objects with similar properties are grouped
into object classes. Each object in a class is said to be an instance of that class.
Application objects within the same class share properties such as data object
definitions, class-specific variable definitions and values, and methods. Objects
therefore take on the properties of their class; this is known as inheritance.

it is the concept of inheritance that provides a distinguishing factor between the
two major schools of thought which exist under the object-oriented paradigm:

+ The basic precept of the class-based theory of object-oriented design is that
objects are defined in terms of their class, and that new classes are defined
in terms of existing classes, with certain additions and modifications which
distinguish the new class. Thus there is a measure of interdependence
between object classes, and an inheritance hierarchy is formed.

The primary advantage of the class-based approach is that it eases the task
of defining object classes, since each new class belongs to a hierarchy of
previously defined classes with their own properties and methods. The
application developer therefore need only explicitly define the distinguishing
characteristics of each class.

The major disadvatange of the class-based approach is the consequent high
leve! of interdependence between objects. Since the unit of modularity is the
entire inheritance hierarchy, rather than the individual object, reuse of a
particular object presupposes reuse of all those objects in its hierarchy upon
which the definition of the required object depends.

The class-based approach therefore provides a high initial productivity to the
application developer, although with a consequent reduction in the level of
granularity and an increase in run-time overhead.

e The module-based theory of application development contends that while
objects are defined in terms of their class, each new class is totally defined
in its own right, and is not dependent upon the definitions of other classes.
Hencesthere is no inheritance hierarchy under the module-based approach.

Chapter 1. Overview 3

The primary advantage of the module-based approach is that it avoids the
object interdependence associated with the class-based approach, since
each object class contains its own complete definition of properties and
methods. Thus the unit of modularity is the individual application object.

The disadvantage of this approach lies in the fact that the application
developer is required to define each object class in its entirety, and typically
cannot rely on previous definitions.! The module-based approach therefore
attains a higher level of modularity and independence between application
objects, but at the expense of higher initial development time.

The object-oriented approach to application design is most suited to applications
where the data is the focus of the application, and is less suitable where the
procedure or sequence of actions is the critical factor in the design. However, in
mixed situations where only certain parts of an application or application system
are procedurally oriented, as is the case with many work tasks, and where the
provision of an event-driven user interface is desirable, the object-oriented
paradigm can be extended to encompass procedurally oriented tasks. This is
discussed further in Chapter 3, “Object-Oriented Applications.”

While object-oriented applications deal primarily with the manipulation of data
entities and their logical representations, there are many situations where an
application must deal with other entities such as remote devices or systems.
Administrative procedures defined by or imposed upon an organization may also
be viewed as logical entities with which an application must interact. The
incorporation of such entities into the object-oriented application paradigm
requires an expansion of the concept of an application object to include the
definition of and methods pertaining to any type of entity addressed by the
application. This broadened definition is fundamental in making the
object-oriented application model applicable to virtually any application scenario.

1.2.2 Object-Action Interfaces

For the purpose of discussion within this document, an object-oriented
application will also be defined as one that implements an event-driven,
object-action user interface such as that specified in the IBM Systems
Application Architecture CUA Advanced Guide to User Interface Design. With
such an interface, a user first selects an object to manipulate, then selects one
or more of a defined set of actions to be performed upon that object. The
sequence of these actions, and hence the sequence of the dialog with the user,
is controlled by the user rather than by the application, where this is possible
within the requirements of the work task being performed.

The concepts of object-oriented design and an object-action user interface are
distinct but complementary. While it is possible to design and create an
object-oriented application without an object-oriented user interface, it it far
more difficult to implement a truly event-driven, object-action style of user
interface without embracing, at least a certain degree, the object-oriented
approach to design and implementation. It thus follows that the SAA CUA user
interface model cannot be fully implemented without some measure of
adherence to object-oriented design principles. It is the provision of an intuitive,
event-driven user interface that constitutes one of the great strengths of the
object-oriented paradigm.

1 This may be overcome to some extent through subclassing, which is explained later in this chapter.

4 0s/2 V2.0 Volume 4

1.2.3 Benefits of the Object-Oriented Approach

A fundamental benefit of an object-oriented approach from the viewpoint of the
end user is the ability for an application to behave in a manner that parallels a
typical human being’s natural approach to problem solving. The flexibility of the
object-action interface allows scope for individual variation in the approach to a
particular work task. However, such a user interface relies upon an
object-oriented application implementation in order to allow such flexibility.

Such an implementation is in turn dependent upon the correct design approach,
which must begin with a focus upon the entities that affect the application, rather
than upon the procedures to be performed upon those entities.

The object-oriented paradigm also encourages the concept of data abstraction
and encapsulation, whereby the definition of and establishment of access to data
objects is achieved from within the application object. Ideally, all access to and
manipulation of a data object is carried out from within a single application
object, thereby facilitating change management and application maintenance.

Another great benefit of the object-oriented approach is the increased potential
for creation of reusable code. The independent nature of application objects
enables them to be coupled together in various ways to achieve desired results,
with the internal implementation details of each object and its data structures
being isolated from the other objects with which it communicates. Applications
that manipulate existing data objects may therefore be assembled from a
number of existing application objects, thus reducing the time and effort required
to develop the application.

This potential for object reuse has also given rise to one of the great criticisms
levelled at the object-oriented approach; the “myth” of the completely generic
object. Due to the impracticability of foreseeing all possible actions that might
be performed on a data object, it is impossible to produce a complete set of
methods for that object. Hence an application object might require modification
at some stage in its life cycle, and is not truly reusable.

The object-oriented approach overcomes this potential problem by the use of a
concept known as subclassing, whereby a new application object is created
comprised of a data object and a number of new or modified methods which act
upon that object. Messages destined for the original application object are
diverted to the new object; the original object is said to have been subclassed.
If the message is of a type with which the new object is explicitly concerned, it
processes the message using its own methods. If not, it passes the message on
to the original object for processing. In the subclassing process, neither the
sending object nor the original receiving object should be aware that
subclassing has taken place. Subclassing therefore provides a transparent
means for modifying or adding to the behaviour of an existing application object
without modifying the object itself.

The general principles of object-oriented design and programming, as they apply
to the Presentation Manager environment, are explored more fully in Chapter 3,
“Object-Oriented Applications.”

Chapter 1. Overview 5

1.3 Presentation Manager Application Model

6 0s/2 V2.0 Voiume 4

Contrary to popular belief, Presentation Manager provides far more than merely
the ability to achieve a windowed, graphical user interface for the dispiay of
information on the screen. Rather, Presentation Manager provides a
message-driven, object-based execution environment that facilitates the
provision of an event-driven, object-action user interface, and supports the
implementation of object-oriented design techniques.

Presentation Manager enables the implementation of an object-action user
interface by providing an application programming interface that conforms to the
guidelines laid down in the IBM Systems Application Architecture Common
Programming Interface Presentation Reference, and a set of underlying system
services that support an object-oriented, event-driven application model. The
Presentation Manager programming interface provides user interface constructs
which conform to CUA guidelines. However, it must be strongly emphasized
that the term “presentation interface” is a misnomer, since Presentation
Manager is concerned with far more than merely the display of information on
the screen.

The Presentation Manager application model is centered around the concept of
windows. While a window typically appears as a rectangular area on the
screen, it is in fact a “handle” to a data object; a window concerned with data
being displayed on the screen is termed a display window, whereas a window
concerned with an internal data object is known as an object window. Each
window belongs to a window class and is associated with a window procedure,
which contains the definition of the window’s data object(s) and also contains
methods to perform all of the processing associated with that window. Windows
and their associated window procedures communicate with the user and with
each other, by the use of messages that are routed to the appropriate window by
Presentation Manager.

Since a window procedure may contain all the processing related to a particular
data object, along with the definition of and establishment of access to that data
object, Presentation Manager provides a suitable environment for data
encapsulation and abstraction, in that the internal representation and workings
of a data object may be “hidden” within the window procedure that “owns” the
data object. Provided the external interfaces (that is, the message formats) of
the window procedure remain unchanged, other window procedures within an
application are insulated from changes to the data object or its processing. This
provides a powerful tool for the enhancement of application modularity and the
containment of change within an application. This in turn facilitates the task of
application maintenance and change management, since affected application
modules may be easily identified.

A close corellation may be drawn between the concept of an application object
and that of a window under Presentation Manager. The window becomes the
identity of, or “handle” to an object:; the data referenced by the window (whether
a display space on the screen or a data file) becomes a data object; the window
procedure associated with a window contains the methods to act upon that data
object; and actions to be performed by the application object on its data object
are conveyed by way of messages routed to the window by Presentation
Manager. Although Presentation Manager provides window classes to allow
grouping of objects with similar characteristics, a full inheritance hierarchy is not
supported, and thus Presentation Manager conforms more closely to the

module-based theory of object-oriented design than to the class-based approach.
Development tools such as Smalltalk V/PM"" are available to extend the
Presentation Manager application model and facilitate implementation of a full
inheritance hierarchy.

The Presentation Manager application model, along with the underlying OS/2
environment, affords the ability to store an application object (that is, a data
object definition, along with the methods associated with that data object,
contained within a window procedure) in a library that may be dynamically
linked with an application. This in turn provides the potential to develop and
implement applications composed of one or more generic objects linked by a
custom-built application harness, which allows applications to be assembied
more quickly and at less cost.

The Presentation Manager programming interface includes a mechanism for
subclassing a window, whereby messages destined for a particular window may
be transparently diverted to another window for specialized processing.
Implementing an application using generic objects with subclassing to provide
specialized methods may greatly reduce the amount of coding required, and
consequently reduce the development time and cost of applications.

The general implementation of and support for object-oriented programming
principles under Presentation Manager is discussed further in Chapter 4, “The
Presentation Manager Application Model.” The subject is examined in more
detail, and specific examples are discussed, in Chapter 6, “Building a
Presentation Manager Application.”

1.3.1 Systems Application Architecture Conformance

While Presentation Manager supports and facilitates the implementation of
object-oriented design techniques and provides support for the user interface
constructs and guidelines laid down by the CUA component of Systems
Application Architecture, it does not force an application developer to conform to
object-oriented design principles or CUA-conforming user interface guidelines.
While the rich function set provided by the Presentation Manager programming
interface allows an application developer to interpret and implement CUA
guidelines in a number of ways, there are emerging conventions with regard to
the implementation of these guidelines.

In order to achieve the benefits which accrue from adherence to object-oriented
and CUA principles, a measure of discipline is required on the part of the
application developer, so as to implement the application in such a way that the
maximum degree of object-independence and reusability is attained, and that the
optimal level of conformance to CUA conventions is achieved. The subject of
CUA conformance is discussed in detail in Chapter 11, “Systems Application
Architecture CUA Considerations.”

Note that CUA conformance, along with consistency in the implementation of
application functions and user interface constructs, may be enforced or
enhanced through the use of standard functions and subroutines contained in
code libraries. The creation of such libraries is facilitated by the modular nature
of the Presentation Manager environment, and by the dynamic linking
capabilities of the OS/2 operating system. This subject is discussed further in
Chapter 17, “Generic Application Modules.™

Chapter 1. Overview 7

1.3.2 Online Help and Documentation

Presentation Manager also supports the development of online, context-sensitive
help panels, along with online documents for support of applications, business
processes and computer-based training. Such information may be displayed in
windows on the Presentation Manager desktop, using the information
Presentation Facility (IPF), which is shipped with the operating system.

Help panels displayed using IPF are context-sensitive, thereby aliowing the user
to request help on a specific topic, and the application to that help in a window
on the Presentation Manager desktop. Help panels within an application may be
indexed, which allows a user to search for help on related topics in addition to
the topic initially requested.

Phrases or illustrations within panels may be marked as selectable, and used to
display additional information, initiate application events or start new
applications. This capability is provided by the hypertext and hypergraphics
facilities of IPF.

Online documents may also be generated by IPF. Such documents are not
linked to applications; they act as applications in their own right, and indeed may
be used to initiate the execution of application programs using the hypertext
facility of IPF. Online documents may also be indexed, and keyword searches
may be conducted on document files; these facilities are part of IPF.

Information Presentation Facility is described in detail in Chapter 15, “Adding
Online Help and Documentation.”

1.4 The Workplace Shell

8 0s/2 v2.0 Volume 4

Under OS/2 Version 1.3, the Presentation Manager provides a basis for the
implementation of object-oriented software engineering principles, allowing the
developer to take advantage of the benefits inherent in the object-oriented
approach. However, the Presentation Manager application model lacks a built-in
inheritance hierarchy, and therefore prevents the developer from realizing the
productivity and consistency benefits that may be achieved under the principle of
inheritance.

0S/2 Version 2.0 extends the object-based Presentation Manager user interface
with the introduction of the Workplace Shell*, and also provides an
object-oriented application model that allows applications to exploit the principle
of inheritance. The Workplace Shell application model views an application as a
series of objects, typically represented by icons on the Workplace Shell desktop,
which are manipulated by the user to achieve the required result.

Objects may represent entities such as files, programs or devices, or may be
containers that allow the user to logically group related objects. The properties
or contents of an object may be examined using a view of the object, which is
typically implemented as a Presentation Manager window.

The Workplace Shell application model is based upon the system object model,
which defines a set of classes to form a basic inheritance hierarchy, and a set of
protocols for interaction between application objects. The Workplace Shell
defines its own object classes that extend the inheritance hierarchy, and an
application developer can continue to extend the hierarchy, subclassing existing
object classes to create new classes.

The Workplace Shell therefore brings both the end user and the application
developer closer to the concept of direct object manipulation, and allows
exploitation of the class-based theory of object-oriented programming. The
Workplace Shell application model, along with the creation and manipulation of
Workplace Shell objects, is described in detail in Chapter 7, "Workplace Shell
and the System Object Model.”

1.5 Summary

Presentation Manager facilitates the implementation of an event-driven,
object-action user interface and provides predefined constructs that enable a
consistent, intuitive user interface for multiple applications, in line with the
objectives of the Systems Application Architecture Common User Access
component. However, in order to gain the fullest benefit from such an interface,
the application developer must adopt a certain degree of object-oriented
principles in the design and implementation of applications.

In order to support the implementation of an event-driven interface and facilitate
the incorporation of object-oriented design techniques, Presentation Manager
provides an object-based, event-driven execution environment with an
application architecture that conforms closely to object-oriented theory, within
the framework of the Systems Application Architecture Common Programming
Interface. Windows become the handles by which the application references
data objects, and windows communicate with one another and with the user in
an event-driven manner. With the addition of the Workplace Shell in 0S/2
Version 2.0, the user and the programmer may deal directly with objects and
take full advantage of the concept of inheritance.

Benefits to be gained from the adoption of such principles include enhanced
opportunity for code reuse with consequent reductions in development costs,
and easier containment of change through encapsulation and data isolation. As
the programmable workstation becomes more widely utilized as the platform for
line-of-business applications, the importance of sound software engineering
principles in the design and implementation of workstation applications will
increase, in accordance with the requirement to be able to adequately manage
and maintain these applications. 0S/2 and Presentation Manager together with
the Workplace Shell, which extends the paradigm to further exploit
object-oriented concepts, provide a platform for the implementation of such
principles.

It must be emphasized that Presentation Manager provides an application
architecture at the operating system level which supports the implementation of
certain object-oriented software engineering principles, and provides many of
the facilities required by such an approach. However, while Presentation
Manager supports an object-oriented approach to application design, it does not
force the application developer to conform to object-oriented design practices.
Presentation Manager does not provide, nor does it seek to provide, a complete
development environment for object-oriented applications; the provision of such
function is the responsibility of application-enabling products that may reside
and execute in the Presentation Manager environment.

The remainder of this document will further explore the relationship between

08S/2 Version 2.0, Presentation Manager and object-oriented programming, and
examine the techniques by which object-oriented applications may be

Chapter 1. Overview 9

implemented in the Presentation Manager environment, using both the
Presentation Manager and Workplace Shell application models.

10 0s/2 v2.0 Volume 4

Chapter 2. Operating System/2

This chapter briefly explains the differences between the PC DOS and Operating
System/2 (hereafter referred to as 0S/2) environments, and describes the
features and capabilities of IBM 0S/2 Version 2.0. The chapter discusses OS/2’s
retention of compatibility with existing DOS applications, while providing support
for multiprogramming and multitasking, larger memory, multiple concurrent
communications, etc.

2.1 History

IBM and Microsoft** introduced OS/2 in 1987 as a successor to the PC DOS/MS
DOS** operating system? in the programmable workstation environment. In the
years since its inception in the early 1980s, DOS has grown in both capabilities
and sophistication, but by 1987 advanced workstation users were demanding
more sophistication from their applications, to an extent which was beyond the
capabilities of DOS to deliver.

The choice for operating system developers lay between further enhancing the
existing DOS architecture to support more powerful processors, larger memory
and so on, or migrating to a new, more powerful operating system architecture
which offered more facilities to satisfy user requirements, a broader platform for
application development, and potential for future expansion. The latter choice
was taken, and the result was 0S/2.

The OS/2 operating system environment provides a great deal more power and
flexibility than the DOS environment, while maintaining a level of compatibility
with existing DOS applications and data. Enhancements made in 0S/2 Version
1.3 include:

« Effective use of the advanced capabilities of the Intel 80286 processor

+ Support for system memory above 640 kilobytes (KB)

» Support for muitiprogramming and multitasking

+ Dynamic linking for system and application modules.
In addition, numerous other functions are provided to support and complement
these capabilities.

0S/2 Version 2.0 was developed as an extension of the original 16-bit
implementation used in OS/2 Version 1.3, and is an advanced 32-bit muiltitasking
operating system for machines equipped with the Intel 80386 or compatible
processors. The following new features are implemented in 0S/2 Version 2.0:

 Support for the Intel 80386 32-bit microprocessor instruction set; previous
versions of OS/2 only supported the 80386 in 80286 emulation mode.

+ 32-bit memory management with a flat memory model; previous versions of
0S/2 required applications to use the segmented memory model. See 2.3,
“Memory Management” on page 12 for further information.

« Enhanced hardware exploitation.

2 For simplicity, the term “DOS" will be used throughout this document to refer to both the PC DOS and MS DOS products.

© Copyright 1BM Corp. 1993 1"

* Support for multiple concurrent DOS applications with pre-emptive
multitasking and full memory protection.

* Support for Microsoft Windows™* applications.
* New 32-bit programming environment.

* Binary-level compatibility with previous versions of 0S/2, allowing 16-bit
applications written for previous versions to execute under Version 2.0
without modification.

* An enhanced Presentation Manager user shell. known as the Workplace
Shell, which implements the 1991 IBM Systems Application Architecture CUA
Workplace Environment.

The remainder of this chapter describes the features of 0S/2 Version 2.0, and
also makes reference to architectural features implemented in previous versions
of O8/2 where appropriate.

2.2 Intel 80386 32-Bit Microprocessor Support

The basis for OS/2 Version 2.0 is its support for the Intel 80386 microprocessor;
previous versions of 0S/2 were developed for the Intel 80286 processor, and
supported the 80386 in 80286 emulation mode only. Full support of the 80386
means that a powerful set of 32-bit features now becomes available to the
operating system and applications, including enhanced memory management
and more sophisticated multitasking capabilities. The Intel 80386 and 80486 offer
significant improvements over the previous generation of 16-bit microprocessors,
while retaining compatibility with these processors.

The memory addressing capacity of the 80386 processor is significantly greater
than that of the 80286:

* 4 gigabyte (GB) physical address space; this compares with the 640 kilobyte
(KB) address space of DOS and the 16 megabyte (MB) address space of
08/2 Version 1.3.

* 64 terabyte (TB) virtual address space; DOS does not support virtual
memory, and OS/2 Version 1.3 supports 2 GB of virtual memory.

* 1 byte to 4 gigabyte memory objects; this compares with a 64 KB maximum
size under DOS or 0S/2 Version 1.3.

08/2 Version 2.0 uses many of these processor features and capabilities to
provide a more powerful and flexible operating system platform. Note that 0S/2
Version 2.0 does not implement the full 64 TB virtual address space provided by
the 80386, since this requires use of the segmented memory model; 0S/2
Version 2.0 uses a flat memory model, as described in 2.3, “Memory
Management.”

2.3 Memory Management

12 0s/2 v2.0 Volume 4

Memory management is the way in which the operating system allows
applications to access the system’s memory. This includes the way in which
memory is allocated. either to a single application or to be shared by multiple
applications. The operating system must check the amount of memory available
to an application. and must handle the situation where there is insufficient free
memory to satisfy an application’s requests.

Memory management under DOS and OS/2 Version 1.3 was achieved using units
of memory known as segments, which could be from 16 bytes to 64 KB in size.
The memory model implemented by these operating systems was therefore
known as a segmented memory model. The use of data structures larger than
64KB required the use of multiple segments, the management of which was the
responsibility of the application. This led to increased size and complexity, and
reduced performance in applications which handled large data structures.

In OS/2 Version 2.0, memory management has been enhanced to provide a flat
memory model, which takes advantage of the 32-bit addressing scheme provided
by the Intel 80386 architecture. This means that through memory management,
the system’s memory is seen as one large linear address space of 4 GB.
Applications have access to memory by requesting the allocation of memory
objects. Under 0S/2 Version 2.0, these memory objects can be of any size
between 1 byte and 512 MB. The use of a flat memory model removes the need
for application developers to directly manipulate segments, thereby simplifying
application development and removing a significant obstacle in porting
applications between 0S/2 Version 2.0 and other 32-bit environments such as
AIX*.

0S/2 Version 2.0 manages memory internally using pages, each of which is 4 KB
in size. Each memory object is regarded by the operating system as a set of
one or more pages. For practical purposes therefore, memory is allocated in
units of 4 KB, although a page may be broken down into smaller parts and may
contain multiple memory objects.

One of the useful aspects of paged memory is the way in which memory
overcommitment is handled; that is, what happens when there is no more real
memory left to load applications or satisfy a request for memory from an
application. Under OS/2 Version 2.0, individual pages may be swapped to and
from disk storage, rather than entire memory objects. This improves swapping
performance, particularly when large memory objects exist in the system. The
fixed page size also improves swapping performance since the operating system
need not be concerned with moving memory objects about in order to
accomodate the various object sizes, as was the case with previous versions of
0s/2.

For a more detailed discussion of memory management under OS/2 Version 2.0,
readers should refer to 0S/2 Version 2.0 - Volume 1: Control Program.

2.4 Multiprogramming and Multitasking

A multiprogramming operating system allows the concurrent execution of
multiple applications in the same machine. A multitasking operating system is
an extension of the multiprogramming concept, which distributes processor time
among multiple applications by giving each application access to the processor
for short periods of time. OS/2 implements both multiprogramming and
multitasking.

Multitasking may be supported in two forms:

» Cooperative multitasking requires the active support of applications running
in the system, which must explicitly relinquish control of the processor to
allow other applications to execute. This form of multitasking is unreliable

Chapter 2. Operating System/2 13

and frequently leads to poor performance, since an ill-behaved application
can monopolize the processor.

* Pre-emptive multitasking uses a scheduler as part of the operating system;
the scheduler is responsible for selectively dispatching and suspending
multipie concurrent tasks in the system. This form of multitasking is more
sophisticated, typically leads to greater overall system throughput. and
allows implementation of priority dispatching schemes for various tasks.

Numerous mechanisms exist for providing multiprogramming support under
DOS; these include products such as Microsoft Windows. However. since such
facilities are ultimately dependent upon the single-tasking architecture of the
DOS operating system, they typically provide only limited multitasking
capabilities; where pre-emptive multitasking is supported, schedulers are
typically primitive and performance is relatively poor. Pre-emptive multitasking
is not possible during input/output operations, since these operations are
performed by the single-tasking DOS operating system.

0S/2 provides pre-emptive multitasking under the control of the operating
system, which is designed to use the multitasking protected mode of the Intel
80286 and 80386 processors. 0S/2 implements a pre-emptive task scheduler
with a multi-level priority scheme, which provides dynamic variation of priority
and round-robin dispatching within each priority level. The dynamic variation of
priority is achieved on the basis of current activity, and is intended to improve
overall system performance and ensure that the system as a whole responds
adequately to user interactions. For circumstances where dynamic variation of
priority is inappropriate, the dynamic variation may be disabled using a
command in the CONFIG.SYS file, and task priority then becomes absolute. In
either case, task priority may be set and altered dynamically using a number of
operating system functions available to 0S/2 application programmers.

The management of tasks executing in the system is further simplified and
streamlined under OS/2 Version 2.0. This is due primarily to the fact that
support for processes executing in real mode (such as the DOS Compatibility
Box in OS/2 Version 1.3) is no longer required, since the execution of DOS
applications is supported using virtual DOS machines which run as protected
mode processes. See 2.5, “DOS Application Support” on page 18 for further
information.

2.4.1 Application Support

14 0s/2 v2.0 Volume 4

0S/2 Version 2.0 supports concurrent execution of the following types of
applications:

* DOS applications, in full-screen mode or in windows on the Presentation
Manager desktop

* Microsoft Windows applications, in windows on the Presentation Manager
desktop

* 16-bit 0S/2 applications developed for previous versions of 0S/2
¢ New 32-bit applications developed for 0S/2 Version 2.0.

All applications execute as protected mode processes under 0S/2 Version 2.0,
and are therefore provided with pre-emptive multitasking and full memory
protection; each application is isolated from other applications and from the
08/2 Version 2.0 operating system itself.

2.4.2 Processes and Threads

The term task (as in multitasking) refers to a hardware-defined task state. While
08/2 supports multitasking. it does not directly use the concept of a task as
defined by the Intel 80386 processor architecture. Instead, OS/2 makes a
differentiation between processes and threads.

2.4.21 Processes

A process is most easily defined as a program executing in the system. Since it
is possible for a single program to be invoked multiple times in a multitasking
system such as 0S/2. muitiple processes may be executing the same program,
and each such process is known as an execution instance of the program. A
process owns system resources such as threads, file handles etc, and a memory
map that describes the region of memory owned by that process. Since each
process owns its own resources and memory map, which are administered by
the operating system on behalf of the process, the resources of one process are
protected from access by any other process. In situations where communication
between processes is required, 0OS/2 provides a number of architected
mechanisms by which they may be achieved. These mechanisms are described
in 2.4.3, “Interprocess Communication and Synchronization” on page 16.

2.4.2.2 Threads

A thread is the unit of dispatching for the operating system’s scheduler, and
therefore equates closely with the notion of an 80386 task as defined by the
processor architecture. Each thread is owned by a process. and a single
process may have multiple threads. When a process is created, one thread
(known as the primary thread) is always created to run the code specified in the
process creation system call. Thus a process always has at least one thread.
Secondary threads are often used to perform lengthy operations such as
document formatting. remote communications etc, thereby allowing the primary
thread to continue interaction with the user. Secondary threads may be created
and terminated at any time during execution of a process. When the primary
thread of a process is terminated, the process itself terminates.

A thread executes for a short period of time before the operating system’s
scheduler preempts the thread and gains control. The scheduler may then
determine that there is some other thread that ought to run; if so, the scheduler
saves the task state of the current thread and dispatches the new thread, which
executes for a period of time until it too is preempted and control returns to the
scheduler.

0S/2 Version 2.0 supports up to 4096 threads within the system. Note that this
limit includes those threads used by the operating system and by applications
executing under operating system control. such as the print spooler. The
number of threads available to applications will therefore be somewhat less than
4096.

Since each thread is owned by a process, all threads within that process share
the resources and memory map belonging to that process, and thus have access
to those resources. OS/2 does not protect memory resources from being
accessed by multiple threads within the same process: this is the responsibility
of the application developer. However, OS/2 provides a number of architected
mechanisms to aid the application developer in maintaining the integrity of the
application’s resources.

Chapter 2. Operating System/2 15

2.4.3 Interprocess Communication and Synchronization

16 0s/2 v2.0 Volume 4

Since 08/2 provides support for concurrent execution of multiple processes, with
memory protection between these processes, it must also provide mechanisms
to facilitate synchronization and communication between different processes and
threads executing in the system, which may wish to share data and control
information. OS/2 provides a number of such mechanisms, as follows:

e Shared memory

* Queues

Pipes (both named and anonymous)
* Presentation Manager messages
* Semaphores.

These mechanisms allow application developers to implement applications using
multiple processes or threads, while retaining the ability to communicate data
and control information in a controlled manner, and to achieve synchronization
between various components of an application.

2.4.3.1 Shared Memory

The O8/2 memory management architecture utilizes the protect mode of the Intel
80386 processor to achieve memory isolation between processes. A process
has addressability only to its own memory objects. However, in certain
circumstances processes may wish to communicate and pass data to each
other; 0S8/2 allows this by the use of shared memory objects. Shared memory
objects are dynamically requested from the operating system by the application
during execution, and are flagged as shareable by 0S/2. It is the responsibility
of the applications concerned however, to correctly synchronize the flow of data
between processes. 0S/2 provides a number of mechanisms by which this
synchronization may be achieved. Shared memory and its usage is discussed in
the IBM 0S/2 Version 2.0 Application Design Guide.

2.4.3.2 Queues

Queueing system calls are implemented. by a system service routine that uses
shared memory and semaphores (see below) for serialization. A queue is
created by a process that then becomes the owner of that queue; only the
owner may read from the queue. Other processes may write to the queue, but
only the owner may look at elements on the queue, remove elements from the
queue, purge or delete the queue. Queues may be specified with FIFO {first-in,
first-out) or LIFO (last-in, first-out) dispatching priority.

A queue has a name, similar to a file name, by which it is known to both
processes and by which it is referred to when the queue is first accessed by a
particular process. A series of operating system functions is provided by 0S/2
to create and access queues. Queues are discussed in detail in the IBM 0S/2
Version 2.0 Application Design Guide.

2.4.3.3 Pipes

A pipe is a FIFO data structure that permits two processes to communicate using
file system l/O calls. The first process writes data into the pipe and the second
process reads the data from the pipe. However, the data is never actually
written to an external file, but is held in a shared area in memory.

A pipe may be named, in which case it has a name similar to a file name which
is known by both processes, or it may be anonymous in which case read and

write handles to the pipe are returned by the operating system when the pipe is
created. It is then the responsibility of the creating process to communicate
these handles to other threads or processes.

The creation of pipes is achieved using a number of O8/2 function calls; once
created, pipes are then accessed using file system I/0 functions. Pipes and their
manipulation are discussed in the IBM 0S/2 Version 2.0 Application Design
Guide.

2.4.3.4 Presentation Manager Messages

in the OS/2 Presentation Manager programming environment, application
routines known as window procedures communicate by receiving messages
from one another and from Presentation Manager itself. Messages may be
passed between window procedures executing in the same thread, between
different threads in a process, or between processes.

Messages may be used to pass data between routines executing in different
threads or processes, or to communicate events in order to achieve
synchronization between threads and/or processes. Presentation Manager
messages may be used to invoke processing routines in either a synchronous or
asynchronous manner. The Presentation Manager messaging model conforms
closely to object-oriented programming practices, and is described further in
Chapter 4, “The Presentation Manager Application Model.”

24.3.5 Atoms

Where character strings must be passed between threads, it is relatively simple
to pass a pointer to the character string, since all threads within a process share
access to memory objects. Where strings must be passed between processes
however, more complex methods such as shared memory must normally be
used. OS/2 provides a way to simplify the passing of strings between processes,
using atoms.

An atom is effectively a “handle” to a string that is stored in an area of shared
memory known as an atom table. Atom tables are maintained by the operating
system, and may be private to a particular process or shared by all processes in
the system. OS/2 creates a system atom table at system initialization time,
which is accessible by all processes in the system.

A process may add a string to an atom table, and obtain an atom that may
subsequently be used to access the string. Atoms that reference strings in the
system atom table may be passed between processes using any of the methods
described in the foregoing sections, and used by another process to obtain the
contents of the string.

2.4.3.6 Semaphores

0S/2 applications may be implemented using multiple threads within one or
more processes. Within a single process, the 0S/2 memory management
architecture provides no memory protection for different threads, and hence
multiple threads may have addressability to the same data areas. It is important
that the integrity of resources such as common data areas or files, shared
between threads, be protected at all times. Such resources must be accessed in
a serialized fashion. Although OS/2 provides no automatic protection for data
resources between threads within a process, 0S/2 allows an application to
achieve this serialization of access by using semaphores.

Chapter 2. Cperating System/2 17

A semaphore is a data structure that may be “owned” by only one thread at any
time. Semaphores may be used as flags by an application, to indicate that a
data resource is being accessed. A thread may request ownership of the
semaphore; if the semaphore is already owned by another thread, the requesting
thread is blocked until the first thread releases it.

08/2 Version 2.0 provides a number of different types of semaphores, to be used
in different circumstances:

* Mutex semaphores provide mutually exclusive access to a particular
resource such as a shared memory object. These semaphores offer a useful
means of synchronizing access to such resources between different threads
Or processes.

* Event semaphores are used to signal system or application events. These
semaphores provide a means of signalling events to other threads or
processes, allowing such threads to suspend their execution and “wait” for a
particuiar event to occur.

* MuxWait semaphores may be used when waiting for multiple events to occur
or multiple mutex semaphores to clear.

Within these semaphore types, OS/2 Version 2.0 provides both private and
shared semaphores. The system semaphores and RAM semaphores provided by
previous versions of 0OS/2 are also supported, retaining compatibility with
applications developed for previous versions of the operating system. Each
process in the system may have up to 65535 private semaphores, and there may
be up to 65535 shared semaphores in the system.

08/2 Version 2.0 provides a number of operating system functions allowing the
creation and manipulation of semaphores. Semaphores are discussed in the
IBM 0OS/2 Version 2.0 Application Design Guide.

2.5 DOS Application Support

18 0s/2 v2.0 Volume 4

0S/2 Version 1.3 provides the capability for a single DOS application to be
executed in the system using a facility known as the DOS Compatibility Box. The
DOS application executes in real mode, and is automatically suspended if the
DOS Compatibility Box is switched to the background; that is, pre-emptive
multitasking is not supported in the DOS Compatibility Box under 0S/2 Version
1.3.

08/2 Version 2.0 provides the capability to pre-emptively multitask DOS
applications along with 0S/2 applications, using the Multiple Virtual DOS
Machines feature of 0S/2 Version 2.0. The DOS support has been totally
rewritten in OS/2 Version 2.0 and allows multiple concurrent DOS applications
where each is executed as a single-threaded, protected mode OS/2 program.
This method of implementation provides pre-emptive multitasking for DOS
applications, and allows normal 0S/2 levels of memory protection; that is, it
provides isolation of system memory and other applications, protection from
illegal memory accesses by ill-behaved applications, and the ability to terminate
sessions where applications are “hung.”

DOS support is achieved through the use of virtualization techniques, allowing
the creation of multiple instances of separate, independent virtual DOS
machines. Through this technique, a virtual interface is provided to each DOS

machine, giving the impression that each application owns all of the required
resources, both hardware and software.

Each virtual DOS machine has more memory than the DOS Compatability Box
implemented in previous versions of 08/2, and 0S/2 Version 2.0 supports the
use of Lotus**-Intel-Microsoft (LIM) expanded memory (EMS) and extended
memory (XMS) to provide additional memory for those DOS applications that are
capable of using such extensions. 08/2 Version 2.0 maps this extended or
expanded memory into the system’s normal linear memory address space, and
manages it in the same manner as any other allocated memory.

The ability of a virtual DOS machine to run within a Presentation Manager
window provides immediate productivity gains to existing DOS applications,
since they may utilize Presentation Manager desktop features. These features
include window manipulation and the ability to cut/copy/paste information
between applications using the clipboard.

Application compatibility in the virtual DOS machine is also enhanced over
previous versions of 08/2. The virtual DOS machine can be used to execute
DOS-based communications applications and other applications that address
hardware 1/0 devices, through the use of virtual device drivers that map the
device driver calls from the applications to the appropriate physical device driver
within the operating system. Applications using hardware devices that are not
required to be shared with other applications in the same system may be
accessed using the standard DOS device drivers, without the need for a virtual
device driver. Certain restrictions still apply with respect to communications line
speed and time-critical interrupt handling.

For applications that require specific versions of DOS in order to operate, 0S/2
Version 2.0 provides the capability to load a physical copy of that version into a
virtual DOS machine. This provides compatability for those applications that

internally manipulate DOS data structures or that use undocumented interfaces.

Application compatability in a virtual DOS machine is further enhanced by the
DOS settings feature, which allows virtual DOS machines to be customized to
suit the requirements of the applications running in them. Properties such as
video characteristics, hardware environment emulation, and the use of memory
extenders can all be customized using this feature.

Multiple Virtual DOS Machines is described in more detail in OS/2 Version 2.0 -
Volume 2: DOS and Windows Environment.

2.6 Microsoft Windows Application Support

0S/2 Version 2.0 provides the capability for Microsoft Windows applications to
run under 0S/2 Version 2.0, in virtual DOS machines. This support allows
applications written for Windows 3.0 and previous versions of Windows to coexist
and execute concurrently in the same machine.

Each Windows applications executes as a protected mode process. Windows
applications are therefore subject to the full memory protection facilities
provided to protected mode applications under OS/2 Version 2.0, and are
protected from one another and from DOS or 0S/2 applications executing in the
system. This is in contrast to the native Windows 3.0 environment, where limited

Chapter 2. Operating System/2 19

protection is provided for Windows 3.0 applications, and none at all for DOS
applications unless Windows is running in enhanced mode.

The execution of Windows applications as protected mode tasks also allows
these applications to take full advantage of the pre-emptive multitasking
capabilities of O8/2 Version 2.0, with full pre-emptive multitasking between
Windows applications, DOS applications and 0S/2 applications. This is again in
contrast to the native Windows 3.0 environment, where pre-emptive multitasking
is available only for DOS applications, only when Windows 3.0 is running in
enhanced mode, and only when no input/output operations are being performed,
thereby impacting performance and preventing many applications written for
previous versions of Windows from executing. 0S/2 Version 2.0 has no such
restriction.

As with DOS applications, Windows applications may make use of EMS and XMS
memory extenders in order to access memory above 640 KB. This support is
provided in an identical manner to that provided for DOS applications.

Support for Microsoft Windows applications under OS/2 Version 2.0 is discussed
in more detail in 0S/2 Version 2.0 - Volume 2: DOS and Windows Environment.

2.7 Dynamic Linking

20 0s/2 V2.0 Volume 4

08/2 system services are requested by application programs using function
calls; the external code references generated by such calls are resolved when
the program is loaded or when the segments of the program are loaded, rather
than at link-edit time. This deferred resolution of external references is known
as dynamic linking, and is available to applications, which may incorporate their
own routines into dynamic link libraries (DLLs).

Dynamic linking may be achieved in two ways under OS/2;

* Load-time dynamic linking resolves external references within a code
segment at the time the segment is loaded into memory.

* Run-time dynamic linking postpones the resolution until the actual execution
of the code, at which time the appropriate module is explicitly loaded and
invoked by the application.

Load-time dynamic linking is the simplest mechanism; as already mentioned,
08/2 system services are implemented in this way. Load-time dynamic linking
is used whenever an application developer wishes to provide common services
that may be used by multiple applications, and which are implemented
independently of the applications that will use them. Run-time dynamic linking is
used where particular routines may or may not be used by an application, and
thus should not be loaded into memory unless required. If an application
requires that such a routine be executed, the application may then explicitly ioad
the routine and execute it.

Dynamic linking provides an architected method of extending the services of the
operating system; all of the application programming interfaces supported by
0S/2 are implemented using dynamically linked modules. An application
developer may use the same facilities to create his or her own dynamically
linked modules to provide additional services or standard routines that may be
used by applications executing in the system.

Dynamic linking is of benefit in that routines contained in DLLs are completely
independent of application code, and may be modified without the need 1o re-link
applications. In this way, DLLs contribute to the containment of change within
applications. In addition, the contents of DLLs are not limited to application
code. Presentation Manager resources such as icons, bitmaps, graphics fonts,
window definitions etc, may be generated and stored in a DLL for subsequent
use by applications. See Chapter 9, “Presentation Manager Resources” for a
further discussion of Presentation Manager resources. DLLs thus provide a
powerful mechanism for the creation of reusable modules for both full-screen
and Presentation Manager applications.

Secondly, the creation of DLLs as re-entrant routines reduces the storage
requirements for 0S/2 applications, since multiple applications may make use of
the same memory-resident copy of a DLL. This re-entrancy and reusability, in
conjunction with the code independence gained by using a DLL, makes the DLL
a useful vehicle for implementation of standard service routines, which may be
accessed by any application or process within the system. This contributes to
standardization within the business organization, which in turn can result in
improved productivity and reduced maintenance effort since the code to
implement a particular function need reside in only one location.

Note that a DLL is not a process under OS/2. The re-entrant nature of a DLL
allows multiple applications to use the same memory-resident copy of the code;
however, each instance executes under the control of the process that invoked it.

2.8 Summary

0S/2 provides the programmable workstation platform for the delivery of
Systems Application Architecture application functionality in the standalone
workstation and cooperative processing environments. 0S/2 overcomes the
limitations of the DOS operating system by providing support for large physical
and virtual address spaces and supporting concurrent execution of multiple
applications with memory isolation and automated task dispatching. While
enforcing memory protection between applications, 0S/2 provides architected
mechanisms to allow interprocess communication and data sharing in a
controlled manner.

08S/2 also provides compatibility with existing DOS applications, since 0S/2
Version 1.3 allows a single DOS application to run using the DOS Compatibility
Box, and OS/2 Version 2.0 allows multiple concurrent DOS applications to
execute in virtual DOS machines. 08/2 Version 2.0 also supports Microsoft
Windows applications in a similar manner to DOS applications. This allows
users of OS/2 systems to continue to use their existing DOS and Windows
applications under the new operating system.

0S/2 also implements dynamic linking, which allows an application developer to
isolate common application services in separate modules known as dynamic link
libraries (DLLs). Calls to application services provided in a DLL are resolved at
execution time, which means that any modifications to the routines contained in
a DLL do not require any maintenance to applications using that DLL. In
addition, DLLs are created as re-entrant code, thus allowing multiple
applications to use the same memory-resident copy of the DLL code and thereby
reducing storage requirements.

Chapter 2. Operating System/2 21

22 0S/2 V2.0 Volume 4

0OS/2 provides an operating system environment for the programmable
workstation that enables a far greater degree of functionality and sophistication
on the part of application programs. 0S/2 Version 2.0 provides architected
methods for overcoming most of the inherent limitations of the DOS and 0S/2
Version 1.3 environments, and providing the workstation user with a higher level
of capability in the workstation. 0S/2 provides the vehicle that will enable the
fulfillment of the Systems Application Architecture cooperative processing
direction.

Chapter 3. Object-Oriented Applications

This chapter provides a brief overview of some concepts involved in
object-oriented application design and programming, and the way in which this
approach differs from traditional top-down functional decomposition. It is not
intended as an indepth analysis of object-oriented programming, since such a
task is beyond the scope of this document, but serves merely to provide a
background against which the implementation of object-oriented principles under
Presentation Manager may be discussed.

3.1 Object-Oriented Concepts

Object-oriented application design places the focus of an application on the
logical entities or objects (typically items of data) upon which a program will
operate, and attaches procedures or routines to manipulate these objects. A
logical data entity (such as a group of records) may have multiple
representations within the system. Each of these representations is known as a
data object, and each data object may have a finite set of actions performed
upon it. The data object itself, along with the routines (known as methods) used
to perform these actions, are together regarded as an application object.

Note that in the remainder of this document, the term data object will be used to
denote a particular representation (for example, on the screen or in a disk file) of
a logical data entity. The term application object will be used to denote the
conjunction of a data object and its methods. While these terms are not in
general use, they will be used here in order to provide a distinction between a
data item, and the conjunction of that data item and the routines that act upon it.

Application objects typically respond to events, which originate outside the
object and which may be system-initiated or user-initiated. The sequence of
these events determines the sequence of operations within the application, and
the progression of dialog between the application and the user, rather than the
application determining the sequence of the dialog, as is traditionally the case.
Such an object-oriented application environment is thus said to be event-driven.

Events are communicated to an application object by means of a series of
defined messages, which are not considered to be part of the objects between
which they are passed. The focus of the program thus becomes the object,
rather than the procedure, and the program becomes a flow of messages
between cooperating objects.

Actions on a data object should be possible only by sending messages to the
associated application object; an object’'s methods should not be directly
accessible from another object, nor should the behavior of an object be
dependent upon any external source other than the messages it receives. A
message should also specify only the action that is to be carried out, and not the
way in which it is to be accomplished. It is the responsibility of the receiving
object to determine the way in which to carry out a requested action.
Consequently, the behavior of an application object may differ, depending upon
the class and content of its input messages. A coroliary of this statement is that
the result of passing the same message class may vary, depending on the target
object class and its interpretation of that message. These guidelines outline the
concept of polymorphism.

© Copyright iIBM Corp. 1993 23

24 072 v2.0 Volume 4

One of the primary properties of an application object is its modularity; objects
that obey the foregoing rules should be largely independent of one another, and
the implementation of one object should not be dependent upon the internal
details of another. Data belonging to an application object should be accessible
only by that object; requests for access by other objects should be made via
appropriate messages sent to the application object that “owns” the data object.
Thus the only information necessary to use an application object is a knowledge
of the messages it can receive and operate upon (through its methods). This
rule encompasses the principle of encapsulation, which states that a data object
should be defined, created and/or accessed solely from within its “owner”
application object.

Since a number of application objects may exist with similar characteristics,
such objects are usually grouped into object classes. A class consists of those
objects that share similar properties and methods. An object class is typically
associated with a single data object or type of data object, and has a defined,
finite set of methods associated with it. It is the class that normally defines the
messages and methods applicable to an object. Each object belonging to a
particular class is then known as an instance of that class. Each instance
inherits data objects and values defined for its class, and may also contain its
own data, known as instance data; the properties of instance data are typically
obtained from the definition of the object class, but the values are defined
uniquely by each instance.

The object-oriented approach is most suited to situations where the purpose of
the application is the manipulation of data, whether on the screen or in a data
file, and where the exact sequence of actions is not critical, provided all
necessary actions are carried out. The focus of an object-oriented application is
the data objects that are being manipulated: the functions to be performed are
subordinate to the data objects upon which they will act. In addition, the
event-driven user interface places the user in control of the sequence of actions,
and provides flexibility with respect to the way in which the desired result is
achieved.

An advantage of the object-oriented design approach for data manipulation
applications is that a particular data object is “owned"” by one application object,
and that the definition of and establishment of access to that data object is
achieved from within the application object. Since application objects may be
made relatively independent of one another, other objects may be isolated from
changes to the data structure. This greatly simplifies application maintenance,
since all necessary changes need only be made within a single object.

Note that since application objects are closely related only to their associated
data objects, and not to the applications from which they are accessed, it follows
that application objects may be constructed for each data object, and accessed
from multiple applications. An application need not be aware of the internal
workings of an application object, but need only know the correct type and
format of the messages through which to interact with the object. Thus the
object-oriented approach facilitates code reusability.

3.1.1 Object-Oriented vs Functional Decomposition

Under a traditional functional decomposition approach to program design, often
referred to as structured programming, the function or procedure is the unit of
modularity; programs are designed and implemented by placing a number of
well-defined procedures in a particular order, and executing these procedures to
achieve a desired result. The focus of the design is the procedure or action to
be performed. Objects such as data structures are attached to procedures and
passed between them using parameters. A user typically selects an action to be
performed, and then selects or enters a data object upon which to perform that
action.

Function B

Figure 1. Program Flow - Functional Decomposition Approach

The functional decomposition approach is best suited to situations where the
procedure is necessarily the focus of the application (for instance, a process
management application), and where the correct sequencing of operations to be
performed is a crucial factor in the successful execution of the required task.
Under this approach, the application defines the sequence of actions which the
user performs; that is, the application controls the user interface.

In an object-oriented approach, the application object is the unit of modularity.
Application objects communicate with each other and pass messages containing
actions to be performed. Object-oriented programming is hence the conceptual
inverse of functional decomposition, and is a logical extension of the industry
trend toward data-centric application design.

Figure 2. Program Flow - Object-Oriented Approach

Chapter 3. Object-Oriented Applicaticns 25

This is not to say that an object-oriented application should not be structured.
Although such an application consists of objects that are largely independent of
one another in programming terms, normal structured coding techniques should
be followed in the creation of the methods within each application object.

The object-oriented approach also requires firm management of the application
development process in order to achieve the greatest possible level of
productivity through code reuse. Administration and control of existing objects is
vital in order to allow application developers to access and use these objects in
their applications. Management of the application development process is
discussed in greater detail in Chapter 18, "Managing Development,” and the
structuring of application source modules in order to provide optimal granularity
is described in Appendix B, “Application Program Construction.”

While it is possible for an application designed according to functional
decomposition principles to implement some of the characteristics of
object-oriented applications such as message passing, such applications should
not be regarded as truly object-oriented. If the design approach centers on
procedures rather than data objects, then the application is designed along
functional decomposition guidelines. In this case, message passing is merely a
replacement of the normal subroutine call mechanism, and does not significantly
affect the structure of the application.

3.1.2 Class-Based vs Module-Based

26 0s/2 V2.0 Volume 4

The notion of object classes, and the extent to which this concept is taken,
provides the distinguishing factor between two primary schools of thought within
the object-oriented paradigm. Under a class-based approach, objects are
defined in terms of their class, and each class is defined in terms of other
previously defined classes, the properties and methods of which are
automatically conveyed upon the new class; this is known as the principle of
inheritance.

For example, the object class "horse” may be defined as a sub-class of the
object class “quadruped,” with the additional properties of being able to be
ridden and eating grass. A further object class “pony” may then be defined as
being a sub-class of the class “horse,” with an additional upper limit on size.
While this is a somewhat frivolous example, it illustrates the principle that an
object class is defined in terms of other object classes, and need only explicitly
define those properties and methods that are unique to that object class. All
other properties and methods are inherited from its parent class or classes.
This introduces the concept of an inheritance hierarchy, in that an object inherits
not only the properties and methods of its class, but also those of other classes
by way of which that class was defined.

The major advantage of such an inheritance hierarchy is that, given a
well-documented set of existing objects, it becomes extremely easy to create
new object classes, simply by defining the new class in terms of other classes
that already exist, and simply specifying any new or different properties or
methods that apply to the new class. This of course assumes the use of
adequate object documentation and management practices. Without such
practices, it becomes difficult if not impossible to identify a suitable base object
from a large library of existing object classes.

However, many existing implementations of the class-based approach extend the
inheritance hierarchy to a great degree, such that almost all imaginable object

classes are defined in terms of parent object classes. While this provides a
unified approach to the problem of object definition, the significant disadvantage
of such an approach is the increased level of interdependence between objects.
The unit of modularity becomes the complete hierarchy rather than the individual
object, since an object has no complete definition in its own right. The reuse of
a single object therefore requires the inclusion of its complete parent hierarchy.
Since it is typical for this parent hierarchy to be defined dynamically using
run-time definitions for parent classes rather than defined statically at
application generation, it is also possible for changes to a parent class to cause
unforeseen side-effects in the behavior of descendant object classes. Thus
inheritance hierarchies require careful management to ensure that such side
effects do not occur and adversely affect the integrity of applications and data.

Where the inheritance hierarchy is taken to the extent of providing
system-defined object classes, to which all application-defined object classes are
linked, the hierarchy and thus the application is dependent upon the existence of
a virtual machine conceptual environment, which must also be accepted along
with the hierarchy. This in turn may result in significant penalties in terms of
application efficiency and run-time performance.

A module-based approach to object-oriented programming defines each object
as complete in its own right. Objects may still be grouped into classes for easier
definition and processing, but each class possesses its own complete set of
properties and methods, and is not dependent upon another class for a part of
this definition. The primary advantage of the module-based approach is the
increased level of independence between objects, with a finer degree of
granularity in the application allowing object reuse with a lower level of
overhead. The main disadvantage of this approach is that each object class
must be completely defined, requiring more work on the part of the application
developer at the time the object is created.

The concept of inheritance, while providing great potential for productivity
enhancement during the application development process, must be carefully
managed in order to avoid additional complications in application management
and maintenance due to object interdependencies. Side effects arising from
modification to parent object classes may adversely affect the integrity of an
application. The alternative course of action, that of prohibiting the modification
of existing objects in favor of creating new objects that inherit only the
unmodified properties of the existing object, is often not viable due to the
increased application overhead and managerial effort required to maintain and
control an ever-expanding inheritance hierarchy. Reliance on the behavior of
existing objects must therefore be viewed with extreme caution in the absence of
effective management controls over object modification.

The increase in development productivity provided by the use of inheritance may
often be offset by the increased time and effort spent in regression testing of
existing applications in order to determine any effects on these applications
caused by the modification of existing object classes. Tight managerial controls
over development must therefore be maintained in order to identify and isolate
those existing object classes that are modified and which are likely to affect
existing applications.

One technique that can be used to minimize the impact on existing applications
is for the development organization to adopt a standard whereby, once an
application object is deployed in a production environment, new applications that

Chapter 3. Object-Oriented Applications 27

use the object may only madify its behavior through the use of subclassing (see
3.1.3, “Subclassing” on page 28). This means that the object itself is not
modified, and other applications that use the object are not affected.

3.1.3 Subclassing

28 05S/2 v2.0 Volume 4

As already mentioned, the object-oriented approach facilitates the reuse of
application code; generic objects may be created and used by multiple
applications to perform actions upon the same data object or type of object.
However, one of the criticisms often levelled at this capability is that it becomes
impossible to foretell the total set of actions that may ever be required with
respect to a particular data object, and that an object is therefore never truly
reusable.

The object-oriented approach overcomes this difficulty by providing a way for
applications to modify the behavior of existing application objects without
modifying the objects themselves; this is known as subclassing the object. A
subclass application object is composed of a data object definition and a certain
number of methods to manipulate that object. The subclass application object
may contain methods that are not contained within the original application object
created for that data object, or methods that are modified in some way from
those contained in the original object. In this way a subclass application object
may add new methods to perform actions which are not performed by the
original object class, or to handle certain types of message in a different way
than that normally carried out by the original object class.

Actual Message Path

Figure 3. Subclassing an Application Object

When an application object has been subclassed, all messages intended for that
object are directed to the subclass application object first. The sending object
need not be aware that the message has been diverted. If the subclass
application object does not contain a method to deal with a particular message,
it should then pass the message on to the original application object, for
processing by one of that object’s methods. The original application object
receiving a message in this way should also be unaware that it has been
subclassed.

A useful application of the subclassing principle occurs when a generic
application object is defined and stored away for use by many applications,
taking advantage of the reusability aspects of the object-oriented approach.
Where one application wishes to perform a particular action in a slightly different
manner than that performed by the methods associated with the generic object,
a subclass application object may be created containing a new method for that

specific action only, and passing all other messages to the original application
object for regular processing. It can be seen that subclassing is a technique for
application of the concept of inheritance, through its ability to transparently add
properties and methods to existing objects.

Subclassing also provides a way to overcome the danger of inadvertently
impacting the behavior of other applications by modifying an existing application
object. If a standard is adopted whereby existing application objects in a
production environment may only be modified through subclassing, such
changes do not impact applications using the original object or which may
themselves have subclassed that object. In this way the need for regression
testing of affected applications is eliminated, and the degree of
object-management required is significantly reduced.

When a functional requirement may be satisfied by modifying the methods of an
existing application object (through subclassing), a decision must be made
regarding the relative merits of modifying the object, against creating a new
object. Various texts advocate a rule whereby a new object should be created
when more than 10% or 20% of an existing object’s methods must be modified.
However, the decision of whether to modify an existing object or create a new
object must be taken on the basis of object complexity, degree of modification
and experience.

3.2 User View vs Application View

A primary benefit of the object-oriented approach is its intuitive user interface; a
user selects an object and performs a series of predefined actions upon that
object. This object-action style of interface encourages the user to explore the
application through context-sensitive actions, and reduces the overall complexity
of the user’s interaction by reducing the levels of hierarchy required for the
application.

However, the end user may have a different view of an object-oriented
application from that which must necessarily be taken by the application
developer. For instance, in the case of a text editor application editing a file,
there may in fact be two versions of this file; one existing in memory, being
manipulated by the application, and the other stored on a disk. The application
would consider these as two separate data objects, each with its own set of
methods, and would create two application objects.

Normal user interaction would take place with one object {the memory
representation of the file), and when the user-selects a “Save” action for the file,
a message is passed to the second object (the disk representation of the file)
with the information necessary to save updates on disk storage. The user
considers the logical data entity as the object being manipulated, while the
application must distinguish between the representations of that data entity in
various locations within the system. The user’s metaphorical view of the data
object is therefore not carried over to the application’s view, which must by
necessity be more concerned with the reality of that object’'s manipulation.

Note however, that this distinction between representations should not be
apparent to the end user. The end user should perceive a single object (the text
file) upon which he or she would perform actions. Thus there is a distinction
between the user’s view and the application’s view of the objects. An
understanding of this distinction is important in order to comprehend the

Chapter 3. Object-Oriented Applications 29

difference between an object-action user interface and an object-oriented
application design.

Ob]ectOrzented Applicatiqn Design

v

_ Object Oriented Implementation

!

Figure 4. Object-Oriented Development Progression. This diagram shows the
interdependence of object-oriented design, implementation and user interface.

The two concepts are complementary but distinct. An event-driven, object-action
user interface necessarily emerges from an object-oriented application design
and implementation. It is not possible to provide such an interface unless the
application structure conforms to a certain level of object-oriented principles and
practices. This in turn is dependent upon an object-oriented application design.
For this reason, the proper implementation of the graphical user interface
concepts defined in the IBM Systems Application Architecture CUA Advanced
Guide to User Interface Design, requires applications to be designed and
implemented using object-oriented guidelines.

3.3 Object-Oriented Design

30 0s/2 V2.0 Volume 4

The success of object-oriented design lies in the correct and intelligent definition
of application objects and their methods as coherent and independent units. The
secret of a successful approach to this task is the consideration of the data
objects themselves as the focus, rather than the procedures that will operate
upon these objects. Since the objects are typically associated with data, an
entity-relationship model is often a useful starting point.

Correctly-designed application objects facilitate reusability, since the data object
and applicable actions are all defined within the application object. Additional
applications that require manipulation of that data object may use the existing
application object to achieve the required actions. Certain applications may
require additional, unforeseen actions, or that existing actions be carried out in a
different manner; in such cases, subclassing the application object allows such
modifications to be carried out. One of the aims in the high-level design of an
object-oriented application should be to make maximum use of existing
application objects where possible, in order to reduce the design, coding and
testing effort required. This not only reduces the time and expense involved in
application development, but enables application solutions to be delivered in a
shorter time frame, allowing the business enterprise to respond more quickly to
a dynamic marketplace.

The correct definition of application objects and their boundaries also facilitates
change management and maintenance of application code, since changes to a
particular data object should affect only the application object(s) dealing with
that data object. Thus the effects of change are ideally confined to a single
application object. Modifications to a method within an appiication object should
not affect the workings of other objects with which that application object
interacts, provided the external interfaces of that object are not altered by the
modification. This containment of change within a single application object has
the potential. in conjunction with proper configuration management techniques,
to greatly ease the effort and cost involved in application maintenance.

The following steps are necessary in the design of an object-oriented application:

1. Identify the data objects (that is, the different representations of the logical
data entity or entities upon which the application is to operate) and the
relationships between data objects.

2. Determine the set of applicable actions to be performed on each data object.

3. Determine whether application objects have been previously been created
for the data objects to be manipulated by the application, and to what extent
these existing objects perform the required set of actions for each object.

4. Determine the message classes required to achieve the desired
communication and to initiate required actions that are not already satisfied
through existing application objects.

5. Design the methods necessary to carry out the additional actions.

These steps are generic in nature, and must be combined with suitable
management controls, checkpoints and documentation standards to ensure
adequate design quality at each stage in the process.

3.3.1 Object Identification
The identification of data objects and their relationships should begin with the
definition of a normal entity-relationship model, and the extension of this model
to reflect the representations of data objects as well as the logical data entities
involved. The objective should be to achieve an optimal balance between the
number of object classes and the size and complexity of each class, since each
object may itself be composed of other objects, also bearing in mind that
multiple objects of the same class may exist. Optimizing the number of object
classes will allow the number of message classes to be minimized, which in turn
simplifies the design of the methods and the eventual testing of the object
classes.

3.3.2 Action Identification

Having defined the data objects and their relationships, the set of actions
pertaining to each data object should be determined. Once this point is
achieved, the high-level design of the application objects, and therefore of the
application itself, is essentially complete, and should be documented and
approved by all concerned parties before the detailed design of methods
commences. Note that it is not necessary to define all of the applicable actions
for each data object, since the essentially independent nature of methods allows
additional actions to be added to an application object.

Chapter 3. Object-Oriented Applications 31

3.3.3 Search for Existing Objects

Once the data objects and the set of actions required for each object have been
defined, the application designer should determine the existence of any
previously-created application object classes for that type of data object. The
use of existing application objects, with additional actions and methods handled
through subclassing, can significantly reduce the amount of coding required.

The accurate identification of existing application object classes requires that
each application object, upon completing its final testing, must be placed in an
object library, and its external interfaces (both input and output) must be fully
documented and placed in a retrieval system from which the object’s description
may be recalled by designers of future applications. The organization and level
of sophistication of such a system is largely at the discretion of the development
organization, but becomes more crucial as the number of application objects
grows larger over time. It is strongly recommended that any organization
embarking on a strategy of object-oriented application development should adopt
an efficient object library management system from the outset.

3.3.4 Message Definition

When the high-level design is complete, the message classes and their contents
must be defined for each action that will be performed on and by an object.
Note also that the same message class may be used with different object
classes to achieve a different result, in accordance with the principle of
polymorphism, thus reducing the number of defined message classes and
simplifying the design of the application objects and their methods.

The message classes comprise the interfaces between objects, and provide the
input and output for the methods associated with the object. These message
interfaces must therefore be documented to facilitate reusability of the
newly-created application objects by documenting the valid inputs and outputs
for each object class, and the behavior of the object in response to these
messages.

Since the messages received and dispatched by an object constitute the inputs
and outputs required and expected of that object, the documented message
interfaces provide a valuable starting point for developing a test plan for the
object. Since the inputs, actions and outputs are known, a comprehensive set of
test data may then be formulated to test the methods associated with each
action, with both valid and invalid message inputs.

3.3.5 Method Design

32 ©s/2 V2.0 Volume 4

Traditional functional decomposition techniques may then be used in the design
of the methods to complete the required actions. If the high-level design has
been completed correctly, the application objects should be relatively
independent of one another. It should therefore be possible to complete the
development and testing of the methods for each object class as a separate task
with each class, its methods and valid interfaces defined and unit-tested before
the application is brought together for final integration-testing.

3.4 Object-Oriented Implementations

There has been much discussion in the computing industry press concerning
application development products and tools that support the creation of
object-oriented applications. While the use of such products is a valuable aid in
designing and developing an object-oriented application, it should not be
construed tnat their use is essential to the successful impiementation of an
object-oriented approach.

It is quite possible to implement module-based object-oriented principles to a
practical and beneficial degree in the Presentation Manager environment, using
a “conventional” programming language such as "C.” However, the degree of
discipline and amount of work required of the application developer is greater
when a standard programming language is used. Object-oriented tools or
language extensions make the task of the application developer much easier,
since many of the object-oriented concepts are handled by the tools themselves,
without the need for the developer to concern him/herself with the details of their
implementation.

Object-oriented programming tools fall into two general categories:

« Those that provide extensions to an existing programming language and
implement certain object-oriented conventions, such as C+ +. These
languages typically provide object-oriented constructs but do not force an
application developer into the use of such constructs. The strength of such
implementations is their flexibility, but they have the inherent weakness that
it is easy to develop application code that does not conform to
object-oriented programming practices.

» Those that provide a complete programming language syntax, which obeys
and implements object-oriented principles, such as Smalltalk V**. These
languages provide an additional benefit in that they force the application
developer into obeying object-oriented programming practices, but at the
expense of flexibility.

The tools that are marketed as “object-oriented” and which are currently
available in the marketplace tend to implement the class-based approach to
object-oriented programming. Their primary benefit is thus that they provide an
inheritance hierarchy, and so make the task of object creation much easier for
the application developer, albeit at the risk of reduced code efficiency and
possible dependence upon a conceptual run-time environment.

The choice of an object-oriented programming tool is very much an individual
one, and depends on the requirements and priorities of the development
organization, the skills and prior experience of the application developers
concerned, and the degree to which object-oriented practices are to be enforced
within the organization.

3.5 More Complex Objects

For relatively simple applications where a data object is retrieved, manipulated
and saved again, the foregoing definition of an application object will suffice.
However, the situation often arises when an application must perform some
processing that is rather more complicated. Either the application must interface
with another system or external device or a certain work task must be performed
in a particular sequence of operations that is critical to the correct completion of

Chapter 3. Object-Oriented Applications 33

the task. The incorporation of such requirements into the object-oriented
paradigm requires an expansion of the application object concept.

The key to successful expansion of the object-oriented paradigm lies in the
definition of a data object. Whereas a data object was previously defined as a
manifestation of a logical data entity, the definition will now be expanded to
include any other type of logical entity or source of information, such as an
external system or a procedures manual.

3.5.1 Device Manipulation

The entity represented by an application object may be a physical device. For
example, suppose an application is required to access a particular type of
external data input device such as an MICR reader. The definition of the
protocols and specialized access routines necessary to interact with such a
device can be encapsulated within an application object, and the various actions
performed by the device on behalf of the application (such as getting the next
MICR document) then become the methods associated with that object. The
application thus regards the MICR reader as an object to which it passes
messages in order to perform actions; the results of those actions are then
conveyed back to the application, also by way of messages.

3.5.2 Access to Remote Systems

34 0s/2 V2.0 Volume 4

The representation of a physical device as an application object may be
extended to encompass any external entity with which an application must
interact. Suppose that an application executing in a programmable workstation
must interface with a number of server applications executing in a System/370
host, using the SRPI interface. The host system may be regarded as a logical
entity, and a single application object created to interact with that entity. All
communications-related and interface-specific code may then be encapsulated
within that object, and other objects within the application need not concern
themselves with the details of the SRPI communication. A message passed to
the application object by a requesting object elsewhere in the application will
contain the name of the server application to be invoked, and the data to be
passed to the server application. A return message from the host-interaction
object will contain the reply data from the server application.

Input —_— o ”

Message ['Host' ;
Application| -~ ~-1

Outrut .'_:: B o

Message Object

Figure 5. Encapsulation of Host Interaction Within Application Object

The isolation of programming interfaces and protocols specific to the
communications architecture, within the “Host” application object provides an
easy means of insulating the remainder of the application from changes to
communications network configurations or to the remote system itself. Such
changes would only require modification to the “Host” object.

3.5.3 Procedure Manuals

An administrative procedure, which is merely a set of information that
documents the way in which a task must be performed, may also be regarded as
a procedural entity that may be encapsulated in an application object. Such an
application object typically contains a small number of methods, and may
possibly contain only one.

In the case of an object that contains only a single method and merely accepts
data from a calling application object rather than possessing data objects of its
own, the object may be regarded as simply a method rather than an application
object in its own right. Where it is desirable to invoke the procedure from a
number of applications, the procedure may be placed in a separate executable
module and dynamically bound to its calling applications, thereby maintaining
independence of the procedure from the applications.

A message is passed to the application object identifying the action to be
performed and providing the necessary input data. The application object will
then typically carry out a modal dialog (or possibly a series of dialogs) with the
end user to obtain any further information, leading the user through the
necessary steps in the required order. When the procedure has been
completed, the application object terminates the dialog and possibly passes a
message to its caller or to another application object, containing an
acknowledgement of completion, or information collected during the procedure.
Where completion of a method is mandatory to correct execution of the
application, this acknowledgement of completion provides a useful mechanism
for the caller to determine that the method has been successfully executed.

If such procedures are correctly defined at a generic level (for example, Enter
the customer data), their application objects may be stored in a library and used
by multiple applications. More complex procedures may be constructed within
an application by invoking a number of such application objects in sequence.
Acknowledgement messages from the application objects can be used to verify
that the required steps have taken place.

Thus it can be seen that the object-oriented paradigm, when the definition of a
data object is sufficiently expanded to include all types of logical entity, and
when properly applied with correctly designed application objects obeying the
aforementioned rules and guidelines, is generally applicable to almost all
applications. A wide variety of applications may therefore achieve the
modularization and reusability benefits afforded by an object-oriented design
approach.

3.6 Summary

It can be seen from the foregoing discussion that the object-oriented paradigm is
a logical consequence of the move toward data-centered application design. An
object-oriented approach provides many benefits for applications which
manipulate data, not the least of which is the ability to implement an intuitive,
event-driven user interface where the user manipulates a number of conceptual
objects in a metaphorical manner that mirrors the “real-life” manipulation of
those objects.

it should be stressed however, that object-oriented programming is not
necessarily suited to all applications; its use is recommended only where data is

Chapter 3. Object-Oriented Applications 35

36 0S/2 v2.0 Volume 4

the central factor in the application’s task. There may be situations where the
procedure, rather than the data, is necessarily the focus of the application, or
where an event-driven style of user interface is not appropriate to the task being
performed. In such cases, traditional structured programming techniques hold
advantages over object-oriented programming. However, in situations where
only a portion of the work task is procedurally oriented, it is possible for the two
approaches to coexist within the same application.

Object-oriented programming focuses on the principles of data abstraction and
encapsulation, with all access to a data object being controlled by the
application object which “owns” that data object. This principle allows the
object-oriented approach to facilitate the creation of reusable application objects,
since the interface to an object is defined only by the messages it receives and
dispatches. The implementation details of the data objects or methods
belonging to an application object are typically transparent to other application
objects. Thus the effects of changes to these data objects or methods may be
contained within a single application object, easing the task of change
management and application maintenance.

A distinction must also be drawn between an object-oriented application design
and an event-driven, object-action user interface. The two concepts are
complimentary in that the provision of a truly event-driven interface for the end
user is dependent upon the application being designed and implemented
according to object-oriented principles. However, while the two concepts are
complimentary, they are not identical and the difference must be borne in mind
when designing an application.

Object-oriented application design begins with a definition of logical data entities
and their representations (data objects) in the system. Once these data objects
are defined, the actions relevant to each may be determined, and the design of
the messages to convey each action and the methods necessary to achieve the
actions may be undertaken. The definition of messages and actions completes
the high-level design of the application, and traditional functional decomposition
techniques may then be applied to designing and developing the individual
methods. The independent nature of application objects and of the methods
within an object facilitates modularization of the application, and allows the
design, development and testing of the methods for each object to take place
independently of the methods for other objects.

A number of programming languages and tools exist which implement
object-oriented programming practices to varying degrees. These may exist in
the form of object-oriented extensions to an existing programming language, or
as complete programming languages in their own right. The degree to which
these products enforce object-oriented practices also varies from one product to
the next. it should be stressed however, that the implementation of
object-oriented techniques in application design and development is not
dependent upon the use of any particular tool or programming language, but
rather depends on the correct application of object-oriented design concepts.
When such concepts are correctly applied in the design of an application, it is
quite possible to develop object-oriented applications in conventional
programming languages such as “C.” The difference lies in the amount of
latitude given to the individual application developer with respect to the
interpretation of object-oriented principles.

it may be argued with some justification, that according to many
popularly-accepted definitions, the techniques offered in this chapter do not
constitute a truly object-oriented application model. However, such concepts as
a full inheritance hierarchy are not directly supported by execution environments
such as Presentation Manager, and are difficult to provide without the use of
additional object-oriented programming tools. It must be stressed that the
methodology outlined herein is not intended to be a purist implementation of the
full object-oriented paradigm, but is intended to illustrate the application of
certain object-oriented principles to the design and implementation of
Presentation Manager applications, in accordance with the module-based
approach to object-oriented programming.

These principles, when applied to the Presentation Manager environment, afford
significant enhancements in the areas of code reusability and application
modularity, and subsequent benefits with respect to reduced development time
and effort, and easier application maintenance and change management.
Additional tools may be utilized to apply further object-oriented principles to
Presentation Manager application design, in order to achieve the benefits
associated with a class-based approach to object-oriented programming.
However, such tools typically have additional drawbacks that must be weighed
against their advantages, with regard to the specific development scenario.

Chapter 3. Object-Oriented Applications 37

38 05/2.v2.0 Volume 4

Chapter 4. The Presentation Manager Application Model

The Presentation Manager environment lends itself to the implementation of
object-oriented programs under the module-based approach to object-oriented
design. Presentation Manager provides far more than merely a means of
displaying information on the screen. It implements an event-driven,
object-based application execution environment and provides many services
required for the definition and manipulation of application objects and messages.

This chapter will examine the execution environment provided by Presentation
Manager, describe the structure of a Presentation Manager application, and
illustrate the implementation of basic object-oriented concepts in the
Presentation Manager environment.

4.1 Windows

A window is the embodiment of an application object within the Presentation
Manager application model. To the end user, a window appears as a
rectangular display area on the screen. From an application viewpoint however,
the concept of a window is far more powerful than this. Windows may be of two
basic types:

+ Display windows have a physical identity represented by a rectangular area
on a screen: in this case the window represents a view of a conceptual
display surface known as a presentation space, which is in fact a data entity
being represented on the screen. This is the average end user’s concept of
a window.

+ Object windows have no physical manifestation, and are merely addresses
or “handles” to which messages may be directed. An object window is
typically associated with an entity such as a file or database, and is used to
access this entity and perform actions upon it. The object window concept is
very important to the implementation of object-oriented principles under
Presentation Manager, since it enables the creation of non-visual objects
within the Presentation Manager application model. See 4.6.1.2, “Object
Windows" on page 56 for further information.

Windows respond to events, communicated by way of messages, which may
originate from Presentation Manager as a result of user interaction, or from
other windows existing in the system. Messages are routed to and between
windows by Presentation Manager on behalf of the application. Windows may
interpret and process messages in different ways, in accordance with the
concept of polymorphism.

Each window existing in the system has a unique identifier known as its window
handle, which is assigned by Presentation Manager when the window is created.
This handle is used to identify a window in all communication between that
window and other parties, such as Presentation Manager or the user. The
window handle is specified as the destination address used when passing
messages to a window. See 4.2, “Messages” on page 40 for further discussion
of Presentation Manager messages. A window is always aware of its own
handle, since the handle is part of every message passed to the window.
Presentation Manager provides a number of mechanisms by which a window
may determine the handles of other windows in the system in order to pass

© Copyright IBM Corp. 1893 39

messages to those windows; these mechanisms are described in 6.6, “Window
Communication” on page 87.

4.1.1 Window Classes

Since many windows may be in existence at any time, windows having similar
properties and behavior are grouped into window classes, with each window
belonging to a class being an instance of that class. Window classes may be
public {defined by Presentation Manager and usable by all applications in the
system) or private (defined by the application and accessible only by that
application unless an application developer decides otherwise; see 4.5,
“Creating Reusable Code” on page 53). Private window classes are registered
to Presentation Manager by the application upon initialization of the application.

Presentation Manager maintains control information relating to each window
created in the system, including properties such as window text, current size and
location, etc. In addition to this information, an application may specify an
additional area of storage to be included within the window control block for
application data relating to that window. This storage is known as window
words. The presence and size of window words is determined for each window
class at the time the class is registered to Presentation Manager. However, a
new storage area is defined for each instance of the class, and window words
may therefore be used for instance data. Window words typically contain
pointers to dynamically-defined application data structures, which in turn contain
the instance data.

4.1.2 Window Procedures

Each window class is associated with a window procedure, which defines and/or
establishes access to data objects and performs processing related to that
window class. In object-oriented terms, the window procedure contains the
methods to carry out actions upon the data object referenced by the window.

A window procedure is normally invoked by Presentation Manager on behalf of
the application. The window procedure interprets messages passed by
Presentation Manager to the window and invokes a method (that is, a coherent
set of application statements and/or routines) depending on the nature and
contents of the message.

See 4.3.2, “Window Procedures” on page 46 for a more complete discussion of
window procedures’ structure and behavior.

4.2 Messages

40 0s/2 v2.0 Volume 4

All interaction between the user and windows, or between one window and
another in the Presentation Manager environment, takes place by way of
messages. Whenever the user presses a key, moves or clicks the mouse,
selects an item from a menu, etc., a message is generated and placed on a
system message queue. Presentation Manager takes these messages in the
order they were received by the system, determines the window for which each
message is intended, and routes the message to a message queue belonging to
the application that “owns" that window. The application then dequeues each
message in turn, and routes the message via Presentation Manager to the
window procedure associated with that window, which processes the message.

Messages may be of three types:

» User-initiated; that is, the message is generated as the result of the user
selecting an action-bar item, pressing a key, etc.

» Application-initiated; that is, the message is generated by one window within
the application for the communication of an event or required action to
another window.

+ System-initiated; that is, the message is generated by Presentation Manager
as the result of some system event such as a window having been resized or
moved.

A Presentation Manager application has the ability to process messages of any
of the three types, which allows the application to respond to any type of event,
regardless of its origin.

4.21 Message Classes

Messages are grouped into message classes, with each class representing a
particular type of event such as character input, mouse movement, etc. Many
message classes are defined by Presentation Manager, and messages of these
classes are usually dispatched by Presentation Manager to inform an application
of system-initiated events. These system-defined message classes are
described, along with the default processing provided by Presentation Manager
for each class, in the IBM 0S/2 Version 2.0 Presentation Manager Reference.

An application developer may define additional message classes unique to his
or her particular application, for use by that application. Application-defined
messages typically serve as a means of communication between windows,
where one window passes information to another window, for processing by the
window procedure associated with that window. The destination window may
then return a message to the calling window indicating completion, or may pass
a message to a third window to trigger an additional action, dependent upon the
requirements and design of the application.

For example, the user may elect to update a file by selecting an item from a
menu bar. The window procedure associated with the display window to which
the menu bar belongs may pass a message to an object window associated with
the file to be updated. The window procedure for this window would make the
change and then pass a message to a third object window, which logs the
update before passing a message back to the original window procedure
indicating that the update is complete.

Note that message classes need not be specific to a particular window class;
messages of the same class may be passed to different window classes, with
different results depending upon the processing of that message by the window
procedure belonging to that window class. This is in accordance with the
object-oriented principle of polymorphism.

4.2.2 Message Structure

In order to allow any window the ability to process any message class,
Presentation Manager defines a standard format for messages. In the
Presentation Manager environment, a message is composed of four distinct
attributes:

« A window handle identifying the window for which the message is intended

» A message ID identifying the particular class of message

Chapter 4. The Presentation Manager Application Model 41

42 0s/2 v2.0 Volume 4

* Two message parameters, which are 32-bit fields containing a variety of
information, depending upon the class of message received.

All Presentation Manager applications must contain a message processing loop,
which receives the message from Presentation Manager (see 4.3, “Application
Structure” on page 43), and routes it, using Presentation Manager
message-dispatching functicns, to the appropriate window procedure for
processing. Thus Presentation Manager actually invokes the window procedure
on the application’s behalf.

4.2.21 Message ldentifier

The message 1D identifies the message class to which each message belongs,
and is in fact an integer value which is typically replaced by a symbolic name for
ease of use. The symbolic names for all system-defined message classes are
defined by Presentation Manager; symbolic names for application-defined
(private) message classes must be declared by the application developer in the
application’s source code. This is typically achieved by declaring an integer
constant, the value of which is specified as an offset from the system-defined
value WM_USER. For example:

#define WMP_MYMESSAGE WM_USER+6

The use of an offset to a system-defined constant, rather than an absolute
numeric value, eliminates the chance of using the same integer value as a
system-defined message class (with consequently unpredictable results), and
avoids the necessity to alter application code should the number or definition of
system-defined message classes be altered in future versions of Presentation
Manager.

4.2.2.2 Message Parameters

As noted above, message parameters may contain a variety of information.
When used for communication between window procedures, the window handle
of the calling window may be passed to the destination window as one of the
message parameters, in order that the destination window procedure may
dispatch an acknowledgement or reply message to the calling window.
Qualifiers to the message type or small items of data may also be passed; for
example, the Presentation Manager-defined WM_COMMAND message class
(indicating a menu selection by the user) uses the first message parameter to
identify the menu item selected.

When large data structures are required to be passed between window
procedures, and the data obviously cannot be contained within the two 32-bit
message parameters, the convention is to allocate a memory object for the
required data structure using the DosAllocMem() function, and to pass a pointer
to that memory object as a parameter to the message. Presentation Manager
provides a number of macros to enable various types of data to be placed into
and retrieved from message parameters. The insertion and retrieval of data into
and from message parameters is described in 6.6.6, “Creating Message
Parameters” on page 93.

4.2.3 Message Processing
Messages passed to a window may be processed in one of two basic ways:

» Synchronously, in which case the message is passed directly o the target
window and is processed immediately; the window from which the message
originated suspends its execution until the message is processed.

¢ Asynchronously, in which case the message is placed on a queue from
which it is subsequently retrieved and passed to the target window; the
window from which the message originated continues execution immediately
after the message is placed on the queue.

Synchronous and asynchronous processing are described in more detail in
4.3.2.1, “Invoking a Window Procedure” on page 47.

A message may also be dispatched to multiple windows at the same time, using
the message broadcasting facilities provided by the Presentation Manager
programming interface. Broadcasting may be either synchronous or
asynchronous. The implementation of message broadcasting is discussed in
more depth in 6.6, “Window Communication” on page 87.

Messages that are not explicitly processed by an application in its window
procedures are passed to a default window procedure supplied by Presentation
Manager, which contains default processing for all message classes {in the case
of application-defined message classes, this default window procedure simply
ignores the message). This technique is in accordance with the principle of
inheritance, in that a window procedure only contains methods for those
message classes with which it is directly concerned, and allows other messages
to be processed by the existing default window procedure. Default processing
for each message class is described in the IBM 0S/2 Version 2.0 Presentation
Manager Reference.

For message classes that are processed by the application’s window
procedures, the last operation in the message processing should be to provide a
return code to Presentation Manager. In many cases, this return code
determines whether Presentation Manager performs its default message
processing, after the application’s own message processing is complete. The
default message processing may or may not be desirable, depending upon
application requirements. This ability allows system-initiated events to be easily
detected and trapped by a Presentation Manager, enabling the application to
perform its own processing for the event before allowing the default processing
to occur.

4.3 Application Structure

All Presentation Manager applications have a similar structure. The application
is composed of a main routine, which performs initialization and termination
functions, and which contains the application’s main message processing loop,
and a number of window procedures that process messages for window classes
created and/or used by the application. These window procedures are invoked
and messages passed to them by Presentation Manager on behalf of the
application, as shown in Figure 6 on page 44.

Chapter 4. The Presentation Manager Application Model 43

Appltcatzon
Mam Progrum

Figure 6. Message Flow in a Presentation Manager Application

Window procedures may also pass messages between one another in order to
communicate events. The flow of messages between the window procedures is
also controlled by Presentation Manager on behalf of the application.

4.3.1 Main Routine

The main processing routine of a Presentation Manager application performs a
number of initialization and termination functions for the application, as shown in
Figure 7.

int main()

<Global data deciarations>

hAB = WinInitialize(...); /* Register application */
hMsgQ = WinCreateMsgQueue(...); /* Create message queue */
WinRegisterClass(...); /* Register window class */
hFrame = WinCreateWindow(...); /* Create frame window */
hClient = WinCreateWindow(...); /* Create client window */
WinAddSwitchEntry(...); /* Add task manager entry */
while (WinGetMsg(...)) /* Loop until WM_QUIT */
WinDispatchMsg(...);
WinRemoveSwitchEntry(...); /* Remove task mgr entry */
WinDestroylindow(hFrame); /* Destroy main window */
WinDestroyMsgQueue (hMsgQ) ; /* Destroy message queue */
WinTerminate (hAB); /* Deregister application */

}

Figure 7. Structure of an Application’s Main Routine

44 0572 v2.0 Volume 4

The application’s main routine registers the application to Presentation Manager,
creates the application’s message queue and defines private window and
message classes for the application before actual processing takes place. Other
application-specific initialization processing may also take place at this time,
such as the definition of global data items. Note however, that the use of global
data increases the interdependence of application modules and reduces the
potential for subsequent code ieuse. Hence global data should be avoided
wherever possible.

The main routine also creates the application’s main window. Note that from an
application viewpoint, a display window is actually a group of windows that
appear and behave as a single unit. Therefore the frame (with its associated
title bar, menu bar, etc.) and the client areas are created separately, as shown
in Figure 7. This concept is explained in more detail in 4.6, “Window Hierarchy”
on page 54.

During execution of the application, the only function of the main routine is to
accept messages from the system queue and route them to window procedures
via Presentation Manager. This is performed using a message processing lcop,
which continues until a message of the system-defined class WM_QUIT is
received, at which point the loop terminates and allows the application’s
termination processing to occur.

Upon termination of the application, the main routine destroys any remaining
windows, along with the application’s message queue, and deregisters the
application before terminating. Any global data items acquired during
initialization are also released at this time.

When the user selects “Exit” from the menu bar, or selects the “Close” option
on the system menu of the application’s main window, the application is not
automatically terminated. These messages are passed to the window procedure
for that window, and may be processed by the application. The typical action
performed by the window procedure in such cases is that a message of class
WM_QUIT is posted to the application’s message queue, which causes the
message processing loop to terminate. Conventions for closing windows and
terminating applications are discussed further in 6.5.3, “Window Closure” on
page 80.

Since Presentation Manager actually informs the application that it is being
terminated rather than simply shutting the application down, the application is
given a chance to perform any necessary termination processing and exit in an
orderly manner. When a window is destroyed, it receives a WM_DESTROY
message from Presentation Manager, which may be processed by the window
procedure to allow orderly termination of processing. This enables the
preservation of data integrity by Presentation Manager applications, which need
not rely on the user completing a logical unit of work before terminating; any
uncompleted units of work may be placed in an interim storage area on disk, or
simply backed out as part of the WM_DESTROY message processing.

This feature is also used by the “Shutdown” procedure of the Workplace Shell.
When the user selects “Shutdown” from the menu bar, Presentation Manager
posts a WM_QUIT message to the main window of each application executing in
the system, informing the application that it is being terminated and allowing any
termination processing to take place. This facility allows for an orderly shutdown
of the system and preserves the integrity of data objects.

Chapter 4. The Presentation Manager Application Model 45

4.3.2 Window Procedures

46 03/2 v2.0 Volume 4

it has already been mentioned that each window class within an application,
whether a display window or an object window, is associated with a window
procedure, which receives all messages intended for windows within that class.
The window procedure contains the methods used to perform actions upon the
data object to which the window pertains, and thus contains the application logic
for the manipulation of data objects. It may thus be said that window procedures
form the “heart” of a Presentation Manager application.

Upon invocation, the window procedure determines the type of message passed
to it, and may either process the message explicitly or pass it on to a default
window procedure supplied by Presentation Manager for standard processing. A
window procedure is essentially an extended CASE statement, as illustrated in
Figure 8. Each case within the window procedure contains a set of application
statements and/or routines necessary to perform a particular action. Thus in
object-oriented terminology, each case is a method in its own right.

MRESULT EXPENTRY wpMain(HWND hWnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

{
switch (ulMsg)

case WM_CREATE:
WinDefWindowProc (hkind, ulMsg, mpl, mp2);
<perform initialization of instance variables>
<define, create or establish access to data objects>
return((MRESULT)FALSE);
break;
case WM_COMMAND:
<determine command by examining message parameters>
<perform processing for menu command>
return((MRESULT)0);
break;
case WM_HELP:
<perform help processing>
return((MRESULT)O);
break;
case WM_DESTROY:
<back out any incomplete updates>
<close all open data objects>

return((MRESULT)O);
break;
default:

return ((MRESULT)WinDefWindowProc (hWnd,
ulMsg,
mpl,
mp2));

break;

}

Figure 8. Structure of a Window Procedure

A window procedure is declared to return the type MRESULT, which is a 32-bit
data type declaration provided by Presentation Manager, and indicates the

nature of the window procedure’s return value. Note that in the above example,
the returned values differ depending upon the message class; see 4.3.2.3,
“Returning from a Window Procedure” on page 49 for further discussion. Note
also that in the default case shown in Figure 8, the window procedure did not
decide the return value itself, but used the value returned by the Presentation
Manager-supplied default window procedure. This is an established
Presentation Manager convention.

A window procedure should always be declared with the system linkage
convention; this is typically achieved by declaring the function to be of type
EXPENTRY. This type identifier is defined in the system header file OS2DEF.H,
and simply specifies use of the system linkage convention. Use of the system
linkage convention is required since a window procedure is invoked by
Presentation Manager on the application’s behalf, rather than directly by the
application. Note that under previous versions of 0S/2, the EXPENTRY keyword
resulted in use of the pascal linkage convention, for precisely the same reason.

Subject to programming language conventions, a window procedure has the
ability to define a data object or instance data, or to establish access to an
existing data object as part of its initialization processing. When a window is
created by Presentation Manager in response to an application’s request,
Presentation Manager immediately dispatches a message of the system-defined
class WM_CREATE to that window (see Figure 8). The window procedure may
process this message in order to define instance data or establish access to
data objects. Typically, a window procedure requests the allocation of a memory
object as a control block for its instance data. Initial values for the instance data
are then placed in the control block, and a pointer to the control block is stored
in the window words. A window procedure thus supports the object-oriented
concept of encapsulation, by allowing the dynamic allocation of and
establishment of access to data objects, within a single application object.

Note that prior to allocating instance data or performing any other processing for
the WM_CREATE message, a window procedure should invoke the default
message processing provided by Presentation Manager in the
WinDefWindowProc() function. This ensures that the initialization of Presentation
Manager’s control data for the window is completed prior to WM_CREATE
processing by the window procedure. This in turn ensures that the window
handle, window words, etc., will be available during the window procedure’s
WM_CREATE processing.

4.3.21 Invoking a Window Procedure

A window procedure is invoked by dispatching a message to a window of the
class with which the window procedure is associated. Messages passed to a
window are typically initiated as the result of user interaction or application
events, or by Presentation Manager to indicate system events.

While window procedures may be invoked directly using a normal subroutine
call, it is recommended that messages be used for all communication between
window procedures. This conforms to standard object-oriented practice, in that
an object should be accessible only via a message passed to it.

Messages may be used to invoke a window procedure in two ways:

+ A message may be sent directly to the window procedure using the
WinSendMsg() call, in which case the window procedure executes
synchronously, and control does not return to the calling procedure until

Chapter 4. The Presentation Manager Application Model 47

48 0s/2 v2.0 Volume 4

processing is completed. This method of invocation is similar to a normal
subroutine call, but preserves the message-driven structure of the
application. Note that since the message is sent directly to the window
procedure and not placed on a queue, the normal serialization of message
processing is disturbed. This may cause different results from those
intended by the user; thus WinSendMsg() should be used with care.

* A window procedure may also be invoked by posting a message to a queue
associated with the window procedure, using the WinPostMsg() call. With
this call the window procedure executes asynchronously, and control returns
to the calling procedure immediately after the message is placed in the
queue. This method of invocation provides a convenient and powerful
means for serialized and yet asynchronous processing. It then becomes the
responsibility of the application developer to ensure synchronization between
different window procedures.

Invoking a window procedure by posting a message to it via a queue has an
advantage over the use of WinSendMsg() or a direct subroutine call in that,
where multiple windows are passing messages to a single receiving window,
these messages are queued by Presentation Manager and dispatched to the
receiving object in the order in which they were initiated. Provided all sending
windows obey the established conventions and post messages to qgueues, this
ensures the correct sequencing of message processing by the receiving window,
helps preserve the user’s intention and facilitates maintaining the integrity of
data objects.

A window procedure accepts four parameters upon invocation: these correspond
to the four attributes of a message as described in 4.2, “Messages” on page 40
and to the parameters of the WinSendMsg() and WinPostMsg() functions, and are
as follows:

1. The handle of the window for which the message was intended
2. A message-class identifier

3. Two 32-bit message parameters.

Note that the behavior of a window procedure, and the result obtained from
processing by a window procedure, are dependent upon the class and contents
of the message sent to it. Similarly, the same message class may be interpreted
in a different manner by window procedures belonging to different window
classes. In this way, a window procedure supports the object-oriented concept
of polymorphism.

4.3.2.2 Window Procedure Processing

A window procedure will normally determine the message class, and take action
based upon that class and the contents of the message parameters. Where the
action involves the manipulation of data objects and/or instance data, the
window procedure typically obtains access to the window’s control block by
retrieving its pointer from the window words. The window procedure then has
access to the data values, resource handles, etc., required to complete the
action.

Note that the example given earlier in this chapter contains explicit processing
options for only four types of messages; the application allows Presentation
Manager to handle all other types of messages, by passing the message to the
system-supplied default window procedure using the WinDefWindowProc()

function. This illustrates one of the basic principles of a Presentation Manager
application; the window procedure processes only those messages with which it
is explicitly concerned, and passes all other messages to Presentation Manager
for default processing. A window procedure must pass such messages on to
Presentation Manager, or unpredictable results may occur.

This “catchall” approach to implementation also allows the stepwise
implementation of methods during application development. An application
developer may code a window procedure such that all command messages are,
by default, passed to a routine that displays a message informing the user that
the requested action is not yet implemented. As the method for each action is
designed and coded, a case for that action may be added to the window
procedure. Thus implementation of methods for an object proceeds in a
stepwise and independent fashion until all necessary methods are implemented.

As mentioned earlier in this chapter and illustrated in Figure 8, a window
procedure may process messages of any type, including the WM_DESTROY
message, which is posted to a window upon termination. A window procedure
may explicitly process this message in order to close files and terminate access
to data objects in an orderly manner, thus preserving the integrity of those data
objects. This ability allows the window procedure to further support the principle
of encapsulation.

4.3.2.3 Returning from a Window Procedure

By convention, a window procedure typically returns a Boolean value (type
MRESULT) to its caller, to indicate the result of message processing for that
message. The value returned is significant, since Presentation Manager takes
action depending upon that value. The defined return values for each
system-defined message class, along with the default processing provided by
Presentation Manager for each class, are given in the IBM 0S/2 Version 2.0
Presentation Manager Reference. Naturally, the return values for user-defined
message classes are defined by the application developer.

If the window procedure has been invoked synchronously using WinSendMsg(),
the result is returned by Presentation Manager to the calling window procedure,
which may interrogate and act upon it. If the window procedure has been
invoked asynchronously using the WinPostMsg() function, the result is returned
to Presentation Manager only. Presentation Manager then uses this result to
determine whether any post-processing should be carried out for the message.
Note that while the WinPostMsg() function call also provides a Boolean return
code to the caller, this code only indicates whether the message was
successfully posted to the queue, and not the successful processing of the
message by the target window procedure.

4.3.3 Dialog Procedures
A dialog procedure is a special type of window procedure that is associated with
a modal dialog box and processes messages intended for that dialog box. The
structure of a dialog procedure is similar to that of a “normal” window
procedure, and it processes messages in the same way, although certain
message classes received by a dialog procedure are different from those
received and processed by a normal window procedure. The structure of a
typical dialog procedure is shown in Figure 9 on page 50.

Chapter 4. The Presentation Manager Application Mode! 49

S0 0s/2 v2.0 volume 4

MRESULT EXPENTRY dpDProc(HWND hnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

switch (ulMsg)

iase WM_INITDLG:
<extract initialization data from message parameters>
<establish initial values for control window data>
return((MRESULT) TRUE) ;
break;

case WM_CONTROL:
<determine originator of message and message contents>
<perform control-specific processing>
return((MRESULT)0);
break;

case WM_COMMAND:
switch LOUSHORT (mp1):

{

case DID_OK:
<complete dialog>
WinDismissD1g(hWnd, TRUE) ;
break;

case DID_CANCEL:
<cancel dialog>
WinDismissD1g(hWnd,FALSE);
break;

}
return((MRESULT)0);

break;
default:
return ((MRESULT)WinDefD1gProc (htind,
ulMsg,
mpl,
mp2));
break;

}

Figure 9. Structure of a Dialog Procedure

Since modal dialog boxes do not belong to a class, they are not registered to
Presentation Manager in the manner of a normal window. A dialog procedure is
associated with a dialog box as part of a WinDIgBox() call, which loads a modal
dialog box and processes the dialog as a single operation, or a WinLoadDlg()
call, which loads the dialog box into memory but does not process it; the dialog
box may subsequently be processed by a WinProcessDlg() call. The processes
of providing input to and obtaining resuits from a dialog procedure are discussed
in Chapter 6, “Building a Presentation Manager Application."

Note that since a modeless dialog box is simply an optimized (non-sizable)
window with no other inherent properties such as modality, it receives the same
messages as a standard window, and its methods are therefore contained within
a normal window procedure rather than a dialog procedure.

Note that a dialog box must use the system linkage convention, since it is simply
a specialized form of window procedure. This is achieved using the EXPENTRY
keyword.

Upon creation, a dialog box receives a message of the system-defined class
WM_INITDLG. This is similar to the WM_CREATE message received by a normal
window upon creation, and may be processed in a similar way. The first
parameter in the WM_INITDLG message may be used to pass a pointer to the
dialog procedure, referencing a data structure containing initialization
information or other application-specified data.

A dialog box also receives messages of class WM_CONTROL indicating events
occurring in control windows within the dialog box. The window identifier of the
control window that dispatched the message, along with the nature of the
message, is indicated in the message parameters. The WM_CONTROL message
is described in the iBM 0S/2 Version 2.0 Presentation Manager Reference. The
dialog procedure may wish to explicitly process events indicated by
WM_CONTROL messages, or it may allow such messages to pass on to the
default Presentation Manager-supplied dialog procedure WinDefDigProc().

A dialog box also typically receives WM_COMMAND messages, which are
generated when a pushbutton within the dialog box is pressed by the user. The
identity of the pushbutton is indicated in the first parameter of the
WM_COMMAND message.

The symbolic names DID_OK and DID_CANCEL are defined by Presentation
Manager, and by convention are used to refer to the “OK" and “Cancel”
pushbuttons respectively. The definition of dialog boxes is described in detail in
Chapter 9, “Presentation Manager Resources.”

A dialog procedure is terminated and the dialog box is destroyed when the
dialog procedure issues a WinDismissDIg() call to Presentation Manager,
typically as a result of the user pressing a pushbutton. By convention, this call
specifies a parameter indicating TRUE if the user completed the dialog by
pressing an “Enter” or “OK” pushbutton, or FALSE if the user cancelled the
dialog by pressing a “Cancel” pushbutton. The value specified in this parameter
is returned to the window procedure that issued the WinDlgBox() or
WinProcessDIg() call, as the return value from that call.

Message boxes do not require an application-supplied procedure to carry out
their processing. The simple nature of the message box dialog allows it to be
processed by Presentation Manager on the application’s behalf, and to return
the result to the application for subsequent action.

4.3.4 Subroutines

Subroutines may be used in a Presentation Manager application, in the same
way as they are used in any other application. However, in order to conform to
object-oriented practices, subroutine calls should only be used to achieve
functional isolation within the methods of a single application object, or to
perform a standard processing function that is common to a number of objects;
in this case, the scope of each execution instance of the subroutine is limited to
a single object. In accordance with object-oriented programming guidelines,
communication between objects (windows) should be achieved using messages,
and hence window procedures should not be invoked directly as subroutines.
See 6.7, “Passing Control” on page 95 for further discussion on the use of
subroutines in Presentation Manager applications.

Chapter 4. The Presentation Manager Application Model 51

4.3.5 Partitioning the Application

With the dynamic linking capabilities of 0S/2, it is possible to partition an
application into a number of executable modules. A single base program may
be augmented by one or more dynamic link libraries. Such an approach has a
number of advantages:

* Application code that is only executed ir exceptional circumstances, such as
little-used functions, exception and error-handling routines etc, is not loaded
unless it is required. This may significantly reduce the load time and
memory requirements of the application.

» Common functions may be shared between applications, since dynamic link
libraries are re-entrant and a single memory-resident copy of the library
code may be used by all applications. This can further reduce the memory
requirements of an application.

* Functions placed in dynamic link libraries are isolated from the main
application, and may be modified without the need to re-link the application.
This facilitates application maintenance and update, since only the new
version of the DLL need be distributed.

Applications written for the Workplace Shell should be partitioned in this manner.
Since the shell displays all objects on the desktop at system initialization, all
applications must potentially be loaded at this time. This can dramatically
increase the time required for system initialization, along with the overall
memory requirements of the system.

These requirements may be significantly reduced by having only the minimum
code (that is, the code required to accept and identify messages) loaded at
application startup, and placing all processing function into dynamic link libraries
that are loaded only when one of their entry points is called.

Application developers must give careful consideration to correct partitioning of
the application. Groups of functions that are interdependent and which call one
another, or are typically called in close sequence should be placed in a single
DLL module. Functions that are independent of one another should be placed in
separate DLLs. This approach will minimize the load time and memory
requirements of the application.

4.4 Presentation Manager Resources

52 0s/2 v2.0 Volume 4

Presentation Manager allows the application developer to define application
resources externally to the application code. Resources may include definitions
for the following items:

Fonts Graphic fonts may be created and modified using the Font
Editor supplied as part of the IBM Developer's Toolkit for
0S/2 2.0.

Icons Application and window icons, mouse-pointers and

bitmaps may be created and modified using the Icon Editor
supplied as part of the IBM Developer’s Toolkit for 0S/2
2.0.

Menus Menu bars and pulldown menus may be defined for display
windows.

String Tables Tables of text strings may be defined for use by an
application.

Accelerator Tables Tables of accelerator keys (for example, F3 for Quit) may
be defined for display windows.

Help Tables Tables of help panels may be defined for each display
window or each control window in a dialog box. See
Chapter 15, "Adding Online Help and Documentation” for
further discussion of help panels.

Dialog Templates Dialog boxes may be created or modified and stored as
dialog templates, using the Dialog Box Editor supplied as
part of the IBM Developer’s Toolkit for 0S/2 2.0.

Window Templates Window templates may be created or modified and stored
as window templates, using the dialog editor supplied as
part of the IBM Developer’s Toolkit for 0S/2 2.0.

Except where noted above, resources are defined in a resource script file, an
ASCII text file that may be manipulated using a standard text editor. This
resource script file serves as input to a resource compiler, which is provided as
part of the IBM Developer’s Toolkit for 0S/2 2.0. The resource compiler
produces a precompiled version of the resources, which is then incorporated
into the application’s executable code or stored in a dynamic link library for use
by one or more applications.

It is usual for simple text-based resources such as menus and string tables to be
placed directly into the resource script file using an ASCIl text editor. However,
non-textual resources such as icons or bitmaps, or more complex text-based
resources such as dialog templates, are typically stored in separate files and
referenced from the resource script file.

A major benefit of defining such resources externally to the application is that
changes may be made to resource definitions without affecting the application
code itself. Modifications such as new icons, altered commands or menus, etc.,
may be implemented quickly and easily by making simple changes at a single
point in the application.

As a further example, the task of providing national language versions of an
application is simplified, since all text such as menus and messages may be
defined outside the application code, and muitiple language-specific versions of
such resources may be linked into a single version of the application code. In
this way, the user interface properties of a display window may be modified
without affecting the internal implementation of the window procedure or its
methods.

The creation and use of Presentation Manager resources is discussed in
Chapter 9, “Presentation Manager Resources.”

4.5 Creating Reusable Code

The ability to define resources such as window and dialog templates externally
to the application, in conjunction with the dynamic linking facilities provided by
the OS/2 operating system, provides a powerful tool for the creation of generic
application objects, comprised of window/dialog templates and their associated
window or dialog procedures. These application objects may be defined and

Chapter 4. The Presentation Manager Application Model 53

stored in dynamic link libraries for subsequent use by one or more applications.
This practice is in accordance with the guidelines for Systems Application
Architecture Common Applications, which provide for common application
services within and between environments, as well as common user
applications. This concept is further discussed in Chapter 17, “Generic
Application Modules.” Note however, that the use of generic application objects
presupposes that the nature of and message interfaces to such application
objects are well-defined and documented, in order to allow application
developers to correctly select and interact with the generic objects.

For instance, a standard dialog box that will be used by many applications could
be defined in a dialog template, resource compiled and stored in a dynamic link
library, along with the dialog procedure which performs the processing for that
dialog. The dialog can then be loaded from the DLL by any application which
needs to use it. The dialog need be coded only once, and may be modified at
any time while requiring no source code changes to the applications that access
it. The fact that DLL code is not bound with the application at link edit time like
other library code also means that no changes are required to the object code of
the applications, and thus recompilation and link edit is not required. An
example of this technique is given in Chapter 9, “Presentation Manager
Resources.”

The window or dialog procedure associated with a generic object should contain
all the methods normally used to perform actions upon that object, but need not
contain every action that will ever be necessary. If an application requires a
specialized action on a generic object (that is, a previously undefined action or a
modification of an existing action), the window acting as a handle to that object
may be subclassed, and a new window procedure substituted for the existing
window procedure. This new window procedure would contain methods to
process the specific messages in which it has an interest, and would then invoke
the original window procedure to handle any other message classes, in
accordance with the object-oriented principie of inheritance. Subclassing is
discussed further in 4.7, “Subclassing” on page 57.

4.6 Window Hierarchy

Presentation Manager organizes windows hierarchically; each window in the
system has a parent, and may optionally have an owner. These parent and
owner relationships determine the behavior of the window in response to certain
messages, and may be used by applications to navigate the window hierarchy.

4.6.1 Parent/Child Relationship

54 0s/2 v2.0 Volume 4

The parent/child relationship between windows is mentioned in 0S/2 Version 2.0
- Volume 3: Presentation Manager and Workplace Shell, with regard to the
clipping of a child window to the borders of its parent. However, this hierarchy
goes further in Presentation Manager, since all windows, both display windows
and object windows, have a designated parent window. For top-level display
windows, this parent window is the desktop, and is identified by the
HWND_DESKTOP constant. Other display windows within an application, which
are child windows of the application’s main window, may have the top-level
application window as their parent, or indeed subsequent levels of the window
hierarchy may be created, dependent on application requirements. A window’s
parent is identified to Presentation Manager by the application when the window

is created. Thus the window hierarchy within a particular desktop is dynamically
defined at execution time.

As well as being uniquely identified by its window handle, a child window may
also be identified by a window identifier, which is unique between children of a
particular parent window. This identifier is an integer value, which in practice is
usually replaced by a more meaningful symbclic name that defines an integer
constant. The window identifier is supplied as a parameter when the application
requests creation of the window by Presentation Manager. When a window’s
parent and identifier are known, the WinWindowFromID() function may be used
to determine its window handle so that operations may be performed upon it.
See 6.6, “Window Communication” on page 87 for further information.

The parent/child hierarchy is useful for application design purposes, since in
many cases, a window and its children may be regarded and manipulated as a
single unit. For example, sizing a parent window automatically clips all children
of that window to the boundaries of the parent, and closing a parent window
results in each of its children being closed. This simplifies the application logic
required for applications that create muitiple windows.

4.6.1.1 Frame and Client Windows

The concepts of frame and client areas for a window are discussed in 0S/2
Version 2.0 - Volume 3: Presentation Manager and Workplace Shell. In fact,
these frame and client areas are separate windows in their own right; the frame
window of the application’s “main window” is a top-level window with the
desktop as its parent, and the client window is a child of the frame window.
Frame control windows such as maximize/minimize icons, the title bar, the menu
bar, etc., are also separate windows from the application viewpoint, and are
regarded as children of the frame window. Note that although they are separate
windows, the end user perceives and manipulates the entire group as a single
unit.

The frame window and its children all belong to system-defined generic window
classes, and thus have their own window procedures defined by Presentation
Manager. The exception is the client window, the window class of which is
defined by the application; the window procedure is therefore defined to
Presentation Manager when the window class is registered. Note that window
procedures for system-defined window classes may be subclassed by the
application in order to provide specialized processing of certain messages.

The children of a frame window have specific window identifiers assigned to
them by Presentation Manager. These window identifiers are unique for each
frame window. The predefined window identifiers are shown in Table 1.

Table 1 (Page 1 of 2). Window Identifiers. This table shows the window identifiers
assigned by Presentation Manager to the children of a frame window.

Child Window Window Identifier Defined by

Client Window FID_CLIENT Application

System Menu FID_SYSMENU Presentation Manager
Menu Bar FID_MENUV Presentation Manager
Title Bar FID_TITLEBAR Presentation Manager
Min/Max Icon FID_MINMAX Presentation Manager
Vertical Scroll Bar FID_VERTSCROLL Presentation Manager

Chapter 4. The Presentation Manager Application Model 99

Table 1 (Page 2 of 2). Window Identifiers. This table shows the window identifiers
assigned by Presentation Manager to the children of a frame window.

Child Window Window Identifier Defined by
Horizontal Scroll Bar FID_HORZSCROLL Presentation Manager

Note: The "Defined by” column indicates whether the window procedure that
determines a window’s appearance and behavior is supplied by Presentation
Manager or the application.

These identifiers may be used to communicate with child windows of a particular
frame window, without the necessity to determine the window handle of the child
window. This concept is applicable to all windows including control windows
within a dialog box. See 6.6, “Window Communication” on page 87 for further
information.

4.6.1.2 Object Windows

Object windows do not have a parent in the visual sense, as considerations such
as clipping do not arise (since the window is never displayed). For the purposes
of standardization, Presentation Manager considers every object window to have
a conceptual parent; this parent may be referenced using the constant
HWND_OBJECT. This technique allows an object window to be created using the
same Presentation Manager function as that used to create a display window. It
is also useful in allowing logical grouping of windows with similar functions, or
which need to be treated as a group for application purposes, under a single
conceptual parent.

For example, all the object windows created by a particular application may be
grouped as children of a single “dummy” parent window. When the application
terminates and wishes to destroy all these windows, only a single function call to
destroy the parent need be issued; Presentation Manager will automatically
destroy each of the children in turn before destroying the parent. Due to the way
in which Presentation Manager destroys windows by first passing a
WM_DESTROY message to the window, each object window is given a chance to
exit in an-orderly manner.

4.6.2 Window Ownership

56 0s/2 v2.0 volume 4

A window may have an owner as well as having a parent. While a window’s
relationship to its parent is mainly concerned with display, the relationship with
its owner is concerned primarily with function. The owner is assumed to have
some interest in events that take place within a window. For example, a frame
window is the parent of its frame control windows (icons, menu bar, etc.,) and is
also their owner. When certain events take place, such as the user selecting an
item from a menu bar, the control windows notify their owner by dispatching
notification messages (the menu bar for instance, typically dispatches a
message of class WM_COMMAND). Thus the owner receives notification of the
event, and may perform some action in response.

The concept of ownership is usually applied to system-defined window classes
such as control windows. Since the window procedures for these window
classes are defined by Presentation Manager rather than by the application, it is
necessary for a control window to notify its owner of any event that may be
significant to the owner.

4.6.3 Z-Order

There is typically no owner relationship between frame and client windows.
Messages received by the frame window that are deemed to be of possible
interest to the client window are passed to the client window automatically by
the system-supplied frame window procedure, by virtue of the predefined
parent/child relationship between the frame and client windows.

Should application requirements dictate, the application developer may establish
an owner relationship between any two windows within his/her application,
provided those windows are created by the same thread. Owner relationships
are not permitted between windows created by different threads.

A desktop is typically regarded as a two-dimensional display space; in fact, a
desktop is three-dimensional, since when windows overlap on the desktop, one
window is conceptually “on top of” the other. This concept of “stacking”
windows applies even when windows do not actually overlay one another on the
desktop. The order in which windows appear on the desktop is known as the
z-order. The z-order is known to Presentation Manager, and a number of
function calls are provided that enable an application to request window handles
of specific windows in the z-order using the WinGetNextWindow() function to
obtain the handle of the next window in the z-order, or the WinQueryWindow()
function to obtain the handle of a window at a specified position in the z-order.

Since the z-order changes dynamically as different applications create and
destroy windows, Presentation Manager takes a “snapshot” of the desktop state
when the application issues a WinBeginEnumWindows() call. This function
accepts a window handle as a parameter, and the z-order of all immediate
children of that window is recorded by Presentation Manager. A call to this
function shouid be issued before any WinGetNextWindow() call is issued, or
before any WinQueryWindow() call is issued that specifies a position in the
z-order. When the application no longer wishes to interrogate the recorded
window hierarchy, a WinEndEnumWindows() call should be made.

The concepts of z-order and window enumeration are useful in circumstances
where an operation or sequence of operations must be performed on a number
of windows in order. Windows with the same parent always appear contiguously
in the z-order, and thus may be easily processed in succession.

4.7 Subclassing

Windows may be subclassed by replacing the window procedure defined by the
window class with another window procedure. This new subclass window
procedure typically processes some of the messages routed to it, and then calls
the original window procedure to process any other messages. This technique
parallels the definition of subclassing given in Chapter 3, “Object-Oriented
Applications.”

Presentation Manager implements subclassing by having the application call the
WinSubclassWindow() function, specifying the handle of the window to be
subclassed and the new subclass window procedure. Note that only the window
specified is affected by the WinSubClassWindow() function call; other windows of
the same class are not subclassed. Once the call is successfully issued, any
messages destined for the original window procedure are automatically routed
to the subclass window procedure by Presentation Manager. The object

Chapter 4. The Presentation Manager Application Model 57

{(whether a window or the operating system) from which the message originated
is unaware of the subclass window procedure’s interference. An example of a
subclass window procedure is given in Figure 25 on page 86.

The subclassing concept enables messages destined for particular windows to
be intercepted and the processing resulting from certain messages to be altered.
This provides a powerful mechanism that facilitates the creation and use of
generic windows (application objects), while retaining the ability for the
application to modify the behavior of such windows should the need arise. The
use of subclassing enables a newly created window to take on the properties
and methods of existing window classes in accordance with the principle of
inheritance.

Presentation Manager enables the effect of subclassing a window to be reversed
by the application issuing the WinSubclassWindow() call a second time for the
same window, specifying the original window procedure. Presentation Manager
then routes messages directly to their intended destination. This capability
allows windows to be temporarily subclassed to meet changing requirements at
different points during application execution.

4.8 Summary

58 ©s/2 v2.0 volume 4

It can be seen from the foregoing discussion that Presentation Manager provides
a base that facilitates the implementation of module-based object-oriented
conventions by application programs. The concepts of an application object and
its methods are implemented under Presentation Manager as a window and its
window procedure.

Windows are grouped into classes and a window procedure is associated with a
window on the basis of its class, in a paraliel to the concept of allocating
methods to an object class rather than to individual instances of that class.
Window classes are defined in isolation however, and the concept of an
inheritance hierarchy is not imposed by Presentation Manager, thus further
enhancing the potential for efficient reuse by increasing object granularity.
Presentation Manager allows windows to be subclassed, in order to allow
additional or modified methods to be applied to an object in response to new or
specialized actions. This provides an additional enhancement to the capability
of code reuse, since it is not necessary to create a new object class in order to
implement small modifications to an existing class.

Windows communicate with the system and with each other by way of
messages, which are queued and routed by Presentation Manager, and which
are processed in a serial fashion by the target window procedure. This
messaging model is a practical implementation of the message-driven
communication precept of object-oriented application design.

While not supported explicitly by Presentation Manager, the object-oriented
concept of encapsulation is supported implicitly by the ability of a window
procedure to define and thus "own” a data object. The concept of polymorphism
is also supported by Presentation Manager, since the behavior and results
obtained from a window procedure are dependent upon, and only upon the class
and contents of messages sent to that window procedure. In a similar fashion,
the result of a message is dependent upon the window procedure (application
object) to which it is passed. The isolation of data objects within an application

object facilitates the containment of change by enhancing application modularity,
thus easing the task of change management and application maintenance.

Table 2. Application Object/Window Correlation

Application Object Supported Implementation

Message Communication Yes PM Message

Class Association Yes Window Class

Class Data Yes Defined in Window
Procedure

Instance Data Yes Stored in Window Words

Encapsulation Yes In Window Procedure

Polymorphism Yes In Window Procedure

Inheritance Partial Via Subclassing

The ability to encapsulate the definitions of data objects with the methods used
to manipulate those objects, and to store the resulting application objects in
object libraries, facilitates the notion of reusability, which is one of the central
precepts of object-oriented programming. The dynamic linking facilities provided
by 0S/2 further extend the potential for reusable application objects. Reusable
objects may be defined and stored for use by multiple applications; indeed,
multiple objects may direct messages to a single instance of an object executing
in the system. The message queueing and serialization provided by
Presentation Manager ensures the correct sequence of processing to preserve
the user’s intention and facilitate the integrity of data objects.

It may be seen that the concept of an application object as defined in Chapter 3,
“Object-Oriented Applications” and the implementation of a window under
Presentation Manager have a strong correlation. A window may be regarded as
the identity of an application object. That object is associated with a data object
and a set of methods {the window procedure) that perform actions upon the data
object. Class-specific data is defined within the window procedure, while
storage for instance data is defined dynamically and pointers typically stored in
window words. Windows communicate with the user and with one another by
way of messages. Thus the window is the implementation of an application
object under Presentation Manager.

Hence Presentation Manager provides an execution environment and a basic
application architecture that supports the implementation of object-oriented
applications, within the boundaries of IBM Systems Application Architecture.
Although it does not provide a complete development environment that enforces
object-oriented guidelines, it offers the basis upon which such a development
environment may be based.

Chapter 4. The Presentation Manager Application Model 59

60 os/2v20volumed

R

Chapter 5. The Flat Memory Model

The task of dynamically allocating memory within an application is greatly
simplified in the 32-bit 0S/2 Version 2.0 environment through use of the flat
memory model. The application developer need no longer be concerned with
the maximum 64KB segment size imposed by the 80286 processor architecture.
Larger amounts of memory may be allocated and subsequently manipulated as
single units known as memory objects, rather than as multiple segments as was
the case with previous versions of 0S/2. This reduces application complexity,
facilitating improved performance and reducing application development time.

This chapter describes the use of the flat memory model for application
programming, in order to allocate and manipulate system memory. The chapter
also examines the facilities provided by 0S/2 Version 2.0 that enable
applications to handle memory protection exceptions.

The concept of the flat memory model is described in OS/2 Version 2.0 - Volume
1: Control Program. The functions necessary to manipulate memory from within
applications are described in detail in the IBM OS/2 Version 2.0 Control Program
Reference.

5.1 DosAllocMem() Function

The DosAllocSeg() function implemented under previous versions of 0S/2 is
replaced in Version 2.0 by the DosAllocMem() function, which allows allocation of
memory objects greater than 64KB in size. To take an example, Figure 10
shows the code necessary under OS/2 Version 1.3 to allocate a 72KB area of
memory for use by an application:

SEL sell, sel2;
PVGID pSegmentl, pSegment2;

DosAllocSeg(0, &sell, SEG_NONSHARED);
DosAl1ocSeg (8192, &sel2, SEG_NONSHARED);

pSegment 1=MAKEP(sell, 0);
pSegment2=MAKEP (se12, 0);

Figure 10. Allocating Memory in Previous Versions of 0S/2. This example shows the use
of the DosAllocSeg() function to allocate multiple segments in order to access 72KB of
memory.

The application must then use pSegment1 to reference the lower 64KB and
pSegment2 to reference the upper 8KB of the memory object. This requires
conditional testing for each memory reference, and thereby introduces additional
complication to the application code. Use of the DosAllocHuge() function
simplifies this slightly, but arithmetic is still required in order to correctly
calculate offsets within the higher area of memory.

Under OS/2 Version 2.0, a single DosAllocMem() function call is required in order
to perform the same task, as shown in Figure 11 on page 62.

© Copyright IBM Corp. 1993 61

PVOID pObject; /* 32-bit linear pointer to memory object */

DosAllocMem(&pObject, /* Allocate memory object */
73727, /* Size of memory object */
PAG_READ | /* Allow read access */
PAG_WRITE); /* Allow write access */

Figure 11. Allocating Memory in OS/2 Version 2.0. This example shows the use of the
DosAllocMem() function to allocate a single 72KB memory object.

Subsequent references to this memory object may simply use a 32-bit offset
within the allocated address range.

Note that since 0S/2 Version 2.0 uses paged memory internally, memory
allocated using DosAllocMem() is always allocated in multiples of 4KB. Thus, a
request for 10 bytes will actually result in a full 4KB page being committed in
real storage. Since this will lead to high fragmentation and consequent waste of
memory, the allocation of many small memory objects using DosAllocMem()
directly is not recommended. Application developers should initially use
DosAlloccMem() to allocate the maximum storage likely to be required, and then
use the DosSubAlloc() function to allocate individual memory objects. This
technique allows the storage of muitiple small memory objects within the same
4KB page, thereby reducing fragmentation and making more efficient use of
storage.

Note that the DosAllocHuge() function provided under previous versions of 0OS/2
has no counterpart under Version 2.0. This function is not required since
DosAllocMem() allows the theoretical allocation of memory objects of a size up
to that of the application’s entire process address space.

Memory objects allocated using DosAllocMem() may be freed using the
DosFreeMem() function.

5.2 Allocating versus Committing Memory

62 0s/2 V2.0 Volume 4

Under OS/2 Version 2.0, there is a distinction between allocating a memory
object and committing that object. This distinction was not present in previous
versions of 0S/2, and is a very important concept for the application developer
to grasp. When a memory object is allocated, space is reserved in the linear
address space, but no real storage or swap file space is reserved for the object.
This space is only reserved when the memory object or parts thereof are
committed. A memory object that has not been committed is known as a sparse
object.

A memory object may be committed in two ways:

* It may be committed (in its entirety) at the time it is allocated, using the
PAG_COMMIT flag in the DosAllocMem() function.

* [t may be committed in stages at some later point, using the DosSetMem()
function.

The former technique is intended for small memory objects, the size of which is
fixed and can be determined in advance by the application developer. The latter
technique is intended for memory objects such as external data files, which may
vary in size.

Memory must be committed prior to being accessed by the application. Failure
to do this will result in a page fault {Trap 0C0E) exception.

5.2.1 Comnmitting Storage at Allocation

For memory objects that have a fixed size, such as internal application storage,
control blocks and most instance data, memory objects should be committed
immediately upon allocation, allowing the application to access the memory
object without the inconvenience and additional overhead of explicitly committing
the storage at a later time.

Storage for a memory object may be committed using the PAG_COMMIT flag in
the DosAllocMem() function call used to allocate the memory object, as shown in

Figure 12.
PVOID pObject; /* 32-bit linear pointer to memory object */
DosAllocMem(&pObject, /* Allocate memory object */
73727, /* Size of memory object */
PAG_READ | /* Allow read access */
PAG_WRITE | /* Allow write access */
PAG_COMMIT); /* Commit storage immediately */

Figure 12. Committing Storage During Allocation. This example shows the use of the
PAG_COMMIT tlag with the DosAllocMem() function.

The above example creates a 72KB memory object in a similar manner to that
shown in Figure 11 on page 62, but commits the storage during allocation, so
that is immediately available for use by the application.

5.2.2 Dynamically Committing Storage

Under DOS and previous versions of 0S/2, it is common for an application to
allocate a small memory segment to contain a data structure. If the data
structure outgrows the size of the segment, the segment size may be
progressively increased using the DosReallocSeg() or DosReallocHuge()
functions, moving the segments within the machine’s physical memory in order
to accommodate the increased size requirements. This is not possible under
Version 2.0, since the paged memory implementation does not allow memory
objects to be moved within memory once they are allocated; hence the
DosReallocSeg() and DosReallocHuge() functions have no counterparts in the
32-bit environment.

Under OS/2 Version 2.0, an application can allocate an area of storage in its
process address space, but may commit only a small amount of that storage at
the time the application is initialized. In this way, the application does not use a
large amount of storage in a situation where it is not required, and thereby
avoids placing unnecessary resource demands on the operating system. This
can result in improved overall system performance.

If the storage requirements for a memory object increase during execution (for
example, the size of a spreadsheet increases), and exceed the amount of
storage initially committed, the application may dynamically commit additional
storage up to the maximum specified in the DosAllccMemy() function call that
allocated the memory object.

Chapter 5. The Flat Memory Mode! 63

64 0s/2 v2.0 Volume 4

This dynamic commitment of storage is typically achieved using the guard page
technique. A page within the memory object may be specified as a guard page
using the PAG_GUARD flag in the DosAllocMem() function call or in a
DosSetMem() call made subsequent to the allocation. Once this is done, any
memory reference to that page will generate a guard page exception. The guard
page exception warns the application that the upper boundary of the committed
portion of a memory object has been reached, and allows appropriate action to
be taken in order to avoid a page fault exception.

Note that the memory protection scheme implemented by 0S/2 Version 2.0
allocates pages to individual processes. An exception is only generated when
an application attempts to write into a page which is not allocated to the current
process under which the application is running. If the page is allocated to the
current process, no exception is generated. Use of the guard page technique is
therefore strongly recommended in circumstances where the amount of data to
be written into a memory object is variable, or where the size of the memory
object or its data may grow during execution.

The recommended method of using guard pages is to initially allocate the
memory object as a sparse object, and then commit the amount of storage
required for the current size of the data, flagging the uppermost page of the
memory object as a guard page. This technique is shown in Figure 13.

PVOID pObject; /* 32-bit linear pointer to memory object */
DosA11ocMem(&pObject, /* Allocate memory object */
73727, /* Size of memory object */

PAG_READ | /* Allow read access */

PAG_WRITE); /* Allow write access */
DosSetMem(pObject, /* Set memory attributes for object */
81921, /* Two pages (8192 bytes) */
PAG_DEFAULT | /* Default attributes from allocation */
PAG_COMMIT); /* Commit page */
DosSetMem(pObject+4096, /* Set memory attributes for object */
1L, /* Two pages (8192 bytes) */
PAG_DEFAULT | /* Default attributes from allocation */
PAG_COMMIT | /* Commit page */

PAG_GUARD) ; /* Flag page as guard page */

Figure 13. Using a Guard Page With a Memory Object

The example shown in Figure 13 allocates a memory object that is 72KB in size

as a sparse object, commits the first two pages (8KB) of the object and specifies
the uppermost of the two pages as a guard page. Any attempt by the application
to write into this uppermost page will result in a guard page exception.

The guard page exception generated when an application attempts to write into
a guard page can be trapped and processed by an application-registered
exception handler, to commit further pages within the memocry object. A simple
guard page exception handier is shown in Figure 14 on page 65.

ULONG GPHandler({PEXCEPTIONREPORTRECORD pX)
{
ULONG ulAttribs; /* Memory attributes */
ULONG ulSize; /* Range in pages */
if (pX->ExceptionNum == /* 1f guard page exception */
XCPT_GUARD_PAGE_VIOLATION)
ulSize=1L; /* One page */
DosQueryMem(/* Query memory attributes */
(PvOoID)pX->ExceptionInfo[l], /* Page base address */
&ulSize * Single page *
&u1Attr;bs); ;* Memory :tgributes *;
if (((ulAttrs & PAG_FREE) || /* 1f page is available */
(ulAttrs & PAG_COMMIT))==8) /* but is not committed */
{
DosSetMem(/* Commit page */
(PVOID)pX->ExceptionInfo[1], /* Page base address */
iL, /* Single page only */
PAG_DEFAULT | /* Default attributes */
PAG_COMMIT); /* Set commit flag */
return(XCPT_CONTINUE_EXECUTION); /* Done */
}
if (pX->ExceptionNum == /* 1f access violation */
XCPT_ACCESS_VIOLATION)
{
if (pX->ExceptionInfo[1l]) /* 1f page address not NULL */
uiSize=1L; /* One page */
DosQueryMem(/* Query memory attributes */
(PVOID)pX->ExceptionInfo[l], /* Page base address */
&ulSize * Single page *
&u]Attr;bs); 5* Memory zttributes *;
if (((ulAttrs & PAG_FREE) || /* 1f page is available */
(ulAttrs & PAG_COMMIT))==0) /* but is not committed */
DosSetMem(/* Commit page */
(PVOID)pX->ExceptionInfo[1], /* Page base address */
1L, /* Single page only */
PAG_DEFAULT | /* Default attributes */
PAG_COMMIT); /* Set commit flag */
return(XCPT_CONTINUE_EXECUTION); /* Done */
}
} }
return(XCPT_CONTINUE_SEARCH); /* Chain to next handler if */
} /* any other exception */

Figure 14. Guard Page Exception Handler. This exception handler also handles the
situation where an application writes directly to an uncommitted page rather than to the
guard page, as is possible with non-sequential write operations.

The exception handler shown in Figure 14 handles two types of exception: the

guard page exception and the page fault exception. The latter occurs when an

application attempts to write to an uncommitted page in the memory object that
is not the guard page. This can occur when a memory object is accessed in a

non-sequential manner.

Chapter 5. The Flat Memory Model 65

The example shown above handles the guard page exception simply by
committing the next page in the memory object, and making this page the new
guard page. Guard page exceptions should not be allowed to pass through to
the operating system’s default guard page exception handler, since the default
handler operates by committing the next lower page in the memory object and
making this the new guard page. This is done because the default handler is
intended mainly to handle dynamic stack growth; stacks are always propagated
downward.

The exception handler shown in Figure 14 also handles the page fault exception,
where a write operation is attempted into a page other than the guard page,
which has not previously been committed. The exception handler responds to
this exception by querying the properties of the page in question and, if the page
has been allocated but not yet committed, proceeds to commit the page.

If the page has not been allocated (that is, it does not lie within the boundaries
of the memory object), or if the exception is neither a guard page exception nor
a page fault exception, the exception handler does not process the exception,
and returns control to the operating system, which will invoke any other
exception handlers registered for the current thread (see 5.4, "Exception
Handling” on page 68).

A guard page exception handler is registered by the application using the
DosSetExceptionHandler() function. This function is illustrated in Figure 15.

EXCEPTIONREGISTRATIONRECORD Exception;

.
.
.

Exception.ExceptionHandler = (_ERR *)&GPHandler; /* Set entry point addr */

DosSetExceptionHandler (&Exception); /* Register handler */

Figure 15. Registering a Guard Page Exception Handler. This example shows the use of
the DosSelExceptionHandler() function.

The DosSetExceptionHandler() function can also be used to register exception
handlers for other types of system exception; see 5.4, “Exception Handling” on
page 68 for further information.

Note that OS/2 Version 2.0 provides its own exception handlers within the
service layers for all 32-bit system functions. These exception handlers allow
the service routines to recover from page fault exceptions and general protection
exceptions encountered due to bad pointers in applications’ function calis. The
function call returns an ERROR_BAD_PARAMETER code rather than a Trap 00D
or Trap GOE code, thereby allowing the application to recover. This represents a
significant enhancement over previous versions of 0S/2, since it allows easier
debugging and more flexible pointer handling.

5.3 Suballocating Memory

66 0s/2 V2.0 Volume 4

Under OS/2 Version 2.0, the granular unit of memory is the page. This means
that the minimum possible memory allocation for a single DosAllocMem()
function call is 4KB. For example, if an application requests the allocation of 10
bytes of storage, the operating system will allocate a full 4KB page; the
remaining storage in this page will be wasted.

It is therefore recommended that for dynamic allocation of small memory objects
for uses such as instance data, each window procedure should use a single
DosAllccMem() function call to allocate a storage pool, and subdivide this
storage as required using the DosSubAlloc() function, as shown in Figure 16 on
page B67.

#define POOLSIZE 8192 /* Size of storage pool */
PVOID pPool; /* Base address of pool */
CTRLSTRUCT1 *Structl; /* Control structure 1 */
CTRLSTRUCTZ *Struct2; /* Control structure 2 */
DosA11ocMem(&pPool, /* Allocate storage for pool */
POOLSIZE, /* Size of memory object */

PAG_READ /* Allow read access */

PAG_WRITE | /* Allow write access */
PAG_COMMIT); /* Commit storage immediately */

DosSubSet (pPool, /* Initialize for suballoc */
DOS_SUBINIT, /¥ Initialize flag */
POOLSIZE); /* Size of pool */
DosSubAlloc(pPool, /* Suballocate storage */
&Structl, /* Pointer to memory object */

sizeof (CTRLSTRUCT1)); /* Size of storage required */
DosSubAl1oc(pPool, /* Suballocate storage */
&Struct2, /* Pointer to memory object */

sizeof (CTRLSTRUCT2)); /* Size of storage required */

Figure 16. Suballocating Memory

Storage must be suballocated in multiples of 8 bytes. Any requested
suballocation which is not a multiple of 8 bytes will have its size rounded up to a
multiple of 8 bytes.

Storage to be suballocated must first be allocated using the DosAllocMem()
function, and initialized for suballocation using the DosSubSet() function. Note
that control information for the suballocation uses 64 bytes of the storage pool;
this must be taken into account when determining the size requirements for the
pool.

In Figure 16, the storage in the pool is committed during allocation, since the
example assumes that the total storage requirement is known in advance. In
situations where the exact size of the storage required is not known, the storage
may be allocated but not committed, and the suballocation procedure will then
progressively commit storage as required. This is indicated by specifying the
DOS_SPARSE_OBJ flag in the DosSubSet() function call.

Memory that has been suballocated using the DosSubAlloc() function may be
freed using the DosSubFree() function. The storage is then available for future
suballocation. Note, however, that the suballocation procedure does not
reorganize suballocated memory objects within a pool. Thus freeing objects
within the pool may result in memory fragmentation.

A storage pool initialized for suballocation using the DosSubSet() function should
be removed using the DosSubUnset() function before the memory in the pool is

Chapter 5. The Flat Memory Model 67

freed. This function call releases the operating system resources used by the
suballocation procedure.

When using the C Set/2 compiler, the malloc() function may be used to allocate
memory. This function has many of the advantages of the DosSubAlloc()
function, but avoids the need for the application to explicitly allocate, set and
suballocate memory. The malloc() function also provides greater independence
for application code from the platform upon which it executes, allowing the
application to be more easily migrated to platforms other than 0S/2 Version 2.0.

The malloc() function works as follows:

* The first call to malloc() from a particular application (process) causes
malloc() to request a memory object from the operating system. The
malloc() service routine adds 16 bytes to the size specified in the function
call, and rounds the result upward to the next even power of 2. This amount
of memory is then requested from the operating system using a
DosAllocMem() call. The operating system will then allocate memory,
rounding the service routine’s request size upward to the nearest muitiple of
4KB. The malloc() function then fulfills the application’s request, with some
wastage due to the page-granular allocation.

» For subsequent calls to malloc(), the malloc() service routine first checks
whether it has sufficient memory remaining from a previous request; if so, it
allocates that memory and returns control to the application. If not, the
service routine requests additional memory from the operating system using
the DosAllocMem() function.

Note that the free() function, used to free memory which has been allocated
using malloc(), does not return the memory to the operating system; rather, that
memory is held by malloc() for future use. In order to return memory to the
operating system, the application must issue a heapmin() function call.

5.4 Exception Handling

68 0s/2 V2.0 Volume 4

The following outcomes are possible when a memory object is referenced by the
application:

* If the memory has not been allocated or committed, a general protection
exception (Trap 000D) will occur.

* If the memory has been allocated but not committed, a page fault exception
(Trap OCOE) will occur.

In both of the above cases, the exception is reported to the application’s general
protection exception handler, if one has been registered by the application. The
application may then deal with the error. If an exception handler has not been
registered by the application, the default exception handler provided by the
operating system will terminate the application.

* If the page to be referenced has been defined as a guard page, a guard page
exception is generated. If the application has not registered its own handler
for this exception, the system’s default handler will commit the page, and
mark the next page in the memory object as the new guard page for the
object. Once the guard page exception has been processed, execution
proceeds normally.

* If none of the above conditions occur, the memory object is accessed and
execution proceeds normally.

Exception handlers for the various types of exception may be registered using
the DosSetExceptionHandler() function, as shown in Figure 15 on page 66.

Note that unlike previous versions of 08/2, application handlers need not be
written in assembly language; high-level programming languages may be used.

Exception handlers are registered on a per-thread basis, and multiple exception
handlers may be registered for each thread. When more than one exception
handler is registered, the handlers are chained, with the most recent addition
being placed at the start of the chain. When an exception occurs, control is
passed to the first handler, which may handle the exception and return
XCPT_CONTINUE_EXECUTION, in which case the operating system returns
control to the application.

If the exception handler cannot handle a particular exception, it returns
XCPT_CONTINUE_SEARCH, in which case the operating system passes control to
the next exception handler in the chain. In this way, control is eventually passed
to the operating system’s default exception handlers.

When an exception handler is no longer required, it can be removed from the
chain using the DosUnsetExceptionHandler() function.

Exception handling and the various operating system exceptions that can occur
are described in the IBM 0S/2 Version 2.0 Control Program Reference.

5.5 Shared Memory Objects

By default, memory objects allocated by an application are private to the
process in which that application executes. However, 0S/2 allows memory to be
shared among applications for interprocess communication. Shared memory
objects are allocated in a similar manner to private memory objects, using the
DosAllocSharedMem() function.

Note that while private memory objects are allocated using addresses upward
from the lower limit of the process address space, shared memory objects are
allocated downward from the upper limit of the process address space. Hence
the private and shared memory arenas grow toward one another as more
memory objects are allocated during execution.

Shared memory objects may be freed in the same manner as private memory
objects, using the DosFreeMem() function.

5.5.1 Named versus Anonymous Shared Memory Objects
Shared memory objects may be named or anonymous. Named shared memory
objects have names of the form:
\SHAREMEM\<objectname.ext>

A named shared memory object may be accessed by another process using the
DosGetNamedSharedMem() function.

An anonymous shared memory object must be declared as “giveable” or
“gettable” when it is allocated, in order that it may be made available to other
processes using the DosGiveSharedMem() or DosGetSharedMem() functions. An
example is given in Figure 17 on page 70.

Chapter 5. The Flat Memory Model 69

MYSTRUCT *MYSTRUCT;

APIRET rc;

rc = DosAllocSharedMem(&MyStruct, /* Allocate memory object */
NULL, /* Anonymous memory object */
sizeof (MYSTRUCT), /* Size of memory object */
0BJ_GIVEABLE | /* Object is giveable */
PAG_WRITE | /* Write access is allowed */
PAG_READ | /* Read access is allowed */
PAG_COMMIT); /* Commit storage immediately */

rc = DosGiveSharedMem(MyStruct, /* Give access to object */
pidOther, /* Process to receive access */
PAG_WRITE | /* Write access is allowed */
PAG_READ); /* Read access is allowed */

Figure 17. Allocating Shared Memory. This example shows the use of the
DosAllocSharedMem() function, declaring a memory object as “giveable.”

The DosGiveSharedMem() function can be used at any time to provide another
process with a specified level of access to a memory object, provided that the
owner of the memory object knows the process ID of the process to which
access is to be given.

5.5.2 Comniitting Shared Memory Objects

Like private memory objects, shared memory objects have a distinction between
allocating and committing storage. Shared memory objects may be committed
upon allocation, or subsequently using exception handlers and the DosSetMemy()
function. The guard page technique may be used with shared memory objects
as well as private memory objects.

One distinction between shared memory objects and private memory objects is
that private memory objects may be “de-committed” if the required amount of
memory reduces during execution; that is, physical storage is released without
releasing the corresponding address ranges in the process address space.
Shared memory objects may not be de-committed, to avoid the situation where
one process may de-commit a page that is being accessed by another process.

5.6 Summary

70 0s/2 v2.0 Volume 4

Dynamic memory allocation is greatly simplified under OS/2 Version 2.0, since
the application developer is no longer required to explicitly code for the 80286
segmented memory model, with its size limitation of 64KB per segment. Larger
units of memory may be allocated and manipulated as single units, simplifying
application code and reducing development time for applications that manipulate
large data structures.

When executable modules compiled for different environments are executed
within the same process, the operating system handles interaction between
these modules through thunk layers. The conversions made within the thunk
layers are transparent to the application modules themselves, and do not require
consideration by the application developer. This enables executable files,
dynamic link libraries, and resources from different environments to be mixed
within the same application.

In general, application developers using OS/2 Version 2.0 are provided with a
greater level of function and, at the same time, may take advantage of greatly
simplified application development through use of the 32-bit flat memory model,
which removes much of the inherent complexity of memory manipulation within
the application. Developers may produce applications more efficiently under
Version 2.0, and may easily migrate their applications to and from the 0S/2
Version 2.0 environment.

Chapter 5. The Flat Memory Model

7

72 0s/2 v2.0 Volume 4

Chapter 6. Building a Presentation Manager Application

While the steps necessary to create a Presentation Manager application are
generally similar to those required to create any kind of application in the
programmable workstation environment under 0OS/2, there are some specific
considerations to be borne in mind with regard to the implementation of
object-oriented concepts in Presentation Manager applications, since the
Presentation Manager environment does not force the application developer to
obey such guidelines. Therefore, this chapter will discuss the implementation of
the general concepts outlined in Chapter 4, “The Presentation Manager
Application Model,” in such a way that they conform to object-oriented
principles and achieve the highest level of modularity.

For the purposes of discussion, this chapter will assume that the source code is
written using the “C” language. Other programming languages may be used to
create Presentation Manager applications while preserving the overall
application architecture, provided these languages support the creation of
reentrant code and allow recursion.

6.1 Language Considerations

Presentation Manager applications may be written using the following
programming languages:

* Assembler language

Y llc"

+ COBOL/2 (after May 7th 1991)

*« FORTRAN (0S/2 Version 1.2 and above)

The use of Assembler language should be avoided wherever possible. While
coding to such a low-level language may provide significant performance
improvements in critical applications, it is typically more costly in terms of
programmer productivity and subsequent code maintenance. Assembler code is
also less portable than that written using higher-level languages.

!

The requirements of the Presentation Manager execution environment restrict
the use of some COBOL and FORTRAN compilers. Presentation Manager
requires window procedures to be reentrant, and a FORTRAN or COBOL
compiler that supports the creation of reentrant code must be used. In addition,
much of the default message processing provided by Presentation Manager
results in synchronous messages being sent to window procedures. This
practice is effectively a recursive subroutine call, and requires window
procedures to be written in a language that supports recursion.

In order to create COBOL or FORTRAN source code that executes in the
Presentation Manager environment, from a compiler that does not support
reentrant or recursive procedures, the application developer must adopt one of
two solutions:

1. Create a “C" program to provide the Presentation Manager windowing and
dialog management functions, and combine this program with calied COBOL
or FORTRAN subprograms to perform the actual processing for the
application.

® Copyright IBM Corp. 1993 73

2. Create a "winproc-less” application, where a main routine written in COBOL
or FORTRAN creates a message-processing loop, captures and explicitly
processes all message classes. Such an application has no window
procedures.

3. Use the “language support window procedure” provided with the 0S/2
Programmer’s Toolkit under OS/2 Version 1.3, which provides processing for
most message classes and returns selected messages to the application for
processing.

Where the use of COBOL or FORTRAN is unavoidable, solution (1) above is
recommended, since it provides additional flexibility, maintains SAA
conformance, retains much of the object-oriented nature of the application, and
allows the best use to be made of existing host COBOL or FORTRAN application
code, since the subprograms used are invoked using standard language
conventions, and data is passed to them using a normal parameter list and
returned the same way. The subprograms therefore interact with the calling
application in much the same way as an ISPF dialog, minimizing the requirement
for modification of existing code and reducing the need to retrain application
developers.

Object-oriented programming languages such as Smalltalk and C+ + are
becoming increasingly popular for the creation of object-oriented code, and are
well-suited to the Presentation Manager application model. Organizations may
wish to investigate the viability of these languages for particular development
projects and environments.

6.2 Function and Data Types

Presentation Manager provides a number of specialized function and data type
definitions (such as MRESULT, MPARAM, etc.) for use by Presentation Manager
applications. While these type definitions are not “standard” C language types,
their use is strongly recommended. 0S/2 maps these type definitions into
standard C language types using #define statements embedded in the OS/2
header file 0s2.h. Since the mapping may vary between 0S/2 Version 1.3 and
Version 2.0 due to differences between the 16-bit and 32-bit operating system
architectures, the use of Presentation Manager’s type definitions insulates the
application source code from the underlying architecture.

6.3 Object-Oriented Programming Practices

74 0s/2 v2.0 Volume 4

While Presentation Manager allows an application developer to implement the
fundamental concepts of object-oriented programming in his or her applications,
it does not restrict the application developer to the use of these conventions.
Therefore to ensure the correct implementation of object-oriented conventions
and to enable the maximum level of granularity, a number of guidelines are
offered:

* The use of multi-purpose application objects (window procedures) should be
avoided; for example, a single window procedure should not handle both
user interaction and file access. Manipulation of separate data objects
should be achieved using separate window procedures. Background data
objects (that is, files or databases) should be manipulated using object
windows.

* As a corollary of the above rule, multiple window procedures should not be
created to act upon a single data object; where possible, all actions on a
particular data object should be performed by a single window procedure.
This behavior simplifies any future maintenance should the definition of the
logical data entity or its representation change. Note that this guideline may
need to be overridden in circumstances where an action requires lengthy
processing, in order to preserve application responsiveness.

* The definition, creation and/or establishment of access to data objects
should be achieved, where possible, from within a window procedure in
order to preserve the concept of data encapsulation. That is to say, the use
of global data should be minimized in order to enhance modularity and
maximize object independence.

* The input, output and behavior associated with a window procedure should
depend solely on the class and contents of the messages it receives, and
should not depend on any other external data or parameter, other than a
data structure to which a pointer is passed as a message parameter. This
preserves the concept of object polymorphism and enhances the potential for
reuse.

These guidelines, when obeyed, will enable an application to conform to the
established guidelines for object-oriented programming as discussed in
Chapter 3, “Object-Oriented Applications.”

6.4 Application Main Routine

A sample application main routine is illustrated in Figure 18 on page 76 and
Figure 19 on page 77. The functions performed by the main routine are as
follows:

1. Register the application to Presentation Manager, and obtain an anchor
block handle (that is, an application handle), using the Winlnitialize()
function.

2. Create a message queue, into which Presentation Manager will place all
messages intended for the application, using the WinCreateMsgQueue()
function and passing both the anchor block handle and the required queue
size to Presentation Manager, which returns a message queue handle to the
application. Note that if the queue size specified is zero (as shown in the
example above) then the default queue size of 10 messages is used.

3. Register one or more window classes, for the windows that will be created
by the application, and associate a window procedure with each window
class, using using the WinRegisterClass() function. Parameters passed to
this function include the name of the window class and the name of the
window procedure to be associated with the class. Presentation Manager
returns a Boolean value indicating success or failure. Note the 4 bytes (32
bits) requested for window words, which may be used by the window
procedure to store the address of its instance data block.

Chapter 6. Building a Presentation Manager Application 75

76 0S/2 V2.0 Volume 4

#define INCL_WIN
#include <os2.h> '

#define VCP_MAIN “WCP_MAIN®
MRESULT EXPENTRY wpMain (HWND,ULONG,MPARAM,MPARAM) ;
int main()

struct MYSTRUCT InitData;

static CHAR szTitle[] = “Main Window";

FRAMECDATA fcdata; /* Control data for window */
HAB hAB; /* Anchor block handle */
HMQ hMsgQ; /* Message queue handle */
HUND hFrame, hClient; /* Window handles */
QMSG gMsg; /* Message queue structure */
APIRET rc; /* Flag */
memset (&fcdata,0,sizeof(fcdata); /* Initialize */
fcdata.cb = sizeof(fcdata);
hAB = WinlInitialize(0); /* Register appl. to PM */
hMsgQ = WinCreateMsgQueue(hAB,0); /* Create message queue */
rc = WinRegisterClass (hAB, /* Register window class */
WCP_MAIN, /* Name of class */
wpMain, /* Window procedure name */
oL, /* No style */
4); /* 32 bits in window words */

Figure 18. Sample Application Main Routine (Part 1) - Registration

4. Create a main display window for the application, using two consecutive
WinCreateWindow() calls (as shown in Figure 19 on page 77) or a single
WinCreateStdWindow() call. Note the separate handles used for the frame
and client windows. The values specified for fcdata.fiCreateFlags control the
appearance of the window, the controls it contains and its position on the
screen.

5. Optionally, create an entry for the application in the Workplace Shell Window
List, using the WinAddSwitchEntry() function. Note that this step is omitted
from Figure 19 for reasons of clarity, and is shown separately in Figure 20
on page 78.

Note that under 0S/2 Version 2.0, the WinCreateSwitchEntry() function is
provided in addition to the WinAddSwitchEntry() function. These two
functions accept identical parameters and carry out identical tasks; the
WinCreateSwitchEntry() function is intended to provide consistent function
naming conventions. The WinAddSwitchEntry() function is retained under
0S/2 Version 2.0 for compatability with existing applications, but use of the
WinCreateSwitchEntry() function is recommended.

6. Establish a message processing loop, whereby the application requests
Presentation Manager to supply messages from the system queue and
subsequently invokes Presentation Manager to dispatch them to the

appropriate window procedure. This lcop uses nested WinGetMsg() and
WinDispatchMsg() calls.

7. Upon receivng the special message class WM_QUIT, which will cause
WinGetMsg() to return false and hence terminate the while loop, remove any
remaining windows using the WinDestroyWindow() function, remove the
application’s entry from the Window List using the WinRemoveSwitchEntry()
function, destroy the message queue and deregister the application before
terminating. These latter functions are achieved using the
WinDestroyMsgQueue() and WinTerminate() calis.

fcdata.f1CreateFlags = FCF_TITLEBAR | FCF_SYSMENU
FCF_SIZEBORDER | FCF_MINMAX |
FCF_SHELLPOSITION;
hFrame=WinCreatel/indow (HWND_DESKTOP, /* Create frame window */
WC_FRAME, /* Frame window class */
(Psz)e, /* No window text */
oL, /* No style */
0,0,0,0, /* PM shell will position */
(HWND)O, /* No owner */
HWND_TOP, /* On top of siblings */
0, /* No window identifier */
&fcdata, /* Frame control data */
0); /* Presentation parameters */
hClient=WinCreateWindow(hFrame, /* Create client window */
WCP_MAIN, /* Window class */
szTitle, /* Window title */
01, /* Standard style */
0,0,0,0, /* PM shell will position */
(HWND)O, /* No owner */
HWND_TOP, /* On top of siblings */
FID_CLIENT, /* Client window identifier */
&InitData, /* Initialization data */
0); /* Presentation parameters */
/* <Create Window List entry for application> */

while (WinGetMsg(hAB, &qMsg, 0, 0, 0))
WinDispatchMsg(hAB, &gMsg);

/* <Remove Window List entry for application> */
WinDestroyWindow (hFrame); /* Destroy frame & children */
WinDestroyMsgQueue (hMsgQ) ; /* Destroy message queue */
WinTerminate(hAB); /* Deregister application */

}

Figure 19. Sample Application Main Routine (Part 2) - Window Creation

The structure of the main routine is similar for both the application (that is, the
application’s primary thread) and any secondary threads created by the
application. See Chapter 10, “Multitasking Considerations” for further
discussion on secondary threads.

In Figure 18, note the use of the EXPENTRY keyword in the function prototype to
specify the system linkage convention for the window procedure wpMain. This is
required whenever declaring a window procedure or dialog procedure, since

Chapter 6. Building a Presentation Manager Application 77

such procedures are normally invoked by Presentation Manager on the
application’s behalf, rather than directly by the application.

If the application is to appear in and be selectable from the Workplace Shell
Window List, the main routine must issue a WinAddSwitchEntry() function call,
after creating the application’s main window and before entering the message
processing lcop.? This function call is shown in Figure 20.

SWCNTRL SwitchData; /* Switch control data block */
HSWITCH hSwitch; /* Switch entry handle */
SwitchData.hwnd = hFrame; /* Set frame window handle */
SwitchData.hwndIcon = 03 /* Use default icon */
SwitchData.hprog = 0; /* Use default program handle */
SwitchData.idProcess = 0; /* Use current process id */
SwitchData.idSession = 0; /* Use current session id */
SwitchData.uchVisibility = SWL_VISIBLE; /* Make visible */
SwitchData. fbJump = SWL_JUMPABLE; /* Make jumpable via Alt+Esc */
SwitchData.szSwTitle[0] = '\0'; /* Use default title text */
hSwitch = WinAddSwitchEntry(&SwitchData); /* Add switch entry */

Figure 20. WinAddSwitchEntry() Function. This function adds the application to the 0S/2
Window List. Note that under 0S/2 Version 2.0, the WinCreateSwitchEntry() function
should be used.

Note that the application may set the swTitle field of the SwitchData structure to
NULL. Presentation Manager will then determine the title under which the
application was started from the Presentation Manager shell, and use this title
for the switch entry.

The WinAddSwitchEntry() function returns a switch entry handle, which may be
stored by the application and used during termination to remove the switch entry
from the Workplace Shell Window List using the WinRemoveSwitchEntry()
function.

The switch entry may be accessed by a window procedure at any time during
application execution. The switch entry handle is obtained using the
WinQuerySwitchHandle() function, and the SwitchData control structure may then
be obtained using the WinQuerySwitchEntry() function, and altered using the
WinChangeSwitchEntry() function. This capability may be used to allow a
window procedure to obtain the handle of the application’s main window, in
order to post or send messages to that window. This is discussed in 6.6.5,
“identifying the Destination Window” on page 91.

3 Note that under OS/2 Version 2.0, use of the WinCreateSwitchEntry() function is recommended, for reasons of consistency in
function names.

78 0s/2 V2.0 Volume 4

6.5 Using Windows

As mentioned in 4.3.2, “Window Procedures” on page 46, window procedures
within a Presentation Manager application are reentrant; that is, the same
window procedure is used for muitiple instances of the same window class.
However, a window class may have separate data objects associated with each
instance of that class, which may be used to store temporary data necessary
during the existence of that object; such data is known as instance data. These
data objects may need to be created/opened and initialized. Upon the window
being closed, data objects may need to be closed or destroyed in a controlled
fashion.

Presentation Manager allows such function to be performed by a window
procedure, since messages are sent to a window by Presentation Manager
informing the window procedure of events such as creation or closure of the
window. These messages are discussed below.

6.5.1 Window Creation

A window is created by Presentation Manager in response to the application
issuing a WinCreateStdWindow() function call or a WinCreateWindow() call; an
example of the WinCreateWindow() call is given in Figure 19 on page 77.

The first statement in the example specifies the attributes of the frame window,
which are contained in the data variable fcdata.flICreateFlags. These values
determine the control windows that are created with the frame window
(FCF_SYSMENU, FCF_MINMAX etc), and also indicate to Presentation Manager
that it should select the position of the window on the desktop
(FCF_SHELLPOSITION).

The window is then created in two steps; firstly the frame window is created,
with the desktop as its parent, and then the client window is created with the
frame window as its parent. The frame window belongs to the system-defined
window class WC_FRAME, whereas the client window belongs to an
application-defined window class WCP_MAIN, which is assumed to have already
been defined to Presentation Manager using a WinRegisterClass() call.

If it is necessary to pass initialization information to a window upon its creation,
this may be achieved using the Ct/Data parameter in the WinCreateWindow()
function. This parameter is a 32-bit pointer, which may reference an
application-defined data structure. This pointer is passed to the window as the
first parameter of the WM_CREATE message. The window may, during its
processing of this message, extract the pointer from the message parameter
and use it to access the data structure. See Figure 19 for an example of this
technique.

When an application requests that Presentation Manager creates a window of a
particular class, a message of the system-defined class WM_CREATE is sent to
the window procedure associated with that class. The window procedure may
capture this message by including a case for it, and perform any processing
such as opening files or databases, allocating memory objects and setting
instance data to initial default values.

In coding the method for this message class, the first statement should be a call

to WinDefWindowProc(), which will enable Presentation Manager to perform
default processing and compiete the initialization of the window (such as

Chapter 6. Building a Presentation Manager Application 79

allocating a window handle) before the application-specific processing is carried
out. If the default processing is not completed first, the window handle and any
window words may not be allocated before the application makes function calls
that reference them, thus causing these calls to fail.

Where instance data or resource handles will be used by the window, and must
be maintained beyond the processing of a single message, a data structure
should be defined to contain these items. Memory for the data structure should
be requested from the operating system, and a pointer to the memory object
stored in the window words, as part of the WM_CREATE processing. See 6.5.4,
“Instance Data and Window Words” on page 81 for further information.

6.5.2 Window Processing

During execution, a window processes messages passed to it by Presentation
Manager, using the methods defined in its window procedure. Upon receiving a
message, the window procedure performs three basic tasks:

1. The window procedure determines the message class by examining the
message class identifier.

2. Depending upon the message class, the window procedure executes a series
of application instructions and/or subroutines to perform the action
requested by the message.

3. The window procedure passes a return code to Presentation Manager.

As part of the second step above, the window procedure may extract necessary
information from the parameters passed with the message, using a number of
macros provided by Presentation Manager. These macros are described in
6.6.6, “Creating Message Parameters” on page 93.

The window procedure may also gain access to instance data or resource
handles stored in a control block during processing of previous messages. This
control block is generally allocated upon creation of the window and a pointer to
it stored in the window words. The window procedure may retrieve this pointer
from the window words at the start of processing for the current message.
Seeb.5.4, “Instance Data and Window Words" on page 81.

6.5.3 Window Closure

80 o0s/2 v2.0 Volume 4

A window is closed (removed from the screen and destroyed) by Presentation
Manager in response to the application issuing a WinDestroyWindow() call,
specifying the handle of the window to be destroyed. In normal circumstances
the handle of the frame window is specified; destroying the frame window
destroys that window and all of its children, including the client window
associated with that frame.

When an application requests that Presentation Manager close a window, a
system-defined message of class WM_DESTROY is sent to the client window,
and thus to the window procedure associated with that class. The window
procedure may capture and process this message, backing out any uncompleted
units of work, and destroying or terminating access to data objects. The window
procedure should then return a value of zero.

Note that although closing and destroying a parent window will also close and
destroy all children of that window, the WM_DESTROY message is sent to the
parent window, and processed before the children are destroyed. Hence when

processing a WM_DESTROY message, a window procedure may assume that all
its children still exist.

If the user explicitly requests closure of a window by selecting the “Close”
option on the system menu, a system-defined message of class WM_CLOSE is
sent to the window procedure. The window procedure may also capture and
process this message in a similar manner to that used for WM_DESTROY
messages.

Note that explicit processing of the WM_CLOSE message class is recommended
for all Presentation Manager windows, since the default processing provided by
Presentation Manager causes a WM_QUIT message to be posted to the
application’s message queue. This may result in unwarranted termination of the
application. The window procedure for a child window should process a
WM_CLOSE message by issuing a WinDestroyWindow() call for its frame window.
The window procedure for an application’s main window should process a
WM_CLOSE message by posting a WM_QUIT message to itself. This will cause
the application to terminate (see 6.8, “Terminating an Application” on page 98).

In order to handle the closure of a window in the most elegant manner, the
following course of action is recommended:

* Explicit processing should be provided for both WM_CLOSE and
WM_DESTROY messages:

— A window procedure should process a WM_CLOSE message by issuing a
WinDestroyWindow() call for its own frame window if it is a child window,
or a WM_QUIT message to itself if it is an application’s main window. In
both cases, the window procedure should then return a value of zero.

— A window procedure should process a WM_DESTROY message by
closing any files or databases that it has opened, and freeing any
resources such as memory objects.

 Selection of the “Exit” option from a menu bar should result in the closure of
the window to which the menu bar belongs, by having the window
procedure issue a WinDestroyWindow() call for its frame window. If the
window is the application’s main window, it should be closed by having the
window procedure post a WM_QUIT message to itself (see 6.8, “Terminating
an Application” on page 98). This will resultin a WM_DESTROY message
being posted to the main window and each of its children as part of the
application’s termination processing. These messages may be captured and
processed by the appropriate window procedures in order to close data
objects, back out incomplete units of work, etc.

The release of data objects and Presentation Manager resources is discussed in
6.5.4, “Instance Data and Window Words.”

6.5.4 Instance Data and Window Words
For data that is private to a particular instance of a window class, each window
may have an area of storage associated with it, assigned by Presentation
Manager and located within the Presentation Manager control block for that
window. This area is known as the window words. The amount of space
allocated for window words in a particular window class is variable, and is
defined in the WinRegisterClass() function call at the time the class is registered
to Presentation Manager.

Chapter 6. Building a Presentation Manager Application 81

82 0s/2 v2.0 Volume 4

It is recommended that for storage of amounts of data larger than four bytes, a
memory object is obtained from the operating system using the DosAllocMem()
or DosSubAlloc() functions, and a pointer to this object is placed in the window '
words of the associated window. An example of this technique is given in
Figure 21 on page 82.

MYSTRUCT *MyStruct;
switch (ulMsg) /* Switch on message class */
{
case WM_CREATE:
WinDefWindowProc (hiind, /* Perform default init */
ulMsg,
mpl,
mp2) 5
DosAllocMem(MyStruct, /* Allocate memory object */
sizeof (MYSTRUCT), /* Size of memory object */
PAG_READ | /* Allow read access */
PAG_WRITE | /* Allow write access */
PAG_COMMIT); /* Commit storage now */
hFrame=Y1inQueryWindow(hwnd, /* Get frame window handle */
QW_PARENT,
FALSE) ;
WinSetWindowULong (hFrame, /* Place pointer in window */
QWL_USER, /* words */
(ULONG)MyStruct);
return((MRESULT)0);
break;

Figure 21. Storing Instance Data in Window Words. This example shows the allocation of
a memory object, and the storage of a pointer to that memory object in window words.

A memory object corresponding to the size of the data structure MYSTRUCT is
obtained from the operating system using the DosAllocMem() function, and a
pointer to this memory object is set by the application. This pointer is then
placed in the window words of the current window’s parent (that is, the frame
window) using the WinSetWindowULong() function, at offset QWL_USER. A
number of predefined Presentation Manager window classes, including the frame
window class, contain a 32-bit word at this offset, which is available for
application use.

Note the use of the PAG_COMMIT flag in the DosAllocMem() function call. This
flag causes storage to be allocated immediately for the memory object being
created, since 0S/2 Version 2.0 by default uses a two-phase process for dynamic
memory allocation.

The concept of committing memory is new to Version 2.0, and allows a storage
map for the application to be defined, but the storage is not reserved in memory
until it is needed, at which time the application may explicitly commit the storage
using the DosSetMem() function. Optionally, the application may set the
PAG_COMMIT flag in the DosAllocMem() function call to commit the storage
immediately upon allocation.

Failure to commit storage, either by use of the PAG_COMMIT flag or the
DosSetMem() function, will result in a page fault exception (Trap 0C0E) when the
application attempts to write to the storage area. The concept of allocating and

committing storage is explained fully in 0S/2 Version 2.0 - Volume 1: Control
Program, and the use of these techniques by applications is described in
Chapter 5, “The Flat Memory Model."

After the memory object containing instance data is initially allocated, the
window procedure may access it during processing of subsequent messages by

issuing a WinQueryWindowULong() call to Presentation Manager, as shown in
Figure 22.

case WMP_MYMESSAGE:
hFrame=WinQuerytindow(hwnd,
QW_PARENT,
FALSE) ;
MyStruct=WinQueryWindowULong (hFrame,
QUL_USER);
<Perform action>
return((MRESULT)O);
break;

Figure 22. Retrieving Instance Data from Window Words

Upon termination of the window by the application, the window procedure
receives a WM_DESTROY message. As described in 6.5.3, “Window Closure” on
page 80 , the window procedure should process this message by releasing any
resources to which it has access. This includes the instance data control block,
which must be released using the DosFreeMem() function as shown in Figure 23.

case WM_DESTROY:
hFrame=WinQuery\indow(hwnd,
QW_PARENT,
FALSE);
MyStruct=WinQueryWindowULong(hFrame,
QWL_USER) 3
<Release data objects>
<Release Presentation Manager resources>
DosFreeMem(MyStruct);
return((MRESULT)0);
break;

Figure 23. Releasing Instance Data Slorage

In the above example, the pointer to the instance data control block is first
retrieved from the window words, giving access to the handles of any data
objects or Presentation Manager resources obtained by the window, in order
that these may be released. Once this has been achieved, the memory object
containing the control block is released by the window procedure. Failure to
release the data objects and resources before freeing the memory object would
result in a general protection exception (Trap G00D) when the data objects or
resources were subsequently released.

Chapter 6. Building a Presentation Manager Application 83

6.5.5 Subclassing a Window

84 0s/2 v2.0 Volume 4

The use of subclassing to modify the methods of an existing window class has
been described in 4.7, “Subclassing” on page 57. An application subclasses a
particular window instance (rather than the entire window class) by creating a
subclass window procedure, and registering this window procedure to
Presentation Manager using the WinSubclassWindow() function.

The use of the WinSubclassWindow() function is shown in Figure 24.

PFNKP pO1dWinProc;

pOldWinProc = WinSubclassWindow(hiind, wpSubclass);

Figure 24. WinSubclassWindow() Function

The WinSubclassWindow() function substitutes a new window procedure, known
as the subclass window procedure, for the original window procedure associated
with the window being subclassed. The window handle of the window, along
with the entry point of the subclass window procedure, is passed to the
WinSubclassWindow() function. The function returns the entry point address of
the original window procedure for that window.

Once a window has been subclassed, Presentation Manager routes messages
destined for that window to the subclass window procedure. The subclass
window procedure may:

* Process the message itself, if it indicates an action for which the method
must be modified.

The subclass window procedure then returns control immediately to
Presentation Manager.

* Pass the message on to the original window procedure for that window, if
the subclass window procedure is not explicitly concerned with the action
indicated by the message.

The original window procedure is directly invoked by the subclass window
procedure; note that this is one of the few instances where direct invocation
of a window procedure is recommended. The return code from the original
window procedure is then returned to Presentation Manager.

* Both of the above, if the subclass window procedure must perform some
processing in addition to that normally performed by the original window
procedure,

The additional processing performed by the subclass window procedure may
be performed either before or after the processing performed by the original
window procedure. This sequence is at the discretion of the application
developer, and depends largely on the desired modification in the window’s
behavior.

A subclass window procedure is similar in structure to a “normal” window
procedure, except that instead of calling the WinDefWindowProc() function as its
default case, it should invoke the original window procedure. This means that
the entry point address of the original window procedure must be known to and
accessible from the subclass window procedure. Note also that the entry point
address might not be that of the original window procedure specified when the
window class was registered to Presentation Manager, since the window might

previously have been subclassed, and the current subclassing operation might
be effectively subclassing the subclass window procedure.

The entry point address of the original procedure can be supplied to the
subclass window procedure in a humber of ways:

* |t may be determined from the information returned by the
WinSubclassWindow() call, and passed to the subclass window procedure in
an application-defined message. The subclass window procedure may then
store the entry point address in a global variable or in the window words of
the window, assuming the available window words are not already in use.

* It may be determined by the subclass window procedure itself by querying
Presentation Manager. Note, however, that this method will only work if the
window has not previously been subclassed, since Presentation Manager
only records the original window procedure (as specified in the
WinRegisterClass() function call) in the CLASSINFO structure for the window.

An example of a subclass window procedure, including a query to obtain the
original entry point address from the Presentation Manager class information, is
given in Figure 25 on page 86.

Chapter 6. Building a Presentation Manager Application 83

MRESULT EXPENTRY wpSubclass(HWND hiind,
ULONG ulMsg,
MPARAM mp1,
MPARAM mp2)
{
CHAR szClass[7];
CLASSINFO WinClass;
PFNWP pWinProc;
BOOL bSuccess;
ULONG ulRetlLength;
switch (ulMsg)
{
case WMP_MESSAGE1:
<Perform application specific processing>
return((MRESULT)0);
break;
case WMP_MESSAGE2:
<Perform application specific processing>
break;
default:
break;
ulRetLength=WinQueryClassName (htind,
sizeof(szClass),
szClass);
bSuccess=WinQueryClassInfo(NULL,
szClass,
&WinClass);
pWinProc=WinClass.pfnbindowProc;
return ((MRESULT) (*ptinProc) (hind,
ulMsg,
mpl,
mp2) ;
}

Figure 25. Subclass Window Procedure

Figure 25 shows each of the possible cases listed above. The message class
WMP_MESSAGE1 is explicitly processed by the subclass window procedure,
which then returns control to Presentation Manager with a return statement upon
completion.

The message class WMP_MESSAGE?2 is also explicitly processed by the subclass
window procedure, but in this case it is required that the processing performed
by the original window procedure be allowed to occur, after the subclass window
procedure’s processing. The subclass window procedure therefore does not
return control immediately to Presentation Manager, but merely terminates the
switch statement, allowing the final four statements to be executed.

86 0s/2 v2.0 Volume 4

For other message classes with which the subclass window procedure is not
concerned, the default case also terminates the switch statement, allowing the
final four statements to be executed.

These final statements determine the entry point address of the original window
procedure, using the WinQueryClassName() and WinQueryClassinfo() functions to
access control information held by Presentation Manager. This entry point
address is then used to invoke the original window procedure to process
messages with which the subclass window procedure is not concerned, or for
which the normal processing must be aliowed to occur.

The last four statements in the example above are common to all subclass
window procedures, and organizations undertaking development of Presentation
Manager applications may wish to incorporate them into a standard subroutine
and place them in a library for access by developers.

Note that a subclass window procedure, like all window and dialog procedures,
must use the system linkage convention. This is normally achieved by declaring
the subclass window procedure using the EXPENTRY keyword.

6.6 Window Communication

Presentation Manager provides a number of mechanisms for communicating
between windows. All of these mechanisms use the Presentation Manager
message concept. The exact technique used in any particular situation is
dependent upon the nature of the communications and the types of windows
involved.

6.6.1 Standard Windows

Data may be passed to a window upon its creation, using the Ct/Data parameter
of the WinCreateWindow() function. The contents of this parameter (a 32-bit
pointer) are passed to the target window as a parameter to the WM_CREATE
message. The contents may then be extracted from the message parameter
and used by the window procedure.

When an application wishes to pass a message between two standard windows
that currently exist, whether they are display windows or object windows, either
of two methods may be used, depending on whether the desired communication
is to be synchronous or asynchronous.

» When a synchronous message is to be passed, the WinSendMsg() function is
used, and the target window procedure is invoked directly by Presentation
Manager, in a similar fashion to a normal function call. The return code from
the window procedure is passed by Presentation Manager to the calling
window procedure, where it may be interrogated and acted upon.

* When a message is to be processed asynchronously, the WinPostMsg()
function is used. In this case the message is posted to a queue associated
with the thread that created the target window, and the return code to the
calling window procedure merely indicates that the message was
successfully placed on the queue. In order for the target window procedure
to pass a return code or acknowledgement back to the calling window
procedure, it must include another WinPostMsg() call as part of the
processing of the message.

Chapter 6. Building a Presentation Manager Application 87

The use of WinPostMsg() is recommended over that of WinSendMsg(), since
posted messages are processed in the order in which they arrive in the queue,
and the integrity of the user’s intention is thus preserved in the order of
processing. In addition, synchronous window procedures are invoked and
executed without the original window procedure completing its processing and
returning control to the message processing loop. Thus the application is
prevented from processing additional user interaction, which may lead to
violation of the SAA CUA responsiveness guidelines.

6.6.2 Dialog Boxes

Communication between a standard window and a modeless dialog box is
achieved in a similar fashion to that used between two standard windows, since
the modeless dialog box is merely a normal window without a sizable border.
However, communication between a standard window and a modal dialog box
must be achieved in a different manner, since a modal dialog box is typically
loaded and processed in a single WinDIgBox() function call, and the dialog box
only has an existence during the execution of that function call. An example of
the WinDIgBox() function is shown in Figure 26.

MYSTRUCT *MyStruct;
DosAllocMem(MyStruct, /* Allocate memory object */
sizeof (MYSTRUCT), /* Size of memory object */
PAG_READ | /* Allow read access */
PAG_WRITE | /* Allow write access */
PAG_COMMIT); /* Commit storage now */
<Initialize values in MyStruct> /* Set initialization data */
rc = WinD1gBox (HWND_DESKTOP, /* Desktop is parent */
hwnd, /* Current window is owner */
dpMyDialog, /* Entry point of dialog procedure */
(HMODULE)®, /* Resource is in EXE file */
DC_MYDIALGG, /* Dialog resource identifier */
MyStruct); /* Pointer to initialization data */

Figure 26. WinDIgBox() Function

Data may be passed to a dialog procedure at initialization time by creating a
data structure and passing a pointer to that structure in the CreateParams field
of the WinDIgBox() function, as shown in Figure 26. This pointer is passed to the
dialog procedure as the second parameter of the WM_INITDLG message, and
may be accessed by the dialog procedure during the processing of this
message. Note that this is the only time at which input may be passed to a
dialog box, since the dialog is processed within the scope of a single application
statement; either a WinDigBox() call or a WinProcessDIg() call may be used. The
WM_INITDLG message is described in the IBM 0S/2 Version 2.0 Presentation
Manager Reference.

Information may be conveyed from a dialog procedure to its calling window
procedure in one of two ways:

* The dialog box may provide an unsigned integer (USHORT) parameter to the
WinDismissDIg() function, and this value is passed to the calling window
procedure as the return code from the WinDIgBox() function. This technique

88 0s/2 v2.0 Volume 4

is useful where an acknowledgement or simple return data must be
conveyed.

* The dialog box may issue a WinPostMsg() call to pass a message to the
queue associated with its calling window. The window procedure may then
receive and process that message in the normal way. This technique is
useful when more complex data or structures must be conveyed.

The latter technique above may also be used to convey information to a window
other than the window that invoked the dialog. This may be necessary in
situations where a dialog box is invoked by one window procedure on behalf of a
group of windows.

6.6.3 Control Windows

As mentioned in Chapter 11, “Systems Application Architecture CUA
Considerations,” control windows are typically used in dialog boxes, and are
hence accessed from the dialog procedure associated with their parent dialog
box. Such communication is synchronous in nature, since it usually involves
insertion or retrieval of data into or from control windows, or other tasks that are
part of the modal dialog with the user.

Under OS/2 Version 2.0, some additional functions have been introduced into the
Presentation Manager programming interface, to ease more complex
communications, such as those involving list boxes. Since communication with
list boxes is therefore somewhat different from that involving other control
window classes, list boxes are discussed separately in 6.6.3.2, “List Boxes” on
page 90.

6.6.3.1 General Control Windows

Communication between a dialog procedure and the control windows associated
with its dialog box is typically achieved using the WinSendDIigitemMsg() function,
which is documented in the IBM 0OS/2 Version 2.0 Presentation Manager
Reference. This function is similar in function and behavior to the
WinSendMsg() function, in that it passes a synchronous message to the
destination window. However, instead of accepting the handle of the destination
window as its first parameter, it accepts the handle of the control window’s
parent and the window identifier of the control window itself as the first two
parameters of the call. For example, to send a message of class
EM_SETTEXTLIMIT to an entry field named EF_PRODNAME, which is a child of
the dialog box with handle hDI/gBox, the function call shown in Figure 27 is used:

rc = WinSendD1gItemMsg(hD1gBox, /* Parent dialog box */
EF_PRODNAME, /* Control identifier */
EM_SETTEXTLIMIT, /* Message */
20, /* Message parameters */
0);

Figure 27. Communicating with a Control Window

it is possible to perform an equivalent function using the WinSendMsg() call, by
obtaining the control window’s handle using the WinWindowFromID() function.
However, for purposes of standardization and in accordance with emerging
conventions, it is recommended that the WinSendDIgltemMsg() function be used
to send messages to control windows. Note that for this purpose, the definition
of control windows includes both the system menu and menu bar; messages

Chapter 8. Building a Presentation Manager Application 89

sent to these menus (in order to insert, modify or delete items) should be sent
using the WinSendDlgltemMsg() function.

Similarly, it is recommended that the WinSetDlgltemText() and
WinQueryDlglitemText() functions be used to set and query the contents of control
windows from within the application. For example, assume that the user has
completed interaction with a dialog box, and pressed the “Enter” or “OK” button,
and the application wishes to obtain the contents of an entry field named
EF_PRODNAME, which is child of the dialog box with handle hDigBox. The
function call call shown in Figure 28 is used.

rc = WinQueryDlgItemText (hD1gBox, /* Parent dialog box */
EF_PRODNAME, /* Control identifier */
sizeof(szBuffer), /* Size of buffer */
szBuffer); /* Pointer to buffer */

Figure 28. Querying Information From a Contro!l Window

90 0s/2 v2.0 Volume 4

The WinQueryDlgltemText() function copies the contents of the entry field into the
string szBuffer, and returns the number of characters copied.

The WinSetDIgltemText() function is typically used in situations where some of
the information necessary to complete an action is known; this information is
then displayed in the appropriate entry fields within the dialog box, and the user
fills in the missing fields. Another use of this function is to provide default
values for entry fields. Both the WinSetDIgltemText() and WinQueryDlgltemText()
functions are documented in the IBM 0S/2 Version 2.0 Presentation Manager
Reference.

6.6.3.2 List Boxes

The complexity of communication with list boxes has been greatly reduced under
08/2 Version 2.0. The Presentation Manager programming interface now
includes a number of functions that allow most communication requirements to
be achieved in a single step. Note that these functions may also be used for
communication with a combo box (prompted entry field).

Insertion and deletion of list box items is carried out using the
WinInsertLboxltem() and WinDeleteLboxlItem() functions, which are new to 0S/2
Version 2.0. The WinlnsertLboxItem() function is illustrated in Figure 28.

hLBox = WinWindowFromID(hWnd, /* Get 1ist box window handle */
LB_LIST);

ullndex = WinlInsertLboxItem(hLBox, /* Insert list box item */

LIT_END, /* Insert at end of list */

szltemText); /* Item text */

Figure 29. Inserting an Item Into a List Box

An application may obtain the text of a selected item in the list box using the
WinQueryLboxSelectedltem() and WinQueryLboxItemText() functions. The use of
these functions is illustrated in Figure 30 on page 91.

hLBox = WinWindowFromID(hknd, /* Get 1ist box window handle */
LB _LIST);

ullndex = WinQuerylLboxSelectedItem(hLBox); /* Get index of selected item */

ullength = WinQueryLboxItemText (hLBox, /* Get item text */
usIndex, /* Index of item */
szBuffer, /* Text buffer */

sizeof(szBuffer)); /* Max no. of chars */

Figure 30. Querying a Selected List Box Item

Other functions include the WinQueryLboxCount() function, which returns the
number of items in a list box, and the WinQueryLboxItemTextLength() function,
which returns the length of list box item’s text.

All of these list box manipulation functions are described in the IBM 0S/2
Version 2.0 Presentation Manager Reference.

6.6.4 Message Boxes

Communication between a window or dialog procedure and a message box is
relatively simple. The message box is created and processed using the
WinMessageBox() function, and the only input data provided to this function is
the title of the message box and the text of the message to be displayed. The
application may affect the style of the message box, by specifying style attributes
in the function call, as described in the IBM 0OS/2 Version 2.0 Presentation
Manager Reference.

An example of the WinMessageBox() function is given in Figure 31.

rc = WinMessageBox (HWND_DESKTOP, /* Desktop is parent */
hiind, /* Current window is parent */
pszMsgText, /* Pointer to message text */
“Open the File® /* Message title */
0, /* Message box identifier */
MB_OKCANCEL | /* Include OK & Cancel buttons */
MB_DEFBUTTON1 | /* Default to OK */
MB_HELP); /* Include help button */

Figure 31. WinMessageBox() Function

The result of the user’s interaction with the message box (that is, the identifier of
the button that was pressed) is communicated to the application in the form of
an unsigned integer returned by the WinMessageBox() call. The application may
then interrogate this returned value to determine the subsequent action to be
taken.

6.6.5 lIdentifying the Destination Window
When passing messages between windows using the WinPostMsg() or
WinSendMsg() functions, the window handle of the destination window must be
known and specified in the message. If window handles are not defined globally,
the required handle must be obtained from Presentation Manager. This may be
achieved in a number of ways:

Chapter 6. Building a Presentation Manager Application 91

92 0s/2 v2.0 Volume 4

 If the target window has a known relationship to the current window or to
another window for which the handle is already known, the
WinQueryWindow() function may be used to obtain the window handle of the
target window. For example, if a window wishes to post a message to its
own parent window, the technique shown in Figure 32 may be used.

hTarget = WinQueryWindow(hknd, /* Base window for relation */
QW_PARENT, /* Relationship to base wndw */
FALSE); /* Do not lock window */

Figure 32. Obtaining a Window Handle - WinQueryWindow() Function

The WinQueryWindow() call returns the handle of the required window.
Relationships other than parent/child may also be used by this function; the
valid relationships are described, along with the WinQueryWindow() function,
in the IBM OS/2 Version 2.0 Presentation Manager Reference.

 If the parent window and window identifier of the target window are known,
the WinWindowFromID() function may be used to obtain the window handle
of the target window. For example, if a window wishes to post a message to
the client window of its application’s main window, assuming the frame
window handle is known, the method shown in Figure 33 may be used.

hTarget = WinWindowFromID(hMainFrame, /* Parent window known */
FID_CLIENT); /* Window identifier */

Figure 33. Obtaining a Window Handle - WinWindowFromlD() Function

The WinWindowFromID() function also returns the handie of the required
window.

¢ If the target window is the application’s main window, its handle may be
obtained by first querying the application’s switch entry in the Workplace
Shell Window List to obtain the handle of the main frame window (using the
WinQuerySwitchHandle() and WinQuerySwitchEntry() functions), then using
the WinWindowFromID() function to obtain the handle of the client window,
as shown in Figure 34.

hSwitch = WinQuerySwitchHandle(hWnd,0);
ulSuccess = WinQuerySwitchEntry (hSwitch,
SwitchData);
hTarget = WinWindowFromID(SwitchData.hwnd,
FID_CLIENT);

Figure 34. Obtaining a Window Handle Using the Switch Entry

The above example assumes that the application has been added to the
0S/2 Window List using the WinAddSwitchEntry() function, and the handle of
its main frame window supplied as a parameter. See Figure 20 on page 78.

When passing messages synchronously to control windows using the
WinSendDigltemMsg() function, it is generally assumed that the target control
window is a child of the current window or dialog box. Thus the parent window
handle is the handle of the current window, and the window identifier is also
known to the current window procedure. An exception is the case where a

window procedure wishes to send a message to a frame control of its own
parent frame window. In this case a WinQueryWindow() call must be issued with
the QW_PARENT parameter to determine the handle of the frame window. The
WinSendDligitemMsg() function may then be used with this handle and the
window identifier of the required frame control.

6.6.6 Creating Message Parameters

Before a message can be passed to a target window, its message parameters
must be created from the necessary data items. As mentioned in 4.2,
“Messages” on page 40, message parameters are 32-bit fields. Presentation
Manager provides a number of macros to convert existing data types into the
correct representation, and to extract data from message parameters within the
target window procedure. These macros are described in Table 3.

Table 3. Presentation Manager Macros. This table shows the "C" language macros
provided by Presentation Manager to facilitate the construction and extraction of
message parameters.

Macro Usage

MPFROMP Produces an MPARAM data type from a pointer

MPFROMHWND Produces an MPARAM data type from a window handle
(HWND)

MPFROMCHAR Produces an MPARAM data type from an unsigned character
(UCHAR}

MPFROMSHORT Produces an MPARAM data type from a short integer (SHORT
or USHORT)

MPFROM2SHORT Produces an MPARAM data type from two short integers
(SHORT or USHORT)

MPFROMSH2CH Produces an MPARAM data type from a short integer (SHORT
or USHORT) and two characters (CHAR or UCHAR)

MPFROMLONG Produces an MPARAM data type from a long integer (LONG or
ULONG])

PVOIDFROMMP Produces a pointer from an MPARAM data type

HWNDFROMMP Produces a window handle (HWND) from an MPARAM data
type

CHAR1FROMMP Produces a character (UCHAR) from bits 0-7 of an MPARAM
data type

CHAR2FROMMP Produces a character (UCHAR) from bits 8-15 of an MPARAM
data type

CHAR3FROMMP Produces a character (UCHAR) from bits 16-23 of an MPARAM
data type

CHAR4FRCMMP Produces a character (UCHAR) from bits 24-31 of an MPARAM
data type

SHORT1FROMMP Produces an unsigned short integer (USHORT) from bits 0-15 of
an MPARAM data type

SHORT2FROMMP Produces an unsigned short integer (USHORT) from bits 16-31
of an MPARAM data type

LONGFROMMP Produces an unsigned long integer (ULONG) from an MPARAM
data type

For example, to create message parameter mpf composed of two unsigned
integers usint? and usint2, the following statement is used:

Chapter 6. Building a Presentation Manager Application 93

mpl = MPFROM2SHORT (usIntl,usInt2);

Similarly, to extract two unsigned integers us/int3 and usint4 from the message
parameter mp2, the following statements are used:

usInt3 = SHORT1FROMMP(mp2);
usint4 = SHORT2FROMMP (mp2);

Characters, pointers, window handles, etc., may all be placed into and retrieved
from message parameters using macros supplied by Presentation Manager.

6.6.7 Broadcasting Messages

94 0©s/2 V2.0 Volume 4

In certain circumstances, a window procedure may wish to indicate an event to
multiple windows, and therefore need to pass the same message to each of

these windows. Presentation Manager provides the capability for a message to
be broadcast to multiple windows with a single WinBroadcastMsg() function call.

The WinBroadcastMsg() function passes a message of a specified class to the
descendants of a specified parent window, as shown in Figure 35.

rc = WinBroadcastMsg(hwnd, /* Current is parent */
WMP_MYMESSAGE, /* Message identifier */
mpl, /* lst message parameter */
mp2, /* 2nd message parameter */
BMSG_POST) ; /* Post message via queue */

Figure 35. WinBroadcastMsg() Function

The example shown in Figure 35 passes a message of the application-defined
class WMP_MYMESSAGE to all children of the current window (that is, the
window associated with the window procedure in which the function call is
made), with message parameters as shown. The message is posted to the
target windows via a message queue, and is thus processed asynchronously; the
WinBroadcastMsg() function also allows for synchronous processing using the
BMSG_SEND flag.

The parent/child hierarchy allows windows to be grouped in particular ways to
suit application requirements. For example, all the object windows created by
an application may be created as children of a “dummy” master object window.
If a particular message must then be sent to all these object windows (for
example, to close all the windows), this can be done by broadcasting the
message to all children of the master object window.

The BMSG_DESCENDANTS flag may be set in the WinBroadcastMsg() call to
cause a message to be passed to all descendants of the specified parent
window, rather than just the direct children of that parent. This enables a
message to be broadcast to a wider target group, should the application so
require. Alternatively, the BMSG_FRAMEONLY flag may be set, causing the
message to be passed only to frame windows. This is useful in situations
where an application wishes to initiate an action by multiple display windows at
the same time.

The WinBroadcastMsg() function must be used with caution, particularly when it
may cause messages to be sent to windows created by other applications. This
is possible if the BMSG_DESCENDANTS flag is set and the desktop window is
specified as the parent, and may cause complications in other applications. For
example, consider the following message definitions:

Application 1
#define WMP_REFRESH WM_USER+12
Application 2

#define WMP_CLOSEALL WM_USER+12

In the example above, each application defines a message class, and each
message is to be used for a different purpose. However, both messages have
the same message identifier. Now let us assume that Application 1 makes the
following function call:

rc = WinBroadcastMsg (HWND_DESKTOP,
WMP_REFRESH,
mpl,
(MPARAM)O,
BMSG_POST) ;

This function call would cause a WMP_REFRESH message to be passed to all
display windows in Application 1 and Application 2. However, the windows in
Application 2 would interpret the message as a WMP_CLOSEALL message, with
possibly undesirable results.

It is therefore strongly recommended that developers exercise extreme care in
using the WinBroadcastMsg() function, in order to accurately determine the
potential results of the messages being broadcast.

6.7 Passing Control

The use of functions and subroutines in an object-oriented application executing
in the Presentation Manager raises some issues with regard to object
boundaries. In general, the scope of a function or subroutine should be
restricted to a single application object, and the processing performed by that
subroutine should therefore relate only to the data object(s) owned by that
application object. If a subroutine invoked from one application object will
perform processing on a data object related to a different application object, then
the subroutine should be invoked by the second application object, by way of a
message passed from the first application object.

Four general types of subroutines may exist within an object-oriented
application. These are discussed in the following sections, and are classified
according to the nature of their inputs and outputs.

6.7.1 Direct Invocation/Direct Return

This type of subroutine corresponds to the “conventional” subroutine call, in that
a parameter list is passed to the subroutine from the calling routine, and a
number of parameters and/or a return code is returned at the end of the
subroutine’s execution. Within an object-oriented application, such subroutines
should be used to perform processing that is limited in scope to a single
application object (such as an SQL query on a database owned by the
application object), or to perform a standard processing function that is common
to a number of objects, but where the scope of each execution instance is
limited to a single object. For example, a function DrawCircle may be called by
a number of window procedures to display a circular graphics primitive;
however, each invocation of the function is from a single window procedure.

Chapter 6. Building a Presentation Manager Application 95

6.7.2 Direct Invocation/Message Return

This type of subroutine should be used where the scope of the processing
performed by a subroutine is limited to a single application object, but where
the result of that processing must be communicated to an application object
other than the one that invoked the subroutine. Since the conventional method
of achieving communication between objects is via messages, the subroutine
posts a message to the affected application object using the WinPostMsg() call,
or synchronously passes the message to the application object using the
WinSendMsg() call (this latter call should be used with caution; see 6.7.3,
“Message Invocation/Direct Return”). The message is routed to the destination
window by Presentation Manager. The subroutine typically returns to its caller
in the normal fashion; this method of passing control is therefore merely a
variation of the previously described Direct Invocation/Direct Return method.

Assuming that the calling routine is a window procedure, the return code (if any)
from the subroutine is passed to the calling window procedure and that
procedure completes its execution before the message resulting from the called
subroutine is processed.

Note that this technique can be used where the called subroutine executes in a
secondary thread, and the resulting message is passed back to the calling
window procedure in the primary thread to indicate the completion of the
secondary thread’s processing. See Chapter 10, “Multitasking Considerations”
for further discussion of multiple threads.

6.7.3 Message Invocation/Direct Return

This type of subroutine occurs with window procedures that are invoked
synchronously via a WinSendMsg() call. The message is processed, and the
return code from the window procedure is routed to the calling routine by
Presentation Manager. The calling routine then completes its execution. If any
queued messages are generated by the called window procedure or subroutine,
these messages are not processed until the calling routine completes its
execution and the application issues its next WinGetMsg() call. This is so, even
if the called window procedure or subroutine executes in a separate thread.

This type of invocation should be used for access to another application object,
where the function to be performed must be executed synchronously and the
result returned directly to the caller. However, use of the WinSendMsg() call in
preference to the WinPostMsg() call for communication between objects may
result in messages being processed out of order due to the application
pre-empting the normal order of execution determined by the message queue.
The WinSendMsg() function should thus be used with care. The use of this call
may also extend the time interval between successive WinGetMsg() calls to
Presentation Manager, thus decreasing the application’s responsiveness to user
interaction.

6.7.4 Message Invocation/Message Return

96 ©s/2 v2.0 Volume 4

This is the case for window procedures invoked in the standard way using a
WinPostMsg() call from another window or using the WinDispatchMsg() function
from the application’s main routine. In this case the message is processed, and
any messages generated during execution are posted to the appropriate queue,
but the return code from the window procedure is passed only to Presentation
Manager, and does not reach the calling window procedure. For this reason, it
is important that any message that requires acknowledgement be handled in

such a way that the window procedure generates a message that is routed to the
calling window, and that contains the required acknowledgement.

This type of invocation should be used for access to other application objects,
where the function to be performed need not be performed synchronously, and
where acknowledgement or completion of the processing may be indicated by a
subsequent message posted to the caller.

Note that this should be the default method of invocation for window procedures,
since the asynchronous nature of the processing allows the application to
maintain the highest level of responsiveness to user interaction.

Note also that a window may receive messages from a number of sources. This
allows a window to service requests from a number of other windows, in
accordance with a client-server architecture. This concept is discussed further in
10.9, “Client-Server Applications” on page 236.

6.7.5 External Macros

An application may also pass control synchronously to an external routine such
a macro or subprogram written using the Restructured Extended Executor (REXX)
procedure language. This can be achieved quite easily by calling the REXX
command interpreter using the RexxStart() function from any point within the
application. This function is illustrated in Figure 36.

PSZ szFileName;
PSZ szOptions;

RXSTRING arg;

LONG 1RexxRC;

static RXSYSEXIT Exi

#define INCL_REXXSAA

#include <rexxsaa.h>

RXSTRING RexxRetValue; /* Result */
/* REXX return code */

arg.strptr = szOptions; /* Set argument string */

arg.strlength = strlen(szOptions); /* Size of arg string */

rc = RexxStart(1, /* Call REXX */
darg, /* Argument string */
(PSZ)"RexxProc*, /* REXX proc file */
NULL, /* Procedure in file */
(PSZ)"TIXX", /* ADDRESS environment */
(SHORT) RXCOMMAND , /* REXX command */
(PRXSYSEXIT)ExitList, /* Exit Tist routines */
&1RexxRC, /* Return code address */
&RexxRetValue); /* Returned result */

/* File to be accessed */
/* Command arguments */

/* REXX argument string */

tlist[] = {{*TIXXSI0", RXSIO}, /* Exit handler */
{NULL, RXENDLST}}; .

Figure 36. Calling External Macros. This example shows the use of the RexxStart() function to call the REXX
command interpreter from within an application.

Chapter 6. Building a Presentation Manager Application 97

Commands are passed to the REXX interpreter using command strings defined
using the RXSTRING data type, which is defined in the rexxsaa.h header file.
This structure contains the string pointer and an unsigned long integer
containing the length of the string in bytes. A number of commands may be
passed in a single operation, by specifying an array of RXSTRING structures in
the second parameter to the RexxStart() function. The first parameter specifies
the number of commands being passed.

The third parameter to the RexxStart() function defines the name of the REXX
procedure to be invoked. In Figure 36, the procedure is contained in the file
REXXPROC, with an assumed default file extension of .CMD.

If the REXX procedure invoked by the application issues its own commands such
as SAY (1o output information to the screen), a subcommand handler must be
specified in the RexxStart() function call, in order to trap such output. A
subcommand handler is simply a subroutine which accepts, as parameters, the
function and subfunction names issued by the REXX procedure, along with a
pointer to an RXSTRING structure which may be used by the subcommand
handler to return any information to the REXX procedure. A subcommand
handler may reside within the application’s main executable module or in a DLL,
and must be registered prior to issuing the RexxStart() function call, using the
RexxRegisterSubcomExe() or RexxRegisterSubcomDIl() functions.

The REXX interpreter’s operating environment may be customized through the
use of user exits, whereby special routines may be inserted at particular points
in the interpreter’s execution. Such routines are specified using an array of
RXSYSEXIT structures, which identify the exit point and the entry point address
of the routine to be invoked at that point. The address of this array is passed in
the RexxStart() function call.

Use of the REXX interpreter, the RexxStart() function and its supporting functions
are described in detail in the /BM 0S/2 Version 2.0 Technical Library -
Procedures Language/2 REXX Reference.

6.8 Terminating

98 0s/2 V2.0 Volume 4

an Application

A Presentation Manager application is normally terminated by a message of the
class WM_QUIT being posted to the application’s message queue. The message
may be posted by any window procedure or subroutine within the application, or
by Presentation Manager as the result of the user selecting the “Shutdown”
option from the Presentation Manager desktop. The message may result from
the user selecting an “Exit” option from the menu bar, or selecting the “Close”
option in the system menu of the application’s main window.

The WM_QUIT message causes the next WinGetMsg() call to return FALSE. This
in turn causes the application’s message processing loop to terminate.

By convention, a Presentation Manager application performs standard
termination processing such as:

* Destroying the application’s main window

* Destroying the application’s message queue

* Deregistering the application from Presentation Manager.

The application may additionally perform its own termination functions such as
closing or destroying any global data objects. Secondary threads are normally
terminated from within the window procedure that created them, as part of that
window procedure’s WM_DESTROY message processing. See Chapter 10,
“Multitasking Considerations” for further information.

6.9 Summary

it can be seen that by making effective use of the facilities provided by
Presentation Manager, and by following a number of simple guidelines in the
design and implementation of applications, it is relatively simple to develop a
Presentation Manager application that conforms to module-based object-oriented
programming standards, and achieves benefits through reduced development
effort and easier application maintenance, due to code reuse and encapsulation.

It must be accepted however, that some deviation from strict object-oriented
practice may be necessary in order to preserve other important goals such as
the preservation of responsiveness to the end user. Adherence to academic
principles should not take precedence over achievement of the required result.

The mapping of data objects into application objects must be approached with
great care in the design stage of a Presentation Manager application.
Presentation Manager allows the creation of window procedures (application
objects) that operate on more than one data object, and of multiple window
procedures that operate on the same data object. This practice should be
discouraged however, since it reduces the level of encapsulation in the
application object, increases the interdependence between application objects,
and consequently reduces the benefits attainable through code reuse and
containment of change.

Notwithstanding, the Presentation Manager environment affords great
opportunity for the development of applications that implement the general
principles of the object-oriented approach. A central precept of object-oriented
design is the generic nature and consequent reusability of the objects so
created. Adherence to guidelines that promote conformance to object-oriented
concepts such as data abstraction, encapsulation and polymorphism, in
conjunction with the facilities provided by Presentation Manager for object
creation, communication and subclassing, and by the OS/2 operating system in
the form of dynamic linking, facilitates the development of highly granular,
reusable generic objects in the Presentation Manager environment.

Chapter 6. Building a Presentation Manager Application 99

100 o0s/2 v2.0 volume 4

Chapter 7. Workplace Shell and the System Object Model

The Workplace Shell provided under OS/2 Version 2.0 introduces an
object-oriented layer into the Presentation Manager environment. It provides a
mechanism for the registration of object classes, creation of objects within those
classes, and the inheritance of characteristics and behaviors from existing object
classes. Using the Workplace Shell, an application may be created as a series
of objects that interact on the desktop, and which the user manipulates to
perform the required application processing. Each object possesses data, which
may be defined for the entire class or for each instance, and a set of methods
that operate upon that data.

The Workplace Shell functions that allow the creation and manipulation of
objects are based upon the system object model, which establishes a basic
inheritance hierarchy for objects in the system and defines the underlying
protocols which regulate the relationships between objects. The concepts
behind the system object model are described in detail in 0S/2 Version 2.0 -
Volume 3: Presentation Manager and Workplace Shell, and System Object Mode!
Guide and Reference.

This chapter is an enhanced and expanded version of Chapter 7 in OS/2 Version
2.0 - Volume 4: Writing Applications. It adds more detail about areas of
WPS/SOM programming, such as Drag/Drop and debugging, and provides a
further example Workplace Object to illustrate these techniques. This new
version of the chapter is included in both the revised version of 0S/2 Version 2.0
- Volume 4: Writing Applications, and also in &volborg..

This chapter includes examples of code from two Workplace Objects that have
been especially written for this document. They are the pwFolder and
pwFinanceFile Workplace Objects. The full source for these and other examples
can be found on the diskette included with this document and the program
listings are in Appendix E, "Source Code for the PWFolder and PWFinanceFile
objects” on page 347.

7.1 Objects in the Workplace Shell

An object in the Workplace Shell conforms closely to the definition of an
application object given in Chapter 4, “The Presentation Manager Application
Model,” in that it consists of a set of data and a number of methods that operate
upon that data. Each Workplace Shell object is an instance of a particular object
class. In accordance with normal object-oriented theory, the class defines the
basic characteristics of the object and the way in which the object responds to
events.

7.1.1 Inheritance Hierarchy

Each object class is descended from another class, known as its parent class.
Since the system object model supports the object-oriented concept of
inheritance, a class may inherit data and methods from its parent class, which in
turn may inherit data and methods from its parent, and so on. A class which
inherits properties from other classes is therefore known as a descendant of
those classes, and the classes from which it inherits are known as ancestors.
The implementation of inheritance in the Workplace Shell means that when
creating a new object class, a programmer simply subclasses the parent class,

® Copyright IBM Corp. 1893 101

102 0s/2 v2.0 Volume 4

and need only define those characteristics that are not defined by, or are
different from those of the parent class. This greatly simplifies the process of
creating a new object class.

Under the system object model, every object class is a descendant of the base
class SOMObject. This class defines the basic characteristics and behaviors
common to all objects in the system. Other object classes are subclasses of this
class. The system object model provides two additional classes, SOMClass and
SOMClassManager, to form the basis of an inheritance hierarchy. The
Workplace Sheil extends this hierarchy by creating a number of classes of its
own, based upon the SOMObject class. These Workplace Shell object classes
define the characteristics of the object types that are defined and implemented
by the Workplace Shell itself.

The inheritance hierarchy implemented by the Workplace Shell is illustrated in
Figure 37.

OMObject
SOMClass
SOMClassManager
WPObject
——WPADbstract
—WPClock
—WPCountry
—WPKeyboard
—WPMouse
—WPPalette
WPColorPalette
WPFontPalette
WPSchemes

—WPPrinter
—WPPower
—WPProgram
—WPShadow
—WPShredder
—WPSound
—WPSpecialNeeds
—WPSpooler
—WPSystem

——WPFileSystem
—WPDataFile
—WPFolder
‘WPDesktop
WPDisk
‘WPDrives
WPStartup
WPTemplates
—WPProgramFile

——WPTransient
—WPJob
—WPPort
—WPPrinterDriver
—WPQueueDriver

Figure 37. Workplace Shell Inheritance Hierarchy

As well as being descended from the system object model base inheritance
hierarchy, all Workplace Shell object classes are descended from one of three
base storage classes defined by the Workplace Shell. These classes are so
named because they directly influence the storage of control information and
instance data for the class. The three predefined base storage classes are:

» WPAbstract, which is the base class for abstract objects such as programs,
devices, etc., and for which control information is stored in the system
initialization file OS2.INI.

» WPFileSystem, which is the base class for objects that are stored as files in
the file system, and for which control information is stored in the file system
as extended attributes.

* WPTransient, which is the base class for objects that only exist during
execution of a particular program; that is, the object is created and used for
a particular purpose during processing, and then immediately deleted from
the system.

An application developer may extend the Workplace Shell inheritance hierarchy
by introducing new object classes based upon those already implemented by the
Workplace Shell itself. Indeed, the developer may even introduce new base
classes, although this is definitely a non-trivial exercise and should be
approached with caution.

7.1.2 Metaclasses

Just as each Workplace Shell object is an instance of a class, the class itself is
an instance of another class known as its metaclass. Just as an object has
instance data and methods that pertain only to a specific instance of the class,
so the metaclass has class data and methods that pertain to the entire class.
Such methods are known as class methods, whereas methods that operate only
for a particular instance of the class are known as instance methods.

Class methods and data are available to the programmer when creating new
object classes. A programmer may introduce new class data and methods for
an object class, as well as instance data and methods. Similarly, a new object
class may override existing class methods to modify the processing performed
by those methods.

7.1.3 Class Implementation

Each object class in the Workplace Shell resides in a dynamic link library (DLL).
A programmer creates an object class by defining its characteristics in a class
definition file. This file is then used as input to the SOM Precompiler, in order to
produce “C” source code and header files for the object class. This source code
includes basic definitions for the object class’s data and methods; the code is
then edited by the programmer to include the logic for each of the required
methods. Once the code is complete, it is compiled and link edited in the
normal way to produce a dynamic link library; see OS/2 2.1 Volume 4: Writing
Applications, Chapter 14 “Compiling and Link Editing an Application” for further
information on compiling and link editing.

When an object class has been created, it must be registered with the Workplace
Sheli, which includes the DLL in a list of libraries loaded at initialization time.
The entry points for the DLL are known to the Workplace Shell, and may be
called in order to invoke the object’s methods.

Chapter 7. Workplace Shell and the System Object Model 103

The process of creating an object class from a class definition file is described in
7.3, “Defining an Object” on page 114.

7.2 Object Structure

7.21 Methods

104 0s/2 v2.0 Volume 4

In the simplest case, an object in the Workplace Shell consists of methods and
instance data. The PM Window Manager communicates events to the Workplace
Shell using messages, which in turn invokes the object’s methods to perform the
processing indicated by the event. This is in accordance with the definition of an
application object given in 0S/2 2.1 Volume 4: Writing Applications, Chapter 4
“The Presentation Manager Application Model”. Note that since the Workplace
Shell provides a more extensive inheritance hierarchy than the base
Presentation Manager application model, the method invoked by a particular
message may belong explicitly to the object in question, or may belong to its
parent (and be inherited from that parent).

The structure of an object in the Workplace Shell is therefore very similar to that
of a window in the conventional Presentation Manager application model; the
Workplace Shell object simply takes the object-oriented concepts to a higher
degree of implementation. Therefore the constructs implemented by
Presentation Manager under previous versions of OS/2 can often be
implemented more elegantly with the Workplace Shell.

For the remainder of this chapter, two examples are used to explain the
structure and behavior of an object class. These are the pwFolder and
pwFinanceFile Workplace Objects.

* The pwFolder Workplace Object is a specific type of Workplace Shell folder
which has a password defined so that it can be locked to prevent access by
an unauthorized user. This object class is implemented by subclassing the
WPFolder class to create a new object class named PWFolder, adding new
methods and overriding existing methods where appropriate.

* The pwFinanceFile Workplace Object is a specific type of Workplace Shell
data file which has a password defined so that it can be locked to prevent
access by an unauthorized user. Additional methods have been added to
provide specific behavior and this is covered later in this chapter. This
object class is implemented by subclassing the WPDataFlle class to create a
new object class named PWFinanceFlle, adding new methods and overriding
existing methods where appropriate.

Sample code is provided in the text, and on an included diskette, for the various
methods used to add the password protection to the folder.

In a Presentation Manager application, a window procedure receives messages
from Presentation Manager, determines the type of message and invokes a
series of program statements (which effectively constitute a method) as a resulit
of that message. A Workplace Shell object operates in a similar fashion, except
that the Workplace Shell itself determines the type of message and invokes the
corresponding method, without any explicit action on the part of the object.

Therefore, whereas the Presentation Manager window procedure comprises a
case statement with each case being a method, the Workplace Shell object

eliminates the need for the case statement and allows the Workplace Shell to
invoke the methods directly. The syntax for invoking a method from within an

object or application is hence very similar to that for invoking a subroutine; the
only real difference is that a method may be accessed from outside the object
itself (that is, from another object or from an application), while a subroutine is
normally private to the object.

Many methods are defined by the WPObject class, from which
application-defined classes are typically descended. When creating a new object
class, a programmer may override the methods already defined by the class’s
ancestors, and/or include new methods specific to the class being created. The
methods defined by the WPObject class are described in the IBM 0S/2 Version
2.0 Presentation Manager Reference. Programmers who wish to create new
object classes descended from this case should read the descriptions of these
methods to determine the extent of the modifications necessary.

7.21.1 Invoking a Method

As mentioned in 0S/2 2.1 Volume 4: Writing Applications, Chapter 4 "The
Presentation Manager Application Model” , methods within an object are invoked
as a result of messages that communicate events to the object. These events
may be initiated by the user (for example, as a result of clicking the mouse on
an object’s context menu), by the object itself or another object, or by the system
to indicate a system event such as opening or closing a view of the object.

The syntax for invoking a method is similar to that for invoking a subroutine, with
one exception. The first parameter passed in the call is a pointer to an object
that is capable of invoking the method called the "receiver”, and this is typically
a pointer to the object itself. This is illustrated in Figure 38, where a sample
invocation of a method named _wpSetTitle is shown.

PliFolder *somSelf; /* Pointer to self */
PSZ szTitle; /* Title string */
_wpSetTitle(somSelf,szTitle); /* Set title string */

Figure 38. Invoking a Method

The _wpSetTitle method is defined by the WPObject class, and is inherited by all
classes descended from the class. The method accepts a title string and sets
the title of the object; that is, the text that appears below the object’s icon on the
Workplace Shell desktop.

The pointer somSelif is defined by the SOM Precompiler when it creates the “C”
source code from the class definition file. in the example above, somSelf is
defined as a pointer to an object of class PWFolder and within a method, allows
the method to access the instance data of the object to which it belongs. The
need to pass this pointer arises from the limitations of the “C” language syntax
under which the current implementation of the Workplace Shell operates; other
languages such as C+ + may be able to invoke methods in a more elegant
manner.

Chapter 7. Workplace Shell and the System Object Model 105

106 0s/2 V2.0 Volume 4

7.21.2 Method Processing and Instance Data

Within a method, the somSelf pointer, passed as the first parameter in the call to
the method, acts as a pointer to the method’s own object, and allows the method
to access its instance data. The SOM Precompiler automatically provides a base
pointer named somThis that references the instance data, and includes a call to
a method that initializes this pointer from the object pointer:

PWFolderData *somThis = PWFolderGetData(somSelf);

When this statement has successfully executed upon entry to the method, the
method has access to the object’s instance data. For example, the
password-protected folder has a password string, which may be accessed by a
method using the following name:

somThis->szPassword

To make things simpler, the SOM Precompiler generates a macro for each
instance variable, in a manner similar to that used for function names:

#define _szPassword (somThis->szPassword)
#define _szCurrentPassword (somThis->szCurrentPassword)
#define _szUserid (somThis->szUserid)

This macro is included in a header file for the object class, and avoids the need
for the programmer to type the complete name throughout the source code.

Once the instance data is available to the method, any application logic may be
performed, including the use of 0S/2 and Presentation Manager resources. See
7.4.5, “Accessing Presentation Manager Resources From a Workplace Shell
Object” on page 148 for additional considerations on the use of Presentation
Manager resources from within a Workplace Shell object.

7.21.3 Returning from a Method

In order to return control to its calling routine, a method simply uses the return
statement. Any valid form of return code may be passed to the calling routine
as a parameter to this statement, provided that the data type of the return code
is consistent with the declaration of the method. The data type of the return
code is typically set by the SOM Precompiler, and a default return statement
provided, based on information supplied by the programmer when the method is
defined in the Methods section of the class definition file (see 7.3.2, “Class
Definition File” on page 115).

7.2.1.4 Overriding Existing Methods

A new object class may override one or more of the existing methods defined by
its parent class, either to completely replace the processing performed by these
methods, or to add its own processing to that already performed by the parent.
An example of an object class overriding the _wpSetTitie method is shown in
Figure 39 on page 107.

SOM_Scope BOOL SOMLINK pwfolder_wpSetTitle(PWFolder *somSelf,
PSZ psziNewTitle)

{
CHAR szBuf[100]; /* Character buffer */
PWFolderData *somThis = /* Get instance data */

PiFolderGetData(somSelf);
PWFolderMethodDebug (*PWFolder®, /* Set debug info */
spwfolder_wpSetTitle);
strcpy (szBuf,pszNewTitle); /* Get current title */
if ((strcmp{_szCurrentPassword, /* If folder is locked */
_szPassword)) != 0)

if((strstr(szBuf,"LOCKED")) == NULL) /* and <LOCKED> not in */
/* current title */
strcat(szBuf,® <LOCKED>"); /* Add <LOCKED> to title */
return(parent_wpSetTitle(somSelf, /* Allow default proc to */
szBuf)); /* occur */

}

Figure 39. Overriding an Existing Method. This example shows the _wpSetTitle
method being overridden to add the word “LOCKED" to the end of the title of a locked
password-protected folder.

The example given in Figure 39 shows the use of class-specific processing to
modify the title of a password-protected folder. The inclusion of the string
“<LOCKED>" at the end of the user-specified title provides a visual indication
to the user that the folder is locked. Additional visual indication is provided by
modifying the icon when the folder is in the locked state; the code that carries
out this operation is included in the _LockFolder method shown in Figure 40 on
page 108.

The strings _szCurrentPassword and _szPassword are instance data items
defined by the new object class. These data items are actually accessed using
the somThis pointer; however, the SOM Precompiler defines a macro for each
instance data item, as described in 7.2.1.2, "Method Processing and Instance
Data” on page 106.

Note that most workplace methods require that parent processing be performed
during the override function. Normally this would be part of the return
statement, but some methods require parent processing to be done first. You
should check the method description to determine where the parent processing
needs to be done.

7.21.5 Adding New Methods

In addition to overriding existing methods defined by the parent class, an object
class may also add new methods to carry out processing for events not handled
by the parent class. For example, the password-protected folder example must
have a mechanism to lock the folder. This is implemented as a new method
named _LockFolder, as shown in Figure 40 on page 108.

Chapter 7. Workplace Shell and the System Object Model 107

108 o0s/2 v2.0 Volume 4

SOM_Scope BOOL SOMLINK pwfolder_LockFolder(PWFolder *somSelf)

HPTR hLockedIcon;

PWFolderData *somThis = /* Get instance data */
PiFolderGetData(somSelf);
PWFolderMethodDebug(“PWFolder", /* Set debug info */
“pwfolder_LockFolder");
strepy (_szCurrentPassword, /* Invalidate current */
“NOPASSWD") 3 /* password */
_wpSetTitle(somSelf, /* Set title */
_wpQueryTitle(somSelf));
hLockedIcon = WinLoadPointer(HWND_DESKTOP, /* Load "lock® icon */
(HMODULE)®,
LOCK) 3
_wpSetIcon(somSelf, /* Set icon to locked */
hLockedIcon); /* appearance */
return((BOOL)0); /* Return */

}

Figure 40. Adding a New Method

This method simply copies a default string to the variable _szCurrentPassword
that contains the last supplied password entry from the user, so that when a
comparison is made between this variable and the folder’s password, the two do
not match. This effectively locks the folder and prevents any view of it being
opened. To provide a visual indication to the end user that the folder is locked,
a “locked” icon is loaded using the Presentation Manager WinLoadPointer()
function, and the _wpSeticon method is invoked to set this as the folder’s new
icon on the desktop.

Note that the definition for adding a new method is very similar to that for
overriding an existing method. The primary difference is that, since the new
method is specific to the object class and is not defined by the parent class,
there is no need to invoke the parent class’s method to perform default
processing for the method.

7.2.1.6 Attaching a Method to the Context Menu

A method may be invoked as a result of the user selecting an item from the
object’s context menu. in order to allow this, an item must be added to the
context menu, and an appropriate action must be taken by the object when that
item is selected by the user.

An item can be added to the context menu for an object class by overriding the
_wpModifyPopupMenu method defined by the WPObject class, and including a
call to the _wpinsertPopupMenuitem method to insert the item. This technique is
shown in Figure 41 on page 108.

#define MI_LOCK WPMENUID_USER+1
SOM_Scope BOOL SOMLINK pwfolder_wpModifyPopupMenu(PWFolder *somSelf,
HUND hwndMenu,
HUWND hwndCnr,
ULONG iPosition)
{
PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);
PWFolderMethodDebug("PWFolder®, /* Set debug info */
“pwfolder_wpModifyPopupMenu®);
_wplInsertPopupMenultems (somSelf, /* Insert menu item */
hwndMenu, /* Menu handle */
iPosition, /* Default position */
hModule, /* Module handle */
MI_LOCK, /* Menu item id */
0); /* No submenu id */
return(parent_wpModi fyPopupMenu(somSe1f, /* Allow default proc to */
hwndMenu, /* occur */
hwndCnr,
jPosition));
}

Figure 41. Adding an Item to a Context Menu

The example shown in Figure 41 adds a Lock item to the context menu for the
password-protected folder object. This allows the folder to be locked by the user
at any time, irrespective of whether a view of the folder is currently open.

The _wplnsertPopupMenultem method adds a menu item or a submenu to the
existing context menu for the object. The item identifier for the menu item or
submenu (MI_LOCK in the above example) is an integer constant that is typically
defined in the header file. Note that the value of this constant should be
specified as an offset from the system-defined constant WPMENUID_USER, rather
than an absolute integer value. Following this convention will avoid any clashes
with item identifiers defined by the Workplace Shell for default context menu
items.

Since the password-protected folder is a descendant of the WPFolder class
defined by the Workplace Shell, the default context menu items for the WPFolder
class should also appear. The default processing for the parent class is
therefore invoked as part of the _wpModifyPopupMenu processing for the new
object class.

Once the required item is added to the context menu, the object must be able to
detect when the item is selected in order to invoke the appropriate method. By
default, the _wpMenultemSelected method is invoked by the system whenever
the user selects an item from the context menu. This method, which is defined
by the WPObject class, may be overridden by a new object class in order to
check for the presence of a new item and invoke the appropriate method. The
item identifier of the selected item is passed as a parameter to the
_wpMenultemSelected method, and is normally interrogated using a case
statement, as shown in Figure 42 on page 110.

Chapter 7. Workplace Shell and the System Object Model 109

110 ©Ss/2 V2.0 Volume 4

SOM_Scope void SOMLINK pwfolder_wpMenuItemSelected(PWFolder *somSelf,
HUND hwndFrame,
ULONG Menuld)

PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);
PWFolderMethodDebug (*PWFolder®, /* Set debug info */
“pwfolder_wpMenultemSelected®);
switch (Menuld) /* Switch on item id */
{
case MI_LOCK: /* If "Lock® item */
_LockFolder(somSel1f); /* Lock folder */
break;
default: /* else */

parent_wpMenultemSelected(somSe1f, /* Allow default */
hwndFrame, /* processing to */
Menuld); /* occur */
break;

}

return;

}

Figure 42. Invoking a Method viz a Context Menu item

The _wpMenultemSelected method consists of a case statement that determines
the item selected from the context menu. In the above example, an explicit case
is included only for the MI_LOCK item defined by this class. All other menu
items are defined by the parent class, and their selection is therefore handled by
allowing the parent class’s default processing to occur.

7.21.7 Modifying the Standard Context Menu ltems

The _wpFilterPopupMenu method can be used to filter out (remove) standard
menu items that are inherited from the ancestor classes, or to reinstate any of
the standard pop-up menu items. This method can also be used to determine if
the ancestor classes have filtered out any of the Workplace Shell-provided
standard menu items, by checking to see if any of the flags associated with the
menu items are not set.

The ulFlags parameter of “C” type ULONG is really a bit array which is binary
ORed together with the ancestor classes u/Flags when the parent method is
called, effectively adding these menu items together. The resultant ulFlags is
then returned from the _wpFilterPopupMenu method.

But if the parent method is called first, then the resultant flags are binary ANDed
with the complement of the menu item (flag) to be removed. Upon returning this
from the object’s _wpFilterPopupMenu, the item will now be removed from the
pop-up menu.

To determine if a menu item is present or not, first call the parent method and
then simply binary AND the menu item flag with the parent method result. If the
result of this operation is the menu item flag that was ANDed, then the flag has
been set by the ancestor classes; otherwise it has been removed.

Figure 43 on page 111 shows how to test for a menu item, removing the menu
item if it is present, or adding it if the ancestor classes removed it. In this case
the Create another menu item is the menu item of interest.

SOM_Scope ULONG SOMLINK pwFinanceFile_wpFilterPopupMenu(PWFinanceFile *somSelf,
ULONG ulFlags,
HWND hwndCnr,
BOOL fMultiSelect)

{ ULONG ulPopupFlags;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug("PWFinanceFile", “pwFinanceFile_wpFilterPopupMenu");

/* first find out what our ancestors have done! */
ulPopupflags = parent_wpFilterPopupMenu(somSelf,ulFlags,hwndCnr,fMultiSelect);

/* now what has been done to the "Create another” menu item */
if ((ulPopupFlags & CTXT_NEW) == CTXT_NEW) {

/* the "Create another® menu item is on our Popup, so remove it */
ulPopupFlags = ulPopupFlags & ~“CTXT_NEW;
} else {

/* the “Create another” menu item is NOT on our Popup, so add it */
ulPopupFlags = ulPopupFlags | CTXT_NEW;
} /* endif */

return{ulPopupFlags);
}

Figure 43. Filtering the Pop-up Menu Items

7.2.1.8 Class Methods
Most object methods are instance methods; that is, they act upon one particular
instance of an object class, rather than upon all instances of the class.

However, there are times when it is useful to have methods that operate on the
object class itself. These methods may operate on class data rather than
instance data, thereby affecting the entire class rather than a single instance of
the class. Such methods are known as class methods. The class method
_wpclsQueryTitle is defined by the WPObject class, and is overridden in the
password-protected folder example. An example of the overridden
_wpclsQueryTitle method is given in Figure 44 on page 112.

Chapter 7. Workplace Shell and the System Object Mode! 111

112 o0s/2 v2.0 Volume 4

PSZ szDefaultClassTitle = "Password Folder®;
/*
METHOD: wpclsQueryTitle PUBLIC

PURPOSE:
Return the string "Password Folder®

* * H X * * *
~

#undef SOM_CurrentClass
#define SOM_CurrentClass M_PWFolderCClassData.parentMtab
SOM_Scope PSZ SOMLINK pwfoldercls_wpclsQueryTitle(M_PWFolder *somSelf)

/* M_PWFolderData *somThis = M_PWFolderGetData(somSelf); */
M_PWFolderMethodDebug(*M_PWFolder®,“pwfoldercls_wpclsQueryTitle®);

return{szDefaultClassTitle);

}

Figure 44. Class Method Example. This example shows an overridden class method
_wpclsQueryTitle, which is modified to supply a default title for an object within the class.

The purpose of this class method is to provide the password-protected folder
with a default title. This is the title that will appear with the folder’'s template
icon in the Templates folder, and which is given to any instances of the class that
are instantiated without a title. Since the default title applies to all instances of
the class, it is implemented in a class method rather than an instance method.

The prefix “M_" denotes the metaclass in the SOM-generated “C” source. As
already mentioned, the first parameter passed to a method is a pointer to a type
of object that can invoke that method; this is true for both instance methods and
class methods; for a class method the first parameter contains a pointer to an
instance of the metaclass.

Pointer to instance of metaclass
which is a class object

pwfoldercls_wpcisQueryTitle(M_PUFolder *somSelf)

Type is Metaclass

Since a class is also an object, it follows that the class itself has its own
“instance data”; hence the next line of code appears as follows:

/* M_PWFolderData *somThis = M_PWFolderGetData(somSelf); */

This statement would access the SOM object’s class data. However, since no
class data is specified in the .CSC file, there is nothing to access and so the
SOM Precompiler has commented the line out to reflect this.

For simple examples, it is easier to use global variables in the DLL for class
data. This technique has been used in Figure 44; the default title string is stored
at the beginning of the program into the global variable szDefaultTitle. However,

using this technique means that class data can be accessed by instance
methods, which is never desirable, and may have adverse consequences,
although these may generally be avoided by sound programming techniques.

7.21.9 Invoking Another Object’s Methods

An object may invoke a method in another object class. This technique is useful
in a client-server situation, where one object creates another object of a different
class and then wishes to have that object perform certain actions. The system
object model provides programming functions that can be used to determine the
necessary information and invoke the method. An example is given in

Figure 45.

SOMAny *RecordClass; /* Class object pointer */
somiD idQueryMethod; /* Method id */
CHAR szQueryBuffer[100]; /* Query data buffer */
PVOID pFindData; /* Returned data buffer */
rc = DosAllocSharedMem(&pFindData, /* Alloc shared memory */
NULL, /* No name */
sizeof (szQueryBuffer)+l, /* Size of memory object */
0BJ_GIVEABLE | /* Make object giveable */
PAG_WRITE | /* Allow write access */
PAG_READ | /* Allow read access */
PAG_COMMIT); /* Commit storage now */
strcpy(pFindData,szQueryBuffer); /* Copy data to buffer */

RecordClass = _somFindClass (SOMClassMgrObject, /* Get class obj pointer */
SOM_IdFromString(“Record®),

,1));
idQueryMethod = SOM_IdFromString("cisQuery®); /* Get method id */
_somDispatchL (RecordClass, /* Invoke method */
idQueryMethod, /* Method id */
(void *)0, /* No descriptor string */
pFindData, /* Method parameters */

somSelf);

Figure 45. Invoking a Method in Another Object Class

The example given in Figure 45 shows part of a “database client” object that
sends a database query to a “database server” object. The client first allocates
a shared memory object into which it loads the query. The client then uses the
_somFindClass method and the SOM_IdFromString macro to determine the
object pointer for the object, and the method identifier for the required method.
The _somDispatchL method is then used to invoke the method.

it is also possible to invoke a class method using the object pointer to that class,
obtained using the _somFindClass method shown in Figure 45. This requires the
header file for the class to be included in the source code for the class that will
invoke the method, using a #include statement. In the module definition file for
the invoking class, the following IMPORT statements must be provided:

Chapter 7. Workplace Shell and the System Object Model 113

IMPORTS
record.RecordCClassData
record.RecordClassData
record.RecordNewClass
record.M_RecordCClassData
record.M_RecordClassData
record.M _RecordNewClass

When these steps have been carried out, a method in the other class may be
invoked directly, as follows:

_c1sQueryDatabase (RecordClass, /* Invoke class method */
pQuery, /* Method specific */
Folder); /* parameters */

While this technique is less clean than the previous approach since it requires
the inclusion of the header file and import statements, it provides better
performance.

7.2.2 Subroutines

Subroutines may be accessed from within a Workplace Shell object, in much the
same manner as from any other program. Normal programming language
calling conventions are used. Subroutines used by the object may reside within
the same DLL as the object itself, or may be in a different DLL.

A number of guidelines for the use of subroutines within Presentation Manager
applications are given in 0S/2 2.1 Volume 4: Writing Applications, Chapter 4 "The
Presentation Manager Application Model”. Note that similar guidelines apply to
the use of subroutines within Workplace Shell objects, since these objects should
also adhere to object-oriented programming principles.

7.3 Defining an Object

7.3.1 Files

The definition of an object is achieved using a language known as the Object
Interface Definition Language. The statements that define an object class are
entered into the class definition file for the class, which is an ASCII file and may
thus be created using any normal text editor. The class definition file is used as
input to the SOM Precompiler, which will generate a number of files from the
class definition file.

The SOM Precompiler generates a number of files that are used to define an
object class to the Workplace Shell and to other classes that may wish to inherit
the characteristics and behaviors of the class. These files are:

H A public header file for programs that use the class.

.PH A private header file, which provides usage bindings to any private
methods implemented by the class.

JH An implementation header file, which provides macros, etc., to support
the implementation of the class.

.C A template C file, to which code may be added to implement the class.
.SC A language-neutral class definition.

114 0s/2 v2.0 Volume 4

PSC A private language-neutral core file, which contains private parts of the
interface for the class.

DEF An 0S/2 DLL module definition file containing the relevant exports need
to implement the class.

These files may then be used as input to a C compiler, generating object code
that is in turn linked to create a dynamic link library, which implements the
object class.

7.3.2 Class Definition File

The class definition file contains all the information necessary to implement a
new class. The file is divided into the following sections:

1. Include section

Class section

Parent Class section
Release Order section
Metaclass section
Passthru section

Data section

® N o o s wN

Methods section

Each of these sections is described in more detail below, using examples from
the password-protected folder class described earlier in this chapter.

7.3.2.1 Include Section

Since all system object model classes have a parent, it is necessary to know the
name of the parent class and the location of its interface definition. The include
section specifies the location of the interface definition file for the parent. In the
folder example, only a single line is included:

#

Include the class definition file for the parent class
#

include <wpfolder.sc>

Since the folder example is simply a specialized form of the WPFolder class, it
uses this class as its parent and inherits much of its behavior from the WPFolder
class. The include section therefore specifies the interface definition for the
WPFolder class. A full list of Workplace Sheli classes and their definition files
can be found in the IBM 0OS/2 Version 2.0 Presentation Manager Reference.

Note that the comments that start with a “#" are discarded by the SOM
Precompiler; hence the comment in the example above will not be seen in the
SOM Precompiler-generated files.

7.3.2.2 Class Section

This section provides basic information about the new class, specifying its name
and various attributes. The password folder example has the following class
section entry:

Chapter 7. Workplace Shell and the System Object Model 115

#

Define the new class

#

class: PuFolder,
file stem = pwfolder,
external prefix = pwFolder_,
class prefix = pwFoldercls_,
major version = 1,
minor version = 1,
local;

-- PWFolder is a Password-protected folder.

-~ Its derived as follows:

-- SCMOject

-- - WPObject

-- - WPFileSystem

-- - WPFolder

-- - PWFolder

All class definition files must contain a class section. Certain statements within
the class section are mandatory, while others are optional.

The first item in the class section is a name:
class: PWFolder,

All classes must have a name.

The file stem specifies the file name to be used by the SOM Precompiler for the
generated files. For example, if the file stem statement reads:

file stem = myfile

then the .DEF file generated by the SOM Precompiler would be called myfile.def.

The external prefix specifies a prefix to be used by the SOM Precompiler on all
function names. Hence if an external prefix of “pwFolder_" is specified and a
method is named “Setinfo,” the function name generated by the SOM
Precompiler would be “pwFolder_Setinfo.”

The SOM Precompiler normally generates a macro for all methods defined by
the class, such that the method is referenced in the source code by its defined
name, preceded by an underscore character. For example, the method
pwFolder_Setinfo described above would be referenced simply as _Setinfo. This
helps make the source code more readable and avoids the need for the
programmer to type the full name when editing the code.

The class prefix is similar to the external prefix, except that it is used specifically
for functions that are class methods. The differences between class methods
and instance methods are discussed in 7.2.1.8, “Class Methods"” on page 111.

The major version and minor version are used to ensure that the bindings are at
the right level for the class implementation code.

The local option is used to specify that binding files should be linked locally. In

“C” programming terms, this means that the following source code is generated:
#include *wpfolder.h®

If the global option is used, the resulting source code would be as follows:

#include <wpfolder.h>

116 0s/2 V2.0 Volume 4

The last part of the class section is for comments. Using “--" as the comment
style causes a comment block to be passed through to the interface definition

- (.8C) file.

7.3.2.3 Parent Class Section

The parent class section specifies the parent of the new class. All classes must
have this section. The parent class section for the password-protected folder
example appears as follows:

#

Parent class

#

parent: WPFolder;

7.3.2.4 Release Order Section

This section allows the programmer to specify the sequence in which the
methods and public data will be released. Since this sequence is maintained by
the SOM Precompiler, other programs using this class will not need to be
recompiled every time something new is added to the class.

Note that for future compatibility it is essential that all public and private
methods are listed in the release order section, and their order does not change.
It is strongly suggested that the “-r” option be used with the SOM compiler to
produce any release order warnings.

The password-protected folder example has only one public method in addition
to those already defined by its ancestor classes. This method is seen in the
release section as follows:

#

Specify the release order of new methods
#

release order: LockFolder;

Since other public methods are defined by the parent class or by its ancestors,
the programmer creating an object class need not define these methods in the
class definition file. Hence the programmer need not be aware of the existing
methods in the parent class, unless they require modification for use by the new
class. This is in accordance with the object-oriented concept of encapsulation.

7.3.2.5 Metaclass Section

For the password-protected folder example {(and in most other cases) an explicit
metaclass is not required. The concept of metaclasses is discussed in 7.1.2,
“Metaclasses” on page 103. Readers desiring more knowledge of programming
using metaclasses should refer to the /BM SOM Programming Reference.

7.3.2.6 Passthru Section

This section allows the programmer to define blocks of C source code that are
passed through to any of the files generated by the SOM Precompiler. Each
passthru block is distinguished by an identifier, the syntax of which is as follows:

passthru: <language>.<suffix>

The password-protected folder example has two passthru sections. The first
passthru is “C.h,” which passes the code block to the C binding file pwfoider.h.
This block of code defines a DebugBox macro, which can be used anywhere in
the code for the new class.

Chapter 7. Workplace Shell and the System Object Model 117

#

Passthru a debug message box to the .ih file
(for inclusion in the .c file)

#

passthru: C.h, after;

#define DebugBox(Title, Text) WinMessageBox (HWND_DESKTOP,
HWND_DESKTOP,
(PSZ) Text,
(PSZ)Title,
0,

MB_OK |

MB_INFORMATION)

endpassthru;

The second passthru block is “C.ph"”; this passes the code block to the C binding
file pwfolder.ph. This block is used to define a data structure that is accessed by
the private methods _Getinfo and _Setinfo, and is used to pass information to
and from the dialog procedure that prompts the user for the folder password.

#

Passthru private definitions to the .ph file
(for inclusion in the .c file)

#

passthru: C.ph;

typedef struct _PUF_INFO {
CHAR ;zPassword[20];
CHAR szCurrentPassword[20];
CHAR szUserid[20];
} PWF_INFO;
typedef PWF_INFO *PPWF_INFO;

endpassthru;

7.3.2.7 Data Section
This section lists the instance variables used by the class. In the
password-protected folder example, three variables are defined as follows:

#

Define instance data for the class

#

data:

CHAR szPassword[20];

-- This is the password that locks the folder
CHAR szCurrentPassword[20];

-- This is the password the user has entered to be
-- checked against the lock password

CHAR szUserid[20];

-- The userid data is here for future expansion

Note that the szUserid instance variable is not used in the version discussed in
this document, since the current example assumes only a single workstation
user. However, it is feasible for user identification to be obtained at startup, and
held by the system for authentication against a password to determine whether
access is permitted.

118 0s/2 v2.0 volume 4

7.3.2.8 Methods Section

The last section in the class definition file contains a list of all the methods to be
defined by the object class. ANSI C function-prototype syntax is used to define
each method. When coding these definitions, it is recommended that the
methods be divided into the following parts:

1. Methods that are new for this class
2. Methods that are overridden from ancestor classes

The following section shows two methods taken from the folder example’s class
definition file.

This first method will be used in the password dialog to take a copy of the
object’s instance data and place it in a structure that the dialog code may
access.

#

Define new methods
#

methods:

BOOL QueryInfo(PPWF_INFO pPWFolderInfo), private;

-- METHOD: QuerylInfo PRIVATE

-- PURPOSE: Copy the PWFolder instance data into
-- the PWF_INFO structure that pPWFolderInfo
-- points to.

The second example shows an overridden method. This method originates in the
WPObject class, which is a base class. It is used to set up the password string
when the folder object is created.

#
Specify methods being overridden
#

override wpSetup;
-- OVERRIDE: wpSetup PUBLIC

-- PURPOSE: Here we can set the folder password
-- to that passed in from the object
-- create command.

More detailed information on class definition files and the OIDL is given in the
IBM SOM Programming Reference.

7.3.3 C Implementation of an Object Class

When the SOM Precompiler has been run successfully against a class definition
file, it will produce all the source files necessary to build a Workplace Shell DLL.
The most important of these files for the C programmer is the C source code file,
which has an extension of .C. This file contains definitions and “function stubs”
for all the methods defined by the class. This file must be edited by the
programmer to add the actual application logic to each method. Figure 46 on

Chapter 7. Workplace Shell and the System Object Model 119

120 0s/2 v2.0 Volume 4

page 120 shows the SOM Precompiler-generated function stub for the Queryinfo
method from the folder example.

/*

*

* METHOD: QuerylInfo PRIVATE
*

* PURPOSE: Copy the PWFolder instance data into

* the PWF_INFO structure that pPWFolderInfo

* points to.

*

*/

SOM_Scope BOOL SOMLINK pwFolder_QueryInfo(PWFolder *somSelf,
t PPWF_INFO pPWFolderInfo)
{

PUFolderData *somThis = PUFolderGetData(somSelf); 6
PWFolderMethodDebug (“PWFolder®,“pwfolder_QueryInfo®);

<application logic> B
return((BOOL)0);

Figure 46. A SOM Precompiler-generated Function Stub

}

Notes:

SOM_Scope declares the function scope according to the language being
used. For example, in C+ +, SOM_Scope would be defined as extern C but in C
it is simply defined as extern.

It can be seen that the external prefix “pwfolder_,” which was specified in
the class definition file, has been placed in front of the function as expected.
Note that the SOM Precompiler generates a macro for this function in the private
header file:

#define _QueryInfo PWFolder QueryInfo

This avoids the necessity for the programmer to type the full function name, and
helps make the code more readable.

Since SOM uses the C language, methods from SOM objects cannot be
referenced in a very elegant manner. The first parameter to a SOM method
must be a pointer to an object that can invoke that method. in the actual method
function, this pointer is given the name somSelf. For example, the difference
between C and C+ + is as follows:

/* Let us say */
pMyCbject = (pointer to an object);
// in C++ the following syntax may be used
piyObject->Method (paraml, param2....);
/* but in C the following is required */

Method (pMyObject, paraml, param2....);

ﬂ This statement uses the pointer to the object to initialize a pointer to access
the object’s instance data. See 7.2.1.2, “Method Processing and Instance Data”
on page 106 for further information on instance data.

This line will perform tracing. Tracing is switched on whenever the SOM
global variable SOM_TraceLevel is set to a non-zero value.

B This section is left blank by the SOM Precompiler for the developer to fill
with the application logic. This logic may include access to system and/or
Presentation Manager resources. For the password-protected folder example,
the _Queryinfo method must copy the instance variables to the PWF_INFO data
structure defined in the passthru section of the class definition file. The code
required to do this is as follows:

strcpy(pPWFolderInfo->szPassword, _szPassword);
strcpy(pPWFolderInfo->szCurrentPassword, _szCurrentPassword);
strcpy(pPWFolderInfo->szUserid, _szUserid);

This code must be inserted in the C source file by the programmer, after the file
is generated by the SOM Precompiler. This may be done using a normal text
editor.

Finally, the SOM Precompiler provides a default zero return statement,
typecast with the return data type of the method as declared in the methods
section of the class definition file. This statement may be altered by the
programmer if required, provided that consistency with the method’s prototype
and declaration is maintained.

7.4 Object Behavior

The behavior of an object in the Workplace Shell is very similar to that of a
window under Presentation Manager. An object must have its class registered
with the system, an instance of that class must be created (“instantiated”) in the
system, and that instance (and any other instance) then receives messages and
uses its methods to process these messages. When processing is completed,
the instance may be destroyed.

One significant difference between a Workplace Shell object class and a window
class under Presentation Manager is that Workplace Shell object classes are
normally persistent; that is, while a Presentation Manager window class is
defined only for the duration of the application’s execution, a Workplace Shell
object class remains defined to the system, and is useable by any application
until such time as it is explicitly deregistered from the system.

Chapter 7. Workplace Shell and the System Object Model 121

7.41 Creating an Object

122 ©s/2 V2.0 Volume 4

A new object class in the Workplace Shell is typically created by taking an
existing object class and subclassing it, introducing new data and methods, and
modifying existing behaviors where required. The new object class is then
registered with the Workplace Shell, and is available from that point on.

7.4.1.1 Registration

Once an object class has been defined, compiled and placed into a dynamic link
library, it must be registered with Workplace Shell before it can be used. This
may be accomplished in any of two ways:

* An object class may be registered with the Workplace Shell using the
WinRegisterObjectClass() function. This function records the name of the
object class, and the name of the DLL that contains the code to implement
the class. Note that if specifying a fully qualified path name for
pszModName, then the DLL does not need to be placed in the LIBPATH.

* Additionally an object may also be registered with the Workplace Shell using
the SysRegisterObjectClass() function from REXX. Like the
WinRegisterObjectClass, this function also records the name of the object
class, and the name of the DLL that contains the code to implement the
class.

An example of the WinRegisterObjectClass() function is given in Figure 47, and
an example of the SysRegisterObjectClass() function is given in Figure 48 on
page 123.

PSZ pszClassName = “NewObject"; /* Class name */
PSZ pszModName = "NEWOBJ"; /* DLL module for class */
BOOL bSuccess; /* Success flag */
bSuccess = WinRegisterObjectClass(pszClassName, /* Register class */

pszModName); /* DLL module name */

Figure 47. Registering a Workplace Shell Object Class

Figure 47 provides a very simple example; a useful technique for registering
object classes is to build a simple program that reads a set of strings from an
ASCII data file and uses these strings as parameters to the
WinRegisterObjectClass() function. In this way, a generic object-registration
routine can be built and used for multiple object classes, without the need to
modify and recompile source code.

Figure 48 on page 123 shows a sample piece of REXX code that registers a
class called pwFolder to the Workplace Shell. Notice that the DLL which
contains the pwFolder Workplace Object is also copied from the current
directory. If this copy was unsuccessful, the author of this code assumed this
was because the Workplace Shell has the DLL opened and so the REXX code
deregisters the class from the Workplace Shell.

/* =/
Call RxFuncadd ‘SysLoadFuncs', 'RexxUtil!, 'SyslLoadFuncs'
Call SysLoadFuncs

‘@echo off!
‘copy pwfolder.d1l c:\os2\d11 1>nul: 2>nul:!

if rc then do
say 'Error DLL could not be updated please re-boot'
/* Remove bad entry */
RetCode = SysDeregisterObjectClass("PWFolder®);
'pause’
exit(1)
end

RetCode = SysRegisterObjectClass("PWFolder®, “pwfolder®)

if RetCode then
say 'PWFolder Class registered®
else do
say 'Error PWFolder Class failed to register®
/* Remove false entry */
RetCode = SysDeregisterObjectClass("PWFolder");
exit(1)
end

Figure 48. REXX Code to Register a Workplace Object

Note that once an object class has been registered with the Workplace Shell, it
is permanently available until it is explicitly deleted by deregistering it. See
7.4.4, "Deregistering an Object Class” on page 147 for information on
deregistering an object ciass.

7.41.2 Class Data

Class data is owned by the object class rather than by an instance of that class.
It is therefore available to all instances of the class, and must be initialized prior
to instantiating any objects within the class.

For this reason, class data is initialized when the object classes are loaded from
their DLLs, either during Workplace Shell initialization or dynamically during
execution. Class data initialization is performed by the _wpclsinitData class
method, which is called by the system when the class is loaded. If a new object
class has class data that must be initialized, it should override the
_wpcisinitData method and perform its class-specific processing.

An example of an overridden _wpclsinitData method from the
password-protected folder example is shown in Figure 49 on page 124.

Chapter 7. Workplace Shell and the System Object Model 123

124 0©0s/2 V2.0 Volume 4

HMODULE hModule;

»

SOM_Scope void SOMLINK pwfoldercls_wpclsInitData(M PWFolder *somSelf)
CHAR ErrorBuffer[100]; /* Error buffer */

/* M_PWFolderData *somThis =
M_PWFolderGetData(somSelf); */
M_PWFolderMethodDebug ("M_PWFolder®, /* Set debug info */
*pwfoldercls_wpclsInitData");

DosLoadModule((PSZ) ErrorBuffer, /* Get module handle */
sizeof(ErrorBuffer), /* Size of error buffer */
"PWFOLDER", /* Name of DLL */
&hModule); /* Module handle */
parent_wpcisInitData(somSelf); /* Allow default proc */

Figure 49. Initializing Class Data

In the example shown in Figure 49, a global variable hModule is used to contain
the module handle for the DLL, which is required when loading Presentation
Manager resources such as strings, pointers or dialogs. Since a global variable
is used rather than a class data variable, the first statement in the overridden
method, which obtains a handle to the class data, is not required and is
therefore commented out.

Any class data items obtained or initialized by an object class from within the
_wpclslinitData method should aiso be freed by the object class, by overriding the
_wpcisUnInitData method. This method is invoked by the system when an object
class is deregistered (see 7.4.4, “Deregistering an Object Class” on page 147),
or when the Workplace Shell process is terminated. An example of the
_wpclsUnlInitData method is shown in Figure 50.

SOM_Scope void SOMLINK pwfoldercls_wpclsUnInitData(M_PWFolder *somSelf)

/* M_PWFolderData *somThis
= M_PWFolderGetData(somSelf); */
M_PWFolderMethodDebug(“M_PWFolder®, /* Set debug info */
“pwfoldercls_wpcisUnInitData®);

DosFreeModule (hModule); /* Free module handle */

parent_wpclsUnInitData(somSelf); /* Allow default proc */

}

Figure 50. Freeing Class Data Items

The example shown in Figure 50 assumes that the module handie for the DLL
has already been obtained and stored in the global variable hiModule, as shown
in Figure 49,

7.4.1.3 Instantiation

Once an object class has been registered with the Workplace Shell, an instance
of that class may be created; this is known as instantiation. This may be done in
one of three ways. One of the simplest method is to open the Templates folder
and drag the template for the object class to the required location. Alternatively,
an object may be created from within an application using the WinCreateObject()
function. An example of this is shown in Figure 51. And lastly Figure 52 shows
a sample piece of REXX code that creates a Workplace Object called pwFolder,
along with some parameters for the object.

PSZ pszClassName = "NewObject"; /* Class name */
PSZ psz0bjectTitle = "My New Object®; /* Object title */
PSZ pszParams = “ICON=C:\\ICONS\\MYNEWICON.ICO"; /* Setup string */
PSZ pszlocation = “C:\\Desktop\\MyNewFolder*; /* Location for object */
ULONG ulFlags; /* Creation flags */
HOBJECT hObject; /* Object handle */
hObject = WinCreateObject (pszClassName, /* Create object */
psz0bjTitle, /* Title for icon */
pszParams, /* Setup string */
pszlocation, /* Location for object */
CO_REPLACEIFEXISTS); /* Creation flags */

Figure 51. C Code to Create an Object

/r
Call RxFuncadd 'SyslLoadFuncs', 'RexxUtil', 'SysLoadFuncs'
Call SysLoadFuncs

‘@echo off!

RetCode = SysCreateObject("PWFolder", "FinanceFile", "<WP_DESKTOP>*,
“PASSWORD=wps ; 0BJECTID=<MyFinanceFile>")

if RetCode then
say 'PWFolder Object created'
else do
say 'Error creating object!
exit(1)
end

Figure 52. REXX Code to Create an Object

Note that the pszParams parameter shown in Figure 51 is used to contain a
setup string, which can be used to pass one or more of a number of parameters
to the object class. In the example, it is used only to set the icon for the object,
but may also be used to specify other parameters for that instance of the class.
The keywords and values supported by the WPObject class are documented in
the IBM 0S/2 Version 2.0 Presentation Manager Reference; other object classes
may add their own keywords and values.

The final parameter contains one or more flags which determine the behavior of
the WinCreateObject() call if the object being created clashes with an object that

Chapter 7. Workplace Shell and the System Object Model 125

126 0s/2 v2.0 Volume 4

already exists with the specified name and in the specified location. Valid
actions are for the call to fail, to update the existing object or to replace the
existing object. These flags are documented in the /BM OS/2 Version 2.0
Presentation Manager Reference.

The setup string is passed as a parameter to the method, which can either be
invoked when the object is instantiated, or during a call to WinSetObjectData.
Because a call can be made to the _wpSetup method from WinSetObjectData,
you must not process any default settings other than those related to the
parameters passed to the _wpSetup method. This method is defined by the
WPObject class, and may be overridden by a new object class in order to check
for its own keywords and take appropriate setup action.

The _wpSetup method accepts the setup string as a parameter, and may then
parse the setup string, extract any class-specific data and perform appropriate
processing on that data. However, since many of the keywords that may be
specified in the setup string are defined by the WPObject class and are handled
by the default _wpSetup method, the default processing must be carried out. In
this particular case, the default processing may be carried out before or after the
class-specific processing.

An example of an overridden _wpSetup method is shown in Figure 53 on

page 127; this example shows the use of an additional parameter in the setup
string (PASSWORD =) to set an initial password for a password-protected folder
upon folder creation. The setup string is parsed from within the object by calling
the _wpScanSetupString method. Both of these methods, along with the
keywords supported by the WPObject class, are described in the IBM 0S/2
Version 2.0 Presentation Manager Reference.

After performing the class-specific processing in the _wpSetup method, an object
class should invoke its parent class’s _wpSetup method to perform the default
processing for any other keywords in the setup string that are defined by the
parent class.

Before the _wpSetup method is invoked, the system invokes the object’s
_wplnitData method, which allows an object to allocate resources and initialize
its instance data. See 7.4.1.4, “Instance Data" on page 127 for further details.

Note that unlike a Presentation Manager window, which exists only for the
duration of an application’s execution, an object remains in existence
permanently unless explicitly deleted from the system.

SOM_Scope BOOL SOMLINK pwfolder wpSetup(PWFolder *somSelf,
PSZ pszSetupString)
{
CHAR pszInitPword[20]; /* Buffer for password */
BOOL bFound; /* Success flag */
ULONG ulRetLength;
PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);
PWFolderMethodDebug ("PWFolder®, /* Set debug info */
pwfolder_wpSetup);
if (pszSetupString != NULL) /* If string is present */
{
bFound=_wpScanSetupString(somSelf, /* Scan setup string to */
pszSetupString, /* find keyword */
“PASSWORD*
pszInitPword,
&RetLength);
if (bFound) /* If parameter present */
strcpy (_szPassword, /* Copy p'word to folder */
pszInitPword); /* p'word and current */
strcpy(_szCurrentPassword, /* p'word - initialize */
pszInitPword); /* in unlocked state */
}
return (parent_wpSetup(somSelf, /* Allow default proc to */
pszSetupString)); /* occur */
}

Figure 53. Object Setup. This example shows an overridden _wpSetup method which
parses the setup string to extract class-specific parameters.

7.4.1.4 Instance Data

When an object is created or awakened from a dormant state, the _wplnitData
method is invoked by the system. This method allows an object to initialize its
instance data to a known state. Operating system resources should be allocated
at this stage, but Presentation Manager resources should not, since a view of the
object is not yet being opened. The allocation of Presentation Manager
resources is typically done during processing of the _wpOpen method (see
7.4.2.1, "Opening an Object” on page 128).

If an object has its own instance data, which must be initialized to a known state
before processing may be carried out, the object should override the _wplnitData
method in its class definition file, and include the initialization code. However,
for any object class other than a base storage class, the default initialization
processing must be carried out in addition to the class-specific processing. This
allows the correct initialization of any instance data items defined by the parent
class, and ensures that the new object class behaves in a manner consistent
with its ancestors.

Figure 54 on page 128 shows an overridden _wplnitData method, which
initializes the password information for a password-protected folder.

Chapter 7. Workplace Shell and the System Object Model 127

SOM_Scope void SOMLINK pwfolder_wpInitData(PWFolder *somSelf)

CHAR ErrorBuffer[100]; /* Error data buffer */
PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSelf);
PWFolderMethodDebug (*PkFolder®, /* Set debug info */
vpwfolder_wpInitData®");

strepy(_szCurrentPassword, /* Initialize folder */
“password"); /* password */

strcpy (_szPassword, /* Set current password */
“password"); /* to folder password */

/* ie. Set unlocked */

return(parent_wpInitData(somSelf)}; /* Perform default proc */

}

Figure 54. Initializing Instance Data

Note that during processing of the _wplnitData method, the instance data of the
object is not necessarily in a known state. The programmer must therefore take
great care when carrying out any processing during the execution of this
method, in order to avoid using data that may not yet have been initialized
correctly. Failure to foliow this guideline may cause unpredictable results for the
object.

7.4.2 Using an Object

128 0s/2 v2.0 Volume 4

A user typically accesses an object by opening a view of that object. For
example, to access the contents of a folder object, the user opens the default
view (usually an icon view) of the folder, which then displays its contents. This
is certainly true for container objects such as folders, and for the
password-protected folder class used as an example in this chapter, although
other "device” objects such as printers or the shredder may be used without a
view.

When no view of an object is open, and the folder within which the object resides
is not open, the object is said to be dormant; typically, no system resources are
allocated to the object and its instance data is in an unknown state. Opening
and closing views of an object therefore involve not only the opening and closing
of windows, but also allocating and freeing resources, and saving and restoring
the instance data of the object. Similarly, opening a folder requires saving and
restoring the instance data of the objects in that folder.

7.4.21 Opening an Object

As mentioned above, a user typically interacts with an object using a view of that
object. An object may support various types of view; for example, the WPFolder
object class supports icon, tree, details and settings views. By default, an object
class supports the view types defined by its ancestors, and a programmer may
also define new view types for the object class.

When a view of an object is opened, the _wpViewObject method is invoked by
the Workplace Shell. This method determines if there is already an open view of
the view specified for the object. If there is not then _wpOpen is called to open a
view for the object. If there already is an open view, _wpViewObject checks the

objects settings for concurrent views. If concurrent views are set, the _wpOpen
is called to open an additional view of the object with the specified view.
Therefore your programs should call _wpViewObject and not _wpOpen, but
override _wpOpen to add your own unique views. Note that the concurrent view
setting can normally be found on an object’s settings notebook, under the
"Window” tab, and is labelled “Object Open Behavior”.

The _wpOpen method is defined and implemented by the base storage class
WPObject, and may be overridden by a new object class to perform its own
class-specific processing. The supported views for each object class are
implemented as part of the _wpOpen method, using Presentation Manager
windows.

When a view is opened by the user from a context menu, the
_wpMenultemSelected method is invoked (see 7.2.1.6, "Attaching a Method to
the Context Menu” on page 108 for more detailed discussion of this method).
The _wpMenultemSelected method typically invokes the _wpViewObject method,
which may invoke the _wpOpen method as outlined above.

When the user opens a view by double-clicking the mouse on an object’s icon,
the _wpViewObject method invokes the _wpOpen method and passes an
OPEN_DEFAULT value. The default processing for the _wpOpen method invokes
the _wpQueryDefaultView method to determine the default view for the object,
and immediately invokes the _wpOpen method a second time with the identifier
for that view.

An example of an overridden _wpOpen method is given in Figure 55 on

page 130. This example shows a password-protection facility being added to a
folder to prevent access by unauthorized users. Upon invocation of the
_wpOpen method, the password-protected folder object class displays a dialog
box to accept a password from the user. It then compares that password with
the correct password for that folder before actually opening the folder. Visual
cues such as the folder’s icon and the word “Locked" on the folder’s titie are
modified or removed during the _wpOpen processing.

Chapter 7. Workplace Shell and the System Object Model 129

130 ©s/2 v2.0 Volume 4

}

SOM_Scope HWND SOMLINK pwfolder wpOpen(PWFolder *somSelf,

HWND hwndCnr,
ULONG ulView,
ULONG param)

ULONG ulResult;
CHAR szTitle[100];

PWFolderData *somThis =
PiFolderGetData(somSelf);
PWFolderMethodDebug (*PWFolder®,
"pwfolder_wpOpen”);

if ((strcmp(_szCurrentPassword,
_szPassword)) == 8)
return(parent_wpOpen(somSelf,
hwndCnr,

ulView,

param));

ulResult = WinD1gBox (HWND_DESKTOP,
HYND_DESKTOP,
dpPassword,
hModule,
DLG_PASSWORD,
(PVOID)somSelf);

if (ulResult == DID_OK)

if ((strcmp(_szCurrentPassword,
_szPassword)) == 0)

strcpy(szTitie,
_wpQueryTitle(somSelf));

szTitle[strlen(szTitle)-9] = "\0*;

_wpSetTitle(somSelf,szTitle);

<Set icon to unlocked state>

return (parent_wpOpen(somSelf,

hwndCnr,
ulView,
param));
}
else

binMessageBox (HWND_DESKTOP,
HWND_DESKTOP,

/* Set instance data
/* Set debug info

/* If not locked

/* Allow open to proceed
/* in normal way, using
/* default processing

/* Display p'word dialog
/* Desktop is owner

/* Dialog procedure

/* Module handle

/* Dialog resource id

/* Object pointer

/* If not cancelled

/* If correct password

/* Get title string

/* Remove <LOCKED>
/* Reset title string

/* Allow default _wpOpen
/* processing to occur
/* by invoking parent's
/* method

/* Display message box

“Password incorrect. Folder remains locked.",

“Password Failed”,

0, MB_OK | MB_CUAWARNING);
return((BOOL)6);
}

/* Return FALSE

*/
*/

*/
*/
*/

*/

*/

*/
*/

*/

Figure 55. Opening an Object. This example shows the _wpOpen method, which is
called by the system when a view of an object is opened, being overridden to add
password protection to a folder.

Since the view being opened in this case is a view defined by the WPFolder
class, the actual opening of the view and presentation of the folder’s contents is
handled using the default processing supplied by the parent class, which is
called after the class-specific processing has completed.

If an object class wishes to create a new view, it must add the name of the view
to the Open submenu in the object’s context menu, and include a case for that
view in the _wpMenultemSelected method. This method then invokes
_wpViewObject with a specific value in the ulView parameter, indicating the view
to be opened. The class-specific processing for _wpOpen must test for this
value, open a window and display the correct information using Presentation
Manager functions.

The example in Figure 55 does not include the code to set the folder’s icon to
the “unlocked” state. This code is identical to the code used in Figure 40 on
page 108 to set the icon to the “locked” state; the resource identifier of the
“unlocked” icon is simply substituted in the _wpOpen method for the identifier of
the “locked” icon.

Note that in many cases, it is important for an object class to allow the default
processing for _wpOpen to occur before it attempts to carry out its own
processing. This allows instance data and control information to be established
and initialized before the object attempts any processing using these items. In
Figure 55 on page 130 however, the additional class-specific processing
determines whether the object should open at all; if processing is allowed to
proceed, no alteration to the default processing takes place. The default
processing may therefore be carried out after the additional class-specific
processing introduced by the password-protected folder class.

The default processing for the _wpOpen method supports a number of views,
depending upon the parent class of the object; for example, the processing for
the WPFolder class supports ICON, TREE and DETAILS views. For new object
classes which support additional views, the _wpOpen method must be
overridden and the additional view types opened explicitly as windows using
appropriate Presentation Manager functions. Since a view of an object is
essentially a window, new views can be implemented as normal Presentation
Manager windows and the correct information displayed using text or graphical
programming functions, according to the requirements of the object class.

The application must always define a new view if it introduces one. Never
process OPEN_DEFAULT other than passing it to the parent class. If you want to
have your own view be the default, then override the _wpclsQueryDefaultView
method.

Note that upon opening a view using a Presentation Manager window, an object
should add itself to the “Use List" maintained by the Workplace Shell. if the
view is the first view of the object to be opened, this causes the Workplace Shell
to modify the object’s icon to indicate the “in use” state. The object should also
register the view with the Workplace Shell, which will then subclass the view’s
frame window, automatically attach the object’s context menu to the window’s
system menu icon, and add the view to the Workplace Shell’s Window List.
These steps are done using the _wpAddToObjUseList and _wpRegisterView
methods, as shown in Figure 56 on page 132.

Chapter 7. Workplace Shell and the System Object Model 131

132 0s/2 v2.0 Volume 4

HWND hView; /* View window handle */

typedef struct _OBJECTVIEW /* Object view structure */
SOMAny *Object; /* Object pointer */
USEITEM Useltem; /* USEITEM structure */
VIEWITEM Viewltem; /* VIEWITEM structure */
} OBJECTVIEW;
OBJECTVIEY *pObjectView; /* Pointer to structure */
<Create Window> /* Get window handle */
pObjectView = _wpAllocMem(somSelf, /* Allocate memory */
sizeof (OBJECTVIEW), /* Size of mem object */
NULL);
pObjectView->Record = somSelf; /* Initialize OBJECTVIEW */
pObjectView->Useltem.type = USAGE_OPENVIEW; /* structure */
pObjectView->ViewItem.view = OPEN_CUST;
pObjectView->Viewltem.handle = hView;
WinSetWindowULong (hView, /* Store pointer to */
QWL_USER, /* structure in window */
(ULONG) pObjectView); /* words */
_wpAddToObjUseList (somSelf, /* Add to Use List */
&pObjectView->Useltem); /* USEITEM structure */
_wpRegisterView(somSelf, /* Register view */
hView, /* View window handle */
"Customer Details") /* Title of view */

Figure 56. Opening a Custom View of an Object

The Workplace Shell makes use of a USEITEM and a VIEWITEM structure in the
_WpAddToObjUseList method. It assumes that these structures are contiguous
in memory; hence they should be allocated as part of a larger data structure
such as the OBJECTVIEW structure shown in Figure 56. A pointer to this
structure is stored in the window words of the view window, so that information
such as the object’s pointer can be accessed from the view’s window procedure.

Note that upon closing a view, the view’s window procedure should invoke the

_wpDeleteFromObjUseList method to remove the view from the Use List. If the
view is the only open view of the object, the object’s icon is modified to remove
the “in use” emphasis.

7.4.2.2 A Custom View of our pwFinanceFile

This section shows how to implement a custom view of the pwFinanceFile
Workplace Object. Not all of the code, such as the resource files, header files,
are shown. Fcr a full code listing please refer to Appendix E, “Source Code for
the PWFolder and PWFinanceFile objects” on page 347

Figure 57 on page 133 shows how the “Open Finance File” menu item is added
onto the "Open” menu item, which appears on the pwFinanceFile’s context
menu. Note that we also add the “Lock Finance File” menu item. Figure 58 on
page 134 shows the resulting context menu which is provided by Figure 57 on
page 133. Note that the "OS/2 System Editor” menu item is also present. The

Workplace Shell wpDataFile class has added this due to file type associations.
In this case because this object does not have a file type, it is assumed by the
ancestor classes to be text and the default association for the text type is the
0S/2 System Editor. We could remove this by overriding the
_wpclsQueryDefaultView method, thus making our view the default one.

/*
*
* METHOD: wpModifyPopupHenu PUBLIC
*
* PURPOSE: Adds an additioral “Lock® item to the object's context menu.
* Adds a “Open Finance File" item to the “Open” item
* INVOKED: By Workplace Shell, upon instantiation of the object instance.
*
*/
SOM_Scope BOOL SOMLINK pwFinanceFile_wpModifyPopupHenu(PWFinanceFile *somSelf,
HWND hwndMenu,
HWND hwndCnr,
ULONG iPosition)
{
PWFinanceFileData *somThis = /* Get instance data pointer */
PUFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug(*PWFinanceFile”, /* Set debug info */
“pwFinanceFile_wpHodifyPopupMenu”);
_wplnsertPopupMenultems(somSelf, /* Insert menu item */
hwndMenu, /* Menu handle */
iPosition, /* Default position */
hmodThisClass, /* Module harmdle */
ID_CXTMENU_LOCK, /* Menu item identifier */
0); /* No submenu identifier */
_wplInsertPopupMenultems(somSelf, /* Insert menu item */
hwndMenu, /* Menu handle */
0, /* at the top! *f
hmodThisClass, /* Module handle */
1D_OPENFinanceFile, /* Menu item identifier */
WPMENUID_OPEN) 3 /* Submenu identifier */
return (parent_wpModi fyPopupMenu (somSelf, /* Invoke default processing */
hwndMenu,
hwndCnr,
iPosition));
}

Figure 57. _wpModifyPopupMenu .C code. This example shows how to add two menu
items to the "Open Finance File* menu item on the pwFinanceFile’s context menu.

Figure 60 on page 135, Figure 61 on page 136, Figure 62 on page 138 and
Figure 63 on page 141 show the additional code required to process the
selection of the “Open Finance File” menu item. Figure 59 on page 134 shows
the window view which is presented when the user selects the “Open Finance
File” menu item. This window is empty and the population of the window with
information from the file associated with the instance of the pwFinanceFile is a
normal PM programming exercise which is left for the reader to perform.

Chapter 7. Workplace Shell and the System Cbject Model 133

S

Figure 59. pwFinanceFile’s Custom View

134 0s/2 v2.0 volume 4

~~
*

*

* METHOD: wpMenultemSelected PUBLIC

*

* PURPOSE: Processes the user's selections from the context menu. The

* overridden method processes the added "Lock® & “OPENFinanceFile”
* items, and passes all others to the parent method

*

* INVOKED: By Workplace Shell, upon selection of a menu item by the user.

*

*/

SOM_Scope BOOL SOMLINK pwFinanceFile_wpMenultemSelected(PWFinanceFile *somSelf,
HWND hwndFrame,
ULONG ulMenuld)

{
PWFinanceFileData *somThis = /* Get instance data pointer */
PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug(“PWFinancefile®, /* Set debug info */
“pwFinanceFile_wpMenultemSelected");
switch(ulMenuld) /* Switch on item identifier */
case IDM_LOCK: /* Lock item selected */
_LockFinanceFile(somSelf); /* Invoke _LockFinanceFile method */
break;
/'k
* Ye could call wpOpen here, but if the object is already opened
* the following API determines whether the object should be
* pesurfaced or if multiple views are desired.
* Must call wpViewObject not wpOpen. If you use wpOpen then multiple
* concurrent views won't work. User can set object to open multiple views
* or switch to.
*/
case IDM_OPENFinanceFile: /* Open a view selected */
_wpViewObject (somSe1f, NULLHANDLE, OPEN_Financefile, 0);
break;
default: /* All other items */
parent_wpMenultemSelected(somSelf, /* Invoke default processing */
hwndFrame,
ulMenuld);
. break;
}
}

Figure 60. _wpMenultemSelected .C code

Chapter 7. Workplace Shell and the System Object Model 135

136 0S5/2 v2.0 volume 4

“C" Code

i

~
* R F % F % X F F X % *

~

SOM_Scope HWND

if ((stremp(

METHOD: wpOpen PUBLIC

PURPOSE: Only allows a FinanceFile to be opened if the FinanceFile is unlocked, or

f the user supplies the correct password in response to the

dialog.

INVOKED: By Workplace Shell, upon selection of the “Open” menu item by
the user.

SOMLINK pwFinancefile_wpOpen(PWFinanceFile *somSelf,
HWND hwndCnr,
ULONG ulView,
ULONG param)

{
ULONG ulResult; /* Return value */
CHAR s2Titlef100"; /* Financefile title buffer */
PVOID pCreateParam;
BOOL bAllowAccess = FALSE; /* user is allowed in */
PWFinanceFileData *somThis = /* Get instance data pointer */

PWFinanceFileGetData(somSelf);

PWFinanceFileMethodDebug(“PWFinanceFile"”, /* Set debug info */

"pwFinancefile_wpOpen*);

_szCurrentPassword, /* 1f Financefile is locked */
_szPassword)) != @)

somPrintf("ask for a password\n");
pCreateParam

= malloc(sizeof (ULONG)); /* Allocate memory to pass a */
/* ULONG to the dialog proc */

((PULONG) pCreateParam) = {ULONG)somSelf; / Put the somSelf pointer */

/* in the CreateParam memory */

ulResult = WinD1gBox (HWND_DESKTOP, /* Display password dialog */
HWND_DESKTOP, /* Desktop is owner */
PasswordD1gProc, /* Dialog procedure address */
hmodThisClass, /* Module handle */
ID_DLG_PASSYORD, /* Dialog resource id */
pCreateParam); /* Create Param holding the */

/* pointer to this object */

Figure 61 (Part

1 of 2). _wpOpen

if (ulResult == DID_OK) /* 1f user hit OK button

if ((strcmp(_szCurrentPassword, /* 1f password is correct
_szPassword)) == 0)

{
strepy(szTitle, /* Get title string
_wpQueryTitle(somSelf));

s2Titlefistrlen(szTitle)-9* = '\0'; /* Remove <LOCKED>

_wpSetTitle(somSelf,szTitle); /* Reset title string

_wpSetIcon(somSelf, /* Set icon to unlocked
hUnlockedIcen); /* state

/* now we can allow the user access to the object proper ! */
bAllowAccess = TRUE;

}
else /* Password is incorrect
{
WinMessageBox (HWND_DESKTOP, /* Display message to user
HWHD_DESKTOP,
“Password incorrect, FinanceFile remains locked.",
"Password Failed*®,
o,
MB_OK |
MB_CUAWARNING);
return{ (HWND)0) ; /* Return NULL handle
}
}
} else {

bAllowAccess = TRUE;

}
if (bAllowAccess) {
switch (ulView) {
case OPEN_FinanceFile:
if (!_wpSwitchTo(somSelf, ulView)) {
/* Create a basic frame and client window for this instance */
return PWFinanceFilelnit(somSelf);
} /* endif */

break;
default:
return(parent_wpOpen (somSelf, /* Allow open to proceed in
hwndCnr, /* normal way using default
ulView, /* processing
param));

} /* endswitch */
} else {
} /* endif */
}

*/
*/

*/
*/

*/
*/

*/
*/

*/

Figure 61 (Part 2 of 2). _wpOpen

Chapter 7. Workpiace Shell and the System Object Model

137

/ﬁt****k****t***t*t***kﬁnk*'k****k*ﬁkt'k***ﬁ*****t*****t*ﬁ*'k**k*******k**a***t

ROUTINE: PWFinanceFilelnit()
DESCRIPTION: PWFinanceFile Inisialisation

RETURNS : Handle of PWFinanceFile frame window, NULL if error

* * F % X X *
* % X X F * *

********t**************tﬂkﬁk*k*****k*******ﬁ****t**t***k*ﬁ*****ﬁ*******iﬁ**/

HWND PWFinanceFilelnit (PWFinanceFile* somSelf)

HAB hab; /* PM anchor block handle
HWND hwndFrame = NULLHANDLE; /* Frame window handle
HWND hwndClient = NULLHANDLE;

PWINDOVDATA pWindowData;

BOOL fSuccess;

SWCNTRL swcEntry; /* Switch Entry
FRAMECDATA f1FrameCtlData; /* Frame Ct] Data

somPrintf("PWFinanceFilelnit\n");
hab = WinQueryAnchorBlock (HWND_DESKTOP) ;
CS_SIZEREDRAW | CS_SYNCPAINT, sizeof (pWindowData)
semPrintf(“FinanceFilelnit Failure in WinRegisterClass\n");

return NULLHANDLE ;

/*
* Allocate some instance specific data in Window words of Frame window.
* This will ensure our window procedure can use this object's methods

* (our window proc isn‘t passed a * somSelf pointer).
*/

if (!pWindowData)
{
return NULLHANDLE;

memset ((PVOID) pWindowData, 0, sizeof (*pWindowData));
pWindowData->cb = sizeof (*pWindowData); /* first field = size
pWindowData->somSelf = somSelf;

/* Create a frame window
*
f1FrameCt1Data.ch = sizeof(f1FrameCt1Data);
FCF_MINHAX ;

f1FrameCt1Data.hmodResources = hmodThisClass;
fiFrameCt1Data. idResources ID_UNLOCK;

*/
*/

*/

if (IinRegisterClass(hab , szFinanceFileWindowClass, (PFNWP)FinanceFileWndProc ,

)

pWindowData = (PWINDOWDATA) _wpAllocHem(somSelf, sizeof (*pWindowData), NULL);

somPrintf("FinanceFileInit wpAllocHem failed to allocate pWindowData\n");

*/

f1FrameCt1Data.f1CreateFlags = FCF_SIZEBORDER | FCF_TITLEBAR | FCF_SYSMENU |

138 0s/2 v2.0 Volume 4

Figure 62 (Part 1 of 3). pwFinanceFile’s Initialization Function

hwndFrame = /* create frame window */

WinCreateWindow(

HWND_DESKTOP, /* parent-window handle */
WC_FRAME, /* pointer to registered class name */
_wpQueryTittle(somSelf), /* pointer to window text */
, /* window style */
0, 06, 0,0, /* position of window */
NULLHANDI E, /* owner-window handle */
HWND_TOP, /* handle to sibling window */
(USHORT) 1D_FRAME, /* window identifier */
(PvOID) &f1FrameCtlData, /* pointer to buffer */
NULL) ; H /* pointer to structure with pres. params. */

if (YhwndFrame)

somPrintf("FinanceFilelnit Failure in WinCreateWindow\n");
return NULLHANDLE;

hwndClient = /* use WinCreateWindow so we can pass pres params */

WinCreateWindow(
hwndFrame, /* parent-window handle */
szFinanceFileWindowClass, /* pointer to registered class name */
NULL, /* pointer to window text */
0, /* window style */
e, 8, 0, 0, /* position of window */
hwndFrame, /* owner-window handle */
HWND_TQP, /* handle to sibling window */
(USHORT) FID_CLIENT, /* window identifier */
pWindowData, /* pointer to buffer */
NULL) ; /* pointer to structure with pres. params. */

if (!hwndClient)

WinDestroyWindow(hwndFrame) ;
return NULLHANDLE;
}

WinSendMsg (hwndFrame , WM_SETICON, MPFROMP(_wpQuerylcon({somSe1f)),NULL);
WinSetWindowText (WinWindowFremID(hwndFrame, (USHORT) F1D_TITLEBAR),
_wpQueryTitle(somSelf));

/*

* Restore the Window Position

*/

fSuccess =

WinRestoreWindowPos (
szFinanceFileClassTitle, /* class title */
_wpQueryTitie(somSelf), /* object title */
hwndFrame) ;

Figure 62 (Part 2 of 3). pwFinanceFile’s Initialization Function

Chapter 7. Workplace Shell and the System Object Model

139

if (1fSuccess)
SWp SwWp;

/* Get the dimensions and the shell's suggested
* location for the window
*

WinQueryTaskSizePos (hab, 0, &swp) ;
/* Set the frame window position
*
swp. f1 = SWP_SIZE|SWP_MOVE|SWP_RESTORE | SWP_ZORDER;
WinSetWindowPos (hwndFrame, HWND_TOP, swp.X, Swp.y, swp.cX,
swp.cy, swp.fl);
}
WinShowWindow (hwndFrame, TRUE) ;

return hwndFrame; /* success */

} /* end FinanceFilelnit() */

140 ©s/2 v2.0 Volume 4

Figure 62 (Part 3 of 3). pwFinanceFile’s Initialization Function

/*t****kk*h**t*t**ﬁ************k***tt******k**ﬁtﬁtﬁ**k************k*ﬁktt*******

FinanceFileWndProc ()

DESCRIPTION: FinanceFile Window Procedure

* * * * *

*********ﬁ*t*k*****t**k**ttﬁtﬁ**k****k****t***ﬁk*ﬁ**kk*kt****tﬁ**t*******k**k*/

MRESULT EXPENTRY FinanceFileWndProc(HWND hwnd, ULONG msg, MPARAM mpl, MPARAM mp2)

hwndframe = WinQueryWindow(hwnd, QW_PARENT);
switch(msg)
case WM_CREATE:
pWindowData = (PWINDOWDATA) mpl;
if (pWindowData == NULL)

somPrintf(“FinanceFileWndProc:WM_CREATE couldn't get window words®);
return FALSE;

}

*

* Fill in the class view/usage details and window specific data
* for this instance.

*/

/*
* Must create Useltem, add it to the object's use 1ist and register the view
*/

pWindowData->Useltem. type = USAGE_OPENVIEM;

pWindowData->Viewltem.view = OPEN_FinanceFile;
*

* Must be frame. Be careful because this procedure is for the client.
* Must get parent and pass that as Viewltem handle.
*

pWindowData->ViewItem.handle = hwndFrame;

‘pWindowData->x = 10;
pWindowData->y = 10;
pWindowData->xDir = 8;
pWindowData->yDir = 8;

x
* Set window pointer with object pointer and instance view info.
* Then add view to the in-use list so wpSwitchTo works.

*

WinSetWindowPtr (hwnd, QWL_USER, pWindowData);

{
ULONG Menuld;
PWINDOWDATA pWindowData;
HWND hwndFrame;
CHAR acBufferfilo*;
BOOL fSuccess;
CHAR s2PathfiCCHNAXPATH" 3 //jt 55384
ULONG chPath = CCHMAXPATH; //§t 55384

Figure 63 (Part 1 of 3). pwFinanceFile’s Window Procedure, FinancefileProc()

Chapter 7. Workplace Shell and the System Object Model

14

142 0©s/2 v2.0 Volume 4

/'k

* _wpAddToObjUseList will tell the shell to store the view in

the internal linked 1ist for the object to enable wpSwitchTo and other
methods to find the view. The shell will also subclass the view window
this gives you title bar context menu when you call wpRegisterView.
wpRegisterView also puts the view in the window list and sets up
* the title bar like: "Object Title - View Title"”
*

/

_wpAddToObjUselist (pWindowData->somSe1f, &pWindowData->Useltem);
_wpRegisterView(pWindowData->somSel1f, hwndFrame,

_wpQueryTitle(pWindowData->somSelf));
WinSetFocus (HWND_DESKTOP, hwndFrame);

* % ¥ X

/* what is the filename of the file */
if (_wpQueryRealName (pWindowData->somSelf,szPath,&cbPath, TRUE))

somPrintf(“File name is %s, size %i \n",szPath, cbPath);
) e:ngiintf("Failed to get filename\n");
} /* endif #/
break;
case WM_COMMAND:
break;

case WM_PAINT:
pWindowData = (PWINDOWDATA) WinQueryWindowPtr(hwnd, QWL_USER);

if (pWindowData == NULL)
{

somPrintf(“FinanceFileWndProc:WM_PAINT couldn't get window words\n");
return FALSE;

else

{
HPS hps;
RECTL rectl;

hps = WinBeginPaint(hwnd, (HPS)NULLHANDLE, &rectl);
WinFillRect(hps, &rectl, SYSCLR_WINDOW);
WinEndPaint (hps);

break;

Figure 63 (Part 2 of 3). pwFinanceFile's Window Procedure, FinanceFileProc()

case WM_CLOSE:
HAB hab;
hab = WinQueryAnchorBlock (HWND_DESKTOP) ;
pWindowData = (PWINDOWDATA) WinQueryWindowPtr(hwnd, QWL_USER);
}f (pWindowData == NULL)

somPrintf("FinanceFileWndProc:WH_CLOSE couldn't get window words\n®);
return FALSE;
}

fSuccess =

WinStoreWindowPos (szFinanceFileClassTitle, wpQueryTitle(pWindowData->somSelf),
hwndFrame) ;

/ﬁ

* Must remove from the object UselList when window is closed. (can be done
* on WH_DESTROY instead)

*

_wpDeleteFromObjUseList (pWindowData->somSelf,&pWindowData->Useltem);
_wpFreeMem (pWindowData->somSe1f, (PBYTE) piindowData) ;

WinDestroyWindow (hwndFrame) ;
}

break;

default:
return WinDefWindowProc(hwnd, msg, mpl, mp2);

}
return FALSE;

} /* end FinanceFileWndProc() */

Figure 63 (Part 3 of 3). pwFinanceFile’s Window Procedure, FinanceFileProc()

7.4.2.3 Automatic Opening Upon Instantiation

Iin many cases, it is desirable to automatically open a view of an object when the
object is created. This may be achieved by using the OPEN= keyword in the
setup string passed to the WinCreateObject() function. An example of this
technique is shown in Figure 64.

PSZ pszClassName = "NewObject”; /* Class name */
PSZ pszObjectTitle = "My New Object®; /* Object title */
PSZ pszParams = "OPEN=ICON“; /* Setup string */
PSZ pszlocation = “C:\\Desktop\\MyNewFolder®; /* Location for object */
ULONG ulFlags = CO_UPDATEIFEXISTS; /* Creation flags */
HOBJECT hObject; /* Object handle */
hObject = WinCreateObject {pszClassName, /* Create object */
psz0bjTitle, /* Title for icon */
pszParams, /* Setup string */
pszlLocation, /* Location for object */
ulFlags); /* Creation flags */

Figure 64. Automatically Instantiating an Object. This example shows the use of the
OPEN = keyword to automatically open a view of an object upon creating the object.

The opening of the view specified in the OPEN= keyword is handled by the
default processing for the _wpSetup method, as defined by the WPObject class.
The default processing supports the icon, tree and details views, specified using

Chapter 7. Workplace Shell and the System Object Mode! 143

144 0s/2 V2.0 Volume 4

the ICON, TREE and DETAILS values for the OPEN = keyword respectively. For
new object classes that support additional views, the _wpSetup method must be
overridden and the additional view types opened explicitly as windows using
appropriate Presentation Manager functions.

7.4.2.4 Closing an Object

When all open views of an object are to be closed, the _wpClose methed is
invoked. This method is normally invoked when the user selects the Close
option from a view’s context menu.

The _wpClose method may be overridden to perform class-specific processing
for closing views, or to free system resources allocated during processing of the
_wpOpen method. For example, Figure 65 shows the _wpClose method being
overridden to automatically lock a password-protected folder whenever it is
closed by the user.

SOM_Scope BOOL SGMLINK pwfolder wpC) ose(PWFolder *somSelf)
{

PWFolderData *somThis = /* Get instance data */
PWFolderGetData(somSe1f);
PWFolderMethodDebug ("PWFolder®, /* Set debug info */
“pwfolder_wpInitData®);
_LockFolder(somSelf); /* Lock folder */
return(parent_wpClose(somSelf)); /* Allow default proc */

}

Figure 65. Closing an Object. This example shows the _wpClose method being
overridden in order to provide class-specific processing for the password-protected folder.

When a view of an object is closed, the system sends a WM_DESTROY message
to the view’s frame window. This allows the object to release any allocated
resources and save its instance data, so that the object may be reopened in its
current state at some future time.

Note that since the _wpClose method is defined by the parent class and is
overridden, the default processing performed by the parent is called after the
class-specific processing has completed.

7.4.2.5 Saving and Restoring the Object State

As already mentioned, an object is persistent; that is, it remains in existence
even when all views of the object are closed. In order to maintain its instance
data so that it may subsequently be opened in the same state in which it was
closed, the object must save this data when its views are closed and restore it
when a view is opened. The Workplace Shell provides methods that handle the
saving and restoration of instance data on behalf of object classes; these
methods are automatically invoked by the system at the appropriate times, and
are described below.

When an object is made dormant, the system invokes the object’s _wpSaveState
method, which allows the object to save its instance data. A number of
predefined methods are available to the object to save its data, such as
_wpSaveString. These methods may be called by the object during the
processing of its _wpSaveState method, in order to save instance data. An

example of the _wpSaveState method for the password-protected folder example
is given in Figure 66 on page 145.

SOM_Scope BOOL SOMLINK pwfolder_wpSaveState(PWFolder *somSelf)
{

PWiFolderData *somThis = /* Get instance data */
PkifolderGetData(somSelf);

PWFolderMethodDebug (*PWFolder®, /* Set debug info */

“pwfolder_wpSaveState®);

_wpSaveString(somSelf, /* Save folder password */

“PWFolder®, /* Class name */

1L, /* Class-defined key */

_szPassword); /* String to be saved */

_wpSaveString(somSelf, /* Save current password */

“PFolder®, /* Class name */

2L, /* Class-defined key */

_szCurrentPassword) ; /* String to be saved */

return (parent_wpSaveState(somSelf)); /* Invoke default proc */

}

Figure 66. Saving an Object’s State

An object’s instance data items are saved in different locations, depending upon
the class of the object. Object classes that are descendants of the WPAbstract
class store their instance data in the OS/2 initialization file OS2.INI. Object
classes that are descendants of the WPFileSystem class store their instance data
in extended attributes. Since the password-protected folder class is descended
from the WPFolder class defined by the Workplace Shell, which in turn is a
descendant of the WPFileSystem class, the instance data of this object class is
saved as exiended attributes in the OS/2 file system.

The class-defined key passed to the _wpSaveString method is used to save the
data item in a particular location, which can then be accessed, using the same
key, to restore the item. In addition to strings, numeric data may be saved using
the _wpSavelLong method, and other binary data such as application-defined
data structures may be saved using the _wpSaveData method.

Note that since the _wpSaveState method is defined by the object’s class’s
ancestors and overridden, it must invoke the default processing supplied by the
parent class in order to correctly save any instance data defined by ancestor
classes. Failure to do so may cause unpredictable results upon awakening the
object from its dormant state.

An object must retrieve its instance data and restore its state whenever it is
made awake. At this point, the system invokes an object’s _wpRestoreState
method, which allows the object to restore its state. During the processing of
this method, the object can invoke other methods such as _wpRestoreString,
which restore specific instance data items. An example of the _wpRestoreState
method is given in Figure 67 on page 146.

Chapter 7. Workplace Shell and the System Object Model 145

SOM_Scope BOOL32 ~ SOMLINK pwfolder wpRestoreState(PWFolder *somSelf,
ULONG ulReserved)

ULONG ulResStrlLen; /* String length */
PWFolderData *somThis = /* Get instance data */
PliFolderGetData(somSelf);
PWFolderMethodDebug (“PiFolder®, /* Set debug info */
“pwfolder_wpRestoreState");
_wpRestoreString(somSelf, /* Restore folder p'word */
"PWFolder®, /* Class name */
1L, /* Class-defined key */
_SzPassword, /* Target string */
&ulResStrLen); /* Length restored */
_wpRestoreString(somSelf, /* Restore curr p'word */
“PWFolder®, /* Class name x/
2L, /* Class-defined key */
_szCurrentPassword, /* Target string */
&ulResStrLen); /* Length restored */
return(parent_wpRestoreState(somSelf, /* Invoke default proc */

ulReserved));

}

Figure 67. Restoring an Object’s State

The class-defined key passed to the _wpRestoreString method is used to locate
the required data item, and the item is restored into the specified target string
variable. Numeric data can be restored using the _wpRestoreLong method, and
other binary data such as application-defined structures can be restored using
the _wpRestoreData method.

Since the _wpRestoreState method is an overridden method, it is important that
the default processing supplied by the parent class be invoked. Failure to do SO
will result in any instance data defined by ancestor classes being in an unknown
state, with unpredictable results.

Note that you are not restricted to the workplace methods to save and restore
data. You may use any auxiliary file, OS2.INI, extended attributes or what ever
means you wish.

7.4.3 Destroying an Object

A specific instance of an object class can be destroyed by the user, simply by
dragging it over the Shredder object on the Workplace Shell desktop. If an
object or application wishes to delete an object. it may do so using the
WinDestroyObject() function, as shown in Figure 68.

HOBJECT hObject; /* Object handle */
BooL bSuccess; /* Success flag */
bSuccess = WinDestroyObject (hObject); /* Destroy object */

Figure 68. Destroying an Object

146 ©s/2 v2.0 Volume 4

The WinDestroyObject() function uses the object handle that is returned by the
WinCreateObject() function. The object or application that creates the object is
responsible for storing this handle during the existence of the object.

When an object is destroyed, the system invokes the object’s _wpUninitData
method, which may be used to free any resources or instance data items that
were allocated to that particular object.

7.4.4 Deregistering an Object Class

An entire object class can be deleted from the system by deregistering it from
the Workplace Shell. This is achieved by either using the
WinDeregisterObjectClass() function, which is shown in Figure 69, or the
SysDeregisterObjectClass() function, which is shown in Figure 70.

BOOL bSuccess;

bSuccess = WinDeregisterObjectClass(pszClassName); /* Deregister class */

Figure 69. Deregistering an Object Class

The WinDeregisterObjectClass() function accepts a string containing the object
class name. Once a successful call is made to the WinDeregisterObjectClass()
function, the object class is deleted from the system and is no longer available
to other objects or applications. However, the DLL that contains the code for the
object class is not automatically deleted from the system; if the Templates folder
is subsequently opened with this DLL still resident in a directory in the system’s
LIBPATH, a template for the class will still appear in the folder. In order to
prevent this, the DLL must be explicitly deleted from the system.

During processing of the WinDeregisterObjectClass() call, the system invokes the
object’s _wpclsUnlInitData method, to free any instance data or resources that
were obtained when the object class was created. See 7.4.1.2, “Class Data” on
page 123 for an example of this method.

Figure 70 shows a sample piece of REXX code that deregisters a Workplace
Object called pwFinanceFile.

/*

Call RxFuncadd ‘SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs'
Call SysLoadFuncs

'@echo off!

RetCode = SysDeregisterObjectClass(“PWFinanceFile");

if RetCode then
say 'Uninstall successfully completed for PWFinanceFile class'

say 'Re-boot NOW in order to release DLL'
'pause’

Figure 70. REXX Code to Deregister a WPS Object

Chapter 7. Workplace Shell and the System Object Mode! 147

7.4.5 Accessing
Object

Presentation Manager Resources From a Workplace Shell

A Workplace Shell object may access and make use of Presentation Manager
resources such as icons, bitmaps, strings and dialogs. These resources may
reside in the same DLL as the object’s code, or in another DLL. However, since
the resources must reside in @ DLL, the code that loads the resources must use
the DosLoadModule or DosGetModuleHandle() functions to obtain module
handles, as described in 8.3.2, “Loading Resources From a DLL" on page 200.
This is typically done by obtaining the module handles as part of the
_wpclsinitData method, and storing them either in global variables or in class
data until needed. Note that not all Workplace methods can be assumed to be
called in a PM thread. You may need to create your own PM thread to access
PM functions during Workplace processing.

7.5 Transient Objects

148 0s/2 v2.0 Volume 4

As mentioned earlier in this chapter, a Workplace Shell object differs from a
Presentation Manager window in that it is persistent; that is, it continues to exist
after a system restart. The exception to this rule is the transient object, which
only exists during the current execution of the system, and is destroyed when
the system is IPLed.

Transient objects are useful when a programmer wishes to represent and
display information such as records from a database. As each record is
retrieved, a transient object is created for that record and displayed in a folder
on the Workplace Shell desktop. These objects may be opened and manipulated
by the end user, but will cease to exist when the system is IPLed.

Figure 71 on page 149 shows an object window in a requester process which,
upon receiving a completed database query from a server process, invokes the
_wpcisNew method to create a new instance of a transient object class,
representing the record retrieved from the database.

REPLY *Reply; /* Reply data structure */

SOMAny *NewObj; /* Object pointer */
case WMP_REQUEST_COMPLETE:

Reply = (REPLY *)mpl; /* Get reply data */

ClassID = SOM_IdFromString(“CustClass®); /* Get class SOM ID */

TransClass = _somFindClass(SOMClassMgrObject, /* Get class pointer */

ClassID, /* Class SOM ID */

1,1); /* Major & minor version */

NewObj = _wpclsNew(TransClass, /* Create new object */

Reply->CustName, /* Title for object */

uey /* No setup string */

Reply->Folder, /* Location */

TRUE) ; /* Lock flag */

_SetCustInfo(NewObj, /* Set instance data */

Reply);
break;

Figure 71. Creating a Transient Object

The SOM pointer to the transient object class is obtained using the
SOMIdFromString() macro and the _somFindClass method (see 7.6,
“Communication Between Objects” for further information). This pointer is then
used to invoke the _wpclsNew method to create a new instance of the class.
Once the new instance is created, a method named _SetCustinfo, which is
defined by the transient object class, is invoked to insert the information
retrieved from the database into the object’s instance data.

Note that the technique shown in Figure 71 may only be used when an object is
created from within the Workplace Shell process. If an object must be created
from another process in the system, the WinCreateObject() function must be
used.

7.6 Communication Between Objects

Objects communicate with one another in order to convey events and initiate
actions on the part of other objects. Such communication is typically initiated in
one of two ways:

» By an object to convey information to another object with which it has an
application-defined relationship, such as a request. This is similar to the
application-initiated event discussed for Presentation Manager applications
in 0S/2 2.1 Volume 4: Writing Applications, Chapter 4 "The Presentation
Manager Application Model”.

» By the user directly manipulating the objects’ icons. For example, dropping
one icon over another icon initiates a conversation between the two objects.
This is similar to the user-initiated event discussed for Presentation Manager
applications in 0S/2 2.1 Volume 4: Writing Applications, Chapter 4 “The
Presentation Manager Application Model”.

Each of these types of communication is discussed in the following sections.

Chapter 7. Workplace Shell and the System Object Model 149

7.6.1 Application-Initiated Communication

150 0s/2 v2.0 volume 4

The application-initiated communication is somewhat more complex then the
user-initiated communication since the initiator of the communication typically
has knowledge of the type of object to which the communication is being passed,
and can usually initiate the communication by simply invoking a method in the
receiving object, in a similar manner to that discussed in 7.2.1.9, “Invoking
Another Object’s Methods” on page 113.

However, it is often necessary to determine the identity of the object for which a
method must be invoked. The Workplace Shell provides access to objects using
the HOBJECT and the OBJECTID and, at a base level, system object model
provides pointers to objects and SOM IDs. Each of these is described in the
following sections, and some discussion is included on converting between
identifiers.

7.6.1.1 HOBJECT

This identifier is the object handle, which is allocated by the Workplace Shell and
passed as the return value from the WinCreateObject() function. It is a
persistent object handle that remains allocated to an object for the duration of its
existence. Object handles persist across system restarts, and may therefore be
used by one object to refer to another object at any time.

An object handle can be determined from the object’s OBJECTID using the
WinQueryObject() function,

HOBJECT hObject; /* Object handle */
PSZ szObjectID = "<QBJECTID>"; /* OBJECTID string */
hObject = WinQueryObject (szObjectID); /* Query object handle */

Note that this function may be called from any process; its use is not restricted
to objects in the Workplace Shell process.

7.61.2 OBJECTID

The OBJECTID is provided by an application or object class as part of the setup
string parameter in the WinCreateObject() call, when an object is created. It is
persistent in the same way as an object handle, but provides a more meaningful
reference for an object, which can be used by other objects.

HOBJECT hObject; /* Object handle */

/***/

/* Create a folder on the desktop with an OBJECTID of MYFOLDER */

/***/

hObject = WinCreateObject ("WPFolder®, /* Class Name */
"My Folder®, /* Title */
®0BJECTID=<MYFOLDER>", /* Setup string */
"<iJP_DESKTOP>*", /* Location */
CO_REPLACEIFEXISTS); /* Create option */

/***/

/* Create a file object with an OBJECTID of MYFILE inside the folder */

/***/

hObject = WinCreateObject (*WPDataFile”, /* Class Name */
“My File®, /* Title */
“OBJECTID=<MYFILE>", /* Setup string */
“<MYFOLDER>", /* Location */
CO_REPLACEIFEXISTS); /* Create option */

/***i*********/

/* Create a shadow of the file object MYFILE on the desktop */

/***/

hObject = WinCreateObject ("WPShadow®, /* Class Name */
"My File®, /* Title */
“SHADOWID=<MYFILE>*, /* Setup string */
u<y/P_DESKTOP>*, /* Location */
CO_REPLACEIFEXISTS); /* Create option */

Figure 72. Referencing an Object Using OBJECTID

Note that the angle brackets (“ <" and “>") used within the OBJECTID are an
important part of the syntax.

Note also that the Workplace Shell provides a number of predefined OBJECTIDs
for system-defined objects. The first and third WinCreateObject() calls in

Figure 72 use the <WP_DESKTOP> OBJECTID to place the objects on the
desktop.

7.6.1.3 SOM Pointer

SOM pointers come in various forms, but can all be typecast to SOMAny *. From
a Workplace Shell perspective, a SOM pointer is the return value of the
_wpclsNew class method; this is the method used for creating objects within the
Workplace Shell process. An object’s public methods and data can be accessed
using the object’'s SOM pointer.

A SOM pointer for an object may be obtained from an object handle using the
_wpclsQueryObject method provided by the WPObject class, as follows:

SOMAny *Asomptr; /* SOM pointers */
SOMAny *Bsomptr;

Asomptr = _wpclsQueryObject (_WPObject, /* Query SOM pointer */
hObject); /* Object handle */

Chapter 7. Workplace Shell and the System Object Model 151

7.6.2 User-Initiat

152 0©0s/2 v2.0 volume 4

A SOM pointer for a class may be obtained from the SOM ID for that class, using
the _somFindClass method shown below:

Asomptr = _somFindClass (SOMClassMgrObject,
Asomld,
1,
1);
A SOM pointer for a class may be obtained from the SOM pointer for any object
within that class, using the _somGetClass method as follows:

Asomptr = _somGetClass(Bsomptr);

The SOM pointer is typically used to invoke class methods from an object in
another class. The _SOMDispatchL() method shown in Figure 45 on page 113
requires a SOM pointer as a parameter.

7614 SOMID

A SOM ID is simply a way of mapping a unique number to a string. This string
may represent the name of a method or class. SOM IDs are integers that are
managed by the Workplace Shell using the Atom Manager facility of Presentation
Manager. A SOM ID is obtained using the SOM_IdFromString() function as
follows:

somld Asomld;

Asomld = SOM_IdFromString(“WPFolder®);

The SOM ID is typically used to obtain a SOM pointer, which can then be used to
invoke a method.

ed Communication

The user-initiated communication is somewhat more complex then the
application-initiated communication, since the two objects may have no defined
relationship. A conversation must be initiated between the two, whereby each
determines the nature of the other, and whether a drop operation is valid at the
present time. If so, each object passes the information required to carry out the
requested action.

7.6.2.1 Dragging a Workplace Object over a Workplace Object
When the user begins to drag an object, this source object being dragged is
notified by the system, by invoking the object’s _wpFormatDragltem method.
This method is used to build a DRAGITEM structure, which is passed to any
object if this source object is dragged over it or dropped on it. The DRAGITEM
structure contains rendering information about the source object, which is used
by other receiving objects over which the source object is dragged, in order to
determine whether a drop operation is valid at that point.

Default information for the DRAGITEM structure is inserted by the default
processing provided by the parent class, but an object class may override the
method and include its own class-specific processing. The DRAGITEM structure
is nested within a DRAGINFO structure, which is passed to any receiver object
over which one or more source objects are dragged. In a situation where more
than one object is being dragged simultaneously, a separate DRAGITEM
structure is produced for each source object, and the entire set of structures is
combined using a single DRAGINFO structure.

When an object is dragged over an object the system invokes the _wpDragOver
method in the receiving object. This method receives a DRAGINFO structure,
which contains a variety of information including pointers to one or more
DRAGITEM structures. Note it is the responsibility of the receiver object’s
_wpDragOver method to return whether it can accept the drop, and what
operation to perform.

The receiver object has to check the operation code it receives from the source
object. If it is the default (DO_DEFAULT), it needs to return the operation to be
performed, for example DO_MOVE, or DO_COPY. Ifit is not the default, for
example a DO_MOVE, then the receiver object must determine if it can accept
that operation and return accordingly.

— Warning

if you have written Workplace Shell drag and drop code under OS/2 2.0, the
way the ancestor classes respond to the _wpDragOver method has changed
for 0S/2 2.1. Specifically the parent_wpDragOver method will return

DOR_NEVERDRORP if the ancestor classes cannot accept the source objects.

Consequently code must be written so that the parent_wpDragOver method is
called first, and if the resultant Drop Indicator is NOT DOR_NEVERDROP, then
the method may continue its processing, as shown in Figure 73 on page 154.

Figure 73 on page 154 shows another _wpDrop method override example for the
object called pwFinanceFile which is derived from the wpDataFile Workplace
Shell object. In this example we first invoke our objects parent _wpDragOver
method (that is the _wpDragOver method for wpDataFile) to see that it doesn’t
violate any of its rules. If the parent successfully tested one or more source
objects, our method determines how many source objects are being dragged
over the target object and then searches through each of the source objects()
and checks that they are all Workplace Objects. If any one of these is not a
Workplace Object then our object will reject all of them by returning
DOR_NEVERDRORP as the indicator and DO_UNKNOWN as the operation.
Otherwise our method makes sure it is being passed a DO_COPY, DO_MOVE or
a DO_DEFAULT operation. If it is not one of these, it will reject all of the source
objects. If it is one of these, DO_DROP and DO_COPY will be returned as the
result to the Workplace Shell.

If the receiver object wanted to allow only its tests and not any of the parents,
then the parent_wpDragOver method invocation can be removed, along with the
setting of the dropl/ndication and dropOperation from the returned mr program
variable, as well as the if statement that immediately follows.

If the _wpDragOver in Figure 73 on page 154 returns successful, and the user
drops the object, then the _wpDrop method is invoked for the receiver object.
The same checking that was performed in the _wpDragOver method needs to be
performed by the _wpDrop method because the receiving object may only
receive a _wpDrop method invocation, and not a _wpDragOver.

Chapter 7. Workplace Shell and the System Object Model 153

SOM_Scope MRESULT SOMLINK pwFinancefile_wpDragOver(PWFinanceFile *scmSelf,
HWND hwndCnr,)
PDRAGINFO pdrgInfo)

MRESULT mr;
USHORT dropOperation,

dropIndicator;
ULONG ulltemCount =0;
ULONG ulltem =0;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug (*PWFinanceFile”,"pwFinanceFile_wpDragOver®);

/* firstly will all the source object(s) pass my parents tests? */
mr = parent_wpDragOver (somSelf,hwndCnr,pdrgInfo);

dropIndicator = SHORT1FROMMR(mr);

dropOperation = SHORT2FROMMR(mr);

if (dropIndicator != DOR_NEVERDROP)

/* passed the parent's tests, so unless it fails this object's */

/* tests we will allow the DROP */
dropIndicator = DOR_DROP;
dropOperation = DO_COPY;

/* how many items are being dragged ? */
ulltemCount = DrgQueryDragitemCount (pdrgInfo);

/* search through the objects and abort if we find any that */
/* are not WorkPlace objects */

for (ulltem=0; ulltem<ulltemCount; ulltem++) {
PDRAGITEM pDragltem; /* temporary variable */
WPObject *ObjectBeingDragged=NULL; /* temporary variable */

/* get one of the one or more drag items that we are receiving */
pDragltem = DrgQueryDragitemPtr(pdrgInfo, ulltem);

/* test to see if it is a WorkPlace object, if it is use */
/* the OBJECT_FROM_PREC macro to get the object; otherwise */
/* ObjectBeingDragged will remain as a NULL as it was */
/* initialised when declared as NULL */

Figure 73 (Part 1 of 2). Dragging a Workplace Object

154 0572 v2.0 Volume 4

if (DrgVerifyRMF(pDragItem, "DRM_OBJECT®, NULL))
ObjectBeingDragged = OBJECT_FROM_PREC(pDragltem);
if (!0bjectBeingDragged) {
/* Object is NOT a WorkPlace object, so I reject all objects */
return (MRFROM2SHORT (DOR_NEVERDROP,DO_UNKNOWN));
} else {
if ((pdrgInfo->usOperation != DO_COPY) &&
(pdrgInfo->usOperation != DO_MOVE) &&
(pdrgInfo->usOperation != DO_DEFAULT)) {
/* this object only allows a move or copy */
return (MRFROM2SHORT (DOR_NODROP,DO_UNKNOUN)) ;
} /* endif */
} /* endif */

} /* endfor */
} /* endif */
/* all the test have been passed, so tell this to the WorkPlace Shell */
return (MRFROM2SHORT (dropIndicator, dropOperation));

}

Figure 73 (Part 2 of 2). Dragging a Workplace Object. In this figure we first see if the
source’s object passes this object’s parent’s wpDragOver tests, and then apply our own.

Note that DOR_NODRORP is returned when rejecting the operation, and
DOR_NEVERDROP is returned when rejecting the drop request. This is
important when a user drags one object onto another {DO_MOVE) and the
receiver object returns a DOR_NODROP, meaning it cannot accept the operation.
If the user still has the object over the receiver object and now hoids down the
<ctrl> key, then the operation is now a DO_COPY. If the receiver object had
previously returned a DOR_NODROP then the Workplace Shell will now reinvoke
the objects _wpDragOver method passing it the DO_COPY. This would not occur
if a DOR_NEVERDROP had been received.

How the receiver object responds with its implementation of the _wpDragOver,
really depends on:

* The type of object being implemented
* What is being dragged over it

* What the person who designs the object really wants to achieve

For example, in Figure 73 on page 154, simple decisions are made based on the
parent’s _wpDragOver method. Only Workplace Objects which want to perform
a DO_COPY, DO_MOVE or a DO_DEFAULT operation are acceptable source
objects.

The designer may want to restrict what the object will accépt still further. For
example, only allowing objects that are the same class as the pwFinanceFile
object, or are descended from it, as there are going to be specific data types that
have meaning to this object and no others can be accepted. Perhaps the
designer wishes to have financial account type entries in the pwFinanceFile
object and it would therefore not be meaningful to allow the dragging and
dropping of a picture or any other objects that could not be understood by this
specialized object.

Figure 74 on page 156 expands on Figure 73 on page 154 to now exclude any
objects that are not part of the pwFinanceFile class.

Chapter 7. Workplace Shell and the System Object Mode! 155

156 0s/2 v2.0 Volume 4

SOM_Scope MRESULT SOMLINK pwFinancefFile_wpDragOver(PWFinanceFile *somSelf,

HWND hwndCnr,
PDRAGINFO pdrgInfo)

MRESULT mr;
USHORT dropOperation,

droplndicator;
ULONG ulltemCount =03
ULONG ulltem =0;

CLASS PWFinanceFileClass;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug (“PWFinanceFile®,“pwFinanceFile_wpDragOvert);

/* create a dummy pwFinanceFile class for comparison with the source */

/* object(s) class */

PWFinanceFileClass = _somClassFromId(SOMClassMgrObject,
SOM_IdFromString (“PWFinanceFile"));

/* firstly will all the source object(s) pass my parents tests? */
mr = parent_wpDragOver(somSelf,hwndCnr,pdrgInfo);

dropIndicator = SHORT1FROMMR(mr);

dropOperation = SHORT2FROMMR(mr) ;

if (dropIndicator != DOR_NEVERDROP)

/* passed the parent's tests, so unless it fails this object's */

/* tests we will allow the DROP */
dropIndicator = DOR_DROP;
dropOperation = DO_COPY;

/* how many items are being dragged ? */
ulltemCount = DrgQueryDragitemCount(pdrgInfo);

/* search through the objects and abort if we find any that */
/* are not WorkPlace objects */

for (ulltem=0; ulltem<ulltemCount; ulltem++) {
PDRAGITEM pDragltem; /* temporary variable */
SOMAny *ObjectBeingDragged=NULL; /* temporary variable */

/* get one of the one or more drag items that we are receiving */
pDragitem = DrgQueryDragitemPtr(pdrgInfo, ulltem);

/* test to see if it is a WorkPlace object, if it is use */
/* the OBJECT_FROM_PREC macro to get the object; otherwise */
/* ObjectBeingDragged will remain as a NULL as it was */
/* initialised when declared as NULL */

if (DrgVerifyRMF(pDragItem, "DRM_OBJECT®, NULL))
ObjectBeingDragged = OBJECT_FROM_PREC(pDragltem);

Figure 74 (Part 1 of 2). Only Accepting pwFinanceFile Objects from Drag Operations

if (!'ObjectBeingDragged) {
/* Object is NOT a WorkPlace object, so I reject all objects */
return (MRFRCM2SHORT (DOR_NEVERDROP,DO_UNKNOWN));
} else {

if ((pdrgInfo->usOperation != DO_COPY) &&
(pdrgInfo->usOperation != DO_MOVE) &&
(pdrgInfo->usOperation != DO_DEFAULT))

/* this object only allows a move or copy */

return (MRFROM2SHORT (DOR_NODROP,DO_UNKNOUN)) ;

{

} else {
/* the object is all ok, but is it a pwFinanceFile object, */
/* or descended from one? */

if (!_somIsA(ObjectBeingDragged,PWFinanceFileClass)) {
/* reject all the objects because this one is not derived */
/* from PWFinanceFileClass */
return (MRFROM2SHORT (DOR_NEVERDROP,DO_UNKNOWN))

} /* endif */

} /* endif */
} /* endif +/
} /* endfor */
} /* endif +/

/* all the test have been passed, so tell this to the WorkPlace Shell */
return (MRFROM2SHORT (dropIndicator, dropOperation));

}

Figure 74 (Part 2 of 2). Only Accepting pwFinancefile Objects from Drag Operations

7.6.3 Dragging a Non-Workplace Object onto a Workplace Object

Dragging a non-Workplace Object onto a Workplace Object is handled in a
similar way to the dragging of a Workplace Object over a Workplace Object.
How the receiver object responds in its implementation of its _wpDragOver,
depends on the type of object being implemented, what is being dragged over it
and what the person who designed the object wants it to do. The difficulty is to
determine what the object should do for every possible type of hon-Workplace
Shell object (and Workplace Shell objects such as 08/2 files).

If the receiver object is capable of having a file object dropped on it, and a file
was dragged over it (the source is not a Workplace Object file object), the
receiver object could convert the source to a file object and then process it.

If the source of the drag operation cannot be converted to a file object, or is not
a file in the first place, then drag and drop participation is still possible if the
source object has a drag mechanism and operation that the target object can
support. 7.6.5, “Dropping an Object” on page 159 shows an example of a
_wpDrop method where an 0S/2 file is accepted and converted to a Workplace
Object.

Chapter 7. Workplace Shell and the System Object Model 157

7.6.4 Dragging a Workplace Object onto a Non-Workplace Object

In the same way a non-Workplace Object can participate in a drag and drop
conversation with a Workplace Object, a Workplace Object can can also
participate in a drag and drop conversation with a non-Workplace Object,
provided the Workplace Object provide support for the drag mechanisms and
operations that the receiver object supports.

A Workplace Object can support multiple mechanisms and operations as shown

in Figure 75.
MRESULT mr;
PDRAGTRANSFER pDragTransfer;
BOOL bSent0K;

/* allocate a drag transfer structure */
pDragTransfer = DrgAllocDragtransfer(1);

if (pDragTransfer) // was the allocate successful?

/* populate the drag structure */

pDragTransfer->hstrSelectedRMF =
DrgAddStrHandle (" (DRM_O0S2FILE,DRM_PRINT)x(DRF_TEXT),
<DRM_OBJECT,DRF_OBJECT>");

bSentOK = (BOOL)DrgSendTransferMsg(pDragInfo->hwndSource,
DM_RENDERPREPARE,
(MPARAM) pDragTransfer,
(MPARAM)NULL) ;

if (bSentOK)

{

} else {
mr = (MRESULT)RC_DROP_ERROR;

}

Figure 75. Multiple Rendering Methods

158 0s/2 v2.0 volume 4

7.6.5 Dropping an Object

I

| When a drop operation occurs, the receiver object is notified by the system

| which invokes the _wpDrop method for that object. This method accepts the

[DRAGINFO structure which may then be examined by the receiver object to

| determine the correct action to be taken. The rendering information contained in
| the DRAGITEM structure may be sufficient to allow the action to be completed, or
| the receiver object may initiate a conversation with the source object in order to
| gain sufficient information to complete the action.

| If the source object is not a Workplace Object but it is an 0S/2 file, then the

| receiver object must decide whether it can handle a file. If receiver handling is
| set then the receiver object can create a Workplace Object created to represent
| the OS/2 file. This Workplace Object can then issue methods. However, if you

| do not wish to create a Workplace Object to represent the file then the

| Presentation Manager Drag and Drop messages must be handled.

| If neither a Workplace Object, nor an 0S/2 File are being dropped, then the
| receiver object must decide what it wants to do.

| The rendering information provided in the DRAGITEM structure, and its use by a
| Presentation Manager or Workplace Shell object, is described in detail in 0S/2
| 2.1 Volume 4: Writing Applications, Chapter 8 "Direct Manipulation.”

Chapter 7. Workplace Shell and the System Object Modet 159

~
*

E METHGD: wpDrop PUBLIC

: PURPOSE: To receive a dropped object.

* INVOKED: By Workplace Shell, when another object has been dropped on
* this object.

Y

SOM_Scope MRESULT SOMLINK pwFinanceFile_wpDrop(PWFinanceFile *somSelf,
HWND hwndCnr,
PDRAGINFG pdrgInfo,
PDRAGITEM pdrgltem)

{

CHAR szNamefiCCHMAXPATH® ;

CHAR s2PathfiCCHMAXPATH" ;

ULGNG cbPath = CCHMAXPATH;

ULONG ulltemCount =0;

ULONG ulltem =0;

CLASS PWFinanceFileClass;

SOMAny *0bjectBeingDragged;

MRESULT mr;

USHORT dropOperation,
dropIndicator;

BOOL f1Prepared = TRUE; // Assume we do not need to do a prepare

BOOL f1Rendering = FALSE;

PDRAGTRANSFER pDragTransfer;

PWFinanceFileData *somThis = PWFinanceFileGetData(somSelf);
PWFinanceFileMethodDebug("PWFinanceFile®, "pwFinancefile_wpDrop®);

if ((strcmp(_szCurrentPassword, /* If FinanceFile is NOT locked */
_szPassword)) == 0)
{

/* make sure we are not dragging ourselves, and dropping onto ourselves */
if (pdrginfo->hwndSource != hwndCnr)
{

/* for each of the items being dropped, check to see that they are all */
/* derived from PWFinanceFileClass */

PWFinanceFileClass = _somClassFromld(SOMClassMgrGbject,
SOM_IdFromString("PWFinanceFile"));

Figure 76 (Part 1 of 5). Converting a Source Drag OS/2 File to a Workplace Object

160 0s/2 v2.0 volume 4

/* passed the parent's tests, so unless it fails this object's */
/* tests we will allow the DROP */
dropIndicator = DOR_DROP;

dropOperation = BO_COPY;

/* how many items are being dragged ? */
ulltemCount = DrgQueryDragitemCount (pdrgInfo);

/* search through the objects and abort if we find any that aren't derived */
/* frem PWFinanceFileClass */
somPrintf("Number of Items being dropped = %i.\n",ulltemCount);
for (ulltem=0; ulltem<ulltemCount; ulltem++) {

PDRAGITEM pDragltem; /* temporary variable*/

/* get one of the one or more drag items that we are receiving */
pDragltem = DrgQueryBragitemPtr(pdrgInfo, ulltem);

ObjectBeingDragged = queryObjectFromDraglitem(pDragitem);

if (ObjectBeingDragged) {
if (1_somIsA(ObjectBeingDragged, PWFinanceFileClass)) {
somPrintf("Object %i, is rejected for drop because it *,ulltem);
somPrintf("is not derived from PWFinanceFileClass\n*);
} else {
somPrintf("Object %i, is acceptable for dropping, by wpDROP\n“,ulltem);
} 7* endif */
} else {
somPrintf(“Object %i, is not a WPS object, can we render it\n”,ulltem);

/* start of code to render item */
if(DrgVerifyRMF (pDragItem, "DRM_OS2FILE", NULL))
{

somPrintf("An OS2FILE rendering method!\n");
/* Protocol allows the source object to propose a target name...
*

* I1f it does, then try to use it, if it does not, then

* try to use the source name, if present. Finally, just
* make up Our own name...

*/
if (pDragltem->hstrTargetName &3
DrgQueryStrNamelen(pDragltem->hstrTargetName))

DrgQueryStriName (pDragltem->hstrTargetName,
sizeof (szName),s2Name) ;
somPrintf ("Source proposes the target filename\n");

}

else

{
Figure 76 (Part 2 of 5). Converting a Source Drag 0S/2 File to a Workplace Object

Chapter 7. Workplace Shell and the System Object Model 161

if (pDragltem->hstrSourceName &%
DrgQueryStrNameLen(pDragltem->hstrSourceName))

DrgQueryStrName (pDragltem->hstrSourceName,
sizeof (szName) , szName) ;
somPrintf("Source proposes the source filename\n");

}

else

{
szNamefid® = '\0';
somPrintf("no source, nor target name\n“);

}
/* Allocate and initialize a drag transfer structure
*

somPrintf(“allocating pDragtransfer structure\n®);
pDragTransfer = DrgAllocDragtransfer(1);

if (pDragTransfer)
{

somPrintf ("pDragtransfer structure allocated ok\n");
/* create a WPDataFile object

*
/
ObjectBeingDragged = _wpclsNew(_WPDataFile,
szName,
NULL,
_wpc1sQueryFolder{_WPDataFile, “<WP_NOWHERE>", TRUE),
TRUE);

if (ObjectBeingDragged)

{
somPrintf("ObjectBeingDragged has been successfully allocated\n");
_wpQueryReaIName (ObjectBeingDragged, szPath, &cbPath, TRUE) ;
somPrintf("The ObjectBeingDragged filename is %s\n*,szPath);

/* fi1l in the struct now
*/

pDragTransfer->ch = sizeof (DRAGTRANSFER);
pDragTransfer->hwndClient = hwndCnr;
pDragTransfer->pditem = pDragltem;

pDragTransfer-shstrSelectedRMF =
OrgAddStrHandle (“<DRM_OS2F ILE, DRF_UNKNOWN>") ;
pDragTransfer->hstrRenderToNeme = DrgAddStrHandle(szPath);
pDragTransfer->ulTargetInfo = 0L;
pOragTransfer->usQperation = pdrgInfo->usQperation;
pDragTransfer->fsReply = 0;

Figure 76 (Part 3 of 5). Converting a Source Drag 08/2 File to a Workplace Object

162 0s/2 v2.0 Volume 4

/* Now, if the source wants prepared, do it...
*

if (pDragltem->fsControl & DC_PREPARE)

{

somPrintf("Source wants prepared\n");
fl1Prepared = (BOOL)DrgSendTransferMsg(pdrginfo->hwndSource,
DM_RENDERPREPARE,
(MPARAM) pDragTransfer,
(MPARAM) NULL)
} else {
somPrintf("Source does not want prepared\n”);

}
/* See if either we did not need to send a RENDERPREPARE, or
* we have successfully done se...

*/
if (f1Prepared)

somPrintf(“not prepared\n”);
/* Tell the source object where to put the file.
*

flRendering = (BOOL)DrgSendTransferMsg(pDragItem->hwndItem,
DM_RENDER,
(MPARAM) pDragTransfer,
(MPARAM)NULL) ;

if (1fIRerdering)

/* The partner object did not render, so delete

* the object we just created.

* or we could add code here to directly open the source as
* a file and work with it, or what ever we like.

*/

_wpFree(ObjectBeingDragged);

somPrintf(“not rendering, we are deleting the object we just created\n");
} else {

somPrintf(“rendering\n*);

}

else

{
Figure 76 (Part 4 of 5). Converting a Source Drag OS/2 File to a8 Workplace Object

Chapter 7. Workplace Shell and the System Object Model 163

somPrintf("Our partner wanted us to send him a prepare, and");
somPrintf("now has changed his mind about things..., ABORT\n");

/* Our partner wanted us to send him a prepare, and
* now has changed his mind about things...
* We cannot even send him an end conversation, as

* we do not know that the hwnd is any gecod.
*

* For now, we will treat this as an error,
*/

mr = (MRESULT)RC_DROP_ERROR;

} else {
somPrintf("ObjectBeingDragged has NOT been successfully allocated\n");

¥f (f1Rendering)
¢ mr = RC_DROP_RENDERING;
else
DrgDeleteStrHandle(pDragTransfer->hstrRenderToName);

DrgFreeBragtransfer(pDragTransfer);

}
} else {
somPrintf("Not an OS2FILE rendering method\n");

} /* endif */

} /* for %/
} else {
somPrintf("we are trying to drop onto ourselves, not ‘allowed\n®);
} /* endif */
} else {
somPrintf("LOCKED, drop is disallowed\n");
} /* endif */

return((MRESULT) NULL);
}

Figure 76 (Part 5 of 5). Converting a Source Drag OS/2 File to a Workplace Object. A
partial sample _wpDrop accepting a non-Workplace Object, specifically an 0S/2 file.

7.7 Building a Workplace Shell Application

164 0s/2 V2.0 Volume 4

As already mentioned, an application that exploits the Workplace Shell consists
of a number of objects on the desktop or in folders, which interact with one
another to carry out operations as requested by the user. The implementation of
the Workplace Shell under 0S/2 V2.0 causes all Workplace Shell objects to run
in a single process, under the control of the Workplace Shell itself. It is
therefore possible for an error in a Workplace Shell to terminate the Workplace
Shell process, and all objects currently open under the control of that process.
While the Workplace Shell automatically restarts itself and its open objects, it is
recommended for reasons of performance that applications carrying out lengthy
processing such as database or remote system access should be implemented
using multiple processes. Other processes in the system are not affected if the
Workplace Shell process terminates, and become available to the user as soon
as the shell restarts itself, without the need to reload application code,
reinitialize communications links, etc.

For example, a database query application that searches a database for
customer records and displays these in a Workplace Shell folder may be
composed of two processes, each with mulitiple threads, as shown in Figure 77
on page 165.

WPS Process
WPS Thread New Thread Second Process
Server

Client
D

Perform
Actual
Searches

Figure 77. Workplace Shell Application Structure

The requester portion of the application, which allows the user to enter a query,
and which displays the results on the screen, is implemented as a Workplace
Shell object, running under the control of the Workplace Shell process. The
primary thread in this process carries out the interaction with the end user, while
a secondary thread is created to handle communication between processes.

The second process acts as a database server, and is created by the first
process when the application is started. The server process has a primary
thread that accepts requests from the requester in the Workplace Shell process,
and a number of secondary threads that actually perform the database access.

Chapter 7. Workplace Shell and the System Object Model 165

If an errant object or application were to cause the Workplace Shell to terminate,
the requester threads would be terminated. However, the server process would
not be terminated, and communication with the requester could be)
re-established simply by having the requester initiate one of the standard
interprocess communication mechanisms described in 0S/2 2.1 Volume 4:
Writing Applications, Chapter 10, “Multitasking Considerations”.

7.8 Debugging

SOM provides several facilities to aid in debugging SOM and WPS applications.
These facilities are designed around a replaceable procedure called
SOMOutCharRoutine, which normally writes output to the stdout logical device.

It is not practical to capture stdout and the information that SOM and WPS is
providing when debugging WPS objects, because objects are implemented as
DLLs. Instead the object must replace the SOMOutCharRoutine to send the
output to a place where you can easily deal with it.

Additionally the 0S/2 Programmer’s Toolkit provides an interactive debugging
tool, the Kernel Debugger. For further information on using the Toolkit Kernel
Debugger to debug DLLs, please refer to the 0S/2 Programmer’s Toolkit.

7.8.1 Replacing SOM’s SOMOutCharRoutine

Figure 78 on page 167 shows a simple replacement procedure that sends the
output to the COM1: serial port. To actually replace the SOMCharOutRoutine it
is necessary to add a line of code to the initialization portion of your object. This
is shown in Figure 79 on page 167. Note that it is best to add a command to
your STARTUP.CMD file to set up the COM1: serial port. A sample portion of a
STARTUP.CMD is shown in Figure 80 on page 168.

You can now use another computer to view the information that is generated by
the SOM runtime as you manipulate your object.

The additional computer should be connected from its serial port, normally
COM1:, to the first computer by means of a NULL modem cable. This is a
specialized serial cable where the transmit and receive conductors are crossed
over to allow the transmission from one serial port to be received by the other.

It is then a matter of registering your object and running an ASCII terminal
emulator program on the additional computer to view the information.

166 0s/2 v2.0 Volume 4

.

#

Passthru a debug message box to the .ih file
(for inclusion in the .c file)

#

passthru: C.ih, after;

#include <wppgm.h>

#include <wppgmf.h>

#include <stdio.h>

// force SOM to output all debug information to the Communications Port 1
int myReplacementForSOMOutCharRoutine (char c)

{

static FILE *fdebug = NULL;

if (!fdebug) {
fdebug = fopen{“COM1","w");

if (!fdebug) return 0; /* failed to open COM1: */

fputc(c, fdebug);
fflush(fdebug);

return 1;

endpassthru;

Figure 78. Sample .CSC File Definition for Overriding the SOMOutCharRoutine

.

/* Set up the debug and tracing ... */

/* Produce a message each time a method is entered */
SOM_Tracelevel=2;

/* Replace the default routine with this object's new one */
SOMOutCharRoutine = myReplacementForSOMOutCharRoutine;

.

Figure 79. Sample .C File Definition for Overriding the SOMOutCharRoutine

Chapter 7. Workplace Shell and the System Object Model

167

/* My STARTUP.CMD */
MODE COM1 9600,n,8,1
/* and whatever else I like to have in here */

.

exit ©

Figure 80. Sample STARTUP.CMD File Definition

7.8.2 A Sample ASCIl Terminal Emulator for Debugging Use

The PM terminal program that can be found in the Productivity folder can be
used to receive and display the information from the SOM runtime about the
computer to be debugged. The following steps detail how to create and use a
custom emulator session.

7.8.21 Creating a Custom Emulator Session
The following steps detail how to create a PM Terminal session suitable for
remote debugging use.

Open 0S/2 System and select the Productivity Folder

. Select PM Terminal

. From the Session pulidown, select Add

Enter a comment, for example “Remote SOM Debug Session”

You should have the default settings as shown in Table 4, on the Add
Session panel

S S

6. Select the ADD pushbutton to add the new session

Table 4. Parameters and Settings for the Remote Terminal
Parameter Setting

Terminal emulation profile ANSI 3.64
Connection path profile ACDI - Hardwire
System environment profile Default Environment
File transfer profile Character

7.8.2.2 Using the Emulator Session

After you have created an instance of your object, start the session you created
above. If the connection is broken at any time, for example you closed and
reopened the object, then from the File pulldown select Connect.

7.8.3 SOM Provided Macros for Debugging

168 0©s/2 v2.0 Volume 4

System Object Model provides a number of macros for the purposes of
debugging objects. These are:

SOM_TestC Evalutes a Boolean expression. If it is true, then execution
continues; otherwise SOM_Error is invoked.

SOM_WarnMsg Writes out a warning message depending on the setting of
the SOM_WarnLevel variable.

SOM_Assert Evaluates a Boolean assertion. If this fails then SOM_Error

is invoked with a user supplied error code.

SOM_Expect Evaluates a Boolean assertion. If this fails then
SOM_Warn is invoked.

somPrintf SOM’s implementation of the “C” printf function.

For more detailed information please refer to System Object Model Guide and
Reference.

7.9 Sample Code and Application

7.9.1 pwFolder

The sample Workplace Objects used as examples in this chapter are included on
a diskette supplied with this document, as well as the main program listings
appearing in Appendix E, “Source Code for the PWFolder and PWFinanceFile
objects” on page 347. The two main code examples are pwFolder and
pwFinanceFile.

The pwFolder is a Workplace Object that has been sub-classed from the
Workplace Folder class and adds a lock feature. This lock feature prevents the
user from accessing the folder when it is in the locked state.

The pwFolder demonstrates adding a method to a context menu and writing your
own methods, as well as drag and drop processing.

7.9.2 pwFinanceFile

The pwFinanceFile is a Workplace Object that has been subclassed from the
wpDataFile class and also adds a lock feature, in a very similar manner to the
pwFolder.
The pwFinanceFile demonstrates the following:

+ Adding a method to a context menu

+ Filtering menu items in a context menu

* Writing your own methods

» Drag and drop progressing, including:

— Only accepting source objects which are descended from the same
pwFinanceFile class

— Accepting an OS/2 file as a source, and converting it to a Workplace
Object

— Multiple rendering methods
¢ Adding an object view

« Determining the file name of a wpDataFile object

7.10 Summary

The 0S/2 Version 2.0 Workplace Shell provides an object-oriented user interface
to the operating system, and provides an object-oriented application layer on top
of Presentation Manager, through its implementation of the system object model.
An application that exploits the facilities of the Workplace Shell consists of a
number of objects, which are manipulated on the Workplace Shell desktop by the
user, in order 1o carry out the required tasks.

Chapter 7. Workplace Shell and the System Object Model 169

170 0s/2 v2.0 Volume 4

Workplace Shell objects conform to “standard” object-oriented principles in that
they are grouped into object classes, have instance data, and contain methods
which perform the required tasks and operate upon the instance data.
Workplace Shell object classes may inherit data and methods from their parent
class, in accordance with the object-oriented concept of inheritance. A class
may add additional data items or new methods to perform actions not handled
by its parent class, or may override existing methods to handle actions in a
different manner.

An object class is defined using a class definition file, which defines the parent
hierarchy for the object, its data items and its methods. The class definition file
is used as input to the SOM Precompiler, which uses the file to produce a
number of source code files and header files. The source code is edited by the
programmer to add the application logic for each method. It is then compiled
using a normal C compiler, and link edited to produce a dynamic link library that
implements the object class. An object class may make use of operating system
and Presentation Manager resources during its execution.

Workplace Shell objects behave in a similar manner to windows under
Presentation Manager; object classes are registered to the Workplace Shell, and
individual instances of an object class are created, opened, closed and
destroyed by the user or by other objects in the system. The major difference
between a window under Presentation Manager and an object under the
Workplace Shell is that Workplace Shell objects are persistent; that is, they exist
for longer than a single application execution. Once created, a Workplace Shell
object remains in existence until it is explicitly destroyed.

Chapter 8. Direct Manipulation

Direct manipulation of icons on the Presentation Manager desktop in order to
carry out processing tasks has been possible since the first release of
Presentation Manager in OS/2 Version 1.1, but only in Version 1.3 was a
standard method introduced for implementing such function. Previously, each
programmer needed to devise a set of protocols, and write code in every
application to handle all the mouse messages and interaction between windows
that may have been needed.

0S/2 Version 1.3 introduced some standards for coding direct manipulation
operations, in the form of new message classes (the DM_xxxx messages), and
standard protocols known as rendering mechanisms, which are used to
communicate required information for commonly used direct manipulation
operations. This support is continued in 08/2 V2.0, and is of increased
importance since the Workplace Shell itself makes extensive use of direct
manipulation. Applications that use direct manipulation are therefore more likely
to be written under Version 2.0, either to interact with one another or to make
use of Workplace Shell facilities such as printer objects or the shredder.

This chapter discusses the use of direct manipulation in a program, covering the
major messages and data structures involved, and the use of the standard
rendering mechanisms. Examples of the use of these messages and data
structures are given, along with guidance on implementing a private rendering
mechanism to meet the needs of a particular application.

8.1.1 Direct Manipulation Basics
It might appear that dragging an icon from one window and dropping it onto
another is straightforward, but on closer consideration it proves to be somewhat
more complex. Consider the simple action of dragging an icon representing a
customer from one container window to another, the intention being to move the
customer from one branch of the business (represented by the first container) to
another {the second container window). The following steps are required:

1. The program owning the first container (hereafter called the source program)
must determine which customer the user wishes to move (hereafter known
as the dragitem).

2. The source program must decide on an icon or bitmap to represent the
customer as the user drags the customer around the screen.

3. The source program must package a number of items of information to travel
with the icon, so that potential target windows may decide whether or not
they will allow the item to be dropped on them.

4. As the icon passes outside the container to other areas, its appearance must
be constantly updated to indicate to the user whether a drop is allowed.

5. When the icon reaches a potential target window, the program owning the
target window (hereafter known as the target) must access the information
about the dragged item to decide whether it will allow the item to be
dropped. At this point, the rendering mechanism used to convey this
information becomes significant, since both the source and target must be
able to understand the mechanism.

® Copyright I1BM Corp. 1993 17

6. Once a drop has occurred, the target window must decide the form in which
it wishes to receive the dropped object (if more than one form is supported
by both source and target), and inform the source program accordingly.

7. The source program must make the data representing the customer
available to the target program. Since the source and target programs may
not necessarily run in the same process, this may not be trivial. Again, the
rendering mechanism to be used becomes significant.

8. The source must inform the target that the data is ready.
9. The target must access and retrieve the data.

10. The source must delete its own copy (since the operation is a “move”
operation).

11. The target must display the new customer object in its own container
window, in the location at which it was dropped.

While this appears extremely complex, much of the necessary work is done by
Presentation Manager for a Presentation Manager application; for a Workplace
Shell object, even more of the necessary function is automated by the Workplace
Shell. The remainder of this chapter will describe the steps necessary for a
Presentation Manager application and/or a Workplace Shell object to exploit
drag/drop functionality.

8.1.2 Significant Events
There are a number of significant events that occur during a direct manipulation
operation, and which must be communicated to the source and/or target of the
operation. These are as follows:

* Initiation of the drag operation, which must be communicated to the source
so that it can initialize data structures with information relating to the
dragitem.

* Dragging the object over a potential target, which must be communicated to
the target so that the target can determine whether a drop operation is valid.

* Dropping the object over a target, which must be communicated to the target
so that it may decide the form in which it wishes the dragitem data to be
passed, and allocate any necessary resources to receive the data.

* Transferring the information between the source and the target to complete
the overall direct manipulation sequence.

Presentation Manager carries out much of the required notification of drag/drop
events using messages, which are passed to the source or target windows as
necessary during the drag/drop operation. The required messages are
described in the 0S/2 2.0 Programming Guide Volume Il and their use is
discussed in 8.3, “Using Direct Manipulation” on page 177.

In certain cases, the behavior of a Workplace Shell object participating in a
direct manipulation operation varies somewhat from that of a Presentation
Manager window. This is due to the fact that the Workplace Shell implements
much of the required message handling itself, and directly invokes the
appropriate methods in the object. Where the behavior of a Workplace Shell
object differs from that of a Presentation Manager window, this is noted in the
text.

172 0s/2 V2.0 Volume 4

8.1.3 Rendering Mechanisms

Rendering mechanisms are the means by which the source and target of a
drag/drop operation determine the data type of the dragitem and the format of
the information to be exchanged.

While the precise sequence of events that takes place after a drop has occurred
is dependent upon the application, a number of standard rendering mechanisms
have been defined to enable diverse applications to engage in direct
manipulation with one another. These standard rendering mechanisms are used
by various components of 0S/2, as well as being available for use by
applications.

Three standard rendering mechanisms are provided by Presentation Manager
and are documented in the OS/2 2.0 Programming Guide Volume Il

DRM_PRINT This rendering mechanism is designed for applications that wish
to provide printing facilities via direct manipulation, by allowing
the user to drag items from the application and drop them on
one of the Workplace Shell printer objects.

It is a very simple mechanism. When an object is dropped on a
printer object, the printer object sends a DM_PRINTOBJECT
message, one parameter of which gives the name of the print
queue represented by that printer object. It is then the
responsibility of the source window to print the relevant data to
the specified queue.

Note that in 0S/2 Version 1.3, the DM_PRINT message was used
for this purpose, rather than the DM_PRINTOBJECT message.

DRM_OS2FILE This rendering mechanism is intended for applications that wish
to aliow the dragging and dropping of file objects between
windows or folders on the desktop. Such applications include
the File Manager in OS/2 Version 1.3, or the Drives objects in
0s/2 v2.0.

With this mechanism, all information about the source file may
be contained in the fields of the DRAGITEM structure, so it is not
necessary for a protracted conversation to take place between
source and target windows. In the simplest case, the target can
complete the operation using only this information with no
further involvement from the source window, though this
rendering mechanism does allow for more interaction between
the two windows should this be useful.

DRM_DDE The DDE rendering mechanism is intended for applications in
which drag/drop actions will be used to set up DDE links
between windows. The DDE then proceeds according to
standard DDE protocols.

Further rendering mechanisms may be devised and documented for use by a
particular user’s applications. The creation and use of rendering mechanisms is
discussed in 8.4, “Using Rendering Mechanisms” on page 187.

Chapter 8. Direct Maniputation 173

8.2 Data Structures Used in Drag/Drop

Three structures contain the data that travels with an item while it is being
dragged; these are the DRAGINFQO, DRAGITEM and DRAGIMAGE structures. A
further structure, the DRAGTRANSFER structure, is used to transfer information
between source and target windows after a drop has occurred.

Details of the fields within these structures can be found in the IBM 0S/2 Version
2.0 Presentation Manager Reference, and full descriptions will not be given here.
However, the following sections describe in general terms the kind of data the
structures contain, and particularly certain critical fields.

8.21 The DRAGINFO Structure

174 0©0s/2 V2.0 Volume 4

The DRAGINFO structure contains information about the overall drag operation,
which may consist of one or more dragitems. Information in the DRAGINFO
structure determines the source and type of the drag operation, and provides
pointers to one or more DRAGITEM structures which identify individual
dragitems.

The handle of the source window for the drag operation is contained in the
DRAGINFO structure. This handle enables a target window which receives the
structure to initiate a conversation with the source window if necessary, in order
to exchange information.

The other item of note in the DRAGINFO structure is a field which identifies the
type of drag operation that the user has selected. For example, a value of
DO_COPY means that the user is holding the Ctrl key down, which by convention
means that a copy operation is required. The DO_DEFAULT value means that a
default drag operation is to be used because the user is not holding down any
modifier key.

The DRAGINFO structure contains a counter that specifies how many dragitems
are involved in the current operation. This counter is then used to access an
array of pointers, also contained within the DRAGINFO structure, which reference
individual DRAGITEM structures for each dragitem.

Note that the DRAGINFO structure must be accessible not only to the source
window that sets it up in the first place, but also to any potential target windows.
Since these windows may not be owned by the same process, the DRAGINFO
structure must be allocated in shared memory. In order that the structure be
correctly allocated and easily accessible by the system in order to provide it to
potential target windows, 0S/2 allocates the DRAGINFO structure on the
application’s behalf, using the DrgAllocDraginfo() function. This function is called
by the source window when it is notified of a drag operation by receiving a
WM_BEGINDRAG message.

For Workplace Shell objects, the Workplace Shell handles the allocation and
initialization of the DRAGINFO structure. The object itself is not required to take
any action with respect to this structure.

8.2.2 The DRAGITEM Structure

The DRAGITEM structure contains information about an individual dragitem. A
drag operation may include one or more dragitems, and a separate DRAGITEM
structure is used for each. The number of dragitems, and an array of pointers to
the DRAGITEM structures, is contained in the DRAGINFO structure. In
conjunction with the information contained in the DRAGINFO structure, the
DRAGITEM structure provides the information required by a potential or actual
target window, to determine whether a drop operation is valid for the dragitem.

Several of the fields in the DRAGITEM structure are defined as being of type
HSTR. These fields refer to ordinary null-terminated character strings that are
given string handles by Presentation Manager when the DrgAddStrHandle{)
function is called. It is the string handles that are stored in the DRAGITEM
structure; the strings themselves are stored by Presentation Manager and may
be accessed by any other process that has access to the string handle, using the
DrgQueryStrName() function.

For Presentation Manager windows, the DRAGITEM structure is normally
allocated by the source of the drag/drop operation as a local variable, since it
only persists for the duration of the operation. For Workplace Shell objects, the
structure is allocated by the Workplace Shell and a pointer to it is passed to the
object by the Workplace Shell when it invokes the object’s _wpFormatDragitem
method when the drag is initiated.

A number of fields in the DRAGITEM structure are of primary importance; these
fields are described in the following sections.

8.2.2.1 ulltemlID

This field contains a value provided by the source window, which uniquely
identifies the dragitem. For example, the value might be a listbox index value, a
customer number, or any other value that is unique and meaningful to the
source window. The reason for having this identification is that later in the
drag/drop processing, the target window may need to ask the source window for
more information about the dragged item. The identifier can then be used to
identify the item concerned.

8.2.2.2 hstrType and hstrRMF

These values refer to character strings containing details of the type of data
represented by the dragitem, and the rendering mechanisms and formats that
the source is able support for the item. The types correspond to the file type
extended attribute, and are identified by names of the form DRT_xxxx; for
example, DRT_TEXT for plain text, or DRT_BITMAP for bitmap data.

The rendering mechanism is specified in the hstrRMF field, and may refer to any
of the standard mechanisms described in 8.1.3, “Rendering Mechanisms” on
page 173, identified by the names DRM_PRINT, DRM_DISCARD, DRM_OS2FILE
and DRM_DDE, or to any user-defined rendering mechanism for which a similar
name should be defined. More than one rendering mechanism can be specified;
for example, a program that allows the dragging of files may allow the file to be
moved or copied to another directory, or to be printed by being dropped on a
printer object. In this case the program would include the names of both the
Print and OS/2 File rendering mechanisms in its hstrRMF string, allowing the
target window to decide which is more suitable.

Chapter 8. Direct Manipulation 175

The format specifications, which are also contained in the hstrRMF field, inform a
target window of the data formats supported by the dragitem for each of its
supported rendering mechanisms. Data format names use the convention
DRF_xxxX.

To illustrate the use of format specifications and rendering mechanisms,
consider a spreadsheet program that allows the user to drag an icon
representing a particular spreadsheet; the user may choose to drag the data into
a word-processor, into another spreadsheet, or onto a printer object for printing.
For dragging the file to another spreadsheet or to a word-processing document,
the DRM_OS2FILE rendering mechanism is appropriate but for dragging to a
printer object, the DRM_PRINT mechanism is required. In the case where the
target is the printer or the word-processing document, clearly the required
format for the data is text, but in the case of a drag to another spreadsheet it
would be more convenient to have the numerical data and the cell relationships
transferred too, so a different data format should be used, perhaps SYLK.

The dragitem therefore needs to indicate that it supports the following rendering
mechanism/data format combinations:

« DRM_OS2FILE with DRF_TEXT
« DRM_PRINT with DRF_TEXT
* DRM_OS2FILE with DRF_SYLK.

The hstrRMF string provides a syntax for defining this in a fairly straightforward
way. Complete details are given in the 0S/2 2.0 Programming Guide Volume Il
but, for the above example, the hstrRMF string is as follows:

<DRM_0S2FILE,DRF_TEXT>,<DRM_PRINT,DRF_TEXT>,<DRM_0S2FILE,DRF_SYLK>
This can be expressed slightly more concisely as:
(DRM_OS2FILE,DRM_PRINT)x (DRF_TEXT) ,<DRM_0S2FILE,DRF_SYLK>

Here the first two bracketed items, connected with an “x,” indicate that all
possible pairs made up of one from the first bracket and one from the second,
are implied. This notation is very useful in more complex examples, where it
can save the programmer from having to enumerate all possible combinations in
the string.

8.2.2.3 hstrContainerName, hstrSourceName, hstrTargetName
The meaning of these three fields depends on the rendering mechanism to be
used; with some rendering mechanisms, certain fields are not needed. They
apply most directly to the DRM_OS2FILE mechanism where they are used to
define the source directory, source file name, and a suggested target filename
(which may be overridden by the target window if it so chooses).

8.2.3 The DRAGIMAGE Structure

This structure, as its name suggests, contains information about the actual
image to be displayed on the screen as the user performs the drag operation. In
this structure, the source window specifies the icon or bitmap to be used,
whether it is to be rescaled, and the coordinates of the hot spot.

176 0s/2 v2.0 Volume 4

8.2.4 The DRAGTRANSFER Structure

This structure is passed with a DM_RENDER message, from the target to the
source window, after a drop has occurred. It allows the target window to inform
the source of several important things. For example, where the source supports
several different rendering mechanisms and/or formats, the target can specify
which of these it wishes to use. Similarly, if the source supports both copy and
move operations, the target can specify which it will use by means of the
usOperation field of this structure.

Another important field is hstrRenderToName. This tells the source window
where to place the data, so that the target will know where to find it. The
precise interpretation of this depends on the rendering mechanism; for example,
in the case of the DRM_OS2FILE rendering mechanism, it contains the fully
qualified name that the file is to be given at its destination. Where the transfer
of information between source and target window is a simple memory transfer,
this field may be used to contain the name of a named shared memory object
into which the source is to place the data.

8.3 Using Direct Manipulation

The following sections use an example to illustrate the way in which direct
manipulation can be used within a Presentation Manager application or a
Workplace Shell object. The example consists of a Customer program which
reads and displays customer details. Each customer is displayed as an object in
a container window.

The other component of the example is a Telephone program, which accepts
customer information from the Customer program via drag/drop, and
automatically dials the customer’s telephone number. The Telephone program
communicates with the Customer program using a private rendering mechanism
defined by the application. This rendering mechanism uses shared memory, and
is identified by the name DRM_SHAREMEM. The rendering mechanism is
explained in detail in 8.4.2, “Implementing a Private Rendering Mechanism” on
page 189.

The example uses Presentation Manager windows as both the source and target
for the drag/drop operation, since this enables a description of the complete set
of steps required to complete the operation. For Workplace Shell objects,
certain steps are handled automatically by the Workplace Shell itself, and a
Workplace Shell object class is therefore not required to carry out these steps.
Where a particular step is automated by the Workplace Shell, this is noted in the
discussion.

8.3.1 Initiating a Drag Operation
A drag operation is initiated by the source window or object. When the user
starts the drag operation by pressing and holding down mouse button 2,
Presentation Manager passes a WM_BEGINDRAG message to the window or
object that is currently under the mouse pointer. In the case of a Presentation
Manager window, the window procedure for that window may process the
WM_BEGINDRAG message in order to initialize the DRAGINFO and DRAGITEM
structures, and start the drag operation. A Workplace Shell object is notified of a
drag initiation by the Workplace Shell itself, which invokes the object’s
_wpFormatDragltem method.

Chapter 8. Direct Manipulation 177

The initialization of a drag operation from a container window is shown in
Figure 81 on page 178.

178 0©5/2 V2.0 Volume 4

PCONTRECORD pCRec;
PCNRDRAGINIT pcnrinit;
PDRAGINFO pDInfo;
DRAGITEM DItem;
DRAGIMAGE DImage;

APIRET re;

case WM_CONTROL:
switch (SHORT2FROMMP(mpl))

case CN_INITDRAG:

penrlnit = /* Get container data */
(PCNRDRAGINIT)mp2;

pCRec = (PCONTRECORD)pcnriInit->pRecord;

if (pCRec == NULL) /* If no item selected */
return(0); /* Return */

pDInfo = DrgAllocDraginfo(1); /* Allocate DRAGINFO */

DItem.hwndItem

Ditem.ulItemID

DItem.hstrType
DrgAddStrHandle ("DRT_CUSTOMER");

DItem.hstrRMF =
DrgAddStrHandle (" (DRM_SHAREMEM,DRM_PRINT)x (DRF_TEXT)*");

DItem.fsControl = 0;

DItem.fsSupportedOps = DO_COPYABLE | DO_MOVEABLE;

h¥ind; /* Initialize DRAGITEM */
(ULONG) pCRec;

rc = DrgSetDragltem(pDInfo, /* Set item in DRAGINFO */

&DItem, /* Pointer to DRAGITEM */
sizeof(DItem), /* Size of DRAGITEM */
0); /* Index of DRAGITEM */
DImage.cb = sizeof (DRAGIMAGE); /* Initialize DRAGIMAGE */
DImage.cptl = 03 /* Not a polygon */
DImage.hImage = hPostlcon; /* lcon handle for drag */
DImage.f1 = DRG_ICON; /* Dragging an icon */
DImage.cx0ffset = 0; /* No hotspot */
DImage.cyOffset = 0;
hDrop = DrgDrag(hWnd, /* Initiate drag */
pDInfo, /* DRAGINFO structure */

(PDRAGIMAGE) &DImage, /* DRAGIMAGE structure */

1, /* Only one DRAGIMAGE */
VK_ENDDRAG, /* End of drag indicator */
NULL) /* Reserved */
DrgFreeDragInfo(pDInfo); /* Free DRAGINFO struct */

break;

Figure 81. Drag Initiation From a Container Window. Another window class would
perform these operations in response to a WM_BEGINDRAG message, rather than a
WM_CONTROL message with the CN_INITDRAG indicator.

Chapter 8. Direct Manipulation 179

180 ©s/2 v2.0 Volume 4

The code shown in Figure 81 would form part of the window procedure for the
owner of the container control, since it is this window that would receive the
WM_CONTROL message from the container.

8.3.1.1 Initializing Data Structures

When a WM_CONTROL message is received from a container window, a pointer
to a CNRDRAGINIT structure is passed in the second parameter to the
WM_CONTROL message. This structure contains a pointer to the item within the
container that the user is attempting to drag. If this pointer is NULL, the user
has attempted a drag operation while no item in the container was selected. In
the current example, the drag operation is ignored and control is immediately
returned to Presentation Manager.

The source window then allocates a DRAGINFO structure using the
DrgAllocDraginfo() function. The DRAGITEM structure is initialized with the
appropriate values, and its pointer is set in the DRAGINFO structure using the
DrgSetDragltem() function. All interaction with the DRAGINFO structure is
performed using Presentation Manager functions, avoiding the necessity for the
source window procedure to address the DRAGINFO structure directly.

The DRAGIMAGE structure is then initialized with the information relating to the
icon that will be displayed under the mouse pointer during the drag operation.

For a Workplace Shell object, the Workplace Shell itself performs the
initialization of the DRAGINFO structure. The object may perform its own
initialization of the DRAGITEM structure during processing of the
_wpFormatDragltem method, if class-specific processing is required. For
example, if the object class implements a private rendering mechanism, the
appropriate information must be entered into the correct fields in the DRAGITEM
structure as part of the _wpFormatDragitem method.

Note that a Workplace Shell object need not allocate the DRAGITEM structure,
since the structure is already allocated by the Workplace Shell, and a pointer to
the structure is passed to the _wpFormatDragltem method upon invocation.

8.3.1.2 DrgDrag() Processing

Once all data structures are allocated and initialized, the drag operation is
initiated using the DrgDrag() function. This function is synchronous; it does not
return control to the source window procedure until the key or mouse button
specified in the fifth parameter (VK_ENDDRAG in the example above) is
detected, and any synchronous message passing has been completed.

At this point, the DrgDrag() function returns a window handle. If the dragitem
was dropped over a window or object that was able to accept the item, the
window handle of the target window is returned. If a drop occurred over an
object that was unable to accept the item, a NULL window handle is returned.

Upon return of control by the DrgDrag() function, the drag operation and the drop
operation (if any) is complete, and the DRAGINFO structure can be released by
the source window procedure.

A Workplace Shell object is not required to invoke the DrgDrag() function, since
this is performed automatically by the Workplace Shell when the object
completes the processing of its _wpFormatDragltem method.

8.3.1.3 Synchronous Message Processing During DrgDrag()

When the user drops the dragitem over another window or object that is able to
accept the item, a DM_DROP message is passed to the target, which then
processes the drop operation. Note that the target’s DM_DROP message
processing must complete and return control to Presentation Manager before the
DrgDrag() function will return control to the source window procedure. Thus any
processing that is performed by the target window during its processing of the
DM_DROP message is synchronous.

The synchronous nature of this processing is necessary in order to ensure that
the drop operation, and the accompanying transfer of information, is completed
before the user performs any other operation. For this reason, it is
recommended that any messages passed by the target to the source window
during processing of the DM_DROP message should be passed synchronously
using the DrgSendTransferMsg() function. This is a departure from the normal
Presentation Manager guidelines, where messages are processed
asynchronously, but is required in order to ensure data integrity.

A number of synchronous messages may be sent to the source window at the
completion of a drop, prior to the DrgDrag() call returning control to the source
window. For example, if the user drops an object on a Workplace Shell printer
object with the DRM_PRINT rendering mechanism specified, the target object
sends a DM_PRINTOBJECT message to the source window. This message
contains sufficient information for the source window to direct a print data
stream to the print queue represented by the printer object. The first parameter
in the DM_PRINTOBJECT message contains a pointer to the DRAGITEM structure
that identifies the item being dropped, and the second parameter contains the
name of the print queue for the printer object.

An example of the way in which the source window procedure may process the
DM_PRINTOBJECT message is shown in Figure 82.

case DM_PRINTOBJECT:

WinMessageBox (HWND_DESKTOP, /* Display message box */
htind, /* Curr window is owner */
"Printing customer details®, /* Message box text */
“Print Message Received®, /* Message box title */
0, /* No identifier */
MB_0K); /* Include okay button */

<Extract DRAGITEM pointer from mpl>
<Extract print queue name from mp2>

<Print item>

break;

Figure 82. Receiving a DM_PRINTOBJECT Message

Note that the code that actually performs the printing operation has been omitted
from Figure 82. Printing under OS/2 Version 2.0 and Presentation Manager is
discussed in detail in 0S/2 Version 2.0 - Volume 5: Print Subsystem, and
examples are also provided in the PRTSAMP program included in the IBM
Developer’s Toolkit for 0S/2 2.0.

Chapter 8. Direct Manipulation 181

8.3.2 Dragging Over a Window
While the dragitem is being dragged, Presentation Manager sends a succession
of DM_DRAGOVER messages to the Presentation Manager window under the
mouse pointer; one message is sent for every mouse movement. The
DM_DRAGOVER message informs the target window that it is being dragged
over, and allows it to access sufficient information to aliow the window to decide
whether it is able to accept a drop operation. The window procedure indicates
this to Presentation Manager by the value that it returns in response to the
DM_DRAGOVER message.

The information required by the window is contained in two data structures; the
DRAGINFO structure, which is referenced by one of the parameters in the
DM_DRAGOVER message, and the DRAGITEM structure, which can be accessed
from the DRAGINFO structure. Since multiple items may be dragged at the
same time, the DRAGINFO structure contains an array of pointers to DRAGITEM
structures, one for each dragitem. The DRAGINFO structure maintains a count of
the number of dragitems.

When a potential target is a Workplace Shell object, the Workplace Shell notifies
the object that a dragitem is being dragged over it, by invoking the object’s
_wpDragOver method. The DRAGINFO structure is passed to the object as a
parameter to this method. Processing of the _wpDragOver method is very
similar to that described below for Presentation Manager window procedures. In
normal circumstances, however, the _wpDragOver method is not overridden by
an object class; the default processing supplied by the parent class is allowed to
occur unless the object class supports private rendering mechanisms that must
be explicitly checked against those supported by the dragitem.

An example of the way in which a window procedure may process the
DM_DRAGOVER message is shown in Figure 83.

PDRAGITEM pDItem; /* Pointer to DRAGITEM */
PDRAGINFO pDInfo; /* Pointer to DRAGINFO */
case DM_DRAGOVER:
pdinfo = (PDRAGINFO)mpl; /* Get DRAGINFO pointer */
DrgAccessDraginfo(pdinfo); /* Access DRAGINFQ */
pditem = DrgQueryDragitemPtr(pdinfo, /* Access DRAGITEM */
0); /* Index to DRAGITEM */
if (!DrgVerifyRMF (pditem, /* Check valid rendering */
ORM_SHAREMEM" / mechanisms and data */
"DRF_TEXT")) /* formats */
{
DrgFreeDraginfo(pdinfo); /* Free DRAGINFO */
return (MPFROM2SHORT (DOR_DROP, /* Return okay to drop */
DO_COPY)); /* Copy operation valid */
}
else
DrgFreeDraginfo(pdinfo); /* Free DRAGINFO */
return (MPFROM2SHORT (DOR_NEVERDROP, /* Drop not valid */
0)); /* No valid operations */
break;

Figure 83. Handling the DM_DRAGOVER Message

182 05/2 v2.0 Volume 4

The code shown in Figure 83 is quite simple; the processing of the
DM_DRAGOVER message is intended only to determine whether a drop
operation is valid for the specified dragitem and the target window. First, access
is gained to the DRAGINFO structure, which is referenced by the first parameter
to the DM_DRGOVER message. The DRAGINFO structure is then used to access
the DRAGITEM structure, by means of the DrgQueryDragitemPtr() function. The
window procedure then has access to all the information needed to determine
the validity of a drop operation.

In this particular case, the only type of dragitem that is acceptable to the target
window is one that represents a customer object, using the specially defined
DRM_SHAREMEM rendering mechanism. The window procedure therefore uses
the DrgVerifyRMF() function to check whether the dragitem supports this
rendering mechanism and the data type required by it.

According to the result returned by the DrgVerifyRMF() function, the window
procedure returns either DOR_DROP, indicating that a drop is acceptable, or
DOR_NEVERDROP, indicating that a drop is not acceptable and that there is no
point in sending any more DM_DRAGOVER messages to this window. A number
of other valid returns are possible for the DM_DRAGOVER message; these are
documented in the IBM 0S/2 Version 2.0 Presentation Manager Reference.
Irrespective of the return code, the DRAGINFO structure is released.

If a window returns any return code other than DOR_.DROP to this message, the
icon seen by the user is automatically modified to show that a drop is not
allowed, thereby providing instant visual feedback.

8.3.3 Dropping an Object

When the user drops a dragitem over a Presentation Manager window, the
target receives a DM_DROP message. The window procedure for the target may
process that message in order to handle the drop operation, and may either
complete the operation or initiate a conversation with the source window or
object in order to do so, typically by sending it a DM_RENDER message, which
ultimately will result in the data being transferred.

When the user drops a dragitem over a Workplace Shell object, the Workplace
Shell invokes that object's _wpDrop method. The processing of this method is
very similar to that discussed below for the DM_DROP message. However,
object classes that do not implement private rendering mechanisms need not
override the _wpDrop method; the default processing provided by the parent
class may be allowed to occur.

In the customer/phone dialler example, the only type of dragitem that the order
program will accept is a customer object, which uses the application-defined
DRM_SHAREMEM rendering mechanism. The correct data type and rendering
mechanism is verified by the target window procedure during processing of the
DM_DRAGOVER message, so there is no need for further checking when the
DM_DROP is processed. Note however, that in a more sophisticated application,
which supports multiple data types and rendering mechanisms, it may be
necessary to perform more detailed checking.

Chapter 8. Direct Manipulation 183

184 0s/2 v2.0 Volume 4

#idefine XFERMEM "\\SHAREMEM\\DragXfer.mem"
PVOID pCust;

PDRAGITEM pDItem;
PDRAGINFO pDInfo;

case DM_DROP:
pDInfo = (PDRAGINFO)mpl;
DrgAccessDraginfo(pDInfo);
pDItem = DrgQueryDragitemPtr(pdinfo,

0);

DosAllocSharedMem(&pCust,
XFERMEM,
sizeof (CUSTOMER),
PAG_COMMIT |
PAG_WRITE |
PAG_READ) ;

pdxfer = DrgAllocDragtransfer(1);
pdxfer->cb = sizeof (DRAGTRANSFER);
pdxfer->hwndClient = hbind;
pdxfer->pditem = pDItem;
pdxfer->hstrSelectedRMF =

pdxfer->hstrRenderToName =
DrgAddStrHand1e (XFERMEM) ;

pdxfer->ulTargetInfo = 0;

pdxfer->usOperation = DO_COPY;

rc=DrgSendTransferMsg (pDInfo->hwndSource,
DM_RENDER,
(MPARAM) pdxfer,
NULL)
if (rc == TRUE)
{
strcpy(msgtext, "Dialling number®);
strncat (msgtext,
pxfercust->phone,
30);
WinMessageBox (HWND_DESKTOP,
htind,
msgtext,
“Telephone Dialler®,
o,
MB_0K) ;

PhoneDial (pxfercust->phone);

DrgFreeDragInfo(pdinfo);
DrgFreeDragtransfer(pdxfer);
DosFreeMem((PVOID)pxfercust);
break;

/*
/*

/n
/*
/*

/*

Shared mem obj name
Customer record ptr

DRAGITEM struct ptr
DRAGINFO struct ptr

Get DRAGINFO pointer
Access DRAGINFO
Access DRAGITEM
Index to DRAGITEM

Allocate shared mem
Named memory object
Size of memory object
Commit storage now
Allow write access
Allow read access

Allocate DRAGTRANSFER
Init DRAGTRANSFER

DrgAddStrHandie(°<DRM_CUSTOMER,DRF_TEXT>*);

Send msg to source
DM_RENDER message
DRAGTRANSFER pointer

If rendered okay

Build message text

Display message box
Curr window is owner
Message text

Message title

No identifier
Include okay button

Dial number

Release all data
structures

*/
*/

*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

Figure 84. Handling the DM_DROP Message

In Figure 84, access must first be gained to the DRAGINFO and DRAGITEM
structures. This is achieved in a similar manner to that already described for the
DM_DRAGOVER message. Having gained access to these structures, a named
shared memory object is then allocated, into which the source window will be
asked to place the customer details.

A DRAGTRANSFER structure is then allocated, in which information about the
target’s requirements can be passed to the source window. This structure is
similar to the DRAGINFO structure, in that it must be accessible from multiple
processes. It is therefore allocated using the DrgAllocDragtransfer() function,
ensuring that the structure will be accessible to the source window, which may
be in another process and therefore not have direct access to the target’s
private data areas.

There are several important fields in this structure. The target window
procedure places a pointer to the DRAGITEM structure into the pditem field,
thereby enabling the source to identify which item has been dropped. The
hstrSelectedRMF field is used to identify which rendering mechanism and data
format is to be used for this target, from the selection offered by the source in
the DRAGITEM structure. The hstrRenderToName field is used in the
DRM_SHAREMEM rendering mechanism to pass the name of the shared memory
object to the source window.

Once this structure has been completed with the necessary information, it is sent
to the source window as part of a DM_RENDER message. This message is
passed to the source window using the DrgSendTransferMsg() function. This
function should be used for drag/drop operations in preference to the
WinSendMsg() function since, for a DM_RENDER message, it also grants access
to the DRAGTRANSFER structure for the process that owns the window to which
the message is being sent.

In processing the DM_RENDER message, the source window copies the
customer details into the shared memory so that when DrgSendTransferMsg()
returns, the target window procedure may extract the data it needs. A detailed
explanation of the source window’s processing of a DM_RENDER message is
given in 8.3.4, "Transferring Information.”

Upon completion of the information transfer, the entire drag/drop operation is
complete and the data structures allocated during the operation may be
released. For the DRAGINFO and DRAGTRANSFER structures, this must be
carried out using the DrgFreeDraginfo() and DrgFreeDragtransfer() functions.

8.3.4 Transferring Information
As explained in 8.3.3, “Dropping an Object” on page 183, a target window may
send a DM_RENDER message to the source when it receives a DM_DROP
message from Presentation Manager. Similarly, a Workplace Shell object may
send the same message when its _wpDrop method is invoked by the Workplace
Shell. This message is normally sent to the source when the target requires the
assistance of the source in completing the transfer of data as part of the drop
operation.

The source window processes this message in its window procedure, according
to the rendering mechanism requested by the target. If the source is a
Workplace Shell object, the Workplace Shell will directly invoke the object’s
_wpRender method to perform the same function. In most cases, however, an

Chapter 8. Direct Manipuiation 185

186 0s/2 v2.0 Volume 4

object does not need to override the _wpRender method unless it wishes to

implement a private rendering mechanism.

The DM_RENDER processing from the Customer program is shown in Figure 85.

PDRAGITEM pDItem;
PDRAGINFO pDInfo;
PDRAGTRANSFER pDXfer;
PCONTRECORD pCRec;
PCUSTOMER pCust,
pXferData;
CHAR xfermem[100] ;
hContainer;

HWND

case DM_RENDER:
pDXfer = (PDRAGTRANSFER)mpl;
pDltem =

DosGetNamedSharedMem((PPVOID)&pXferData,

xfermem,
PAG_WRITE |
PAG_READ);
memcpy (pCust,
pXferData,
sizeof (CUSTOMER));

DosFreeMem((PVOID)pCust);
if (pDXfer->usOperation == DO_MOVE)

hContainer = WinWindowFromID (hknd,
CONTAINER);
RemoveCustomer(hContainer,
pCRec);

return((MRESULT) TRUE) ;
break;

pDxfer->pditem;
pCRec = pditem->ulltemID;
pCust = pCRec->cust;
DrgQueryStrName (pDXfer->hstrRenderToName,
100,
xfermem);

DRAGITEM pointer
DRAGINFO pointer
DRAGTRANSFER pointer
Container record ptr
Customer record ptrs

Memory name buffer

Container handle

Get DRAGTRANSFER ptr
Get DRAGITEM ptr

Get container rec ptr
Get customer rec ptr

Get mem object name
Size of buffer
Buffer

Get shared mem object
Name of mem object
Allow write access
Allow read access
Copy customer record
to shared mem object
No. of bytes to copy

Free shared mem obj
If move operation
Get container window
handle

Remove record from

container

Return TRUE

Figure 85. Handling the DM_RENDER Message

The first parameter to the DM_RENDER message contains a pointer to the
DRAGTRANSFER structure, which in turn contains a pointer to the DRAGITEM
structure in its pditem field. For a Workplace Shell object, a pointer to the
DRAGTRANSFER structure is passed as a parameter to the _wpRender method.

In the DRM_SHAREMEM rendering mechanism, the ulitemiD field in the
DRAGITEM structure is used to hold a pointer to the customer container record
(of type CONTRECORD), in whch the cust field is a CUSTOMER structure
containing details of the customer object which was dragged.

Next, the name of the shared memory object previously allocated by the target
window is retrieved from the hstrRenderToName field of the DRAGTRANSFER
structure. This name is used to obtain access to the shared memory object.
The customer details are copied into this memory object, after which the
memory object is freed.

The operation code in the DRAGTRANSFER structure is then checked to
establish whether the target requires a copy or a move operation. If a move was
requested, the source program deletes the customer record from the contaiiner
by calling an application subroutine named RemoveCustomer().

The window procedure then returns the value TRUE, indicating that the data was
successfully rendered. This value is returned to the target window procedure
that issued the DrgSendTransferMsg() call. At this point, the target window
procedure has access to all information required to complete the drop operation,
and may do so without further communication.

At the completion of the rendering procedure, the source may pass a
DM_RENDERCOMPLETE message to the target, allowing the target to release
any resources still outstanding. A Presentation Manager window may process
this message in its window procedure, while a Workplace Shell object is notified
of the event by the Workplace Shell, which invokes the object’s
_wpRenderComplete method. This is usually only required in cases where
complex private rendering mechanisms involve multiple transfers. It is not used
in the above exampies.

8.4 Using Rendering Mechanisms

The rendering mechanism is essentially a protocol that determines the contents
of several fields in the DRAGITEM structure. These fields are:

* ulltemiD, which contains an application-specific value uniquely identifying the
item being dragged.

* hstrType, which contains a handle to a string defining the data type of the
dragitem.

* hstrRMF, which contains a handle to a string containing the names of all
rendering mechanisms supported by the dragitem, and the data formats
supported by those rendering mechanisms.

* hstrContainerName, hstrSourceName and hstrTargetName, which contain
handles to strings used by the DRM_OSZ2FILE rendering mechanism, and
may be used by private rendering mechanisms to contain string data.

The content of the hstrRMF field should obey a set of syntactical rules that are
explained in the OS/2 2.0 Programming Guide Volume Il. Other fields in the
DRAGITEM structure may also be used by particular rendering mechanisms;
their use is dependent upon the individual rendering mechanism in use at the
time. Applications may use one of the standard rendering mechanisms
DRM_PRINT, DRM_DISCARD, DRM_OSZ2FILE or DRM_DDE, or may define their
own rendering mechanisms to support dragging and dropping of particular
dragitems.

Chapter 8. Direct Manipulation 187

8.4.1 Standard Rendering Mechanisms

188 0s/2 V2.0 Volume 4

The following sections describe the use of two of the standard rendering
mechanisms, DRM_PRINT and DRM_OS2FILE. These mechanisms can be used
by Presentation Manager applications to interact with other applications and/or
Workplace Shell objects.

8.41.1 DRM_PRINT

For Presentation Manager applications running on the Workplace Shell desktop
under OS/2 Version 2.0, it may be desirable to allow the user to print from the
program by dragging the relevant item, such as a customer record, onto a
Workplace Shell printer object. Since all Workplace Shell printer objects are
written to understand the DRM_PRINT rendering mechanism, a Presentation
Manager may provide such function simply by adhering to this mechanism.

With the DRM_PRINT rendering mechanism, responsibility for actually carrying
out the printing rests within the source window. The source window must:

1. Detect the fact that a drag is being initiated by the user

2. Allocate and fill the DRAGINFO and DRAGITEM structures
3. Start the drag operation using the DrgDrag() function
4

. Process the DM_PRINTOBJECT message which is returned by the target
printer object.

The first three steps are handled in exactly the same way as illustrated in
Figure 81 on page 179. Note that a view of a Workplace Shell object need not
explicitly handle Presentation Manager messages in the window procedures for
its views. When the user initiates a drag from within a Workplace Shell object
such as a folder or work area, the object is notified by the Workplace Shell,
which invokes the object’s _wpFormatDragltem method. This method is
processed in an identical manner to that shown for the window procedure in
Figure 81.

The final step is handled by processing the DM_PRINTOBJECT message in the
source window procedure. A simple example of such processing is shown in
Figure 82 on page 181.

8.4.1.2 DRM_DISCARD

The DRM_DISCARD rendering mechanism operates in a similar fashion to the
DRM_PRINT mechanism, and is intended for use by applications which create
their own equivalent to the Workplace Shell Shredder object. In this rendering
mechanism, the target passes a DM_DISCARDOBJECT message to the source,
which may either accept responsibility for the discard operation, abort the
operation, or allow the system to perform the operation.

Note that the system may only discard objects which are capable of being
rendered with the DRM_OSZ2FILE rendering mechanism; that is, program files
and data files. Other objects not based upon files must be explicitly discarded
by the source.

When a Workplace Shell object is dropped on the Shredder object, the
Workplace Shell intercepts the DM_DISCARDOBJECT message and invokes the
source object’s wpDelete method.

8.4.1.3 DRM_OS2FILE

The DRM_OS2FILE rendering mechanism is designed to support moving and
copying file objects between containers. This rendering mechanism is described
in detail in the 0S/2 2.0 Programming Guide Volume lI, and an extensive
example is provided in the IBM Developer’s Toolkit for 0S/2 2.0. The details of
programming for the DRM_OS2FILE mechanism will therefore not be described
further in this document.

Certain fields in the DRAGITEM structure are designed specifically for this
rendering mechanism; the hstrContainer, hstrSourceName and hstrTargetName
fields are ideally suited to holding the source directory name, source file name,
and fully qualified target file name respectively. This is how these fields are
used by the DRM_OS2FILE rendering mechanism.

An alternative, and even more straightforward way to implement this rendering
mechanism, is to use the DrgDragFiles() function. This function automaticalily
allocates and fills the required data structures for the source window, avoiding
the need for the application to perform these functions and reducing the risk of
error.

8.4.2 Implementing a Private Rendering Mechanism
The 0S/2 2.0 Programming Guide Volume Il gives some advice on use of the
various messages available to implement a private rendering mechanism, and
also some guidelines on how such a rendering mechanism should be
documented. This section illustrates the implementation of a simple rendering
mechanism, by explaining the definition of the DRM_SHAREMEM rendering
mechanism used by the examples earlier in this chapter.

A rendering mechanism is necessary to pass the customer record data used in
the examples, since the CUSTOMER structure that contains this data is too large
to be contained within the DRAGITEM structure. It is therefore necessary, after a
drop has occurred, for the source program to make the relevant data available
to the target, in a format which is understood by and accessible to both the
source and the target. In the examples, a named shared memory object is used
to transfer the data; hence the name DRM_SHAREMEM used for the rendering
mechanism.

The DRM_SHAREMEM rendering mechanism operates as follows:

* The source window stores a pointer to the customer record being dragged in
the ulltemiD field of the DRAGITEM structure. This field is defined as
ULONG, but it can be used in any way that is meaningful to the source
window to identify the item being dragged. A pointer to the customer record
is a convenient way to do this.

* The target window, on receiving a DM_DROP message, allocates a named
shared memory object with a name of its choice. It then sends a
DM_RENDER message to the source window, passing the name of the
memory object in the hstrRenderToName field of the DRAGTRANSFER
structure, and indicating whether it requires a copy (DO_COPY) or a move
{DO_MOVE) to take place, using the usOperation field of the
DRAGTRANSFER structure.

* When the source window receives the DM_RENDER message, it obtains
access to the shared memory object and places the customer record in that
object. The source window knows which customer record to copy, since the

Chapter 8. Direct Manipulation 189

DRAGITEM structure, which includes a pointer to the customer record, is
passed along with the DRAGTRANSFER structure.

Finally, if a move operation was requested by the target, the source window
deletes the customer record from its own data.

* On receiving a TRUE return code from the DM_RENDER message, indicating
that the data was successfully rendered, the target window copies the data
out of the shared memory object, and uses it in whatever way it chooses.

it should be stressed that this is a very simple rendering mechanism. However,
it illustrates the general structure of such mechanisms, and their impact on the
contents of fields in the DRAGITEM and DRAGTRANSFER structures.

8.5 Summary

Direct manipulation is likely to become considerably more important to
application designers than it has been in previous releases of 0S/2, because of
its central role in the object-oriented user interface provided by the Workplace
Shell. Even applications that are not implemented as Workplace Shell objects
should provide, so far as is practical, a similar style of interface. Direct
manipulation forms an essential part of such an interface.

The programming facilities for direct manipulation in 08/2 V2.0 are essentially
the same as those introduced in OS/2 Version 1.3, and consist of a set of
message classes, functions and data structures, along with defined protocols
known as rendering mechanisms, which define standard techniques for using
these facilities to pass different types of information beiween diverse
applications, and between user-developed applications and Workplace Shell
objects such as printers and the shredder.

User-defined rendering mechanisms may also be defined for specific purposes
that are not covered by the standard ones. The 0S/2 2.0 Programming Guide
Volume II gives guidance on this and on how such rendering mechanisms should
be documented.

180 o0s/2 v2.0 Volume 4

Chapter 9. Presentation Manager Resources

The definition and use of Presentation Manager resources by applications was
mentioned in Chapter 4, “The Presentation Manager Application Model.” The
use of such resources greatly simplifies the task of the application developer in
creating windows, menu bars, etc., and provides a powerful tool for the
externalization of the user interface properties of an application object, thereby
enabling easier modification of these properties during development or
maintenance of the application. This chapter will describe the definition of
resources, and the ways in which resources may be used within a Presentation
Manager application.

9.1 Types of Resources

9.1.1 Fonts

A number of different types of resources may be defined for use by Presentation
Manager applications. These include text items such as menu bars and window
templates, and graphical items such as graphics fonts, icons and bitmaps.
Textual items are defined in the resource script file, which is described in 9.2,
“Resource Script File” on page 198. Non-textual items are defined and saved in
other files, and are referenced by statements in the resource script file. The
various types of Presentation Manager resource are described in the foliowing
sections.

A font is a set of alphanumeric characters and other symbols. Fonts may be
designed interactively using the Font Editor application provided as part of the
IBM Developer’s Toolkit for 0S/2 2.0. Once a font has been designed, the Font
Editor saves the font in a disk file with an extension .FNT. This font file is
referenced from the resource script file using the FONT keyword:

FONT 123 MYFONT.FNT

The integer following the FONT keyword is used to identify the font resource. A
symbolic name cannot be used to define a font resource.

A font file must be link-edited along with a resource script file containing a FONT
keyword referencing the .FNT file, and with the FONTS.OBJ and FONTS.DEF files
provided with the OS/2 Programmer’s Toolkit, to produce a file with an extension
of .FON. Although a font cannot be stored in a dynamic link library, the .FON file
may be installed on the system by the user or installed explicitly by an
application. The font is then usable by any application in the system.
Alternatively, an application developer may choose not to install the font, but
merely to access it from a particular application using the GpilLoadFonts()
function.

9.1.2 Icons, Pointers and Bitmaps

As already mentioned, an icon is a graphical representation of an object on the
screen. For the purposes of discussion, icons, pointers and bitmaps will be
grouped together; a pointer is a graphical image that is associated with a
pointing device such as a mouse, and which moves on the screen as the
pointing device is moved by the user, whereas a bitmap is a graphical image
that typically is used to represent a general item such as a logo. lcons, pointers
and bitmaps may be designed interactively using the Icon Editor application

© Copyright IBM Corp. 1993 191

9.1.3 Menu Bars

192 0s/2 V2.0 Volume 4

supplied as part of the 0S/2 Version 2.0 product. Depending on which resource
is being created, the Icon Editor saves the resulting icon, pointer or bitmap in a
file with an extension of ICO, PTR or BMP. These files are then referenced from
the resource script file using the ICON, POINTER or BITMAP keywords:

ICON MAIN APPLIC.ICO
POINTER DRAUW PENCIL.PTR
BITMAP INTRO LOGO.BMP

The keyword is followed in each case by a resource identifier, which is a
symbolic name used by the application to identify the resource. For an icon, the
identifier is used as a parameter to the WinCreateWindow() and
WinCreateStdWindow() calls, and identifies the icon resource to be used when
the FCF_ICON attribute is specified for the frame window. In all cases, the
symbolic name must be defined as an integer constant using a #define
statement.

For a pointer or bitmap, the identifier is used as a parameter to the
WinLoadPointer() or GpiLoadBitmap() functions, which load the resource into
memory. WinLoadPointer() returns a pointer to the resource in memory, which
may then be used as a parameter to the WinSetPointer() function, in order to set
the desktop pointer to that resource.

A pointer may be set to one of the system-defined pointer styles (such as an
arrow or hourglass) using the WinSetPointer() function, by obtaining the handle
of the required system pointer using the WinQuerySysPointer({) function as
follows:

rc = WinSetPointer (HWND_DESKTOP,
WinQuerySysPointer (HWND_DESKTOP,
SPTR_WAIT,
FALSE));
This call will set the pointer for the desktop to the hourglass pointer (indicated
by the symbolic name SPTR_WAIT). The handle of the hourglass pointer is
returned by the WinQuerySysPointer() call. The symbolic names of the various

system pointers are described along with the WinQuerySysPointer() function in
the IBM 0S/2 Version 2.0 Presentation Manager Reference.

A bitmap is drawn within a window on the screen using the WinDrawBitmap()
function. The pointer to the bitmap, returned by GpiLoadBitmap() is passed as a
parameter to WinDrawBitmap() in order to identify the resource.

and Pulldown Menus

Menu bars and their associated pulldown menus are defined within the resource
script file, using the MENU and SUBMENU keywords. A sample menu bar and
pulldown menu definition is shown in Figure 86 on page 183.

€6 SovJnosay sebeuen uoneussald ‘6 Jaideud

‘9ousalsjoy Jobeuepy uonejuassid

02 UOISIaA Z/SO WEI U} Ul PRIUSINIOP 3JE SIINqUNE pUB S3JAIS WYl snoleA
ayLl ‘sauljapInd YN YVS UYHM SIUBDIOIDE U} ‘JBq |edIUaA & AQ pajesedas

Jeq nuaw ay} Jo apis puey-jybu ay) uo paie|dsip aq o} wayl Ay} sasned

Y3IUM “HOLYHVJISNOLLNG SIW pue ‘abessaw ANVIWNOD WM B ueyl Jayied
abessawl 473H WM B 21e4auab o} Wal ay} Sasned yalym ‘d13H SIN Jo sainguie
3)A1S 3y}l yum pauysp S YdIym ‘way Jeq nuaw di9H, |Buy 3y} si uondaaxe
al0s 9yl 1X31 SI 31AIS 3U} UM paulap ale pue swal Ixa} a|dwis ase

Swayl ||e ‘anoqe 3|dwexa sy} uj ‘way ay} Jo 9Als 3yl suyap Jayuapl abessaw
2y} BuIMO||0) SWRY JI|OqWAS YL 'PaJI3Ias SI Wall 8y} usaym pajesauab
abessaw QNVINIWOD WM 2} Jo (4319weaed abessaw 1siy ay} ul paseid)

anjeA ay} sayuap! 1xal 3y} Buimo||o) weu J1joquiAs syl ‘way nusw umop|ind
10 JBq NUBW YoBd JOj 1X3) dY} duyap syJew uonelonb uiyum sbuls xa) ayL

‘nusw
umop||nd pajeIdoSSE UB SABY JOU OP JBY) SLIUS JBQ NUBW dUYSP Juswalels
(IN3WENS B JO SPUNOQG dY} UIYHM PASO[IUa Jou .. Jey) sjudwalels WILINNIW
"SWway nuaw umop|ind ay} auyap uawalels NNIWENS € Jo sia)iew ANI

PUB NI93g 3y} ulyim paso|oua ale jey) sjuswialels WILINNIW "nuaw umopjind
B YNIM PaJBIOOSSE 8] ||IM ey} AlJua JBeq NUSW B SaULSP Judwajels NNIWENS 3yl

‘uoijealydde ayy Aq pajies uaym papeoj Buleq uey}

Jayjed ‘Alowawl ojul Ajajeipawiwl| papeo| ag 0} s| pue ‘djy IX3" ulew s,uoljesi|dde
ay} ojul pajesododul aQ [|IM 224n0SaJ Y] Jey) saydads uolldo QvO3dd

2yl ‘Mopuim dwely 8y} 10} payioads si Bey (0iuocd awely 8|A1S NNIW 404

3y} UBYM 924N0SS] JBq NUBW By} SBYIIUIP! PUB SUOKOUN) ()MOPUIMPISIIEIDUIM
pue (Jmopuimajeasdulsp 2y} o} Jejeweled e se passed s) sweu

SIyl -22Jnosal ay} saynuapt (aroge ajdwexa ayl ui NIYW) dweu aljoquiAs ayj

uonuIyeq 824nosay Jeg nuay 98 8nbi4

_ aN3
Y0LVHYdISNOLLNG SIW
| d13H_SIW ‘d13H_IW “wd3H_n WALINNIW
1X31 SIW “LIX3 IW “w31X_3u WILINNIW
aN3
1X31_SIW ISYD_IN ‘w3PEIS) . WILINNIW
1X31SIW “TIL TN “wdLtl_w WILIANIKW
_ _ NI938
1X3L SIW MOONIM IW “WMOPULM_u NNIWENS
QN3
IXALUSIW “ILSYd IN ‘w3SBd_» WILIANIW
LX3L SIW ‘AdOD_IN “wAdO)_« WILINNIW
1X3L SIW “1nJ IW “03.NJs WILINNIW
_ _ N1938
LX3LSIW ‘1103 IW “w3LP3_w NNIWENS
aN3
1X3LSIW ‘SYIAVS_IN ‘wSB_ 3ARS. WILIANIW
LX3LSIW “IAVS_IW “udABS_s WILINNIW
1X3L SIW ‘N3O IW ‘wu3do_w WILINNIW
1X3L SIW “MIN'IW “u” " "MON_u WILINNIW
_ _ NI938
IXALUSIN ‘T4 IW “wdLtd_w NNIWENS
NI938
Qv013¥d NIVW NNIW

194 0s/2 v2.0 Volume 4

When groups of items within a single pulldown menu are logically separate, they
should be visually separated by a horizontal bar within the pulldown menu. This
may be achieved using the SEPARATOR keyword in the MENUITEM statement,
as follows:

MENUITEM SEPARATOR

The use of a separator bar in pulldown menus is particularly important when the
pulldown menu is used to display a list of entries, comprised of multiple sets of
mutually exclusive options, from which the user must select one option from
each set. In such a case, the separator bar is used to group the items within
each set, and to visually separate the sets from one another.

As already mentioned, menu bar resources are typically incorporated into a
window by specifying their resource identifier in a WinCreateWindow() or
WinCreateStdWindow() call, with the FCF_MENU frame creation flag set for the
frame window. A submenu within a menu bar resource may also be dynamically
created using the WinCreateMenu() function, which is described in 11.2, “The
Menu Bar” on page 241.

9.1.3.1 Mnemonics

Mnemonics may be specified for menu bar and pulldown menu items. A
mnemonic is a key which, when combined with the F10 key, results in selection
of the item. The character for the mnemonic must be part of the text for the
item. For example, the conventional mnemonic key for the “Exit” menu bar item
is “x”; when the F10 key is pressed followed by the “x” key, a WM_COMMAND
message with value MI_EXIT is generated.

Mnemonics are indicated to the user by the appropriate character within the
item text being underlined. This is achieved by placing a tilde character {~)
within the item text, immediately prior to the required character; for example:

MENUITEM "E~xit®, MI_EXIT, MIS_TEXT

When the resource script file is compiled using the resource compiler, the menu
bar item is created with the appropriate mnemonic.

9.1.3.2 Accelerator Keys

Accelerator keys or key sequences may be used to represent a pulldown menu
item and provide a “fast path” to a particular command. Note that accelerator
keys are not used to represent menu bar entries, since the use of an accelerator
key sequence is typically more complex than the use of a mouse or an F10 +
single character operation. The definition of accelerator keys is described in
9.1.5, “Accelerator Tables” on page 196. It is conventional to display an
accelerator key sequence, along with the command represented by that
sequence, in the pulldown menu, thus providing the user with a visual indication
of the accelerator key sequence. This may be achieved by the use of the “\t” or
“\a" control codes within the item text. The “\t” code causes text to the right of
the code to be left-justified in a new column, whereas the “\a” code causes text
to the right of the code to be right-justified in a new column.

To display an accelerator key sequence in a pulldown menu, it is conventional to
use the “\t” control code. For example:

MENUITEM °~Tile\tShift+F5", MI_TILE, MIS_TEXT

This would result in the item text “Tile" (with the “T" underscored to represent
the mnemonic) being displayed in the left of the pulldown menu with the text
“Shift+F5” being left-justified in a second column to the right of the item text.

9.1.4 String Tables

Tables of text strings may be defined within a resource script file for use by an
application. A string table is defined using the STRINGTABLE keyword, as
shown in Figure 87.

STRINGTABLE MAIN PRELOAD

BEGIN
STR_MAINTITLE, “Application Main Window"
STR_LIST1, “List of Objects"”
STR_MSGTITLEL, “Title for Message Box"

END

Figure 87. String Table Resource Definition

String tables may be used to contain titles, messages and other common text
used by an application. The external definition of these strings makes it easy to
change a title or message without modifying source code. String tables may
also be used to contain menu bar or pulidown menu text for dynamic insertion
by an application. Special characters such as mnemonic indicators and tab
characters for columnating display may be incorporated into the string definition.

The symbolic name following the STRINGTABLE keyword identifies the string
table and is used as a parameter when loading strings from the resource into
application buffers using the WinLoadString() function. The PRELOAD keyword
specifies that the resource will be incorporated into the application’s main .EXE
file, and is to be loaded into memory immediately rather than being loaded when
called by the application.

Multiple string tables may be defined by an application. Each string table must
have its own symbolic name (note that the same name may be used for a string
table and another type of resource such as a menu bar) and is enclosed within
the BEGIN and END keywords of a STRINGTABLE statement. Each string has its
own symbolic name within the string table.

As mentioned above, strings are loaded from the string table into application
buffers using the WinLoadString() function. For example, to load the string
STR_MAINTITLE from the string table MAIN into a buffer named szTitle, the
function shown in Figure 88 is used.

ulLength = WinLoadString(hAB, /* Load string */
NULL, /* From appl resource file */
STR_MAINTITLE, /* String id in resource */
sizeof(szTitle), /* Number of characters */
szTitle); /* Target buffer */

Figure 88. Loading a Text String Resource

The WinLoadString() function returns an unsigned integer representing the
number of characters loaded into the target buffer. Once loaded, the buffer may
then be manipulated using standard programming language functions, or used
as a parameter to other Presentation Manager function calls.

Chapter 9. Presentation Manager Resources 195

9.1.5 Accelerator Tables

Accelerator keys are single keys or key sequences that are used to represent a,
particular command (typically a pulldown menu item) within an application, and
provide a fast path for the entry of that command. Accelerators are defined for
an individual window and are active whenever that window is active. According
to Systems Application Architecture CUA conventions, accelerator keys should
be indicated to the user by placing the accelerator key sequence alongside the
command in the pulldown menu. Accelerator keys are defined in the resource
script file using the ACCELTABLE keyword, as shown in Figure 89.

ACCELTABLE CHILD1

BEGIN
VK_F3, MI_EXIT, VIRTUALKEY
VK_F5, MI_TILE, VIRTUALKEY, SHIFT
“Dn, MI_DELETE, CHAR, CONTROL

END

Figure 89. Accelerator Table Resource Definition

The symbolic name following the ACCELTABLE statement identifies the
accelerator resource, and is passed as a parameter to the WinCreateWindow() or
WinCreateStdWindow() functions when the FCF_ACCELTABLE style attribute is
specified for the frame window.

In the above example, the F3 key is defined as a virtual key that when pressed
will generate a WM_COMMAND message with the value MI_EXIT. This is
equivalent to the user having selected the “Exit” option from the menu bar. The
Shift +F5 key sequence is also defined as a virtual key that will generate a
WM_COMMAND message with the value MI_TILE. Note that the shifted state of
the key is indicated by use of the SHIFT option. The Ctrl+D key sequence has
also been defined to generate a WM_COMMAND message with the value
MI_DELETE. The Ctrl state of the key is indicated by the use of the CONTROL
option (in a similar manner to the SHIFT option on the previous line). The
various options for defining accelerator keys are documented in the /BM 0S/2
Version 2.0 Presentation Manager Reference.

As already mentioned, an accelerator table is associated with a particular
window by specifying the resource identifier as a parameter to the
WinCreateWindow() or WinCreateStdWindow() functions. In addition, the
WinLoadAccelTable() function may be used to dynamically load an accelerator
table into memory. The WinLoadAccelTable() function returns the handle of the
accelerator table in memory, which may then be passed as a parameter to the
WinSetAccelTable() function to activate the accelerator table for a particular
queue or window.

9.1.6 Help Tables

186 0s/2 v2.0 Volume 4

Help tables are used by the IPF to relate each display window, dialog box or
control window to the help panel containing information about that window. Help
tables and their definition are described in detail in Chapter 15, “Adding Online
Help and Documentation.”

9.1.7 Window and Dialog Templates

Templates defining standard windows and dialog boxes may be defined within
the resource script file. Typically, a window or dialog template is designed using
the Dialog Box Editor application supplied with the /BM Developer’s Toolkit for
0S/2 2.0, and is saved in a text file with an extension .DLG which is included in
the resource script file with an rcinclude statement. A window or dialog
template may also be defined directly into the resource script file. In either
case, the template is defined using the WINDOWTEMPLATE or DLGTEMPLATE
keywords. These keywords are actually synonymous, and the resource compiler
interprets either keyword in the same way.

Within a single window or dialog template, there may be multiple WINDOW or
DIALOG statements that define individual windows or dialog boxes. The nesting
of the statements defines the parent/child window hierarchy. Figure 80 shows an
example of nested windows within a window template.

WINDOWTEMPLATE WCP_0001
BEGIN
FRAME "Window Class X", 1, 10, 10, 320, 130
CTLDATA FCF_STANDARD
BEGIN
WINDOW »*, FID_CLIENT, 0,0,0,0, "MyClass", 01
END
END

Figure 90. Window Template Resource Definition

The window template WCP_001 contains a frame window with the title “Window
Class X" and with size and positional coordinates as specified. The style
attributes of the frame window are specified using the CTLDATA statement. The
client window for this frame window is created using the WINDOW keyword
nested within the window template, with no window title, the identifier
FID_CLIENT, no size or positional coordinates (these are defined by the frame
window), the class “MyClass” and the default client style.

The use of the WINDOWTEMPLATE keyword and WINDOW statements is a useful
way for an application developer to predefine particular window types and styles
for use by one or more applications. The template definitions may be used to
create modal dialog boxes, which are loaded into memory and executed by the
use of WinLoadDlg() and WinProcessDIg() calls. Definitions may also be created
for standard windows or modeless dialog boxes, which are loaded into memory
using the WinLoadDlIg() function and executed by making the window or dialog
box visible using the WinShowWindow() function.

Predefinition of windows is particularly useful when applied to dialog boxes.
Here, the number and complexity of control window definitions is often such that
creating such windows dynamically is a complicated task. A dialog box is
defined in the resource script file (or a .DLG file, which is incorporated into the
resource script file using the rcinclude statement) using the DLGTEMPLATE
keyword.

Within a dialog template, there may be multiple dialogs defined using the
DIALOG statement, and each dialog box may have muitiple control windows
defined using CONTROL keywords. Figure 91 on page 198 shows an example of
a dialog template containing a dialog box with several control windows:

Chapter 9. Presentation Manager Resources 197

DLGTEMPLATE DC_CREATE
BEGIN
DIALOG "Create an Object®, DC_CREATE, 22, 32, 260, 76,,
FCF_TITLEBAR | FCF_DLGBORDER
BEGIN
CONTROL “"Enter the Object Name®, -1, 7, 59, 246, 8, WC_STATIC,
SS_TEXT | DT_CENTER | DT_TOP | WS_GROUP | WS_VISIBLE
CONTROL *~, 91, 43, 149, 8, WC_ENTRYFIELD,
ES_MARGIN | ES_LEFT | WS_TABSTOP | WS_VISIBLE
CONTROL “Enter®, DID_OK, 38, 5, 38, 12, WC_BUTTON,
BS_PUSHBUTTON | BS_DEFAULT | WC_TABSTOP | WC_VISIBLE
CONTROL “Cancel®, DID_CANCEL, 38, 5, 38, 12, WC_BUTTON,
BS_PUSHBUTTON | WC_TABSTOP | WC_VISIBLE
END
END

Figure 91. Dialog Template Resource Definition

The dialog template is equivalent to a frame window, and is named DC_CREATE.
This symbolic name is used to identify the dialog resource and is passed as a
parameter to the WinDigBox() function, which loads and processes the dialog
box.

The dialog box is defined with a title bar and a dialog border, and is also named
using the symbolic name DC_CREATE. The dialog box contains a static text
control window providing instructions to the user, and an entry field into which
the user may enter text. It also contains an “Enter” and a “Cancel"” pushbutton.

Note that the resource identifier for the static text string does not use a symbolic
constant, but simply has the value “-1." This is done because there is no need
for the application to access the text string; it is merely present as a prompt to
the user. It is therefore conventional to omit the symbolic constant and use “-1"
as the value. Multiple text strings may have the same value.

9.2 Resource Sc

198 0s/2 V2.0 Volume 4

ript File

The resource script file is an ASCII text file in which Presentation Manager
resources are either defined or referenced. A sample resource script file is
given in Figure 92 on page 199.

Note that the dialog templates are not defined directly in the resource script file,
but are incorporated at the end of the resource script file using an rcinclude
statement for the file mydig.dlig. This is the typical way to incorporate dialog
templates that are created by the Dialog Box Editor and stored in a DLG file.

#include <o0s2.h>
#include "myappl.h®
#include "mydlg.h"

ICON MAIN APPLIC.ICO
ICON CHILD1 CHILD1.ICO

BITMAP INTRO L0GO.BMP

STRINGTABLE MAIN PRELOAD

BEGIN
STR_MAINTITLE, “Application Main Window"
STR_LISTI, “List of Objects®
STR_MSGTITLEL, “Title for Message Box"
END
MENU MAIN PRELOAD
BEGIN
SUBMENU ®"File*, MI_FILE, MIS_TEXT
BEGIN
MENUITEM ®New...", MI_NEW, MIS_TEXT
MENUITEM *~Open*, MI_OPEN, MIS_TEXT
MENUITEM ®~"Save", MI_SAVE, MIS_TEXT
MENUITEM ©Save "as®, MI_SAVEAS, MIS_TEXT
END
SUBMENU "~Edit®, MI_EDIT, MIS_TEXT
BEGIN
MENUITEM °Cu"t", MI_CUT, MIS_TEXT
MENUITEM *"Copy", MI_COPY, MIS_TEXT
MENUITEM »-Paste®, MI_PASTE, MIS_TEXT
END
MENUITEM “E"xit®, MI_EXIT, MIS_TEXT
MENUITEM ®“Help*, MI_HELP, MIS_HELP |
MIS_BUTTONSEPARATOR
END

ACCELTABLE MAIN
BEGIN
VK_F3, MI_EXIT, VIRTUALKEY
VK_F5, MI_TILE, VIRTUALKEY, SHIFT

“D, MI_DELETE, CHAR, CONTROL
END
ACCELTABLE CHILD1
BEGIN

VK_F1, MI_HELP, VIRTUALKEY, HELP

VK_F3, MI_EXIT, VIRTUALKEY

“pH, MI_DELETE, CHAR, CONTROL
END

rcinclude MYDLG.DLG

Figure 92. Resource Script File

The resource script file has a number of #include statements at the start, similar
to those typically found in C programs. This is because the symbolic names
used throughout the resource script file represent integer constants, and must
be defined in the application’s header file myappl.h. Other symbolic names may
be used in the .DLG file, and must also be defined; the header file mydig.h for

Chapter 9. Presentation Manager Resources 199

these symbolic names is generated by the Dialog Box Editor. Finally, a number
of symbolic names such as DID_OK and DID_CANCEL are actually defined by
Presentation Manager rather than by the application, and therefore the file 0s2.h
is also required.

The resource script file is used as input to the resource compiler provided as
part of the IBM Developer's Toolkit for 0S/2 2.0. For further information on the
resource compiler and its operation, see 14.4, “Resource Compilation” on
page 280.

9.3 Using Resources

As mentioned throughout this chapter, resources are typically loaded and used
in an application by specifying the symbolic name of the resource as a
parameter to a function that requires the resource. The resource is then loaded
and used by that function in performing its task. However, there are several
ways in which the resource may be loaded, depending upon where it resides.
These are discussed in the following sections.

9.3.1 Loading From Within the Application
In the typical case, resources are incorporated into an application by passing the
resource script file to the resource compiler. The resource compiler compiles
the resource definitions and incorporates them into an executable file that has
already been created.

Many of the functions that require a resource identifier, such as WinLoadString()

and WinLoadPointer(), also accept the identifier of a resource file as one of their

parameters. For resources that are incorporated into the application’s .EXE file,

this parameter should be specified as NULL. For example, to load a pointer from
a resource defined within the .EXE file, the following call is used:

hPointer = WinLoadPointer(hDesktop, /* Desktop handle */
NULL, /* Within .EXE file */
DRAW) 5 /* Resource symbolic name */

Other Presentation Manager functions that use this convention include
WinLoadAccelTable(), WinLoadMenu() and WinCreateStdWindow().

9.3.2 Loading Resources From a DLL

Presentation Manager resources may also be defined and stored in a dynamic
link library. The process of compiling and placing resources in a DLL is
described in 14.5.3, “Presentation Manager Resources in a DLL” on page 282.
Once a resource is located in a DLL however, the DLL module must be loaded
into memory by the application, and a module handle obtained at run time
before the resource may be accessed by a Presentation Manager function. This
is typically achieved using the DosLoadModule() or DosGetModuleHandle()
functions. Figure 93 on page 201 illustrates the necessary code to load a
dynamic link library named MYDLL from a directory identified in the LIBPATH
statement in CONFIG.SYS, and to load a string resource from this DLL.

200 ©s/2 v2.0 volume 4

rc = DosLoadModuie(NULL, /* No object name */
. /* No object length */

"MYDLL", ~/* DLL module name */

hModule); /* DLL handle (returned) */

ullength = WinLoadString(hAB, /* Load string */
hModule, /* DLL module handle */

STR_TITLE, /* Resource ID within DLL */

sizeof(szTitle), /* Number of bytes */

szTitle); /* Target buffer */

Figure 93. Loading Resources From a DLL

The DosLoadModule() function call loads the dynamic link library with the name
“MYDLL" (the default extension of .DLL is assumed) into memory and returns a
handle hModule of type HMODULE. This handle is then passed as the resource
file identifier to the WinLoadString() function call, which accesses the resources
within the module. Other function calls such as WinLoadPointer() work in a
similar manner.

9.3.3 Loading Dialogs From a DLL

The WinDIgBox() function also allows a DLL module handle to be specified, and
thus enables dialog template definitions to be loaded from a DLL. For instance,
to load and create a dialog box from a dialog template resource DC_001 defined
in a DLL module named WINDLL.DLL, the following call sequence is used:

rc = DosLoadModule(NULL, /* No object name */
o, /* No object length */

“MYDLL", /* DLL module name */

hModule); /* DLL handle (returned) */

rc = WinD1gBox (hDesktop, /* Desktop is parent */
hFrame, /* Frame is owner */

dpProc001, /* Dialog procedure address */

hModule, /* DLL module handle */

DC_oe1, /* Resource ID within DLL */

NULL); /* No create parameters */

Note that if the dialog procedure dpProc001 to be associated with this dialog box
is also defined within the DLL module, the address of this procedure must be
obtained by the application before the WinDIlgBox() call is issued. This is
achieved using the DosGetProcAddr() function, which returns the address of the
required function, as shown in the following example:

rc = DosGetProcAddr (hModule,
"Procl®,
dpProc00l);

In this case, Proc? is the name of the required entry point in the DLL module,
and dpProc001 is a variable of type PFNWP which contains the address of the
procedure returned by the DosGetProcAddr() call. While the address of the
dialog procedure could have been supplied implicitly by using load-time rather
than run-time dynamic linking, run-time dynamic linking is necessary to load the
dialog box resource, and it is logical to place the resource and its associated
dialog procedure in the same DLL module. An example of the complete
procedure required to load a dialog box from a DLL is given in Figure 94 on
page 202.

Chapter 9. Presentation Manager Resources 201

BOOL CustInfoDialog()
{

HMODULE hModule; /* DLL module handle */

PFNWP dpD1gProc; /* Dialog procedure addr */

USHORT usResult; /* Result storage */

DosGetModuleHand1e ("WINDLL", /* Get DLL module handle */

hModule);

DosGetProcAddr(hModule, /* Get address of dialog */
“dpCustDig”, /* procedure */
dpDigProc);

rc = WinD1gBox (HWND_DESKTOP, /* Load & process dialog */
NULL, /* No owner */
dpDigProc, /* Dialog procedure addr */
hModule, /* DLL module handle */
DC_CUSTDLG, /* Dialog template id */
NULL) ; /* No create parameters */

return(usResult);

}

Figure 94. Loading a Dialog Resource From a DLL

When loading dialogs from DLL modules, it is recommended that a combination
of load-time and run-time dynamic linking techniques be used. A calling routine
should be placed in the DLL which, in response to an application request, loads
and obtains the appropriate module handle, obtains the required dialog
procedure address and executes the dialog. This relieves the application of the
responsibility for loading the dynamically-linked resources and routines. An
example of such a routine is given in Figure 94. The calling routine CustinfoDlg
is defined as an entry point within the DLL module, since it will be called from
the application’s main executable module. An import library is then built for the
DLL. and linked with the application code using standard conventions for
load-time dynamic linking.

When CustinfoDIg is invoked by the application, it obtains a module handle for its
own DLL module, which has aiready been loaded when the call to CustinfoDIg
was made, and uses this handle to obtain the address of the required dialog
procedure using standard run-time dynamic linking conventions. It then issues a
WinDlIgBox() call to load and process the dialog box, and returns the result to the
application. This example illustrates the combination of load-time and run-time
dynamic linking conventions.

9.4 Resources and National Language Support

202 0s/2 v2.0 Volume 4

Since Presentation Manager resources provide the ability to define all the user
interface properties of a Presentation Manager application, externally to the
application code, they provide a useful means for implementing national
language support within Presentation Manager applications. Resources may be
used to define:

* Window titles
* Menu bar and pulldown menu entries, including mnemonics and accelerator
keys

¢ Dialogs
*« Messages
¢ Symbols such as icons and pointers.

In short, all of the language-specific properties of an application may be defined
using Presentation Manager resources. Icons and other graphical symbols used
by the user interface may also be tailored to suit different cultures where such
symbols may have different meanings.

The set of resources for each national language may be compiled and
incorporated into a separate dynamic link library, which may be accessed by the
application in order to load the required resources, as described in 8.3.3,
“Loading Dialogs From a DLL” on page 201. The resource identifiers must, of
course, be identical in each DLL. Upon installation of the application on a
workstation, an installation procedure can prompt the user to determine the
required language, and install the appropriate DLL for that language.

Where multiple languages must be supported in the same system, an application
may query the codepage currently in use by its parent process using the
WinQueryCp() function, and load resources from a specific DLL, depending upon
the result of the function call. While this method is by no means foolproof, it will
suffice for many languages that use a single national codepage and single-byte
characters.

9.5 Summary

It can be seen that Presentation Manager provides the mechanism by which an
application developer may externally define the user interface properties of
his/her application. This ability provides the benefit that these external
properties may be modified, or different versions substituted, without the need to
modify the application code itself. In addition, standard user interface objects
such as icons, pointers and dialog boxes, along with their associated dialog
routines, may be defined and stored in dynamic link libraries for use by muitiple
applications.

Resources are defined using a resource script file, which is an ASCIl text file
containing definitions for text-based resources and references to other files that
contain definitions for non-textual resources such as pointers and icons. The
resource script file is used as input to the resource compiler, which compiles
resource definitions and incorporates them into an executable module.

Resources may be incorporated into the application’s main .EXE file, or may be
stored in a dynamic link library and loaded into memory using run-time dynamic
linking. Application procedures such as dialog procedures, which are associated
with such resources, may also be defined and stored in the same DLL module,
thus providing the opportunity to create libraries of standard resources, including
standard dialogs, which may be used by multiple applications.

Chapter 9. Presentation Manager Resources 203

204 ©s/2 v2.0 Volume 4

\
[
|

Chapter 10. Multitasking Considerations

Systems Application Architecture CUA guidelines recommend that an application
should complete the processing of a user- or system-initiated event within 0.1
seconds and be ready to continue interaction with the end user. The particular
implementation of the message handling concept under Presentation Manager
means that the application’s primary thread must complete the processing of a
Presentation Manager message before any further messages can be passed to
applications; thus it is possible for the user to be “locked out” of the system if
an application does not complete its processing within a reasonable period of
time.

While the 0.1 second time period is adequate for the processing of most events,
it may be insufficient for those that result in lengthy processing such as access
to a remote system. It is therefore recommended that any window procedure
performing some processing that is likely to take longer than 0.1 seconds to
complete should carry out this processing using a separate thread of execution
under 0S/2. The application’s primary thread may then initiate the secondary
thread and immediately return control to Presentation Manager, thereby
enabling the primary thread to continue with user interaction.

The separation of processing into a primary and one or more secondary threads
may occur in a humber of ways:

* Where the window procedure is an object window procedure, and the
majority of its methods may result in lengthy processing, the window
procedure itself may be implemented in a secondary thread.

e Where only a single method results in lengthy processing, or where the
window procedure is concerned with a display object, a single subroutine
containing that method may be started in a secondary thread.

In certain circumstances where the different portions of an application’s task are
entirely self-contained, and where it is desirable to isolate the portions from one
another, the application may be divided into separate processes. Division of the
application in this way means that each portion resides and executes in its own
address space, fully protected from other portions of the application. This
approach is particularly useful for applications that exploit the Workplace Shell,
since the implementation of the Workplace Shell in 0S/2 Version 2.0 causes
Workplace Shell objects to execute, by default, under the control of the
Workplace Shell process. The use of multiple processes within an application
provides better protection for resources used by Workplace Shell objects.

Note that for performance reasons, the use of multiple threads within the same
process is preferable to the use of multiple processes. This is because
switching between threads involves far less system overhead than switching
between processes.

Processes and threads may communicate with one another in a number of ways
for the purposes of exchanging information, and for synchronizing execution
flow and access to data objects. The techniques of communication between
threads and processes are described in 10.5, “Communicating With a Secondary
Thread” on page 215 and 10.6, “Communicating With Another Process” on

page 216.

© Copyright I1BM Corp. 1993 205

Maintaining synchronization between threads and processes is discussed in
10.7, "Maintaining Synchronization” on page 229.

10.1 Creating a Secondary Thread

In 4.3, "Application Structure” on page 43, it is mentioned that an application
must create its own input message queue to process messages intended for its
windows. The Presentation Manager message-handling implementation creates
message queues on a per-thread basis, and thus requires that any thread that
creates a window (whether that window is a display window or an object
window) and processes messages must have its own message queue.

The primary thread of an application is typically a user interface thread that
handles processi